WO2022034835A1 - Light source device and projection-type display device - Google Patents

Light source device and projection-type display device Download PDF

Info

Publication number
WO2022034835A1
WO2022034835A1 PCT/JP2021/028856 JP2021028856W WO2022034835A1 WO 2022034835 A1 WO2022034835 A1 WO 2022034835A1 JP 2021028856 W JP2021028856 W JP 2021028856W WO 2022034835 A1 WO2022034835 A1 WO 2022034835A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light source
source unit
mirror
reflection
Prior art date
Application number
PCT/JP2021/028856
Other languages
French (fr)
Japanese (ja)
Inventor
圭祐 本間
Original Assignee
ソニーグループ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーグループ株式会社 filed Critical ソニーグループ株式会社
Priority to CN202180057402.3A priority Critical patent/CN116097165A/en
Publication of WO2022034835A1 publication Critical patent/WO2022034835A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/74Projection arrangements for image reproduction, e.g. using eidophor

Definitions

  • the present disclosure relates to a light source device having a wavelength conversion element and a projection type display device including the light source device.
  • Patent Document 1 discloses a projection type display device provided with a movable light-shielding plate having a plurality of transmitted light portions.
  • the light source device of one embodiment of the present disclosure has a first light source unit that emits first light, and a second light source unit that emits second light and is arranged in parallel with the first light source unit.
  • the first reflection is arranged so as to face the emission surface of the first light source unit, and a plurality of first reflection units that reflect the first light in one direction are discretely arranged in the surface. Facing the mirror and the emission surface of the second light source unit, and arranged in parallel with the first reflection mirror, the second light is reflected in one direction and a plurality of first reflections in one direction. It is provided with a second reflection mirror having a plurality of second reflecting portions arranged at substantially the same positions as each of the portions.
  • the projection type display device of one embodiment of the present disclosure includes a light source device, an image generation optical system that generates image light by modulating light from the light source device based on an input video signal, and image generation optics. It is equipped with a projection optical system that projects the image light generated by the system.
  • the light source device mounted on this projection type display device has the same components as the light source device according to the embodiment of the present disclosure.
  • the first light and the second light emitted from the first light source unit and the second light source unit arranged in parallel are emitted.
  • the first reflection mirror and the second reflection mirror which reflect in the same direction, are arranged at positions facing the emission surfaces of the first light source unit and the second light source unit, respectively.
  • a plurality of first reflecting portions that reflect the first light in one direction are discretely arranged.
  • a plurality of second reflecting portions that reflect the second light in one direction are discretely arranged, and the plurality of second reflecting portions are a plurality of in one direction. It is provided at substantially the same position as the first reflecting portion.
  • FIG. 1 It is a schematic diagram which shows an example of the structure of the light source apparatus which concerns on embodiment of this disclosure. It is an exploded perspective view which shows an example of the structure of the light source part shown in FIG. It is a schematic diagram which shows an example of the plane structure of the reflection mirror shown in FIG. It is a schematic diagram which shows an example of the plane structure of the reflection mirror shown in FIG. It is a perspective view explaining the positional relationship of each reflection part of the two reflection mirrors shown in FIGS. 3 and 4. It is a schematic diagram which shows an example of the structure of the projector provided with the light source device shown in FIG. 1. It is a schematic diagram which shows an example of the structure of the light source apparatus which concerns on the modification 1 of this disclosure. It is a schematic diagram which shows an example of the structure of the light source apparatus which concerns on the modification 2 of this disclosure. It is a schematic diagram which shows the other example of the projector provided with the light source apparatus shown in FIG.
  • Embodiment an example of a light source device in which a reflection mirror in which a plurality of reflection portions are discretely arranged are arranged on the emission surface side of each of two light source portions arranged in parallel).
  • Configuration of light source device 1-2.
  • Configuration of projection type display device 1-3.
  • Action / effect 2.
  • Modification 1 (Other example 1 of the configuration of the light source device) 2-2.
  • Modification 2 (Other example 2 of the configuration of the light source device) 2-3.
  • Modification 3 (Other examples of projector)
  • FIG. 1 schematically shows an example of the configuration of a light source device (light source device 100) according to an embodiment of the present disclosure.
  • the light source device 100 is used as a light source device for a projection type display device (for example, projector 1 and FIG. 6) described later.
  • the light source device 100 of the present embodiment faces the emission surfaces of the two light source units 110 and 120 arranged in parallel, and the light (excitation) emitted from each of the light source units 110 and 120, for example, in the Y-axis direction.
  • Reflective mirrors 130 and 140 in which a plurality of reflecting portions 131 and 141 that reflect the light EL1 and EL2) are discretely arranged, respectively, are arranged in parallel on the optical path of the excitation light EL2, for example.
  • the light source device 100 includes light source units 110 and 120, reflection mirrors 130 and 140, a retardation plate 150, a phosphor wheel 160, and a synthetic mirror 170.
  • the light source device 100 further includes, for example, a diffuser plate 181, a beam forming element 182, and lenses 183, 184, 185, 186 as a plurality of optical members.
  • the light source units 110 and 120 are the light source unit 120 and the light source unit 120 in the X-axis direction, for example, in the direction in which the excitation lights EL1 and EL2 emitted from the respective light sources are reflected by the reflection mirrors 130 and 140 (for example, in the X-axis direction). They are arranged in parallel in the order of 110.
  • the reflection mirror 130 is arranged so as to face the emission surface of the light source unit 110 at an angle of about 45 degrees.
  • the reflection mirror 140 is arranged so as to face the emission surface of the light source unit 120 at an angle of about 45 degrees.
  • a retardation plate 150 is arranged between the light source unit 120 and the reflection mirror 140.
  • a diffuser plate 181, a beam forming element 182, lenses 183 and 184, and a composite mirror 170 are arranged in this order on the optical path of the excitation light EL1 and EL2 reflected by the reflection mirrors 130 and 140 and traveling straight in the X-axis direction. ..
  • the phosphor wheel 160 and the lenses 185 and 186 are located in a direction orthogonal to the optical path of the excitation light EL1 and EL2 traveling straight (for example, in the Y-axis direction) and at a position facing the synthetic mirror 170. They are arranged in the order of 160.
  • the light source unit 110 has one or a plurality of solid-state light emitting elements 112 that emit light in a predetermined wavelength band (excitation light EL1) as a light source.
  • One or a plurality of solid-state light emitting elements 112 are arranged on the pedestal portion 111, for example, in an array.
  • This light source unit 110 corresponds to a specific example of the "first light source unit" of the present disclosure.
  • FIG. 2 is an exploded perspective view showing an example of the configuration of the light source unit 110. In the light source unit 110 shown in FIG. 2, for example, 10 solid-state light emitting elements 112 are arranged on the pedestal unit 111, for example, in a row of 5 rows and 2 columns.
  • the pedestal portion 111 supports a plurality of solid-state light emitting elements 112 and promotes heat dissipation of the plurality of solid-state light emitting elements 112 that generate heat by light emission. Therefore, the pedestal portion 111 is preferably formed by using a material having high thermal conductivity, and is formed by using, for example, aluminum (Al), copper (Cu), iron (Fe), or the like.
  • a semiconductor laser (Laser Diode: LD) is used for the plurality of solid-state light emitting elements 112.
  • LD Laser Diode
  • an LD that oscillates a laser beam (excitation light EL1: blue light) in a wavelength band corresponding to blue with a wavelength of 400 nm to 470 nm is used.
  • a light emitting diode Light Emitting Diode: LED
  • LED Light Emitting Diode
  • a plurality of lenses 113 are arranged above the plurality of solid-state light emitting elements 112, respectively.
  • the plurality of lenses 113 are, for example, collimating lenses, and the laser light (excitation light EL1) emitted from each of the plurality of solid-state light emitting elements 112 is adjusted to parallel light and emitted.
  • the plurality of lenses 113 are arranged in an array, for example, as shown in FIG. 2, and are fixed to, for example, the pedestal portion 111 via an adhesive.
  • the light source unit 120 has the same configuration as the light source unit 110. That is, in the light source unit 120, as a light source, a plurality of solid light emitting elements 122 that emit laser light (excitation light EL2) in a predetermined wavelength band are arranged on the pedestal unit 121, for example, in an array, and a plurality of solids. Above the light emitting element 122, a plurality of lenses 123 arranged in an array are arranged.
  • This light source unit 120 corresponds to a specific example of the "second light source unit" of the present disclosure.
  • Linearly polarized (for example, S-polarized) excitation light EL1 and EL2 are emitted from the light source units 110 and 120.
  • the shape of the laser beam oscillated from the plurality of solid-state light emitting elements 112 and 122 has, for example, an elliptical shape.
  • the major axis and the minor axis of the laser beam (excitation light EL1 and EL2) having an elliptical shape oscillated from the plurality of solid-state light emitting elements 112 and 122 are arranged so as to be substantially in the same direction. ing.
  • the reflection mirror 130 reflects the excitation light EL1 emitted from the light source unit 110 in a predetermined direction. Specifically, the reflection mirror 130 reflects the excitation light EL1 emitted from the light source unit 110 in the Y-axis direction in the X-axis direction, and the reflection surface 130S is substantially 45 with respect to the emission surface of the light source unit 110. It is arranged to face the light source unit 110 so as to have an angle of °.
  • This reflection mirror 130 corresponds to a specific example of the "first reflection mirror" of the present disclosure.
  • FIG. 3 schematically shows an example of the planar configuration of the reflection mirror 130.
  • the one-dot broken line shown in FIG. 3 represents the distribution region of the return light RL (return light distribution region R), which will be described later.
  • a plurality of reflection units 131 that reflect the excitation light EL1 emitted from the light source unit 110 are arranged discretely in the plane.
  • the plurality of reflecting units 131 are, for example, at positions facing each of the plurality of solid-state light emitting elements 112 of the light source unit 110, in accordance with the shape of the laser beam (excitation light EL1) oscillated from the plurality of solid-state light emitting elements 112. For example, it is provided in a rectangular shape.
  • the plurality of reflecting portions 131 correspond to a specific example of the "plurality of first reflecting portions" of the present disclosure.
  • the reflection mirror 140 reflects the excitation light EL2 emitted from the light source unit 120 in a predetermined direction, and has the same configuration as the reflection mirror 130. That is, the reflection mirror 140 is arranged to face the light source unit 120 so that the reflection surface 140S has an angle of approximately 45 ° with respect to the emission surface of the light source unit 120, and FIG. 4 As shown in the above, the plurality of reflecting portions 141 are arranged discretely according to the arrangement of the plurality of solid-state light emitting elements 122 of the light source unit 120.
  • the reflection mirror 140 corresponds to a specific example of the "second reflection mirror" of the present disclosure, and the plurality of reflection portions 141 correspond to a specific example of the "plurality of second reflection portions" of the present disclosure. ..
  • the reflection mirrors 130 and 140 are formed by providing a plurality of reflection portions 131 and 141 in the plane of, for example, a plate-shaped member having light transmission, respectively. That is, light transmitting portions 132 and 142 are provided around the plurality of reflecting portions 131 and 141.
  • the light transmitting portion 132 corresponds to a specific example of the "first region other than the first reflecting portion” of the present disclosure
  • the light transmitting portion 142 corresponds to the "second region other than the second reflecting portion" of the present disclosure.
  • the area of corresponds to a specific example of "the area of".
  • the reflection mirrors 130 and 140 are arranged in parallel on the optical path of the excitation light EL2 that is reflected by the reflection mirror 140 and travels straight in the X-axis direction.
  • FIG. 5 shows the positional relationship of the plurality of reflecting portions 131 and 141 in the planes of the reflecting mirrors 130 and 140.
  • a plurality of reflection portions 131 and 141 provided on the reflection mirrors 130 and 140 are formed at substantially the same positions as each other.
  • the reflection mirrors 130 and 140 are arranged so that the plurality of reflection portions 131 and 141 are located at substantially the same position in the X-axis direction.
  • the reflection mirrors 130 and 140 pass the excitation light EL2 emitted from the light source unit 120 through the plurality of reflection units 131 of the reflection mirror 130 after being reflected by the plurality of reflection units 141 of the reflection mirror 140. Have been placed.
  • the plurality of reflecting portions 131 can be formed by using, for example, a polarization beam splitter (PBS) that reflects S-polarized light and transmits P-polarized light.
  • the plurality of reflecting portions 141 can be formed by using a general mirror or a dichroic mirror that selectively reflects light in a predetermined wavelength band (for example, blue light). As a result, the excitation light EL1 emitted from the light source unit 110 in the Y-axis direction is reflected in the X-axis direction by the plurality of reflection units 131.
  • the excitation light EL2 emitted from the light source unit 120 in the Y-axis direction is converted from S-polarization to P-polarization by the retardation plate 150 described later, reflected by the plurality of reflection units 141 in the X-axis direction, and then reflected. It passes through the plurality of reflecting portions 131 of the mirror 130 and is incident on the diffuser plate 181 together with the excitation light EL1.
  • the retardation plate 150 converts the state of incident polarization and emits light, and is arranged between the light source unit 120 and the reflection mirror 140 as described above.
  • the retardation plate 150 is, for example, a 1/2 wave plate, and converts the polarization state of the excitation light EL2 emitted from the light source unit 120 from S polarization to P polarization and emits it toward the reflection mirror 140.
  • the phosphor wheel 160 is a wavelength conversion element that converts the excitation light EL1 and EL2 into light (fluorescent FL) having a wavelength band different from that of the excitation light EL1 and EL2 and emits the light.
  • the phosphor wheel 160 is provided with a phosphor layer 162 on a wheel substrate 161 that can rotate around a rotation axis (for example, axis J163).
  • the wheel substrate 161 is for supporting the phosphor layer 162, and has, for example, a disk shape. It is preferable that the wheel substrate 161 further has a function as a heat radiating member. Therefore, it is preferable that the wheel substrate 161 is made of a metal material having high thermal conductivity. Further, it is preferable to use a metal material or a ceramic material that can be mirror-processed. This makes it possible to suppress the temperature rise of the fluorescent material layer 162 and improve the efficiency of taking out the fluorescent FL.
  • metal materials examples include aluminum (Al), copper (Cu), molybdenum (Mo), tungsten (W), cobalt (Co), chromium (Cr), platinum (Pt), and tantalum (Ta). Elemental metals such as lithium (Li), zirconium (Zr), ruthenium (Ru), rhodium (Rh) or palladium (Pd), or alloys containing one or more of these can be mentioned.
  • the ceramic material examples include silicon carbide (SiC), aluminum nitride (AlN), beryllium oxide (BeO), a composite material of Si and SiC, or a composite material of SiC and Al (however, the content of SiC is 50%). Those including the above) can be mentioned.
  • the phosphor layer 162 contains a plurality of phosphor particles, and is excited by the excitation lights EL1 and EL2 to emit light (fluorescent FL) having a wavelength band different from the wavelength bands of the excitation lights EL1 and EL2. be.
  • the phosphor layer 162 is formed in a plate shape, for example, and is composed of, for example, a so-called ceramic phosphor or a binder type fluorophore.
  • the phosphor layer 162 is continuously formed on the wheel substrate 161, for example, in the circumferential direction of rotation.
  • the phosphor layer 162 contains phosphor particles that are excited by blue light (excitation light EL1 and EL2) emitted from the light source units 110 and 120 and emit fluorescent FL in the wavelength band corresponding to yellow. It is configured. Examples of such phosphor particles include YAG (yttrium aluminum garnet) -based materials.
  • the phosphor layer 162 may further contain semiconductor nanoparticles such as quantum dots, an organic dye, and the like.
  • a motor 163 is attached to the center of the wheel board 161.
  • the motor 163 is for driving the wheel substrate 161 to rotate at a predetermined rotation speed.
  • the phosphor wheel 160 becomes rotatable, and the irradiation positions of the excitation lights EL1 and EL2 with respect to the phosphor layer 162 change (move) with time at a speed corresponding to the rotation speed. This makes it possible to avoid deterioration of the phosphor particles due to long-term irradiation of the excitation light at the same position of the phosphor layer 162.
  • the synthetic mirror 170 is an optical element that selectively transmits or reflects light in a predetermined wavelength band among the incident light.
  • the synthetic mirror 170 is composed of, for example, a dichroic mirror.
  • the synthetic mirror 170 is configured to reflect the blue excitation lights EL1 and EL2 and transmit the yellow fluorescent FL.
  • the excitation lights EL1 and EL2 emitted from the light source units 110 and 120 are reflected toward the phosphor wheel 160.
  • the fluorescent FL emitted from the phosphor wheel 160 passes through the synthetic mirror 170 and is emitted toward the illumination optical system 300 described later.
  • the diffuser plate 181 diffuses the incident excitation light EL1 and EL2 and emits them toward the beam forming element 182.
  • the beam forming element 182 is, for example, a pair of fly-eye lenses, and the excitation lights EL1 and EL2 incident from the diffuser plate 181 are adjusted to a uniform luminance distribution and emitted toward the lens 183.
  • the lenses 183 and 184 are configured to include, for example, a condenser lens and a collimating lens, and emit the excitation lights EL1 and EL2 incident from the beam forming element 182 toward the synthetic mirror.
  • the lenses 185 and 186 are configured to include, for example, a condenser lens and a collimating lens, and emit EL1 and EL2 incident from the synthetic mirror 170 toward the phosphor wheel 160.
  • the excitation lights EL1 and EL2 are emitted from the light source units 110 and 120 toward the reflection mirrors 130 and 140.
  • the excitation light EL1 emitted from the light source unit 110 is reflected by the plurality of reflection units 131 of the reflection mirror 130, and is emitted toward the diffuser plate 181.
  • the excitation light EL2 emitted from the light source unit 120 is converted from S-polarization to P-polarization when passing through the retardation plate 150 arranged between the light source unit 120 and the reflection mirror 140, and then the reflection mirror 140. It is reflected by a plurality of reflecting units 141.
  • the reflected excitation light EL2 passes through the plurality of reflection portions 131 of the reflection mirror 130 and is incident on the diffusion plate 181 together with the excitation light EL1.
  • the excitation lights EL1 and EL2 incident on the diffuser plate 181 are incident on the composite mirror 170 via the beam forming element 182 and the lenses 183 and 184, and are reflected toward the lens 185.
  • the excitation lights EL1 and EL2 incident on the lens 185 are focused toward the phosphor wheel 160 via the lens 186, converted into fluorescent FL, and emitted from the phosphor wheel 160.
  • the fluorescent FL is adjusted to parallel light by the lenses 185 and 186, and is emitted toward the synthetic mirror 170.
  • the fluorescent FL incident on the synthetic mirror 170 passes through the synthetic mirror 170, is combined with blue light emitted from a light source unit (not shown), and is emitted toward the illumination optical system 300 as white light Lw.
  • the light emitted from the phosphor wheel 160 may include some excitation lights EL1 and EL2 that have not been converted into the fluorescent FL in the phosphor layer 162, in addition to the fluorescent FL.
  • the excitation lights EL1 and EL2 emitted from the phosphor wheel 160 without being converted into the fluorescent FL in the phosphor layer 162 are referred to as return light RL.
  • the return light RL is adjusted to parallel light by the lenses 185 and 186 in the same manner as the fluorescent FL, then reflected by the synthetic mirror 170 and incident on the lens 184.
  • the return light RL incident on the lens 184 is incident on the reflection mirror 130 via the lens 183, the beam forming element 182, and the diffuser plate 181.
  • the reflection mirror 130 a plurality of reflection portions 131 that reflect the excitation light EL1 are dispersed in the return light distribution region R of the plate-shaped member having light transmission, as shown in FIG. Have been placed. Therefore, of the return light RL incident on the reflection mirror 130, the return light RL incident on the plurality of reflection portions 131 is reflected toward the light source unit 110, but the light transmission portion 132 around the plurality of reflection portions 131. The return light RL incident on the light passes through the reflection mirror 130. As a result, the amount of light of the return light RL returning to the light source unit 110 is reduced.
  • the plurality of reflecting portions 141 of the reflecting mirror 140 are formed on the optical path of the return light RL at substantially the same positions as the plurality of reflecting portions 131 of the reflecting mirror 130.
  • the return light RL transmitted through the light transmitting portion 132 of the reflecting mirror 130 is incident on the light transmitting portion 142 of the reflecting mirror 140, so that the amount of light of the returning light RL reflected by the reflecting mirror 140 and returned to the light source unit 120 is increased. It will be reduced.
  • the light emitted from the light source device 100 to the illumination optical system 300 is not limited to the white light Lw, and the fluorescent FL may be emitted as it is.
  • the liquid crystal panels 411B and 411C which will be described later, are irradiated with the green light G and the blue light B emitted from the separately provided green light source unit and the blue light source unit, respectively.
  • FIG. 6 is a schematic view showing an example of the configuration of a transmissive 3LCD type projector 1 that performs optical modulation by a transmissive liquid crystal panel (LCD).
  • the projector 1 includes, for example, a light source device 100, an illumination optical system 300, an image forming unit 400, and a projection optical system 500.
  • the illumination optical system 300 and the image forming unit 400 correspond to a specific example of the "image generation optical system" of the present disclosure.
  • the illumination optical system 300 includes, for example, an integrator element 311, a polarization conversion element 312, and a condenser lens 313.
  • the integrator element 311 is a first fly-eye lens 311A having a plurality of microlenses arranged in two dimensions and a second fly having a plurality of microlenses arranged so as to correspond to one for each microlens thereof. Includes eye lens 311B.
  • the light (white light Lw) incident on the integrator element 311 from the light source device 100 is divided into a plurality of luminous fluxes by the microlens of the first flyeye lens 311A, and is divided into a plurality of light fluxes by the corresponding microlenses of the second flyeye lens 311B, respectively. It is imaged.
  • Each of the microlenses of the second fly-eye lens 311B functions as a secondary light source, and irradiates the polarization conversion element 312 with a plurality of parallel lights having uniform brightness as incident light.
  • the integrator element 311 as a whole has a function of adjusting the incident light emitted from the light source device 100 to the polarization conversion element 312 into a uniform luminance distribution.
  • the polarization conversion element 312 has a function of aligning the polarization states of incident light incident on the integrator element 311 or the like.
  • the polarization conversion element 312 emits light including blue light B, green light G, and red light R via, for example, a lens arranged on the emission side of the light source device 100.
  • the illumination optical system 300 further includes dichroic mirrors 314A, 314B, mirrors 315A, 315B, 315C, relay lenses 316A, 316B, and field lenses 317A, 317B, 317C.
  • the image forming unit 400 has a liquid crystal panel 411A, 411B, 411C and a dichroic prism 412.
  • the dichroic mirrors 314A and 314B have the property of selectively reflecting colored light in a predetermined wavelength band and transmitting light in other wavelength bands.
  • the dichroic mirror 314A selectively reflects the red light R.
  • the dichroic mirror 314B selectively reflects the green light G among the green light G and the blue light B transmitted through the dichroic mirror 314A.
  • the remaining blue light B passes through the dichroic mirror 314B.
  • the white light Lw emitted from the light source device 100 is separated into a plurality of different colored lights (red light R, green light G, and blue light B).
  • the separated red light R is reflected by the mirror 315A, parallelized by passing through the field lens 317A, and then incident on the liquid crystal panel 411A for modulating the red light.
  • the green light G is parallelized by passing through the field lens 317B and then incident on the liquid crystal panel 411B for modulating the green light.
  • the blue light B is reflected by the mirror 315B through the relay lens 316A and further reflected by the mirror 315C through the relay lens 316B.
  • the blue light B reflected by the mirror 315C is parallelized by passing through the field lens 317C and then incident on the liquid crystal panel 411C for modulation of the blue light B.
  • the liquid crystal panels 411A, 411B, and 411C are electrically connected to a signal source (for example, a PC or the like) (not shown) that supplies an image signal including image information.
  • the liquid crystal panels 411A, 411B, and 411C modulate the incident light pixel by pixel based on the supplied image signals of each color, and generate a red image, a green image, and a blue image, respectively.
  • the modulated light of each color (formed image) is incident on the dichroic prism 412 and synthesized.
  • the dichroic prism 412 superimposes and synthesizes light of each color incident from three directions, and emits light toward the projection optical system 500.
  • the projection optical system 500 includes, for example, a plurality of lenses and the like, and magnifies the light emitted from the image forming unit 400 and projects it onto the screen 600.
  • the reflection mirrors 130 and 140 that reflect the excitation lights EL1 and EL2 emitted from the light source units 110 and 120 arranged in parallel in the same direction (for example, the X-axis direction) are provided. It was arranged at a position facing each of the emission surfaces of the light source units 110 and 120.
  • a plurality of reflecting portions 131, 141 that reflect the excitation lights EL1 and EL2 in the X-axis direction are discretely arranged on the reflection mirrors 130 and 140, respectively, and the plurality of reflecting portions 131, 141 are substantially mutual in the X-axis direction. It is installed in the same position.
  • the amount of light of the return light RL that is emitted without being wavelength-converted by the phosphor wheel 160, is reflected in the X-axis direction by the composite mirror, and returns to the light source units 110 and 120 by the reflection mirrors 130 and 140. It will be reduced.
  • the amount of light of the return light RL returning to the light source units 110 and 120 without wavelength conversion in the phosphor wheel 160 is reduced, so that the temperature rise of the light source units 110 and 120 is reduced. Therefore, it is possible to improve the luminous efficiency of the plurality of solid-state light emitting elements 112 and 122 constituting the light source units 110 and 120.
  • the members used in the light source units 110 and 120 such as an adhesive for fixing the lenses 113 and 123 to the pedestal portions 111 and 121, for example. Deterioration is suppressed. Therefore, it is possible to improve the reliability.
  • FIG. 7 schematically shows an example of the configuration of the light source device (light source device 100A) according to the first modification of the present disclosure.
  • the light source unit may be configured to include three or more.
  • the point that the four light source units 110, 120, 210, 220 are provided is different from the above-described embodiment.
  • the light source units 210 and 220 have the same configuration as the light source units 110 and 120. That is, the light source units 210 and 220 have a plurality of solid-state light emitting elements 212 and 222 that emit laser light (excitation light EL3 and EL4) in a predetermined wavelength band as light sources, respectively, on the pedestal units 211 and 221. For example, they are arranged in an array, and a plurality of lenses 213 and 223 arranged in an array are arranged above the plurality of solid-state light emitting elements 212 and 222, respectively.
  • the light source unit 210 is arranged so as to face the light source unit 110, for example, in a plan view.
  • the light source unit 220 is arranged so as to face the light source unit 120, for example, in a plan view. In the vertical direction (Z-axis direction), the light source units 210 and 220 are arranged in parallel at a position lower than the light source units 110 and 120, for example.
  • Reflective mirrors 230 and 240 are arranged at positions facing the emission surfaces of the light source units 210 and 220, respectively.
  • the reflection mirrors 230 and 240 have the same configuration as the reflection mirrors 130 and 140. That is, the reflection mirrors 230 and 240 are arranged to face the light source units 210 and 220 so that the reflection surfaces 230S and 240S have an angle of approximately 45 ° with respect to the emission surfaces of the light source units 210 and 220, respectively.
  • a plurality of reflection units 231 and 241 are dispersed according to the arrangement of the plurality of solid light emitting elements 212 and 222 of the light source units 210 and 220, respectively. Have been placed.
  • the plurality of reflecting portions 231 can be formed by using, for example, PBS that reflects S-polarized light and transmits P-polarized light.
  • the plurality of reflecting units 241 can be formed by using a general mirror or a dichroic mirror that selectively reflects light in a predetermined wavelength band (for example, blue light).
  • a retardation plate 250 is arranged between the light source unit 220 and the reflection mirror 240 as in the above embodiment.
  • the light source units 210 and 220 emit excitation light EL3 and EL4 toward the reflection mirrors 230 and 240.
  • the excitation light EL3 emitted from the light source unit 210 is reflected by the plurality of reflection units 231 of the reflection mirror 230, and is emitted toward the diffuser plate 181.
  • the excitation light EL4 emitted from the light source unit 220 is converted from S-polarization to P-polarization when passing through the retardation plate 250 arranged between the light source unit 220 and the reflection mirror 240, and then the reflection mirror 240. It is reflected by a plurality of reflecting units 241.
  • the reflected excitation light EL4 passes through a plurality of reflection portions 231 of the reflection mirror 230 and is incident on the diffuser plate 181 together with the excitation lights EL1, EL2, and EL3.
  • the same effect as that of the above embodiment can be obtained by applying this technology.
  • four light source units 110, 120, 210, 220 are arranged in parallel, and two sets of light source units (light source units 110, 120 and light source units 210, 220) are arranged in parallel.
  • the emission surfaces are arranged so as to face each other in a plan view
  • the four light source units 110, 120, 210, 220 may be arranged alternately in the X-axis direction.
  • four light source units 110, 120, 210, 220 may be arranged in parallel in one direction.
  • FIG. 8 schematically shows an example of the configuration of the light source device (light source device 100B) according to the second modification of the present disclosure.
  • the light source device 100 may further provide a light source unit 260 that emits light having a wavelength band different from that of the fluorescent FL as an auxiliary light source.
  • the light source device 100B is obtained by adding a light source unit 260 to the light source device 100A shown in the first modification.
  • the light source unit 260 adjusts the RGB balance, for example, in order to display a wider color gamut in the projector 1 or to improve the brightness of a desired white balance (white chromaticity).
  • the light source unit 260 is arranged at a position facing the surface (surface 170S2) opposite to the incident surface (surface 170S1) on which the excitation light EL1, EL2, EL3, EL4 of the synthetic mirror 170 is incident.
  • the configuration of the light source unit 260 is not particularly limited, and has the same configuration as, for example, the light source unit 110 and the like.
  • the light source unit 260 as a light source, a plurality of solid-state light emitting elements 262 that emit laser light (for example, red light Lr) in a predetermined wavelength band are arranged on the pedestal portion 261, and the plurality of solid-state light emitting elements 262 are arranged.
  • a plurality of lenses 263 arranged in an array are arranged above.
  • the synthetic mirror 170 reflects blue light (excitation light EL1, EL2) and red light Lr, and fluorescent FL (. Since it is configured to transmit yellow light), a red light component contained in the fluorescent FL emitted from the phosphor wheel 160 is further added to the return light RL. Therefore, the temperature of the light source unit (for example, the light source unit 110, 120, 210, 220) rises as compared with the case where only the excitation lights EL1 and EL2 that have not been wavelength-converted in the phosphor wheel 160 return as the return light RL. It may be easier to do.
  • a plurality of reflection units 131, 141, 231 are provided on each of the reflection mirrors 130, 140, 230, 240 arranged to face the emission surfaces of the light source units 110, 120, 210, 220.
  • , 241 are arranged separately, so that the amount of light of the return light RL including the red light component returning to the light source units 110, 120, 210, 220 is reduced. Therefore, it is possible to reduce the decrease in luminous efficiency due to the temperature rise of the light source units 110, 120, 210, 220.
  • the plurality of reflecting portions 131, 141, 231, 241 provided in each of the reflecting mirrors 130, 140, 230, 240 of this modification are in addition to the reflection of blue light (excitation light EL1, EL2, EL3, EL4). It is preferable to use PBS or a dichroic mirror that transmits red light. As a result, the red light component contained in the return light RL is transmitted through the plurality of reflecting portions 131, 141,231,241, so that the red light component returning to the light source portions 110, 120, 210, 220 is further reduced. It becomes possible to do.
  • FIG. 9 is a schematic view showing an example of the configuration of the projection type display device (projector 2) according to the third modification of the present disclosure.
  • the projector 2 is a reflective 3LCD type projector that performs light modulation by a reflective liquid crystal panel (LCD).
  • a light source device 100, an illumination optical system 700, an image forming unit 800, and a projection optical system 500. Is configured to include.
  • the illumination optical system 700 includes a PS converter 711, a dichroic mirror 712,716, and a total reflection mirror 713,714,715 along the optical axis of the white light Lw emitted from the light source device 100.
  • the image forming unit 800 includes a polarizing beam splitter 811, 812, 813, a reflective liquid crystal panel 814R, 814G, 814B, and a cross prism 815 as a color synthesizing means.
  • the projection optical system 500 projects the synthetic light emitted from the cross prism 815 toward the screen 600.
  • the PS converter 711 functions to polarize and transmit the light from the light source device 100.
  • the S polarization is transmitted as it is, and the P polarization is converted into the S polarization.
  • the dichroic mirror 712 has a function of separating the light transmitted through the PS converter 711 into blue light B and other colored light (red light R and green light G).
  • the total reflection mirror 713 reflects the light transmitted through the dichroic mirror 712 toward the total reflection mirror 715, and the total reflection mirror 715 reflects the light reflected from the total reflection mirror 713 toward the dichroic mirror 716.
  • the dichroic mirror 716 has a function of separating the light from the total reflection mirror 715 into red light R and green light G.
  • the total reflection mirror 714 reflects the blue light B separated by the dichroic mirror 712 toward the polarizing beam splitter 813.
  • the polarizing beam splitters 811 and 812, 813 are arranged along the optical paths of the red light R, the green light G, and the blue light B, respectively.
  • the polarization beam splitters 811 and 812, 813 have polarization separation surfaces 811A, 812A, and 813A, respectively, and the polarization separation surfaces 811A, 812A, and 813A separate the incident colored light into two polarization components orthogonal to each other. It has a function.
  • the polarization separation surfaces 811A, 812A, and 813A reflect one polarization component (for example, S polarization component) and transmit the other polarization component (for example, P polarization component).
  • the reflective liquid crystal panels 814R, 814G, and 814B are incident with the colored light of a predetermined polarization component (for example, S polarization component) separated by the polarization separation surfaces 811A, 812A, and 813A.
  • the reflective liquid crystal panels 814R, 814G, and 814B are driven according to a drive voltage given based on the image signal, modulate the incident light, and direct the modulated light to the polarizing beam splitter 811,812,813. It functions to reflect.
  • the cross prism 815 synthesizes colored light of a predetermined polarization component (for example, P polarization component) emitted from the reflective liquid crystal panels 814R, 814G, and 814B and transmitted through the polarization beam splitters 811, 812, 813, and directs the color light toward the projection optical system 500. It emits light.
  • a predetermined polarization component for example, P polarization component
  • the projection optical system 500 includes, for example, a plurality of lenses and the like, and magnifies the light emitted from the image forming unit 800 and projects it onto the screen 600.
  • each of the light source units 110 and 120 has the same number of a plurality of solid-state light emitting elements 112 and 122, but each of the light source units 110 and 120 has a plurality of solid-state light emitting elements 112. , 122 may be different numbers.
  • the number of the plurality of reflecting portions 131 and 141 provided in each of the reflecting mirrors 130 and 140 corresponds to the number of the light source portions 110 and 120 and the plurality of solid-state light emitting elements 112 and 122, FIGS. 3 to 3 and FIGS.
  • the layout does not completely match each other as shown in 5, at least a part of the plurality of reflecting portions 131 and 141 are provided at substantially the same position with each other in the X-axis direction, for example.
  • a device other than the above projectors 1 and 2 may be configured.
  • a device other than the above projectors 1 and 2 may be configured.
  • a digital micromirror device DMD: Digital Micro-mirror Device.
  • Etc. can also be applied to a projector.
  • the light source device 100 (100A, 100B) according to the present technology may be used for a device other than the projection type display device.
  • the light source device 100 (100A, 100B) of the present disclosure may be used for lighting purposes, and can be applied to, for example, a headlamp of an automobile or a light source for lighting up.
  • the present technology can also have the following configurations.
  • a mirror and a second reflection mirror were placed at positions facing each emission surface.
  • the first reflection mirror a plurality of first reflecting portions that reflect the first light in one direction are discretely arranged.
  • the second reflection mirror a plurality of second reflecting portions that reflect the second light in one direction are discretely arranged, and the plurality of second reflecting portions are a plurality of in one direction. It is provided at substantially the same position as the first reflecting portion.
  • the light (return light) that is reflected by the synthetic mirror without being wavelength-converted from the wavelength conversion unit and returns to the first light source unit and the second light source unit is reduced. Therefore, since the temperature rise of the first light source unit and the second light source unit is reduced, it is possible to improve the luminous efficiency.
  • a light source device including a second reflecting mirror having a plurality of second reflecting portions arranged at substantially the same positions as each of the reflecting portions of 1.
  • the first region of the first reflection mirror other than the plurality of first reflection portions and the second region of the second reflection mirror other than the plurality of second reflection portions are light transmissive, respectively.
  • the first light source unit and the second light source unit each have a plurality of light sources.
  • the plurality of first reflecting portions are respectively arranged at positions corresponding to the plurality of light sources in the first light source portion.
  • the light source device according to (1) or (2), wherein the plurality of second reflecting portions are respectively arranged at positions corresponding to the plurality of light sources in the second light source portion.
  • the first reflection mirror is arranged on the optical path of the second light reflected by the plurality of second reflection portions of the second reflection mirror.
  • the light source device according to any one of (1) to (3) above, wherein the plurality of first reflecting portions are formed by a polarizing beam splitter.
  • the light source device according to any one of (1) to (5), further comprising a retardation plate between the second light source unit and the second reflection mirror.
  • a wavelength conversion unit that converts the first light and the second light into wavelengths and emits a third light.
  • a synthetic mirror arranged on the optical path of the first light and the second light, reflecting the first light and the second light, and selectively transmitting the third light.
  • the light source device according to any one of (1) to (6) above.
  • (8) The light source device according to (7) above, wherein the composite mirror is formed by a dichroic mirror.
  • the light source device according to (7) or (8) above, wherein the plurality of first reflecting portions and the plurality of second reflecting portions are each transparent to the fourth light. ..
  • the light source device according to any one of (1) to (9) above, wherein the first light and the second light are blue light.
  • the wavelength conversion unit is one of the above (7) to (10), which is excited by the first light and the second light and emits fluorescence including yellow light as the third light.
  • the light source device described in. (12) The light source device according to any one of (9) to (11), wherein the fourth light is red light.
  • Light source device and An image generation optical system that generates image light by modulating the light from the light source device based on the input video signal. It is provided with a projection optical system that projects image light generated by the image generation optical system.
  • the light source device is The first light source unit that emits the first light and A second light source unit arranged in parallel with the first light source unit while emitting a second light,
  • the first reflection is arranged so as to face the emission surface of the first light source unit, and a plurality of first reflection units that reflect the first light in one direction are discretely arranged in the surface.
  • a projection type display device having a second reflecting mirror having a plurality of second reflecting portions arranged at substantially the same position as each of the reflecting portions of 1.

Abstract

A light source device according to an embodiment of the present disclosure comprises: a first light source unit which emits first light; a second light source unit which emits second light and is disposed in parallel with the first light source unit; a first reflective mirror which is disposed facing an emission surface of the first light source unit and in which a plurality of first reflective parts that reflect the first light in one direction are discretely disposed in-plane; and a second reflective mirror which faces an emission surface of the second light source unit, is disposed in parallel with the first reflective mirror, and has a plurality of second reflective parts which reflect the second light in one direction and are disposed at substantially the same positions as the plurality of respective first reflective parts.

Description

光源装置および投射型表示装置Light source device and projection type display device
 本開示は、波長変換素子を有する光源装置およびこれを備えた投射型表示装置に関する。 The present disclosure relates to a light source device having a wavelength conversion element and a projection type display device including the light source device.
 例えば、特許文献1では、複数の透過光部を有する可動遮光板を備えた投射型表示装置が開示されている。 For example, Patent Document 1 discloses a projection type display device provided with a movable light-shielding plate having a plurality of transmitted light portions.
特開2008-209730号公報Japanese Unexamined Patent Publication No. 2008-209730
 ところで、例えば投射型表示装置では、光源部の発光効率の向上が求められている。 By the way, for example, in a projection type display device, improvement in luminous efficiency of a light source unit is required.
 光源部の発光効率を向上させることが可能な光源装置および投射型表示装置を提供することが望ましい。 It is desirable to provide a light source device and a projection type display device that can improve the luminous efficiency of the light source unit.
 本開示の一実施形態の光源装置は、第1の光を出射する第1の光源部と、第2の光を出射すると共に、第1の光源部と並列に配置された第2の光源部と、第1の光源部の出射面に対向して配置されると共に、第1の光を一の方向へ反射する複数の第1の反射部が面内に離散配置されている第1の反射ミラーと、第2の光源部の出射面に対向すると共に、第1の反射ミラーと並列に配置され、第2の光を一の方向へ反射すると共に、一の方向において複数の第1の反射部のそれぞれと略同じ位置に配置された複数の第2の反射部を有する第2の反射ミラーとを備えたものである。 The light source device of one embodiment of the present disclosure has a first light source unit that emits first light, and a second light source unit that emits second light and is arranged in parallel with the first light source unit. The first reflection is arranged so as to face the emission surface of the first light source unit, and a plurality of first reflection units that reflect the first light in one direction are discretely arranged in the surface. Facing the mirror and the emission surface of the second light source unit, and arranged in parallel with the first reflection mirror, the second light is reflected in one direction and a plurality of first reflections in one direction. It is provided with a second reflection mirror having a plurality of second reflecting portions arranged at substantially the same positions as each of the portions.
 本開示の一実施形態の投射型表示装置は、光源装置と、入力された映像信号に基づいて光源装置からの光を変調することにより、画像光を生成する画像生成光学系と、画像生成光学系で生成された画像光を投射する投射光学系とを備えたものである。この投射型表示装置に搭載された光源装置は、上記本開示の一実施形態の光源装置と同一の構成要素を有している。 The projection type display device of one embodiment of the present disclosure includes a light source device, an image generation optical system that generates image light by modulating light from the light source device based on an input video signal, and image generation optics. It is equipped with a projection optical system that projects the image light generated by the system. The light source device mounted on this projection type display device has the same components as the light source device according to the embodiment of the present disclosure.
 本開示の一実施形態の光源装置および一実施形態の投射型表示装置では、並列に配置された第1の光源部および第2の光源部から出射される第1の光および第2の光をそれぞれ同一方向に反射する第1の反射ミラーおよび第2の反射ミラーを、それぞれの第1の光源部および第2の光源部の出射面と対向する位置に配置した。第1の反射ミラーには、第1の光を一の方向に反射する複数の第1の反射部が離散配置されている。第2の反射ミラーも同様に、第2の光を一の方向に反射する複数の第2の反射部が離散配置されており、この複数の第2の反射部は、一の方向において複数の第1の反射部と略同じ位置に設けられている。これにより、例えば波長変換部から波長変換されずに出射され、第1の光源部および第2の光源部へ戻る光(戻り光)を低減する。 In the light source device of one embodiment and the projection type display device of one embodiment of the present disclosure, the first light and the second light emitted from the first light source unit and the second light source unit arranged in parallel are emitted. The first reflection mirror and the second reflection mirror, which reflect in the same direction, are arranged at positions facing the emission surfaces of the first light source unit and the second light source unit, respectively. In the first reflection mirror, a plurality of first reflecting portions that reflect the first light in one direction are discretely arranged. Similarly, in the second reflection mirror, a plurality of second reflecting portions that reflect the second light in one direction are discretely arranged, and the plurality of second reflecting portions are a plurality of in one direction. It is provided at substantially the same position as the first reflecting portion. As a result, for example, the light emitted from the wavelength conversion unit without wavelength conversion and returning to the first light source unit and the second light source unit (return light) is reduced.
本開示の実施の形態に係る光源装置の構成の一例を表す模式図である。It is a schematic diagram which shows an example of the structure of the light source apparatus which concerns on embodiment of this disclosure. 図1に示した光源部の構造の一例を表す分解斜視図である。It is an exploded perspective view which shows an example of the structure of the light source part shown in FIG. 図1に示した反射ミラーの平面構成の一例を表す模式図である。It is a schematic diagram which shows an example of the plane structure of the reflection mirror shown in FIG. 図1に示した反射ミラーの平面構成の一例を表す模式図である。It is a schematic diagram which shows an example of the plane structure of the reflection mirror shown in FIG. 図3および図4に示した2つの反射ミラーの各反射部の位置関係を説明する斜視図である。It is a perspective view explaining the positional relationship of each reflection part of the two reflection mirrors shown in FIGS. 3 and 4. 図1に示した光源装置を備えたプロジェクタの構成の一例を表す概略図である。It is a schematic diagram which shows an example of the structure of the projector provided with the light source device shown in FIG. 1. 本開示の変形例1に係る光源装置の構成の一例を表す模式図である。It is a schematic diagram which shows an example of the structure of the light source apparatus which concerns on the modification 1 of this disclosure. 本開示の変形例2に係る光源装置の構成の一例を表す模式図である。It is a schematic diagram which shows an example of the structure of the light source apparatus which concerns on the modification 2 of this disclosure. 図1等に示した光源装置を備えたプロジェクタの他の例を表す概略図である。It is a schematic diagram which shows the other example of the projector provided with the light source apparatus shown in FIG.
 以下、本開示の実施の形態について、図面を参照して詳細に説明する。以下の説明は本開示の一具体例であって、本開示は以下の態様に限定されるものではない。また、本開示は、各図に示す各構成要素の配置や寸法、寸法比などについても、それらに限定されるものではない。なお、説明する順序は、下記の通りである。
 1.実施の形態(並列配置された2つの光源部のそれぞれの出射面側に、複数の反射部が離散配置された反射ミラーが配置された光源装置の例)
  1-1.光源装置の構成
  1-2.投射型表示装置の構成
  1-3.作用・効果
 2.変形例
  2-1.変形例1(光源装置の構成の他の例1)
  2-2.変形例2(光源装置の構成の他の例2)
  2-3.変形例3(プロジェクタの他の例)
Hereinafter, embodiments of the present disclosure will be described in detail with reference to the drawings. The following description is a specific example of the present disclosure, and the present disclosure is not limited to the following aspects. Further, the present disclosure is not limited to the arrangement, dimensions, dimensional ratio, etc. of each component shown in each figure. The order of explanation is as follows.
1. 1. Embodiment (an example of a light source device in which a reflection mirror in which a plurality of reflection portions are discretely arranged are arranged on the emission surface side of each of two light source portions arranged in parallel).
1-1. Configuration of light source device 1-2. Configuration of projection type display device 1-3. Action / effect 2. Modification example 2-1. Modification 1 (Other example 1 of the configuration of the light source device)
2-2. Modification 2 (Other example 2 of the configuration of the light source device)
2-3. Modification 3 (Other examples of projector)
<1.実施の形態>
 図1は、本開示の一実施の形態に係る光源装置(光源装置100)の構成の一例を模式的に表したものである。光源装置100は、後述する投射型表示装置(例えば、プロジェクタ1、図6参照)の光源装置として用いられるものである。本実施の形態の光源装置100は、並列配置された2つの光源部110,120のそれぞれの出射面に対向して、光源部110,120のそれぞれから例えばY軸方向に出射された光(励起光EL1,EL2)を例えばX軸方向に反射する複数の反射部131,141がそれぞれ離散配置された反射ミラー130,140が、例えば励起光EL2の光路上に並列に配置されたものである。
<1. Embodiment>
FIG. 1 schematically shows an example of the configuration of a light source device (light source device 100) according to an embodiment of the present disclosure. The light source device 100 is used as a light source device for a projection type display device (for example, projector 1 and FIG. 6) described later. The light source device 100 of the present embodiment faces the emission surfaces of the two light source units 110 and 120 arranged in parallel, and the light (excitation) emitted from each of the light source units 110 and 120, for example, in the Y-axis direction. Reflective mirrors 130 and 140 in which a plurality of reflecting portions 131 and 141 that reflect the light EL1 and EL2) are discretely arranged, respectively, are arranged in parallel on the optical path of the excitation light EL2, for example.
(1-1.光源装置の構成)
 光源装置100は、光源部110,120と、反射ミラー130,140と、位相差板150と、蛍光体ホイール160と、合成ミラー170とを有している。光源装置100は、さらに、複数の光学部材として、例えば、拡散板181と、ビーム成形素子182と、レンズ183,184,185,186とを有している。
(1-1. Configuration of light source device)
The light source device 100 includes light source units 110 and 120, reflection mirrors 130 and 140, a retardation plate 150, a phosphor wheel 160, and a synthetic mirror 170. The light source device 100 further includes, for example, a diffuser plate 181, a beam forming element 182, and lenses 183, 184, 185, 186 as a plurality of optical members.
 上記光源装置100を構成する各部材は、以下のように配置されている。光源部110,120は、例えばX軸方向に、例えばそれぞれから出射される励起光EL1,EL2が反射ミラー130,140によって反射される方向(例えば、X軸方向)に、光源部120および光源部110の順に並列に配置されている。反射ミラー130は、光源部110の出射面に対して約45度の角度で対向配置されている。反射ミラー140は、光源部120の出射面に対して約45度の角度で対向配置されている。光源部120と反射ミラー140との間には、位相差板150が配置されている。反射ミラー130,140によって反射され、X軸方向に直進する励起光EL1,EL2の光路上には、拡散板181、ビーム成形素子182、レンズ183,184および合成ミラー170がこの順に配置されている。蛍光体ホイール160およびレンズ185,186は、直進する励起光EL1,EL2の光路と直交する方向(例えば、Y軸方向)、且つ、合成ミラー170と対向する位置にレンズ185,186および蛍光体ホイール160の順に配置されている。 Each member constituting the light source device 100 is arranged as follows. The light source units 110 and 120 are the light source unit 120 and the light source unit 120 in the X-axis direction, for example, in the direction in which the excitation lights EL1 and EL2 emitted from the respective light sources are reflected by the reflection mirrors 130 and 140 (for example, in the X-axis direction). They are arranged in parallel in the order of 110. The reflection mirror 130 is arranged so as to face the emission surface of the light source unit 110 at an angle of about 45 degrees. The reflection mirror 140 is arranged so as to face the emission surface of the light source unit 120 at an angle of about 45 degrees. A retardation plate 150 is arranged between the light source unit 120 and the reflection mirror 140. A diffuser plate 181, a beam forming element 182, lenses 183 and 184, and a composite mirror 170 are arranged in this order on the optical path of the excitation light EL1 and EL2 reflected by the reflection mirrors 130 and 140 and traveling straight in the X-axis direction. .. The phosphor wheel 160 and the lenses 185 and 186 are located in a direction orthogonal to the optical path of the excitation light EL1 and EL2 traveling straight (for example, in the Y-axis direction) and at a position facing the synthetic mirror 170. They are arranged in the order of 160.
 光源部110は、光源として、所定の波長帯域の光(励起光EL1)を出射する1または複数の固体発光素子112を有している。1または複数の固体発光素子112は、台座部111に、例えばアレイ状に配置されている。この光源部110が、本開示の「第1の光源部」の一具体例に相当する。図2は、光源部110の構成の一例を表した分解斜視図である。図2に示した光源部110では、例えば10個の固体発光素子112が、台座部111に、例えば5行2列状に配置されている。 The light source unit 110 has one or a plurality of solid-state light emitting elements 112 that emit light in a predetermined wavelength band (excitation light EL1) as a light source. One or a plurality of solid-state light emitting elements 112 are arranged on the pedestal portion 111, for example, in an array. This light source unit 110 corresponds to a specific example of the "first light source unit" of the present disclosure. FIG. 2 is an exploded perspective view showing an example of the configuration of the light source unit 110. In the light source unit 110 shown in FIG. 2, for example, 10 solid-state light emitting elements 112 are arranged on the pedestal unit 111, for example, in a row of 5 rows and 2 columns.
 台座部111は、複数の固体発光素子112を支持すると共に、発光によって発熱した複数の固体発光素子112の放熱を促すためのものである。このため、台座部111は、熱伝導率の高い材料を用いて形成されていることが好ましく、例えば、アルミニウム(Al)、銅(Cu)および鉄(Fe)等を用いて形成されている。 The pedestal portion 111 supports a plurality of solid-state light emitting elements 112 and promotes heat dissipation of the plurality of solid-state light emitting elements 112 that generate heat by light emission. Therefore, the pedestal portion 111 is preferably formed by using a material having high thermal conductivity, and is formed by using, for example, aluminum (Al), copper (Cu), iron (Fe), or the like.
 複数の固体発光素子112には、例えば、半導体レーザ(Laser Diode:LD)が用いられている。具体的には、例えば波長400nm~470nmの青色に対応する波長帯域のレーザ光(励起光EL1:青色光)を発振するLDが用いられている。この他、複数の固体発光素子112としては、発光ダイオード(Light Emitting Diode:LED)を用いてもよい。 For example, a semiconductor laser (Laser Diode: LD) is used for the plurality of solid-state light emitting elements 112. Specifically, for example, an LD that oscillates a laser beam (excitation light EL1: blue light) in a wavelength band corresponding to blue with a wavelength of 400 nm to 470 nm is used. In addition, a light emitting diode (Light Emitting Diode: LED) may be used as the plurality of solid-state light emitting elements 112.
 複数の固体発光素子112の上方には、それぞれ、複数のレンズ113が配置されている。複数のレンズ113は、例えばコリメートレンズであり、複数の固体発光素子112からそれぞれ出射されたレーザ光(励起光EL1)を平行光に調整して出射する。複数のレンズ113は、例えば図2に示したようにアレイ状に配置されており、例えば台座部111に接着剤を介して固定されている。 A plurality of lenses 113 are arranged above the plurality of solid-state light emitting elements 112, respectively. The plurality of lenses 113 are, for example, collimating lenses, and the laser light (excitation light EL1) emitted from each of the plurality of solid-state light emitting elements 112 is adjusted to parallel light and emitted. The plurality of lenses 113 are arranged in an array, for example, as shown in FIG. 2, and are fixed to, for example, the pedestal portion 111 via an adhesive.
 光源部120は、光源部110と同様の構成を有している。即ち、光源部120は、光源として、所定の波長帯域のレーザ光(励起光EL2)を出射する複数の固体発光素子122が、台座部121に、例えばアレイ状に配置されており、複数の固体発光素子122の上方には、それぞれ、アレイ状に配置された複数のレンズ123が配置されている。この光源部120が、本開示の「第2の光源部」の一具体例に相当する。 The light source unit 120 has the same configuration as the light source unit 110. That is, in the light source unit 120, as a light source, a plurality of solid light emitting elements 122 that emit laser light (excitation light EL2) in a predetermined wavelength band are arranged on the pedestal unit 121, for example, in an array, and a plurality of solids. Above the light emitting element 122, a plurality of lenses 123 arranged in an array are arranged. This light source unit 120 corresponds to a specific example of the "second light source unit" of the present disclosure.
 光源部110,120からは、直線偏光(例えば、S偏光)の励起光EL1,EL2が出射される。複数の固体発光素子112,122から発振されるレーザ光の形状は、例えば楕円形状を有している。光源部110,120では、複数の固体発光素子112,122から発振される楕円形状を有するレーザ光(励起光EL1,EL2)の長軸および短軸が、それぞれ略同一方向となるように配置されている。 Linearly polarized (for example, S-polarized) excitation light EL1 and EL2 are emitted from the light source units 110 and 120. The shape of the laser beam oscillated from the plurality of solid-state light emitting elements 112 and 122 has, for example, an elliptical shape. In the light source units 110 and 120, the major axis and the minor axis of the laser beam (excitation light EL1 and EL2) having an elliptical shape oscillated from the plurality of solid-state light emitting elements 112 and 122 are arranged so as to be substantially in the same direction. ing.
 反射ミラー130は、光源部110から出射された励起光EL1を所定の方向に反射するものである。具体的には、反射ミラー130は、光源部110からY軸方向に出射された励起光EL1をX軸方向へ反射するものであり、反射面130Sが光源部110の出射面に対して略45°の角度となるように光源部110に対して対向配置されている。この反射ミラー130が、本開示の「第1の反射ミラー」の一具体例に相当する。 The reflection mirror 130 reflects the excitation light EL1 emitted from the light source unit 110 in a predetermined direction. Specifically, the reflection mirror 130 reflects the excitation light EL1 emitted from the light source unit 110 in the Y-axis direction in the X-axis direction, and the reflection surface 130S is substantially 45 with respect to the emission surface of the light source unit 110. It is arranged to face the light source unit 110 so as to have an angle of °. This reflection mirror 130 corresponds to a specific example of the "first reflection mirror" of the present disclosure.
 図3は、反射ミラー130の平面構成の一例を模式的に表したものである。図3に示した一点破線は、後述する戻り光RLの分布領域(戻り光分布領域R)を表している。反射ミラー130は、光源部110から出射された励起光EL1を反射する複数の反射部131が面内に離散して配置されている。複数の反射部131は、例えば、光源部110の複数の固体発光素子112のそれぞれと対向する位置に、複数の固体発光素子112から発振されるレーザ光(励起光EL1)の形状に合わせて、例えば矩形状に設けられている。この複数の反射部131が、本開示の「複数の第1の反射部」の一具体例に相当する。 FIG. 3 schematically shows an example of the planar configuration of the reflection mirror 130. The one-dot broken line shown in FIG. 3 represents the distribution region of the return light RL (return light distribution region R), which will be described later. In the reflection mirror 130, a plurality of reflection units 131 that reflect the excitation light EL1 emitted from the light source unit 110 are arranged discretely in the plane. The plurality of reflecting units 131 are, for example, at positions facing each of the plurality of solid-state light emitting elements 112 of the light source unit 110, in accordance with the shape of the laser beam (excitation light EL1) oscillated from the plurality of solid-state light emitting elements 112. For example, it is provided in a rectangular shape. The plurality of reflecting portions 131 correspond to a specific example of the "plurality of first reflecting portions" of the present disclosure.
 具体的には、図2に示したように、光源部110において10個の固体発光素子112が5行2列状に配置されている場合には、反射ミラー130の面内に10個の反射部131が5行2列状に離散して配置される。光源部110において例えば24個の固体発光素子112が4行6列状に配置されている場合には、図3に示したように、反射ミラー130の面内に24個の反射部131が4行6列状に離散して配置される。 Specifically, as shown in FIG. 2, when 10 solid light emitting elements 112 are arranged in a row of 5 rows and 2 columns in the light source unit 110, 10 reflections are made in the plane of the reflection mirror 130. The portions 131 are arranged discretely in a row of 5 rows and 2 columns. In the light source unit 110, for example, when 24 solid-state light emitting elements 112 are arranged in 4 rows and 6 columns, 24 reflecting units 131 are arranged in the plane of the reflecting mirror 130 as shown in FIG. They are arranged discretely in rows and 6 columns.
 反射ミラー140は、光源部120から出射された励起光EL2を所定の方向に反射するものであり、反射ミラー130と同様の構成を有している。即ち、反射ミラー140は、反射面140Sが光源部120の出射面に対して略45°の角度となるように、光源部120に対して対向配置されており、その面内には、図4に示したように、複数の反射部141が、光源部120の複数の固体発光素子122の配置に合わせて離散して配置されている。この反射ミラー140が、本開示の「第2の反射ミラー」の一具体例に相当し、複数の反射部141が、本開示の「複数の第2の反射部」の一具体例に相当する。 The reflection mirror 140 reflects the excitation light EL2 emitted from the light source unit 120 in a predetermined direction, and has the same configuration as the reflection mirror 130. That is, the reflection mirror 140 is arranged to face the light source unit 120 so that the reflection surface 140S has an angle of approximately 45 ° with respect to the emission surface of the light source unit 120, and FIG. 4 As shown in the above, the plurality of reflecting portions 141 are arranged discretely according to the arrangement of the plurality of solid-state light emitting elements 122 of the light source unit 120. The reflection mirror 140 corresponds to a specific example of the "second reflection mirror" of the present disclosure, and the plurality of reflection portions 141 correspond to a specific example of the "plurality of second reflection portions" of the present disclosure. ..
 反射ミラー130,140は、それぞれ、光透過性を有する例えば板状部材の面内に複数の反射部131,141を設けることで形成されている。つまり、複数の反射部131,141の周囲は、光透過部132,142が設けられている。この光透過部132が、本開示の「第1の反射部以外の第1の領域」の一具体例に相当し、光透過部142が、本開示の「第2の反射部以外の第2の領域」の一具体例に相当する。 The reflection mirrors 130 and 140 are formed by providing a plurality of reflection portions 131 and 141 in the plane of, for example, a plate-shaped member having light transmission, respectively. That is, light transmitting portions 132 and 142 are provided around the plurality of reflecting portions 131 and 141. The light transmitting portion 132 corresponds to a specific example of the "first region other than the first reflecting portion" of the present disclosure, and the light transmitting portion 142 corresponds to the "second region other than the second reflecting portion" of the present disclosure. Corresponds to a specific example of "the area of".
 反射ミラー130,140は、上記のように、反射ミラー140によって反射されてX軸方向に直進する励起光EL2の光路上に並列に配置されている。図5は、反射ミラー130,140のそれぞれの面内における複数の反射部131,141の位置関係を表したものである。反射ミラー130,140は、それぞれに設けられた複数の反射部131,141が互いに略同じ位置に形成されている。光源装置100では、反射ミラー130,140は、複数の反射部131,141が互いにX軸方向に略同じ位置となるように配置されている。換言すると、反射ミラー130,140は、光源部120から出射された励起光EL2が反射ミラー140の複数の反射部141において反射された後、反射ミラー130の複数の反射部131を通過するように配置されている。 As described above, the reflection mirrors 130 and 140 are arranged in parallel on the optical path of the excitation light EL2 that is reflected by the reflection mirror 140 and travels straight in the X-axis direction. FIG. 5 shows the positional relationship of the plurality of reflecting portions 131 and 141 in the planes of the reflecting mirrors 130 and 140. In the reflection mirrors 130 and 140, a plurality of reflection portions 131 and 141 provided on the reflection mirrors 130 and 140 are formed at substantially the same positions as each other. In the light source device 100, the reflection mirrors 130 and 140 are arranged so that the plurality of reflection portions 131 and 141 are located at substantially the same position in the X-axis direction. In other words, the reflection mirrors 130 and 140 pass the excitation light EL2 emitted from the light source unit 120 through the plurality of reflection units 131 of the reflection mirror 130 after being reflected by the plurality of reflection units 141 of the reflection mirror 140. Have been placed.
 複数の反射部131は、例えば、S偏光を反射し、P偏光を透過する偏光ビームスプリッタ(PBS)を用いて形成することができる。複数の反射部141は、一般的なミラーまたは所定の波長帯域の光(例えば青色光)を選択的に反射するダイクロイックミラーを用いて形成することができる。これにより、光源部110からY軸方向に向けて出射された励起光EL1は、複数の反射部131においてX軸方向に反射される。光源部120からY軸方向に向けて出射された励起光EL2は、後述する位相差板150によってS偏光からP偏光に変換されて複数の反射部141においてX軸方向に反射された後、反射ミラー130の複数の反射部131を通過し、励起光EL1と共に、拡散板181に入射する。 The plurality of reflecting portions 131 can be formed by using, for example, a polarization beam splitter (PBS) that reflects S-polarized light and transmits P-polarized light. The plurality of reflecting portions 141 can be formed by using a general mirror or a dichroic mirror that selectively reflects light in a predetermined wavelength band (for example, blue light). As a result, the excitation light EL1 emitted from the light source unit 110 in the Y-axis direction is reflected in the X-axis direction by the plurality of reflection units 131. The excitation light EL2 emitted from the light source unit 120 in the Y-axis direction is converted from S-polarization to P-polarization by the retardation plate 150 described later, reflected by the plurality of reflection units 141 in the X-axis direction, and then reflected. It passes through the plurality of reflecting portions 131 of the mirror 130 and is incident on the diffuser plate 181 together with the excitation light EL1.
 位相差板150は、入射偏光の状態を変換して出射するものであり、上記のように、光源部120と反射ミラー140との間に配置されている。位相差板150は、例えば1/2波長板であり、光源部120から出射された励起光EL2の偏光状態を、S偏光からP偏光に変換して反射ミラー140へ向けて出射する。 The retardation plate 150 converts the state of incident polarization and emits light, and is arranged between the light source unit 120 and the reflection mirror 140 as described above. The retardation plate 150 is, for example, a 1/2 wave plate, and converts the polarization state of the excitation light EL2 emitted from the light source unit 120 from S polarization to P polarization and emits it toward the reflection mirror 140.
 蛍光体ホイール160は、励起光EL1,EL2を、励起光EL1,EL2とは波長帯域の異なる光(蛍光FL)に変換して出射する波長変換素子であり、本開示の「波長変換部」の一具体例に相当する。蛍光体ホイール160は、回転軸(例えば、軸J163)を中心に回転可能なホイール基板161に蛍光体層162が設けられている。 The phosphor wheel 160 is a wavelength conversion element that converts the excitation light EL1 and EL2 into light (fluorescent FL) having a wavelength band different from that of the excitation light EL1 and EL2 and emits the light. Corresponds to a specific example. The phosphor wheel 160 is provided with a phosphor layer 162 on a wheel substrate 161 that can rotate around a rotation axis (for example, axis J163).
 ホイール基板161は、蛍光体層162を支持するためのものであり、例えば円板形状を有している。ホイール基板161は、さらに、放熱部材としての機能を有することが好ましい。このため、ホイール基板161は、熱伝導率が高い金属材料によって形成されていることが好ましい。また、鏡面加工が可能な金属材料やセラミックス材料を用いることが好ましい。これにより、蛍光体層162の温度上昇を抑制し、蛍光FLの取り出し効率を向上させることが可能となる。 The wheel substrate 161 is for supporting the phosphor layer 162, and has, for example, a disk shape. It is preferable that the wheel substrate 161 further has a function as a heat radiating member. Therefore, it is preferable that the wheel substrate 161 is made of a metal material having high thermal conductivity. Further, it is preferable to use a metal material or a ceramic material that can be mirror-processed. This makes it possible to suppress the temperature rise of the fluorescent material layer 162 and improve the efficiency of taking out the fluorescent FL.
 このような金属材料としては、例えば、アルミニウム(Al)、銅(Cu)、モリブデン(Mo)、タングステン(W)、コバルト(Co)、クロム(Cr)、白金(Pt)、タンタル(Ta)、リチウム(Li)、ジルコニウム(Zr)、ルテニウム(Ru)、ロジウム(Rh)またはパラジウム(Pd)等の単体金属、またはこれらを1種以上含む合金が挙げられる。セラミックス材料としては、例えば、炭化ケイ素(SiC)、窒化アルミニウム(AlN)、酸化ベリリウム(BeO)、SiとSiCとの複合材料、またはSiCとAlとの複合材料(但しSiCの含有率が50%以上のもの)を含むものが挙げられる。 Examples of such metal materials include aluminum (Al), copper (Cu), molybdenum (Mo), tungsten (W), cobalt (Co), chromium (Cr), platinum (Pt), and tantalum (Ta). Elemental metals such as lithium (Li), zirconium (Zr), ruthenium (Ru), rhodium (Rh) or palladium (Pd), or alloys containing one or more of these can be mentioned. Examples of the ceramic material include silicon carbide (SiC), aluminum nitride (AlN), beryllium oxide (BeO), a composite material of Si and SiC, or a composite material of SiC and Al (however, the content of SiC is 50%). Those including the above) can be mentioned.
 蛍光体層162は、複数の蛍光体粒子を含むものであり、励起光EL1,EL2によって励起されて、励起光EL1,EL2の波長帯域とは異なる波長帯域の光(蛍光FL)を発するものである。蛍光体層162は、例えば、プレート状に形成されており、例えば、所謂セラミックス蛍光体やバインダ式の蛍光体によって構成されている。蛍光体層162は、ホイール基板161に、例えば、回転円周方向に連続して形成されている。 The phosphor layer 162 contains a plurality of phosphor particles, and is excited by the excitation lights EL1 and EL2 to emit light (fluorescent FL) having a wavelength band different from the wavelength bands of the excitation lights EL1 and EL2. be. The phosphor layer 162 is formed in a plate shape, for example, and is composed of, for example, a so-called ceramic phosphor or a binder type fluorophore. The phosphor layer 162 is continuously formed on the wheel substrate 161, for example, in the circumferential direction of rotation.
 具体的には、蛍光体層162は、光源部110,120から出射される青色光(励起光EL1,EL2)により励起されて黄色に対応する波長帯域の蛍光FLを発する蛍光体粒子を含んで構成されている。このような蛍光体粒子としては、例えばYAG(イットリウム・アルミニウム・ガーネット)系材料が挙げられる。蛍光体層162は、さらに、量子ドット等の半導体ナノ粒子や有機色素等を含んでいてもよい。 Specifically, the phosphor layer 162 contains phosphor particles that are excited by blue light (excitation light EL1 and EL2) emitted from the light source units 110 and 120 and emit fluorescent FL in the wavelength band corresponding to yellow. It is configured. Examples of such phosphor particles include YAG (yttrium aluminum garnet) -based materials. The phosphor layer 162 may further contain semiconductor nanoparticles such as quantum dots, an organic dye, and the like.
 ホイール基板161の中心には、例えば、モータ163が取り付けられている。モータ163は、ホイール基板161を所定の回転数で回転駆動するためのものである。これにより、蛍光体ホイール160は回転可能となり、蛍光体層162に対する励起光EL1,EL2の照射位置が、回転数に対応した速度で時間的に変化(移動)する。これにより、蛍光体層162の同じの位置に励起光が長時間照射されることによる蛍光体粒子の劣化を避けることができる。 For example, a motor 163 is attached to the center of the wheel board 161. The motor 163 is for driving the wheel substrate 161 to rotate at a predetermined rotation speed. As a result, the phosphor wheel 160 becomes rotatable, and the irradiation positions of the excitation lights EL1 and EL2 with respect to the phosphor layer 162 change (move) with time at a speed corresponding to the rotation speed. This makes it possible to avoid deterioration of the phosphor particles due to long-term irradiation of the excitation light at the same position of the phosphor layer 162.
 合成ミラー170は、入射した光のうち所定の波長帯域の光を選択的に透過または反射する光学素子である。合成ミラー170は、例えばダイクロイックミラーによって構成されている。具体的には、合成ミラー170は、青色の励起光EL1,EL2を反射し、黄色の蛍光FLを透過する構成となっている。これにより、光源部110,120から出射された励起光EL1,EL2が蛍光体ホイール160に向けて反射される。また、蛍光体ホイール160から出射された蛍光FLは合成ミラー170を透過し、後述する照明光学系300に向けて出射される。 The synthetic mirror 170 is an optical element that selectively transmits or reflects light in a predetermined wavelength band among the incident light. The synthetic mirror 170 is composed of, for example, a dichroic mirror. Specifically, the synthetic mirror 170 is configured to reflect the blue excitation lights EL1 and EL2 and transmit the yellow fluorescent FL. As a result, the excitation lights EL1 and EL2 emitted from the light source units 110 and 120 are reflected toward the phosphor wheel 160. Further, the fluorescent FL emitted from the phosphor wheel 160 passes through the synthetic mirror 170 and is emitted toward the illumination optical system 300 described later.
 拡散板181は、入射した励起光EL1,EL2を拡散してビーム成形素子182に向けて出射する。 The diffuser plate 181 diffuses the incident excitation light EL1 and EL2 and emits them toward the beam forming element 182.
 ビーム成形素子182は、例えば一対のフライアイレンズであり、拡散板181から入射した励起光EL1,EL2を、均一な輝度分布に整えてレンズ183へ向けて出射する。 The beam forming element 182 is, for example, a pair of fly-eye lenses, and the excitation lights EL1 and EL2 incident from the diffuser plate 181 are adjusted to a uniform luminance distribution and emitted toward the lens 183.
 レンズ183,184は、例えば集光レンズおよびコリメートレンズ等を含んで構成されており、ビーム成形素子182から入射した励起光EL1,EL2を合成ミラーへ向けて出射する。 The lenses 183 and 184 are configured to include, for example, a condenser lens and a collimating lens, and emit the excitation lights EL1 and EL2 incident from the beam forming element 182 toward the synthetic mirror.
 レンズ185,186は、例えば集光レンズおよびコリメートレンズ等を含んで構成されており、合成ミラー170から入射したEL1,EL2を蛍光体ホイール160へ向けて出射する。 The lenses 185 and 186 are configured to include, for example, a condenser lens and a collimating lens, and emit EL1 and EL2 incident from the synthetic mirror 170 toward the phosphor wheel 160.
 本実施の形態の光源装置100では、まず、光源部110,120から反射ミラー130,140に向けて励起光EL1,EL2が出射される。光源部110から出射された励起光EL1は、反射ミラー130の複数の反射部131にて反射され、拡散板181に向けて出射される。光源部120から出射された励起光EL2は、光源部120と反射ミラー140との間に配置された位相差板150を透過する際にS偏光からP偏光に変換された後、反射ミラー140の複数の反射部141にて反射される。反射された励起光EL2は、反射ミラー130の複数の反射部131を通過して励起光EL1と共に拡散板181に入射する。 In the light source device 100 of the present embodiment, first, the excitation lights EL1 and EL2 are emitted from the light source units 110 and 120 toward the reflection mirrors 130 and 140. The excitation light EL1 emitted from the light source unit 110 is reflected by the plurality of reflection units 131 of the reflection mirror 130, and is emitted toward the diffuser plate 181. The excitation light EL2 emitted from the light source unit 120 is converted from S-polarization to P-polarization when passing through the retardation plate 150 arranged between the light source unit 120 and the reflection mirror 140, and then the reflection mirror 140. It is reflected by a plurality of reflecting units 141. The reflected excitation light EL2 passes through the plurality of reflection portions 131 of the reflection mirror 130 and is incident on the diffusion plate 181 together with the excitation light EL1.
 拡散板181に入射した励起光EL1,EL2は、ビーム成形素子182、レンズ183,184を介して合成ミラー170に入射し、レンズ185に向けて反射される。レンズ185に入射した励起光EL1,EL2は、レンズ186を介して蛍光体ホイール160に向けて集光され、蛍光FLに変換されて蛍光体ホイール160から出射される。蛍光FLは、レンズ185,186にて平行光に調整され、合成ミラー170に向けて出射される。合成ミラー170に入射した蛍光FLは合成ミラー170を透過し、例えば、図示しない光源部から出射された青色光と合波されて白色光Lwとして照明光学系300に向けて出射される。 The excitation lights EL1 and EL2 incident on the diffuser plate 181 are incident on the composite mirror 170 via the beam forming element 182 and the lenses 183 and 184, and are reflected toward the lens 185. The excitation lights EL1 and EL2 incident on the lens 185 are focused toward the phosphor wheel 160 via the lens 186, converted into fluorescent FL, and emitted from the phosphor wheel 160. The fluorescent FL is adjusted to parallel light by the lenses 185 and 186, and is emitted toward the synthetic mirror 170. The fluorescent FL incident on the synthetic mirror 170 passes through the synthetic mirror 170, is combined with blue light emitted from a light source unit (not shown), and is emitted toward the illumination optical system 300 as white light Lw.
 このとき、蛍光体ホイール160から出射される光には、蛍光FLの他に、蛍光体層162において蛍光FLに変換されなかった一部の励起光EL1,EL2が含まれる場合がある。この蛍光体層162において蛍光FLに変換されずに蛍光体ホイール160から出射される励起光EL1,EL2を戻り光RLと称する。 At this time, the light emitted from the phosphor wheel 160 may include some excitation lights EL1 and EL2 that have not been converted into the fluorescent FL in the phosphor layer 162, in addition to the fluorescent FL. The excitation lights EL1 and EL2 emitted from the phosphor wheel 160 without being converted into the fluorescent FL in the phosphor layer 162 are referred to as return light RL.
 戻り光RLは、蛍光FLと同様にレンズ185,186にて平行光に調整された後、合成ミラー170によって反射され、レンズ184に入射する。レンズ184に入射した戻り光RLは、レンズ183、ビーム成形素子182および拡散板181を介して反射ミラー130に入射する。 The return light RL is adjusted to parallel light by the lenses 185 and 186 in the same manner as the fluorescent FL, then reflected by the synthetic mirror 170 and incident on the lens 184. The return light RL incident on the lens 184 is incident on the reflection mirror 130 via the lens 183, the beam forming element 182, and the diffuser plate 181.
 本実施の形態では、反射ミラー130には、励起光EL1を反射する複数の反射部131が、図3に示したように、光透過性を有する板状部材の戻り光分布領域R内に離散配置されている。このため、反射ミラー130に入射した戻り光RLのうち、複数の反射部131に入射した戻り光RLは光源部110に向けて反射されるものの、複数の反射部131の周囲の光透過部132に入射した戻り光RLは反射ミラー130を透過する。これにより、光源部110に戻る戻り光RLの光量が低減される。 In the present embodiment, in the reflection mirror 130, a plurality of reflection portions 131 that reflect the excitation light EL1 are dispersed in the return light distribution region R of the plate-shaped member having light transmission, as shown in FIG. Have been placed. Therefore, of the return light RL incident on the reflection mirror 130, the return light RL incident on the plurality of reflection portions 131 is reflected toward the light source unit 110, but the light transmission portion 132 around the plurality of reflection portions 131. The return light RL incident on the light passes through the reflection mirror 130. As a result, the amount of light of the return light RL returning to the light source unit 110 is reduced.
 また、本実施の形態では、反射ミラー140の複数の反射部141は、戻り光RLの光路上に、反射ミラー130の複数の反射部131と略同じ位置に形成されている。これにより、反射ミラー130の光透過部132を透過した戻り光RLは、反射ミラー140の光透過部142に入射するため、反射ミラー140によって反射されて光源部120に戻る戻り光RLの光量が低減される。 Further, in the present embodiment, the plurality of reflecting portions 141 of the reflecting mirror 140 are formed on the optical path of the return light RL at substantially the same positions as the plurality of reflecting portions 131 of the reflecting mirror 130. As a result, the return light RL transmitted through the light transmitting portion 132 of the reflecting mirror 130 is incident on the light transmitting portion 142 of the reflecting mirror 140, so that the amount of light of the returning light RL reflected by the reflecting mirror 140 and returned to the light source unit 120 is increased. It will be reduced.
 なお、光源装置100から照明光学系300に出射される光は白色光Lwに限らず、蛍光FLがそのまま出射されるようにしてもよい。その場合、後述する液晶パネル411B,411Cには、別途設けられた緑色光源部および青色光源部から出射される緑色光Gおよび青色光Bがそれぞれ照射される。 The light emitted from the light source device 100 to the illumination optical system 300 is not limited to the white light Lw, and the fluorescent FL may be emitted as it is. In that case, the liquid crystal panels 411B and 411C, which will be described later, are irradiated with the green light G and the blue light B emitted from the separately provided green light source unit and the blue light source unit, respectively.
(1-2.投射型表示装置の構成)
 次に、本開示の投射型表示装置(プロジェクタ1)について説明する。図6は、透過型の液晶パネル(LCD)により光変調を行う透過型3LCD方式のプロジェクタ1の構成の一例を表した概略図である。このプロジェクタ1は、例えば、光源装置100と、照明光学系300と、画像形成部400と、投射光学系500とを含んで構成されている。この照明光学系300および画像形成部400が、本開示の「画像生成光学系」の一具体例に相当する。
(1-2. Configuration of projection type display device)
Next, the projection type display device (projector 1) of the present disclosure will be described. FIG. 6 is a schematic view showing an example of the configuration of a transmissive 3LCD type projector 1 that performs optical modulation by a transmissive liquid crystal panel (LCD). The projector 1 includes, for example, a light source device 100, an illumination optical system 300, an image forming unit 400, and a projection optical system 500. The illumination optical system 300 and the image forming unit 400 correspond to a specific example of the "image generation optical system" of the present disclosure.
 照明光学系300は、例えば、インテグレータ素子311と、偏光変換素子312と、集光レンズ313とを有している。インテグレータ素子311は、二次元に配列された複数のマイクロレンズを有する第1のフライアイレンズ311Aおよびその各マイクロレンズに1つずつ対応するように配列された複数のマイクロレンズを有する第2のフライアイレンズ311Bを含んでいる。 The illumination optical system 300 includes, for example, an integrator element 311, a polarization conversion element 312, and a condenser lens 313. The integrator element 311 is a first fly-eye lens 311A having a plurality of microlenses arranged in two dimensions and a second fly having a plurality of microlenses arranged so as to correspond to one for each microlens thereof. Includes eye lens 311B.
 光源装置100からインテグレータ素子311に入射する光(白色光Lw)は、第1のフライアイレンズ311Aのマイクロレンズによって複数の光束に分割され、第2のフライアイレンズ311Bにおける対応するマイクロレンズにそれぞれ結像される。第2のフライアイレンズ311Bのマイクロレンズのそれぞれが二次光源として機能し、輝度が揃った複数の平行光を偏光変換素子312に入射光として照射する。 The light (white light Lw) incident on the integrator element 311 from the light source device 100 is divided into a plurality of luminous fluxes by the microlens of the first flyeye lens 311A, and is divided into a plurality of light fluxes by the corresponding microlenses of the second flyeye lens 311B, respectively. It is imaged. Each of the microlenses of the second fly-eye lens 311B functions as a secondary light source, and irradiates the polarization conversion element 312 with a plurality of parallel lights having uniform brightness as incident light.
 インテグレータ素子311は、全体として、光源装置100から偏光変換素子312に照射される入射光を、均一な輝度分布に整える機能を有している。 The integrator element 311 as a whole has a function of adjusting the incident light emitted from the light source device 100 to the polarization conversion element 312 into a uniform luminance distribution.
 偏光変換素子312は、インテグレータ素子311等を介して入射する入射光の偏光状態を揃える機能を有している。この偏光変換素子312は、例えば、光源装置100の出射側に配置されたレンズ等を介して、青色光B、緑色光Gおよび赤色光Rを含む光を出射する。 The polarization conversion element 312 has a function of aligning the polarization states of incident light incident on the integrator element 311 or the like. The polarization conversion element 312 emits light including blue light B, green light G, and red light R via, for example, a lens arranged on the emission side of the light source device 100.
 照明光学系300は、さらに、ダイクロイックミラー314A,314B、ミラー315A,315B,315C、リレーレンズ316A,316B、フィールドレンズ317A,317B,317Cを有している。 The illumination optical system 300 further includes dichroic mirrors 314A, 314B, mirrors 315A, 315B, 315C, relay lenses 316A, 316B, and field lenses 317A, 317B, 317C.
 画像形成部400は、液晶パネル411A,411B,411Cおよびダイクロイックプリズム412を有している。 The image forming unit 400 has a liquid crystal panel 411A, 411B, 411C and a dichroic prism 412.
 ダイクロイックミラー314A,314Bは、所定の波長帯域の色光を選択的に反射し、それ以外の波長帯域の光を透過させる性質を有している。例えば、ダイクロイックミラー314Aは、赤色光Rを選択的に反射する。ダイクロイックミラー314Bは、ダイクロイックミラー314Aを透過した緑色光Gおよび青色光Bのうち、緑色光Gを選択的に反射する。残る青色光Bが、ダイクロイックミラー314Bを透過する。これにより、光源装置100から出射された白色光Lwが、互いに異なる複数の色光(赤色光R、緑色光Gおよび青色光B)に分離される。 The dichroic mirrors 314A and 314B have the property of selectively reflecting colored light in a predetermined wavelength band and transmitting light in other wavelength bands. For example, the dichroic mirror 314A selectively reflects the red light R. The dichroic mirror 314B selectively reflects the green light G among the green light G and the blue light B transmitted through the dichroic mirror 314A. The remaining blue light B passes through the dichroic mirror 314B. As a result, the white light Lw emitted from the light source device 100 is separated into a plurality of different colored lights (red light R, green light G, and blue light B).
 分離された赤色光Rは、ミラー315Aにより反射され、フィールドレンズ317Aを通ることによって平行化されたのち、赤色光の変調用の液晶パネル411Aに入射する。緑色光Gは、フィールドレンズ317Bを通ることによって平行化されたのち、緑色光の変調用の液晶パネル411Bに入射する。青色光Bは、リレーレンズ316Aを通ってミラー315Bにより反射され、さらにリレーレンズ316Bを通ってミラー315Cにより反射される。ミラー315Cにより反射された青色光Bは、フィールドレンズ317Cを通ることによって平行化されたのち、青色光Bの変調用の液晶パネル411Cに入射する。 The separated red light R is reflected by the mirror 315A, parallelized by passing through the field lens 317A, and then incident on the liquid crystal panel 411A for modulating the red light. The green light G is parallelized by passing through the field lens 317B and then incident on the liquid crystal panel 411B for modulating the green light. The blue light B is reflected by the mirror 315B through the relay lens 316A and further reflected by the mirror 315C through the relay lens 316B. The blue light B reflected by the mirror 315C is parallelized by passing through the field lens 317C and then incident on the liquid crystal panel 411C for modulation of the blue light B.
 液晶パネル411A,411B,411Cは、画像情報を含んだ画像信号を供給する図示しない信号源(例えば、PC等)と電気的に接続されている。液晶パネル411A,411B,411Cは、供給される各色の画像信号に基づき、入射光を画素毎に変調し、それぞれ赤色画像、緑色画像および青色画像を生成する。変調された各色の光(形成された画像)は、ダイクロイックプリズム412に入射して合成される。ダイクロイックプリズム412は、3つの方向から入射した各色の光を重ね合わせて合成し、投射光学系500に向けて出射する。 The liquid crystal panels 411A, 411B, and 411C are electrically connected to a signal source (for example, a PC or the like) (not shown) that supplies an image signal including image information. The liquid crystal panels 411A, 411B, and 411C modulate the incident light pixel by pixel based on the supplied image signals of each color, and generate a red image, a green image, and a blue image, respectively. The modulated light of each color (formed image) is incident on the dichroic prism 412 and synthesized. The dichroic prism 412 superimposes and synthesizes light of each color incident from three directions, and emits light toward the projection optical system 500.
 投射光学系500は、例えば、複数のレンズ等を含んで構成され、画像形成部400からの出射光を拡大してスクリーン600へ投射する。 The projection optical system 500 includes, for example, a plurality of lenses and the like, and magnifies the light emitted from the image forming unit 400 and projects it onto the screen 600.
(1-3.作用・効果)
 本実施の形態の光源装置100では、並列に配置された光源部110,120から出射される励起光EL1,EL2をそれぞれ同一方向(例えば、X軸方向)に反射する反射ミラー130,140を、光源部110,120のそれぞれの出射面と対向する位置に配置した。反射ミラー130,140には、それぞれ、励起光EL1,EL2をX軸方向に反射する複数の反射部131,141が離散配置され、これら複数の反射部131,141は、X軸方向に互いに略同じ位置に設けられている。これにより、上述したように、蛍光体ホイール160において波長変換されずに出射され、合成ミラーによってX軸方向に反射されて反射ミラー130,140によって光源部110,120へ戻る戻り光RLの光量が低減される。
(1-3. Action / effect)
In the light source device 100 of the present embodiment, the reflection mirrors 130 and 140 that reflect the excitation lights EL1 and EL2 emitted from the light source units 110 and 120 arranged in parallel in the same direction (for example, the X-axis direction) are provided. It was arranged at a position facing each of the emission surfaces of the light source units 110 and 120. A plurality of reflecting portions 131, 141 that reflect the excitation lights EL1 and EL2 in the X-axis direction are discretely arranged on the reflection mirrors 130 and 140, respectively, and the plurality of reflecting portions 131, 141 are substantially mutual in the X-axis direction. It is installed in the same position. As a result, as described above, the amount of light of the return light RL that is emitted without being wavelength-converted by the phosphor wheel 160, is reflected in the X-axis direction by the composite mirror, and returns to the light source units 110 and 120 by the reflection mirrors 130 and 140. It will be reduced.
 以上により、本実施の形態では、蛍光体ホイール160において波長変換されずに光源部110,120に戻る戻り光RLの光量が低減されるため、光源部110,120の温度上昇が低減される。よって、光源部110,120を構成する複数の固体発光素子112,122の発光効率を向上させることが可能となる。 As described above, in the present embodiment, the amount of light of the return light RL returning to the light source units 110 and 120 without wavelength conversion in the phosphor wheel 160 is reduced, so that the temperature rise of the light source units 110 and 120 is reduced. Therefore, it is possible to improve the luminous efficiency of the plurality of solid-state light emitting elements 112 and 122 constituting the light source units 110 and 120.
 また、光源部110,120に戻る戻り光RLの光量が低減されるため、例えば、レンズ113,123を例えば台座部111,121に固定する接着剤等の、光源部110,120において用いられる部材の劣化が抑制される。よって、信頼性を向上させることが可能となる。 Further, since the amount of light of the return light RL returning to the light source units 110 and 120 is reduced, the members used in the light source units 110 and 120, such as an adhesive for fixing the lenses 113 and 123 to the pedestal portions 111 and 121, for example. Deterioration is suppressed. Therefore, it is possible to improve the reliability.
 次に、本開示の変形例1~3について説明する。以下では、上記実施の形態と同様の構成要素については同一の符号を付し、適宜その説明を省略する。 Next, modifications 1 to 3 of the present disclosure will be described. In the following, the same components as those in the above embodiment are designated by the same reference numerals, and the description thereof will be omitted as appropriate.
<2.変形例>
(2-1.変形例1)
 図7は、本開示の変形例1に係る光源装置(光源装置100A)の構成の一例を模式的に表したものである。上記実施の形態では、2つの光源部110,120を備えた例を示したが、光源部は3つ以上を備えた構成としてもよい。本変形例では、4つの光源部110,120,210,220を備えた点が、上記実施の形態とは異なる。
<2. Modification example>
(2-1. Modification 1)
FIG. 7 schematically shows an example of the configuration of the light source device (light source device 100A) according to the first modification of the present disclosure. In the above embodiment, an example including two light source units 110 and 120 is shown, but the light source unit may be configured to include three or more. In this modification, the point that the four light source units 110, 120, 210, 220 are provided is different from the above-described embodiment.
 光源部210,220は、光源部110,120と同様の構成を有している。即ち、光源部210,220は、それぞれ、光源として、所定の波長帯域のレーザ光(励起光EL3,EL4)を出射する複数の固体発光素子212,222が、台座部211,221に、それぞれ、例えばアレイ状に配置されており、複数の固体発光素子212,222の上方には、それぞれ、アレイ状に配置された複数のレンズ213,223が配置されている。 The light source units 210 and 220 have the same configuration as the light source units 110 and 120. That is, the light source units 210 and 220 have a plurality of solid-state light emitting elements 212 and 222 that emit laser light (excitation light EL3 and EL4) in a predetermined wavelength band as light sources, respectively, on the pedestal units 211 and 221. For example, they are arranged in an array, and a plurality of lenses 213 and 223 arranged in an array are arranged above the plurality of solid-state light emitting elements 212 and 222, respectively.
 光源部210は、平面視において、例えば光源部110と向かい合わせに配置されている。光源部220は、平面視において、例えば光源部120と向かい合わせに配置されている。垂直方向(Z軸方向)には、光源部210,220は、光源部110,120よりも、例えば低い位置に並列に配置されている。 The light source unit 210 is arranged so as to face the light source unit 110, for example, in a plan view. The light source unit 220 is arranged so as to face the light source unit 120, for example, in a plan view. In the vertical direction (Z-axis direction), the light source units 210 and 220 are arranged in parallel at a position lower than the light source units 110 and 120, for example.
 光源部210,220の出射面と対向する位置には、それぞれ、反射ミラー230,240がそれぞれ配置されている。反射ミラー230,240は、反射ミラー130,140と同様の構成を有している。即ち、反射ミラー230,240は、それぞれ、反射面230S,240Sが光源部210,220の出射面に対して略45°の角度となるように、光源部210,220に対して対向配置されており、その面内には、反射ミラー130,140と同様に、複数の反射部231,241が、それぞれ、光源部210,220の複数の固体発光素子212,222の配置に合わせて離散して配置されている。 Reflective mirrors 230 and 240 are arranged at positions facing the emission surfaces of the light source units 210 and 220, respectively. The reflection mirrors 230 and 240 have the same configuration as the reflection mirrors 130 and 140. That is, the reflection mirrors 230 and 240 are arranged to face the light source units 210 and 220 so that the reflection surfaces 230S and 240S have an angle of approximately 45 ° with respect to the emission surfaces of the light source units 210 and 220, respectively. In the plane thereof, similarly to the reflection mirrors 130 and 140, a plurality of reflection units 231 and 241 are dispersed according to the arrangement of the plurality of solid light emitting elements 212 and 222 of the light source units 210 and 220, respectively. Have been placed.
 複数の反射部231は、例えば、S偏光を反射し、P偏光を透過するPBSを用いて形成することができる。複数の反射部241は、一般的なミラーまたは所定の波長帯域の光(例えば青色光)を選択的に反射するダイクロイックミラーを用いて形成することができる。 The plurality of reflecting portions 231 can be formed by using, for example, PBS that reflects S-polarized light and transmits P-polarized light. The plurality of reflecting units 241 can be formed by using a general mirror or a dichroic mirror that selectively reflects light in a predetermined wavelength band (for example, blue light).
 光源部220と反射ミラー240との間には、上記実施の形態と同様に、位相差板250が配置されている。 A retardation plate 250 is arranged between the light source unit 220 and the reflection mirror 240 as in the above embodiment.
 光源部210,220は、反射ミラー230,240に向けて励起光EL3,EL4を出射する。光源部210から出射された励起光EL3は、反射ミラー230の複数の反射部231にて反射され、拡散板181に向けて出射される。光源部220から出射された励起光EL4は、光源部220と反射ミラー240との間に配置された位相差板250を透過する際にS偏光からP偏光に変換された後、反射ミラー240の複数の反射部241にて反射される。反射された励起光EL4は、反射ミラー230の複数の反射部231を通過して励起光EL1,EL2,EL3と共に拡散板181に入射する。 The light source units 210 and 220 emit excitation light EL3 and EL4 toward the reflection mirrors 230 and 240. The excitation light EL3 emitted from the light source unit 210 is reflected by the plurality of reflection units 231 of the reflection mirror 230, and is emitted toward the diffuser plate 181. The excitation light EL4 emitted from the light source unit 220 is converted from S-polarization to P-polarization when passing through the retardation plate 250 arranged between the light source unit 220 and the reflection mirror 240, and then the reflection mirror 240. It is reflected by a plurality of reflecting units 241. The reflected excitation light EL4 passes through a plurality of reflection portions 231 of the reflection mirror 230 and is incident on the diffuser plate 181 together with the excitation lights EL1, EL2, and EL3.
 このように、光源部を3つ以上備えた光源装置においても、本技術を適用することにより、上記実施の形態と同様の効果を得ることができる。また、本変形例では、4つの光源部110,120,210,220を2つずつ並列配置し、並列配置された2組の光源部(光源部110,120と、光源部210,220と)を平面視において互いに出射面が対向するように配置した例を示したが、例えば、4つの光源部110,120,210,220をX軸方向に交互に配置するようにしてもよい。この他、例えば4つの光源部110,120,210,220を一方向に並列配置するようにしてもよい。 As described above, even in a light source device provided with three or more light source units, the same effect as that of the above embodiment can be obtained by applying this technology. Further, in this modification, four light source units 110, 120, 210, 220 are arranged in parallel, and two sets of light source units ( light source units 110, 120 and light source units 210, 220) are arranged in parallel. Although an example is shown in which the emission surfaces are arranged so as to face each other in a plan view, for example, the four light source units 110, 120, 210, 220 may be arranged alternately in the X-axis direction. In addition, for example, four light source units 110, 120, 210, 220 may be arranged in parallel in one direction.
(2-2.変形例2)
 図8は、本開示の変形例2に係る光源装置(光源装置100B)の構成の一例を模式的に表したものである。光源装置100は、補助光源として蛍光FLとは異なる波長帯域の光を出射する光源部260をさらに設けるようにしてもよい。光源装置100Bは、変形例1に示した光源装置100Aに光源部260を追加したものである。
(2-2. Modification 2)
FIG. 8 schematically shows an example of the configuration of the light source device (light source device 100B) according to the second modification of the present disclosure. The light source device 100 may further provide a light source unit 260 that emits light having a wavelength band different from that of the fluorescent FL as an auxiliary light source. The light source device 100B is obtained by adding a light source unit 260 to the light source device 100A shown in the first modification.
 光源部260は、例えば、プロジェクタ1においてより広い色域を表示するため、または、所望のホワイトバランス(白の色度)の輝度を向上させるためにRGBのバランスを調整するものである。光源部260は、合成ミラー170の励起光EL1,EL2,EL3,EL4が入射する入射面(面170S1)とは反対側の面(面170S2)と対向する位置に配置されている。光源部260の構成は特に限定されず、例えば、光源部110等と同様の構成を有している。即ち、光源部260は、光源として、所定の波長帯域のレーザ光(例えば赤色光Lr)を出射する複数の固体発光素子262が、台座部261に配置されており、複数の固体発光素子262の上方には、アレイ状に配置された複数のレンズ263が配置されている。 The light source unit 260 adjusts the RGB balance, for example, in order to display a wider color gamut in the projector 1 or to improve the brightness of a desired white balance (white chromaticity). The light source unit 260 is arranged at a position facing the surface (surface 170S2) opposite to the incident surface (surface 170S1) on which the excitation light EL1, EL2, EL3, EL4 of the synthetic mirror 170 is incident. The configuration of the light source unit 260 is not particularly limited, and has the same configuration as, for example, the light source unit 110 and the like. That is, in the light source unit 260, as a light source, a plurality of solid-state light emitting elements 262 that emit laser light (for example, red light Lr) in a predetermined wavelength band are arranged on the pedestal portion 261, and the plurality of solid-state light emitting elements 262 are arranged. A plurality of lenses 263 arranged in an array are arranged above.
 本変形例のように補助光源として、例えば赤色光Lrを出射する光源部260を追加した場合、合成ミラー170は、青色光(励起光EL1,EL2)および赤色光Lrを反射し、蛍光FL(黄色光)を透過する構成となるため、戻り光RLには、さらに、蛍光体ホイール160から出射される蛍光FLに含まれる赤色光成分が加わる。このため、蛍光体ホイール160において波長変換されなかった励起光EL1,EL2のみが戻り光RLとして戻る場合と比較して、光源部(例えば、光源部110,120,210,220)の温度が上昇しやすくなる虞がある。 When, for example, a light source unit 260 that emits red light Lr is added as an auxiliary light source as in this modification, the synthetic mirror 170 reflects blue light (excitation light EL1, EL2) and red light Lr, and fluorescent FL (. Since it is configured to transmit yellow light), a red light component contained in the fluorescent FL emitted from the phosphor wheel 160 is further added to the return light RL. Therefore, the temperature of the light source unit (for example, the light source unit 110, 120, 210, 220) rises as compared with the case where only the excitation lights EL1 and EL2 that have not been wavelength-converted in the phosphor wheel 160 return as the return light RL. It may be easier to do.
 これに対して、本技術では、光源部110,120,210,220の出射面に対して対向配置される反射ミラー130,140,230,240のそれぞれに、複数の反射部131,141,231,241をそれぞれ離散配置するようにしたので、光源部110,120,210,220に戻る赤色光成分を含む戻り光RLの光量が低減される。よって、光源部110,120,210,220の温度上昇による発光効率の低下を低減することが可能となる。 On the other hand, in the present technology, a plurality of reflection units 131, 141, 231 are provided on each of the reflection mirrors 130, 140, 230, 240 arranged to face the emission surfaces of the light source units 110, 120, 210, 220. , 241 are arranged separately, so that the amount of light of the return light RL including the red light component returning to the light source units 110, 120, 210, 220 is reduced. Therefore, it is possible to reduce the decrease in luminous efficiency due to the temperature rise of the light source units 110, 120, 210, 220.
 更に、本変形例の反射ミラー130,140,230,240のそれぞれに設けられる複数の反射部131,141,231,241は、青色光(励起光EL1,EL2,EL3,EL4)の反射に加えて、赤色光を透過するPBSまたはダイクロイックミラーを用いて形成することが好ましい。これにより、戻り光RLに含まれる赤色光成分は、複数の反射部131,141,231,241を透過するようになるため、光源部110,120,210,220に戻る赤色光成分をさらに低減することが可能となる。 Further, the plurality of reflecting portions 131, 141, 231, 241 provided in each of the reflecting mirrors 130, 140, 230, 240 of this modification are in addition to the reflection of blue light (excitation light EL1, EL2, EL3, EL4). It is preferable to use PBS or a dichroic mirror that transmits red light. As a result, the red light component contained in the return light RL is transmitted through the plurality of reflecting portions 131, 141,231,241, so that the red light component returning to the light source portions 110, 120, 210, 220 is further reduced. It becomes possible to do.
(2-3.変形例3)
 図9は、本開示の変形例3に係る投射型表示装置(プロジェクタ2)の構成の一例を表す概略図である。プロジェクタ2は、反射型の液晶パネル(LCD)により光変調を行う反射型3LCD方式のプロジェクタであり、例えば、光源装置100と、照明光学系700と、画像形成部800と、投射光学系500とを含んで構成されている。
(2-3. Modification 3)
FIG. 9 is a schematic view showing an example of the configuration of the projection type display device (projector 2) according to the third modification of the present disclosure. The projector 2 is a reflective 3LCD type projector that performs light modulation by a reflective liquid crystal panel (LCD). For example, a light source device 100, an illumination optical system 700, an image forming unit 800, and a projection optical system 500. Is configured to include.
 照明光学系700は、光源装置100から出射された白色光Lwの光軸に沿って、PSコンバータ711と、ダイクロイックミラー712,716と、全反射ミラー713,714,715とを備えている。画像形成部800は、偏光ビームスプリッタ811,812,813と、反射型液晶パネル814R,814G,814Bと、色合成手段としてのクロスプリズム815とを備えている。投射光学系500は、クロスプリズム815から出射された合成光を、スクリーン600に向けて投射するものである。 The illumination optical system 700 includes a PS converter 711, a dichroic mirror 712,716, and a total reflection mirror 713,714,715 along the optical axis of the white light Lw emitted from the light source device 100. The image forming unit 800 includes a polarizing beam splitter 811, 812, 813, a reflective liquid crystal panel 814R, 814G, 814B, and a cross prism 815 as a color synthesizing means. The projection optical system 500 projects the synthetic light emitted from the cross prism 815 toward the screen 600.
 PSコンバータ711は、光源装置100からの光を偏光させて透過するように機能するものである。ここでは、S偏光をそのまま透過し、P偏光をS偏光に変換する。 The PS converter 711 functions to polarize and transmit the light from the light source device 100. Here, the S polarization is transmitted as it is, and the P polarization is converted into the S polarization.
 ダイクロイックミラー712は、PSコンバータ711を透過した光を、青色光Bとそれ以外の色光(赤色光Rおよび緑色光G)とに分離する機能を有している。全反射ミラー713は、ダイクロイックミラー712を透過した光を全反射ミラー715に向けて反射し、全反射ミラー715は、全反射ミラー713からの反射光をダイクロイックミラー716に向けて反射するようになっている。ダイクロイックミラー716は、全反射ミラー715からの光を、赤色光Rと緑色光Gとに分離する機能を有している。全反射ミラー714は、ダイクロイックミラー712によって分離された青色光Bを、偏光ビームスプリッタ813へ向けて反射するようになっている。 The dichroic mirror 712 has a function of separating the light transmitted through the PS converter 711 into blue light B and other colored light (red light R and green light G). The total reflection mirror 713 reflects the light transmitted through the dichroic mirror 712 toward the total reflection mirror 715, and the total reflection mirror 715 reflects the light reflected from the total reflection mirror 713 toward the dichroic mirror 716. ing. The dichroic mirror 716 has a function of separating the light from the total reflection mirror 715 into red light R and green light G. The total reflection mirror 714 reflects the blue light B separated by the dichroic mirror 712 toward the polarizing beam splitter 813.
 偏光ビームスプリッタ811,812,813は、それぞれ、赤色光R、緑色光Gおよび青色光Bの光路に沿って配設されている。偏光ビームスプリッタ811,812,813は、それぞれ、偏光分離面811A,812A,813Aを有し、この偏光分離面811A,812A,813Aにおいて、入射した各色光を互いに直交する2つの偏光成分に分離する機能を有している。偏光分離面811A,812A,813Aは、一方の偏光成分(例えばS偏光成分)を反射し、他方の偏光成分(例えP偏光成分)を透過するようになっている。 The polarizing beam splitters 811 and 812, 813 are arranged along the optical paths of the red light R, the green light G, and the blue light B, respectively. The polarization beam splitters 811 and 812, 813 have polarization separation surfaces 811A, 812A, and 813A, respectively, and the polarization separation surfaces 811A, 812A, and 813A separate the incident colored light into two polarization components orthogonal to each other. It has a function. The polarization separation surfaces 811A, 812A, and 813A reflect one polarization component (for example, S polarization component) and transmit the other polarization component (for example, P polarization component).
 反射型液晶パネル814R,814G,814Bには、偏光分離面811A,812A,813Aにおいて分離された所定の偏光成分(例えばS偏光成分)の色光が入射されるようになっている。反射型液晶パネル814R,814G,814Bは、画像信号に基づいて与えられた駆動電圧に応じて駆動され、入射光を変調させると共に、その変調された光を偏光ビームスプリッタ811,812,813へ向けて反射するように機能するものである。 The reflective liquid crystal panels 814R, 814G, and 814B are incident with the colored light of a predetermined polarization component (for example, S polarization component) separated by the polarization separation surfaces 811A, 812A, and 813A. The reflective liquid crystal panels 814R, 814G, and 814B are driven according to a drive voltage given based on the image signal, modulate the incident light, and direct the modulated light to the polarizing beam splitter 811,812,813. It functions to reflect.
 クロスプリズム815は、反射型液晶パネル814R,814G,814Bから出射され偏光ビームスプリッタ811,812,813を透過した所定の偏光成分(例えばP偏光成分)の色光を合成し、投射光学系500に向けて出射するものである。 The cross prism 815 synthesizes colored light of a predetermined polarization component (for example, P polarization component) emitted from the reflective liquid crystal panels 814R, 814G, and 814B and transmitted through the polarization beam splitters 811, 812, 813, and directs the color light toward the projection optical system 500. It emits light.
 投射光学系500は、例えば、複数のレンズ等を含んで構成され、画像形成部800からの出射光を拡大してスクリーン600へ投射するものである。 The projection optical system 500 includes, for example, a plurality of lenses and the like, and magnifies the light emitted from the image forming unit 800 and projects it onto the screen 600.
 以上、実施の形態および変形例1~3を挙げて本技術を説明したが、本技術は上記実施の形態等に限定されるものではなく、種々変形が可能である。例えば、上記実施の形態では、光源部110,120のそれぞれが、同数の複数の固体発光素子112,122を有する例を示したが、光源部110,120のそれぞれが有する複数の固体発光素子112,122の数は異なっていてもよい。その場合には、反射ミラー130,140のそれぞれに設けられる複数の反射部131,141の数は光源部110,120複数の固体発光素子112,122の数に対応するため、必ずしも図3~図5に示したような互いに完全に一致したレイアウトにはならないが、少なくとも一部の複数の反射部131,141は、例えばX軸方向に互いに略同じ位置に設けられる。 Although the present technology has been described above with reference to the embodiments and modifications 1 to 3, the present technology is not limited to the above-described embodiments and can be variously modified. For example, in the above embodiment, an example is shown in which each of the light source units 110 and 120 has the same number of a plurality of solid-state light emitting elements 112 and 122, but each of the light source units 110 and 120 has a plurality of solid-state light emitting elements 112. , 122 may be different numbers. In that case, since the number of the plurality of reflecting portions 131 and 141 provided in each of the reflecting mirrors 130 and 140 corresponds to the number of the light source portions 110 and 120 and the plurality of solid-state light emitting elements 112 and 122, FIGS. 3 to 3 and FIGS. Although the layout does not completely match each other as shown in 5, at least a part of the plurality of reflecting portions 131 and 141 are provided at substantially the same position with each other in the X-axis direction, for example.
 また、本技術に係る投射型表示装置として、上記プロジェクタ1,2以外の装置が構成されてもよい。例えば、上述したプロジェクタ1,2では、光変調素子として反射型液晶パネルまたは透過型液晶パネルを用いた例を示したが、本技術は、デジタル・マイクロミラー・デバイス(DMD:Digital Micro-mirror Device)等を用いたプロジェクタにも適用され得る。 Further, as the projection type display device according to the present technology, a device other than the above projectors 1 and 2 may be configured. For example, in the above-mentioned projectors 1 and 2, an example in which a reflective liquid crystal panel or a transmissive liquid crystal panel is used as a light modulation element has been shown, but this technology is a digital micromirror device (DMD: Digital Micro-mirror Device). ) Etc. can also be applied to a projector.
 更に、本技術は投射型表示装置ではない装置に本技術に係る光源装置100(100A,100B)が用いられてもよい。例えば、本開示の光源装置100(100A,100B)は、照明用途として用いてもよく、例えば、自動車のヘッドランプやライトアップ用の光源に適用可能である。 Further, in the present technology, the light source device 100 (100A, 100B) according to the present technology may be used for a device other than the projection type display device. For example, the light source device 100 (100A, 100B) of the present disclosure may be used for lighting purposes, and can be applied to, for example, a headlamp of an automobile or a light source for lighting up.
 なお、ここに記載された効果は必ずしも限定されるものではなく、本開示中に記載されたいずれの効果であってもよい。 The effects described here are not necessarily limited, and may be any of the effects described in the present disclosure.
 なお、本技術は以下のような構成を取ることも可能である。以下の構成の本技術によれば、並列に配置された第1の光源部および第2の光源部から出射される第1の光および第2の光をそれぞれ同一方向に反射する第1の反射ミラーおよび第2の反射ミラーを、それぞれの出射面と対向する位置に配置した。第1の反射ミラーには、第1の光を一の方向に反射する複数の第1の反射部が離散配置されている。第2の反射ミラーも同様に、第2の光を一の方向に反射する複数の第2の反射部が離散配置されており、この複数の第2の反射部は、一の方向において複数の第1の反射部と略同じ位置に設けられている。これにより、例えば波長変換部から波長変換されず合成ミラーによって反射され、第1の光源部および第2の光源部へ戻る光(戻り光)を低減する。よって、第1の光源部および第2の光源部の温度上昇が低減されるため、発光効率を向上させることが可能となる。
(1)
 第1の光を出射する第1の光源部と、
 第2の光を出射すると共に、前記第1の光源部と並列に配置された第2の光源部と、
 前記第1の光源部の出射面に対向して配置されると共に、前記第1の光を一の方向へ反射する複数の第1の反射部が面内に離散配置されている第1の反射ミラーと、
 前記第2の光源部の出射面に対向すると共に、前記第1の反射ミラーと並列に配置され、前記第2の光を前記一の方向へ反射すると共に、前記一の方向において前記複数の第1の反射部のそれぞれと略同じ位置に配置された複数の第2の反射部を有する第2の反射ミラーと
 を備えた光源装置。
(2)
 前記第1の反射ミラーの前記複数の第1の反射部以外の第1の領域および前記第2の反射ミラーの前記複数の第2の反射部以外の第2の領域は、それぞれ、光透過性を有している、前記(1)に記載の光源装置。
(3)
 前記第1の光源部および前記第2の光源部はそれぞれ複数の光源を有し、
 前記複数の第1の反射部は、前記第1の光源部の前記複数の光源に対応する位置にそれぞれ配置され、
 前記複数の第2の反射部は、前記第2の光源部の前記複数の光源に対応する位置にそれぞれ配置されている、前記(1)または(2)に記載の光源装置。
(4)
 前記第1の反射ミラーは、前記第2の反射ミラーの前記複数の第2の反射部によって反射された前記第2の光の光路上に配置されており、
 前記複数の第1の反射部は偏光ビームスプリッタによって形成されている、前記(1)乃至(3)のうちのいずれか1つに記載の光源装置。
(5)
 前記複数の第2の反射部はダイクロイックミラーによって形成されている、前記(1)乃至(4)のうちのいずれか1つに記載の光源装置。
(6)
 前記第2の光源部と前記第2の反射ミラーとの間に位相差板をさらに有する、前記(1)乃至(5)のうちのいずれか1つに記載の光源装置。
(7)
 前記第1の光および前記第2の光を波長変換して第3の光を出射する波長変換部と、
 前記第1の光および前記第2の光の光路上に配置され、前記第1の光および前記第2の光を反射すると共に、前記第3の光を選択的に透過する合成ミラーとをさらに有する、前記(1)乃至(6)のうちのいずれか1つに記載の光源装置。
(8)
 前記合成ミラーはダイクロイックミラーによって形成されている、前記(7)に記載の光源装置。
(9)
 前記第1の光および前記第2の光とは異なる波長を有する第4の光を出射する第3の光源部をさらに有し、
 前記複数の第1の反射部および前記複数の第2の反射部は、それぞれ、前記第4の光に対して透過性を有している、前記(7)または(8)に記載の光源装置。
(10)
 前記第1の光および前記第2の光は青色光である、前記(1)乃至(9)のうちのいずれか1つに記載の光源装置。
(11)
 前記波長変換部は、前記第1の光および前記第2の光により励起されて前記第3の光として黄色光を含む蛍光を発する、前記(7)乃至(10)のうちのいずれか1つに記載の光源装置。
(12)
 前記第4の光は赤色光である、前記(9)乃至(11)のうちのいずれか1つに記載の光源装置。
(13)
 光源装置と、
 入力された映像信号に基づいて前記光源装置からの光を変調することにより、画像光を生成する画像生成光学系と、
 前記画像生成光学系で生成された画像光を投射する投射光学系とを備え、
 前記光源装置は、
 第1の光を出射する第1の光源部と、
 第2の光を出射すると共に、前記第1の光源部と並列に配置された第2の光源部と、
 前記第1の光源部の出射面に対向して配置されると共に、前記第1の光を一の方向へ反射する複数の第1の反射部が面内に離散配置されている第1の反射ミラーと、
 前記第2の光源部の出射面に対向すると共に、前記第1の反射ミラーと並列に配置され、前記第2の光を前記一の方向へ反射すると共に、前記一の方向において前記複数の第1の反射部のそれぞれと略同じ位置に配置された複数の第2の反射部を有する第2の反射ミラーと
 を有する投射型表示装置。
The present technology can also have the following configurations. According to the present technology having the following configuration, the first reflection that reflects the first light and the second light emitted from the first light source unit and the second light source unit arranged in parallel in the same direction, respectively. A mirror and a second reflection mirror were placed at positions facing each emission surface. In the first reflection mirror, a plurality of first reflecting portions that reflect the first light in one direction are discretely arranged. Similarly, in the second reflection mirror, a plurality of second reflecting portions that reflect the second light in one direction are discretely arranged, and the plurality of second reflecting portions are a plurality of in one direction. It is provided at substantially the same position as the first reflecting portion. As a result, for example, the light (return light) that is reflected by the synthetic mirror without being wavelength-converted from the wavelength conversion unit and returns to the first light source unit and the second light source unit is reduced. Therefore, since the temperature rise of the first light source unit and the second light source unit is reduced, it is possible to improve the luminous efficiency.
(1)
The first light source unit that emits the first light and
A second light source unit arranged in parallel with the first light source unit while emitting a second light,
The first reflection is arranged so as to face the emission surface of the first light source unit, and a plurality of first reflection units that reflect the first light in one direction are discretely arranged in the surface. With a mirror
It faces the emission surface of the second light source unit and is arranged in parallel with the first reflection mirror to reflect the second light in the one direction and the plurality of second light sources in the one direction. A light source device including a second reflecting mirror having a plurality of second reflecting portions arranged at substantially the same positions as each of the reflecting portions of 1.
(2)
The first region of the first reflection mirror other than the plurality of first reflection portions and the second region of the second reflection mirror other than the plurality of second reflection portions are light transmissive, respectively. The light source device according to (1) above.
(3)
The first light source unit and the second light source unit each have a plurality of light sources.
The plurality of first reflecting portions are respectively arranged at positions corresponding to the plurality of light sources in the first light source portion.
The light source device according to (1) or (2), wherein the plurality of second reflecting portions are respectively arranged at positions corresponding to the plurality of light sources in the second light source portion.
(4)
The first reflection mirror is arranged on the optical path of the second light reflected by the plurality of second reflection portions of the second reflection mirror.
The light source device according to any one of (1) to (3) above, wherein the plurality of first reflecting portions are formed by a polarizing beam splitter.
(5)
The light source device according to any one of (1) to (4) above, wherein the plurality of second reflecting portions are formed by a dichroic mirror.
(6)
The light source device according to any one of (1) to (5), further comprising a retardation plate between the second light source unit and the second reflection mirror.
(7)
A wavelength conversion unit that converts the first light and the second light into wavelengths and emits a third light.
Further, a synthetic mirror arranged on the optical path of the first light and the second light, reflecting the first light and the second light, and selectively transmitting the third light. The light source device according to any one of (1) to (6) above.
(8)
The light source device according to (7) above, wherein the composite mirror is formed by a dichroic mirror.
(9)
It further has a third light source unit that emits a fourth light having a wavelength different from that of the first light and the second light.
The light source device according to (7) or (8) above, wherein the plurality of first reflecting portions and the plurality of second reflecting portions are each transparent to the fourth light. ..
(10)
The light source device according to any one of (1) to (9) above, wherein the first light and the second light are blue light.
(11)
The wavelength conversion unit is one of the above (7) to (10), which is excited by the first light and the second light and emits fluorescence including yellow light as the third light. The light source device described in.
(12)
The light source device according to any one of (9) to (11), wherein the fourth light is red light.
(13)
Light source device and
An image generation optical system that generates image light by modulating the light from the light source device based on the input video signal.
It is provided with a projection optical system that projects image light generated by the image generation optical system.
The light source device is
The first light source unit that emits the first light and
A second light source unit arranged in parallel with the first light source unit while emitting a second light,
The first reflection is arranged so as to face the emission surface of the first light source unit, and a plurality of first reflection units that reflect the first light in one direction are discretely arranged in the surface. With a mirror
It faces the emission surface of the second light source unit and is arranged in parallel with the first reflection mirror to reflect the second light in the one direction and the plurality of second light sources in the one direction. A projection type display device having a second reflecting mirror having a plurality of second reflecting portions arranged at substantially the same position as each of the reflecting portions of 1.
 本出願は、日本国特許庁において2020年8月13日に出願された日本特許出願番号2020-136771号を基礎として優先権を主張するものであり、この出願の全ての内容を参照によって本出願に援用する。 This application claims priority on the basis of Japanese Patent Application No. 2020-136771 filed on August 13, 2020 at the Japan Patent Office, and this application is made by reference to all the contents of this application. Invite to.
 当業者であれば、設計上の要件や他の要因に応じて、種々の修正、コンビネーション、サブコンビネーション、および変更を想到し得るが、それらは添付の請求の範囲やその均等物の範囲に含まれるものであることが理解される。 Those skilled in the art may conceive various modifications, combinations, sub-combinations, and changes, depending on design requirements and other factors, which are included in the claims and their equivalents. It is understood that it is a person skilled in the art.

Claims (13)

  1.  第1の光を出射する第1の光源部と、
     第2の光を出射すると共に、前記第1の光源部と並列に配置された第2の光源部と、
     前記第1の光源部の出射面に対向して配置されると共に、前記第1の光を一の方向へ反射する複数の第1の反射部が面内に離散配置されている第1の反射ミラーと、
     前記第2の光源部の出射面に対向すると共に、前記第1の反射ミラーと並列に配置され、前記第2の光を前記一の方向へ反射すると共に、前記一の方向において前記複数の第1の反射部のそれぞれと略同じ位置に配置された複数の第2の反射部を有する第2の反射ミラーと
     を備えた光源装置。
    The first light source unit that emits the first light and
    A second light source unit arranged in parallel with the first light source unit while emitting a second light,
    The first reflection is arranged so as to face the emission surface of the first light source unit, and a plurality of first reflection units that reflect the first light in one direction are discretely arranged in the surface. With a mirror
    It faces the emission surface of the second light source unit and is arranged in parallel with the first reflection mirror to reflect the second light in the one direction and the plurality of second light sources in the one direction. A light source device including a second reflecting mirror having a plurality of second reflecting portions arranged at substantially the same positions as each of the reflecting portions of 1.
  2.  前記第1の反射ミラーの前記複数の第1の反射部以外の第1の領域および前記第2の反射ミラーの前記複数の第2の反射部以外の第2の領域は、それぞれ、光透過性を有している、請求項1に記載の光源装置。 The first region of the first reflection mirror other than the plurality of first reflection portions and the second region of the second reflection mirror other than the plurality of second reflection portions are light transmissive, respectively. The light source device according to claim 1.
  3.  前記第1の光源部および前記第2の光源部はそれぞれ複数の光源を有し、
     前記複数の第1の反射部は、前記第1の光源部の前記複数の光源に対応する位置にそれぞれ配置され、
     前記複数の第2の反射部は、前記第2の光源部の前記複数の光源に対応する位置にそれぞれ配置されている、請求項1に記載の光源装置。
    The first light source unit and the second light source unit each have a plurality of light sources.
    The plurality of first reflecting portions are respectively arranged at positions corresponding to the plurality of light sources in the first light source portion.
    The light source device according to claim 1, wherein the plurality of second reflecting units are respectively arranged at positions corresponding to the plurality of light sources in the second light source unit.
  4.  前記第1の反射ミラーは、前記第2の反射ミラーの前記複数の第2の反射部によって反射された前記第2の光の光路上に配置されており、
     前記複数の第1の反射部は偏光ビームスプリッタによって形成されている、請求項1に記載の光源装置。
    The first reflection mirror is arranged on the optical path of the second light reflected by the plurality of second reflection portions of the second reflection mirror.
    The light source device according to claim 1, wherein the plurality of first reflecting portions are formed by a polarizing beam splitter.
  5.  前記複数の第2の反射部はダイクロイックミラーによって形成されている、請求項1に記載の光源装置。 The light source device according to claim 1, wherein the plurality of second reflecting portions are formed by a dichroic mirror.
  6.  前記第2の光源部と前記第2の反射ミラーとの間に位相差板をさらに有する、請求項1に記載の光源装置。 The light source device according to claim 1, further comprising a retardation plate between the second light source unit and the second reflection mirror.
  7.  前記第1の光および前記第2の光を波長変換して第3の光を出射する波長変換部と、
     前記第1の光および前記第2の光の光路上に配置され、前記第1の光および前記第2の光を反射すると共に、前記第3の光を選択的に透過する合成ミラーとをさらに有する、請求項1に記載の光源装置。
    A wavelength conversion unit that converts the first light and the second light into wavelengths and emits a third light.
    Further, a synthetic mirror arranged on the optical path of the first light and the second light, reflecting the first light and the second light, and selectively transmitting the third light. The light source device according to claim 1.
  8.  前記合成ミラーはダイクロイックミラーによって形成されている、請求項7に記載の光源装置。 The light source device according to claim 7, wherein the composite mirror is formed by a dichroic mirror.
  9.  前記第1の光および前記第2の光とは異なる波長を有する第4の光を出射する第3の光源部をさらに有し、
     前記複数の第1の反射部および前記複数の第2の反射部は、それぞれ、前記第4の光に対して透過性を有している、請求項7に記載の光源装置。
    It further has a third light source unit that emits a fourth light having a wavelength different from that of the first light and the second light.
    The light source device according to claim 7, wherein the plurality of first reflecting portions and the plurality of second reflecting portions each have transparency to the fourth light.
  10.  前記第1の光および前記第2の光は青色光である、請求項1に記載の光源装置。 The light source device according to claim 1, wherein the first light and the second light are blue light.
  11.  前記波長変換部は、前記第1の光および前記第2の光により励起されて前記第3の光として黄色光を含む蛍光を発する、請求項7に記載の光源装置。 The light source device according to claim 7, wherein the wavelength conversion unit emits fluorescence including yellow light as the third light, which is excited by the first light and the second light.
  12.  前記第4の光は赤色光である、請求項9に記載の光源装置。 The light source device according to claim 9, wherein the fourth light is red light.
  13.  光源装置と、
     入力された映像信号に基づいて前記光源装置からの光を変調することにより、画像光を生成する画像生成光学系と、
     前記画像生成光学系で生成された画像光を投射する投射光学系とを備え、
     前記光源装置は、
     第1の光を出射する第1の光源部と、
     第2の光を出射すると共に、前記第1の光源部と並列に配置された第2の光源部と、
     前記第1の光源部の出射面に対向して配置されると共に、前記第1の光を一の方向へ反射する複数の第1の反射部が面内に離散配置されている第1の反射ミラーと、
     前記第2の光源部の出射面に対向すると共に、前記第1の反射ミラーと並列に配置され、前記第2の光を前記一の方向へ反射すると共に、前記一の方向において前記複数の第1の反射部のそれぞれと略同じ位置に配置された複数の第2の反射部を有する第2の反射ミラーと
     を有する投射型表示装置。
    Light source device and
    An image generation optical system that generates image light by modulating the light from the light source device based on the input video signal.
    It is provided with a projection optical system that projects image light generated by the image generation optical system.
    The light source device is
    The first light source unit that emits the first light and
    A second light source unit arranged in parallel with the first light source unit while emitting a second light,
    The first reflection is arranged so as to face the emission surface of the first light source unit, and a plurality of first reflection units that reflect the first light in one direction are discretely arranged in the surface. With a mirror
    It faces the emission surface of the second light source unit and is arranged in parallel with the first reflection mirror to reflect the second light in the one direction and the plurality of second light sources in the one direction. A projection type display device having a second reflecting mirror having a plurality of second reflecting portions arranged at substantially the same position as each of the reflecting portions of 1.
PCT/JP2021/028856 2020-08-13 2021-08-03 Light source device and projection-type display device WO2022034835A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202180057402.3A CN116097165A (en) 2020-08-13 2021-08-03 Light source device and projection display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-136771 2020-08-13
JP2020136771 2020-08-13

Publications (1)

Publication Number Publication Date
WO2022034835A1 true WO2022034835A1 (en) 2022-02-17

Family

ID=80247874

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/028856 WO2022034835A1 (en) 2020-08-13 2021-08-03 Light source device and projection-type display device

Country Status (2)

Country Link
CN (1) CN116097165A (en)
WO (1) WO2022034835A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008209560A (en) * 2007-02-26 2008-09-11 Matsushita Electric Ind Co Ltd Image projector
JP2012108486A (en) * 2010-10-21 2012-06-07 Panasonic Corp Light source device and image display
JP2012181260A (en) * 2011-02-28 2012-09-20 Sanyo Electric Co Ltd Light source device and projection video display device
WO2013105546A1 (en) * 2012-01-12 2013-07-18 三菱電機株式会社 Light source device and projecting display device
JP2016224304A (en) * 2015-06-01 2016-12-28 Necディスプレイソリューションズ株式会社 Light source device, projection type display device and light generation method
JP2017215570A (en) * 2016-05-26 2017-12-07 セイコーエプソン株式会社 Light source device and projector
CN111522188A (en) * 2019-02-01 2020-08-11 青岛海信激光显示股份有限公司 Laser light source device and laser projection equipment

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008209560A (en) * 2007-02-26 2008-09-11 Matsushita Electric Ind Co Ltd Image projector
JP2012108486A (en) * 2010-10-21 2012-06-07 Panasonic Corp Light source device and image display
JP2012181260A (en) * 2011-02-28 2012-09-20 Sanyo Electric Co Ltd Light source device and projection video display device
WO2013105546A1 (en) * 2012-01-12 2013-07-18 三菱電機株式会社 Light source device and projecting display device
JP2016224304A (en) * 2015-06-01 2016-12-28 Necディスプレイソリューションズ株式会社 Light source device, projection type display device and light generation method
JP2017215570A (en) * 2016-05-26 2017-12-07 セイコーエプソン株式会社 Light source device and projector
CN111522188A (en) * 2019-02-01 2020-08-11 青岛海信激光显示股份有限公司 Laser light source device and laser projection equipment

Also Published As

Publication number Publication date
CN116097165A (en) 2023-05-09

Similar Documents

Publication Publication Date Title
US10120273B2 (en) Light source apparatus, image display apparatus, and optical unit
US10101647B2 (en) Illuminator and projector
US10067414B2 (en) Wavelength conversion element, light source apparatus, and projector
US20140016098A1 (en) Light source apparatus and projector
JP6836132B2 (en) Optics, light sources, and projectors
JP6796751B2 (en) Light source device and projection type image display device
CN112987470B (en) Light source device and projector
JP2017083636A (en) Illumination device and projector
CN109426050B (en) Wavelength conversion element, light source device, and projector
US20200319541A1 (en) Light source device and projection display apparatus
JP2018031864A (en) Illumination device and projector
US10705417B2 (en) Wavelength conversion element, light source apparatus and image projection apparatus
JP2017015966A (en) Light source device and projector
CN109324467B (en) Light source device and projection display device
CN112424687A (en) Illumination device and projector
KR20170133936A (en) Light source device and projector comprising the same
JP6659061B2 (en) projector
JP2019028442A (en) Light source device and projection type display device
WO2020054397A1 (en) Light source device and projection-type video display device
WO2022034835A1 (en) Light source device and projection-type display device
WO2017208572A1 (en) Image display device and light source device
JP2022138861A (en) Light source device and projector
WO2016103545A1 (en) Image display device, light source device, and image display method
WO2020255785A1 (en) Light source device and projection-type display device
JP7073168B2 (en) Wavelength conversion element, light source device and image projection device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21855914

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21855914

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP