WO2022034951A1 - Appareil d'observation et d'estimation d'emplacement de cible, et système d'exploitation de véhicule aérien sans pilote à autodestruction comprenant ledit appareil - Google Patents

Appareil d'observation et d'estimation d'emplacement de cible, et système d'exploitation de véhicule aérien sans pilote à autodestruction comprenant ledit appareil Download PDF

Info

Publication number
WO2022034951A1
WO2022034951A1 PCT/KR2020/011020 KR2020011020W WO2022034951A1 WO 2022034951 A1 WO2022034951 A1 WO 2022034951A1 KR 2020011020 W KR2020011020 W KR 2020011020W WO 2022034951 A1 WO2022034951 A1 WO 2022034951A1
Authority
WO
WIPO (PCT)
Prior art keywords
target
gps antenna
gps
observation
location information
Prior art date
Application number
PCT/KR2020/011020
Other languages
English (en)
Korean (ko)
Inventor
김세영
천민규
정진환
홍대원
Original Assignee
주식회사 다츠
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 다츠 filed Critical 주식회사 다츠
Publication of WO2022034951A1 publication Critical patent/WO2022034951A1/fr

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41GWEAPON SIGHTS; AIMING
    • F41G3/00Aiming or laying means
    • F41G3/06Aiming or laying means with rangefinder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C39/00Aircraft not otherwise provided for
    • B64C39/02Aircraft not otherwise provided for characterised by special use
    • B64C39/024Aircraft not otherwise provided for characterised by special use of the remote controlled vehicle type, i.e. RPV
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41CSMALLARMS, e.g. PISTOLS, RIFLES; ACCESSORIES THEREFOR
    • F41C27/00Accessories; Details or attachments not otherwise provided for
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/14Receivers specially adapted for specific applications
    • G01S19/18Military applications
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2101/00UAVs specially adapted for particular uses or applications
    • B64U2101/15UAVs specially adapted for particular uses or applications for conventional or electronic warfare
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2201/00UAVs characterised by their flight controls
    • B64U2201/20Remote controls

Definitions

  • the present invention relates to a target observation and location estimation apparatus and a self-destruct UAV operating system including the same.
  • the existing targeting equipment for missiles uses a laser target indicator to continuously designate a location or TADS (Target Acquisition & Designation System) to search for a target and then estimate its relative position with the target. that was all
  • the present invention estimates the location of a target by measuring the azimuth and elevation using a moving baseline of a GPS system using two GPS antennas and measuring the distance to the target using a laser rangefinder (LRF). It is a task to be solved to provide a device for estimating the position of a target and a self-destruct UAV operating system including the same.
  • LRF laser rangefinder
  • an object of the present invention is to provide an unmanned aerial vehicle capable of performing a high-speed descending attack that the conventional rotorcraft could not do by controlling the aircraft in the direction of gravity, and a self-destructive unmanned aerial vehicle operating system including the same.
  • the present invention is to provide a self-destruct UAV operating system capable of estimating the target's location information, transmitting the location information and the mission start command to the unmanned aerial vehicle, and performing strike-guided flight with the unmanned aerial vehicle. do.
  • a distance measuring device for measuring a distance (D) with a target, a GPS module provided to measure a north reference azimuth ( ⁇ ) and an elevation ( ⁇ ) of the target, Based on the north reference azimuth ( ⁇ ) and elevation ( ⁇ ) of the target measured by the GPS module, the target location information including latitude, longitude, and altitude of the target is calculated, and the target
  • an apparatus for observing and estimating a target including an observation control unit provided to transmit distance to and location information of the target to an external device, and a display unit provided to display image information and location information of the target.
  • the GPS module includes a first GPS antenna and a second GPS antenna positioned apart from the first GPS antenna by a predetermined distance (d).
  • the GPS module is provided to measure a north reference azimuth (?) and an elevation ( ⁇ ) of the target based on the relative positions of the first and second GPS antennas.
  • a firearm having the above target observation and localization device.
  • the target observation and location estimation device measures azimuth and elevation or azimuth and roll using two GPS antennas when a target is specified using an EO camera and/or an IR camera.
  • LRF laser rangefinder
  • FIG. 3 is a conceptual diagram for explaining a method of measuring a target observation and location estimation apparatus related to an embodiment of the present invention.
  • FIG. 7 is a conceptual diagram for explaining an operating state of an unmanned aerial vehicle related to an embodiment of the present invention.
  • the target observation and location estimation apparatus (hereinafter also referred to as 'TADS') is provided to measure and calculate the location information of the target, and transmit the location information of the target to an external device.
  • the external device includes an unmanned aerial vehicle (hereinafter, also referred to as a 'drone').
  • the target observation and location estimation apparatus 100 includes a distance measurer 140 for measuring a distance D from the target T.
  • the distance finder includes a laser distance finder 140 .
  • the target observation and location estimation device 100 places two GPS antennas separated by a predetermined distance on the device and calculates the location and angle of the location estimation device using the difference between the two different GPS data. Use the moving base line method.
  • the observation control unit based on the north reference azimuth ⁇ and the elevation angle ⁇ of the target T measured by the first GPS antenna 121 and the second GPS antenna 122, the first GPS antenna 121 And the second GPS antenna 122 calculates the latitude, longitude, and altitude of each target T.
  • the observation control unit based on the relative positions (eg, elevation difference) of the first and second GPS antennas 121 and 122, latitude, longitude, and altitude of the target T ) to calculate the position information of the target including
  • the target position information can be calculated through the following general formulas 1 to 8.
  • lat_coefficient 111132.95 - 559.822 x cos(2 x lat) + 1.175 x cos(4 x lat)
  • lon_coefficient 111412.88 x cos(lat) - 93.5 x cos(3 x lat) + 0.12 x cos(5 x lat)
  • DistN LRF_dist x cos(pitch) x cos(MBheading)
  • DistE LRF_dist x cos(pitch) x sin(MBheading)
  • TargetLon DistE / lon_coefficient + lon
  • the first GPS antenna 121 is an antenna having a relatively short distance from the target T, and is located at a relatively far side from the target T.
  • the antenna is the second GPS antenna 121 .
  • first GPS antenna 121 and the second GPS antenna 122 may be coaxially disposed with respect to an imaginary axis parallel to the laser irradiation axis of the laser rangefinder 140 .
  • the pitch represents the pitch angle of the TADS 100
  • the pitch angle is the elevation angle ⁇ , which is determined by the difference in elevation between the first GPS antenna 121 and the second GPS antenna 122 .
  • lat_coefficient represents the distance value (unit: m) per latitude that reflects the curvature of the earth according to latitude
  • lon_coefficient is the distance value per degree of longitude that reflects the curvature of the earth according to latitude (unit: m) is shown.
  • DistN represents the North reference distance difference (unit: m) from the target to the TADS 100
  • DistE is the East reference distance difference (unit: m) from the target to the TADS 100 : m)
  • deltaH represents the height difference (unit: m) between the TADS 100 at the target.
  • the observation control unit may be provided to transmit an operation command of the external device when transmitting the distance D from the target T and the position information of the target to the external device.
  • the external device may include an unmanned aerial vehicle
  • the operation command may include a movement command of the unmanned aerial vehicle toward the target based on the transmitted location information.
  • the target observation and location estimation apparatus 100 may further include an inertial navigation apparatus 110 for updating location information.
  • an inertial navigation apparatus 110 for updating location information.
  • a firearm 150 having a target observation and location estimation apparatus 100 ′ may be included.
  • the target observation and location estimation apparatus 100' includes the first and second GPS antennas 121 and 122, the inertial navigation device 110, except for the base portion 101 shown in FIG. It may include an EO/IR camera 130 , a laser rangefinder 140 , and a display unit 150 .
  • the method of controlling the apparatus for observing and estimating a target includes measuring a position of a target with a first GPS antenna 121 , and measuring a position of a target with a second GPS antenna 122 . measuring the position, and the north reference azimuth ( ⁇ ) and elevation angle ( ⁇ ) of the target measured using the positions of the first GPS antenna 121 and the second GPS antenna 122, respectively, and the distance measured by the range finder and calculating location information of the target including latitude, longitude, and altitude of the target based on the distance D from the target.
  • FIG. 120 for a method of controlling the target observation and location estimation apparatus, referring to FIG. 120) measuring the north reference azimuth angle (Heading angle, ⁇ ) between the location estimation device 100 and the target T, referring to FIG. 3(c), using the Moving baseline GPS 120 Measuring the ground surface reference pitch angle ( ⁇ ) between the location estimation device 100 and the target (T), and GPS information and distance (D) of the location estimation device 100, the north reference azimuth (Heading angle, ⁇ ), and measuring the latitude, longitude, and altitude of the target T by using the pitch angle ( ⁇ ) based on the ground surface (General Formulas 1 to 8).
  • the Moving baseline GPS 120 Measuring the ground surface reference pitch angle ( ⁇ ) between the location estimation device 100 and the target (T), and GPS information and distance (D) of the location estimation device 100, the north reference azimuth (Heading angle, ⁇ ), and measuring the latitude, longitude, and altitude of the target T by using the pitch angle ( ⁇ ) based on the ground
  • the unmanned aerial vehicle takes off, approaches and strikes the target location.
  • the unmanned aerial vehicle 200 includes a main body 201 and a plurality of support members 202 respectively extending along the radial direction of the main body and arranged apart along the circumferential direction of the main body.
  • each rotor 210 includes a plurality of blades 211 in which the airfoil has a left-right symmetric shape.
  • the present invention provides a propeller having a shape that can produce the same thrust stability and efficiency not only in the forward direction but also in the reverse rotation situation, that is, the shape of the airfoil of the blade is symmetrical for bidirectional rotation. do.
  • the target observation and location estimation apparatus 100 is the same as described with reference to FIG. 1 .
  • the target observation and location estimation device 100 includes a target observation and location estimation device, a distance measuring device 140 for measuring a distance D with a target, a north reference azimuth ( ⁇ ) and an elevation angle ( ⁇ ) of the target ) based on the GPS module 120, the North reference azimuth ( ⁇ ) and the elevation ( ⁇ ) of the target measured in the GPS module 120, the target's latitude, longitude and altitude ( altitude), an observation control unit provided to calculate the target's location information, including the distance to the target, and the target's location information to the unmanned aerial vehicle, and a display unit 150 provided to display image information and location information of the target .

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

La présente invention concerne un appareil d'observation et d'estimation d'emplacement de cible et un système d'exploitation d'un véhicule aérien sans pilote à autodestruction comprenant ledit appareil, et selon la présente invention, l'emplacement d'une cible peut être estimé à l'aide d'un procédé qui utilise une ligne de base mobile pour mesurer l'azimut et l'élévation et qui utilise un télémètre laser (LRF) pour mesurer la distance jusqu'à la cible, et qui utilise ensuite les valeurs mesurées pour estimer de manière inverse des coordonnées tridimensionnelles.
PCT/KR2020/011020 2020-08-13 2020-08-19 Appareil d'observation et d'estimation d'emplacement de cible, et système d'exploitation de véhicule aérien sans pilote à autodestruction comprenant ledit appareil WO2022034951A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2020-0101621 2020-08-13
KR1020200101621A KR102219989B1 (ko) 2020-08-13 2020-08-13 표적관측 및 위치 추정 장치 및 이를 포함하는 자폭 무인기 운용 시스템

Publications (1)

Publication Number Publication Date
WO2022034951A1 true WO2022034951A1 (fr) 2022-02-17

Family

ID=74731172

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/011020 WO2022034951A1 (fr) 2020-08-13 2020-08-19 Appareil d'observation et d'estimation d'emplacement de cible, et système d'exploitation de véhicule aérien sans pilote à autodestruction comprenant ledit appareil

Country Status (2)

Country Link
KR (1) KR102219989B1 (fr)
WO (1) WO2022034951A1 (fr)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030212487A1 (en) * 2000-09-20 2003-11-13 Koninklijke Philips Electronics N.V. Method of determining the position of a mobile unit
KR20090034700A (ko) * 2007-10-04 2009-04-08 희 한 원격 화기 사격 제어시스템 및 방법
KR20140002334A (ko) * 2012-06-29 2014-01-08 주식회사 동인광학 Gps 수신 불량 지역에서의 3차원 표적 위치추적 장치, 시스템 및 방법
KR101645565B1 (ko) * 2015-09-22 2016-08-12 엘아이지넥스원 주식회사 유도 무기 시스템
KR20170091263A (ko) * 2016-01-31 2017-08-09 자이로캠주식회사 목표물을 향해 자폭하는 카메라센서와 폭발물을 장착한 드론과 원격조정장치 및 해당 무기체계 시스템

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030212487A1 (en) * 2000-09-20 2003-11-13 Koninklijke Philips Electronics N.V. Method of determining the position of a mobile unit
KR20090034700A (ko) * 2007-10-04 2009-04-08 희 한 원격 화기 사격 제어시스템 및 방법
KR20140002334A (ko) * 2012-06-29 2014-01-08 주식회사 동인광학 Gps 수신 불량 지역에서의 3차원 표적 위치추적 장치, 시스템 및 방법
KR101645565B1 (ko) * 2015-09-22 2016-08-12 엘아이지넥스원 주식회사 유도 무기 시스템
KR20170091263A (ko) * 2016-01-31 2017-08-09 자이로캠주식회사 목표물을 향해 자폭하는 카메라센서와 폭발물을 장착한 드론과 원격조정장치 및 해당 무기체계 시스템

Also Published As

Publication number Publication date
KR102219989B1 (ko) 2021-02-25

Similar Documents

Publication Publication Date Title
CN107941204B (zh) 飞行传感器
CN107430188B (zh) 模块化lidar系统
EP2772725B1 (fr) Système de photographie aérienne
US10086937B2 (en) Observation device
WO2017188587A1 (fr) Véhicule aérien à ailes à inclinaison réglable
JP2016107843A (ja) マルチコプタを用いた3次元形状計測方法および装置
CN109724624B (zh) 一种适用于机翼挠曲变形的机载自适应传递对准方法
CN102591353A (zh) 飞行体的飞行控制系统
WO2022034950A1 (fr) Véhicule aérien sans pilote et système d'exploitation de drone à autodestruction le comprenant
JP2017193208A (ja) 小型無人航空機
WO2018043988A1 (fr) Véhicule aérien sans pilote et système de défense sans pilote et procédé le mettant en œuvre
US20220106039A1 (en) Aerial vehicle
WO2022059846A1 (fr) Système et procédé de commande de vol meneur-suiveur dans un vol en essaim de véhicules aériens
US9453708B2 (en) Method for determining position data of a target object in a reference system
KR20180012020A (ko) 무인항공기 정밀착륙 시스템
CN112394382A (zh) 一种抗长时遮挡的低慢小目标跟踪装置及方法
WO2019027171A1 (fr) Drone sans pilote pour relevé aérien
WO2022034951A1 (fr) Appareil d'observation et d'estimation d'emplacement de cible, et système d'exploitation de véhicule aérien sans pilote à autodestruction comprenant ledit appareil
CN102501979A (zh) 一种机载导航吊舱
Niwa et al. A detection method using ultrasonic sensors for avoiding a wall collision of Quadrotors
CN113721642B (zh) 探测跟踪处置一体化的无人机反制控制方法
JPH06213669A (ja) 移動体における慣性基準装置座標系の設定値較正方法
WO2023003100A1 (fr) Appareil de commande destiné au suivi et à la photographie d'un sujet, drone et procédé destiné à faire fonctionner un appareil de commande
WO2022146113A1 (fr) Système de suivi d'objet de type à commande à axes multiples
KR20210144987A (ko) 수직 구조물을 이용한 무인 항공기의 고속 자동 착륙시스템과 그 제어방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20949583

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20949583

Country of ref document: EP

Kind code of ref document: A1