WO2022033515A1 - Harq-process specific user equipment configuration for reduced capability complexity reduction - Google Patents

Harq-process specific user equipment configuration for reduced capability complexity reduction Download PDF

Info

Publication number
WO2022033515A1
WO2022033515A1 PCT/CN2021/112050 CN2021112050W WO2022033515A1 WO 2022033515 A1 WO2022033515 A1 WO 2022033515A1 CN 2021112050 W CN2021112050 W CN 2021112050W WO 2022033515 A1 WO2022033515 A1 WO 2022033515A1
Authority
WO
WIPO (PCT)
Prior art keywords
harq processes
harq
base station
capability
processor
Prior art date
Application number
PCT/CN2021/112050
Other languages
French (fr)
Inventor
Qiaoyu Li
Chao Wei
Hao Xu
Jing Dai
Chenxi HAO
Min Huang
Wei XI
Jing LEI
Huilin Xu
Changlong Xu
Wanshi Chen
Hwan Joon Kwon
Original Assignee
Qualcomm Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/CN2020/108607 external-priority patent/WO2022032511A1/en
Priority claimed from PCT/CN2020/108590 external-priority patent/WO2022032509A1/en
Priority claimed from PCT/CN2020/108638 external-priority patent/WO2022032519A1/en
Application filed by Qualcomm Incorporated filed Critical Qualcomm Incorporated
Publication of WO2022033515A1 publication Critical patent/WO2022033515A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1822Automatic repetition systems, e.g. Van Duuren systems involving configuration of automatic repeat request [ARQ] with parallel processes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1854Scheduling and prioritising arrangements

Definitions

  • PCT/CN2020/108607 entitled “HARQ-PROCESS SPECIFIC USER EQUIPMENT CONFIGURATION FOR REDUCED CAPABILITY COMPLEXITY REDUCTION” and filed on August 12, 2020, which is expressly incorporated by reference herein in its entirety.
  • the present disclosure relates generally to communication systems, and more particularly, to wireless communication techniques involving hybrid automatic repeat request (HARQ) processing configuration.
  • HARQ hybrid automatic repeat request
  • Wireless communication systems are widely deployed to provide various telecommunication services such as telephony, video, data, messaging, and broadcasts.
  • Typical wireless communication systems may employ multiple-access technologies capable of supporting communication with multiple users by sharing available system resources. Examples of such multiple-access technologies include code division multiple access (CDMA) systems, time division multiple access (TDMA) systems, frequency division multiple access (FDMA) systems, orthogonal frequency division multiple access (OFDMA) systems, single-carrier frequency division multiple access (SC-FDMA) systems, and time division synchronous code division multiple access (TD-SCDMA) systems.
  • CDMA code division multiple access
  • TDMA time division multiple access
  • FDMA frequency division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single-carrier frequency division multiple access
  • TD-SCDMA time division synchronous code division multiple access
  • 5G New Radio is part of a continuous mobile broadband evolution promulgated by Third Generation Partnership Project (3GPP) to meet new requirements associated with latency, reliability, security, scalability (e.g., with Internet of Things (IoT) ) , and other requirements.
  • 3GPP Third Generation Partnership Project
  • 5G NR includes services associated with enhanced mobile broadband (eMBB) , massive machine type communications (mMTC) , and ultra-reliable low latency communications (URLLC) .
  • eMBB enhanced mobile broadband
  • mMTC massive machine type communications
  • URLLC ultra-reliable low latency communications
  • Some aspects of 5G NR may be based on the 4G Long Term Evolution (LTE) standard.
  • LTE Long Term Evolution
  • a method, a computer-readable medium, and an apparatus are provided for wireless communication.
  • the wireless communication may be performed at a UE.
  • the apparatus reports a reduced capability for the UE.
  • the apparatus receives a scheduling timeline with an adjustment based on at least one of the reduced capability for the UE or a total number of active HARQ processes exceeding a HARQ processes threshold.
  • a method, a computer-readable medium, and an apparatus are provided for wireless communication.
  • the wireless communication may be performed at a base station.
  • the apparatus receives multiple UE capabilities from a UE, each capability including a set of one or more processing time parameters for a group of HARQ processes. Then, the apparatus schedules downlink communication to the UE based on a number of HARQ processes.
  • a method, a computer-readable medium, and an apparatus are provided for wireless communication.
  • the wireless communication may be performed at a UE.
  • the apparatus reports multiple UE capabilities to a base station, each capability including a set of one or more processing time parameters for a group of HARQ processes.
  • the apparatus receives downlink communication from the base station based on a number of HARQ processes.
  • the apparatus processes the downlink communication from the base station based on a UE capability corresponding to the number of HARQ processes.
  • a method, a computer-readable medium, and an apparatus are provided for wireless communication.
  • the wireless communication may be performed at a base station.
  • the apparatus receives a reduced capability for the UE.
  • the apparatus schedules communication with the UE based on a scheduling timeline with an adjustment, wherein the adjustment is based on the reduced capability for the UE or a total number of active HARQ processes exceeding a HARQ processes threshold.
  • a method, a computer-readable medium, and an apparatus are provided for wireless communication.
  • the wireless communication may be performed at a UE.
  • the apparatus reports, to a base station, N UE capabilities for N groups of TBS, N being an integer number greater than 1, wherein a first UE capability is reported for a first TBS group and a second UE capability is reported for a second TBS group.
  • the apparatus receives downlink communication having a TBS from the base station.
  • the apparatus processes the downlink communication from the base station based on a UE capability from the N UE capabilities corresponding to the TBS.
  • a method, a computer-readable medium, and an apparatus are provided for wireless communication.
  • the wireless communication may be performed at a UE.
  • the apparatus reports, to a base station, a first processing time capability for a first type of PUSCH. Then, the apparatus reports, to the base station, a second processing time capability for a second type of PUSCH. Then, the apparatus receives an uplink grant for a PUSCH transmission. Then, the apparatus transmits the PUSCH based on a processing time corresponding to the type of the PUSCH transmission.
  • a method, a computer-readable medium, and an apparatus are provided for wireless communication.
  • the wireless communication may be performed at a base station.
  • the apparatus receives, from a UE, N UE capabilities for N groups of TBS, N being an integer number greater than 1, where a first UE capability is received for a first TBS group and a second UE capability is received for a second TBS group.
  • the apparatus schedules the UE for downlink communication having a TBS based on a capability reported by the UE for a group including the TBS.
  • a method, a computer-readable medium, and an apparatus are provided for wireless communication.
  • the wireless communication may be performed at a base station.
  • the apparatus receives, from a UE, a first processing time capability for a first type of PUSCH. Then, the apparatus receives, from the UE, a second processing time capability for a second type of PUSCH. Then, the apparatus transmits an uplink grant for a PUSCH transmission. Then, the apparatus receives the PUSCH based on a processing time corresponding to the type of the PUSCH transmission.
  • a method, a computer-readable medium, and an apparatus are provided for wireless communication.
  • the wireless communication may be performed at a UE.
  • the apparatus reports, to a base station, N UE capabilities for N groups of TBS, N being an integer number greater than 1, wherein a first UE capability is reported for a first TBS group and a second UE capability is reported for a second TBS group.
  • the apparatus receives downlink communication having a TBS from the base station.
  • the apparatus processes the downlink communication from the base station based on a UE capability from the N UE capabilities corresponding to the TBS.
  • a method, a computer-readable medium, and an apparatus are provided for wireless communication.
  • the wireless communication may be performed at a UE.
  • the apparatus reports, to a base station, a first processing time capability for a first type of PUSCH. Then, the apparatus reports, to the base station, a second processing time capability for a second type of PUSCH. Then, the apparatus receives an uplink grant for a PUSCH transmission. Then, the apparatus transmits the PUSCH based on a processing time corresponding to the type of the PUSCH transmission.
  • a method, a computer-readable medium, and an apparatus are provided for wireless communication.
  • the wireless communication may be performed at a base station.
  • the apparatus receives, from a UE, N UE capabilities for N groups of TBS, N being an integer number greater than 1, where a first UE capability is received for a first TBS group and a second UE capability is received for a second TBS group.
  • the apparatus schedules the UE for downlink communication having a TBS based on a capability reported by the UE for a group including the TBS.
  • a method, a computer-readable medium, and an apparatus are provided for wireless communication.
  • the wireless communication may be performed at a base station.
  • the apparatus receives, from a UE, a first processing time capability for a first type of PUSCH. Then, the apparatus receives, from the UE, a second processing time capability for a second type of PUSCH. Then, the apparatus transmits an uplink grant for a PUSCH transmission. Then, the apparatus receives the PUSCH based on a processing time corresponding to the type of the PUSCH transmission.
  • the one or more aspects comprise the features hereinafter fully described and particularly pointed out in the claims.
  • the following description and the annexed drawings set forth in detail certain illustrative features of the one or more aspects. These features are indicative, however, of but a few of the various ways in which the principles of various aspects may be employed, and this description is intended to include all such aspects and their equivalents.
  • FIG. 1 is a diagram illustrating an example of a wireless communications system and an access network in accordance with aspects presented herein.
  • FIG. 2A is a diagram illustrating an example of a first frame, in accordance with various aspects of the present disclosure.
  • FIG. 2B is a diagram illustrating an example of DL channels within a subframe, in accordance with various aspects of the present disclosure.
  • FIG. 2C is a diagram illustrating an example of a second frame, in accordance with various aspects of the present disclosure.
  • FIG. 2D is a diagram illustrating an example of UL channels within a subframe, in accordance with various aspects of the present disclosure.
  • FIG. 3 is a diagram illustrating an example of a base station and user equipment (UE) in an access network.
  • UE user equipment
  • FIG. 4 is a diagram illustrating an example of scheduling offsets in accordance with aspects presented herein.
  • FIG. 5 is a diagram illustrating an example of UE processing time in accordance with aspects presented herein.
  • FIG. 6 is a diagram illustrating an example of scheduling offsets based on UE processing time in accordance with aspects presented herein.
  • FIGs. 7A and 7B are diagrams illustrating examples of parallel computation in accordance with aspects presented herein.
  • FIG. 8 is a diagram illustrating an example of determining UE processing time capability in accordance with aspects presented herein.
  • FIG. 9 is a diagram illustrating an example of determining UE processing time capability in accordance with aspects presented herein.
  • FIG. 10 is a diagram illustrating an example of determining UE processing time capability in accordance with aspects presented herein.
  • FIG. 11 is a diagram illustrating an example of determining UE processing time capability in accordance with aspects presented herein.
  • FIG. 12 is a diagram illustrating an example of determining scheduling offsets in accordance with aspects presented herein.
  • FIG. 13 is a diagram illustrating an example of determining UE processing time capability in accordance with aspects presented herein.
  • FIG. 14 is a diagram illustrating an example of determining UE processing time capability in accordance with aspects presented herein.
  • FIG. 15 is a diagram illustrating an example of HARQ-process unit in accordance with aspects presented herein.
  • FIG. 16 is a diagram illustrating an example of DCI forbidden time in accordance with aspects presented herein.
  • FIG. 17 is a diagram illustrating an example of associating a BWP or a CC with HARQ-processes in accordance with aspects presented herein.
  • FIG. 18 is a flowchart of a method of wireless communication in accordance with aspects presented herein.
  • FIG. 19 is a diagram illustrating an example of a hardware implementation for an example apparatus in accordance with aspects presented herein.
  • FIG. 20 is a flowchart of a method of wireless communication in accordance with aspects presented herein.
  • FIG. 21 is a diagram illustrating an example of a hardware implementation for an example apparatus in accordance with aspects presented herein.
  • FIG. 22 is a flowchart of a method of wireless communication in accordance with aspects presented herein.
  • FIG. 23 is a diagram illustrating an example of a hardware implementation for an example apparatus in accordance with aspects presented herein.
  • FIG. 24 is a flowchart of a method of wireless communication in accordance with aspects presented herein.
  • FIG. 25 is a diagram illustrating an example of a hardware implementation for an example apparatus in accordance with aspects presented herein.
  • FIG. 26 is a flowchart of a method of wireless communication in accordance with aspects presented herein.
  • FIG. 27 is a diagram illustrating an example of a hardware implementation for an example apparatus in accordance with aspects presented herein.
  • FIG. 28 is a flowchart of a method of wireless communication in accordance with aspects presented herein.
  • FIG. 29 is a diagram illustrating an example of a hardware implementation for an example apparatus in accordance with aspects presented herein.
  • FIG. 30 is a flowchart of a method of wireless communication in accordance with aspects presented herein.
  • FIG. 31 is a diagram illustrating an example of a hardware implementation for an example apparatus in accordance with aspects presented herein.
  • FIG. 32 is a flowchart of a method of wireless communication in accordance with aspects presented herein.
  • FIG. 33 is a diagram illustrating an example of a hardware implementation for an example apparatus in accordance with aspects presented herein.
  • FIG. 34 is a flowchart of a method of wireless communication in accordance with aspects presented herein.
  • FIG. 35 is a diagram illustrating an example of a hardware implementation for an example apparatus in accordance with aspects presented herein.
  • FIG. 36 is a flowchart of a method of wireless communication in accordance with aspects presented herein.
  • FIG. 37 is a diagram illustrating an example of a hardware implementation for an example apparatus in accordance with aspects presented herein.
  • FIG. 38 is a flowchart of a method of wireless communication in accordance with aspects presented herein.
  • FIG. 39 is a diagram illustrating an example of a hardware implementation for an example apparatus in accordance with aspects presented herein.
  • FIG. 40 is a flowchart of a method of wireless communication in accordance with aspects presented herein.
  • FIG. 41 is a diagram illustrating an example of a hardware implementation for an example apparatus in accordance with aspects presented herein.
  • processors include microprocessors, microcontrollers, graphics processing units (GPUs) , central processing units (CPUs) , application processors, digital signal processors (DSPs) , reduced instruction set computing (RISC) processors, systems on a chip (SoC) , baseband processors, field programmable gate arrays (FPGAs) , programmable logic devices (PLDs) , state machines, gated logic, discrete hardware circuits, and other suitable hardware configured to perform the various functionality described throughout this disclosure.
  • processors in the processing system may execute software.
  • Software shall be construed broadly to mean instructions, instruction sets, code, code segments, program code, programs, subprograms, software components, applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, procedures, functions, etc., whether referred to as software, firmware, middleware, microcode, hardware description language, or otherwise.
  • the functions described may be implemented in hardware, software, or any combination thereof. If implemented in software, the functions may be stored on or encoded as one or more instructions or code on a computer-readable medium.
  • Computer-readable media includes computer storage media. Storage media may be any available media that can be accessed by a computer.
  • such computer-readable media can comprise a random-access memory (RAM) , a read-only memory (ROM) , an electrically erasable programmable ROM (EEPROM) , optical disk storage, magnetic disk storage, other magnetic storage devices, combinations of the types of computer-readable media, or any other medium that can be used to store computer executable code in the form of instructions or data structures that can be accessed by a computer.
  • RAM random-access memory
  • ROM read-only memory
  • EEPROM electrically erasable programmable ROM
  • optical disk storage magnetic disk storage
  • magnetic disk storage other magnetic storage devices
  • combinations of the types of computer-readable media or any other medium that can be used to store computer executable code in the form of instructions or data structures that can be accessed by a computer.
  • implementations and/or uses may come about via integrated chip implementations and other non-module-component based devices (e.g., end-user devices, vehicles, communication devices, computing devices, industrial equipment, retail/purchasing devices, medical devices, artificial intelligence (AI) -enabled devices, etc. ) . While some examples may or may not be specifically directed to use cases or applications, a wide assortment of applicability of described innovations may occur.
  • non-module-component based devices e.g., end-user devices, vehicles, communication devices, computing devices, industrial equipment, retail/purchasing devices, medical devices, artificial intelligence (AI) -enabled devices, etc.
  • Implementations may range a spectrum from chip-level or modular components to non-modular, non-chip-level implementations and further to aggregate, distributed, or original equipment manufacturer (OEM) devices or systems incorporating one or more aspects of the described innovations.
  • devices incorporating described aspects and features may also include additional components and features for implementation and practice of claimed and described aspect.
  • transmission and reception of wireless signals necessarily includes a number of components for analog and digital purposes (e.g., hardware components including antenna, RF-chains, power amplifiers, modulators, buffer, processor (s) , interleaver, adders/summers, etc. ) .
  • innovations described herein may be practiced in a wide variety of devices, chip-level components, systems, distributed arrangements, aggregated or disaggregated components, end-user devices, etc. of varying sizes, shapes, and constitution.
  • FIG. 1 is a diagram illustrating an example of a wireless communications system and an access network 100.
  • the wireless communications system (also referred to as a wireless wide area network (WWAN) ) includes base stations 102, UEs 104, an Evolved Packet Core (EPC) 160, and another core network 190 (e.g., a 5G Core (5GC) ) .
  • the base stations 102 may include macrocells (high power cellular base station) and/or small cells (low power cellular base station) .
  • the macrocells include base stations.
  • the small cells include femtocells, picocells, and microcells.
  • the UE 104 may include a UE capability reporting component 198 configured with a variety of capability information.
  • the UE capability reporting component 198 can be configured to report one or more UE capabilities to a base station (e.g., 102/180) , where each capability may include a set of one or more processing time parameters for a group of HARQ processes.
  • the UE capability reporting component 198 may be configured to process the downlink communication from the base station based on a UE capability corresponding to the number of HARQ processes.
  • the UE capability reporting component 198 may alternatively or additional report additional types of capability information.
  • the UE capability reporting component 198 may be configured with a variety of capability information.
  • the UE capability reporting component 198 can be configured to report a reduced capability for the UE (e.g., the UE indicates to the base station that it is reduced capability UE, such as a reduced capability NR device) .
  • the UE capability reporting component 198 may be configured to receive a scheduling timeline with an adjustment based on at least one of the reduced capability for the UE or a total number of active HARQ processes exceeding a HARQ processes threshold.
  • the base station 102/180 may include a scheduling component 199 configured to scheduling one or more delays for the UE 104 to process at least one of the PDSCH, the PUSCH, the HARQ process, or the retransmission of PDSCH, etc.
  • the scheduling component 199 may schedule the one or more delays based on one or more UE capability, number of HARQ processes associated with or configured for the UE, whether the data transmission is associated with a BWP or CC, etc.
  • the UE capability reporting component 198 may be configured to report one or more UE capabilities to a base station (e.g., 102/180) , where each capability may include a set of one or more processing time parameters for a group of HARQ processes. Then, the UE capability reporting component 198 may be configured to process the downlink communication from the base station based on a UE capability corresponding to the number of HARQ processes.
  • a base station e.g. 102/180
  • each capability may include a set of one or more processing time parameters for a group of HARQ processes.
  • the UE capability reporting component 198 may be configured to process the downlink communication from the base station based on a UE capability corresponding to the number of HARQ processes.
  • the UE capability reporting component 198 may be configured with a variety of capability information.
  • the UE capability reporting component 198 can be configured to report, to a base station, N UE capabilities for N groups of TBS (e.g., where N is an integer number greater than 1) .
  • UEs may communicate multiple capability reports. For example, this can include a first UE capability reported for a first TBS group and a second UE capability reported for a second TBS group.
  • the UE capability reporting component 198 may be configured to receive downlink communication having a TBS from the base station and process the downlink communication from the base station based on a UE capability from the N UE capabilities corresponding to the TBS.
  • the UE capability reporting component 198 may alternatively or additional report additional types of capability information.
  • the UE capability reporting component 198 may be configured to report, to a base station, a first processing time capability for a first type of PUSCH and a second processing time capability for a second type of PUSCH.
  • a UE capability reporting component 198 may additionally and/or alternatively be configured to receive an uplink grant for a PUSCH transmission and transmit the PUSCH based on a processing time corresponding to the type of the PUSCH transmission.
  • the UE capability reporting component 198 may be configured to generate and/or transmit reports of a varying nature to other communication devices.
  • the UE capability reporting component 198 may be configured to report one or more UE capabilities to a base station (e.g., 102/180) .
  • each capability may include a set of one or more processing time parameters for a group of HARQ processes.
  • the UE capability reporting component 198 may be configured to process the downlink communication from the base station based on a UE capability corresponding to the number of HARQ processes.
  • the UE capability reporting component 198 may be configured with a variety of capability information.
  • the UE capability reporting component 198 can be configured to report, to a base station, a UE capability based on a HARQ process unit (e.g., the UE may indicate to the base station the number of available or maximum HARQ process unit (s) or available computational resource for processing the HARQ at the UE, etc. ) .
  • a HARQ process unit e.g., the UE may indicate to the base station the number of available or maximum HARQ process unit (s) or available computational resource for processing the HARQ at the UE, etc.
  • the UE capability reporting component 198 may be configured to receive downlink communication from the base station and process the downlink communication from the base station and providing HARQ feedback based on the reported UE capability (e.g., based on the number of available HARQ process unit (s) or computational resources for processing the HARQ at the UE) .
  • the UE capability reporting component 198 may alternatively or additional report additional types of capability information.
  • the UE capability reporting component 198 may be configured to report, to a base station, a duration of time following reception of one or more grants when the UE does not expect to receive an additional grant.
  • the UE capability reporting component 198 is configured to receive the one or more grants from the base station and an additional grant from the base station following the one or more grants by at least the duration of time.
  • the base stations 102 configured for 4G LTE may interface with the EPC 160 through first backhaul links 132 (e.g., S1 interface) .
  • the base stations 102 configured for 5G NR may interface with core network 190 through second backhaul links 184.
  • the base stations 102 may perform one or more of the following functions: transfer of user data, radio channel ciphering and deciphering, integrity protection, header compression, mobility control functions (e.g., handover, dual connectivity) , inter-cell interference coordination, connection setup and release, load balancing, distribution for non-access stratum (NAS) messages, NAS node selection, synchronization, radio access network (RAN) sharing, multimedia broadcast multicast service (MBMS) , subscriber and equipment trace, RAN information management (RIM) , paging, positioning, and delivery of warning messages.
  • NAS non-access stratum
  • RAN radio access network
  • MBMS multimedia broadcast multicast service
  • RIM RAN information management
  • the base stations 102 may communicate directly or indirectly (e.g., through the EPC 160 or core network 190) with each other over third backhaul links 134 (e.g., X2 interface) .
  • the first backhaul links 132, the second backhaul links 184, and the third backhaul links 134 may be wired or wireless.
  • the base stations 102 may wirelessly communicate with the UEs 104. Each of the base stations 102 may provide communication coverage for a respective geographic coverage area 110. There may be overlapping geographic coverage areas 110. For example, the small cell 102' may have a coverage area 110' that overlaps the coverage area 110 of one or more macro base stations 102.
  • a network that includes both small cell and macrocells may be known as a heterogeneous network.
  • a heterogeneous network may also include Home Evolved Node Bs (eNBs) (HeNBs) , which may provide service to a restricted group known as a closed subscriber group (CSG) .
  • eNBs Home Evolved Node Bs
  • HeNBs Home Evolved Node Bs
  • CSG closed subscriber group
  • the communication links 120 between the base stations 102 and the UEs 104 may include uplink (UL) (also referred to as reverse link) transmissions from a UE 104 to a base station 102 and/or downlink (DL) (also referred to as forward link) transmissions from a base station 102 to a UE 104.
  • the communication links 120 may use multiple-input and multiple-output (MIMO) antenna technology, including spatial multiplexing, beamforming, and/or transmit diversity.
  • the communication links may be through one or more carriers.
  • the base stations 102 /UEs 104 may use spectrum up to YMHz (e.g., 5, 10, 15, 20, 100, 400, etc.
  • the component carriers may include a primary component carrier and one or more secondary component carriers.
  • a primary component carrier may be referred to as a primary cell (PCell) and a secondary component carrier may be referred to as a secondary cell (SCell) .
  • D2D communication link 158 may use the DL/UL WWAN spectrum.
  • the D2D communication link 158 may use one or more sidelink channels, such as a physical sidelink broadcast channel (PSBCH) , a physical sidelink discovery channel (PSDCH) , a physical sidelink shared channel (PSSCH) , and a physical sidelink control channel (PSCCH) .
  • sidelink channels such as a physical sidelink broadcast channel (PSBCH) , a physical sidelink discovery channel (PSDCH) , a physical sidelink shared channel (PSSCH) , and a physical sidelink control channel (PSCCH) .
  • sidelink channels such as a physical sidelink broadcast channel (PSBCH) , a physical sidelink discovery channel (PSDCH) , a physical sidelink shared channel (PSSCH) , and a physical sidelink control channel (PSCCH) .
  • D2D communication may be through a variety of wireless D2D communications systems, such as for example, WiMedia, Bluetooth, ZigBe
  • the wireless communications system may further include a Wi-Fi access point (AP) 150 in communication with Wi-Fi stations (STAs) 152 via communication links 154, e.g., in a 5 GHz unlicensed frequency spectrum or the like.
  • AP Wi-Fi access point
  • STAs Wi-Fi stations
  • communication links 154 e.g., in a 5 GHz unlicensed frequency spectrum or the like.
  • the STAs 152 /AP 150 may perform a clear channel assessment (CCA) prior to communicating in order to determine whether the channel is available.
  • CCA clear channel assessment
  • the small cell 102' may operate in a licensed and/or an unlicensed frequency spectrum. When operating in an unlicensed frequency spectrum, the small cell 102' may employ NR and use the same unlicensed frequency spectrum (e.g., 5 GHz, or the like) as used by the Wi-Fi AP 150. The small cell 102', employing NR in an unlicensed frequency spectrum, may boost coverage to and/or increase capacity of the access network.
  • the small cell 102' employing NR in an unlicensed frequency spectrum, may boost coverage to and/or increase capacity of the access network.
  • FR1 frequency range designations FR1 (410 MHz -7.125 GHz) and FR2 (24.25 GHz -52.6 GHz) . Although a portion of FR1 is greater than 6 GHz, FR1 is often referred to (interchangeably) as a “sub-6 GHz” band in various documents and articles.
  • FR2 which is often referred to (interchangeably) as a “millimeter wave” band in documents and articles, despite being different from the extremely high frequency (EHF) band (30 GHz -300 GHz) which is identified by the International Telecommunications Union (ITU) as a “millimeter wave” band.
  • EHF extremely high frequency
  • ITU International Telecommunications Union
  • FR3 7.125 GHz -24.25 GHz
  • FR3 7.125 GHz -24.25 GHz
  • FR4a or FR4-1 52.6 GHz -71 GHz
  • FR4 52.6 GHz-114.25 GHz
  • FR5 114.25 GHz-300 GHz
  • sub-6 GHz or the like ifused herein may broadly represent frequencies that may be less than 6 GHz, may be within FR1, or may include mid-band frequencies.
  • millimeter wave or the like if used herein may broadly represent frequencies that may include mid-band frequencies, may be within FR2, FR4, FR4-a or FR4-1, and/or FR5, or may be within the EHF band.
  • a base station 102 may include and/or be referred to as an eNB, gNodeB (gNB) , or another type of base station.
  • Some base stations, such as gNB 180 may operate in a traditional sub 6 GHz spectrum, in millimeter wave frequencies, and/or near millimeter wave frequencies in communication with the UE 104.
  • the gNB 180 may be referred to as a millimeter wave base station.
  • the millimeter wave base station 180 may utilize beamforming 182 with the UE 104 to compensate for the path loss and short range.
  • the base station 180 and the UE 104 may each include a plurality of antennas, such as antenna elements, antenna panels, and/or antenna arrays to facilitate the beamforming.
  • the base station 180 may transmit a beamformed signal to the UE 104 in one or more transmit directions 182'.
  • the UE 104 may receive the beamformed signal from the base station 180 in one or more receive directions 182".
  • the UE 104 may also transmit a beamformed signal to the base station 180 in one or more transmit directions.
  • the base station 180 may receive the beamformed signal from the UE 104 in one or more receive directions.
  • the base station 180 /UE 104 may perform beam training to determine the best receive and transmit directions for each of the base station 180 /UE 104.
  • the transmit and receive directions for the base station 180 may or may not be the same.
  • the transmit and receive directions for the UE 104 may or may not be the same.
  • the EPC 160 may include a Mobility Management Entity (MME) 162, other MMEs 164, a Serving Gateway 166, a Multimedia Broadcast Multicast Service (MBMS) Gateway 168, a Broadcast Multicast Service Center (BM-SC) 170, and a Packet Data Network (PDN) Gateway 172.
  • MME Mobility Management Entity
  • MBMS Multimedia Broadcast Multicast Service
  • BM-SC Broadcast Multicast Service Center
  • PDN Packet Data Network
  • the MME 162 may be in communication with a Home Subscriber Server (HSS) 174.
  • HSS Home Subscriber Server
  • the MME 162 is the control node that processes the signaling between the UEs 104 and the EPC 160.
  • the MME 162 provides bearer and connection management. All user Internet protocol (IP) packets are transferred through the Serving Gateway 166, which itself is connected to the PDN Gateway 172.
  • IP Internet protocol
  • the PDN Gateway 172 provides UE IP address allocation as well as other functions.
  • the PDN Gateway 172 and the BM-SC 170 are connected to the IP Services 176.
  • the IP Services 176 may include the Internet, an intranet, an IP Multimedia Subsystem (IMS) , a PS Streaming Service, and/or other IP services.
  • the BM-SC 170 may provide functions for MBMS user service provisioning and delivery.
  • the BM-SC 170 may serve as an entry point for content provider MBMS transmission, may be used to authorize and initiate MBMS Bearer Services within a public land mobile network (PLMN) , and may be used to schedule MBMS transmissions.
  • PLMN public land mobile network
  • the MBMS Gateway 168 may be used to distribute MBMS traffic to the base stations 102 belonging to a Multicast Broadcast Single Frequency Network (MBSFN) area broadcasting a particular service, and may be responsible for session management (start/stop) and for collecting eMBMS related charging information.
  • MMSFN Multicast Broadcast Single Frequency Network
  • the core network 190 may include an Access and Mobility Management Function (AMF) 192, other AMFs 193, a Session Management Function (SMF) 194, and a User Plane Function (UPF) 195.
  • the AMF 192 may be in communication with a Unified Data Management (UDM) 196.
  • the AMF 192 is the control node that processes the signaling between the UEs 104 and the core network 190.
  • the AMF 192 provides QoS flow and session management. All user Internet protocol (IP) packets are transferred through the UPF 195.
  • the UPF 195 provides UE IP address allocation as well as other functions.
  • the UPF 195 is connected to the IP Services 197.
  • the IP Services 197 may include the Internet, an intranet, an IP Multimedia Subsystem (IMS) , a Packet Switch (PS) Streaming (PSS) Service, and/or other IP services.
  • IMS IP Multimedia Subsystem
  • PS Packet Switch
  • PSS Packet
  • the base station may include and/or be referred to as a gNB, Node B, eNB, an access point, a base transceiver station, a radio base station, a radio transceiver, a transceiver function, a basic service set (BSS) , an extended service set (ESS) , a transmit reception point (TRP) , or some other suitable terminology.
  • the base station 102 provides an access point to the EPC 160 or core network 190 for a UE 104.
  • Examples of UEs 104 include a cellular phone, a smart phone, a session initiation protocol (SIP) phone, a laptop, a personal digital assistant (PDA) , a satellite radio, a global positioning system, a multimedia device, a video device, a digital audio player (e.g., MP3 player) , a camera, a game console, a tablet, a smart device, a wearable device, a vehicle, an electric meter, a gas pump, a large or small kitchen appliance, a healthcare device, an implant, a sensor/actuator, a display, or any other similar functioning device.
  • SIP session initiation protocol
  • PDA personal digital assistant
  • Some of the UEs 104 may be referred to as IoT devices (e.g., parking meter, gas pump, toaster, vehicles, heart monitor, etc. ) .
  • the UE 104 may also be referred to as a station, a mobile station, a subscriber station, a mobile unit, a subscriber unit, a wireless unit, a remote unit, a mobile device, a wireless device, a wireless communications device, a remote device, a mobile subscriber station, an access terminal, a mobile terminal, a wireless terminal, a remote terminal, a handset, a user agent, a mobile client, a client, or some other suitable terminology.
  • the term UE may also apply to one or more companion devices such as in a device constellation arrangement. One or more of these devices may collectively access the network and/or individually access the network.
  • FIG. 2A is a diagram 200 illustrating an example of a first subframe within a 5G NR frame structure.
  • FIG. 2B is a diagram 230 illustrating an example of DL channels within a 5G NR subframe.
  • FIG. 2C is a diagram 250 illustrating an example of a second subframe within a 5G NR frame structure.
  • FIG. 2D is a diagram 280 illustrating an example of UL channels within a 5G NR subframe.
  • the 5G NR frame structure may be frequency division duplexed (FDD) in which for a particular set of subcarriers (carrier system bandwidth) , subframes within the set of subcarriers are dedicated for either DL or UL, or may be time division duplexed (TDD) in which for a particular set of subcarriers (carrier system bandwidth) , subframes within the set of subcarriers are dedicated for both DL and UL.
  • FDD frequency division duplexed
  • TDD time division duplexed
  • the 5G NR frame structure is assumed to be TDD, with subframe 4 being configured with slot format 28 (with mostly DL) , where D is DL, U is UL, and F is flexible for use between DL/UL, and subframe 3 being configured with slot format 1 (with all UL) . While subframes 3, 4 are shown with slot formats 1, 28, respectively, any particular subframe may be configured with any of the various available slot formats 0-61. Slot formats 0, 1 are all DL, UL, respectively. Other slot formats 2-61 include a mix of DL, UL, and flexible symbols.
  • UEs are configured with the slot format (dynamically through DL control information (DCI) , or semi-statically/statically through radio resource control (RRC) signaling) through a received slot format indicator (SFI) .
  • DCI DL control information
  • RRC radio resource control
  • SFI received slot format indicator
  • FIGs. 2A-2D illustrate a frame structure, and the aspects of the present disclosure may be applicable to other wireless communication technologies, which may have a different frame structure and/or different channels.
  • a frame (10 ms) may be divided into 10 equally sized subframes (1 ms) .
  • Each subframe may include one or more time slots.
  • Subframes may also include mini-slots, which may include 7, 4, or 2 symbols.
  • Each slot may include 14 or 12 symbols, depending on whether the cyclic prefix (CP) is normal or extended.
  • CP cyclic prefix
  • the symbols on DL may be CP orthogonal frequency division multiplexing (OFDM) (CP-OFDM) symbols.
  • OFDM orthogonal frequency division multiplexing
  • the symbols on UL may be CP-OFDM symbols (for high throughput scenarios) or discrete Fourier transform (DFT) spread OFDM (DFT-s-OFDM) symbols (also referred to as single carrier frequency-division multiple access (SC-FDMA) symbols) (for power limited scenarios; limited to a single stream transmission) .
  • DFT discrete Fourier transform
  • SC-FDMA single carrier frequency-division multiple access
  • the number of slots within a subframe is based on the CP and the numerology.
  • the numerology defines the subcarrier spacing (SCS) and, effectively, the symbol length/duration, which is equal to 1/SCS.
  • the numerology 2 allows for 4 slots per subframe. Accordingly, for normal CP and numerology ⁇ , there are 14 symbols/slot and 2 ⁇ slots/subframe.
  • the symbol length/duration is inversely related to the subcarrier spacing.
  • the slot duration is 0.25 ms
  • the subcarrier spacing is 60 kHz
  • the symbol duration is approximately 16.67 ⁇ s.
  • BWPs bandwidth parts
  • Each BWP may have a particular numerology and CP (normal or extended) .
  • a resource grid may be used to represent the frame structure.
  • Each time slot includes a resource block (RB) (also referred to as physical RBs (PRBs) ) that extends 12 consecutive subcarriers.
  • RB resource block
  • PRBs physical RBs
  • the resource grid is divided into multiple resource elements (REs) . The number of bits carried by each RE depends on the modulation scheme.
  • the RS may include demodulation RS (DM-RS) (indicated as R for one particular configuration, but other DM-RS configurations are possible) and channel state information reference signals (CSI-RS) for channel estimation at the UE.
  • DM-RS demodulation RS
  • CSI-RS channel state information reference signals
  • the RS may also include beam measurement RS (BRS) , beam refinement RS (BRRS) , and phase tracking RS (PT-RS) .
  • BRS beam measurement RS
  • BRRS beam refinement RS
  • PT-RS phase tracking RS
  • FIG. 2B illustrates an example of various DL channels within a subframe of a frame.
  • the physical downlink control channel (PDCCH) carries DCI within one or more control channel elements (CCEs) (e.g., 1, 2, 4, 8, or 16 CCEs) , each CCE including six RE groups (REGs) , each REG including 12 consecutive REs in an OFDM symbol of an RB.
  • CCEs control channel elements
  • REGs RE groups
  • a PDCCH within one BWP may be referred to as a control resource set (CORESET) .
  • CORESET control resource set
  • a UE is configured to monitor PDCCH candidates in a PDCCH search space (e.g., common search space, UE-specific search space) during PDCCH monitoring occasions on the CORESET, where the PDCCH candidates have different DCI formats and different aggregation levels. Additional BWPs may be located at greater and/or lower frequencies across the channel bandwidth.
  • a primary synchronization signal (PSS) may be within symbol 2 of particular subframes of a frame. The PSS is used by a UE 104 to determine subframe/symbol timing and a physical layer identity.
  • a secondary synchronization signal (SSS) may be within symbol 4 of particular subframes of a frame. The SSS is used by a UE to determine a physical layer cell identity group number and radio frame timing.
  • the UE can determine a physical cell identifier (PCI) . Based on the PCI, the UE can determine the locations of the DM-RS.
  • the physical broadcast channel (PBCH) which carries a master information block (MIB) , may be logically grouped with the PSS and SSS to form a synchronization signal (SS) /PBCH block (also referred to as SS block (SSB) ) .
  • the MIB provides a number of RBs in the system bandwidth and a system frame number (SFN) .
  • the physical downlink shared channel (PDSCH) carries user data, broadcast system information not transmitted through the PBCH such as system information blocks (SIBs) , and paging messages.
  • SIBs system information blocks
  • some of the REs carry DM-RS (indicated as R for one particular configuration, but other DM-RS configurations are possible) for channel estimation at the base station.
  • the UE may transmit DM-RS for the physical uplink control channel (PUCCH) and DM-RS for the physical uplink shared channel (PUSCH) .
  • the PUSCH DM-RS may be transmitted in the first one or two symbols of the PUSCH.
  • the PUCCH DM-RS may be transmitted in different configurations depending on whether short or long PUCCHs are transmitted and depending on the particular PUCCH format used.
  • the UE may transmit sounding reference signals (SRS) .
  • the SRS may be transmitted in the last symbol of a subframe.
  • the SRS may have a comb structure, and a UE may transmit SRS on one of the combs.
  • the SRS may be used by a base station for channel quality estimation to enable frequency-dependent scheduling on the UL.
  • FIG. 2D illustrates an example of various UL channels within a subframe of a frame.
  • the PUCCH may be located as indicated in one configuration.
  • the PUCCH carries uplink control information (UCI) , such as scheduling requests, a channel quality indicator (CQI) , a precoding matrix indicator (PMI) , a rank indicator (RI) , and hybrid automatic repeat request (HARQ) acknowledgment (ACK) (HARQ-ACK) feedback (i.e., one or more HARQ ACK bits indicating one or more ACK and/or negative ACK (NACK) ) .
  • the PUSCH carries data, and may additionally be used to carry a buffer status report (BSR) , a power headroom report (PHR) , and/or UCI.
  • BSR buffer status report
  • PHR power headroom report
  • FIG. 3 is a block diagram of a base station 310 in communication with a UE 350 in an access network.
  • IP packets from the EPC 160 may be provided to a controller/processor 375.
  • the controller/processor 375 implements layer 3 and layer 2 functionality.
  • Layer 3 includes a radio resource control (RRC) layer
  • layer 2 includes a service data adaptation protocol (SDAP) layer, a packet data convergence protocol (PDCP) layer, a radio link control (RLC) layer, and a medium access control (MAC) layer.
  • RRC radio resource control
  • SDAP service data adaptation protocol
  • PDCP packet data convergence protocol
  • RLC radio link control
  • MAC medium access control
  • the controller/processor 375 provides RRC layer functionality associated with broadcasting of system information (e.g., MIB, SIBs) , RRC connection control (e.g., RRC connection paging, RRC connection establishment, RRC connection modification, and RRC connection release) , inter radio access technology (RAT) mobility, and measurement configuration for UE measurement reporting; PDCP layer functionality associated with header compression /decompression, security (ciphering, deciphering, integrity protection, integrity verification) , and handover support functions; RLC layer functionality associated with the transfer of upper layer packet data units (PDUs) , error correction through ARQ, concatenation, segmentation, and reassembly of RLC service data units (SDUs) , re-segmentation of RLC data PDUs, and reordering of RLC data PDUs; and MAC layer functionality associated with mapping between logical channels and transport channels, multiplexing of MAC SDUs onto transport blocks (TBs) , demultiplexing of MAC SDU
  • the transmit (TX) processor 316 and the receive (RX) processor 370 implement layer 1 functionality associated with various signal processing functions.
  • Layer 1 which includes a physical (PHY) layer, may include error detection on the transport channels, forward error correction (FEC) coding/decoding of the transport channels, interleaving, rate matching, mapping onto physical channels, modulation/demodulation of physical channels, and MIMO antenna processing.
  • the TX processor 316 handles mapping to signal constellations based on various modulation schemes (e.g., binary phase-shift keying (BPSK) , quadrature phase-shift keying (QPSK) , M-phase-shift keying (M-PSK) , M-quadrature amplitude modulation (M-QAM) ) .
  • BPSK binary phase-shift keying
  • QPSK quadrature phase-shift keying
  • M-PSK M-phase-shift keying
  • M-QAM M-quadrature amplitude modulation
  • the coded and modulated symbols may then be split into parallel streams.
  • Each stream may then be mapped to an OFDM subcarrier, multiplexed with a reference signal (e.g., pilot) in the time and/or frequency domain, and then combined together using an Inverse Fast Fourier Transform (IFFT) to produce a physical channel carrying a time domain OFDM symbol stream.
  • IFFT Inverse Fast Fourier Transform
  • the OFDM stream is spatially precoded to produce multiple spatial streams.
  • Channel estimates from a channel estimator 374 may be used to determine the coding and modulation scheme, as well as for spatial processing.
  • the channel estimate may be derived from a reference signal and/or channel condition feedback transmitted by the UE 350.
  • Each spatial stream may then be provided to a different antenna 320 via a separate transmitter 318 TX.
  • Each transmitter 318 TX may modulate a radio frequency (RF) carrier with a respective spatial stream for transmission.
  • RF radio frequency
  • each receiver 354 RX receives a signal through its respective antenna 352.
  • Each receiver 354 RX recovers information modulated onto an RF carrier and provides the information to the receive (RX) processor 356.
  • the TX processor 368 and the RX processor 356 implement layer 1 functionality associated with various signal processing functions.
  • the RX processor 356 may perform spatial processing on the information to recover any spatial streams destined for the UE 350. If multiple spatial streams are destined for the UE 350, they may be combined by the RX processor 356 into a single OFDM symbol stream.
  • the RX processor 356 then converts the OFDM symbol stream from the time-domain to the frequency domain using a Fast Fourier Transform (FFT) .
  • FFT Fast Fourier Transform
  • the frequency domain signal comprises a separate OFDM symbol stream for each subcarrier of the OFDM signal.
  • the symbols on each subcarrier, and the reference signal are recovered and demodulated by determining the most likely signal constellation points transmitted by the base station 310. These soft decisions may be based on channel estimates computed by the channel estimator 358.
  • the soft decisions are then decoded and deinterleaved to recover the data and control signals that were originally transmitted by the base station 310 on the physical channel.
  • the data and control signals are then provided to the controller/processor 359, which implements layer 3 and layer 2 functionality.
  • the controller/processor 359 can be associated with a memory 360 that stores program codes and data.
  • the memory 360 may be referred to as a computer-readable medium.
  • the controller/processor 359 provides demultiplexing between transport and logical channels, packet reassembly, deciphering, header decompression, and control signal processing to recover IP packets from the EPC 160.
  • the controller/processor 359 is also responsible for error detection using an ACK and/or NACK protocol to support HARQ operations.
  • the controller/processor 359 provides RRC layer functionality associated with system information (e.g., MIB, SIBs) acquisition, RRC connections, and measurement reporting; PDCP layer functionality associated with header compression /decompression, and security (ciphering, deciphering, integrity protection, integrity verification) ; RLC layer functionality associated with the transfer of upper layer PDUs, error correction through ARQ, concatenation, segmentation, and reassembly of RLC SDUs, re-segmentation of RLC data PDUs, and reordering of RLC data PDUs; and MAC layer functionality associated with mapping between logical channels and transport channels, multiplexing of MAC SDUs onto TBs, demultiplexing of MAC SDUs from TBs, scheduling information reporting, error correction through HARQ, priority handling, and logical channel prioritization.
  • RRC layer functionality associated with system information (e.g., MIB, SIBs) acquisition, RRC connections, and measurement reporting
  • PDCP layer functionality associated with
  • Channel estimates derived by a channel estimator 358 from a reference signal or feedback transmitted by the base station 310 may be used by the TX processor 368 to select the appropriate coding and modulation schemes, and to facilitate spatial processing.
  • the spatial streams generated by the TX processor 368 may be provided to different antenna 352 via separate transmitters 354TX. Each transmitter 354TX may modulate an RF carrier with a respective spatial stream for transmission.
  • the UL transmission is processed at the base station 310 in a manner similar to that described in connection with the receiver function at the UE 350.
  • Each receiver 318RX receives a signal through its respective antenna 320.
  • Each receiver 318RX recovers information modulated onto an RF carrier and provides the information to a RX processor 370.
  • the controller/processor 375 can be associated with a memory 376 that stores program codes and data.
  • the memory 376 may be referred to as a computer-readable medium.
  • the controller/processor 375 provides demultiplexing between transport and logical channels, packet reassembly, deciphering, header decompression, control signal processing to recover IP packets from the UE 350. IP packets from the controller/processor 375 may be provided to the EPC 160.
  • the controller/processor 375 is also responsible for error detection using an ACK and/or NACK protocol to support HARQ operations.
  • At least one of the TX processor 368, the RX processor 356, and the controller/processor 359 may be configured to perform aspects in connection with the UE capability reporting component 198 of FIG. 1.
  • At least one of the TX processor 316, the RX processor 370, and the controller/processor 375 may be configured to perform aspects in connection with the scheduling component 199 of FIG. 1.
  • wireless communication may support reduced capability devices.
  • higher capability devices may include premium smartphones, V2X devices, URLLC devices, eMBB devices, etc.
  • reduced capability devices may include wearables, industrial wireless sensor networks (IWSN) , surveillance cameras, low-end smartphones, etc.
  • IWSN industrial wireless sensor networks
  • NR communication systems may support both higher capability devices and reduced capability devices.
  • a reduced capability device e.g., reduced capability UE
  • Reduced capability UEs may communicate based on various types of wireless communication (e.g., device type, machine type, dynamic operations type, reduced capability on/off indications, etc. ) .
  • smart wearables may transmit or receive communication based on low power wide area (LPWA) /mMTC
  • relaxed IoT devices may transmit or receive communication based on URLLC
  • sensors/cameras may transmit or receive communication based on eMBB, etc.
  • the term “reduced capability” may be used to describe a UE with the reduced capability (e.g., reduced capability UE) .
  • the term “reduced capability” may be an indication transmitted from a UE to indicate that the UE may be operating as a reduced capability UE.
  • a UE may report a reduced capability to a base station, where the UE is indicating to the base station that it is a reduced capability UE, such as a reduced capability NR device, etc.
  • Reduced capability devices may include fewer, limited, and/or targeted communication abilities relative to other communication device types. By providing reduced capability devices with targeted communication abilities, such devices are provisioned to operate in a range of operational settings.
  • a reduced capability UE may have an uplink transmission power of at least 10 dB less than that a higher capability UE.
  • a reduced capability UE may have reduced transmission bandwidth or reception bandwidth than other UEs. For instance, a reduced capability UE may have an operating bandwidth between 5 MHz and 20MHz for both transmission and reception, in contrast to other UEs which may have a bandwidth of up to 100 MHz bandwidth.
  • a reduced capability UE may have a reduced number of reception antennas in comparison to other UEs.
  • a reduced capability UE may have only a single receive antenna and may experience a lower equivalent receive signal to noise ratio (SNR) in comparison to higher capability UEs that may have multiple antennas.
  • SNR receive signal to noise ratio
  • a reduced capability UE may require PDCCH and/or PDSCH repetitions to compensate for the coverage loss in downlink.
  • a reduced capability UEs may also have reduced computational complexity than other UEs.
  • a reduced capability UE may be more delay tolerant, such that it may have a more enhanced power saving and battery life configuration.
  • a base station may configure a UE with one or more time-domain resources for receiving a data from the base station (e.g., via PDSCH) or for transmitting a data to the base station (e.g., via PUSCH) , where the base station may send the configuration to the UE using a PDCCH.
  • the base station may further schedule various types of scheduling offsets or processing timelines for the UE, such that the UE may have sufficient time to process the data, tune its beam (s) , provide feedback (e.g., HARQ ACK/NACK) , and/or receive retransmissions, etc.
  • FIG. 4 is a diagram 400 illustrating examples of scheduling offsets for a UE.
  • a base station may schedule an offset for a UE between the time a downlink (DL) grant 402 or an uplink (UL) grant 410 is transmitted to the UE and the time the UE receives the corresponding PDSCH 404 (e.g., the DL data) or transmits the corresponding PUSCH 412 (e.g., the UL data) , where an offset K 0 may indicate the delay (e.g., in slots) between the DL grant 402 reception and corresponding PDSCH 404 reception, and an offset K 2 may indicate the delay between the UL grant 410 reception and the corresponding PUSCH 412 transmission.
  • DL downlink
  • UL uplink
  • the base station may further schedule an additional offset K 1 and/or offset K 3 for the UE, where the offset K 1 may indicate the delay between the PDSCH 404 reception and the corresponding HARQ feedback 406 (e.g., ACK/NACK) transmission on the UL, and the offset K 3 may indicate the delay between the HARQ feedback 406 reception in the UL and the corresponding retransmission of the PDSCH 408 on the DL.
  • a wireless communication may support up to sixteen HARQ-processes (e.g., HARQ feedback) per carrier component (CC) .
  • the base station may indicate the values for offsets K 0 , K 1 and/or K 2 in DCI, and the minimum value for offsets K 0 , K 1 and K 2 may be zero.
  • UEs with lower capabilities may use longer offsets as they may use a longer RF settling time for their beam weights to be set up, whereas UEs with higher capabilities may use shorter offsets.
  • the base station may take the UE processing time into account. For example, in determining the offset K 1 , the base station may consider the UE’s processing time for the HARQ feedback (e.g., 406) after the UE receives the DL data over the PDSCH (e.g., 404) . Similarly, in determining the offset K 2 , the base station may consider the UE’s processing time for the PUSCH (e.g., 412) transmission after the reception of the corresponding UL grant (e.g., 410) .
  • the HARQ feedback e.g. 406
  • the base station may consider the UE’s processing time for the PUSCH (e.g., 412) transmission after the reception of the corresponding UL grant (e.g., 410) .
  • the UE’s processing time may be considered in terms of symbols together with an absolute time (e.g., in ⁇ s) , in addition to slots (e.g., K 1 , K 2 ) .
  • a UE processing time N 1 may indicate the number of OFDM symbols for a UE 502 to process from the end of the PDSCH 504 reception to the earliest possible start of the corresponding HARQ feedback 506 (e.g., ACK/NACK) transmission from the UE 502’s perspective.
  • a UE processing time N 2 may indicate the number of OFDM symbols for the UE 502 to process from the end of the PDCCH containing the UL grant 510 reception to the earliest possible start of the corresponding PUSCH 512 transmission from the UE 502’s perspective.
  • the baseline UE processing time capability (e.g., N 1 , N 2 ) for slot-based scheduling may be determined based at least in part on the type of DM-RS and the subcarrier spacing (SCS) , such as illustrated by examples in Table 1 and Table 2 below. This may include or apply to carrier aggregation (CA) without cross-carrier scheduling and with single numerology for the PDCCH, the PDSCH, and the PUSCH and no UCI multiplexing.
  • CA carrier aggregation
  • the base station may determine the minimum value for the offset K 1 and/or the offset K 2 based on assumptions of a respective UE’s turn-around times (e.g., processing time N 1 , N 2 ) .
  • a UE may indicate one or more capabilities for N 1 and N 2 to the base station, such as based on corresponding entry for N 1 and N 2 from either Table 1 or Table 2.
  • a UE 602 may select a processing time N 1 , N 2 based on a UE capability or from a pre-defined table, such as from Table 1 or Table 2.
  • the UE 602 may indicate the selected processing time to a base station 604.
  • the base station 610 may determine the offsets K 1 and K 2 based on the received N 1 , N 2 .
  • the base station 610 may indicate the offsets K 1 and K 2 to the UE 602, such as via DCI in a PDCCH.
  • the UE may apply the offset K 1 in association with the HARQ feedback reporting and the offset K 2 in association with the PUSCH transmission. For example, if the UE indicates to the base station a processing time N 1 to be 24 symbols under 120 kHz SCS, the base station may assign at least one slot for the offset K 1 .
  • the UE processing time capability reporting (e.g., at 608 of FIG. 6) requirement may force a parallel implementation (e.g., computation) for multiple HARQ-processes for the UE, where there may be up to sixteen HARQ-processes per CC.
  • a parallel implementation e.g., computation
  • the UE may prepare parallel hardware or compurgation resources to meet the (N 1 , N 2 ) capability reported. In other words, the UE may process multiple PDSCHs and their corresponding HARQ feedback at the same time.
  • the UE may prepare multiple hardware or computation resources to meet the (N 1 , N 2 ) capability reported, where the UE may process multiple PUSCHs for transmission at the same time. This may increase the complexity or the computational requirement for the UE.
  • a more relaxed capability reporting of the processing time (N 1 , N 2 ) may be configured for the UE, where the UE may report or indicate a greater (e.g., longer) value for the (N 1 , N 2 ) so that the UE may have more time to process the data or the HARQ feedback.
  • this may reduce or restrict the service types (e.g., with respect to delay) that may be supported by the UE.
  • a UE may support some service types requiring strict delay, but may not necessarily require high throughput (e.g., industrial IoT) . For example, it may not be necessary for the UE to support all sixteen HARQ-processes for the strict delay. However, if the UE employs a more relaxed capability reporting (e.g., longer (N 1 , N 2 ) ) , the reporting of the low capability may likely limit the delay.
  • the service type for the UE may include eMBB, mMTC, and URLLC, etc.
  • Techniques discussed herein generally relate to communication scenarios involving scheduling offsets and delays. Aspects presented herein may enable and provide flexible solutions that take into account a number of factors, such operational conditions, dynamic channel conditions, mobility aspects, etc. Aspects presented herein may improve efficiency and performance of device operations (e.g., scheduling data transmission and/or HARQ feedback for the UE) . In scenarios where a UE and/or a base station may determine a duration of offsets and/or delays, these determinations can base on various factors.
  • These may include, but are not limited to, numbers of HARQ processes configured for a UE, whether UCI is multiplexed with a PUSCH, whether a UE is a reduced capability UE, and/or whether a TBS carrying the HARQ process (es) and the number of HARQ-process unit available, etc.
  • aspects presented herein may provide approaches and techniques configured to balance between delay and complexity for reduced capability UEs.
  • Aspects presented herein may enable reduced capability UEs to support certain types of services.
  • services may have a strict delay with varying throughput, and in some instances limited throughput.
  • reduced capability UEs may contain less parallel hardware or computational resources relative to non-reduced capability UEs (e.g., full capability UEs) .
  • a UE may report the processing time (e.g., N 1 , N 2 ) for a group of HARQ-processes (e.g., HARQ-process group specific processing time report) .
  • FIG. 8 is a flow chart 800 illustrating an example of a UE reporting the capability regarding the processing time for a group of HARQ-processes in accordance with various aspects of the present disclosure.
  • the UE may divide the total number of HARQ-processes to be supported into N groups (e.g., G 1 , G 2 , G 3 ... G N ) .
  • the UE may report capabilities for the processing time including at least one or any combination of the following options: (1) a minimum delay (e.g., in slots and/or symbols) between the DL grant and the corresponding PDSCH reception (e.g., K 0 ) ; (2) a minimum delay between the PDSCH reception and the corresponding HARQ feedback (e.g., ACK/NACK) transmission on the UL (e.g., K 1 ) ; (3) a minimum delay between the UL grant reception and the PUSCH transmission (e.g., K 2 ) ; and (4) a minimum delay between the HARQ feedback reception in the UL and the corresponding retransmission of the PDSCH on the DL (e.g., K 3 ) .
  • a minimum delay e.g., in slots and/or symbols
  • the reported capabilities may descend through a group-index.
  • the number of HARQ-processes may be separately counted for the DL (e.g., DL grant) , the UL (e.g., UL grant) , and the HARQ feedback, and their respectively capabilities may also be separately reported for the DL, the UL and the HARQ feedback. For example, when the total number of active HARQ-processes is less than G 1 , the UE may expect the scheduled timeline to meet its reported capability for the group G 1 .
  • the UE may expect G 1 HARQ-processes to comprise a timeline to meet its reported capability for the group G 1 , and the others meeting its reported capability for group G 2 .
  • the total number of HARQ-processes to be supported by the UE may be divided into three groups (e.g., G 1 , G 2 , G 3 ) , where each group may correspond to a reported capability for processing time that is based on one or more criteria selected from options (1) to (4) above.
  • the reported capability for processing time for each group may be in a descending order (e.g., through a group-index) , where each consecutive or succeeding group may have a longer processing time.
  • the reported capability for processing time for Group G 1 may be shorter (e.g., tighter) than Group G 2
  • the report capability for processing time for Group G 2 may be shorter than Group G 3 , etc.
  • Group G 1 may include or support up to 3 HARQ-processes
  • Group G 2 may include or support up to 5 HARQ-processes
  • Group G 3 may include or support up to 8 HARQ-processes, etc.
  • the UE may expect the scheduled timeline (e.g., by the base station) for the two HARQ-processes (e.g., HARQ #1 and #2) to meet its reported capability for Group G 1 .
  • the UE may expect the scheduled timeline for the HARQ-processes in Group G 1 (three HARQ-processes in total -HARQ #1 to #3) to meet its reported capability (e.g., processing time) for Group G 1 , and the UE may expect the scheduled timeline for the HARQ-processes in Group 2 (1 HARQ-process in total -HARQ #4) to meet its reported capability for Group G 2 .
  • the UE may expect the scheduled timeline for HARQ-processes in Group G 1 (3 HARQ-processes in total -HARQ #1 to #3) and for the HARQ-processes in Group G 2 (5 HARQ-processes in total -HARQ #4 to #8) to meet its reported capability for Group G 1 and Group G 2 , respectively, and the UE may expect the scheduled timeline for HARQ-processes in Group G 3 (1 HARQ-process in total -HARQ #9) to meet its reported capability for Group G 3 , etc.
  • a HARQ-process may be defined as an active HARQ-process based on whether the associated HARQ Round Trip Time (RTT) timer is running.
  • the RTT timer may specify the minimum amount of transmission time intervals (TTIs) before a DL HARQ retransmission is expected by the UE. For example, the UE may not monitor for the PDCCH while the HARQ RTT timer is running, and the UE may resume PDCCH reception after the HARQ RTT timer expires.
  • the total number of active HARQ processes may be calculated separately for an uplink grant, a downlink grant, and a HARQ feedback, and the number of active HARQ processes may be determined based on one or more of: the number of HARQ processes that have a running HARQ RTT timer, the number of HARQ processes that have DL grant DCI decoded but their corresponding PDSCHs have not been received by the UE, the number of HARQ processes that have UL grant DCI decoded but their corresponding physical uplink shared channels (PUSCHs) have not been transmitted, and the number of HARQ processes in which the UE has received a PDSCH but a corresponding scheduled HARQ feedback has not been reported, etc.
  • PUSCHs physical uplink shared channels
  • a UE may report the processing time (e.g., N 1 , N 2 ) based on one or more levels associated with active HARQ-processes.
  • FIG. 10 is a flowchart 1000 illustrating an example of a UE reporting capability regarding the processing time based on one or more levels associated with active HARQ-processes in accordance with various aspects of the present disclosure.
  • the UE may divide the number of active HARQ-processes into N levels, where the n th level may comprises H n active HARQ-processes.
  • the UE may report capabilities for processing time, including at least one or any combination of the followings options: (1) a minimum delay (e.g., in slots and/or symbols) between the DL grant and the corresponding PDSCH reception (e.g., K 0 ) ; (2) a minimum delay between the PDSCH reception and the corresponding HARQ feedback (e.g., ACK/NACK) transmission on the UL (e.g., K 1 ) ; (3) a minimum delay between the UL grant reception and the PUSCH transmission (e.g., K 2 ) ; and (4) a minimum delay between the HARQ feedback reception in the UL and the corresponding retransmission of the PDSCH on the DL (e.g., K 3 ) .
  • a minimum delay e.g., in slots and/or symbols
  • the number of HARQ-processes may be separately counted for the DL (e.g., DL grant) , the UL (e.g., UL grant) , and the HARQ feedback, and their respectively capabilities may also be separately reported for the DL, the UL and the HARQ feedback. Higher capabilities (e.g., shorter processing time) may be reported for levels with lower H n (e.g., less HARQ-processing) . For examples, if there are more HARQ-processes for the UE, the processing time may be looser (e.g., longer) .
  • a HARQ-process may be defined as an active HARQ-process based on whether the associated HARQ RTT timer is running, where the total number of active HARQ processes may be calculated separately for an uplink grant, a downlink grant, and a HARQ feedback.
  • the number of active HARQ processes may also be determined based on one or more of: the number of HARQ processes that have a running HARQ RTT timer, the number of HARQ processes that have DL grant DCI decoded but their corresponding PDSCHs have not been received by the UE, the number of HARQ processes that have UL grant DCI decoded but their corresponding PUSCHs have not been transmitted, and the number of HARQ processes in which the UE has received a PDSCH but a corresponding scheduled HARQ feedback has not been reported, etc.
  • the total number of HARQ-processes may be supported by a UE may be divided into three levels, where each level may correspond to a reported capability for processing time that is based on one or more criteria selected from options (1) to (4) above.
  • the reported capability for processing time may be longer for more active HARQ-processes, and the reported capability for processing time may be shorter for fewer active HARQ-processes.
  • a first level may include up to three (3) HARQ-processes and the report capability for the processing time for Level 1 may be shorter (e.g., tighter) than a second level (Level 2) ;
  • Level 2 may include up to six (6) HARQ-processes and the report capability for the processing time for Level 2 may be shorter than a third level (Level 3) but longer than Level 1;
  • Level 3 may include up to thirteen (13) HARQ-processes and may have the longest processing time (e.g., Level 1 ⁇ Level 2 ⁇ Level 3 in terms of the processing time) .
  • the UE may expect the scheduled timeline (e.g., by the base station) for all HARQ-processes to meet its reported capability for Level 1. As shown at 1106, if there is a total of five active HARQ-processes (e.g., Level 1 ⁇ 5 ⁇ Level 2) , the UE may expect the scheduled timeline for all HARQ-processes to meet its reported capability for Level 2.
  • the UE may expect the scheduled timeline for all HARQ-processes to meet its reported capability for Level 3, etc.
  • the UE may determine the HARQ-processing timeline dynamically based on the number of active HARQ-processes (e.g., by selecting appropriate level and indicating corresponding processing time) .
  • some signaling e.g., DCI signal
  • a semi-persistent scheduling may be configured for the UE through an RRC configuration, such that the UE may be SPS configured, and the UE may expect a scheduled timeline from the base station to meet its reported capability for the n th level.
  • the base station may configure the UE to expect eight HARQ-processes for a certain duration, then the UE may expect the scheduled timeline within this duration is based on its reported capability for eight HARQ-processes (e.g., Level 3 -between 7 and 13 HARQ-processes) . This may reduce and avoid misalignment in data transmission between the UE and the base station when certain signaling is not received by the UE or the base station.
  • HARQ-processes e.g., Level 3 -between 7 and 13 HARQ-processes
  • an additional slot offset (e.g., scheduling) or an adjusted offset may be applied/configured for reduced capability UEs.
  • the offset may be dedicated for reduced capability UEs.
  • the UE may expect the values of K 0 /K 1 /K 2 /K 3 to be increased with K 0_increase /K 1_increase /K 2_increase /K 3_increase slot (s) , respectively, depending on at least one or any combination of the followings: (1) the UE reports itself as a reduced capability UE; and (2) the number of active HARQ-processes exceeds a threshold value N HARQ , where the threshold value N HARQ could be determined based on one or more of the followings: further UE capability reporting, base station configuration, and/or predefined, etc.
  • FIG. 12 is a diagram 1200 illustrating an example of scheduling offset for the reduced capability UE in accordance with various aspects of the present disclosure.
  • offset values of K 0 /K 1 /K 2 /K 3 for a non-reduced capability UEs may be configured to be 2/2/3/4 slots, respectively.
  • a UE 1202 may indicate a reduced capability to a base station 1204, e.g., indicating to the base station 1204 that the UE 1202 is a reduced capability UE.
  • the base station 1204 may determine whether to apply a longer offset based on whether the UE 1202 is a reduced capability UE and/or based on whether the number of active HARQ-processes exceeds a threshold (e.g., N HARQ ) .
  • a threshold e.g., N HARQ
  • the base station 1204 may determine to schedule communication for the UE 1202 using one or more longer offset values based on the UE 1202 being a reduced capability UE.
  • the base station 1204 may determine to schedule communication for the UE 1202 using longer offset value (s) based on the number of active HARQ processes exceeding the threshold.
  • the base station 1204 may determine to schedule communication for the UE 1202 using longer offset value (s) based on the UE being a reduced capability UE and the number of active HARQ processes exceeding the threshold.
  • the base station 1204 may configure dedicated offsets (e.g., longer offsets) K 0_increase /K 1_increase /K 2_increase /K 3_increase for the UE 1202.
  • the offsets K 0_increase /K 1_increase /K 2_increase /K 3_increase may be 3/3/5/7 slots, respectively.
  • the base station 1204 may configure a regular/default offset K 0 /K 1 /K 2 /K 3 for the UE 1202 (e.g., 2/2/3/4 slots, respectively) .
  • the base station 1204 may configure a regular offset for a reduced capability UE when the number of active HARQ-processes does not exceed the threshold, and the base station 1204 may also configure a dedicated offset for a non-reduced capability UE when the number of active HARQ-processes exceeds the threshold.
  • values for K 0_increase , K 1_increase , K 2_increase , K 3_increase may be determined based on one or more of the followings: further UE capability reporting, a base station configuration, and/or a predefined value, etc. Aspects presented here may avoid or minimize the impact on the processing time N 1 and N 2 for regular UEs (e.g., the processing time identified in Table 1 and Table 2 may remain the same) .
  • a HARQ-process may be defined as an active HARQ-process based on whether the associated HARQ RTT timer is running, where the total number of active HARQ processes may be calculated separately for an uplink grant, a downlink grant, and/or a HARQ feedback.
  • the number of active HARQ processes may also be determined based on one or more of: the number of HARQ processes that have a running HARQ RTT timer, the number of HARQ processes that have DL grant DCI decoded but their corresponding PDSCHs have not been received by the UE, the number of HARQ processes that have UL grant DCI decoded but their corresponding PUSCHs have not been transmitted, and/or the number of HARQ processes in which the UE has received a PDSCH but a corresponding scheduled HARQ feedback has not been reported, etc.
  • the processing time reported by a UE may be based on transport block size (TBS) (e.g., TBS Dependent Processing Time) .
  • TBS transport block size
  • FIG. 13 is a flowchart 1300 illustrating an example of a UE reporting the capability regarding the processing time based on TBS in accordance with various aspects of the present disclosure.
  • the UE may divide a supported TBS into N groups, such as in an ascending TBS order (e.g., G 1 , G 2 , G 3 ... G N ) .
  • the UE may report capabilities for the processing time including at least one or any combination of the following options: (1) a minimum delay (e.g., in slots and/or symbols) between the DL grant and the corresponding PDSCH reception (e.g., K 0 ) ; (2) a minimum delay between the PDSCH reception and the corresponding HARQ feedback (e.g., ACK/NACK) transmission on the UL (e.g., K 1 ) ; (3) a minimum delay between the UL grant reception and the PUSCH transmission (e.g., K 2 ) ; and (4) a minimum delay between the HARQ feedback reception in the UL and the corresponding retransmission of the PDSCH on the DL (e.g., K 3 ) .
  • a minimum delay e.g., in slots and/or symbols
  • a larger (e.g., longer) processing time may be configured for these HARQ-processes
  • a looser (e.g., shorter) processing time may be configured for the these HARQ-processes, etc.
  • the PUSCH processing time for a UE may be dependent on a PUSCH type.
  • the PUSCH processing time for a UE may be configured to be based on whether UCI is multiplexed with the PUSCH.
  • FIG. 14 is a flowchart 1400 illustrating an example of a UE reporting the capability regarding the processing time based on whether UCI is multiplexed with the PUSCH in accordance with various aspects of the present disclosure.
  • the UE may divide multiple PUSCHs into different types of PUSCHs and may indicate different processing capabilities for the different types of PUSCHs.
  • the UE may divide multiple PUSCHs into a first type of PUSCH with UCI-multiplexing and a second type of PUSCH without UCI-multiplexing.
  • the UE may separately report minimum delay (e.g., in slots and/or symbols) between the UL grant reception and the PUSCH transmission for the two types of PUSCHs (e.g., PUSCH with or without UCI-multiplexing) .
  • the base station may schedule the UE for PUSCHs with UCI-multiplexing based on a longer (e.g., a more relaxed) processing time.
  • the UE may perform various measurements for a channel and report the measurements to a base station in a channel state information (CSI) report.
  • the UE may process or calculate the CSI report using one or more CSI Processing Unit (CPU) .
  • CPU CSI Processing Unit
  • the UE may indicate to the base station the number of simultaneous CSI calculations N CPU the UE is capable of supporting. If a number of L CPUs are occupied for calculation of the CSI reports in a given OFDM symbol, the UE may have a number of (N CPU -L) unoccupied CPUs.
  • the UE may calculate or indicate a HARQ-processing capability based on HARQ Processing Unit (HPU) , where the HPU may be used to indicate (e.g., implicitly) the computational resources per HARQ-process.
  • FIG. 15 is a diagram 1500 illustrating an example of a UE indicating a HARQ-processing capability based on HPU in accordance with various aspects of the present disclosure.
  • a UE 1502 may report (e.g., indicate) a capability to a base station 1504 a number of supported simultaneous HARQ-processes N HPU for the UE.
  • the UE may have a number of (N HPU -L) unoccupied HPUs.
  • the UE may separately report capabilities for the UL-grant, the DL-grant, and the PDSCH-decoding, respectively.
  • the base station 1504 may determine the number of unoccupied HPU for the UE 1502 (e.g., if the UE 1502 indicates the maximum number of HPU to the base station 1504) or the base station 1504 may determine whether the UE 1502 has any unoccupied HPU (s) (e.g., if the UE 1502 indicates the number of unoccupied HPU (s) to the base station 1504) , etc.
  • the base station 1504 may schedule the offset, DL/UL grant, and/or HARQ feedback for the UE 1502 based on the number of unoccupied HPU. For example, for the UL, the UE may not be expected to receive more UL-grant DCIs when the UE has zero unoccupied HPUs or the unoccupied HPU is below a threshold for the UL. Similarly, for the DL, the UE may not be expected to compute HARQ feedback (e.g., ACK/NACK) for the PDSCH (or receive more DL-grant DCIs) when the UE has zero unoccupied HPUs or the unoccupied HPU is below a threshold for the DL.
  • HARQ feedback e.g., ACK/NACK
  • the UE 1502 may receive downlink communication from the base station 1504, and then at 1514, the UE 1502 may process the downlink communication from the base station 1504 and/or providing HARQ feedback based on the reported UE capability.
  • a UE processing time may be determined based at least in part on a DCI forbidden time.
  • the “DCI forbidden time” may refer to a time period during which a UE does not expect to receive DCI with an UL or DL grant.
  • the DCI forbidden time may correspond to a period of time during which the base station is limited from sending, or does not send, DCI scheduling UL or DL communication for the UE.
  • the UE may not expect to receive another DL or UL grant within a duration of time T (i.e., the DCI forbidden time following the prior DL or UL grant DCI) .
  • the duration T may be determined and/or reported by the UE as a UE capability.
  • FIG. 16 is a communication flow 1600 illustrating an example of determining a UE processing time based on a DCI forbidden time in accordance with various aspects of the present disclosure.
  • a UE 1602 may indicate a DCI Forbidden Time Duration T or T combination (e.g., for multiple DCIs) to a base station 1604.
  • the UE may not expect to receive another DL or UL grant DCI (s) (e.g., at 1610) within the duration T or the duration T combination .
  • the base station 1604 may be configured to refrain from sending DCI with another UL or DL grant to the UE during the duration T or the duration T combination .
  • Both the duration T combination (e.g., for group DCI) and the duration T (e.g., for single DCI) may be reported by the UE to the base station as UE capabilities. In other words, the base station 1604 may wait to transmit one or more DCI during the duration T or the duration T combination .
  • the UE may report the UE's capability for the DCI forbidden time separately for an UL grant and a DL grant.
  • the timing management e.g., processing time
  • the maximum number of HARQ-processes to be configured for the UE may be based on the BWP for the communication and/or the CC for the communication (e.g., BWP/CC Specific timing management) .
  • a maximum number of active HARQ-processes e.g., 16
  • a longer processing time e.g., N 1_increase or N 2_increase , etc.
  • the first BWP or CC 1702 may be provided for the first BWP or CC 1702 as it is associated with a higher maximum number of active HARQ-processes.
  • another maximum number of active HARQ-processes e.g., 4
  • N 1 or N 2 may be defined for or associated with the second BWP or CC 1704, where there may be no change to the existing timing management (e.g., standard or original processing time N 1 or N 2 is used) .
  • the UE may report to the base station one or more processing timing capabilities dependent on one or more HARQ processes for the first BWP or CC 1702 and the processing timing capability independent of the number of HARQ processes for the second BWP or CC 1704 (e.g., a standard or a default value) .
  • the UE may then process a downlink communication based on the UE capability corresponding to the number of HARQ processes if the downlink communication is received in the first BWP/CC, and the UE may process the downlink communication using processing times that are not dependent on the number of HARQ processes if the downlink communication is received in the second BWP/CC, etc.
  • the maximum number of HARQ processes in the first BWP/CC and in the second BWP/CC may be configured by the base station via RRC configuration.
  • FIG. 18 is a flowchart 1800 of a method of wireless communication.
  • the method may be performed by a UE or a component of a UE (e.g., the UE 104, 350, 502, 602, 1202, 1502, 1602; a processing system, which may include the memory 360 and which may be the entire UE 350 or a component of the UE 350, such as the TX processor 368, the RX processor 356, and/or the controller/processor 359) .
  • the method may enable the UE to receive a scheduling timeline with an adjustment based on at least one of a reduced capability for the UE or a total number of active HARQ processes.
  • the UE may report a reduced capability for the UE (e.g., the UE indicates to the base station that it is reduced capability UE, such as a reduced capability NR device) , such as described in connection with FIG. 12.
  • the UE 1202 may indicate to the base station 1204 regarding being a reduced capability UE.
  • the reporting of the reduced capability may be performed by, e.g., the capability indication component 1940 and/or the transmission component 1934 of the apparatus 1902 in FIG. 19.
  • the UE may report, to the base station, a number of HARQ processes to which a first processing delay between receiving a PDSCH and a corresponding HARQ feedback and a second processing delay between reception of a PDCCH to transmission of a corresponding PUSCH apply, where the scheduling timeline may be adjusted based on the total number of active HARQ processes exceeding the number of HARQ processes to which the first processing delay and the second processing delay apply, such as described in connection with FIGs. 5 and 6.
  • the UE 502 may report to a base station the processing delay N 1 between the PDSCH 504 reception and the HARQ feedback 506 transmission, and the UE 502 may report the processing delay N 2 between the UL Grant 510 reception and the PUSCH 512 transmission.
  • the reporting of the number of HARQ processes may be performed by, e.g., the process timeline component 1942 and/or the transmission component 1934 of the apparatus 1902 in FIG. 19.
  • the UE may receive, from the base station, a configuration of the number of HARQ processes, where the scheduling timeline may be adjusted based on the total number of active HARQ processes exceeding the number of HARQ processes to which the first processing delay and the second processing delay apply.
  • the UE may receive a scheduling timeline with an adjustment based on at least one of the reduced capability for the UE or a total number of active HARQ processes exceeding a HARQ processes threshold, such as described in connection with FIG. 12.
  • the UE 1202 may indicate to the base station 1204 regarding being a reduced capability UE.
  • the base station 1204 may determine whether to transmit a scheduling timeline (e.g., K 0 /K 1 /K 2 /K 3 ) with an adjustment (e.g., K 0_increase /K 1_increase /K 2_increase /K 3_increase ) based on a reduced capability for the UE or a total number of active HARQ processes.
  • a scheduling timeline e.g., K 0 /K 1 /K 2 /K 3
  • an adjustment e.g., K 0_increase /K 1_increase /K 2_increase /K 3_increase
  • the scheduling timeline with the adjustment may be determined by one or more modified or increased number of slots, such as for the forced cross-slot scheduling.
  • the reception of the scheduling timeline may be performed by, e.g., the scheduling timeline process component 1944 and/or the reception component 1930 of the apparatus 1902 in FIG. 19.
  • the scheduling timeline with an adjustment may include one or more of:an increased minimum delay between a DL grant and a corresponding PDSCH reception, an increased minimum delay between the PDSCH reception and a corresponding UL HARQ feedback transmission, an increased minimum delay between an UL grant reception and a corresponding PUSCH transmission, or an increased delay between the UL HARQ feedback transmission and a corresponding retransmission of a PDSCH.
  • the value of the adjustment may be reported by the UE, configured by the base station and/or predefined, such as described in connection with FIG. 12.
  • the UE may report the timing adjustment with one or more increased processing time parameters to the base station, such that the scheduling timeline may be adjusted based on the timing adjustment reported by the UE.
  • the UE may receive, from the base station, a timing adjustment configuration with one or more increased processing time parameters, such that the scheduling timeline is adjusted based on the timing adjustment configuration from the base station.
  • the scheduling timeline may be adjusted based on a defined timing adjustment comprising one or more increased processing time parameters.
  • the one or more increased processing time parameters may include one or more of: an increased minimum delay between a DL grant and a corresponding PDSCH reception, an increased minimum delay between the PDSCH reception and a corresponding UL HARQ feedback transmission, an increased minimum delay between an UL grant reception and a corresponding PUSCH transmission, or an increased delay between the UL HARQ feedback transmission and a corresponding retransmission of a PDSCH, such as described in connection with FIG. 12.
  • the HARQ process may be associated with a running HARQ RTT timer.
  • the total number of active HARQ processes may be calculated separately for an uplink grant, a downlink grant, and a HARQ feedback.
  • the total number of active HARQ processes may be determined based on one or more of: the number of HARQ processes that have a running HARQ RTT timer, the number of HARQ processes that have DL grant DCI decoded but their corresponding PDSCHs have not been received by the UE, the number of HARQ processes that have uplink grant DCI decoded but their corresponding PUSCHs have not been transmitted, and the number of HARQ processes in which the UE has received a PDSCH but a corresponding scheduled HARQ feedback has not been reported.
  • the UE may report a maximum number of HARQ processes based on a BWP or a CC, such as described in connection with FIG. 17.
  • the UE may report one or more processing timing capabilities dependent on one or more HARQ processes for a first BWP or CC and a processing timing capability independent of the number of HARQ processes for a second BWP or CC.
  • the UE may process the downlink communication based on the one or more processing timing capabilities corresponding to the number of HARQ processes if the downlink communication is received in the first BWP or CC, and the UE may process the downlink communication using the processing timing capability independent of the number of HARQ processes if the downlink communication is received in the second BWP or CC.
  • the maximum number of HARQ processes in the first BWP or CC and in the second BWP or CC may be RRC configured by the base station.
  • FIG. 19 is a diagram 1900 illustrating an example of a hardware implementation for an apparatus 1902.
  • the apparatus 1902 is a UE and includes a cellular baseband processor 1904 (also referred to as a modem) coupled to a cellular RF transceiver 1922 and one or more subscriber identity modules (SIM) cards 1920, an application processor 1906 coupled to a secure digital (SD) card 1908 and a screen 1910, a Bluetooth module 1912, a wireless local area network (WLAN) module 1914, a Global Positioning System (GPS) module 1916, and a power supply 1918.
  • the cellular baseband processor 1904 communicates through the cellular RF transceiver 1922 with the UE 104 and/or base station (BS) 102/180.
  • BS base station
  • the cellular baseband processor 1904 may include a computer-readable medium /memory.
  • the computer-readable medium /memory may be non-transitory.
  • the cellular baseband processor 1904 is responsible for general processing, including the execution of software stored on the computer-readable medium /memory.
  • the software when executed by the cellular baseband processor 1904, causes the cellular baseband processor 1904 to perform the various functions described supra.
  • the computer-readable medium /memory may also be used for storing data that is manipulated by the cellular baseband processor 1904 when executing software.
  • the cellular baseband processor 1904 further includes a reception component 1930, a communication manager 1932, and a transmission component 1934.
  • the communication manager 1932 includes the one or more illustrated components.
  • the components within the communication manager 1932 may be stored in the computer-readable medium /memory and/or configured as hardware within the cellular baseband processor 1904.
  • the cellular baseband processor 1904 may be a component of the UE 350 and may include the memory 360 and/or at least one of the TX processor 368, the RX processor 356, and the controller/processor 359.
  • the apparatus 1902 may be a modem chip and include just the baseband processor 1904, and in another configuration, the apparatus 1902 may be the entire UE (e.g., see 350 of FIG. 3) and include the additional modules of the apparatus 1902.
  • the communication manager 1932 includes a capability indication component 1940 that is configured to report, to a base station, a reduced capability for the UE, e.g., as described in connection with 1802 of FIG. 18.
  • the communication manager 1932 further includes a process timeline component 1942 that is configured to report, to the base station, a number of HARQ processes to which a first processing delay between receiving a PDSCH and a corresponding HARQ feedback and a second processing delay between reception of a PDCCH to transmission of a corresponding PUSCH apply, where the scheduling timeline may be adjusted based on the total number of active HARQ processes exceeding the number of HARQ processes to which the first processing delay and the second processing delay apply, e.g., as described in connection with 1804 of FIG. 18.
  • the communication manager 1932 further includes a scheduling timeline process component 1944 that is configured to receiving a scheduling timeline with an adjustment based on at least one of the reduced capability for the UE or a total number of active HARQ processes exceeding a HARQ processes threshold, e.g., as described in connection with 1806 of FIG. 18.
  • the apparatus may include additional components that perform each of the blocks of the algorithm in the flowchart of FIG. 18. As such, each block in the flowchart of FIG. 18 may be performed by a component and the apparatus may include one or more of those components.
  • the components may be one or more hardware components specifically configured to carry out the stated processes/algorithm, implemented by a processor configured to perform the stated processes/algorithm, stored within a computer-readable medium for implementation by a processor, or some combination thereof.
  • the apparatus 1902 includes means for reporting a reduced capability for the UE (e.g., the capability indication component 1940 and/or the transmission component 1934) .
  • the apparatus 1902 includes means for reporting, to the base station, a number of HARQ processes to which a first processing delay between receiving a PDSCH and a corresponding HARQ feedback and a second processing delay between reception of a PDCCH to transmission of a corresponding PUSCH apply, where the scheduling timeline may be adjusted based on the total number of active HARQ processes exceeding the number of HARQ processes to which the first processing delay and the second processing delay apply (e.g., the process timeline component 1942 and/or the transmission component 1934) .
  • the apparatus 1902 includes means for receiving a scheduling timeline with an adjustment based on at least one of the reduced capability for the UE or a total number of active HARQ processes exceeding a HARQ processes threshold (e.g., the scheduling timeline process component 1944 and/or the reception component 1930) .
  • the means may be one or more of the components of the apparatus 1902 configured to perform the functions recited by the means.
  • the apparatus 1902 may include the TX Processor 368, the RX Processor 356, and the controller/processor 359.
  • the means may be the TX Processor 368, the RX Processor 356, and the controller/processor 359 configured to perform the functions recited by the means.
  • FIG. 20 is a flowchart 2000 of a method of wireless communication.
  • the method may be performed by a base station or a component of a base station (e.g., the base station 102, 180, 310, 604, 1204, 1504, 1604; a processing system, which may include the memory 376 and which may be the entire base station 310 or a component of the base station 310, such as the TX processor 316 the RX processor 370, and/or the controller/processor 375) .
  • the method may enable the base station to schedule communication based on a scheduling timeline with an adjustment based on a reduced capability for the UE or a total number of active HARQ processes.
  • the method may enable the base station to provide flexible scheduling for reduced capability UEs.
  • the base station receives an indication of reduced capability from the UE, such as described in connection with FIG. 12.
  • the base station 1204 may receive an indication from the UE 1202 regarding being a reduced capability UE.
  • the reception of the indication may be performed by, e.g., the capability indication process component 2140 and/or the reception component 2130 of the apparatus 2102 in FIG. 21.
  • the base station may receive a report, from the UE, indicating a number of HARQ processes to which a first processing delay between receiving a PDSCH and a corresponding HARQ feedback and a second processing delay between reception of a PDCCH to transmission of a corresponding PUSCH apply, where the scheduling timeline may be adjusted based on the total number of active HARQ processes exceeding the number of HARQ processes to which the first processing delay and the second processing delay apply, such as described in connection with FIGs. 5 and 6.
  • the base station may receive a report from the UE 502 of the processing delay N 1 between the PDSCH 504 reception and the HARQ feedback 506 transmission, and a report of the processing delay N 2 between the UL Grant 510 reception and the PUSCH 512 transmission.
  • the base station may transmit a configuration of the number of HARQ processes, where the scheduling timeline may be adjusted based on the total number of active HARQ processes exceeding the number of HARQ processes to which the first processing delay and the second processing delay apply.
  • the reception of the report indicating a number of HARQ processes may be performed by, e.g., the report process component 2142 and/or the reception component 2130 of the apparatus 2102 in FIG. 21.
  • the base station may schedule the UE for communication based on a scheduling timeline with an adjustment, e.g., based on the reduced capability for the UE or a total number of active HARQ processes exceeding a HARQ processes threshold, such as described in connection with FIG. 12. For example, at 1206, the base station may receive an indication from the UE 1202 indicating that the UE is a reduced capability UE.
  • the base station 1204 may determine whether to transmit a scheduling timeline (e.g., K 0 /K 1 /K 2 /K 3 ) with an adjustment (e.g., K 0_increase /K 1_increase /K 2_increase /K 3_increase ) based on a reduced capability for the UE or a total number of active HARQ processes.
  • the scheduling timeline with the adjustment may be determined by one or more increased or modified number of slots, such as for the forced cross-slot scheduling.
  • the scheduling of the communication based on the scheduling timeline with an adjustment may be performed by, e.g., the scheduling timeline adjustment component 2144 and/or the transmission component 2134 of the apparatus 2102 in FIG. 21.
  • the scheduling timeline with an adjustment may comprise one or more of: an increased minimum delay between a DL grant and a corresponding PDSCH reception, an increased minimum delay between the PDSCH reception and a corresponding UL HARQ feedback transmission, an increased minimum delay between an UL grant reception and a corresponding PUSCH transmission, or an increased delay between the UL HARQ feedback transmission and a corresponding retransmission of a PDSCH.
  • the value of the adjustment may be received from the UE, configured by the base station and/or predefined, such as described in connection with FIG. 12.
  • the base station may receive the timing adjustment with one or more increased processing time parameters from the UE, such that the scheduling timeline may be adjusted based on the timing adjustment reported by the UE.
  • the base station may transmit to the UE, a timing adjustment configuration with one or more increased processing time parameters, such that the scheduling timeline is adjusted based on the timing adjustment configuration from the base station.
  • the scheduling timeline may be adjusted based on a defined timing adjustment comprising one or more increased processing time parameters.
  • the one or more increased processing time parameters may include one or more of: an increased minimum delay between a DL grant and a corresponding PDSCH reception, an increased minimum delay between the PDSCH reception and a corresponding UL HARQ feedback transmission, an increased minimum delay between an UL grant reception and a corresponding PUSCH transmission, or an increased delay between the UL HARQ feedback transmission and a corresponding retransmission of a PDSCH, such as described in connection with FIG. 12.
  • the HARQ process may be associated with a running HARQ RTT timer.
  • the total number of active HARQ processes may be calculated separately for an uplink grant, a downlink grant, and a HARQ feedback.
  • the total number of active HARQ processes may be determined based on one or more of: the number of HARQ processes that have a running HARQ RTT timer, the number of HARQ processes that have DL grant DCI decoded but their corresponding PDSCHs have not been received by the UE, the number of HARQ processes that have uplink grant DCI decoded but their corresponding PUSCHs have not been transmitted, and the number of HARQ processes in which the UE has received a PDSCH but a corresponding scheduled HARQ feedback has not been reported.
  • the base station may receive a report of a maximum number of HARQ processes based on a BWP or a CC, such as described in connection with FIG. 17.
  • the base station may receive a report of one or more processing timing capabilities dependent on one or more HARQ processes for a first BWP or CC and a processing timing capability independent of the number of HARQ processes for a second BWP or CC.
  • the base station may schedule the downlink communication based on the one or more processing timing capabilities corresponding to the number of HARQ processes if the downlink communication is received in the first BWP or CC, and schedule the downlink communication using the processing timing capability independent of the number of HARQ processes if the downlink communication is received in the second BWP or CC.
  • the maximum number of HARQ processes in the first BWP or CC and in the second BWP or CC may be RRC configured by the base station.
  • FIG. 21 is a diagram 2100 illustrating an example of a hardware implementation for an apparatus 2102.
  • the apparatus 2102 is a BS and includes a baseband unit 2104.
  • the baseband unit 2104 may communicate through a cellular RF transceiver with the UE 104.
  • the baseband unit 2104 may include a computer-readable medium /memory.
  • the baseband unit 2104 is responsible for general processing, including the execution of software stored on the computer-readable medium /memory.
  • the software when executed by the baseband unit 2104, causes the baseband unit 2104 to perform the various functions described supra.
  • the computer-readable medium /memory may also be used for storing data that is manipulated by the baseband unit 2104 when executing software.
  • the baseband unit 2104 further includes a reception component 2130, a communication manager 2132, and a transmission component 2134.
  • the communication manager 2132 includes the one or more illustrated components.
  • the components within the communication manager 2132 may be stored in the computer-readable medium /memory and/or configured as hardware within the baseband unit 2104.
  • the baseband unit 2104 may be a component of the BS 310 and may include the memory 376 and/or at least one of the TX processor 316, the RX processor 370, and the controller/processor 375.
  • the communication manager 2132 includes a capability indication process component 2140 that is configured to receive, from a UE, a reduced capability for the UE, e.g., as described in connection with 2002 of FIG. 20.
  • the communication manager 2132 further includes a report process component 2142 that is configured to receive a report, from the UE, indicating a number of HARQ processes to which a first processing delay between receiving a PDSCH and a corresponding HARQ feedback and a second processing delay between reception of a PDCCH to transmission of a corresponding PUSCH apply, where the scheduling timeline may be adjusted based on the total number of active HARQ processes exceeding the number of HARQ processes to which the first processing delay and the second processing delay apply, e.g., as described in connection with 2004 of FIG.
  • the communication manager 2132 further includes a scheduling timeline adjustment component 2144 that is configured to schedule communication for the UE based on a scheduling timeline with an adjustment based on the reduced capability for the UE or a total number of active HARQ processes exceeding a HARQ processes threshold, e.g., as described in connection with 2006 of FIG. 20.
  • the apparatus may include additional components that perform each of the blocks of the algorithm in the flowchart of FIG. 20. As such, each block in the flowchart of FIG. 20 may be performed by a component and the apparatus may include one or more of those components.
  • the components may be one or more hardware components specifically configured to carry out the stated processes/algorithm, implemented by a processor configured to perform the stated processes/algorithm, stored within a computer-readable medium for implementation by a processor, or some combination thereof.
  • the apparatus 2102 includes means for receiving a reduced capability for a user equipment (e.g., the capability indication process component 2140 and/or the reception component 2130) .
  • the apparatus 2102 includes means for receiving a report, from the UE, indicating a number of HARQ processes to which a first processing delay between receiving a PDSCH and a corresponding HARQ feedback and a second processing delay between reception of a PDCCH to transmission of a corresponding PUSCH apply, where the scheduling timeline may be adjusted based on the total number of active HARQ processes exceeding the number of HARQ processes to which the first processing delay and the second processing delay apply (e.g., the report process component 2142 and/or the reception component 2130) .
  • the apparatus 2102 includes means for transmitting a scheduling timeline with an adjustment based on the reduced capability for the UE or a total number of active HARQ processes exceeding a HARQ processes threshold (e.g., the scheduling timeline adjustment component 2144 and/or the transmission component 2134) .
  • the means may be one or more of the components of the apparatus 2102 configured to perform the functions recited by the means.
  • the apparatus 2102 may include the TX Processor 316, the RX Processor 370, and the controller/processor 375.
  • the means may be the TX Processor 316, the RX Processor 370, and the controller/processor 375 configured to perform the functions recited by the means.
  • FIG. 22 is a flowchart 2200 of a method of wireless communication.
  • the method may be performed by a UE or a component of a UE (e.g., the UE 104, 350, 502, 602, 1202, 1502, 1602; a processing system, which may include the memory 360 and which may be the entire UE 350 or a component of the UE 350, such as the TX processor 368, the RX processor 356, and/or the controller/processor 359) .
  • the method may enable the UE to process a downlink communication from a base station based on a UE capability corresponding to a number of HARQ processes.
  • the UE may report multiple UE capabilities to a base station, where each capability may include a set of one or more processing time parameters for a group of HARQ processes, such as described in connection with FIGs. 5, 6, 8 and10.
  • each capability may include a set of one or more processing time parameters for a group of HARQ processes, such as described in connection with FIGs. 5, 6, 8 and10.
  • the UE may report capabilities for the processing time for a group of HARQ processes including at least one or any combination of: minimum delay between DL grant and corresponding PDSCH reception; minimum delay between PDSCH reception and corresponding ACK transmission on UL; minimum delay between UL grant reception and PUSCH transmission; and minimum delay between A/N reception in UL and corresponding retransmission of PDSCH on DL.
  • the minimum delay may be calculated in terms of slots and/or symbols.
  • the total number of HARQ-processes to be supported may be divided into N groups.
  • the UE may report N UE capabilities for N groups of HARQ processes, where N is an integer number greater than 1. Then a first UE capability may be reported for a first group of HARQ processes that includes a first number of HARQ processes, and a second UE capability may be reported for a second group of additional HARQ processes in addition to the first number of HARQ processes.
  • the UE may further receive scheduling based on the first UE capability if a scheduled number of active HARQ processes that is no more than the first number of HARQ processes.
  • the UE may further receive scheduling based on the first UE capability for a first set of HARQ processes that is no more than the first number of HARQ processes and based on the second UE capability for a second set of HARQ processes if the scheduled number of active HARQ processes is more than the first number of HARQ processes.
  • the HARQ process may be associated with a running HARQ RTT timer.
  • the total number of active HARQ processes may be calculated separately for an uplink grant, a downlink grant, and a HARQ feedback.
  • the total number of active HARQ processes may be determined based on one or more of: the number of HARQ processes that have a running HARQ RTT timer, the number of HARQ processes that have DL grant DCI decoded but their corresponding PDSCHs have not been received by the UE, the number of HARQ processes that have uplink grant DCI decoded but their corresponding PUSCHs have not been transmitted, and the number of HARQ processes in which the UE has received a PDSCH but a corresponding scheduled HARQ feedback has not been reported.
  • the total number of HARQ-processes to be supported may be divided into N levels.
  • the UE may report N UE capabilities for N levels of HARQ processing, where N is an integer number greater than 1 and each of the N levels is based on a total number of active HARQ processes.
  • the UE may receive scheduling based on the UE capability corresponding to the total number of active HARQ processes.
  • the UE may share processing resources among each of the total active HARQ processes.
  • the UE may be scheduled with a longer processing time based on a reported UE capability that has a higher level or a higher number of total active HARQ processes, and the UE may be scheduled with a shorter processing time based on a reported UE capability that has a lower level or a smaller number of total active HARQ processes, such as shown in connection with FIG. 11. Additionally, or optionally, the UE may receive SPS indicating scheduling timeline information for the UE based on one or more of multiple UE capabilities reported by the UE.
  • the UE may report a maximum number of HARQ processes based on a BWP or a CC, such as described in connection with FIG. 17.
  • the UE may report one or more processing timing capabilities dependent on one or more HARQ processes for a first BWP or CC and a processing timing capability independent of the number of HARQ processes for a second BWP or CC.
  • the UE may process the downlink communication based on the one or more processing timing capabilities corresponding to the number of HARQ processes if the downlink communication is received in the first BWP or CC, and the UE may process the downlink communication using the processing timing capability independent of the number of HARQ processes if the downlink communication is received in the second BWP or CC.
  • the maximum number of HARQ processes in the first BWP or CC and in the second BWP or CC may be RRC configured by the base station.
  • the UE may receive downlink communication from the base station based on a number of HARQ processes, such as described in connection with FIGs. 5, 6, 8 and10.
  • the UE 602 may receive scheduling offset K 1 , K 2 from the base station at 612, where the scheduling offset K 1 , K 2 may be determined based on number of HARQ processes, such as described in connection with FIGs. 8 to 11.
  • the UE may process the downlink communication from the base station based on a UE capability corresponding to the number of HARQ processes, such as described in connection with FIGs. 5, 6, 8 and10. For example, as shown by FIG. 6, the UE 602 may apply K 1 for HARQ feedback and K 2 for PUSCH transmission at 614.
  • FIG. 23 is a diagram 2300 illustrating an example of a hardware implementation for an apparatus 2302.
  • the apparatus 2302 is a UE and includes a cellular baseband processor 2304 (also referred to as a modem) coupled to a cellular RF transceiver 2322 and one or more subscriber identity modules (SIM) cards 2320, an application processor 2306 coupled to a secure digital (SD) card 2308 and a screen 2310, a Bluetooth module 2312, a wireless local area network (WLAN) module 2314, a Global Positioning System (GPS) module 2316, and a power supply 2318.
  • the cellular baseband processor 2304 communicates through the cellular RF transceiver 2322 with the UE 104 and/or BS 102/180.
  • the cellular baseband processor 2304 may include a computer-readable medium /memory.
  • the computer-readable medium /memory may be non-transitory.
  • the cellular baseband processor 2304 is responsible for general processing, including the execution of software stored on the computer-readable medium /memory.
  • the software when executed by the cellular baseband processor 2304, causes the cellular baseband processor 2304 to perform the various functions described supra.
  • the computer-readable medium /memory may also be used for storing data that is manipulated by the cellular baseband processor 2304 when executing software.
  • the cellular baseband processor 2304 further includes a reception component 2330, a communication manager 2332, and a transmission component 2334.
  • the communication manager 2332 includes the one or more illustrated components.
  • the components within the communication manager 2332 may be stored in the computer-readable medium /memory and/or configured as hardware within the cellular baseband processor 2304.
  • the cellular baseband processor 2304 may be a component of the UE 350 and may include the memory 360 and/or at least one of the TX processor 368, the RX processor 356, and the controller/processor 359.
  • the apparatus 2302 may be a modem chip and include just the baseband processor 2304, and in another configuration, the apparatus 2302 may be the entire UE (e.g., see 350 of FIG. 3) and include the additional modules of the apparatus 2302.
  • the communication manager 2332 includes a reporting component 2340 that is configured to report multiple UE capabilities to a base station, each capability including a set of one or more processing time parameters for a group of HARQ processes, e.g., as described in connection with 2202 of FIG. 22.
  • the communication manager 2332 further includes a communication process component 2342 that is configured to receive downlink communication from the base station based on a number of HARQ processes, e.g., as described in connection with 2204 of FIG. 22.
  • the communication manager 2332 further includes a processing component 2344 that is configured to process the downlink communication from the base station based on a UE capability corresponding to the number of HARQ processes, e.g., as described in connection with 2206 of FIG. 22.
  • the apparatus may include additional components that perform each of the blocks of the algorithm in the flowchart of FIG. 22. As such, each block in the flowchart of FIG. 22 may be performed by a component and the apparatus may include one or more of those components.
  • the components may be one or more hardware components specifically configured to carry out the stated processes/algorithm, implemented by a processor configured to perform the stated processes/algorithm, stored within a computer-readable medium for implementation by a processor, or some combination thereof.
  • the apparatus 2302, and in particular the cellular baseband processor 2304 includes means for reporting multiple UE capabilities to a base station, each capability including a set of one or more processing time parameters for a group of HARQ processes.
  • the apparatus 2302 includes means for receiving downlink communication from the base station based on a number of HARQ processes.
  • the apparatus 2302 includes means for processing the downlink communication from the base station based on a UE capability corresponding to the number of HARQ processes.
  • the means may be one or more of the components of the apparatus 2302 configured to perform the functions recited by the means.
  • the apparatus 2302 may include the TX Processor 368, the RX Processor 356, and the controller/processor 359.
  • the means may be the TX Processor 368, the RX Processor 356, and the controller/processor 359 configured to perform the functions recited by the means.
  • FIG. 24 is a flowchart 2400 of a method of wireless communication.
  • the method may be performed by a base station or a component of a base station (e.g., the base station 102, 180, 310, 604, 1204, 1504, 1604; a processing system, which may include the memory 376 and which may be the entire base station 310 or a component of the base station 310, such as the TX processor 316 the RX processor 370, and/or the controller/processor 375) .
  • the method may enable a base station to schedule a UE based on a UE capability corresponding to a number of HARQ processes, e.g., in order to support different scheduling for a reduced capability UE.
  • the base station may receive UE capabilities from a UE, each capability including a set of one or more processing time parameters for a group of HARQ processes, such as described in connection with FIGs. 5, 6, 8 and10.
  • the base station may receive a report of UE capabilities for the processing time for a group of HARQ processes including at least one or any combination of: minimum delay between DL grant and corresponding PDSCH reception; minimum delay between PDSCH reception and corresponding ACK transmission on UL; minimum delay between UL grant reception and PUSCH transmission; and minimum delay between A/N reception in UL and corresponding retransmission of PDSCH on DL.
  • the minimum delay may be calculated in terms of slots and/or symbols.
  • the total number of HARQ-processes to be supported may be divided into N groups.
  • the UE may report N UE capabilities for N groups of HARQ processes, where N is an integer number greater than 1. Then a first UE capability may be reported for a first group of HARQ processes that includes a first number of HARQ processes, and a second UE capability may be reported for a second group of additional HARQ processes in addition to the first number of HARQ processes.
  • the base station may schedule the UE based on the first UE capability if a scheduled number of active HARQ processes that is no more than the first number of HARQ processes.
  • the UE may further schedule the UE based on the first UE capability for a first set of HARQ processes that is no more than the first number of HARQ processes and based on the second UE capability for a second set of HARQ processes if the scheduled number of active HARQ processes is more than the first number of HARQ processes.
  • the HARQ process may be associated with a running HARQ RTT timer.
  • the total number of active HARQ processes may be calculated separately for an uplink grant, a downlink grant, and a HARQ feedback.
  • the total number of active HARQ processes may be determined based on one or more of: the number of HARQ processes that have a running HARQ RTT timer, the number of HARQ processes that have DL grant DCI decoded but their corresponding PDSCHs have not been received by the UE, the number of HARQ processes that have uplink grant DCI decoded but their corresponding PUSCHs have not been transmitted, and the number of HARQ processes in which the UE has received a PDSCH but a corresponding scheduled HARQ feedback has not been reported.
  • the total number of HARQ-processes to be supported may be divided into N levels.
  • the base station may receive a report of N UE capabilities for N levels of HARQ processing, where N is an integer number greater than 1 and each of the N levels is based on a total number of active HARQ processes.
  • the base station may schedule the UE based on the UE capability corresponding to the total number of active HARQ processes.
  • the UE may share processing resources among each of the total active HARQ processes.
  • the base station may schedule the UE with a longer processing time based on a reported UE capability that has a higher level or a higher number of total active HARQ processes, and the base station may schedule the UE with a shorter processing time based on a reported UE capability that has a lower level or a smaller number of total active HARQ processes, such as shown in connection with FIG. 11. Additionally, or optionally, the base station may schedule SPS indicating scheduling timeline information for the UE based on one or more of multiple UE capabilities reported by the UE.
  • the base station may receive a report of a maximum number of HARQ processes based on a BWP or a CC, such as described in connection with FIG. 17.
  • the base station may receive a report of one or more processing timing capabilities dependent on one or more HARQ processes for a first BWP or CC and a processing timing capability independent of the number of HARQ processes for a second BWP or CC.
  • the base station may schedule communication for the UE based on the one or more processing timing capabilities corresponding to the number of HARQ processes if the downlink communication is received in the first BWP or CC, and may schedule the communication using the processing timing capability independent of the number of HARQ processes if the downlink communication is received in the second BWP or CC.
  • the maximum number of HARQ processes in the first BWP or CC and in the second BWP or CC may be RRC configured by the base station.
  • the base station schedules downlink communication for the UE based on a number of HARQ processes, such as described in connection with FIGs. 5, 6, 8 and10. For example, as shown by FIG. 6, the base station 604 may schedule the UE based on offset K 1 , K 2 at 612, where the scheduling offset K 1 , K 2 may be determined based on number of HARQ processes, such as described in connection with FIGs. 8 to 11.
  • FIG. 25 is a diagram 2500 illustrating an example of a hardware implementation for an apparatus 2502.
  • the apparatus 2502 is a BS and includes a baseband unit 2504.
  • the baseband unit 2504 may communicate through a cellular RF transceiver with the UE 104.
  • the baseband unit 2504 may include a computer-readable medium /memory.
  • the baseband unit 2504 is responsible for general processing, including the execution of software stored on the computer-readable medium /memory.
  • the software when executed by the baseband unit 2504, causes the baseband unit 2504 to perform the various functions described supra.
  • the computer-readable medium /memory may also be used for storing data that is manipulated by the baseband unit 2504 when executing software.
  • the baseband unit 2504 further includes a reception component 2530, a communication manager 2532, and a transmission component 2534.
  • the communication manager 2532 includes the one or more illustrated components.
  • the components within the communication manager 2532 may be stored in the computer-readable medium /memory and/or configured as hardware within the baseband unit 2504.
  • the baseband unit 2504 may be a component of the BS 310 and may include the memory 376 and/or at least one of the TX processor 316, the RX processor 370, and the controller/processor 375.
  • the communication manager 2532 includes a reporting component 2540 that is configured to receive multiple UE capabilities from a UE, each capability including a set of one or more processing time parameters for a group of HARQ processes, e.g., as described in connection with 2402 of FIG. 24.
  • the communication manager 2532 further includes a schedule component 2542 that is configured to schedule downlink communication for the UE based on a number of HARQ processes, e.g., as described in connection with 2404 of FIG. 24.
  • the apparatus may include additional components that perform each of the blocks of the algorithm in the flowchart of FIG. 24. As such, each block in the flowchart of FIG. 24 may be performed by a component and the apparatus may include one or more of those components.
  • the components may be one or more hardware components specifically configured to carry out the stated processes/algorithm, implemented by a processor configured to perform the stated processes/algorithm, stored within a computer-readable medium for implementation by a processor, or some combination thereof.
  • the apparatus 2502 includes means for receiving multiple UE capabilities from a user equipment (UE) , each capability including a set of one or more processing time parameters for a group of hybrid automatic repeat request (HARQ) processes; and means for transmitting downlink communication to the UE based on a number of HARQ processes.
  • the means may be one or more of the components of the apparatus 2502 configured to perform the functions recited by the means.
  • the apparatus 2502 may include the TX Processor 316, the RX Processor 370, and the controller/processor 375.
  • the means may be the TX Processor 316, the RX Processor 370, and the controller/processor 375 configured to perform the functions recited by the means.
  • FIG. 26 is a flowchart 2600 of a method of wireless communication.
  • the method may be performed by a UE or a component of a UE (e.g., the UE 104, 350, 502, 602, 1202, 1502, 1602; a processing system, which may include the memory 360 and which may be the entire UE 350 or a component of the UE 350, such as the TX processor 368, the RX processor 356, and/or the controller/processor 359) .
  • the method may enable the UE to receive downlink communication having a TBS from the base station and process the downlink communication from the base station based on a UE capability from the one or more UE capabilities corresponding to the TBS.
  • the UE may report, to a base station, N UE capabilities for N groups of TBS, N being an integer number greater than 1, where a first UE capability is reported for a first TBS group and a second UE capability is reported for a second TBS group; and, such as described in connection with FIG. 13.
  • the UE may divide the supported TBS into N groups, such as with an ascending TBS order.
  • the UE may report capabilities for the processing time including at least one or any combination of: minimum delay between DL grant and corresponding PDSCH reception; minimum delay between PDSCH reception and corresponding ACK transmission on UL; minimum delay between UL grant reception and PUSCH transmission; and minimum delay between A/N reception in UL and corresponding retransmission of PDSCH on DL.
  • the minimum delay may be calculated in slots and/or symbols.
  • the UE may report a first UE capability for a first TBS group and the UE may report a second UE capability for a second TBS group.
  • the UE may receive scheduling based on the first UE capability if the TBS is within the first TBS group, and the UE may receive scheduling based on the first UE capability for a first TBS within the first TBS group and based on the second UE capability for a second TBS within the second TBS group.
  • the UE may report a longer processing time for a first TBS group associated with a larger TBS and reports a shorter processing time for a second TBS group with smaller TBS, such as described in connection with FIG. 13.
  • the UE may report a maximum number of HARQ processes based on a BWP or a CC, such as described in connection with FIG. 17.
  • the UE may report one or more processing timing capabilities dependent on one or more HARQ processes for a first BWP or CC and a processing timing capability independent of the number of HARQ processes for a second BWP or CC.
  • the UE may process the downlink communication based on the one or more processing timing capabilities corresponding to the number of HARQ processes if the downlink communication is received in the first BWP or CC, and the UE may process the downlink communication using the processing timing capability independent of the number of HARQ processes if the downlink communication is received in the second BWP or CC.
  • the maximum number of HARQ processes in the first BWP and in the second BWP may be RRC configured by the base station.
  • the UE may receive downlink communication having a TBS from the base station, such as described in connection with FIG. 13.
  • the UE may process the downlink communication from the base station based on a UE capability from the N UE capabilities corresponding to the TBS, such as described in connection with FIG. 13.
  • FIG. 27 is a diagram 2700 illustrating an example of a hardware implementation for an apparatus 2702.
  • the apparatus 2702 is a UE and includes a cellular baseband processor 2704 (also referred to as a modem) coupled to a cellular RF transceiver 2722 and one or more subscriber identity modules (SIM) cards 2720, an application processor 2706 coupled to a secure digital (SD) card 2708 and a screen 2710, a Bluetooth module 2712, a wireless local area network (WLAN) module 2714, a Global Positioning System (GPS) module 2716, and a power supply 2718.
  • the cellular baseband processor 2704 communicates through the cellular RF transceiver 2722 with the UE 104 and/or BS 102/180.
  • the cellular baseband processor 2704 may include a computer-readable medium /memory.
  • the computer-readable medium /memory may be non-transitory.
  • the cellular baseband processor 2704 is responsible for general processing, including the execution of software stored on the computer- readable medium /memory.
  • the software when executed by the cellular baseband processor 2704, causes the cellular baseband processor 2704 to perform the various functions described supra.
  • the computer-readable medium /memory may also be used for storing data that is manipulated by the cellular baseband processor 2704 when executing software.
  • the cellular baseband processor 2704 further includes a reception component 2730, a communication manager 2732, and a transmission component 2734.
  • the communication manager 2732 includes the one or more illustrated components.
  • the components within the communication manager 2732 may be stored in the computer-readable medium /memory and/or configured as hardware within the cellular baseband processor 2704.
  • the cellular baseband processor 2704 may be a component of the UE 350 and may include the memory 360 and/or at least one of the TX processor 368, the RX processor 356, and the controller/processor 359.
  • the apparatus 2702 may be a modem chip and include just the baseband processor 2704, and in another configuration, the apparatus 2702 may be the entire UE (e.g., see 350 of FIG. 3) and include the additional modules of the apparatus 2702.
  • the communication manager 2732 includes a reporting component 2740 that is configured to report, to a base station, N UE capabilities for N groups of TBS, N being an integer number greater than 1, where a first UE capability is reported for a first TBS group and a second UE capability is reported for a second TBS group, e.g., as described in connection with 2602 of FIG. 26.
  • the communication manager 2732 further includes a receiving component 2742 that is configured to receive downlink communication having a TBS from the base station, e.g., as described in connection with 2604 of FIG. 26.
  • the communication manager 2732 further includes a processing component 2744 that is configured to process the downlink communication from the base station based on a UE capability from the N UE capabilities corresponding to the TBS, e.g., as described in connection with 2606 of FIG. 26.
  • the apparatus may include additional components that perform each of the blocks of the algorithm in the flowchart of FIG. 26. As such, each block in the flowchart of FIG. 26 may be performed by a component and the apparatus may include one or more of those components.
  • the components may be one or more hardware components specifically configured to carry out the stated processes/algorithm, implemented by a processor configured to perform the stated processes/algorithm, stored within a computer-readable medium for implementation by a processor, or some combination thereof.
  • the apparatus 2702 includes means for reporting, to a base station, N UE capabilities for N groups of TBS, N being an integer number greater than 1, where a first UE capability is reported for a first TBS group and a second UE capability is reported for a second TBS group.
  • the apparatus 2702 includes means for receiving downlink communication having a TBS from the base station.
  • the apparatus 2702 includes means for processing the downlink communication from the base station based on a UE capability from the N UE capabilities corresponding to the TBS.
  • the means may be one or more of the components of the apparatus 2702 configured to perform the functions recited by the means.
  • the apparatus 2702 may include the TX Processor 368, the RX Processor 356, and the controller/processor 359.
  • the means may be the TX Processor 368, the RX Processor 356, and the controller/processor 359 configured to perform the functions recited by the means.
  • FIG. 28 is a flowchart 2800 of a method of wireless communication.
  • the method may be performed by a UE or a component of a UE (e.g., the UE 104, 350, 502, 602, 1202, 1502, 1602; a processing system, which may include the memory 360 and which may be the entire UE 350 or a component of the UE 350, such as the TX processor 368, the RX processor 356, and/or the controller/processor 359) .
  • the method may enable the UE to report or be configured with a longer processing time for transmitting a PUSCH when a PUSCH is multiplexed with a UCI.
  • the UE may report, to a base station, a first processing time capability for a first type of PUSCH, such as described in connection with FIG. 14.
  • the UE may determine the processing time based on whether the PUSCH transmission is multiplexed with multiplexed UCI.
  • the UE may report, to the base station, a second processing time capability for a second type of PUSCH. Similarly, the UE may determine the processing time based on whether the PUSCH transmission is multiplexed with multiplexed UCI, such as described in connection with FIG. 14. For example, at 1402, the UE may divide PUSCHs into ones with UCI-multiplexing and ones without UCI-multiplexing. Then at 1404, the UE may separately report minimum delay between a UL grant reception and a PUSCH transmission, for these two types of PUSCHs.
  • the first processing time capability and the second processing time capability may indicate a delay between reception of an uplink grant from the base station and transmission of a corresponding PUSCH transmission by the UE.
  • the delay may be reported as a number of slots and/or as a number of symbols.
  • the UE may report a maximum number of HARQ processes based on a BWP or a CC, such as described in connection with FIG. 17.
  • the UE may report one or more processing timing capabilities dependent on one or more HARQ processes for a first BWP or CC and a processing timing capability independent of the number of HARQ processes for a second BWP or CC.
  • the UE may process the downlink communication based on the one or more processing timing capabilities corresponding to the number of HARQ processes if the downlink communication is received in the first BWP or CC, and the UE may process the downlink communication using the processing timing capability independent of the number of HARQ processes if the downlink communication is received in the second BWP or CC.
  • the maximum number of HARQ processes in the first BWP and in the second BWP may be RRC configured by the base station.
  • the UE may receive an uplink grant for a PUSCH transmission, such as described in connection with FIG. 14.
  • the UE may transmit the PUSCH based on a processing time corresponding to the type of the PUSCH transmission, such as described in connection with FIG. 14.
  • the processing time may be longer for the PUSCH with the multiplexed UCI than for the PUSCH without the multiplexed UCI.
  • FIG. 29 is a diagram 2900 illustrating an example of a hardware implementation for an apparatus 2902.
  • the apparatus 2902 is a UE and includes a cellular baseband processor 2904 (also referred to as a modem) coupled to a cellular RF transceiver 2922 and one or more subscriber identity modules (SIM) cards 2920, an application processor 2906 coupled to a secure digital (SD) card 2908 and a screen 2910, a Bluetooth module 2912, a wireless local area network (WLAN) module 2914, a Global Positioning System (GPS) module 2916, and a power supply 2918.
  • the cellular baseband processor 2904 communicates through the cellular RF transceiver 2922 with the UE 104 and/or BS 102/180.
  • the cellular baseband processor 2904 may include a computer-readable medium /memory.
  • the computer-readable medium / memory may be non-transitory.
  • the cellular baseband processor 2904 is responsible for general processing, including the execution of software stored on the computer-readable medium /memory.
  • the software when executed by the cellular baseband processor 2904, causes the cellular baseband processor 2904 to perform the various functions described supra.
  • the computer-readable medium /memory may also be used for storing data that is manipulated by the cellular baseband processor 2904 when executing software.
  • the cellular baseband processor 2904 further includes a reception component 2930, a communication manager 2932, and a transmission component 2934.
  • the communication manager 2932 includes the one or more illustrated components.
  • the components within the communication manager 2932 may be stored in the computer-readable medium /memory and/or configured as hardware within the cellular baseband processor 2904.
  • the cellular baseband processor 2904 may be a component of the UE 350 and may include the memory 360 and/or at least one of the TX processor 368, the RX processor 356, and the controller/processor 359.
  • the apparatus 2902 may be a modem chip and include just the baseband processor 2904, and in another configuration, the apparatus 2902 may be the entire UE (e.g., see 350 of FIG. 3) and include the additional modules of the apparatus 2902.
  • the communication manager 2932 includes a reporting component 2940 that is configured to report, to a base station, a first processing time capability for a first type of PUSCH, e.g., as described in connection with 2802 of FIG. 28.
  • the communication manager 2932 further includes a reporting component 2942 that is configured to report, to the base station, a second processing time capability for a second type of PUSCH, e.g., as described in connection with 2804 of FIG. 28.
  • the communication manager 2932 further includes a receiving component 2944 that is configured to receive an uplink grant for a PUSCH transmission, e.g., as described in connection with 2806 of FIG. 28.
  • the communication manager 2932 further includes a transmitting component 2946 that is configured to transmit the PUSCH based on a processing time corresponding to the type of the PUSCH transmission, e.g., as described in connection with 2808 of FIG. 28.
  • the apparatus may include additional components that perform each of the blocks of the algorithm in the flowchart of FIG. 28. As such, each block in the flowchart of FIG. 28 may be performed by a component and the apparatus may include one or more of those components.
  • the components may be one or more hardware components specifically configured to carry out the stated processes/algorithm, implemented by a processor configured to perform the stated processes/algorithm, stored within a computer-readable medium for implementation by a processor, or some combination thereof.
  • the apparatus 2902, and in particular the cellular baseband processor 2904 includes means for reporting, to a base station, a first processing time capability for a first type of PUSCH.
  • the apparatus 2902 includes means for report, to the base station, a second processing time capability for a second type of PUSCH.
  • the apparatus 2902 includes means for receive an uplink grant for a PUSCH transmission.
  • the apparatus 2902 includes means for transmit the PUSCH based on a processing time corresponding to the type of the PUSCH transmission.
  • the means may be one or more of the components of the apparatus 2902 configured to perform the functions recited by the means.
  • the apparatus 2902 may include the TX Processor 368, the RX Processor 356, and the controller/processor 359.
  • the means may be the TX Processor 368, the RX Processor 356, and the controller/processor 359 configured to perform the functions recited by the means.
  • Figure 30 is a flowchart 3000 of a method of wireless communication.
  • the method may be performed by a base station or a component of a base station (e.g., base station 102, 180, 310, 604, 1204, 1504, 1604; which may include the memory 376 and which may be the entire base station 310 or a component of the base station 310, such as the TX processor 316, the RX processor 370, and/or the controller/processor 375) .
  • the method may enable the base station to schedule downlink communication having a TBS for the UE based on a UE capability corresponding to the TBS.
  • the base station may receive, from a UE, N UE capabilities for N groups of TBS, N being an integer number greater than 1, where a first UE capability is received for a first TBS group and a second UE capability is received for a second TBS group, such as described in connection with FIG. 13.
  • the UE may report a first UE capability for a first TBS group and reports a second UE capability for a second TBS group.
  • each of the N UE capabilities may include one or more of: a minimum delay in slots or symbols between a DL grant and a corresponding PDSCH reception, a minimum delay in slots or symbols between the PDSCH reception and a corresponding UL HARQ feedback transmission, a minimum delay in slots or symbols between an UL grant reception and a corresponding PUSCH transmission, or a minimum delay in slots or symbols between the UL HARQ feedback transmission and a corresponding retransmission of the PDSCH.
  • the base station may schedule the UE for downlink communication having a TBS based on a capability reported by the UE for a group including the TBS, such as described in connection with FIG. 13.
  • the base station may transmit scheduling based on the first UE capability if the TBS is within the first TBS group.
  • the base station may transmit scheduling based on the first UE capability for a first TBS within the first TBS group and based on the second UE capability for a second TBS within the second TBS group.
  • the UE may report a longer processing time for a first TBS group associated with a larger TBS and reports a shorter processing time for a second TBS group with smaller TBS.
  • the base station may receive an indication of a maximum number of HARQ processes based on a BWP or a CC, such as described in connection with FIG. 17.
  • the base station may receive a report of one or more processing timing capabilities dependent on one or more HARQ processes for a first BWP or CC and a processing timing capability independent of the number of HARQ processes for a second BWP or CC.
  • the base station may schedule the downlink communication based on the one or more processing timing capabilities corresponding to the number of HARQ processes if the downlink communication is received in the first BWP or CC and schedules the downlink communication using the processing timing capability independent of the number of HARQ processes if the downlink communication is received in the second BWP or CC.
  • the base station may configure the maximum number of HARQ processes in the first BWP or CC and in the second BWP or CC via an RRC for the UE.
  • FIG. 31 is a diagram 3100 illustrating an example of a hardware implementation for an apparatus 3102.
  • the apparatus 3102 is a base station and includes a baseband unit 3104.
  • the baseband unit 3104 may communicate through a cellular RF transceiver with the UE 104.
  • the baseband unit 3104 may include a computer-readable medium/memory.
  • the baseband unit 3104 is responsible for general processing, including the execution of software stored on the computer-readable medium/memory.
  • the software when executed by the baseband unit 3104, causes the baseband unit 3104 to perform the various functions described supra.
  • the computer-readable medium/memory may also be used for storing data that is manipulated by the baseband unit 3104 when executing software.
  • the baseband unit 3104 further includes a reception component 3130, a communication manager 3132, and a transmission component 3134.
  • the communication manager 3132 includes the one or more illustrated components.
  • the components within the communication manager 3132 may be stored in the computer-readable medium/memory and/or configured as hardware within the baseband unit 3104.
  • the baseband unit 3104 may be a component of the BS 310 and may include the memory 376 and/or at least one of the TX processor 316, the RX processor 370, and the controller/processor 375.
  • the communication manager 3132 includes a receiving component 3140 that is configured to receive, from a UE, N UE capabilities for N groups of TBS, N being an integer number greater than 1, wherein a first UE capability is received for a first TBS group and a second UE capability is received for a second TBS group, e.g., as described in connection with 3002 of FIG. 30.
  • the communication manager 3132 further includes a scheduling component 3142 that is configured to transmit downlink communication having a TBS to the UE, e.g., as described in connection with 3004 of FIG. 30.
  • the apparatus may include additional components that perform each of the blocks of the algorithm in the flowchart of FIG. 30. As such, each block in the flowcharts of FIG. 30 may be performed by a component and the apparatus may include one or more of those components.
  • the components may be one or more hardware components specifically configured to carry out the stated processes/algorithm, implemented by a processor configured to perform the stated processes/algorithm, stored within a computer-readable medium for implementation by a processor, or some combination thereof.
  • the apparatus 3102 includes means for receiving, from a UE, N UE capabilities for N groups of TBS, N being an integer number greater than 1, wherein a first UE capability is received for a first TBS group and a second UE capability is received for a second TBS group.
  • the apparatus 3102 includes means for transmitting downlink communication having a TBS to the UE.
  • the means may be one or more of the components of the apparatus 3102 configured to perform the functions recited by the means.
  • the apparatus 3102 may include the TX Processor 316, the RX Processor 370, and the controller/processor 375.
  • the means may be the TX Processor 316, the RX Processor 370, and the controller/processor 375 configured to perform the functions recited by the means.
  • Figure 32 is a flowchart 3200 of a method of wireless communication.
  • the method may be performed by a base station or a component of a base station (e.g., base station 102, 180, 310, 604, 1204, 1504, 1604; which may include the memory 376 and which may be the entire base station 310 or a component of the base station 310, such as the TX processor 316, the RX processor 370, and/or the controller/processor 375) .
  • the method may enable the base station to schedule offset (s) for a PUSCH based at least in part on whether the PUSCH is multiplexed with a UCI.
  • the base station may receive, from a UE, a first processing time capability for a first type of PUSCH, such as described in connection with FIG. 14.
  • the base station may receive, from the UE, a second processing time capability for a second type of PUSCH, such as described in connection with FIG. 14.
  • the first type of the PUSCH may include multiplexed UCI and the second type of the PUSCH may not include the multiplexed UCI.
  • the processing time may be longer for the PUSCH with the multiplexed UCI than for the PUSCH without the multiplexed UCI.
  • the base station may transmit an UL grant for a PUSCH transmission, such as described in connection with FIG. 14.
  • the UL grant may include a scheduling offset for the PUSCH, where the base station may determine the scheduling offset (e.g., processing time) for the UE based on whether the PUSCH transmission will include multiplexed UCI.
  • the base station may receive the PUSCH based on a processing time corresponding to the type of the PUSCH transmission, such as described in connection with FIG. 14.
  • the base station may determine the processing time based on whether the PUSCH transmission will include multiplexed UCI.
  • the first processing time capability and the second processing time capability may indicate a delay between reception of an uplink grant at the UE and transmission of a corresponding PUSCH by the UE, where the delay may be reported as a number of slots and/or symbols.
  • the base station may receive an indication of a maximum number of HARQ processes based on a BWP or a CC, such as described in connection with FIG. 17.
  • the base station may receive a report of one or more processing timing capabilities dependent on one or more HARQ processes for a first BWP or CC and a processing timing capability independent of the number of HARQ processes for a second BWP or CC.
  • the base station may schedule the downlink communication based on the one or more processing timing capabilities corresponding to the number of HARQ processes if the downlink communication is received in the first BWP or CC and schedules the downlink communication using the processing timing capability independent of the number of HARQ processes if the downlink communication is received in the second BWP or CC.
  • the base station may configure the maximum number of HARQ processes in the first BWP or CC and in the second BWP or CC via an RRC for the UE.
  • FIG. 33 is a diagram 3300 illustrating an example of a hardware implementation for an apparatus 3302.
  • the apparatus 3302 is a base station and includes a baseband unit 3304.
  • the baseband unit 3304 may communicate through a cellular RF transceiver with the UE 104.
  • the baseband unit 3304 may include a computer-readable medium/memory.
  • the baseband unit 3304 is responsible for general processing, including the execution of software stored on the computer-readable medium/memory.
  • the software when executed by the baseband unit 3304, causes the baseband unit 3304 to perform the various functions described supra.
  • the computer-readable medium/memory may also be used for storing data that is manipulated by the baseband unit 3304 when executing software.
  • the baseband unit 3304 further includes a reception component 3330, a communication manager 3332, and a transmission component 3334.
  • the communication manager 3332 includes the one or more illustrated components.
  • the components within the communication manager 3332 may be stored in the computer-readable medium/memory and/or configured as hardware within the baseband unit 3304.
  • the baseband unit 3304 may be a component of the BS 310 and may include the memory 376 and/or at least one of the TX processor 316, the RX processor 370, and the controller/processor 375.
  • the communication manager 3332 includes a receiving component 3340 that is configured to receive, from a UE, a first processing time capability for a first type of PUSCH, e.g., as described in connection with 3202 of FIG. 32.
  • the communication manager 3332 further includes a receiving component 3342 that is configured to receive, from the UE, a second processing time capability for a second type of PUSCH, e.g., as described in connection with 3204 of FIG. 32.
  • the communication manager 3332 includes a transmitting component 3344 that is configured to transmit an uplink grant for a PUSCH transmission, e.g., as described in connection with 3206 of FIG. 32.
  • the communication manager 3332 further includes a receiving component 3346 that is configured to receive the PUSCH based on a processing time corresponding to the type of the PUSCH transmission, e.g., as described in connection with 3208 of FIG. 32.
  • the apparatus may include additional components that perform each of the blocks of the algorithm in the flowchart of FIG. 32. As such, each block in the flowcharts of FIG. 32 may be performed by a component and the apparatus may include one or more of those components.
  • the components may be one or more hardware components specifically configured to carry out the stated processes/algorithm, implemented by a processor configured to perform the stated processes/algorithm, stored within a computer-readable medium for implementation by a processor, or some combination thereof.
  • the apparatus 3302, and in particular the baseband unit 3304 includes means for receiving, from a UE, a first processing time capability for a first type of PUSCH.
  • the apparatus 3302 includes means for receiving, from the UE, a second processing time capability for a second type of PUSCH.
  • the apparatus 3302 includes means for transmitting an uplink grant for a PUSCH transmission.
  • the apparatus 3302 includes means for receiving the PUSCH based on a processing time corresponding to the type of the PUSCH transmission.
  • the means may be one or more of the components of the apparatus 3302 configured to perform the functions recited by the means.
  • the apparatus 3302 may include the TX Processor 316, the RX Processor 370, and the controller/processor 375.
  • the means may be the TX Processor 316, the RX Processor 370, and the controller/processor 375 configured to perform the functions recited by the means.
  • FIG. 34 is a flowchart 3400 of a method of wireless communication.
  • the method may be performed by a UE or a component of a UE (e.g., the UE 104, 350, 502, 602, 1202, 1502, 1602; a processing system, which may include the memory 360 and which may be the entire UE 350 or a component of the UE 350, such as the TX processor 368, the RX processor 356, and/or the controller/processor 359) .
  • the method may enable the UE to report maximum or available computational resources for processing one or more HARQ-processes, and then the UE may expect scheduling based on the reported computational resources.
  • the UE may report, to a base station, a UE capability based on a HARQ process unit (e.g., the UE may indicate to the base station the number of available or maximum HARQ process unit (s) or available computational resource for processing the HARQ at the UE, etc. ) , such as described in connection with FIG. 15.
  • the UE 1502 may report number of supported simultaneous HARQ-processes to the base station 1504.
  • the UE capability may be based on processing an UL grant, processing an uplink grant, processing a physical downlink shared channel.
  • the UE may receive a scheduling offset from the base station based on a number of unoccupied HARQ-process units.
  • the UE may determine a number of unoccupied HPUs in a duration of time based on the number of supported simultaneous HARQ processes and a current number of occupied HPUs for processing one or more of an uplink grant, a downlink grant, or a physical downlink shared channel.
  • the duration may be based on one or more symbols and/or slots.
  • the UE may not receive additional uplink grants if the UE has no unoccupied HPUs for uplink.
  • the UE may not determine HARQ feedback for a PDSCH if the UE has no unoccupied HPUs for downlink.
  • the UE may not receive additional downlink grants for a PDSCH if the UE has no unoccupied HPUs for downlink.
  • the UE may receive downlink communication from the base station, such as described in connection with FIG. 15.
  • the UE 1502 may receive a downlink communication from the bas e station 1504.
  • the UE may process the downlink communication from the base station and provide HARQ feedback based on the reported UE capability (e.g., based on the number of available HARQ process unit (s) or computational resources for processing the HARQ at the UE) , such as described in connection with FIG. 15.
  • the UE 1502 may process the downlink communication from the base station 1504 and provide HARQ feedback based on the reported UE capability.
  • FIG. 35 is a diagram 3500 illustrating an example of a hardware implementation for an apparatus 3502.
  • the apparatus 3502 is a UE and includes a cellular baseband processor 3504 (also referred to as a modem) coupled to a cellular RF transceiver 3522 and one or more subscriber identity modules (SIM) cards 3520, an application processor 3506 coupled to a secure digital (SD) card 3508 and a screen 3510, a Bluetooth module 3512, a wireless local area network (WLAN) module 3514, a Global Positioning System (GPS) module 3516, and a power supply 3518.
  • the cellular baseband processor 3504 communicates through the cellular RF transceiver 3522 with the UE 104 and/or BS 102/180.
  • the cellular baseband processor 3504 may include a computer-readable medium/memory.
  • the computer-readable medium/memory may be non-transitory.
  • the cellular baseband processor 3504 is responsible for general processing, including the execution of software stored on the computer-readable medium/memory.
  • the software when executed by the cellular baseband processor 3504, causes the cellular baseband processor 3504 to perform the various functions described supra.
  • the computer-readable medium/memory may also be used for storing data that is manipulated by the cellular baseband processor 3504 when executing software.
  • the cellular baseband processor 3504 further includes a reception component 3530, a communication manager 3532, and a transmission component 3534.
  • the communication manager 3532 includes the one or more illustrated components.
  • the components within the communication manager 3532 may be stored in the computer-readable medium/memory and/or configured as hardware within the cellular baseband processor 3504.
  • the cellular baseband processor 3504 may be a component of the UE 350 and may include the memory 360 and/or at least one of the TX processor 368, the RX processor 356, and the controller/processor 359.
  • the apparatus 3502 may be a modem chip and include just the baseband processor 3504, and in another configuration, the apparatus 3502 may be the entire UE (e.g., see 350 of FIG. 3) and include the additional modules of the apparatus 3502.
  • the communication manager 3532 includes a reporting component 3540 that is configured to report, to a base station, a UE capability based on a HARQ process unit, e.g., as described in connection with 3402 of FIG. 34.
  • the communication manager 3532 further includes a receiving component 3542 that is configured to receive downlink communication from the base station, e.g., as described in connection with 3404 of FIG. 34.
  • the communication manager 3532 further includes a processing component 3544 that is configured to process the downlink communication from the base station and providing HARQ feedback based on the reported UE capability, e.g., as described in connection with 3406 of FIG. 34.
  • the apparatus may include additional components that perform each of the blocks of the algorithm in the flowchart of FIG. 34. As such, each block in the flowchart of FIG. 34 may be performed by a component and the apparatus may include one or more of those components.
  • the components may be one or more hardware components specifically configured to carry out the stated processes/algorithm, implemented by a processor configured to perform the stated processes/algorithm, stored within a computer-readable medium for implementation by a processor, or some combination thereof.
  • the apparatus 3502, and in particular the cellular baseband processor 3504 includes means for reporting, to a base station, a UE capability based on a HARQ process unit.
  • the apparatus 3502 includes means for processing the downlink communication from the base station and providing HARQ feedback based on the reported UE capability.
  • the means may be one or more of the components of the apparatus 3502 configured to perform the functions recited by the means.
  • the apparatus 3502 may include the TX Processor 368, the RX Processor 356, and the controller/processor 359.
  • the means may be the TX Processor 368, the RX Processor 356, and the controller/processor 359 configured to perform the functions recited by the means.
  • FIG. 36 is a flowchart 3600 of a method of wireless communication.
  • the method may be performed by a UE or a component of a UE (e.g., the UE 104, 350, 502, 602, 1202, 1502, 1602; a processing system, which may include the memory 360 and which may be the entire UE 350 or a component of the UE 350, such as the TX processor 368, the RX processor 356, and/or the controller/processor 359) .
  • the method may enable the UE to indicate a duration to a base station in which the base station may be refrained from transmitting a DL or a UL grant DCI to the UE during the indicated duration.
  • the UE may report, to a base station, a duration of time following reception of one or more grants when the UE does not expect to receive an additional grant, such as described in connection with FIG. 16.
  • the UE 1602 may transmit a DCI forbidden time duration T or T combination (for multiple DCIs) to the base station 1604.
  • the UE may report the duration of time for one or more uplink grants, for one or more downlink grants, or both, where the duration of time may be reported to the base station as a UE capability.
  • the duration of time may apply to reception of a single grant or to reception of multiple grants.
  • the UE may receive the one or more grants from the base station, such as described in connection with FIG. 16.
  • the UE 1602 may receive first one or more grants from the base station 1604.
  • the UE may receive an additional grant from the base station following the one or more grants by at least the duration of time, such as described in connection with FIG. 16.
  • the UE 1602 may receive second one or more grants from the base station 1604 after the DCI forbidden time duration expires.
  • the UE may report a maximum number of HARQ processes based on a BWP.
  • the UE may report one or more processing timing capabilities dependent on one or more HARQ processes for a first BWP and a processing timing capability independent of the number of HARQ processes for a second BWP.
  • the UE may process the downlink communication based on the one or more processing timing capabilities corresponding to the number of HARQ processes if the downlink communication is received in the first BWP and processes the downlink communication using the processing timing capability independent of the number of HARQ processes if the downlink communication is received in the second BWP.
  • the maximum number of HARQ processes in the first BWP and in the second BWP is RRC configured by the base station. Additionally, or optionally, the UE may also report a maximum number of HARQ processes based on a CC. Similarly, the UE may report one or more processing timing capabilities dependent on one or more HARQ processes for a first CC and a processing timing capability independent of the number of HARQ processes for a second CC.
  • the UE may process the downlink communication based on the one or more processing timing capabilities corresponding to the number of HARQ processes if the downlink communication is received in the first CC and processes the downlink communication using the processing timing capability independent of the number of HARQ processes if the downlink communication is received in the second CC.
  • the maximum number of HARQ processes in the first CC and in the second CC may also be RRC configured by the base station.
  • FIG. 37 is a diagram 3700 illustrating an example of a hardware implementation for an apparatus 3702.
  • the apparatus 3702 is a UE and includes a cellular baseband processor 3704 (also referred to as a modem) coupled to a cellular RF transceiver 3722 and one or more subscriber identity modules (SIM) cards 3720, an application processor 3706 coupled to a secure digital (SD) card 3708 and a screen 3710, a Bluetooth module 3712, a wireless local area network (WLAN) module 3714, a Global Positioning System (GPS) module 3716, and a power supply 3718.
  • the cellular baseband processor 3704 communicates through the cellular RF transceiver 3722 with the UE 104 and/or BS 102/180.
  • the cellular baseband processor 3704 may include a computer-readable medium/memory.
  • the computer-readable medium/ memory may be non-transitory.
  • the cellular baseband processor 3704 is responsible for general processing, including the execution of software stored on the computer-readable medium/memory.
  • the software when executed by the cellular baseband processor 3704, causes the cellular baseband processor 3704 to perform the various functions described supra.
  • the computer-readable medium/memory may also be used for storing data that is manipulated by the cellular baseband processor 3704 when executing software.
  • the cellular baseband processor 3704 further includes a reception component 3730, a communication manager 3732, and a transmission component 3734.
  • the communication manager 3732 includes the one or more illustrated components.
  • the components within the communication manager 3732 may be stored in the computer-readable medium/memory and/or configured as hardware within the cellular baseband processor 3704.
  • the cellular baseband processor 3704 may be a component of the UE 350 and may include the memory 360 and/or at least one of the TX processor 368, the RX processor 356, and the controller/processor 359.
  • the apparatus 3702 may be a modem chip and include just the baseband processor 3704, and in another configuration, the apparatus 3702 may be the entire UE (e.g., see 350 of FIG. 3) and include the additional modules of the apparatus 3702.
  • the communication manager 3732 includes a reporting component 3740 that is configured to report, to a base station, a duration of time following reception of one or more grants when the UE does not expect to receive an additional grant, e.g., as described in connection with 3602 of FIG. 36.
  • the communication manager 3732 further includes a receiving component 3742 that is configured to receive the one or more grants from the base station, e.g., as described in connection with 3604 of FIG. 36.
  • the communication manager 3732 further includes a receiving component 3744 that is configured to receive an additional grant from the base station following the one or more grants by at least the duration of time, e.g., as described in connection with 3606 of FIG. 36.
  • the apparatus may include additional components that perform each of the blocks of the algorithm in the flowchart of FIG. 36. As such, each block in the flowchart of FIG. 36 may be performed by a component and the apparatus may include one or more of those components.
  • the components may be one or more hardware components specifically configured to carry out the stated processes/algorithm, implemented by a processor configured to perform the stated processes/algorithm, stored within a computer-readable medium for implementation by a processor, or some combination thereof.
  • the apparatus 3702, and in particular the cellular baseband processor 3704 includes means for reporting, to a base station, a duration of time following reception of one or more grants when the UE does not expect to receive an additional grant.
  • the apparatus 3702 includes means for receiving the one or more grants from the base station.
  • the apparatus 3702 includes means for receiving an additional grant from the base station following the one or more grants by at least the duration of time.
  • the means may be one or more of the components of the apparatus 3702 configured to perform the functions recited by the means.
  • the apparatus 3702 may include the TX Processor 368, the RX Processor 356, and the controller/processor 359.
  • the means may be the TX Processor 368, the RX Processor 356, and the controller/processor 359 configured to perform the functions recited by the means.
  • Figure 38 is a flowchart 3800 of a method of wireless communication.
  • the method may be performed by a base station or a component of a base station (e.g., base station 102, 180, 310, 604, 1204, 1504, 1604; which may include the memory 376 and which may be the entire base station 310 or a component of the base station 310, such as the TX processor 316, the RX processor 370, and/or the controller/processor 375) .
  • the method may enable the base station to schedule one or more offsets for a UE based at least in part on the UE’s available computational resources for processing one or more HARQ-processes.
  • the base station may receive, from a UE, a UE capability based on an HPU, where the UE capability may include a number of supported simultaneous HARQ processes based on the HPU, such as described in connection with FIG. 15.
  • the UE capability may be based on processing an uplink grant, processing an uplink grant, and/or processing a physical downlink shared channel.
  • the base station may transmit downlink communication to the UE, such as described in connection with FIG. 15.
  • the base station may determine a number of unoccupied HPUs for the UE in a duration of time based on the number of supported simultaneous HARQ processes and a current number of occupied HPUs for processing one or more of an uplink grant, a downlink grant, or a physical downlink shared channel.
  • the duration may be based on one or more symbols and/or slots.
  • the base station may not transmit additional uplink grants if the UE has no unoccupied HPUs for uplink.
  • the base station may not transmit additional downlink grants for a PDSCH if the UE has no unoccupied HPUs for downlink.
  • the base station may transmit a scheduling offset to the UE based on a number of unoccupied HARQ-process units.
  • the base station may receive HARQ feedback based on the UE capability, such as described in connection with FIG. 15. However, the base station may not receive HARQ feedback for a PDSCH if the UE has no unoccupied HPUs for downlink.
  • the base station may receive an indication of a maximum number of HARQ processes based on a BWP or a CC, such as described in connection with FIG. 17.
  • the base station may receive a report of one or more processing timing capabilities dependent on one or more HARQ processes for a first BWP or CC and a processing timing capability independent of the number of HARQ processes for a second BWP or CC.
  • the base station may schedule the downlink communication based on the one or more processing timing capabilities corresponding to the number of HARQ processes if the downlink communication is received in the first BWP or CC and schedules the downlink communication using the processing timing capability independent of the number of HARQ processes if the downlink communication is received in the second BWP or CC.
  • the base station may configure the maximum number of HARQ processes in the first BWP or CC and in the second BWP or CC via an RRC for the UE.
  • FIG. 39 is a diagram 3900 illustrating an example of a hardware implementation for an apparatus 3902.
  • the apparatus 3902 is a base station and includes a baseband unit 3904.
  • the baseband unit 3904 may communicate through a cellular RF transceiver with the UE 104.
  • the baseband unit 3904 may include a computer-readable medium/memory.
  • the baseband unit 3904 is responsible for general processing, including the execution of software stored on the computer-readable medium/memory.
  • the software when executed by the baseband unit 3904, causes the baseband unit 3904 to perform the various functions described supra.
  • the computer-readable medium/memory may also be used for storing data that is manipulated by the baseband unit 3904 when executing software.
  • the baseband unit 3904 further includes a reception component 3930, a communication manager 3932, and a transmission component 3934.
  • the communication manager 3932 includes the one or more illustrated components.
  • the components within the communication manager 3932 may be stored in the computer-readable medium/memory and/or configured as hardware within the baseband unit 3904.
  • the baseband unit 3904 may be a component of the BS 310 and may include the memory 376 and/or at least one of the TX processor 316, the RX processor 370, and the controller/processor 375.
  • the communication manager 3932 includes a receiving component 3940 that is configured to receive, from a UE, a UE capability based on a HPU, e.g., as described in connection with 3802 of FIG. 38.
  • the communication manager 3932 further includes a transmitting component 3942 that is configured to transmit downlink communication to the UE, e.g., as described in connection with 3804 of FIG. 38.
  • the communication manager 3932 includes a receiving component 3944 that is configured to receive HARQ feedback based on the UE capability, e.g., as described in connection with 3806 of FIG. 38.
  • the apparatus may include additional components that perform each of the blocks of the algorithm in the flowchart of FIG. 38. As such, each block in the flowcharts of FIG. 38 may be performed by a component and the apparatus may include one or more of those components.
  • the components may be one or more hardware components specifically configured to carry out the stated processes/algorithm, implemented by a processor configured to perform the stated processes/algorithm, stored within a computer-readable medium for implementation by a processor, or some combination thereof.
  • the apparatus 3902, and in particular the baseband unit 3904 includes means for receiving, from a UE, a UE capability based on an HPU.
  • the apparatus 3902 includes means for transmitting downlink communication to the UE.
  • the apparatus 3902 includes means for receiving HARQ feedback based on the UE capability.
  • the means may be one or more of the components of the apparatus 3902 configured to perform the functions recited by the means.
  • the apparatus 3902 may include the TX Processor 316, the RX Processor 370, and the controller/processor 375.
  • the means may be the TX Processor 316, the RX Processor 370, and the controller/processor 375 configured to perform the functions recited by the means.
  • Figure 40 is a flowchart 4000 of a method of wireless communication.
  • the method may be performed by a base station or a component of a base station (e.g., base station 102, 180, 310, 604, 1204, 1504, 1604; which may include the memory 376 and which may be the entire base station 310 or a component of the base station 310, such as the TX processor 316, the RX processor 370, and/or the controller/processor 375) .
  • the method may enable the base station to refrain from transmitting a DL or a UL grant DCI to a UE in a duration of time indicated by the UE.
  • the base station may receive, from a UE, a duration of time following reception of one or more grants when the UE does not expect to receive an additional grant, such as described in connection with FIG. 16.
  • the base station may receive the duration of time for one or more uplink grants and/or one or more downlink grants.
  • the duration of time may be indicated to the base station as a UE capability by the UE, where the base station may refrain from sending the additional grant to the UE during the duration of time following the one or more grants.
  • the duration of time in which the base station is refrained from sending the additional grant may apply to transmission of a single grant or multiple grants.
  • the base station may transmit the one or more grants to the UE, such as described in connection with FIG. 16. However, the base station may not transmit additional grant with the duration of time after transmitting the one or more grants to the UE.
  • the base station may transmit an additional grant (s) to the UE (e.g., following the one or more grants by at least the duration of time) , such as described in connection with FIG. 16.
  • the base station may receive an indication of a maximum number of HARQ processes based on a BWP or a CC, such as described in connection with FIG. 17.
  • the base station may receive a report of one or more processing timing capabilities dependent on one or more HARQ processes for a first BWP or CC and a processing timing capability independent of the number of HARQ processes for a second BWP or CC.
  • the base station may schedule the downlink communication based on the one or more processing timing capabilities corresponding to the number of HARQ processes if the downlink communication is received in the first BWP or CC and schedules the downlink communication using the processing timing capability independent of the number of HARQ processes if the downlink communication is received in the second BWP or CC.
  • the base station may configure the maximum number of HARQ processes in the first BWP or CC and in the second BWP or CC via an RRC for the UE.
  • FIG. 41 is a diagram 4100 illustrating an example of a hardware implementation for an apparatus 4102.
  • the apparatus 4102 is a base station and includes a baseband unit 4104.
  • the baseband unit 4104 may communicate through a cellular RF transceiver with the UE 104.
  • the baseband unit 4104 may include a computer-readable medium /memory.
  • the baseband unit 4104 is responsible for general processing, including the execution of software stored on the computer-readable medium /memory.
  • the software when executed by the baseband unit 4104, causes the baseband unit 4104 to perform the various functions described supra.
  • the computer-readable medium /memory may also be used for storing data that is manipulated by the baseband unit 4104 when executing software.
  • the baseband unit 4104 further includes a reception component 4130, a communication manager 4132, and a transmission component 4134.
  • the communication manager 4132 includes the one or more illustrated components.
  • the components within the communication manager 4132 may be stored in the computer-readable medium /memory and/or configured as hardware within the baseband unit 4104.
  • the baseband unit 4104 may be a component of the BS 310 and may include the memory 376 and/or at least one of the TX processor 316, the RX processor 370, and the controller/processor 375.
  • the communication manager 4132 includes a receiving component 4140 that is configured to receive, from a UE, a duration of time following reception of one or more grants when the UE does not expect to receive an additional grant, e.g., as described in connection with 4002 of FIG. 40.
  • the communication manager 4132 further includes a transmitting component 4142 that is configured to transmit the one or more grants to the UE, e.g., as described in connection with 4004 of FIG. 40.
  • the communication manager 4132 includes a transmitting component 4144 that is configured to transmit an additional grant to the UE following the one or more grants by at least the duration of time, e.g., as described in connection with 4006 of FIG. 40.
  • the apparatus may include additional components that perform each of the blocks of the algorithm in the flowchart of FIG. 40. As such, each block in the flowcharts of FIG. 40 may be performed by a component and the apparatus may include one or more of those components.
  • the components may be one or more hardware components specifically configured to carry out the stated processes/algorithm, implemented by a processor configured to perform the stated processes/algorithm, stored within a computer-readable medium for implementation by a processor, or some combination thereof.
  • the apparatus 4102, and in particular the baseband unit 4104 includes means for receiving, from a UE, a duration of time following reception of one or more grants when the UE does not expect to receive an additional grant.
  • the apparatus 4102 includes means for transmitting the one or more grants to the UE.
  • the apparatus 4102 includes means for transmitting an additional grant to the UE following the one or more grants by at least the duration of time.
  • the means may be one or more of the components of the apparatus 4102 configured to perform the functions recited by the means.
  • the apparatus 4102 may include the TX Processor 316, the RX Processor 370, and the controller/processor 375.
  • the means may be the TX Processor 316, the RX Processor 370, and the controller/processor 375 configured to perform the functions recited by the means.
  • Aspect 1 is a method of wireless communication at a UE, comprising: reporting multiple UE capabilities to a base station, each capability including a set of one or more processing time parameters for a group of HARQ processes; receiving downlink communication from the base station based on a number of HARQ processes; and processing the downlink communication from the base station based on a UE capability corresponding to the number of HARQ processes.
  • the method of Aspect 1 further includes that the one or more processing time parameters reported for each group of HARQ processes comprise one or more of:a minimum delay in slots or symbols, between a DL grant and a corresponding PDSCH reception, a minimum delay in slots or symbols, between the PDSCH reception and a corresponding UL HARQ feedback transmission, a minimum delay in slots or symbols, between an UL grant reception and a corresponding PUSCH transmission, or a minimum delay in slots or symbols, between the UL HARQ feedback transmission and a corresponding retransmission of a PDSCH.
  • the one or more processing time parameters reported for each group of HARQ processes comprise one or more of:a minimum delay in slots or symbols, between a DL grant and a corresponding PDSCH reception, a minimum delay in slots or symbols, between the PDSCH reception and a corresponding UL HARQ feedback transmission, a minimum delay in slots or symbols, between an UL grant reception and a corresponding PUSCH transmission, or a minimum delay in slots or symbols,
  • the method of Aspect 1 or Aspect 2 further includes that the UE reports N UE capabilities for N groups of HARQ processes, N being an integer number greater than 1, wherein a first UE capability is reported for a first group of HARQ processes comprising a first number of HARQ processes and a second UE capability is reported for a second group of additional HARQ processes in addition to the first number of HARQ processes.
  • the method of any of Aspects 1-3 further comprises: receiving scheduling based on the first UE capability if a scheduled number of active HARQ processes that is no more than the first number of HARQ processes; and receiving scheduling based on the first UE capability for a first set of HARQ processes that is no more than the first number of HARQ processes and based on the second UE capability for a second set of HARQ processes if the scheduled number of active HARQ processes is more than the first number of HARQ processes.
  • the method of any of Aspects 1-4 further includes that the scheduled number of active HARQ processes is calculated separately for an uplink grant, a downlink grant, and a HARQ feedback.
  • the method of any of Aspects 1-5 further includes that the scheduled number of active HARQ processes is determined based on one or more of: the number of HARQ processes that have a running HARQ RTT timer, the number of HARQ processes that have downlink grant DCI decoded but their corresponding PDSCHs have not been received by the UE, the number of HARQ processes that have uplink grant DCI decoded but their corresponding PUSCHs have not been transmitted, and the number of HARQ processes in which the UE has received a PDSCH but a corresponding scheduled HARQ feedback has not been reported.
  • the method of any of Aspects 1-6 further includes that the UE reports N UE capabilities for N levels of HARQ processing, N being an integer number greater than 1, wherein each of the N levels is based on a total number of active HARQ processes.
  • the method of any of Aspects 1-7 further comprises: receiving scheduling based on the UE capability corresponding to the total number of active HARQ processes.
  • the method of any of Aspects 1-8 further includes that the UE is scheduled a longer processing time based on a reported UE capability that has a higher level or a higher number of total active HARQ processes, and is scheduled a shorter processing time based on a reported UE capability that has a lower level or a smaller number of total active HARQ processes.
  • the method of any of Aspects 1-9 further comprises: receiving SPS indicating scheduling timeline information for the UE based on one or more of multiple UE capabilities reported by the UE.
  • the method of any of Aspects 1-10 further comprises: reporting a maximum number of HARQ processes based on a BWP.
  • the method of any of Aspects 1-11 further includes that the UE reports one or more processing timing capabilities dependent on one or more HARQ processes for a first BWP and a processing timing capability independent of the number of HARQ processes for a second BWP.
  • the method of any of Aspects 1-12 further includes that the UE processes a downlink communication based on the one or more processing timing capabilities corresponding to the number of HARQ processes if the downlink communication is received in the first BWP and processes the downlink communication using the processing timing capability independent of the number of HARQ processes if the downlink communication is received in the second BWP.
  • the method of any of Aspects 1-13 further includes that the maximum number of HARQ processes in the first BWP and in the second BWP is RRC configured by the base station.
  • the method of any of Aspects 1-14 further comprises: reporting a maximum number of HARQ processes based on a CC.
  • the method of any of Aspects 1-15 further includes that the UE reports one or more processing timing capabilities dependent on one or more HARQ processes for a first CC and a processing timing capability independent of the number of HARQ processes for a second CC.
  • the method of any of Aspects 1-16 further includes that the UE processes a downlink communication based on the one or more processing timing capabilities corresponding to the number of HARQ processes if the downlink communication is received in the first CC and processes the downlink communication using the processing timing capability independent of the number of HARQ processes if the downlink communication is received in the second CC.
  • the method of any of Aspects 1-17 further includes that the maximum number of HARQ processes in the first CC and in the second CC is RRC configured by the base station.
  • Aspect 19 is an apparatus for wireless communication at a UE, comprising: means for reporting multiple UE capabilities to a base station, each capability including a set of one or more processing time parameters for a group of ARQ processes; means for receiving downlink communication from the base station based on a number of HARQ processes; and means for processing the downlink communication from the base station based on a UE capability corresponding to the number of HARQ processes.
  • the apparatus of Aspect 19 further comprises means to perform the method of any of Aspects 2-18.
  • Aspect 21 is an apparatus for wireless communication at a UE, comprising: a memory; and at least one processor coupled to the memory, the memory and the at least one processor configured to perform the method of Aspects 1-18.
  • Aspect 22 is a computer-readable medium storing computer executable code for wireless communication at a UE, the code when executed by a processor cause the processor to perform the method of any of Aspects 1-18.
  • Aspect 23 is a method of wireless communication at a UE, comprising: reporting a reduced capability for the UE; and receiving a scheduling timeline with an adjustment based on at least one of the reduced capability for the UE or a total number of active HARQ processes exceeding a HARQ processes threshold.
  • the method of Aspect 23 further includes that the scheduling timeline with the adjustment is determined by one or more increased or modified number of slots.
  • the method of Aspect 23 or Aspect 24 further: reporting, to a base station, a number of HARQ processes to which a first processing delay between receiving a PDSCH and a corresponding HARQ feedback and a second processing delay between reception of a PDCCH to transmission of a corresponding PUSCH apply, wherein the scheduling timeline is adjusted based on the total number of active HARQ processes exceeding the number of HARQ processes to which the first processing delay and the second processing delay apply.
  • the method of any of Aspects 23-25 further comprises: receiving, from the base station, a configuration of the number of HARQ processes, wherein the scheduling timeline is adjusted based on the total number of active HARQ processes exceeding the number of HARQ processes to which the first processing delay and the second processing delay apply.
  • the method of any of Aspects 23-26 further includes that reporting the number of HARQ processes is defined and the scheduling timeline is adjusted based on the total number of active HARQ processes exceeding the number of HARQ processes to which the first processing delay and the second processing delay apply.
  • the method of any of Aspects 23-27 further includes that each of the active HARQ processes is associated with a running HARQ RTT timer.
  • the method of any of Aspects 23-28 further includes that the total number of active HARQ processes is calculated separately for an uplink grant, a downlink grant, and a HARQ feedback.
  • the method of any of Aspects 23-29 further includes that the total number of active HARQ processes is determined based on one or more of: the number of HARQ processes that have a running HARQ RTT timer, the number of HARQ processes that have downlink grant DCI decoded but their corresponding PDSCHs have not been received by the UE, the number of HARQ processes that have uplink grant DCI decoded but their corresponding PUSCHs have not been transmitted, and the number of HARQ processes in which the UE has received a PDSCH but a corresponding scheduled HARQ feedback has not been reported.
  • the method of any of Aspects 23-30 further includes that the scheduling timeline with an adjustment comprises one or more of: an increased minimum delay between a DL grant and a corresponding PDSCH reception, an increased minimum delay between the PDSCH reception and a corresponding UL HARQ feedback transmission, an increased minimum delay between an UL grant reception and a corresponding PUSCH transmission, or an increased delay between the UL HARQ feedback transmission and a corresponding retransmission of a PDSCH.
  • the method of any of Aspects 23-31 further comprises: reporting a timing adjustment with one or more increased processing time parameters, wherein the scheduling timeline is adjusted based on the timing adjustment reported by the UE.
  • the method of any of Aspects 23-32 further comprises: receiving, from a base station, a timing adjustment configuration with one or more increased processing time parameters, wherein the scheduling timeline is adjusted based on the timing adjustment configuration from the base station.
  • the method of any of Aspects 23-33 further includes that the scheduling timeline is adjusted based on a defined timing adjustment comprising one or more increased processing time parameters.
  • the method of any of Aspects 23-34 further includes that the one or more increased processing time parameters includes one or more of: an increased minimum delay between a DL grant and a corresponding PDSCH reception, an increased minimum delay between the PDSCH reception and a corresponding UL HARQ feedback transmission, an increased minimum delay between an UL grant reception and a corresponding PUSCH transmission, or an increased delay between the UL HARQ feedback transmission and a corresponding retransmission of a PDSCH.
  • the method of any of Aspects 23-35 further comprises: reporting a maximum number of HARQ processes based on a BWP.
  • the method of any of Aspects 23-36 further includes that the UE reports one or more processing timing capabilities dependent on one or more HARQ processes for a first BWP and a processing timing capability independent of the number of HARQ processes for a second BWP.
  • the method of any of Aspects 23-37 further includes that the UE processes a downlink communication based on the one or more processing timing capabilities corresponding to the number of HARQ processes if the downlink communication is received in the first BWP and processes the downlink communication using the processing timing capability independent of the number of HARQ processes if the downlink communication is received in the second BWP.
  • the method of any of Aspects 23-38 further includes that the maximum number of HARQ processes in the first BWP and in the second BWP is RRC configured by a base station.
  • the method of any of Aspects 23-39 further comprises: reporting a maximum number of HARQ processes based on a CC.
  • the method of any of Aspects 23-40 further includes that the UE reports one or more processing timing capabilities dependent on one or more HARQ processes for a first CC and a processing timing capability independent of the number of HARQ processes for a second CC.
  • the method of any of Aspects 23-41 further includes that the UE processes a downlink communication based on the one or more processing timing capabilities corresponding to the number of HARQ processes if the downlink communication is received in the first CC and processes the downlink communication using the processing timing capability independent of the number of HARQ processes ifthe downlink communication is received in the second CC.
  • the method of any of Aspects 23 -42 further includes that the maximum number of HARQ processes in the first CC and in the second CC is RRC configured by a base station.
  • Aspect 44 is an apparatus for wireless communication at a UE, comprising: means for reporting a reduced capability for the UE; means for receiving a scheduling timeline with an adjustment based on at least one of the reduced capability for the UE or a total number of active HARQ processes exceeding a HARQ processes threshold.
  • the apparatus of Aspect 44 further comprises means to perform the method of any of Aspects 24-43.
  • Aspect 46 is an apparatus for wireless communication at a UE, comprising: a memory; and at least one processor coupled to the memory, the memory and the at least one processor configured to perform the method of Aspects 23-43.
  • Aspect 47 is a computer-readable medium storing computer executable code for wireless communication at a UE, the code when executed by a processor cause the processor to perform the method of any of Aspects 23-43.
  • Aspect 48 is yet another method of wireless communication at a user equipment.
  • the method may include one or more optional actions and/or steps (such as those that follow) .
  • the method may include reporting multiple UE capabilities to a base station, each capability including a set of one or more processing time parameters for a group of HARQ processes.
  • the method may also include receiving downlink communication from the base station based on a number of HARQ processes. Further, the method may optionally include processing the downlink communication from the base station based on a UE capability corresponding to the number of HARQ processes.
  • Aspect 49 is yet another method of wireless communication at a user equipment.
  • the method may include one or more optional actions and/or steps (such as those that follow) .
  • the method may include reporting a reduced capability for the UE.
  • the method may also include receiving a scheduling timeline with an adjustment based on at least one of the reduced capability for the UE or a total number of active HARQ processes exceeding a HARQ processes threshold.
  • Aspect 50 is a method of wireless communication at a UE, comprising: reporting, to a base station, N UE capabilities for N groups of TBS, N being an integer number greater than 1, wherein a first UE capability is reported for a first TBS group and a second UE capability is reported for a second TBS group; receiving downlink communication having a TBS from the base station; and processing the downlink communication from the base station based on a UE capability from the N UE capabilities corresponding to the TBS.
  • the method of Aspect 50 further includes that the UE reports a first UE capability for a first TBS group and reports a second UE capability for a second TBS group.
  • the method of Aspect 50 or Aspect 51 further comprises: receiving scheduling based on the first UE capability if the TBS is within the first TBS group; and receiving scheduling based on the first UE capability for a first TBS within the first TBS group and based on the second UE capability for a second TBS within the second TBS group.
  • the method of any of Aspects 1-3 further includes that the UE reports a longer processing time for a first TBS group associated with a larger TBS and reports a shorter processing time for a second TBS group with smaller TBS.
  • each of the N UE capabilities includes one or more of: a minimum delay in slots or symbols between a DL grant and a corresponding PDSCH reception, a minimum delay in slots or symbols between the PDSCH reception and a corresponding UL HARQ feedback transmission, a minimum delay in slots or symbols between an UL grant reception and a corresponding PUSCH transmission, or a minimum delay in slots or symbols between the UL HARQ feedback transmission and a corresponding retransmission of a PDSCH.
  • the method of any of Aspects 50-54 further comprises: reporting a maximum number of HARQ processes based on a BWP.
  • the method of any of Aspects 50-55 further includes that the UE reports one or more processing timing capabilities dependent on one or more HARQ processes for a first BWP and a processing timing capability independent of the number of HARQ processes for a second BWP.
  • the method of any of Aspects 50-56 further includes that the UE processes the downlink communication based on the one or more processing timing capabilities corresponding to the number of HARQ processes if the downlink communication is received in the first BWP and processes the downlink communication using the processing timing capability independent of the number of HARQ processes if the downlink communication is received in the second BWP.
  • the method of any of Aspects 50-57 further includes that the maximum number of HARQ processes in the first BWP and in the second BWP is RRC configured by the base station.
  • the method of any of Aspects 50-58 further comprises: reporting a maximum number of HARQ processes based on a CC.
  • the method of any of Aspects 50-59 further includes that the UE reports one or more processing timing capabilities dependent on one or more HARQ processes for a first CC and a processing timing capability independent of the number of HARQ processes for a second CC.
  • the method of any of Aspects 50-60 further includes that the UE processes the downlink communication based on the one or more processing timing capabilities corresponding to the number of HARQ processes if the downlink communication is received in the first CC and processes the downlink communication using the processing timing capability independent of the number of HARQ processes ifthe downlink communication is received in the second CC.
  • Aspect 62 is an apparatus for wireless communication at a UE, comprising: means for reporting, to a base station, N UE capabilities for N groups of TBS, N being an integer number greater than 1, wherein a first UE capability is reported for a first TBS group and a second UE capability is reported for a second TBS group; means for receiving downlink communication having a TBS from the base station; and means for processing the downlink communication from the base station based on a UE capability from the N UE capabilities corresponding to the TBS.
  • the apparatus of Aspect 62 further comprises means to perform the method of any of Aspects 51-61.
  • Aspect 64 is an apparatus for wireless communication at a UE, comprising: a memory; and at least one processor coupled to the memory, the memory and the at least one processor configured to perform the method of Aspects 50-61.
  • Aspect 65 is a computer-readable medium storing computer executable code for wireless communication at a UE, the code when executed by a processor cause the processor to perform the method of any of Aspects 50-61.
  • Aspect 66 is a method of wireless communication at a UE, comprising: reporting, to a base station, a first processing time capability for a first type of PUSCH; reporting, to the base station, a second processing time capability for a second type of PUSCH; receiving an uplink grant for a PUSCH transmission; and transmitting the PUSCH based on a processing time corresponding to the type of the PUSCH transmission.
  • the method of Aspect 66 further includes that the first type of the PUSCH includes multiplexed UCI and the second type of the PUSCH does not include the multiplexed UCI.
  • the method of Aspect 66 or Aspect 67 further includes that the processing time is longer for the PUSCH with the multiplexed UCI than for the PUSCH without the multiplexed UCI.
  • the method of any of Aspects 66-68 further comprises: determining the processing time based on whether the PUSCH transmission will include multiplexed UCI.
  • the method of any of Aspects 66-69 further includes that the first processing time capability and the second processing time capability indicate a delay between reception of an uplink grant from the base station and transmission of a corresponding PUSCH transmission by the UE.
  • the method of any of Aspects 66-70 further includes that the delay is reported as a number of slots.
  • the method of any of Aspects 66-71 further includes that the delay is reported as a number of symbols.
  • the method of any of Aspects 66-72 further comprises: reporting a maximum number of HARQ processes based on a BWP.
  • the method of any of Aspects 66-73 further includes that the UE reports one or more processing timing capabilities dependent on one or more HARQ processes for a first BWP and a processing timing capability independent of the number of HARQ processes for a second BWP.
  • the method of any of Aspects 66-74 further includes that the UE processes a downlink communication based on the one or more processing timing capabilities corresponding to the number of HARQ processes if the downlink communication is received in the first BWP and processes the downlink communication using the processing timing capability independent of the number of HARQ processes if the downlink communication is received in the second BWP.
  • the method of any of Aspects 66-75 further includes that the maximum number of HARQ processes in the first BWP and in the second BWP is RRC configured by the base station.
  • the method of any of Aspects 66-76 further comprises: reporting a maximum number of HARQ processes based on a CC.
  • the method of any of Aspects 66-77 further includes that the UE reports one or more processing timing capabilities dependent on one or more HARQ processes for a first CC and a processing timing capability independent of the number of HARQ processes for a second CC.
  • the method of any of Aspects 66-78 further includes that the UE processes a downlink communication based on the one or more processing timing capabilities corresponding to the number of HARQ processes if the downlink communication is received in the first CC and processes the downlink communication using the processing timing capability independent of the number of HARQ processes ifthe downlink communication is received in the second CC.
  • the method of any of Aspects 66-79 further includes that the maximum number of HARQ processes in the first CC and in the second CC is RRC configured by the base station.
  • Aspect 81 is an apparatus for wireless communication at a UE, comprising: means for reporting, to a base station, a first processing time capability for a first type of PUSCH; means for reporting, to the base station, a second processing time capability for a second type of PUSCH; means for receiving an uplink grant for a PUSCH transmission; and means for transmitting the PUSCH based on a processing time corresponding to the type of the PUSCH transmission.
  • the apparatus of Aspect 81 further comprises means to perform the method of any of Aspects 67-80.
  • Aspect 83 is an apparatus for wireless communication at a UE, comprising: a memory; and at least one processor coupled to the memory, the memory and the at least one processor configured to perform the method of Aspects 66-80.
  • Aspect 84 is a computer-readable medium storing computer executable code for wireless communication at a UE, the code when executed by a processor cause the processor to perform the method of any of Aspects 66-80.
  • Aspect 85 is a method of wireless communication at a base station, comprising: receiving, from a UE, N UE capabilities for N groups of TBS, N being an integer number greater than 1, wherein a first UE capability is received for a first TBS group and a second UE capability is received for a second TBS group; and scheduling the UE for downlink communication having a TBS based on a capability reported by the UE for a group including the TBS.
  • the method of Aspect 85 further includes that the UE reports a first UE capability for a first TBS group and reports a second UE capability for a second TBS group.
  • the method of Aspect 85 or Aspect 86 further comprises: transmitting scheduling based on the first UE capability if the TBS is within the first TBS group; and transmitting scheduling based on the first UE capability for a first TBS within the first TBS group and based on the second UE capability for a second TBS within the second TBS group.
  • the method of any of Aspects 85-87 further includes that the UE reports a longer processing time for a first TBS group associated with a larger TBS and reports a shorter processing time for a second TBS group with smaller TBS.
  • each of the N UE capabilities includes one or more of: a minimum delay in slots or symbols between a DL grant and a corresponding PDSCH reception, a minimum delay in slots or symbols between the PDSCH reception and a corresponding UL HARQ feedback transmission, a minimum delay in slots or symbols between an UL grant reception and a corresponding PUSCH transmission, or a minimum delay in slots or symbols between the UL HARQ feedback transmission and a corresponding retransmission of a PDSCH.
  • the method of any of Aspects 85-89 further comprises: receiving an indication of a maximum number of HARQ processes based on a BWP.
  • the method of any of Aspects 85-90 further includes that the base station receives a report of one or more processing timing capabilities dependent on one or more HARQ processes for a first BWP and a processing timing capability independent of the number of HARQ processes for a second BWP.
  • the method of any of Aspects 85-91 further includes that the base station schedules the downlink communication based on the one or more processing timing capabilities corresponding to the number of HARQ processes if the downlink communication is received in the first BWP and schedules the downlink communication using the processing timing capability independent of the number of HARQ processes if the downlink communication is received in the second BWP.
  • the method of any of Aspects 85-92 further comprises: configuring the maximum number of HARQ processes in the first BWP and in the second BWP via an RRC for the UE.
  • the method of any of Aspects 85-93 further comprises: receiving a maximum number of HARQ processes based on a CC.
  • the method of any of Aspects 85-94 further includes that the base station receives a report of one or more processing timing capabilities dependent on one or more HARQ processes for a first CC and a processing timing capability independent of the number of HARQ processes for a second CC.
  • the method of any of Aspects 85-95 further includes that the base station schedules the downlink communication based on the one or more processing timing capabilities corresponding to the number of HARQ processes if the downlink communication is received in the first CC and schedules the downlink communication using the processing timing capability independent of the number of HARQ processes ifthe downlink communication is received in the second CC.
  • the method of any of Aspects 85-96 further comprises: configuring the maximum number of HARQ processes in the first CC and in the second CC via an RRC for the UE.
  • Aspect 98 is an apparatus for wireless communication at a base station, comprising: means for receiving, from a UE, N UE capabilities for N groups of TBS, N being an integer number greater than 1, wherein a first UE capability is received for a first TBS group and a second UE capability is received for a second TBS group; and means for transmitting downlink communication having a TBS to the UE.
  • the apparatus of Aspect 98 further comprises means to perform the method of any of Aspects 86-97.
  • Aspect 100 is an apparatus for wireless communication at a base station, comprising: a memory; and at least one processor coupled to the memory, the memory and the at least one processor configured to perform the method of Aspects 85-97.
  • Aspect 101 is a computer-readable medium storing computer executable code for wireless communication at a base station, the code when executed by a processor cause the processor to perform the method of any of Aspects 85-97.
  • Aspect 102 is a method of wireless communication at a base station, comprising: receiving, from a UE, a first processing time capability for a first type of PUSCH; receiving, from the UE, a second processing time capability for a second type of PUSCH; transmitting an uplink grant for a PUSCH transmission; and receiving the PUSCH based on a processing time corresponding to the type of the PUSCH transmission.
  • the method of Aspect 102 further includes that the first type of the PUSCH includes multiplexed UCI and the second type of the PUSCH does not include the multiplexed UCI.
  • the method of Aspect 102 or Aspect 103 further includes that the processing time is longer for the PUSCH with the multiplexed UCI than for the PUSCH without the multiplexed UCI.
  • the method of any of Aspects 102-104 further comprises: determining the processing time based on whether the PUSCH transmission will include multiplexed UCI.
  • the method of any of Aspects 102-105 further includes that the first processing time capability and the second processing time capability indicate a delay between reception of an uplink grant at the UE and transmission of a corresponding PUSCH by the UE.
  • the method of any of Aspects 102-106 further includes that the delay is reported as a number of slots.
  • the method of any of Aspects 102-107 further includes that the delay is reported as a number of symbols.
  • the method of any of Aspects 102-108 further comprises: receiving an indication of a maximum number of HARQ processes based on a BWP.
  • the method of any of Aspects 102-109 further includes that the base station receives a report of one or more processing timing capabilities dependent on one or more HARQ processes for a first BWP and a processing timing capability independent of the number of HARQ processes for a second BWP.
  • the method of any of Aspects 102-110 further includes that the base station schedules the downlink communication based on the one or more processing timing capabilities corresponding to the number of HARQ processes if the downlink communication is received in the first BWP and schedules the downlink communication using the processing timing capability independent of the number of HARQ processes if the downlink communication is received in the second BWP.
  • the method of any of Aspects 102-111 further comprises: configuring the maximum number of HARQ processes in the first BWP and in the second BWP via an RRC for the UE.
  • the method of any of Aspects 102-112 further comprises: receiving an indication of a maximum number of HARQ processes based on a CC.
  • the method of any of Aspects 102-113 further includes that the base station receives a report of one or more processing timing capabilities dependent on one or more HARQ processes for a first CC and a processing timing capability independent of the number of HARQ processes for a second CC.
  • the method of any of Aspects 102-114 further includes that the base station schedules the downlink communication based on the one or more processing timing capabilities corresponding to the number of HARQ processes if the downlink communication is received in the first CC and schedules the downlink communication using the processing timing capability independent of the number of HARQ processes if the downlink communication is received in the second CC.
  • the method of any of Aspects 102-115 further comprises: configuring the maximum number of HARQ processes in the first CC and in the second CC via an RRC for the UE.
  • Aspect 117 is an apparatus for wireless communication at a base station, comprising: means for receiving, from a UE, a first processing time capability for a first type of PUSCH; means for receiving, from the UE, a second processing time capability for a second type of PUSCH; means for transmitting an uplink grant for a PUSCH transmission; and means for receiving the PUSCH based on a processing time corresponding to the type of the PUSCH transmission.
  • the apparatus of Aspect 117 further comprises means to perform the method of any of Aspects 103-116.
  • Aspect 119 is an apparatus for wireless communication at a base station, comprising: a memory; and at least one processor coupled to the memory, the memory and the at least one processor configured to perform the method of Aspects 102-116.
  • Aspect 120 is a computer-readable medium storing computer executable code for wireless communication at a base station, the code when executed by a processor cause the processor to perform the method of any of Aspects 102-116.
  • Aspect 121 is yet another method of wireless communication at a user equipment.
  • the method may include one or more optional actions and/or steps (such as those that follow) .
  • the method may include reporting, to a base station, N UE capabilities for N groups of TBS, N being an integer number greater than 1, wherein a first UE capability is reported for a first TBS group and a second UE capability is reported for a second TBS group.
  • the method may also include receiving downlink communication having a TBS from the base station. Further, the method may optionally include processing the downlink communication from the base station based on a UE capability from the N UE capabilities corresponding to the TBS.
  • Aspect 122 is yet another method of wireless communication at a user equipment.
  • the method may include one or more optional actions and/or steps (such as those that follow) .
  • the method may include reporting, to a base station, a first processing time capability for a first type of PUSCH.
  • the method may also include reporting, to the base station, a second processing time capability for a second type of PUSCH.
  • the method may optionally include receiving an uplink grant for a PUSCH transmission.
  • the method may optionally include transmitting the PUSCH based on a processing time corresponding to the type of the PUSCH transmission.
  • Aspect 123 is yet another method of wireless communication at a base station.
  • the method may include one or more optional actions and/or steps (such as those that follow) .
  • the method may include receiving, from a UE, N UE capabilities for N groups of TBS, N being an integer number greater than 1, wherein a first UE capability is received for a first TBS group and a second UE capability is received for a second TBS group.
  • the method may also include scheduling the UE for downlink communication having a TBS based on a capability reported by the UE for a group including the TBS.
  • Aspect 124 is yet another method of wireless communication at a base station.
  • the method may include one or more optional actions and/or steps (such as those that follow) .
  • the method may include receiving, from a UE, a first processing time capability for a first type of PUSCH.
  • the method may also include receiving, from the UE, a second processing time capability for a second type of PUSCH.
  • the method may optionally include transmitting an uplink grant for a PUSCH transmission.
  • the method may optionally include receiving the PUSCH based on a processing time corresponding to the type of the PUSCH transmission.
  • Aspect 125 is a method of wireless communication at a UE, comprising: reporting, to a base station, a UE capability based on an HPU; receiving downlink communication from the base station; and processing the downlink communication from the base station and providing HARQ feedback based on the reported UE capability.
  • the method of Aspect 125 further includes that the UE capability includes a number of supported simultaneous HARQ processes based on the HPU.
  • the method of Aspect 125 or Aspect 126 further comprises: determining a number of unoccupied HPUs in a duration of time based on the number of supported simultaneous HARQ processes and a current number of occupied HPUs for processing one or more of an uplink grant, a downlink grant, or a physical downlink shared channel.
  • the method of any of Aspects 125-127 further includes that the duration is based on one or more symbols.
  • the method of any of Aspects 125-128 further includes that the duration is based on one or more slots.
  • the method of any of Aspects 125-129 further includes that the UE does not receive additional uplink grants if the UE has no unoccupied HPUs for uplink.
  • the method of any of Aspects 125-130 further includes that the UE does not determine HARQ feedback for a PDSCH if the UE has no unoccupied HPUs for downlink.
  • the method of any of Aspects 125-131 further includes that the UE does not receive additional downlink grants for a PDSCH if the UE has no unoccupied HPUs for downlink.
  • the method of any of Aspects 125-132 further includes that the UE capability is based on processing an uplink grant.
  • the method of any of Aspects 125-133 further includes that the UE capability is based on processing a downlink grant.
  • the method of any of Aspects 125-134 further includes that the UE capability is based on processing a physical downlink shared channel.
  • the method of any of Aspects 125-135 further comprises: receiving a scheduling offset from the base station based on a number of unoccupied HARQ-process units.
  • Aspect 137 is an apparatus for wireless communication at a UE, comprising: means for reporting, to a base station, a UE capability based on an HPU; means for receiving downlink communication from the base station; and means for processing the downlink communication from the base station and providing HARQ feedback based on the reported UE capability.
  • the apparatus of Aspect 137 further comprises means to perform the method of any of Aspects 126-136.
  • Aspect 139 is an apparatus for wireless communication at a UE, comprising: a memory; and at least one processor coupled to the memory, the memory and the at least one processor configured to perform the method of Aspects 125-136.
  • Aspect 140 is a computer-readable medium storing computer executable code for wireless communication at a UE, the code when executed by a processor cause the processor to perform the method of any of Aspects 125-136.
  • Aspect 141 is a method of wireless communication at a UE, comprising: reporting, to a base station, a duration of time following reception of one or more grants when the UE does not expect to receive an additional grant; receiving the one or more grants from the base station; and receiving an additional grant from the base station following the one or more grants by at least the duration of time.
  • the method of Aspect 141 further includes that the UE reports the duration of time for one or more uplink grants.
  • the method of Aspect 141 or Aspect 142 further includes that the UE reports the duration of time for one or more downlink grants.
  • the method of any of Aspects 141-143 further includes that the duration of time is reported to the base station as a UE capability.
  • the method of any of Aspects 141-144 further includes that the duration of time applies to reception of a single grant.
  • the method of any of Aspects 141-145 further includes that the duration of time applies to reception of multiple grants.
  • the method of any of Aspects 141-146 further includes that the duration of time applies following reception of the multiple grants within a period of time.
  • the method of any of Aspects 141-147 further comprises: reporting a maximum number of HARQ processes based on a BWP.
  • the method of any of Aspects 141-148 further includes that the UE reports one or more processing timing capabilities dependent on one or more HARQ processes for a first BWP and a processing timing capability independent of the number of HARQ processes for a second BWP.
  • the method of any of Aspects 141-149 further includes that the UE processes a downlink communication based on the one or more processing timing capabilities corresponding to the number of HARQ processes if the downlink communication is received in the first BWP and processes the downlink communication using the processing timing capability independent of the number of HARQ processes if the downlink communication is received in the second BWP.
  • the method of any of Aspects 141-150 further includes that the maximum number of HARQ processes in the first BWP and in the second BWP is RRC configured by the base station.
  • the method of any of Aspects 141-151 further comprises: reporting a maximum number of HARQ processes based on a CC.
  • the method of any of Aspects 141-152 further includes that the UE reports one or more processing timing capabilities dependent on one or more HARQ processes for a first CC and a processing timing capability independent of the number of HARQ processes for a second CC.
  • the method of any of Aspects 141-153 further includes that the UE processes a downlink communication based on the one or more processing timing capabilities corresponding to the number of HARQ processes if the downlink communication is received in the first CC and processes the downlink communication using the processing timing capability independent of the number of HARQ processes if the downlink communication is received in the second CC.
  • the method of any of Aspects 141-154 further includes that the maximum number of HARQ processes in the first CC and in the second CC is RRC configured by the base station.
  • Aspect 156 is an apparatus for wireless communication at a UE, comprising: means for reporting, to a base station, a duration of time following reception of one or more grants when the UE does not expect to receive an additional grant; means for receiving the one or more grants from the base station; and means for receiving an additional grant from the base station following the one or more grants by at least the duration of time.
  • the apparatus of Aspect 156 further comprises means to perform the method of any of Aspects 142-155.
  • Aspect 158 is an apparatus for wireless communication at a UE, comprising: a memory; and at least one processor coupled to the memory, the memory and the at least one processor configured to perform the method of Aspects 141-155.
  • Aspect 159 is a computer-readable medium storing computer executable code for wireless communication at a UE, the code when executed by a processor cause the processor to perform the method of any of Aspects 141-155.
  • Aspect 160 is a method of wireless communication at a base station, comprising: receiving, from a UE, a UE capability based on an HPU; transmitting downlink communication to the UE; and receiving HARQ feedback based on the UE capability.
  • the method of Aspect 160 further includes that the UE capability includes a number of supported simultaneous HARQ processes based on the HPU.
  • the method of Aspect 160 or Aspect 161 further comprises: determining a number of unoccupied HPUs for the UE in a duration of time based on the number of supported simultaneous HARQ processes and a current number of occupied HPUs for processing one or more of an uplink grant, a downlink grant, or a physical downlink shared channel.
  • the method of any of Aspects 160-162 further includes that the duration is based on one or more symbols.
  • the method of any of Aspects 160-163 further includes that the duration is based on one or more slots.
  • the method of any of Aspects 160-164 further includes that the base station does not transmit additional uplink grants if the UE has no unoccupied HPUs for uplink.
  • the method of any of Aspects 160-165 further includes that the base station does not receive HARQ feedback for a PDSCH if the UE has no unoccupied HPUs for downlink.
  • the method of any of Aspects 160-166 further includes that the base station does not transmit additional downlink grants for a PDSCH if the UE has no unoccupied HPUs for downlink.
  • the method of any of Aspects 160-167 further includes that the UE capability is based on processing an uplink grant.
  • the method of any of Aspects 160-168 further includes that the UE capability is processing an uplink grant.
  • the method of any of Aspects 160-169 further includes that the UE capability is based on processing a physical downlink shared channel.
  • the method of any of Aspects 160-170 further comprises: transmitting a scheduling offset to the UE based on a number of unoccupied HARQ-process units.
  • Aspect 172 is an apparatus for wireless communication at a base station, comprising: means for receiving, from a UE, a UE capability based on an HPU; means for transmitting downlink communication to the UE; and means for receiving HARQ feedback based on the UE capability.
  • the apparatus of Aspect 172 further comprises means to perform the method of any of Aspects 161-171.
  • Aspect 174 is an apparatus for wireless communication at a base station, comprising: a memory; and at least one processor coupled to the memory, the memory and the at least one processor configured to perform the method of Aspects 160-171.
  • Aspect 175 is a computer-readable medium storing computer executable code for wireless communication at a base station, the code when executed by a processor cause the processor to perform the method of any of Aspects 160-171.
  • Aspect 176 is a method of wireless communication at a base station, comprising: receiving, from a UE, a duration of time following reception of one or more grants when the UE does not expect to receive an additional grant; transmitting the one or more grants to the UE; and transmitting an additional grant to the UE following the one or more grants by at least the duration of time.
  • the method of Aspect 176 further includes that the base station receives the duration of time for one or more uplink grants.
  • the method of Aspect 176 or Aspect 177 further includes that the base station receives the duration of time for one or more downlink grants.
  • the method of any of Aspects 176-178 further includes that the duration of time is received by the base station as a UE capability, and wherein the base station refrains from sending the additional grant to the UE during the duration of time following the one or more grants.
  • the method of any of Aspects 176-179 further includes that the duration of time applies to transmission of a single grant.
  • the method of any of Aspects 176-180 further includes that the duration of time applies to transmission of multiple grants.
  • the method of any of Aspects 176-181 further includes that the duration of time applies following transmission of the multiple grants within a period of time.
  • the method of any of Aspects 176-182 further comprises: receiving an indication of a maximum number of HARQ processes based on a BWP.
  • the method of any of Aspects 176-183 further includes that the base station receives a report of one or more processing timing capabilities dependent on one or more HARQ processes for a first BWP and a processing timing capability independent of the number of HARQ processes for a second BWP.
  • the method of any of Aspects 176-184 further includes that the base station schedules communication for the UE based on the one or more processing timing capabilities corresponding to the number of HARQ processes if the downlink communication is received in the first BWP and schedules the communication for the UE using the processing timing capability independent of the number of HARQ processes if the downlink communication is received in the second BWP.
  • the method of any of Aspects 176-185 further comprises: configuring the maximum number of HARQ processes in the first BWP and in the second BWP via an RRC for the UE.
  • the method of any of Aspects 176-186 further comprises: receiving an indication of a maximum number of HARQ processes based on a CC.
  • the method of any of Aspects 176-187 further includes that the base station receives a report of one or more processing timing capabilities dependent on one or more HARQ processes for a first CC and a processing timing capability independent of the number of HARQ processes for a second CC.
  • the method of any of Aspects 176-188 further includes that the base station schedules communication for the UE based on the one or more processing timing capabilities corresponding to the number of HARQ processes if the downlink communication is received in the first CC and schedules the communication for the UE using the processing timing capability independent of the number of HARQ processes if the downlink communication is received in the second CC.
  • the method of any of Aspects 176-189 further comprises: configuring the maximum number of HARQ processes in the first CC and in the second CC via an RRC for the UE.
  • Aspect 191 is an apparatus for wireless communication at a base station, comprising: means for receiving, from a UE, a duration of time following reception of one or more grants when the UE does not expect to receive an additional grant; means for transmitting the one or more grants to the UE; and means for transmitting an additional grant to the UE following the one or more grants by at least the duration of time.
  • the apparatus of Aspect 191 further comprises means to perform the method of any of Aspects 177-190.
  • Aspect 193 is an apparatus for wireless communication at a base station, comprising: a memory; and at least one processor coupled to the memory, the memory and the at least one processor configured to perform the method of Aspects 176-190.
  • Aspect 194 is a computer-readable medium storing computer executable code for wireless communication at a base station, the code when executed by a processor cause the processor to perform the method of any of Aspects 176-190.
  • Aspect 195 is yet another method of wireless communication at a user equipment.
  • the method may include one or more optional actions and/or steps (such as those that follow) .
  • the method may include reporting, to a base station, a UE capability based on an HPU.
  • the method may also include receiving downlink communication from the base station.
  • the method may optionally include processing the downlink communication from the base station and providing HARQ feedback based on the reported UE capability.
  • Aspect 196 is yet another method of wireless communication at a user equipment.
  • the method may include one or more optional actions and/or steps (such as those that follow) .
  • the method may include reporting, to a base station, a duration of time following reception of one or more grants when the UE does not expect to receive an additional grant.
  • the method may also include receiving the one or more grants from the base station.
  • the method may optionally include receiving an additional grant from the base station following the one or more grants by at least the duration of time.
  • Aspect 197 is yet another method of wireless communication at a base station.
  • the method may include one or more optional actions and/or steps (such as those that follow) .
  • the method may include receiving, from a UE, a UE capability based on an HPU.
  • the method may also include transmitting downlink communication to the UE.
  • the method may optionally include receiving HARQ feedback based on the UE capability.
  • Aspect 198 is yet another method of wireless communication at a base station.
  • the method may include one or more optional actions and/or steps (such as those that follow) .
  • the method may include receiving, from a UE, a duration of time following reception of one or more grants when the UE does not expect to receive an additional grant.
  • the method may also include transmitting the one or more grants to the UE.
  • the method may optionally include transmitting an additional grant to the UE following the one or more grants by at least the duration of time.
  • Combinations such as “at least one of A, B, or C, ” “one or more of A, B, or C, ” “at least one of A, B, and C, ” “one or more of A, B, and C, ” and “A, B, C, or any combination thereof” include any combination of A, B, and/or C, and may include multiples of A, multiples of B, or multiples of C.
  • combinations such as “at least one of A, B, or C, ” “one or more of A, B, or C, ” “at least one of A, B, and C, ” “one or more of A, B, and C, ” and “A, B, C, or any combination thereof” may be A only, B only, C only, A and B, A and C, B and C, or A and B and C, where any such combinations may contain one or more member or members of A, B, or C.

Abstract

Aspects presented herein may enable additional slot offset (s) or adjusted offset (s) to be applied/configured for reduced capability UEs. In one aspect, a UE reports a reduced capability for the UE. Then, the UE receives a scheduling timeline with an adjustment based on at least one of the reduced capability for the UE or a total number of active HARQ processes exceeding a HARQ processes threshold. Additionally, or optionally, the UE reports, to the base station, a number of HARQ processes to which a first processing delay between receiving a PDSCH and a corresponding HARQ feedback and a second processing delay between reception of a PDCCH to transmission of a corresponding PUSCH apply, and the scheduling timeline is adjusted based on the total number of active HARQ processes exceeding the number of HARQ processes to which the first processing delay and the second processing delay apply.

Description

HARQ-PROCESS SPECIFIC USER EQUIPMENT CONFIGURATION FOR REDUCED CAPABILITY COMPLEXITY REDUCTION
CROSS REFERENCE TO RELATED APPLICATION (S)
This application claims the benefit of and priority to PCT Application Serial No. PCT/CN2020/108638, entitled “HARQ-PROCESS SPECIFIC USER EQUIPMENT CONFIGURATION FOR REDUCED CAPABILITY COMPLEXITY REDUCTION” and filed on August 12, 2020, PCT Application Serial No. PCT/CN2020/108590, entitled “HARQ-PROCESS SPECIFIC USER EQUIPMENT CONFIGURATION FOR REDUCED CAPABILITY COMPLEXITY REDUCTION” and filed on August 12, 2020, and PCT Application Serial No. PCT/CN2020/108607, entitled “HARQ-PROCESS SPECIFIC USER EQUIPMENT CONFIGURATION FOR REDUCED CAPABILITY COMPLEXITY REDUCTION” and filed on August 12, 2020, which is expressly incorporated by reference herein in its entirety.
Technical Field
The present disclosure relates generally to communication systems, and more particularly, to wireless communication techniques involving hybrid automatic repeat request (HARQ) processing configuration.
Introduction
Wireless communication systems are widely deployed to provide various telecommunication services such as telephony, video, data, messaging, and broadcasts. Typical wireless communication systems may employ multiple-access technologies capable of supporting communication with multiple users by sharing available system resources. Examples of such multiple-access technologies include code division multiple access (CDMA) systems, time division multiple access (TDMA) systems, frequency division multiple access (FDMA) systems, orthogonal frequency division multiple access (OFDMA) systems, single-carrier frequency division multiple access (SC-FDMA) systems, and time division synchronous code division multiple access (TD-SCDMA) systems.
These multiple access technologies have been adopted in various telecommunication standards to provide a common protocol that enables different wireless devices to  communicate on a municipal, national, regional, and even global level. An example telecommunication standard is 5G New Radio (NR) . 5G NR is part of a continuous mobile broadband evolution promulgated by Third Generation Partnership Project (3GPP) to meet new requirements associated with latency, reliability, security, scalability (e.g., with Internet of Things (IoT) ) , and other requirements. 5G NR includes services associated with enhanced mobile broadband (eMBB) , massive machine type communications (mMTC) , and ultra-reliable low latency communications (URLLC) . Some aspects of 5G NR may be based on the 4G Long Term Evolution (LTE) standard. There exists a need for further improvements in 5G NR technology. These improvements may also be applicable to other multi-access technologies and the telecommunication standards that employ these technologies.
SUMMARY
The following presents a simplified summary of one or more aspects in order to provide a basic understanding of such aspects. This summary is not an extensive overview of all contemplated aspects, and is intended to neither identify key or critical elements of all aspects nor delineate the scope of any or all aspects. Its sole purpose is to present some concepts of one or more aspects in a simplified form as a prelude to the more detailed description that is presented later.
In an aspect of the disclosure, a method, a computer-readable medium, and an apparatus are provided for wireless communication. In some aspects, the wireless communication may be performed at a UE. The apparatus reports a reduced capability for the UE. Then, the apparatus receives a scheduling timeline with an adjustment based on at least one of the reduced capability for the UE or a total number of active HARQ processes exceeding a HARQ processes threshold.
In an aspect of the disclosure, a method, a computer-readable medium, and an apparatus are provided for wireless communication. In some aspects, the wireless communication may be performed at a base station. The apparatus receives multiple UE capabilities from a UE, each capability including a set of one or more processing time parameters for a group of HARQ processes. Then, the apparatus schedules downlink communication to the UE based on a number of HARQ processes.
In an aspect of the disclosure, a method, a computer-readable medium, and an apparatus are provided for wireless communication. In some aspects, the wireless  communication may be performed at a UE. The apparatus reports multiple UE capabilities to a base station, each capability including a set of one or more processing time parameters for a group of HARQ processes. Then, the apparatus receives downlink communication from the base station based on a number of HARQ processes. Then, the apparatus processes the downlink communication from the base station based on a UE capability corresponding to the number of HARQ processes.
In an aspect of the disclosure, a method, a computer-readable medium, and an apparatus are provided for wireless communication. In some aspects, the wireless communication may be performed at a base station. The apparatus receives a reduced capability for the UE. Then, the apparatus schedules communication with the UE based on a scheduling timeline with an adjustment, wherein the adjustment is based on the reduced capability for the UE or a total number of active HARQ processes exceeding a HARQ processes threshold.
In an aspect of the disclosure, a method, a computer-readable medium, and an apparatus are provided for wireless communication. In some aspects, the wireless communication may be performed at a UE. The apparatus reports, to a base station, N UE capabilities for N groups of TBS, N being an integer number greater than 1, wherein a first UE capability is reported for a first TBS group and a second UE capability is reported for a second TBS group. Then, the apparatus receives downlink communication having a TBS from the base station. Then, the apparatus processes the downlink communication from the base station based on a UE capability from the N UE capabilities corresponding to the TBS.
In an aspect of the disclosure, a method, a computer-readable medium, and an apparatus are provided for wireless communication. In some aspects, the wireless communication may be performed at a UE. The apparatus reports, to a base station, a first processing time capability for a first type of PUSCH. Then, the apparatus reports, to the base station, a second processing time capability for a second type of PUSCH. Then, the apparatus receives an uplink grant for a PUSCH transmission. Then, the apparatus transmits the PUSCH based on a processing time corresponding to the type of the PUSCH transmission.
In an aspect of the disclosure, a method, a computer-readable medium, and an apparatus are provided for wireless communication. In some aspects, the wireless communication may be performed at a base station. The apparatus receives, from a UE, N UE capabilities for N groups of TBS, N being an integer number greater than  1, where a first UE capability is received for a first TBS group and a second UE capability is received for a second TBS group. Then, the apparatus schedules the UE for downlink communication having a TBS based on a capability reported by the UE for a group including the TBS.
In an aspect of the disclosure, a method, a computer-readable medium, and an apparatus are provided for wireless communication. In some aspects, the wireless communication may be performed at a base station. The apparatus receives, from a UE, a first processing time capability for a first type of PUSCH. Then, the apparatus receives, from the UE, a second processing time capability for a second type of PUSCH. Then, the apparatus transmits an uplink grant for a PUSCH transmission. Then, the apparatus receives the PUSCH based on a processing time corresponding to the type of the PUSCH transmission.
In an aspect of the disclosure, a method, a computer-readable medium, and an apparatus are provided for wireless communication. In some aspects, the wireless communication may be performed at a UE. The apparatus reports, to a base station, N UE capabilities for N groups of TBS, N being an integer number greater than 1, wherein a first UE capability is reported for a first TBS group and a second UE capability is reported for a second TBS group. Then, the apparatus receives downlink communication having a TBS from the base station. Then, the apparatus processes the downlink communication from the base station based on a UE capability from the N UE capabilities corresponding to the TBS.
In an aspect of the disclosure, a method, a computer-readable medium, and an apparatus are provided for wireless communication. In some aspects, the wireless communication may be performed at a UE. The apparatus reports, to a base station, a first processing time capability for a first type of PUSCH. Then, the apparatus reports, to the base station, a second processing time capability for a second type of PUSCH. Then, the apparatus receives an uplink grant for a PUSCH transmission. Then, the apparatus transmits the PUSCH based on a processing time corresponding to the type of the PUSCH transmission.
In an aspect of the disclosure, a method, a computer-readable medium, and an apparatus are provided for wireless communication. In some aspects, the wireless communication may be performed at a base station. The apparatus receives, from a UE, N UE capabilities for N groups of TBS, N being an integer number greater than 1, where a first UE capability is received for a first TBS group and a second UE  capability is received for a second TBS group. Then, the apparatus schedules the UE for downlink communication having a TBS based on a capability reported by the UE for a group including the TBS.
In an aspect of the disclosure, a method, a computer-readable medium, and an apparatus are provided for wireless communication. In some aspects, the wireless communication may be performed at a base station. The apparatus receives, from a UE, a first processing time capability for a first type of PUSCH. Then, the apparatus receives, from the UE, a second processing time capability for a second type of PUSCH. Then, the apparatus transmits an uplink grant for a PUSCH transmission. Then, the apparatus receives the PUSCH based on a processing time corresponding to the type of the PUSCH transmission.
To the accomplishment of the foregoing and related ends, the one or more aspects comprise the features hereinafter fully described and particularly pointed out in the claims. The following description and the annexed drawings set forth in detail certain illustrative features of the one or more aspects. These features are indicative, however, of but a few of the various ways in which the principles of various aspects may be employed, and this description is intended to include all such aspects and their equivalents.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a diagram illustrating an example of a wireless communications system and an access network in accordance with aspects presented herein.
FIG. 2A is a diagram illustrating an example of a first frame, in accordance with various aspects of the present disclosure.
FIG. 2B is a diagram illustrating an example of DL channels within a subframe, in accordance with various aspects of the present disclosure.
FIG. 2C is a diagram illustrating an example of a second frame, in accordance with various aspects of the present disclosure.
FIG. 2D is a diagram illustrating an example of UL channels within a subframe, in accordance with various aspects of the present disclosure.
FIG. 3 is a diagram illustrating an example of a base station and user equipment (UE) in an access network.
FIG. 4 is a diagram illustrating an example of scheduling offsets in accordance with aspects presented herein.
FIG. 5 is a diagram illustrating an example of UE processing time in accordance with aspects presented herein.
FIG. 6 is a diagram illustrating an example of scheduling offsets based on UE processing time in accordance with aspects presented herein.
FIGs. 7A and 7B are diagrams illustrating examples of parallel computation in accordance with aspects presented herein.
FIG. 8 is a diagram illustrating an example of determining UE processing time capability in accordance with aspects presented herein.
FIG. 9 is a diagram illustrating an example of determining UE processing time capability in accordance with aspects presented herein.
FIG. 10 is a diagram illustrating an example of determining UE processing time capability in accordance with aspects presented herein.
FIG. 11 is a diagram illustrating an example of determining UE processing time capability in accordance with aspects presented herein.
FIG. 12 is a diagram illustrating an example of determining scheduling offsets in accordance with aspects presented herein.
FIG. 13 is a diagram illustrating an example of determining UE processing time capability in accordance with aspects presented herein.
FIG. 14 is a diagram illustrating an example of determining UE processing time capability in accordance with aspects presented herein.
FIG. 15 is a diagram illustrating an example of HARQ-process unit in accordance with aspects presented herein.
FIG. 16 is a diagram illustrating an example of DCI forbidden time in accordance with aspects presented herein.
FIG. 17 is a diagram illustrating an example of associating a BWP or a CC with HARQ-processes in accordance with aspects presented herein.
FIG. 18 is a flowchart of a method of wireless communication in accordance with aspects presented herein.
FIG. 19 is a diagram illustrating an example of a hardware implementation for an example apparatus in accordance with aspects presented herein.
FIG. 20 is a flowchart of a method of wireless communication in accordance with aspects presented herein.
FIG. 21 is a diagram illustrating an example of a hardware implementation for an example apparatus in accordance with aspects presented herein.
FIG. 22 is a flowchart of a method of wireless communication in accordance with aspects presented herein.
FIG. 23 is a diagram illustrating an example of a hardware implementation for an example apparatus in accordance with aspects presented herein.
FIG. 24 is a flowchart of a method of wireless communication in accordance with aspects presented herein.
FIG. 25 is a diagram illustrating an example of a hardware implementation for an example apparatus in accordance with aspects presented herein.
FIG. 26 is a flowchart of a method of wireless communication in accordance with aspects presented herein.
FIG. 27 is a diagram illustrating an example of a hardware implementation for an example apparatus in accordance with aspects presented herein.
FIG. 28 is a flowchart of a method of wireless communication in accordance with aspects presented herein.
FIG. 29 is a diagram illustrating an example of a hardware implementation for an example apparatus in accordance with aspects presented herein.
FIG. 30 is a flowchart of a method of wireless communication in accordance with aspects presented herein.
FIG. 31 is a diagram illustrating an example of a hardware implementation for an example apparatus in accordance with aspects presented herein.
FIG. 32 is a flowchart of a method of wireless communication in accordance with aspects presented herein.
FIG. 33 is a diagram illustrating an example of a hardware implementation for an example apparatus in accordance with aspects presented herein.
FIG. 34 is a flowchart of a method of wireless communication in accordance with aspects presented herein.
FIG. 35 is a diagram illustrating an example of a hardware implementation for an example apparatus in accordance with aspects presented herein.
FIG. 36 is a flowchart of a method of wireless communication in accordance with aspects presented herein.
FIG. 37 is a diagram illustrating an example of a hardware implementation for an example apparatus in accordance with aspects presented herein.
FIG. 38 is a flowchart of a method of wireless communication in accordance with aspects presented herein.
FIG. 39 is a diagram illustrating an example of a hardware implementation for an example apparatus in accordance with aspects presented herein.
FIG. 40 is a flowchart of a method of wireless communication in accordance with aspects presented herein.
FIG. 41 is a diagram illustrating an example of a hardware implementation for an example apparatus in accordance with aspects presented herein.
DETAILED DESCRIPTION
The detailed description set forth below in connection with the appended drawings is intended as a description of various configurations and is not intended to represent the only configurations in which the concepts described herein may be practiced. The detailed description includes specific details for the purpose of providing a thorough understanding of various concepts. However, it will be apparent to those skilled in the art that these concepts may be practiced without these specific details. In some instances, well known structures and components are shown in block diagram form in order to avoid obscuring such concepts.
Several aspects of telecommunication systems will now be presented with reference to various apparatus and methods. These apparatus and methods will be described in the following detailed description and illustrated in the accompanying drawings by various blocks, components, circuits, processes, algorithms, etc. (collectively referred to as “elements” ) . These elements may be implemented using electronic hardware, computer software, or any combination thereof. Whether such elements are implemented as hardware or software depends upon the particular application and design constraints imposed on the overall system.
By way of example, an element, or any portion of an element, or any combination of elements may be implemented as a “processing system” that includes one or more processors. Examples of processors include microprocessors, microcontrollers, graphics processing units (GPUs) , central processing units (CPUs) , application processors, digital signal processors (DSPs) , reduced instruction set computing (RISC) processors, systems on a chip (SoC) , baseband processors, field programmable gate arrays (FPGAs) , programmable logic devices (PLDs) , state  machines, gated logic, discrete hardware circuits, and other suitable hardware configured to perform the various functionality described throughout this disclosure. One or more processors in the processing system may execute software. Software shall be construed broadly to mean instructions, instruction sets, code, code segments, program code, programs, subprograms, software components, applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, procedures, functions, etc., whether referred to as software, firmware, middleware, microcode, hardware description language, or otherwise.
Accordingly, in one or more example embodiments, the functions described may be implemented in hardware, software, or any combination thereof. If implemented in software, the functions may be stored on or encoded as one or more instructions or code on a computer-readable medium. Computer-readable media includes computer storage media. Storage media may be any available media that can be accessed by a computer. By way of example, and not limitation, such computer-readable media can comprise a random-access memory (RAM) , a read-only memory (ROM) , an electrically erasable programmable ROM (EEPROM) , optical disk storage, magnetic disk storage, other magnetic storage devices, combinations of the types of computer-readable media, or any other medium that can be used to store computer executable code in the form of instructions or data structures that can be accessed by a computer.
While aspects and implementations are described in this application by illustration to some examples, those skilled in the art will understand that additional implementations and use cases may come about in many different arrangements and scenarios. Innovations described herein may be implemented across many differing platform types, devices, systems, shapes, sizes, and packaging arrangements. For example, implementations and/or uses may come about via integrated chip implementations and other non-module-component based devices (e.g., end-user devices, vehicles, communication devices, computing devices, industrial equipment, retail/purchasing devices, medical devices, artificial intelligence (AI) -enabled devices, etc. ) . While some examples may or may not be specifically directed to use cases or applications, a wide assortment of applicability of described innovations may occur. Implementations may range a spectrum from chip-level or modular components to non-modular, non-chip-level implementations and further to aggregate, distributed, or original equipment manufacturer (OEM) devices or systems incorporating one or more aspects of the described innovations. In some practical  settings, devices incorporating described aspects and features may also include additional components and features for implementation and practice of claimed and described aspect. For example, transmission and reception of wireless signals necessarily includes a number of components for analog and digital purposes (e.g., hardware components including antenna, RF-chains, power amplifiers, modulators, buffer, processor (s) , interleaver, adders/summers, etc. ) . It is intended that innovations described herein may be practiced in a wide variety of devices, chip-level components, systems, distributed arrangements, aggregated or disaggregated components, end-user devices, etc. of varying sizes, shapes, and constitution.
FIG. 1 is a diagram illustrating an example of a wireless communications system and an access network 100. The wireless communications system (also referred to as a wireless wide area network (WWAN) ) includes base stations 102, UEs 104, an Evolved Packet Core (EPC) 160, and another core network 190 (e.g., a 5G Core (5GC) ) . The base stations 102 may include macrocells (high power cellular base station) and/or small cells (low power cellular base station) . The macrocells include base stations. The small cells include femtocells, picocells, and microcells.
In certain aspects, the UE 104 may include a UE capability reporting component 198 configured with a variety of capability information. As one example, the UE capability reporting component 198 can be configured to report one or more UE capabilities to a base station (e.g., 102/180) , where each capability may include a set of one or more processing time parameters for a group of HARQ processes. Additionally, and/or alternatively, the UE capability reporting component 198 may be configured to process the downlink communication from the base station based on a UE capability corresponding to the number of HARQ processes.
The UE capability reporting component 198 may alternatively or additional report additional types of capability information. As one example, in certain aspects, the UE capability reporting component 198 may be configured with a variety of capability information. As one example, the UE capability reporting component 198 can be configured to report a reduced capability for the UE (e.g., the UE indicates to the base station that it is reduced capability UE, such as a reduced capability NR device) . Additionally, and/or alternatively, the UE capability reporting component 198 may be configured to receive a scheduling timeline with an adjustment based on at least one of the reduced capability for the UE or a total number of active HARQ processes exceeding a HARQ processes threshold.
Communication devices may also include scheduling features. In certain aspects, the base station 102/180 may include a scheduling component 199 configured to scheduling one or more delays for the UE 104 to process at least one of the PDSCH, the PUSCH, the HARQ process, or the retransmission of PDSCH, etc. The scheduling component 199 may schedule the one or more delays based on one or more UE capability, number of HARQ processes associated with or configured for the UE, whether the data transmission is associated with a BWP or CC, etc.
In certain aspects, the UE capability reporting component 198 may be configured to report one or more UE capabilities to a base station (e.g., 102/180) , where each capability may include a set of one or more processing time parameters for a group of HARQ processes. Then, the UE capability reporting component 198 may be configured to process the downlink communication from the base station based on a UE capability corresponding to the number of HARQ processes.
In certain aspects, the UE capability reporting component 198 may be configured with a variety of capability information. As one example, the UE capability reporting component 198 can be configured to report, to a base station, N UE capabilities for N groups of TBS (e.g., where N is an integer number greater than 1) . In some situations, UEs may communicate multiple capability reports. For example, this can include a first UE capability reported for a first TBS group and a second UE capability reported for a second TBS group. Additionally, and/or alternatively, the UE capability reporting component 198 may be configured to receive downlink communication having a TBS from the base station and process the downlink communication from the base station based on a UE capability from the N UE capabilities corresponding to the TBS.
The UE capability reporting component 198 may alternatively or additional report additional types of capability information. As one example, in certain aspects, the UE capability reporting component 198 may be configured to report, to a base station, a first processing time capability for a first type of PUSCH and a second processing time capability for a second type of PUSCH. A UE capability reporting component 198 may additionally and/or alternatively be configured to receive an uplink grant for a PUSCH transmission and transmit the PUSCH based on a processing time corresponding to the type of the PUSCH transmission.
In certain aspects, the UE capability reporting component 198 may be configured to generate and/or transmit reports of a varying nature to other communication devices.  In some arrangements, the UE capability reporting component 198 may be configured to report one or more UE capabilities to a base station (e.g., 102/180) . According to some deployment options, each capability may include a set of one or more processing time parameters for a group of HARQ processes. Additionally, and/or alternatively, the UE capability reporting component 198 may be configured to process the downlink communication from the base station based on a UE capability corresponding to the number of HARQ processes.
In certain aspects, the UE capability reporting component 198 may be configured with a variety of capability information. As one example, the UE capability reporting component 198 can be configured to report, to a base station, a UE capability based on a HARQ process unit (e.g., the UE may indicate to the base station the number of available or maximum HARQ process unit (s) or available computational resource for processing the HARQ at the UE, etc. ) . Additionally, and/or alternatively, the UE capability reporting component 198 may be configured to receive downlink communication from the base station and process the downlink communication from the base station and providing HARQ feedback based on the reported UE capability (e.g., based on the number of available HARQ process unit (s) or computational resources for processing the HARQ at the UE) .
The UE capability reporting component 198 may alternatively or additional report additional types of capability information. As one example, in certain aspects, the UE capability reporting component 198 may be configured to report, to a base station, a duration of time following reception of one or more grants when the UE does not expect to receive an additional grant. Additionally, and/or alternatively, the UE capability reporting component 198 is configured to receive the one or more grants from the base station and an additional grant from the base station following the one or more grants by at least the duration of time.
The base stations 102 configured for 4G LTE (collectively referred to as Evolved Universal Mobile Telecommunications System (UMTS) Terrestrial Radio Access Network (E-UTRAN) ) may interface with the EPC 160 through first backhaul links 132 (e.g., S1 interface) . The base stations 102 configured for 5G NR (collectively referred to as Next Generation RAN (NG-RAN) ) may interface with core network 190 through second backhaul links 184. In addition to other functions, the base stations 102 may perform one or more of the following functions: transfer of user data, radio channel ciphering and deciphering, integrity protection, header  compression, mobility control functions (e.g., handover, dual connectivity) , inter-cell interference coordination, connection setup and release, load balancing, distribution for non-access stratum (NAS) messages, NAS node selection, synchronization, radio access network (RAN) sharing, multimedia broadcast multicast service (MBMS) , subscriber and equipment trace, RAN information management (RIM) , paging, positioning, and delivery of warning messages. The base stations 102 may communicate directly or indirectly (e.g., through the EPC 160 or core network 190) with each other over third backhaul links 134 (e.g., X2 interface) . The first backhaul links 132, the second backhaul links 184, and the third backhaul links 134 may be wired or wireless.
The base stations 102 may wirelessly communicate with the UEs 104. Each of the base stations 102 may provide communication coverage for a respective geographic coverage area 110. There may be overlapping geographic coverage areas 110. For example, the small cell 102' may have a coverage area 110' that overlaps the coverage area 110 of one or more macro base stations 102. A network that includes both small cell and macrocells may be known as a heterogeneous network. A heterogeneous network may also include Home Evolved Node Bs (eNBs) (HeNBs) , which may provide service to a restricted group known as a closed subscriber group (CSG) . The communication links 120 between the base stations 102 and the UEs 104 may include uplink (UL) (also referred to as reverse link) transmissions from a UE 104 to a base station 102 and/or downlink (DL) (also referred to as forward link) transmissions from a base station 102 to a UE 104. The communication links 120 may use multiple-input and multiple-output (MIMO) antenna technology, including spatial multiplexing, beamforming, and/or transmit diversity. The communication links may be through one or more carriers. The base stations 102 /UEs 104 may use spectrum up to YMHz (e.g., 5, 10, 15, 20, 100, 400, etc. MHz) bandwidth per carrier allocated in a carrier aggregation of up to a total of Yx MHz (x component carriers) used for transmission in each direction. The carriers may or may not be adjacent to each other. Allocation of carriers may be asymmetric with respect to DL and UL (e.g., more or fewer carriers may be allocated for DL than for UL) . The component carriers may include a primary component carrier and one or more secondary component carriers. A primary component carrier may be referred to as a primary cell (PCell) and a secondary component carrier may be referred to as a secondary cell (SCell) .
Certain UEs 104 may communicate with each other using device-to-device (D2D) communication link 158. The D2D communication link 158 may use the DL/UL WWAN spectrum. The D2D communication link 158 may use one or more sidelink channels, such as a physical sidelink broadcast channel (PSBCH) , a physical sidelink discovery channel (PSDCH) , a physical sidelink shared channel (PSSCH) , and a physical sidelink control channel (PSCCH) . D2D communication may be through a variety of wireless D2D communications systems, such as for example, WiMedia, Bluetooth, ZigBee, Wi-Fi based on the Institute of Electrical and Electronics Engineers (IEEE) 802.11 standard, LTE, or NR.
The wireless communications system may further include a Wi-Fi access point (AP) 150 in communication with Wi-Fi stations (STAs) 152 via communication links 154, e.g., in a 5 GHz unlicensed frequency spectrum or the like. When communicating in an unlicensed frequency spectrum, the STAs 152 /AP 150 may perform a clear channel assessment (CCA) prior to communicating in order to determine whether the channel is available.
The small cell 102' may operate in a licensed and/or an unlicensed frequency spectrum. When operating in an unlicensed frequency spectrum, the small cell 102' may employ NR and use the same unlicensed frequency spectrum (e.g., 5 GHz, or the like) as used by the Wi-Fi AP 150. The small cell 102', employing NR in an unlicensed frequency spectrum, may boost coverage to and/or increase capacity of the access network.
The electromagnetic spectrum is often subdivided, based on frequency/wavelength, into various classes, bands, channels, etc. In 5G NR, two initial operating bands have been identified as frequency range designations FR1 (410 MHz -7.125 GHz) and FR2 (24.25 GHz -52.6 GHz) . Although a portion of FR1 is greater than 6 GHz, FR1 is often referred to (interchangeably) as a “sub-6 GHz” band in various documents and articles. A similar nomenclature issue sometimes occurs with regard to FR2, which is often referred to (interchangeably) as a “millimeter wave” band in documents and articles, despite being different from the extremely high frequency (EHF) band (30 GHz -300 GHz) which is identified by the International Telecommunications Union (ITU) as a “millimeter wave” band.
The frequencies between FR1 and FR2 are often referred to as mid-band frequencies. Recent 5G NR studies have identified an operating band for these mid-band frequencies as frequency range designation FR3 (7.125 GHz -24.25 GHz) .  Frequency bands falling within FR3 may inherit FR1 characteristics and/or FR2 characteristics, and thus may effectively extend features of FR1 and/or FR2 into mid-band frequencies. In addition, higher frequency bands are currently being explored to extend 5G NR operation beyond 52.6 GHz. For example, three higher operating bands have been identified as frequency range designations FR4a or FR4-1 (52.6 GHz -71 GHz) , FR4 (52.6 GHz-114.25 GHz) , and FR5 (114.25 GHz-300 GHz) . Each of these higher frequency bands falls within the EHF band.
With the above aspects in mind, unless specifically stated otherwise, it should be understood that the term “sub-6 GHz” or the like ifused herein may broadly represent frequencies that may be less than 6 GHz, may be within FR1, or may include mid-band frequencies. Further, unless specifically stated otherwise, it should be understood that the term “millimeter wave” or the like if used herein may broadly represent frequencies that may include mid-band frequencies, may be within FR2, FR4, FR4-a or FR4-1, and/or FR5, or may be within the EHF band.
base station 102, whether a small cell 102' or a large cell (e.g., macro base station) , may include and/or be referred to as an eNB, gNodeB (gNB) , or another type of base station. Some base stations, such as gNB 180 may operate in a traditional sub 6 GHz spectrum, in millimeter wave frequencies, and/or near millimeter wave frequencies in communication with the UE 104. When the gNB 180 operates in millimeter wave or near millimeter wave frequencies, the gNB 180 may be referred to as a millimeter wave base station. The millimeter wave base station 180 may utilize beamforming 182 with the UE 104 to compensate for the path loss and short range. The base station 180 and the UE 104 may each include a plurality of antennas, such as antenna elements, antenna panels, and/or antenna arrays to facilitate the beamforming.
The base station 180 may transmit a beamformed signal to the UE 104 in one or more transmit directions 182'. The UE 104 may receive the beamformed signal from the base station 180 in one or more receive directions 182". The UE 104 may also transmit a beamformed signal to the base station 180 in one or more transmit directions. The base station 180 may receive the beamformed signal from the UE 104 in one or more receive directions. The base station 180 /UE 104 may perform beam training to determine the best receive and transmit directions for each of the base station 180 /UE 104. The transmit and receive directions for the base station 180 may or may not be the same. The transmit and receive directions for the UE 104 may or may not be the same.
The EPC 160 may include a Mobility Management Entity (MME) 162, other MMEs 164, a Serving Gateway 166, a Multimedia Broadcast Multicast Service (MBMS) Gateway 168, a Broadcast Multicast Service Center (BM-SC) 170, and a Packet Data Network (PDN) Gateway 172. The MME 162 may be in communication with a Home Subscriber Server (HSS) 174. The MME 162 is the control node that processes the signaling between the UEs 104 and the EPC 160. Generally, the MME 162 provides bearer and connection management. All user Internet protocol (IP) packets are transferred through the Serving Gateway 166, which itself is connected to the PDN Gateway 172. The PDN Gateway 172 provides UE IP address allocation as well as other functions. The PDN Gateway 172 and the BM-SC 170 are connected to the IP Services 176. The IP Services 176 may include the Internet, an intranet, an IP Multimedia Subsystem (IMS) , a PS Streaming Service, and/or other IP services. The BM-SC 170 may provide functions for MBMS user service provisioning and delivery. The BM-SC 170 may serve as an entry point for content provider MBMS transmission, may be used to authorize and initiate MBMS Bearer Services within a public land mobile network (PLMN) , and may be used to schedule MBMS transmissions. The MBMS Gateway 168 may be used to distribute MBMS traffic to the base stations 102 belonging to a Multicast Broadcast Single Frequency Network (MBSFN) area broadcasting a particular service, and may be responsible for session management (start/stop) and for collecting eMBMS related charging information.
The core network 190 may include an Access and Mobility Management Function (AMF) 192, other AMFs 193, a Session Management Function (SMF) 194, and a User Plane Function (UPF) 195. The AMF 192 may be in communication with a Unified Data Management (UDM) 196. The AMF 192 is the control node that processes the signaling between the UEs 104 and the core network 190. Generally, the AMF 192 provides QoS flow and session management. All user Internet protocol (IP) packets are transferred through the UPF 195. The UPF 195 provides UE IP address allocation as well as other functions. The UPF 195 is connected to the IP Services 197. The IP Services 197 may include the Internet, an intranet, an IP Multimedia Subsystem (IMS) , a Packet Switch (PS) Streaming (PSS) Service, and/or other IP services.
The base station may include and/or be referred to as a gNB, Node B, eNB, an access point, a base transceiver station, a radio base station, a radio transceiver, a transceiver function, a basic service set (BSS) , an extended service set (ESS) , a transmit reception point (TRP) , or some other suitable terminology. The base station 102 provides an  access point to the EPC 160 or core network 190 for a UE 104. Examples of UEs 104 include a cellular phone, a smart phone, a session initiation protocol (SIP) phone, a laptop, a personal digital assistant (PDA) , a satellite radio, a global positioning system, a multimedia device, a video device, a digital audio player (e.g., MP3 player) , a camera, a game console, a tablet, a smart device, a wearable device, a vehicle, an electric meter, a gas pump, a large or small kitchen appliance, a healthcare device, an implant, a sensor/actuator, a display, or any other similar functioning device. Some of the UEs 104 may be referred to as IoT devices (e.g., parking meter, gas pump, toaster, vehicles, heart monitor, etc. ) . The UE 104 may also be referred to as a station, a mobile station, a subscriber station, a mobile unit, a subscriber unit, a wireless unit, a remote unit, a mobile device, a wireless device, a wireless communications device, a remote device, a mobile subscriber station, an access terminal, a mobile terminal, a wireless terminal, a remote terminal, a handset, a user agent, a mobile client, a client, or some other suitable terminology. In some scenarios, the term UE may also apply to one or more companion devices such as in a device constellation arrangement. One or more of these devices may collectively access the network and/or individually access the network.
FIG. 2A is a diagram 200 illustrating an example of a first subframe within a 5G NR frame structure. FIG. 2B is a diagram 230 illustrating an example of DL channels within a 5G NR subframe. FIG. 2C is a diagram 250 illustrating an example of a second subframe within a 5G NR frame structure. FIG. 2D is a diagram 280 illustrating an example of UL channels within a 5G NR subframe. The 5G NR frame structure may be frequency division duplexed (FDD) in which for a particular set of subcarriers (carrier system bandwidth) , subframes within the set of subcarriers are dedicated for either DL or UL, or may be time division duplexed (TDD) in which for a particular set of subcarriers (carrier system bandwidth) , subframes within the set of subcarriers are dedicated for both DL and UL. In the examples provided by FIGs. 2A, 2C, the 5G NR frame structure is assumed to be TDD, with subframe 4 being configured with slot format 28 (with mostly DL) , where D is DL, U is UL, and F is flexible for use between DL/UL, and subframe 3 being configured with slot format 1 (with all UL) . While  subframes  3, 4 are shown with slot formats 1, 28, respectively, any particular subframe may be configured with any of the various available slot formats 0-61. Slot formats 0, 1 are all DL, UL, respectively. Other slot formats 2-61 include a mix of DL, UL, and flexible symbols. UEs are configured with the slot  format (dynamically through DL control information (DCI) , or semi-statically/statically through radio resource control (RRC) signaling) through a received slot format indicator (SFI) . Note that the description infra applies also to a 5G NR frame structure that is TDD.
FIGs. 2A-2D illustrate a frame structure, and the aspects of the present disclosure may be applicable to other wireless communication technologies, which may have a different frame structure and/or different channels. A frame (10 ms) may be divided into 10 equally sized subframes (1 ms) . Each subframe may include one or more time slots. Subframes may also include mini-slots, which may include 7, 4, or 2 symbols. Each slot may include 14 or 12 symbols, depending on whether the cyclic prefix (CP) is normal or extended. For normal CP, each slot may include 14 symbols, and for extended CP, each slot may include 12 symbols. The symbols on DL may be CP orthogonal frequency division multiplexing (OFDM) (CP-OFDM) symbols. The symbols on UL may be CP-OFDM symbols (for high throughput scenarios) or discrete Fourier transform (DFT) spread OFDM (DFT-s-OFDM) symbols (also referred to as single carrier frequency-division multiple access (SC-FDMA) symbols) (for power limited scenarios; limited to a single stream transmission) . The number of slots within a subframe is based on the CP and the numerology. The numerology defines the subcarrier spacing (SCS) and, effectively, the symbol length/duration, which is equal to 1/SCS.
Figure PCTCN2021112050-appb-000001
For normal CP (14 symbols/slot) , different numerologies μ 0 to 4 allow for 1, 2, 4, 8, and 16 slots, respectively, per subframe. For extended CP, the numerology 2 allows for 4 slots per subframe. Accordingly, for normal CP and numerology μ, there are 14 symbols/slot and 2 μ slots/subframe. The subcarrier spacing may be equal to 2 μ *15 kHz, where μ is the numerology 0 to 4. As such, the numerology μ=0 has a  subcarrier spacing of 15 kHz and the numerology μ=4 has a subcarrier spacing of 240 kHz. The symbol length/duration is inversely related to the subcarrier spacing. FIGs. 2A-2D provide an example of normal CP with 14 symbols per slot and numerology μ=2 with 4 slots per subframe. The slot duration is 0.25 ms, the subcarrier spacing is 60 kHz, and the symbol duration is approximately 16.67 μs. Within a set of frames, there may be one or more different bandwidth parts (BWPs) (see FIG. 2B) that are frequency division multiplexed. Each BWP may have a particular numerology and CP (normal or extended) .
A resource grid may be used to represent the frame structure. Each time slot includes a resource block (RB) (also referred to as physical RBs (PRBs) ) that extends 12 consecutive subcarriers. The resource grid is divided into multiple resource elements (REs) . The number of bits carried by each RE depends on the modulation scheme.
As illustrated in FIG. 2A, some of the REs carry reference (pilot) signals (RS) for the UE. The RS may include demodulation RS (DM-RS) (indicated as R for one particular configuration, but other DM-RS configurations are possible) and channel state information reference signals (CSI-RS) for channel estimation at the UE. The RS may also include beam measurement RS (BRS) , beam refinement RS (BRRS) , and phase tracking RS (PT-RS) .
FIG. 2B illustrates an example of various DL channels within a subframe of a frame. The physical downlink control channel (PDCCH) carries DCI within one or more control channel elements (CCEs) (e.g., 1, 2, 4, 8, or 16 CCEs) , each CCE including six RE groups (REGs) , each REG including 12 consecutive REs in an OFDM symbol of an RB. A PDCCH within one BWP may be referred to as a control resource set (CORESET) . A UE is configured to monitor PDCCH candidates in a PDCCH search space (e.g., common search space, UE-specific search space) during PDCCH monitoring occasions on the CORESET, where the PDCCH candidates have different DCI formats and different aggregation levels. Additional BWPs may be located at greater and/or lower frequencies across the channel bandwidth. A primary synchronization signal (PSS) may be within symbol 2 of particular subframes of a frame. The PSS is used by a UE 104 to determine subframe/symbol timing and a physical layer identity. A secondary synchronization signal (SSS) may be within symbol 4 of particular subframes of a frame. The SSS is used by a UE to determine a physical layer cell identity group number and radio frame timing. Based on the physical layer identity and the physical layer cell identity group number, the UE can  determine a physical cell identifier (PCI) . Based on the PCI, the UE can determine the locations of the DM-RS. The physical broadcast channel (PBCH) , which carries a master information block (MIB) , may be logically grouped with the PSS and SSS to form a synchronization signal (SS) /PBCH block (also referred to as SS block (SSB) ) . The MIB provides a number of RBs in the system bandwidth and a system frame number (SFN) . The physical downlink shared channel (PDSCH) carries user data, broadcast system information not transmitted through the PBCH such as system information blocks (SIBs) , and paging messages.
As illustrated in FIG. 2C, some of the REs carry DM-RS (indicated as R for one particular configuration, but other DM-RS configurations are possible) for channel estimation at the base station. The UE may transmit DM-RS for the physical uplink control channel (PUCCH) and DM-RS for the physical uplink shared channel (PUSCH) . The PUSCH DM-RS may be transmitted in the first one or two symbols of the PUSCH. The PUCCH DM-RS may be transmitted in different configurations depending on whether short or long PUCCHs are transmitted and depending on the particular PUCCH format used. The UE may transmit sounding reference signals (SRS) . The SRS may be transmitted in the last symbol of a subframe. The SRS may have a comb structure, and a UE may transmit SRS on one of the combs. The SRS may be used by a base station for channel quality estimation to enable frequency-dependent scheduling on the UL.
FIG. 2D illustrates an example of various UL channels within a subframe of a frame. The PUCCH may be located as indicated in one configuration. The PUCCH carries uplink control information (UCI) , such as scheduling requests, a channel quality indicator (CQI) , a precoding matrix indicator (PMI) , a rank indicator (RI) , and hybrid automatic repeat request (HARQ) acknowledgment (ACK) (HARQ-ACK) feedback (i.e., one or more HARQ ACK bits indicating one or more ACK and/or negative ACK (NACK) ) . The PUSCH carries data, and may additionally be used to carry a buffer status report (BSR) , a power headroom report (PHR) , and/or UCI.
FIG. 3 is a block diagram of a base station 310 in communication with a UE 350 in an access network. In the DL, IP packets from the EPC 160 may be provided to a controller/processor 375. The controller/processor 375 implements layer 3 and layer 2 functionality. Layer 3 includes a radio resource control (RRC) layer, and layer 2 includes a service data adaptation protocol (SDAP) layer, a packet data convergence protocol (PDCP) layer, a radio link control (RLC) layer, and a medium access control  (MAC) layer. The controller/processor 375 provides RRC layer functionality associated with broadcasting of system information (e.g., MIB, SIBs) , RRC connection control (e.g., RRC connection paging, RRC connection establishment, RRC connection modification, and RRC connection release) , inter radio access technology (RAT) mobility, and measurement configuration for UE measurement reporting; PDCP layer functionality associated with header compression /decompression, security (ciphering, deciphering, integrity protection, integrity verification) , and handover support functions; RLC layer functionality associated with the transfer of upper layer packet data units (PDUs) , error correction through ARQ, concatenation, segmentation, and reassembly of RLC service data units (SDUs) , re-segmentation of RLC data PDUs, and reordering of RLC data PDUs; and MAC layer functionality associated with mapping between logical channels and transport channels, multiplexing of MAC SDUs onto transport blocks (TBs) , demultiplexing of MAC SDUs from TBs, scheduling information reporting, error correction through HARQ, priority handling, and logical channel prioritization.
The transmit (TX) processor 316 and the receive (RX) processor 370 implement layer 1 functionality associated with various signal processing functions. Layer 1, which includes a physical (PHY) layer, may include error detection on the transport channels, forward error correction (FEC) coding/decoding of the transport channels, interleaving, rate matching, mapping onto physical channels, modulation/demodulation of physical channels, and MIMO antenna processing. The TX processor 316 handles mapping to signal constellations based on various modulation schemes (e.g., binary phase-shift keying (BPSK) , quadrature phase-shift keying (QPSK) , M-phase-shift keying (M-PSK) , M-quadrature amplitude modulation (M-QAM) ) . The coded and modulated symbols may then be split into parallel streams. Each stream may then be mapped to an OFDM subcarrier, multiplexed with a reference signal (e.g., pilot) in the time and/or frequency domain, and then combined together using an Inverse Fast Fourier Transform (IFFT) to produce a physical channel carrying a time domain OFDM symbol stream. The OFDM stream is spatially precoded to produce multiple spatial streams. Channel estimates from a channel estimator 374 may be used to determine the coding and modulation scheme, as well as for spatial processing. The channel estimate may be derived from a reference signal and/or channel condition feedback transmitted by the UE 350. Each spatial stream may then be provided to a different antenna 320 via a separate transmitter 318 TX.  Each transmitter 318 TX may modulate a radio frequency (RF) carrier with a respective spatial stream for transmission.
At the UE 350, each receiver 354 RX receives a signal through its respective antenna 352. Each receiver 354 RX recovers information modulated onto an RF carrier and provides the information to the receive (RX) processor 356. The TX processor 368 and the RX processor 356 implement layer 1 functionality associated with various signal processing functions. The RX processor 356 may perform spatial processing on the information to recover any spatial streams destined for the UE 350. If multiple spatial streams are destined for the UE 350, they may be combined by the RX processor 356 into a single OFDM symbol stream. The RX processor 356 then converts the OFDM symbol stream from the time-domain to the frequency domain using a Fast Fourier Transform (FFT) . The frequency domain signal comprises a separate OFDM symbol stream for each subcarrier of the OFDM signal. The symbols on each subcarrier, and the reference signal, are recovered and demodulated by determining the most likely signal constellation points transmitted by the base station 310. These soft decisions may be based on channel estimates computed by the channel estimator 358. The soft decisions are then decoded and deinterleaved to recover the data and control signals that were originally transmitted by the base station 310 on the physical channel. The data and control signals are then provided to the controller/processor 359, which implements layer 3 and layer 2 functionality.
The controller/processor 359 can be associated with a memory 360 that stores program codes and data. The memory 360 may be referred to as a computer-readable medium. In the UL, the controller/processor 359 provides demultiplexing between transport and logical channels, packet reassembly, deciphering, header decompression, and control signal processing to recover IP packets from the EPC 160. The controller/processor 359 is also responsible for error detection using an ACK and/or NACK protocol to support HARQ operations.
Similar to the functionality described in connection with the DL transmission by the base station 310, the controller/processor 359 provides RRC layer functionality associated with system information (e.g., MIB, SIBs) acquisition, RRC connections, and measurement reporting; PDCP layer functionality associated with header compression /decompression, and security (ciphering, deciphering, integrity protection, integrity verification) ; RLC layer functionality associated with the transfer of upper layer PDUs, error correction through ARQ, concatenation, segmentation, and  reassembly of RLC SDUs, re-segmentation of RLC data PDUs, and reordering of RLC data PDUs; and MAC layer functionality associated with mapping between logical channels and transport channels, multiplexing of MAC SDUs onto TBs, demultiplexing of MAC SDUs from TBs, scheduling information reporting, error correction through HARQ, priority handling, and logical channel prioritization.
Channel estimates derived by a channel estimator 358 from a reference signal or feedback transmitted by the base station 310 may be used by the TX processor 368 to select the appropriate coding and modulation schemes, and to facilitate spatial processing. The spatial streams generated by the TX processor 368 may be provided to different antenna 352 via separate transmitters 354TX. Each transmitter 354TX may modulate an RF carrier with a respective spatial stream for transmission.
The UL transmission is processed at the base station 310 in a manner similar to that described in connection with the receiver function at the UE 350. Each receiver 318RX receives a signal through its respective antenna 320. Each receiver 318RX recovers information modulated onto an RF carrier and provides the information to a RX processor 370.
The controller/processor 375 can be associated with a memory 376 that stores program codes and data. The memory 376 may be referred to as a computer-readable medium. In the UL, the controller/processor 375 provides demultiplexing between transport and logical channels, packet reassembly, deciphering, header decompression, control signal processing to recover IP packets from the UE 350. IP packets from the controller/processor 375 may be provided to the EPC 160. The controller/processor 375 is also responsible for error detection using an ACK and/or NACK protocol to support HARQ operations.
At least one of the TX processor 368, the RX processor 356, and the controller/processor 359 may be configured to perform aspects in connection with the UE capability reporting component 198 of FIG. 1.
At least one of the TX processor 316, the RX processor 370, and the controller/processor 375 may be configured to perform aspects in connection with the scheduling component 199 of FIG. 1.
In addition to regular or higher capability devices, wireless communication may support reduced capability devices. Among others, examples of higher capability devices may include premium smartphones, V2X devices, URLLC devices, eMBB devices, etc. Among other examples, reduced capability devices may include  wearables, industrial wireless sensor networks (IWSN) , surveillance cameras, low-end smartphones, etc. For example, NR communication systems may support both higher capability devices and reduced capability devices. A reduced capability device (e.g., reduced capability UE) may be referred to as an NR light device, a reduced capability NR device, a low-tier device, a lower tier device, etc. Reduced capability UEs may communicate based on various types of wireless communication (e.g., device type, machine type, dynamic operations type, reduced capability on/off indications, etc. ) . For example, smart wearables may transmit or receive communication based on low power wide area (LPWA) /mMTC, relaxed IoT devices may transmit or receive communication based on URLLC, sensors/cameras may transmit or receive communication based on eMBB, etc. For purpose of the present disclosure, the term “reduced capability” may be used to describe a UE with the reduced capability (e.g., reduced capability UE) . In some examples, the term “reduced capability” may be an indication transmitted from a UE to indicate that the UE may be operating as a reduced capability UE. For example, a UE may report a reduced capability to a base station, where the UE is indicating to the base station that it is a reduced capability UE, such as a reduced capability NR device, etc.
Reduced capability devices may include fewer, limited, and/or targeted communication abilities relative to other communication device types. By providing reduced capability devices with targeted communication abilities, such devices are provisioned to operate in a range of operational settings. In some examples, a reduced capability UE may have an uplink transmission power of at least 10 dB less than that a higher capability UE. As another example, a reduced capability UE may have reduced transmission bandwidth or reception bandwidth than other UEs. For instance, a reduced capability UE may have an operating bandwidth between 5 MHz and 20MHz for both transmission and reception, in contrast to other UEs which may have a bandwidth of up to 100 MHz bandwidth. As a further example, a reduced capability UE may have a reduced number of reception antennas in comparison to other UEs. For instance, a reduced capability UE may have only a single receive antenna and may experience a lower equivalent receive signal to noise ratio (SNR) in comparison to higher capability UEs that may have multiple antennas. Thus, a reduced capability UE may require PDCCH and/or PDSCH repetitions to compensate for the coverage loss in downlink. A reduced capability UEs may also have reduced computational complexity than other UEs. In addition, a reduced capability UE may be more delay  tolerant, such that it may have a more enhanced power saving and battery life configuration.
A base station may configure a UE with one or more time-domain resources for receiving a data from the base station (e.g., via PDSCH) or for transmitting a data to the base station (e.g., via PUSCH) , where the base station may send the configuration to the UE using a PDCCH. The base station may further schedule various types of scheduling offsets or processing timelines for the UE, such that the UE may have sufficient time to process the data, tune its beam (s) , provide feedback (e.g., HARQ ACK/NACK) , and/or receive retransmissions, etc. FIG. 4 is a diagram 400 illustrating examples of scheduling offsets for a UE. A base station may schedule an offset for a UE between the time a downlink (DL) grant 402 or an uplink (UL) grant 410 is transmitted to the UE and the time the UE receives the corresponding PDSCH 404 (e.g., the DL data) or transmits the corresponding PUSCH 412 (e.g., the UL data) , where an offset K 0 may indicate the delay (e.g., in slots) between the DL grant 402 reception and corresponding PDSCH 404 reception, and an offset K 2 may indicate the delay between the UL grant 410 reception and the corresponding PUSCH 412 transmission. The base station may further schedule an additional offset K 1 and/or offset K 3 for the UE, where the offset K 1 may indicate the delay between the PDSCH 404 reception and the corresponding HARQ feedback 406 (e.g., ACK/NACK) transmission on the UL, and the offset K 3 may indicate the delay between the HARQ feedback 406 reception in the UL and the corresponding retransmission of the PDSCH 408 on the DL. A wireless communication may support up to sixteen HARQ-processes (e.g., HARQ feedback) per carrier component (CC) . The base station may indicate the values for offsets K 0, K 1 and/or K 2 in DCI, and the minimum value for offsets K 0, K 1 and K 2 may be zero. In some examples, UEs with lower capabilities may use longer offsets as they may use a longer RF settling time for their beam weights to be set up, whereas UEs with higher capabilities may use shorter offsets.
In scheduling the offsets (e.g., K 0, K 1, K 2 and K 3) , the base station may take the UE processing time into account. For example, in determining the offset K 1, the base station may consider the UE’s processing time for the HARQ feedback (e.g., 406) after the UE receives the DL data over the PDSCH (e.g., 404) . Similarly, in determining the offset K 2, the base station may consider the UE’s processing time for the PUSCH (e.g., 412) transmission after the reception of the corresponding UL grant (e.g., 410) . The UE’s processing time may be considered in terms of symbols together  with an absolute time (e.g., in μs) , in addition to slots (e.g., K 1, K 2) . For example, as shown by diagram 500 of FIG. 5, a UE processing time N 1 may indicate the number of OFDM symbols for a UE 502 to process from the end of the PDSCH 504 reception to the earliest possible start of the corresponding HARQ feedback 506 (e.g., ACK/NACK) transmission from the UE 502’s perspective. A UE processing time N 2 may indicate the number of OFDM symbols for the UE 502 to process from the end of the PDCCH containing the UL grant 510 reception to the earliest possible start of the corresponding PUSCH 512 transmission from the UE 502’s perspective.
The baseline UE processing time capability (e.g., N 1, N 2) for slot-based scheduling may be determined based at least in part on the type of DM-RS and the subcarrier spacing (SCS) , such as illustrated by examples in Table 1 and Table 2 below. This may include or apply to carrier aggregation (CA) without cross-carrier scheduling and with single numerology for the PDCCH, the PDSCH, and the PUSCH and no UCI multiplexing.
Figure PCTCN2021112050-appb-000002
Table 1 -Example of UE Processing Time and HARQ Timing (Capability #1)
Figure PCTCN2021112050-appb-000003
Figure PCTCN2021112050-appb-000004
Table 2 -Example of UE Processing Time and HARQ Timing (Capability #2)
The base station may determine the minimum value for the offset K 1 and/or the offset K 2 based on assumptions of a respective UE’s turn-around times (e.g., processing time N 1, N 2) . For a given configuration and numerology, a UE may indicate one or more capabilities for N 1 and N 2 to the base station, such as based on corresponding entry for N 1 and N 2 from either Table 1 or Table 2. For example, as shown by a diagram 600 of FIG. 6, at 606, a UE 602 may select a processing time N 1, N 2 based on a UE capability or from a pre-defined table, such as from Table 1 or Table 2. At 608, the UE 602 may indicate the selected processing time to a base station 604. At 610, the base station 610 may determine the offsets K 1 and K 2 based on the received N 1, N 2. At 612, the base station 610 may indicate the offsets K 1 and K 2 to the UE 602, such as via DCI in a PDCCH. At 614, the UE may apply the offset K 1 in association with the HARQ feedback reporting and the offset K 2 in association with the PUSCH transmission. For example, if the UE indicates to the base station a processing time N 1 to be 24 symbols under 120 kHz SCS, the base station may assign at least one slot for the offset K 1.
The UE processing time capability reporting (e.g., at 608 of FIG. 6) requirement may force a parallel implementation (e.g., computation) for multiple HARQ-processes for the UE, where there may be up to sixteen HARQ-processes per CC. For example, as shown by diagram 700A of FIG. 7A, when multiple HARQ-processes (e.g., 702, 704) are simultaneously scheduled for the UE, the UE may prepare parallel hardware or compurgation resources to meet the (N 1, N 2) capability reported. In other words, the UE may process multiple PDSCHs and their corresponding HARQ feedback at the same time. Similarly, as shown by diagram 700B of FIG. 7B, when multiple PUSCHs (e.g., 706, 708, 710) are simultaneously scheduled for the UE for transmission, the UE may prepare multiple hardware or computation resources to meet the (N 1, N 2) capability reported, where the UE may process multiple PUSCHs for transmission at the same time. This may increase the complexity or the computational requirement for the UE. To reduce the complexity or the computational requirement for the UE,  such as for reduced capability UEs, a more relaxed capability reporting of the processing time (N 1, N 2) may be configured for the UE, where the UE may report or indicate a greater (e.g., longer) value for the (N 1, N 2) so that the UE may have more time to process the data or the HARQ feedback. However, in some examples, this may reduce or restrict the service types (e.g., with respect to delay) that may be supported by the UE. At times, a UE may support some service types requiring strict delay, but may not necessarily require high throughput (e.g., industrial IoT) . For example, it may not be necessary for the UE to support all sixteen HARQ-processes for the strict delay. However, if the UE employs a more relaxed capability reporting (e.g., longer (N 1, N 2) ) , the reporting of the low capability may likely limit the delay. The service type for the UE may include eMBB, mMTC, and URLLC, etc.
Techniques discussed herein generally relate to communication scenarios involving scheduling offsets and delays. Aspects presented herein may enable and provide flexible solutions that take into account a number of factors, such operational conditions, dynamic channel conditions, mobility aspects, etc. Aspects presented herein may improve efficiency and performance of device operations (e.g., scheduling data transmission and/or HARQ feedback for the UE) . In scenarios where a UE and/or a base station may determine a duration of offsets and/or delays, these determinations can base on various factors. These may include, but are not limited to, numbers of HARQ processes configured for a UE, whether UCI is multiplexed with a PUSCH, whether a UE is a reduced capability UE, and/or whether a TBS carrying the HARQ process (es) and the number of HARQ-process unit available, etc.
Aspects presented herein may provide approaches and techniques configured to balance between delay and complexity for reduced capability UEs. Aspects presented herein may enable reduced capability UEs to support certain types of services. In some scenarios, services may have a strict delay with varying throughput, and in some instances limited throughput. Additionally, and/or alternatively, reduced capability UEs may contain less parallel hardware or computational resources relative to non-reduced capability UEs (e.g., full capability UEs) .
In one aspect of the present disclosure, a UE may report the processing time (e.g., N 1, N 2) for a group of HARQ-processes (e.g., HARQ-process group specific processing time report) . FIG. 8 is a flow chart 800 illustrating an example of a UE reporting the capability regarding the processing time for a group of HARQ-processes in accordance with various aspects of the present disclosure. At 802, the UE may  divide the total number of HARQ-processes to be supported into N groups (e.g., G 1, G 2, G 3 ... G N) . At 804, for the n th group (e.g., n is among 1 to N) , the UE may report capabilities for the processing time including at least one or any combination of the following options: (1) a minimum delay (e.g., in slots and/or symbols) between the DL grant and the corresponding PDSCH reception (e.g., K 0) ; (2) a minimum delay between the PDSCH reception and the corresponding HARQ feedback (e.g., ACK/NACK) transmission on the UL (e.g., K 1) ; (3) a minimum delay between the UL grant reception and the PUSCH transmission (e.g., K 2) ; and (4) a minimum delay between the HARQ feedback reception in the UL and the corresponding retransmission of the PDSCH on the DL (e.g., K 3) . In one configuration, the reported capabilities (e.g., processing time) may descend through a group-index. In addition, the number of HARQ-processes may be separately counted for the DL (e.g., DL grant) , the UL (e.g., UL grant) , and the HARQ feedback, and their respectively capabilities may also be separately reported for the DL, the UL and the HARQ feedback. For example, when the total number of active HARQ-processes is less than G 1, the UE may expect the scheduled timeline to meet its reported capability for the group G 1. When the total number of active HARQ-processes is greater than G 1 but less than G 2, the UE may expect G 1 HARQ-processes to comprise a timeline to meet its reported capability for the group G 1, and the others meeting its reported capability for group G 2.
For example, as shown by diagram 900 of FIG. 9, the total number of HARQ-processes to be supported by the UE may be divided into three groups (e.g., G 1, G 2, G 3) , where each group may correspond to a reported capability for processing time that is based on one or more criteria selected from options (1) to (4) above. The reported capability for processing time for each group may be in a descending order (e.g., through a group-index) , where each consecutive or succeeding group may have a longer processing time. For example, the reported capability for processing time for Group G 1 may be shorter (e.g., tighter) than Group G 2, the report capability for processing time for Group G 2 may be shorter than Group G 3, etc. (e.g., G 1 < G 2 < G 3) . In one example, as shown at 902, Group G 1 may include or support up to 3 HARQ-processes, Group G 2 may include or support up to 5 HARQ-processes, and Group G 3 may include or support up to 8 HARQ-processes, etc. As shown at 904, if there is a total of two active HARQ-processes (e.g., 2 < G 1) , the UE may expect the scheduled timeline (e.g., by the base station) for the two HARQ-processes (e.g., HARQ #1 and  #2) to meet its reported capability for Group G 1. As shown at 906, if there is a total of four active HARQ-processes (e.g., G 1 < 5 < G 2) , the UE may expect the scheduled timeline for the HARQ-processes in Group G 1 (three HARQ-processes in total -HARQ #1 to #3) to meet its reported capability (e.g., processing time) for Group G 1, and the UE may expect the scheduled timeline for the HARQ-processes in Group 2 (1 HARQ-process in total -HARQ #4) to meet its reported capability for Group G 2. As shown at 908, if there is a total of nine active HARQ-processes (e.g., G 1 + G 2 < 9 < G 3) , the UE may expect the scheduled timeline for HARQ-processes in Group G 1 (3 HARQ-processes in total -HARQ #1 to #3) and for the HARQ-processes in Group G 2 (5 HARQ-processes in total -HARQ #4 to #8) to meet its reported capability for Group G 1 and Group G 2, respectively, and the UE may expect the scheduled timeline for HARQ-processes in Group G 3 (1 HARQ-process in total -HARQ #9) to meet its reported capability for Group G 3, etc. In addition, a HARQ-process may be defined as an active HARQ-process based on whether the associated HARQ Round Trip Time (RTT) timer is running. The RTT timer may specify the minimum amount of transmission time intervals (TTIs) before a DL HARQ retransmission is expected by the UE. For example, the UE may not monitor for the PDCCH while the HARQ RTT timer is running, and the UE may resume PDCCH reception after the HARQ RTT timer expires.
In some examples, the total number of active HARQ processes may be calculated separately for an uplink grant, a downlink grant, and a HARQ feedback, and the number of active HARQ processes may be determined based on one or more of: the number of HARQ processes that have a running HARQ RTT timer, the number of HARQ processes that have DL grant DCI decoded but their corresponding PDSCHs have not been received by the UE, the number of HARQ processes that have UL grant DCI decoded but their corresponding physical uplink shared channels (PUSCHs) have not been transmitted, and the number of HARQ processes in which the UE has received a PDSCH but a corresponding scheduled HARQ feedback has not been reported, etc.
In another aspect of the present disclosure, a UE may report the processing time (e.g., N 1, N 2) based on one or more levels associated with active HARQ-processes. FIG. 10 is a flowchart 1000 illustrating an example of a UE reporting capability regarding the processing time based on one or more levels associated with active HARQ-processes in accordance with various aspects of the present disclosure. At 1002, the  UE may divide the number of active HARQ-processes into N levels, where the n th level may comprises H n active HARQ-processes. At 1004, for the n th level, the UE may report capabilities for processing time, including at least one or any combination of the followings options: (1) a minimum delay (e.g., in slots and/or symbols) between the DL grant and the corresponding PDSCH reception (e.g., K 0) ; (2) a minimum delay between the PDSCH reception and the corresponding HARQ feedback (e.g., ACK/NACK) transmission on the UL (e.g., K 1) ; (3) a minimum delay between the UL grant reception and the PUSCH transmission (e.g., K 2) ; and (4) a minimum delay between the HARQ feedback reception in the UL and the corresponding retransmission of the PDSCH on the DL (e.g., K 3) . The number of HARQ-processes may be separately counted for the DL (e.g., DL grant) , the UL (e.g., UL grant) , and the HARQ feedback, and their respectively capabilities may also be separately reported for the DL, the UL and the HARQ feedback. Higher capabilities (e.g., shorter processing time) may be reported for levels with lower H n (e.g., less HARQ-processing) . For examples, if there are more HARQ-processes for the UE, the processing time may be looser (e.g., longer) . Similarly, a HARQ-process may be defined as an active HARQ-process based on whether the associated HARQ RTT timer is running, where the total number of active HARQ processes may be calculated separately for an uplink grant, a downlink grant, and a HARQ feedback. The number of active HARQ processes may also be determined based on one or more of: the number of HARQ processes that have a running HARQ RTT timer, the number of HARQ processes that have DL grant DCI decoded but their corresponding PDSCHs have not been received by the UE, the number of HARQ processes that have UL grant DCI decoded but their corresponding PUSCHs have not been transmitted, and the number of HARQ processes in which the UE has received a PDSCH but a corresponding scheduled HARQ feedback has not been reported, etc.
For example, as shown by a diagram 1100 of FIG. 11, the total number of HARQ-processes may be supported by a UE may be divided into three levels, where each level may correspond to a reported capability for processing time that is based on one or more criteria selected from options (1) to (4) above. The reported capability for processing time may be longer for more active HARQ-processes, and the reported capability for processing time may be shorter for fewer active HARQ-processes. For example, as shown at 1102, a first level (Level 1) may include up to three (3) HARQ-processes and the report capability for the processing time for Level 1 may be shorter  (e.g., tighter) than a second level (Level 2) ; Level 2 may include up to six (6) HARQ-processes and the report capability for the processing time for Level 2 may be shorter than a third level (Level 3) but longer than Level 1; and Level 3 may include up to thirteen (13) HARQ-processes and may have the longest processing time (e.g., Level 1 < Level 2 < Level 3 in terms of the processing time) . As shown at 1104, if there is a total of two active HARQ-processes (e.g., 2 < Level 1) , the UE may expect the scheduled timeline (e.g., by the base station) for all HARQ-processes to meet its reported capability for Level 1. As shown at 1106, if there is a total of five active HARQ-processes (e.g., Level 1 < 5 < Level 2) , the UE may expect the scheduled timeline for all HARQ-processes to meet its reported capability for Level 2. As shown at 1108, if there is a total of nine active HARQ-processes (e.g., Level 2 < 9 < Level 3) , the UE may expect the scheduled timeline for all HARQ-processes to meet its reported capability for Level 3, etc.
In one example, the UE may determine the HARQ-processing timeline dynamically based on the number of active HARQ-processes (e.g., by selecting appropriate level and indicating corresponding processing time) . In some instances, there may be a misalignment between the base station and the UE when some signaling (e.g., DCI signal) fails to be received by the UE and/or the base station. Thus, as an alternative, a semi-persistent scheduling (SPS) may be configured for the UE through an RRC configuration, such that the UE may be SPS configured, and the UE may expect a scheduled timeline from the base station to meet its reported capability for the n th level. For example, the base station may configure the UE to expect eight HARQ-processes for a certain duration, then the UE may expect the scheduled timeline within this duration is based on its reported capability for eight HARQ-processes (e.g., Level 3 -between 7 and 13 HARQ-processes) . This may reduce and avoid misalignment in data transmission between the UE and the base station when certain signaling is not received by the UE or the base station.
In another aspect of the present disclosure, an additional slot offset (e.g., scheduling) or an adjusted offset may be applied/configured for reduced capability UEs. In some examples, the offset may be dedicated for reduced capability UEs. For example, the UE may expect the values of K 0/K 1/K 2/K 3 to be increased with K 0_increase/K 1_increase/K 2_increase/K 3_increase slot (s) , respectively, depending on at least one or any combination of the followings: (1) the UE reports itself as a reduced capability UE; and (2) the number of active HARQ-processes exceeds a threshold value N HARQ,  where the threshold value N HARQ could be determined based on one or more of the followings: further UE capability reporting, base station configuration, and/or predefined, etc.
FIG. 12 is a diagram 1200 illustrating an example of scheduling offset for the reduced capability UE in accordance with various aspects of the present disclosure. In one example, offset values of K 0/K 1/K 2/K 3 for a non-reduced capability UEs may be configured to be 2/2/3/4 slots, respectively. At 1206, a UE 1202 may indicate a reduced capability to a base station 1204, e.g., indicating to the base station 1204 that the UE 1202 is a reduced capability UE. At 1208, the base station 1204 may determine whether to apply a longer offset based on whether the UE 1202 is a reduced capability UE and/or based on whether the number of active HARQ-processes exceeds a threshold (e.g., N HARQ) . For example, the base station 1204 may determine to schedule communication for the UE 1202 using one or more longer offset values based on the UE 1202 being a reduced capability UE. In another example, the base station 1204 may determine to schedule communication for the UE 1202 using longer offset value (s) based on the number of active HARQ processes exceeding the threshold. In another example, the base station 1204 may determine to schedule communication for the UE 1202 using longer offset value (s) based on the UE being a reduced capability UE and the number of active HARQ processes exceeding the threshold.
If the base station 1204 determines to apply longer offset, at 1210, the base station 1204 may configure dedicated offsets (e.g., longer offsets) K 0_increase/K 1_increase/K 2_increase/K 3_increase for the UE 1202. For examples, the offsets K 0_increase/K 1_increase/K 2_increase/K 3_increase may be 3/3/5/7 slots, respectively. On the other hand, if the base station 1204 determines not to apply a longer offset, at 1210, the base station 1204 may configure a regular/default offset K 0/K 1/K 2/K 3 for the UE 1202 (e.g., 2/2/3/4 slots, respectively) .
In one example, the base station 1204 may configure a regular offset for a reduced capability UE when the number of active HARQ-processes does not exceed the threshold, and the base station 1204 may also configure a dedicated offset for a non-reduced capability UE when the number of active HARQ-processes exceeds the threshold. In such an example, values for K 0_increase, K 1_increase, K 2_increase, K 3_increase may be determined based on one or more of the followings: further UE capability reporting, a base station configuration, and/or a predefined value, etc. Aspects  presented here may avoid or minimize the impact on the processing time N 1 and N 2 for regular UEs (e.g., the processing time identified in Table 1 and Table 2 may remain the same) .
In another example, a HARQ-process may be defined as an active HARQ-process based on whether the associated HARQ RTT timer is running, where the total number of active HARQ processes may be calculated separately for an uplink grant, a downlink grant, and/or a HARQ feedback. In other examples, the number of active HARQ processes may also be determined based on one or more of: the number of HARQ processes that have a running HARQ RTT timer, the number of HARQ processes that have DL grant DCI decoded but their corresponding PDSCHs have not been received by the UE, the number of HARQ processes that have UL grant DCI decoded but their corresponding PUSCHs have not been transmitted, and/or the number of HARQ processes in which the UE has received a PDSCH but a corresponding scheduled HARQ feedback has not been reported, etc.
In another aspect of the present disclosure, the processing time reported by a UE may be based on transport block size (TBS) (e.g., TBS Dependent Processing Time) . FIG. 13 is a flowchart 1300 illustrating an example of a UE reporting the capability regarding the processing time based on TBS in accordance with various aspects of the present disclosure. At 1302, the UE may divide a supported TBS into N groups, such as in an ascending TBS order (e.g., G 1, G 2, G 3 ... G N) . At, 1304, for the n th group (e.g., n is among 1 to N, N being an integer) , the UE may report capabilities for the processing time including at least one or any combination of the following options: (1) a minimum delay (e.g., in slots and/or symbols) between the DL grant and the corresponding PDSCH reception (e.g., K 0) ; (2) a minimum delay between the PDSCH reception and the corresponding HARQ feedback (e.g., ACK/NACK) transmission on the UL (e.g., K 1) ; (3) a minimum delay between the UL grant reception and the PUSCH transmission (e.g., K 2) ; and (4) a minimum delay between the HARQ feedback reception in the UL and the corresponding retransmission of the PDSCH on the DL (e.g., K 3) . For example, if one or more HARQ-processes are associated with a larger TBS, a larger (e.g., longer) processing time may be configured for these HARQ-processes, whereas if one or more HARQ-processes are associated with a smaller TBS, a looser (e.g., shorter) processing time may be configured for the these HARQ-processes, etc.
In another aspect, the PUSCH processing time for a UE may be dependent on a PUSCH type. For example, the PUSCH processing time for a UE may be configured to be based on whether UCI is multiplexed with the PUSCH. FIG. 14 is a flowchart 1400 illustrating an example of a UE reporting the capability regarding the processing time based on whether UCI is multiplexed with the PUSCH in accordance with various aspects of the present disclosure. At 1402, the UE may divide multiple PUSCHs into different types of PUSCHs and may indicate different processing capabilities for the different types of PUSCHs. As an example, the UE may divide multiple PUSCHs into a first type of PUSCH with UCI-multiplexing and a second type of PUSCH without UCI-multiplexing. At 1404, the UE may separately report minimum delay (e.g., in slots and/or symbols) between the UL grant reception and the PUSCH transmission for the two types of PUSCHs (e.g., PUSCH with or without UCI-multiplexing) . As the PUSCHs with UCI-multiplexing may take longer time to process by the UE than PUSCHs without UCI-multiplexing, the base station may schedule the UE for PUSCHs with UCI-multiplexing based on a longer (e.g., a more relaxed) processing time.
In one example, the UE may perform various measurements for a channel and report the measurements to a base station in a channel state information (CSI) report. The UE may process or calculate the CSI report using one or more CSI Processing Unit (CPU) . If the UE supports simultaneous CSI calculations (e.g., processing) , the UE may indicate to the base station the number of simultaneous CSI calculations N CPU the UE is capable of supporting. If a number of L CPUs are occupied for calculation of the CSI reports in a given OFDM symbol, the UE may have a number of (N CPU-L) unoccupied CPUs.
In another aspect of the present disclosure, the UE may calculate or indicate a HARQ-processing capability based on HARQ Processing Unit (HPU) , where the HPU may be used to indicate (e.g., implicitly) the computational resources per HARQ-process. FIG. 15 is a diagram 1500 illustrating an example of a UE indicating a HARQ-processing capability based on HPU in accordance with various aspects of the present disclosure. At 1506, a UE 1502 may report (e.g., indicate) a capability to a base station 1504 a number of supported simultaneous HARQ-processes N HPU for the UE. If a number of L HPUs are occupied for calculation of the UL-grant, the DL-grant, and/or the PDSCH-decoding in a given duration (e.g., one or more OFDM symbol (s) or slot (s) , etc. ) , the UE may have a number of (N HPU-L) unoccupied HPUs. The UE  may separately report capabilities for the UL-grant, the DL-grant, and the PDSCH-decoding, respectively. After the UE 1502 reports the capabilities (e.g., maximum number of supported simultaneous HARQ-processes N HPU or number of unoccupied HPUs (N HPU-L) ) to the base station 1504, at 1508, the base station 1504 may determine the number of unoccupied HPU for the UE 1502 (e.g., if the UE 1502 indicates the maximum number of HPU to the base station 1504) or the base station 1504 may determine whether the UE 1502 has any unoccupied HPU (s) (e.g., if the UE 1502 indicates the number of unoccupied HPU (s) to the base station 1504) , etc.
Then, at 1510, the base station 1504 may schedule the offset, DL/UL grant, and/or HARQ feedback for the UE 1502 based on the number of unoccupied HPU. For example, for the UL, the UE may not be expected to receive more UL-grant DCIs when the UE has zero unoccupied HPUs or the unoccupied HPU is below a threshold for the UL. Similarly, for the DL, the UE may not be expected to compute HARQ feedback (e.g., ACK/NACK) for the PDSCH (or receive more DL-grant DCIs) when the UE has zero unoccupied HPUs or the unoccupied HPU is below a threshold for the DL.
At 1512, the UE 1502 may receive downlink communication from the base station 1504, and then at 1514, the UE 1502 may process the downlink communication from the base station 1504 and/or providing HARQ feedback based on the reported UE capability.
In another aspect, a UE processing time may be determined based at least in part on a DCI forbidden time. The “DCI forbidden time” may refer to a time period during which a UE does not expect to receive DCI with an UL or DL grant. The DCI forbidden time may correspond to a period of time during which the base station is limited from sending, or does not send, DCI scheduling UL or DL communication for the UE. In one example, after the UE receives a DL or UL grant DCI, the UE may not expect to receive another DL or UL grant within a duration of time T (i.e., the DCI forbidden time following the prior DL or UL grant DCI) . The duration T may be determined and/or reported by the UE as a UE capability.
FIG. 16 is a communication flow 1600 illustrating an example of determining a UE processing time based on a DCI forbidden time in accordance with various aspects of the present disclosure. At 1606, a UE 1602 may indicate a DCI Forbidden Time Duration T or T combination (e.g., for multiple DCIs) to a base station 1604.
At 1608, after the UE receives a DL/UL grant DCI or N DL/UL grant DCIs, the UE may not expect to receive another DL or UL grant DCI (s) (e.g., at 1610) within the duration T or the duration T combination. For example, the base station 1604 may be configured to refrain from sending DCI with another UL or DL grant to the UE during the duration T or the duration T combination. Both the duration T combination (e.g., for group DCI) and the duration T (e.g., for single DCI) may be reported by the UE to the base station as UE capabilities. In other words, the base station 1604 may wait to transmit one or more DCI during the duration T or the duration T combination. The UE may report the UE's capability for the DCI forbidden time separately for an UL grant and a DL grant.
In another aspect of the present disclosure, the timing management (e.g., processing time) and the maximum number of HARQ-processes to be configured for the UE may be based on the BWP for the communication and/or the CC for the communication (e.g., BWP/CC Specific timing management) . For example, as shown by diagram 1700 of FIG. 17, for a first BWP or CC 1702, a maximum number of active HARQ-processes (e.g., 16) may be defined for or associated with the first BWP or CC 1702, where a longer processing time (e.g., N 1_increase or N 2_increase, etc. ) may be provided for the first BWP or CC 1702 as it is associated with a higher maximum number of active HARQ-processes. For a second BWP or CC 1704, another maximum number of active HARQ-processes (e.g., 4) may be defined for or associated with the second BWP or CC 1704, where there may be no change to the existing timing management (e.g., standard or original processing time N 1 or N 2 is used) . Thus, the UE may report to the base station one or more processing timing capabilities dependent on one or more HARQ processes for the first BWP or CC 1702 and the processing timing capability independent of the number of HARQ processes for the second BWP or CC 1704 (e.g., a standard or a default value) . The UE may then process a downlink communication based on the UE capability corresponding to the number of HARQ processes if the downlink communication is received in the first BWP/CC, and the UE may process the downlink communication using processing times that are not dependent on the number of HARQ processes if the downlink communication is received in the second BWP/CC, etc. The maximum number of HARQ processes in the first BWP/CC and in the second BWP/CC may be configured by the base station via RRC configuration.
FIG. 18 is a flowchart 1800 of a method of wireless communication. The method may be performed by a UE or a component of a UE (e.g., the  UE  104, 350, 502, 602, 1202, 1502, 1602; a processing system, which may include the memory 360 and which may be the entire UE 350 or a component of the UE 350, such as the TX processor 368, the RX processor 356, and/or the controller/processor 359) . The method may enable the UE to receive a scheduling timeline with an adjustment based on at least one of a reduced capability for the UE or a total number of active HARQ processes.
At 1802, the UE may report a reduced capability for the UE (e.g., the UE indicates to the base station that it is reduced capability UE, such as a reduced capability NR device) , such as described in connection with FIG. 12. For example, at 1206, the UE 1202 may indicate to the base station 1204 regarding being a reduced capability UE. The reporting of the reduced capability may be performed by, e.g., the capability indication component 1940 and/or the transmission component 1934 of the apparatus 1902 in FIG. 19.
At 1804, the UE may report, to the base station, a number of HARQ processes to which a first processing delay between receiving a PDSCH and a corresponding HARQ feedback and a second processing delay between reception of a PDCCH to transmission of a corresponding PUSCH apply, where the scheduling timeline may be adjusted based on the total number of active HARQ processes exceeding the number of HARQ processes to which the first processing delay and the second processing delay apply, such as described in connection with FIGs. 5 and 6. For example, the UE 502 may report to a base station the processing delay N 1 between the PDSCH 504 reception and the HARQ feedback 506 transmission, and the UE 502 may report the processing delay N 2 between the UL Grant 510 reception and the PUSCH 512 transmission. The reporting of the number of HARQ processes may be performed by, e.g., the process timeline component 1942 and/or the transmission component 1934 of the apparatus 1902 in FIG. 19. In one example, in response, the UE may receive, from the base station, a configuration of the number of HARQ processes, where the scheduling timeline may be adjusted based on the total number of active HARQ processes exceeding the number of HARQ processes to which the first processing delay and the second processing delay apply.
At 1806, the UE may receive a scheduling timeline with an adjustment based on at least one of the reduced capability for the UE or a total number of active HARQ processes exceeding a HARQ processes threshold, such as described in connection  with FIG. 12. For example, at 1206, the UE 1202 may indicate to the base station 1204 regarding being a reduced capability UE. At 1208 and 1210, the base station 1204 may determine whether to transmit a scheduling timeline (e.g., K 0/K 1/K 2/K 3) with an adjustment (e.g., K 0_increase/K 1_increase/K 2_increase/K 3_increase) based on a reduced capability for the UE or a total number of active HARQ processes. For example, the scheduling timeline with the adjustment may be determined by one or more modified or increased number of slots, such as for the forced cross-slot scheduling. The reception of the scheduling timeline may be performed by, e.g., the scheduling timeline process component 1944 and/or the reception component 1930 of the apparatus 1902 in FIG. 19.
In one example, the scheduling timeline with an adjustment may include one or more of:an increased minimum delay between a DL grant and a corresponding PDSCH reception, an increased minimum delay between the PDSCH reception and a corresponding UL HARQ feedback transmission, an increased minimum delay between an UL grant reception and a corresponding PUSCH transmission, or an increased delay between the UL HARQ feedback transmission and a corresponding retransmission of a PDSCH.
In another example, the value of the adjustment (e.g., K 0_increase/K 1_increase/K 2_increase/K 3_increase) may be reported by the UE, configured by the base station and/or predefined, such as described in connection with FIG. 12. In one example, the UE may report the timing adjustment with one or more increased processing time parameters to the base station, such that the scheduling timeline may be adjusted based on the timing adjustment reported by the UE. In other example, the UE may receive, from the base station, a timing adjustment configuration with one or more increased processing time parameters, such that the scheduling timeline is adjusted based on the timing adjustment configuration from the base station. In another example, the scheduling timeline may be adjusted based on a defined timing adjustment comprising one or more increased processing time parameters. Similarly, the one or more increased processing time parameters may include one or more of: an increased minimum delay between a DL grant and a corresponding PDSCH reception, an increased minimum delay between the PDSCH reception and a corresponding UL HARQ feedback transmission, an increased minimum delay between an UL grant reception and a corresponding PUSCH transmission, or an increased delay between  the UL HARQ feedback transmission and a corresponding retransmission of a PDSCH, such as described in connection with FIG. 12.
In another example, for a HARQ process to be active, the HARQ process may be associated with a running HARQ RTT timer. In one configuration, the total number of active HARQ processes may be calculated separately for an uplink grant, a downlink grant, and a HARQ feedback. In such configuration, the total number of active HARQ processes may be determined based on one or more of: the number of HARQ processes that have a running HARQ RTT timer, the number of HARQ processes that have DL grant DCI decoded but their corresponding PDSCHs have not been received by the UE, the number of HARQ processes that have uplink grant DCI decoded but their corresponding PUSCHs have not been transmitted, and the number of HARQ processes in which the UE has received a PDSCH but a corresponding scheduled HARQ feedback has not been reported.
In another example, the UE may report a maximum number of HARQ processes based on a BWP or a CC, such as described in connection with FIG. 17. In such configuration, the UE may report one or more processing timing capabilities dependent on one or more HARQ processes for a first BWP or CC and a processing timing capability independent of the number of HARQ processes for a second BWP or CC. Then, the UE may process the downlink communication based on the one or more processing timing capabilities corresponding to the number of HARQ processes if the downlink communication is received in the first BWP or CC, and the UE may process the downlink communication using the processing timing capability independent of the number of HARQ processes if the downlink communication is received in the second BWP or CC. The maximum number of HARQ processes in the first BWP or CC and in the second BWP or CC may be RRC configured by the base station.
FIG. 19 is a diagram 1900 illustrating an example of a hardware implementation for an apparatus 1902. The apparatus 1902 is a UE and includes a cellular baseband processor 1904 (also referred to as a modem) coupled to a cellular RF transceiver 1922 and one or more subscriber identity modules (SIM) cards 1920, an application processor 1906 coupled to a secure digital (SD) card 1908 and a screen 1910, a Bluetooth module 1912, a wireless local area network (WLAN) module 1914, a Global Positioning System (GPS) module 1916, and a power supply 1918. The cellular baseband processor 1904 communicates through the cellular RF transceiver  1922 with the UE 104 and/or base station (BS) 102/180. The cellular baseband processor 1904 may include a computer-readable medium /memory. The computer-readable medium /memory may be non-transitory. The cellular baseband processor 1904 is responsible for general processing, including the execution of software stored on the computer-readable medium /memory. The software, when executed by the cellular baseband processor 1904, causes the cellular baseband processor 1904 to perform the various functions described supra. The computer-readable medium /memory may also be used for storing data that is manipulated by the cellular baseband processor 1904 when executing software. The cellular baseband processor 1904 further includes a reception component 1930, a communication manager 1932, and a transmission component 1934. The communication manager 1932 includes the one or more illustrated components. The components within the communication manager 1932 may be stored in the computer-readable medium /memory and/or configured as hardware within the cellular baseband processor 1904. The cellular baseband processor 1904 may be a component of the UE 350 and may include the memory 360 and/or at least one of the TX processor 368, the RX processor 356, and the controller/processor 359. In one configuration, the apparatus 1902 may be a modem chip and include just the baseband processor 1904, and in another configuration, the apparatus 1902 may be the entire UE (e.g., see 350 of FIG. 3) and include the additional modules of the apparatus 1902.
The communication manager 1932 includes a capability indication component 1940 that is configured to report, to a base station, a reduced capability for the UE, e.g., as described in connection with 1802 of FIG. 18. The communication manager 1932 further includes a process timeline component 1942 that is configured to report, to the base station, a number of HARQ processes to which a first processing delay between receiving a PDSCH and a corresponding HARQ feedback and a second processing delay between reception of a PDCCH to transmission of a corresponding PUSCH apply, where the scheduling timeline may be adjusted based on the total number of active HARQ processes exceeding the number of HARQ processes to which the first processing delay and the second processing delay apply, e.g., as described in connection with 1804 of FIG. 18. The communication manager 1932 further includes a scheduling timeline process component 1944 that is configured to receiving a scheduling timeline with an adjustment based on at least one of the reduced capability  for the UE or a total number of active HARQ processes exceeding a HARQ processes threshold, e.g., as described in connection with 1806 of FIG. 18.
The apparatus may include additional components that perform each of the blocks of the algorithm in the flowchart of FIG. 18. As such, each block in the flowchart of FIG. 18 may be performed by a component and the apparatus may include one or more of those components. The components may be one or more hardware components specifically configured to carry out the stated processes/algorithm, implemented by a processor configured to perform the stated processes/algorithm, stored within a computer-readable medium for implementation by a processor, or some combination thereof.
In one configuration, the apparatus 1902, and in particular the cellular baseband processor 1904, includes means for reporting a reduced capability for the UE (e.g., the capability indication component 1940 and/or the transmission component 1934) . The apparatus 1902 includes means for reporting, to the base station, a number of HARQ processes to which a first processing delay between receiving a PDSCH and a corresponding HARQ feedback and a second processing delay between reception of a PDCCH to transmission of a corresponding PUSCH apply, where the scheduling timeline may be adjusted based on the total number of active HARQ processes exceeding the number of HARQ processes to which the first processing delay and the second processing delay apply (e.g., the process timeline component 1942 and/or the transmission component 1934) . The apparatus 1902 includes means for receiving a scheduling timeline with an adjustment based on at least one of the reduced capability for the UE or a total number of active HARQ processes exceeding a HARQ processes threshold (e.g., the scheduling timeline process component 1944 and/or the reception component 1930) .
The means may be one or more of the components of the apparatus 1902 configured to perform the functions recited by the means. As described supra, the apparatus 1902 may include the TX Processor 368, the RX Processor 356, and the controller/processor 359. As such, in one configuration, the means may be the TX Processor 368, the RX Processor 356, and the controller/processor 359 configured to perform the functions recited by the means.
FIG. 20 is a flowchart 2000 of a method of wireless communication. The method may be performed by a base station or a component of a base station (e.g., the  base station  102, 180, 310, 604, 1204, 1504, 1604; a processing system, which may include the  memory 376 and which may be the entire base station 310 or a component of the base station 310, such as the TX processor 316 the RX processor 370, and/or the controller/processor 375) . The method may enable the base station to schedule communication based on a scheduling timeline with an adjustment based on a reduced capability for the UE or a total number of active HARQ processes. The method may enable the base station to provide flexible scheduling for reduced capability UEs.
At 2002, the base station receives an indication of reduced capability from the UE, such as described in connection with FIG. 12. For example, at 1206, the base station 1204 may receive an indication from the UE 1202 regarding being a reduced capability UE. The reception of the indication may be performed by, e.g., the capability indication process component 2140 and/or the reception component 2130 of the apparatus 2102 in FIG. 21.
In some examples, as shown at 2004, the base station may receive a report, from the UE, indicating a number of HARQ processes to which a first processing delay between receiving a PDSCH and a corresponding HARQ feedback and a second processing delay between reception of a PDCCH to transmission of a corresponding PUSCH apply, where the scheduling timeline may be adjusted based on the total number of active HARQ processes exceeding the number of HARQ processes to which the first processing delay and the second processing delay apply, such as described in connection with FIGs. 5 and 6. For example, the base station may receive a report from the UE 502 of the processing delay N 1 between the PDSCH 504 reception and the HARQ feedback 506 transmission, and a report of the processing delay N 2 between the UL Grant 510 reception and the PUSCH 512 transmission. In response, the base station may transmit a configuration of the number of HARQ processes, where the scheduling timeline may be adjusted based on the total number of active HARQ processes exceeding the number of HARQ processes to which the first processing delay and the second processing delay apply. The reception of the report indicating a number of HARQ processes may be performed by, e.g., the report process component 2142 and/or the reception component 2130 of the apparatus 2102 in FIG. 21.
At 2006, the base station may schedule the UE for communication based on a scheduling timeline with an adjustment, e.g., based on the reduced capability for the UE or a total number of active HARQ processes exceeding a HARQ processes threshold, such as described in connection with FIG. 12. For example, at 1206, the  base station may receive an indication from the UE 1202 indicating that the UE is a reduced capability UE. At 1208 and 1210, the base station 1204 may determine whether to transmit a scheduling timeline (e.g., K 0/K 1/K 2/K 3) with an adjustment (e.g., K 0_increase/K 1_increase/K 2_increase/K 3_increase) based on a reduced capability for the UE or a total number of active HARQ processes. For example, the scheduling timeline with the adjustment may be determined by one or more increased or modified number of slots, such as for the forced cross-slot scheduling. The scheduling of the communication based on the scheduling timeline with an adjustment may be performed by, e.g., the scheduling timeline adjustment component 2144 and/or the transmission component 2134 of the apparatus 2102 in FIG. 21.
In one example, the scheduling timeline with an adjustment may comprise one or more of: an increased minimum delay between a DL grant and a corresponding PDSCH reception, an increased minimum delay between the PDSCH reception and a corresponding UL HARQ feedback transmission, an increased minimum delay between an UL grant reception and a corresponding PUSCH transmission, or an increased delay between the UL HARQ feedback transmission and a corresponding retransmission of a PDSCH.
In another example, the value of the adjustment (e.g., K 0_increase/K 1_increase/K 2_increase/K 3_increase) may be received from the UE, configured by the base station and/or predefined, such as described in connection with FIG. 12. In one example, the base station may receive the timing adjustment with one or more increased processing time parameters from the UE, such that the scheduling timeline may be adjusted based on the timing adjustment reported by the UE. In other example, the base station may transmit to the UE, a timing adjustment configuration with one or more increased processing time parameters, such that the scheduling timeline is adjusted based on the timing adjustment configuration from the base station. In another example, the scheduling timeline may be adjusted based on a defined timing adjustment comprising one or more increased processing time parameters. Similarly, the one or more increased processing time parameters may include one or more of: an increased minimum delay between a DL grant and a corresponding PDSCH reception, an increased minimum delay between the PDSCH reception and a corresponding UL HARQ feedback transmission, an increased minimum delay between an UL grant reception and a corresponding PUSCH transmission, or an increased delay between the UL HARQ feedback transmission  and a corresponding retransmission of a PDSCH, such as described in connection with FIG. 12.
In another example, for a HARQ process to be active, the HARQ process may be associated with a running HARQ RTT timer. In one configuration, the total number of active HARQ processes may be calculated separately for an uplink grant, a downlink grant, and a HARQ feedback. In such configuration, the total number of active HARQ processes may be determined based on one or more of: the number of HARQ processes that have a running HARQ RTT timer, the number of HARQ processes that have DL grant DCI decoded but their corresponding PDSCHs have not been received by the UE, the number of HARQ processes that have uplink grant DCI decoded but their corresponding PUSCHs have not been transmitted, and the number of HARQ processes in which the UE has received a PDSCH but a corresponding scheduled HARQ feedback has not been reported.
In another example, the base station may receive a report of a maximum number of HARQ processes based on a BWP or a CC, such as described in connection with FIG. 17. In such an example, the base station may receive a report of one or more processing timing capabilities dependent on one or more HARQ processes for a first BWP or CC and a processing timing capability independent of the number of HARQ processes for a second BWP or CC. Then, the base station may schedule the downlink communication based on the one or more processing timing capabilities corresponding to the number of HARQ processes if the downlink communication is received in the first BWP or CC, and schedule the downlink communication using the processing timing capability independent of the number of HARQ processes if the downlink communication is received in the second BWP or CC. The maximum number of HARQ processes in the first BWP or CC and in the second BWP or CC may be RRC configured by the base station.
FIG. 21 is a diagram 2100 illustrating an example of a hardware implementation for an apparatus 2102. The apparatus 2102 is a BS and includes a baseband unit 2104. The baseband unit 2104 may communicate through a cellular RF transceiver with the UE 104. The baseband unit 2104 may include a computer-readable medium /memory. The baseband unit 2104 is responsible for general processing, including the execution of software stored on the computer-readable medium /memory. The software, when executed by the baseband unit 2104, causes the baseband unit 2104 to perform the various functions described supra. The computer-readable medium /memory may  also be used for storing data that is manipulated by the baseband unit 2104 when executing software. The baseband unit 2104 further includes a reception component 2130, a communication manager 2132, and a transmission component 2134. The communication manager 2132 includes the one or more illustrated components. The components within the communication manager 2132 may be stored in the computer-readable medium /memory and/or configured as hardware within the baseband unit 2104. The baseband unit 2104 may be a component of the BS 310 and may include the memory 376 and/or at least one of the TX processor 316, the RX processor 370, and the controller/processor 375.
The communication manager 2132 includes a capability indication process component 2140 that is configured to receive, from a UE, a reduced capability for the UE, e.g., as described in connection with 2002 of FIG. 20. The communication manager 2132 further includes a report process component 2142 that is configured to receive a report, from the UE, indicating a number of HARQ processes to which a first processing delay between receiving a PDSCH and a corresponding HARQ feedback and a second processing delay between reception of a PDCCH to transmission of a corresponding PUSCH apply, where the scheduling timeline may be adjusted based on the total number of active HARQ processes exceeding the number of HARQ processes to which the first processing delay and the second processing delay apply, e.g., as described in connection with 2004 of FIG. 20. The communication manager 2132 further includes a scheduling timeline adjustment component 2144 that is configured to schedule communication for the UE based on a scheduling timeline with an adjustment based on the reduced capability for the UE or a total number of active HARQ processes exceeding a HARQ processes threshold, e.g., as described in connection with 2006 of FIG. 20.
The apparatus may include additional components that perform each of the blocks of the algorithm in the flowchart of FIG. 20. As such, each block in the flowchart of FIG. 20 may be performed by a component and the apparatus may include one or more of those components. The components may be one or more hardware components specifically configured to carry out the stated processes/algorithm, implemented by a processor configured to perform the stated processes/algorithm, stored within a computer-readable medium for implementation by a processor, or some combination thereof.
In one configuration, the apparatus 2102, and in particular the baseband unit 2104, includes means for receiving a reduced capability for a user equipment (e.g., the capability indication process component 2140 and/or the reception component 2130) . The apparatus 2102 includes means for receiving a report, from the UE, indicating a number of HARQ processes to which a first processing delay between receiving a PDSCH and a corresponding HARQ feedback and a second processing delay between reception of a PDCCH to transmission of a corresponding PUSCH apply, where the scheduling timeline may be adjusted based on the total number of active HARQ processes exceeding the number of HARQ processes to which the first processing delay and the second processing delay apply (e.g., the report process component 2142 and/or the reception component 2130) . The apparatus 2102 includes means for transmitting a scheduling timeline with an adjustment based on the reduced capability for the UE or a total number of active HARQ processes exceeding a HARQ processes threshold (e.g., the scheduling timeline adjustment component 2144 and/or the transmission component 2134) .
The means may be one or more of the components of the apparatus 2102 configured to perform the functions recited by the means. As described supra, the apparatus 2102 may include the TX Processor 316, the RX Processor 370, and the controller/processor 375. As such, in one configuration, the means may be the TX Processor 316, the RX Processor 370, and the controller/processor 375 configured to perform the functions recited by the means.
FIG. 22 is a flowchart 2200 of a method of wireless communication. The method may be performed by a UE or a component of a UE (e.g., the  UE  104, 350, 502, 602, 1202, 1502, 1602; a processing system, which may include the memory 360 and which may be the entire UE 350 or a component of the UE 350, such as the TX processor 368, the RX processor 356, and/or the controller/processor 359) . The method may enable the UE to process a downlink communication from a base station based on a UE capability corresponding to a number of HARQ processes.
At 2202, the UE may report multiple UE capabilities to a base station, where each capability may include a set of one or more processing time parameters for a group of HARQ processes, such as described in connection with FIGs. 5, 6, 8 and10. For example, as shown at 804 of FIG. 8 and 1004 of FIG. 10, the UE may report capabilities for the processing time for a group of HARQ processes including at least one or any combination of: minimum delay between DL grant and corresponding  PDSCH reception; minimum delay between PDSCH reception and corresponding ACK transmission on UL; minimum delay between UL grant reception and PUSCH transmission; and minimum delay between A/N reception in UL and corresponding retransmission of PDSCH on DL. The minimum delay may be calculated in terms of slots and/or symbols.
In one configuration, as described in connection with FIGs. 8 and 9, the total number of HARQ-processes to be supported may be divided into N groups. The UE may report N UE capabilities for N groups of HARQ processes, where N is an integer number greater than 1. Then a first UE capability may be reported for a first group of HARQ processes that includes a first number of HARQ processes, and a second UE capability may be reported for a second group of additional HARQ processes in addition to the first number of HARQ processes. In such configuration, the UE may further receive scheduling based on the first UE capability if a scheduled number of active HARQ processes that is no more than the first number of HARQ processes. In such configuration, the UE may further receive scheduling based on the first UE capability for a first set of HARQ processes that is no more than the first number of HARQ processes and based on the second UE capability for a second set of HARQ processes if the scheduled number of active HARQ processes is more than the first number of HARQ processes.
For a HARQ process to be active, the HARQ process may be associated with a running HARQ RTT timer. In one configuration, the total number of active HARQ processes may be calculated separately for an uplink grant, a downlink grant, and a HARQ feedback. In such configuration, the total number of active HARQ processes may be determined based on one or more of: the number of HARQ processes that have a running HARQ RTT timer, the number of HARQ processes that have DL grant DCI decoded but their corresponding PDSCHs have not been received by the UE, the number of HARQ processes that have uplink grant DCI decoded but their corresponding PUSCHs have not been transmitted, and the number of HARQ processes in which the UE has received a PDSCH but a corresponding scheduled HARQ feedback has not been reported.
In one configuration, as described in connection with FIGs. 10 and 11, the total number of HARQ-processes to be supported may be divided into N levels. The UE may report N UE capabilities for N levels of HARQ processing, where N is an integer number greater than 1 and each of the N levels is based on a total number of active  HARQ processes. In such configuration, the UE may receive scheduling based on the UE capability corresponding to the total number of active HARQ processes. In such configuration, the UE may share processing resources among each of the total active HARQ processes. In addition, the UE may be scheduled with a longer processing time based on a reported UE capability that has a higher level or a higher number of total active HARQ processes, and the UE may be scheduled with a shorter processing time based on a reported UE capability that has a lower level or a smaller number of total active HARQ processes, such as shown in connection with FIG. 11. Additionally, or optionally, the UE may receive SPS indicating scheduling timeline information for the UE based on one or more of multiple UE capabilities reported by the UE.
In one configuration, the UE may report a maximum number of HARQ processes based on a BWP or a CC, such as described in connection with FIG. 17. In such configuration, the UE may report one or more processing timing capabilities dependent on one or more HARQ processes for a first BWP or CC and a processing timing capability independent of the number of HARQ processes for a second BWP or CC. Then, the UE may process the downlink communication based on the one or more processing timing capabilities corresponding to the number of HARQ processes if the downlink communication is received in the first BWP or CC, and the UE may process the downlink communication using the processing timing capability independent of the number of HARQ processes if the downlink communication is received in the second BWP or CC. The maximum number of HARQ processes in the first BWP or CC and in the second BWP or CC may be RRC configured by the base station.
At 2204, the UE may receive downlink communication from the base station based on a number of HARQ processes, such as described in connection with FIGs. 5, 6, 8 and10. For example, as shown by FIG. 6, the UE 602 may receive scheduling offset K 1, K 2 from the base station at 612, where the scheduling offset K 1, K 2 may be determined based on number of HARQ processes, such as described in connection with FIGs. 8 to 11.
At 2206, the UE may process the downlink communication from the base station based on a UE capability corresponding to the number of HARQ processes, such as described in connection with FIGs. 5, 6, 8 and10. For example, as shown by FIG. 6, the UE 602 may apply K 1 for HARQ feedback and K 2 for PUSCH transmission at 614.
FIG. 23 is a diagram 2300 illustrating an example of a hardware implementation for an apparatus 2302. The apparatus 2302 is a UE and includes a cellular baseband processor 2304 (also referred to as a modem) coupled to a cellular RF transceiver 2322 and one or more subscriber identity modules (SIM) cards 2320, an application processor 2306 coupled to a secure digital (SD) card 2308 and a screen 2310, a Bluetooth module 2312, a wireless local area network (WLAN) module 2314, a Global Positioning System (GPS) module 2316, and a power supply 2318. The cellular baseband processor 2304 communicates through the cellular RF transceiver 2322 with the UE 104 and/or BS 102/180. The cellular baseband processor 2304 may include a computer-readable medium /memory. The computer-readable medium /memory may be non-transitory. The cellular baseband processor 2304 is responsible for general processing, including the execution of software stored on the computer-readable medium /memory. The software, when executed by the cellular baseband processor 2304, causes the cellular baseband processor 2304 to perform the various functions described supra. The computer-readable medium /memory may also be used for storing data that is manipulated by the cellular baseband processor 2304 when executing software. The cellular baseband processor 2304 further includes a reception component 2330, a communication manager 2332, and a transmission component 2334. The communication manager 2332 includes the one or more illustrated components. The components within the communication manager 2332 may be stored in the computer-readable medium /memory and/or configured as hardware within the cellular baseband processor 2304. The cellular baseband processor 2304 may be a component of the UE 350 and may include the memory 360 and/or at least one of the TX processor 368, the RX processor 356, and the controller/processor 359. In one configuration, the apparatus 2302 may be a modem chip and include just the baseband processor 2304, and in another configuration, the apparatus 2302 may be the entire UE (e.g., see 350 of FIG. 3) and include the additional modules of the apparatus 2302.
The communication manager 2332 includes a reporting component 2340 that is configured to report multiple UE capabilities to a base station, each capability including a set of one or more processing time parameters for a group of HARQ processes, e.g., as described in connection with 2202 of FIG. 22. The communication manager 2332 further includes a communication process component 2342 that is configured to receive downlink communication from the base station based on a number of HARQ processes, e.g., as described in connection with 2204 of FIG. 22.  The communication manager 2332 further includes a processing component 2344 that is configured to process the downlink communication from the base station based on a UE capability corresponding to the number of HARQ processes, e.g., as described in connection with 2206 of FIG. 22.
The apparatus may include additional components that perform each of the blocks of the algorithm in the flowchart of FIG. 22. As such, each block in the flowchart of FIG. 22 may be performed by a component and the apparatus may include one or more of those components. The components may be one or more hardware components specifically configured to carry out the stated processes/algorithm, implemented by a processor configured to perform the stated processes/algorithm, stored within a computer-readable medium for implementation by a processor, or some combination thereof. In one configuration, the apparatus 2302, and in particular the cellular baseband processor 2304, includes means for reporting multiple UE capabilities to a base station, each capability including a set of one or more processing time parameters for a group of HARQ processes. The apparatus 2302 includes means for receiving downlink communication from the base station based on a number of HARQ processes. The apparatus 2302 includes means for processing the downlink communication from the base station based on a UE capability corresponding to the number of HARQ processes. The means may be one or more of the components of the apparatus 2302 configured to perform the functions recited by the means. As described supra, the apparatus 2302 may include the TX Processor 368, the RX Processor 356, and the controller/processor 359. As such, in one configuration, the means may be the TX Processor 368, the RX Processor 356, and the controller/processor 359 configured to perform the functions recited by the means.
FIG. 24 is a flowchart 2400 of a method of wireless communication. The method may be performed by a base station or a component of a base station (e.g., the  base station  102, 180, 310, 604, 1204, 1504, 1604; a processing system, which may include the memory 376 and which may be the entire base station 310 or a component of the base station 310, such as the TX processor 316 the RX processor 370, and/or the controller/processor 375) . The method may enable a base station to schedule a UE based on a UE capability corresponding to a number of HARQ processes, e.g., in order to support different scheduling for a reduced capability UE.
At 2402, the base station may receive UE capabilities from a UE, each capability including a set of one or more processing time parameters for a group of HARQ  processes, such as described in connection with FIGs. 5, 6, 8 and10. For example, as shown at 804 of FIG. 8 and 1004 of FIG. 10, the base station may receive a report of UE capabilities for the processing time for a group of HARQ processes including at least one or any combination of: minimum delay between DL grant and corresponding PDSCH reception; minimum delay between PDSCH reception and corresponding ACK transmission on UL; minimum delay between UL grant reception and PUSCH transmission; and minimum delay between A/N reception in UL and corresponding retransmission of PDSCH on DL. The minimum delay may be calculated in terms of slots and/or symbols.
In one configuration, as described in connection with FIGs. 8 and 9, the total number of HARQ-processes to be supported may be divided into N groups. The UE may report N UE capabilities for N groups of HARQ processes, where N is an integer number greater than 1. Then a first UE capability may be reported for a first group of HARQ processes that includes a first number of HARQ processes, and a second UE capability may be reported for a second group of additional HARQ processes in addition to the first number of HARQ processes. In such configuration, the base station may schedule the UE based on the first UE capability if a scheduled number of active HARQ processes that is no more than the first number of HARQ processes. In such configuration, the UE may further schedule the UE based on the first UE capability for a first set of HARQ processes that is no more than the first number of HARQ processes and based on the second UE capability for a second set of HARQ processes if the scheduled number of active HARQ processes is more than the first number of HARQ processes.
For a HARQ process to be active, the HARQ process may be associated with a running HARQ RTT timer. In one configuration, the total number of active HARQ processes may be calculated separately for an uplink grant, a downlink grant, and a HARQ feedback. In such configuration, the total number of active HARQ processes may be determined based on one or more of: the number of HARQ processes that have a running HARQ RTT timer, the number of HARQ processes that have DL grant DCI decoded but their corresponding PDSCHs have not been received by the UE, the number of HARQ processes that have uplink grant DCI decoded but their corresponding PUSCHs have not been transmitted, and the number of HARQ processes in which the UE has received a PDSCH but a corresponding scheduled HARQ feedback has not been reported.
In one configuration, as described in connection with FIGs. 10 and 11, the total number of HARQ-processes to be supported may be divided into N levels. The base station may receive a report of N UE capabilities for N levels of HARQ processing, where N is an integer number greater than 1 and each of the N levels is based on a total number of active HARQ processes. In such configuration, the base station may schedule the UE based on the UE capability corresponding to the total number of active HARQ processes. In such configuration, the UE may share processing resources among each of the total active HARQ processes. In addition, the base station may schedule the UE with a longer processing time based on a reported UE capability that has a higher level or a higher number of total active HARQ processes, and the base station may schedule the UE with a shorter processing time based on a reported UE capability that has a lower level or a smaller number of total active HARQ processes, such as shown in connection with FIG. 11. Additionally, or optionally, the base station may schedule SPS indicating scheduling timeline information for the UE based on one or more of multiple UE capabilities reported by the UE.
In one configuration, the base station may receive a report of a maximum number of HARQ processes based on a BWP or a CC, such as described in connection with FIG. 17. In such a configuration, the base station may receive a report of one or more processing timing capabilities dependent on one or more HARQ processes for a first BWP or CC and a processing timing capability independent of the number of HARQ processes for a second BWP or CC. Then, the base station may schedule communication for the UE based on the one or more processing timing capabilities corresponding to the number of HARQ processes if the downlink communication is received in the first BWP or CC, and may schedule the communication using the processing timing capability independent of the number of HARQ processes if the downlink communication is received in the second BWP or CC. The maximum number of HARQ processes in the first BWP or CC and in the second BWP or CC may be RRC configured by the base station.
At 2404, the base station schedules downlink communication for the UE based on a number of HARQ processes, such as described in connection with FIGs. 5, 6, 8 and10. For example, as shown by FIG. 6, the base station 604 may schedule the UE based on offset K 1, K 2 at 612, where the scheduling offset K 1, K 2 may be determined based on number of HARQ processes, such as described in connection with FIGs. 8 to 11.
FIG. 25 is a diagram 2500 illustrating an example of a hardware implementation for an apparatus 2502. The apparatus 2502 is a BS and includes a baseband unit 2504. The baseband unit 2504 may communicate through a cellular RF transceiver with the UE 104. The baseband unit 2504 may include a computer-readable medium /memory. The baseband unit 2504 is responsible for general processing, including the execution of software stored on the computer-readable medium /memory. The software, when executed by the baseband unit 2504, causes the baseband unit 2504 to perform the various functions described supra. The computer-readable medium /memory may also be used for storing data that is manipulated by the baseband unit 2504 when executing software. The baseband unit 2504 further includes a reception component 2530, a communication manager 2532, and a transmission component 2534. The communication manager 2532 includes the one or more illustrated components. The components within the communication manager 2532 may be stored in the computer-readable medium /memory and/or configured as hardware within the baseband unit 2504. The baseband unit 2504 may be a component of the BS 310 and may include the memory 376 and/or at least one of the TX processor 316, the RX processor 370, and the controller/processor 375.
The communication manager 2532 includes a reporting component 2540 that is configured to receive multiple UE capabilities from a UE, each capability including a set of one or more processing time parameters for a group of HARQ processes, e.g., as described in connection with 2402 of FIG. 24. The communication manager 2532 further includes a schedule component 2542 that is configured to schedule downlink communication for the UE based on a number of HARQ processes, e.g., as described in connection with 2404 of FIG. 24.
The apparatus may include additional components that perform each of the blocks of the algorithm in the flowchart of FIG. 24. As such, each block in the flowchart of FIG. 24 may be performed by a component and the apparatus may include one or more of those components. The components may be one or more hardware components specifically configured to carry out the stated processes/algorithm, implemented by a processor configured to perform the stated processes/algorithm, stored within a computer-readable medium for implementation by a processor, or some combination thereof.
In one configuration, the apparatus 2502, and in particular the baseband unit 2504, includes means for receiving multiple UE capabilities from a user equipment (UE) ,  each capability including a set of one or more processing time parameters for a group of hybrid automatic repeat request (HARQ) processes; and means for transmitting downlink communication to the UE based on a number of HARQ processes. The means may be one or more of the components of the apparatus 2502 configured to perform the functions recited by the means. As described supra, the apparatus 2502 may include the TX Processor 316, the RX Processor 370, and the controller/processor 375. As such, in one configuration, the means may be the TX Processor 316, the RX Processor 370, and the controller/processor 375 configured to perform the functions recited by the means.
FIG. 26 is a flowchart 2600 of a method of wireless communication. The method may be performed by a UE or a component of a UE (e.g., the  UE  104, 350, 502, 602, 1202, 1502, 1602; a processing system, which may include the memory 360 and which may be the entire UE 350 or a component of the UE 350, such as the TX processor 368, the RX processor 356, and/or the controller/processor 359) . The method may enable the UE to receive downlink communication having a TBS from the base station and process the downlink communication from the base station based on a UE capability from the one or more UE capabilities corresponding to the TBS.
At 2602, the UE may report, to a base station, N UE capabilities for N groups of TBS, N being an integer number greater than 1, where a first UE capability is reported for a first TBS group and a second UE capability is reported for a second TBS group; and, such as described in connection with FIG. 13. For example, at 1302, the UE may divide the supported TBS into N groups, such as with an ascending TBS order. At 1304, for each group, the UE may report capabilities for the processing time including at least one or any combination of: minimum delay between DL grant and corresponding PDSCH reception; minimum delay between PDSCH reception and corresponding ACK transmission on UL; minimum delay between UL grant reception and PUSCH transmission; and minimum delay between A/N reception in UL and corresponding retransmission of PDSCH on DL. In one example, the minimum delay may be calculated in slots and/or symbols.
In one configuration, the UE may report a first UE capability for a first TBS group and the UE may report a second UE capability for a second TBS group. In such configuration, the UE may receive scheduling based on the first UE capability if the TBS is within the first TBS group, and the UE may receive scheduling based on the first UE capability for a first TBS within the first TBS group and based on the second  UE capability for a second TBS within the second TBS group. The UE may report a longer processing time for a first TBS group associated with a larger TBS and reports a shorter processing time for a second TBS group with smaller TBS, such as described in connection with FIG. 13.
In another configuration, as described in connection with FIG. 17, the UE may report a maximum number of HARQ processes based on a BWP or a CC, such as described in connection with FIG. 17. In such configuration, the UE may report one or more processing timing capabilities dependent on one or more HARQ processes for a first BWP or CC and a processing timing capability independent of the number of HARQ processes for a second BWP or CC. Then, the UE may process the downlink communication based on the one or more processing timing capabilities corresponding to the number of HARQ processes if the downlink communication is received in the first BWP or CC, and the UE may process the downlink communication using the processing timing capability independent of the number of HARQ processes if the downlink communication is received in the second BWP or CC. The maximum number of HARQ processes in the first BWP and in the second BWP may be RRC configured by the base station.
At 2604, the UE may receive downlink communication having a TBS from the base station, such as described in connection with FIG. 13.
At 2606, the UE may process the downlink communication from the base station based on a UE capability from the N UE capabilities corresponding to the TBS, such as described in connection with FIG. 13.
FIG. 27 is a diagram 2700 illustrating an example of a hardware implementation for an apparatus 2702. The apparatus 2702 is a UE and includes a cellular baseband processor 2704 (also referred to as a modem) coupled to a cellular RF transceiver 2722 and one or more subscriber identity modules (SIM) cards 2720, an application processor 2706 coupled to a secure digital (SD) card 2708 and a screen 2710, a Bluetooth module 2712, a wireless local area network (WLAN) module 2714, a Global Positioning System (GPS) module 2716, and a power supply 2718. The cellular baseband processor 2704 communicates through the cellular RF transceiver 2722 with the UE 104 and/or BS 102/180. The cellular baseband processor 2704 may include a computer-readable medium /memory. The computer-readable medium /memory may be non-transitory. The cellular baseband processor 2704 is responsible for general processing, including the execution of software stored on the computer- readable medium /memory. The software, when executed by the cellular baseband processor 2704, causes the cellular baseband processor 2704 to perform the various functions described supra. The computer-readable medium /memory may also be used for storing data that is manipulated by the cellular baseband processor 2704 when executing software. The cellular baseband processor 2704 further includes a reception component 2730, a communication manager 2732, and a transmission component 2734. The communication manager 2732 includes the one or more illustrated components. The components within the communication manager 2732 may be stored in the computer-readable medium /memory and/or configured as hardware within the cellular baseband processor 2704. The cellular baseband processor 2704 may be a component of the UE 350 and may include the memory 360 and/or at least one of the TX processor 368, the RX processor 356, and the controller/processor 359. In one configuration, the apparatus 2702 may be a modem chip and include just the baseband processor 2704, and in another configuration, the apparatus 2702 may be the entire UE (e.g., see 350 of FIG. 3) and include the additional modules of the apparatus 2702.
The communication manager 2732 includes a reporting component 2740 that is configured to report, to a base station, N UE capabilities for N groups of TBS, N being an integer number greater than 1, where a first UE capability is reported for a first TBS group and a second UE capability is reported for a second TBS group, e.g., as described in connection with 2602 of FIG. 26. The communication manager 2732 further includes a receiving component 2742 that is configured to receive downlink communication having a TBS from the base station, e.g., as described in connection with 2604 of FIG. 26. The communication manager 2732 further includes a processing component 2744 that is configured to process the downlink communication from the base station based on a UE capability from the N UE capabilities corresponding to the TBS, e.g., as described in connection with 2606 of FIG. 26.
The apparatus may include additional components that perform each of the blocks of the algorithm in the flowchart of FIG. 26. As such, each block in the flowchart of FIG. 26 may be performed by a component and the apparatus may include one or more of those components. The components may be one or more hardware components specifically configured to carry out the stated processes/algorithm, implemented by a processor configured to perform the stated processes/algorithm, stored within a computer-readable medium for implementation by a processor, or some combination  thereof. In one configuration, the apparatus 2702, and in particular the cellular baseband processor 2704, includes means for reporting, to a base station, N UE capabilities for N groups of TBS, N being an integer number greater than 1, where a first UE capability is reported for a first TBS group and a second UE capability is reported for a second TBS group. The apparatus 2702 includes means for receiving downlink communication having a TBS from the base station. The apparatus 2702 includes means for processing the downlink communication from the base station based on a UE capability from the N UE capabilities corresponding to the TBS. The means may be one or more of the components of the apparatus 2702 configured to perform the functions recited by the means. As described supra, the apparatus 2702 may include the TX Processor 368, the RX Processor 356, and the controller/processor 359. As such, in one configuration, the means may be the TX Processor 368, the RX Processor 356, and the controller/processor 359 configured to perform the functions recited by the means.
FIG. 28 is a flowchart 2800 of a method of wireless communication. The method may be performed by a UE or a component of a UE (e.g., the  UE  104, 350, 502, 602, 1202, 1502, 1602; a processing system, which may include the memory 360 and which may be the entire UE 350 or a component of the UE 350, such as the TX processor 368, the RX processor 356, and/or the controller/processor 359) . The method may enable the UE to report or be configured with a longer processing time for transmitting a PUSCH when a PUSCH is multiplexed with a UCI.
At 2802, the UE may report, to a base station, a first processing time capability for a first type of PUSCH, such as described in connection with FIG. 14. The UE may determine the processing time based on whether the PUSCH transmission is multiplexed with multiplexed UCI.
At 2804, the UE may report, to the base station, a second processing time capability for a second type of PUSCH. Similarly, the UE may determine the processing time based on whether the PUSCH transmission is multiplexed with multiplexed UCI, such as described in connection with FIG. 14. For example, at 1402, the UE may divide PUSCHs into ones with UCI-multiplexing and ones without UCI-multiplexing. Then at 1404, the UE may separately report minimum delay between a UL grant reception and a PUSCH transmission, for these two types of PUSCHs.
In one configuration, the first processing time capability and the second processing time capability may indicate a delay between reception of an uplink grant from the  base station and transmission of a corresponding PUSCH transmission by the UE. In such configuration, the delay may be reported as a number of slots and/or as a number of symbols.
In another configuration, as described in connection with FIG. 17, the UE may report a maximum number of HARQ processes based on a BWP or a CC, such as described in connection with FIG. 17. In such configuration, the UE may report one or more processing timing capabilities dependent on one or more HARQ processes for a first BWP or CC and a processing timing capability independent of the number of HARQ processes for a second BWP or CC. Then, the UE may process the downlink communication based on the one or more processing timing capabilities corresponding to the number of HARQ processes if the downlink communication is received in the first BWP or CC, and the UE may process the downlink communication using the processing timing capability independent of the number of HARQ processes if the downlink communication is received in the second BWP or CC. The maximum number of HARQ processes in the first BWP and in the second BWP may be RRC configured by the base station.
At 2806, in response to reporting the first processing time capability for the first type of PUSCH and the second processing time capability for the second type of PUSCH, the UE may receive an uplink grant for a PUSCH transmission, such as described in connection with FIG. 14.
At 2808, the UE may transmit the PUSCH based on a processing time corresponding to the type of the PUSCH transmission, such as described in connection with FIG. 14. For example, the processing time may be longer for the PUSCH with the multiplexed UCI than for the PUSCH without the multiplexed UCI.
FIG. 29 is a diagram 2900 illustrating an example of a hardware implementation for an apparatus 2902. The apparatus 2902 is a UE and includes a cellular baseband processor 2904 (also referred to as a modem) coupled to a cellular RF transceiver 2922 and one or more subscriber identity modules (SIM) cards 2920, an application processor 2906 coupled to a secure digital (SD) card 2908 and a screen 2910, a Bluetooth module 2912, a wireless local area network (WLAN) module 2914, a Global Positioning System (GPS) module 2916, and a power supply 2918. The cellular baseband processor 2904 communicates through the cellular RF transceiver 2922 with the UE 104 and/or BS 102/180. The cellular baseband processor 2904 may include a computer-readable medium /memory. The computer-readable medium / memory may be non-transitory. The cellular baseband processor 2904 is responsible for general processing, including the execution of software stored on the computer-readable medium /memory. The software, when executed by the cellular baseband processor 2904, causes the cellular baseband processor 2904 to perform the various functions described supra. The computer-readable medium /memory may also be used for storing data that is manipulated by the cellular baseband processor 2904 when executing software. The cellular baseband processor 2904 further includes a reception component 2930, a communication manager 2932, and a transmission component 2934. The communication manager 2932 includes the one or more illustrated components. The components within the communication manager 2932 may be stored in the computer-readable medium /memory and/or configured as hardware within the cellular baseband processor 2904. The cellular baseband processor 2904 may be a component of the UE 350 and may include the memory 360 and/or at least one of the TX processor 368, the RX processor 356, and the controller/processor 359. In one configuration, the apparatus 2902 may be a modem chip and include just the baseband processor 2904, and in another configuration, the apparatus 2902 may be the entire UE (e.g., see 350 of FIG. 3) and include the additional modules of the apparatus 2902.
The communication manager 2932 includes a reporting component 2940 that is configured to report, to a base station, a first processing time capability for a first type of PUSCH, e.g., as described in connection with 2802 of FIG. 28. The communication manager 2932 further includes a reporting component 2942 that is configured to report, to the base station, a second processing time capability for a second type of PUSCH, e.g., as described in connection with 2804 of FIG. 28. The communication manager 2932 further includes a receiving component 2944 that is configured to receive an uplink grant for a PUSCH transmission, e.g., as described in connection with 2806 of FIG. 28. The communication manager 2932 further includes a transmitting component 2946 that is configured to transmit the PUSCH based on a processing time corresponding to the type of the PUSCH transmission, e.g., as described in connection with 2808 of FIG. 28.
The apparatus may include additional components that perform each of the blocks of the algorithm in the flowchart of FIG. 28. As such, each block in the flowchart of FIG. 28 may be performed by a component and the apparatus may include one or more of those components. The components may be one or more hardware components specifically configured to carry out the stated processes/algorithm, implemented by a  processor configured to perform the stated processes/algorithm, stored within a computer-readable medium for implementation by a processor, or some combination thereof. In one configuration, the apparatus 2902, and in particular the cellular baseband processor 2904, includes means for reporting, to a base station, a first processing time capability for a first type of PUSCH. The apparatus 2902 includes means for report, to the base station, a second processing time capability for a second type of PUSCH. The apparatus 2902 includes means for receive an uplink grant for a PUSCH transmission. The apparatus 2902 includes means for transmit the PUSCH based on a processing time corresponding to the type of the PUSCH transmission. The means may be one or more of the components of the apparatus 2902 configured to perform the functions recited by the means. As described supra, the apparatus 2902 may include the TX Processor 368, the RX Processor 356, and the controller/processor 359. As such, in one configuration, the means may be the TX Processor 368, the RX Processor 356, and the controller/processor 359 configured to perform the functions recited by the means.
Figure 30 is a flowchart 3000 of a method of wireless communication. The method may be performed by a base station or a component of a base station (e.g.,  base station  102, 180, 310, 604, 1204, 1504, 1604; which may include the memory 376 and which may be the entire base station 310 or a component of the base station 310, such as the TX processor 316, the RX processor 370, and/or the controller/processor 375) . The method may enable the base station to schedule downlink communication having a TBS for the UE based on a UE capability corresponding to the TBS.
At 3002, the base station may receive, from a UE, N UE capabilities for N groups of TBS, N being an integer number greater than 1, where a first UE capability is received for a first TBS group and a second UE capability is received for a second TBS group, such as described in connection with FIG. 13. In one configuration, the UE may report a first UE capability for a first TBS group and reports a second UE capability for a second TBS group. In such configuration, each of the N UE capabilities may include one or more of: a minimum delay in slots or symbols between a DL grant and a corresponding PDSCH reception, a minimum delay in slots or symbols between the PDSCH reception and a corresponding UL HARQ feedback transmission, a minimum delay in slots or symbols between an UL grant reception and a corresponding PUSCH transmission, or a minimum delay in slots or symbols between the UL HARQ feedback transmission and a corresponding retransmission of the PDSCH.
At 3004, the base station may schedule the UE for downlink communication having a TBS based on a capability reported by the UE for a group including the TBS, such as described in connection with FIG. 13. In one configuration, the base station may transmit scheduling based on the first UE capability if the TBS is within the first TBS group. In another configuration, the base station may transmit scheduling based on the first UE capability for a first TBS within the first TBS group and based on the second UE capability for a second TBS within the second TBS group. In such configuration, the UE may report a longer processing time for a first TBS group associated with a larger TBS and reports a shorter processing time for a second TBS group with smaller TBS.
In another configuration, as described in connection with FIG. 17, the base station may receive an indication of a maximum number of HARQ processes based on a BWP or a CC, such as described in connection with FIG. 17. In such configuration, the base station may receive a report of one or more processing timing capabilities dependent on one or more HARQ processes for a first BWP or CC and a processing timing capability independent of the number of HARQ processes for a second BWP or CC. Then, the base station may schedule the downlink communication based on the one or more processing timing capabilities corresponding to the number of HARQ processes if the downlink communication is received in the first BWP or CC and schedules the downlink communication using the processing timing capability independent of the number of HARQ processes if the downlink communication is received in the second BWP or CC. The base station may configure the maximum number of HARQ processes in the first BWP or CC and in the second BWP or CC via an RRC for the UE.
FIG. 31 is a diagram 3100 illustrating an example of a hardware implementation for an apparatus 3102. The apparatus 3102 is a base station and includes a baseband unit 3104. The baseband unit 3104 may communicate through a cellular RF transceiver with the UE 104. The baseband unit 3104 may include a computer-readable medium/memory. The baseband unit 3104 is responsible for general processing, including the execution of software stored on the computer-readable medium/memory. The software, when executed by the baseband unit 3104, causes the baseband unit 3104 to perform the various functions described supra. The computer-readable medium/memory may also be used for storing data that is manipulated by the baseband unit 3104 when executing software. The baseband unit 3104 further includes a reception  component 3130, a communication manager 3132, and a transmission component 3134. The communication manager 3132 includes the one or more illustrated components. The components within the communication manager 3132 may be stored in the computer-readable medium/memory and/or configured as hardware within the baseband unit 3104. The baseband unit 3104 may be a component of the BS 310 and may include the memory 376 and/or at least one of the TX processor 316, the RX processor 370, and the controller/processor 375.
The communication manager 3132 includes a receiving component 3140 that is configured to receive, from a UE, N UE capabilities for N groups of TBS, N being an integer number greater than 1, wherein a first UE capability is received for a first TBS group and a second UE capability is received for a second TBS group, e.g., as described in connection with 3002 of FIG. 30. The communication manager 3132 further includes a scheduling component 3142 that is configured to transmit downlink communication having a TBS to the UE, e.g., as described in connection with 3004 of FIG. 30.
The apparatus may include additional components that perform each of the blocks of the algorithm in the flowchart of FIG. 30. As such, each block in the flowcharts of FIG. 30 may be performed by a component and the apparatus may include one or more of those components. The components may be one or more hardware components specifically configured to carry out the stated processes/algorithm, implemented by a processor configured to perform the stated processes/algorithm, stored within a computer-readable medium for implementation by a processor, or some combination thereof. In one configuration, the apparatus 3102, and in particular the baseband unit 3104, includes means for receiving, from a UE, N UE capabilities for N groups of TBS, N being an integer number greater than 1, wherein a first UE capability is received for a first TBS group and a second UE capability is received for a second TBS group. The apparatus 3102 includes means for transmitting downlink communication having a TBS to the UE. The means may be one or more of the components of the apparatus 3102 configured to perform the functions recited by the means. As described supra, the apparatus 3102 may include the TX Processor 316, the RX Processor 370, and the controller/processor 375. As such, in one configuration, the means may be the TX Processor 316, the RX Processor 370, and the controller/processor 375 configured to perform the functions recited by the means.
Figure 32 is a flowchart 3200 of a method of wireless communication. The method may be performed by a base station or a component of a base station (e.g.,  base station  102, 180, 310, 604, 1204, 1504, 1604; which may include the memory 376 and which may be the entire base station 310 or a component of the base station 310, such as the TX processor 316, the RX processor 370, and/or the controller/processor 375) . The method may enable the base station to schedule offset (s) for a PUSCH based at least in part on whether the PUSCH is multiplexed with a UCI.
At 3202, the base station may receive, from a UE, a first processing time capability for a first type of PUSCH, such as described in connection with FIG. 14.
At 3204, the base station may receive, from the UE, a second processing time capability for a second type of PUSCH, such as described in connection with FIG. 14. In one configuration, the first type of the PUSCH may include multiplexed UCI and the second type of the PUSCH may not include the multiplexed UCI. In such configuration, the processing time may be longer for the PUSCH with the multiplexed UCI than for the PUSCH without the multiplexed UCI.
At 3206, the base station may transmit an UL grant for a PUSCH transmission, such as described in connection with FIG. 14. The UL grant may include a scheduling offset for the PUSCH, where the base station may determine the scheduling offset (e.g., processing time) for the UE based on whether the PUSCH transmission will include multiplexed UCI.
At 3208, the base station may receive the PUSCH based on a processing time corresponding to the type of the PUSCH transmission, such as described in connection with FIG. 14. In one configuration, the base station may determine the processing time based on whether the PUSCH transmission will include multiplexed UCI. In such configuration, the first processing time capability and the second processing time capability may indicate a delay between reception of an uplink grant at the UE and transmission of a corresponding PUSCH by the UE, where the delay may be reported as a number of slots and/or symbols.
In another configuration, as described in connection with FIG. 17, the base station may receive an indication of a maximum number of HARQ processes based on a BWP or a CC, such as described in connection with FIG. 17. In such configuration, the base station may receive a report of one or more processing timing capabilities dependent on one or more HARQ processes for a first BWP or CC and a processing timing capability independent of the number of HARQ processes for a second BWP  or CC. Then, the base station may schedule the downlink communication based on the one or more processing timing capabilities corresponding to the number of HARQ processes if the downlink communication is received in the first BWP or CC and schedules the downlink communication using the processing timing capability independent of the number of HARQ processes if the downlink communication is received in the second BWP or CC. The base station may configure the maximum number of HARQ processes in the first BWP or CC and in the second BWP or CC via an RRC for the UE.
FIG. 33 is a diagram 3300 illustrating an example of a hardware implementation for an apparatus 3302. The apparatus 3302 is a base station and includes a baseband unit 3304. The baseband unit 3304 may communicate through a cellular RF transceiver with the UE 104. The baseband unit 3304 may include a computer-readable medium/memory. The baseband unit 3304 is responsible for general processing, including the execution of software stored on the computer-readable medium/memory. The software, when executed by the baseband unit 3304, causes the baseband unit 3304 to perform the various functions described supra. The computer-readable medium/memory may also be used for storing data that is manipulated by the baseband unit 3304 when executing software. The baseband unit 3304 further includes a reception component 3330, a communication manager 3332, and a transmission component 3334. The communication manager 3332 includes the one or more illustrated components. The components within the communication manager 3332 may be stored in the computer-readable medium/memory and/or configured as hardware within the baseband unit 3304. The baseband unit 3304 may be a component of the BS 310 and may include the memory 376 and/or at least one of the TX processor 316, the RX processor 370, and the controller/processor 375.
The communication manager 3332 includes a receiving component 3340 that is configured to receive, from a UE, a first processing time capability for a first type of PUSCH, e.g., as described in connection with 3202 of FIG. 32. The communication manager 3332 further includes a receiving component 3342 that is configured to receive, from the UE, a second processing time capability for a second type of PUSCH, e.g., as described in connection with 3204 of FIG. 32. The communication manager 3332 includes a transmitting component 3344 that is configured to transmit an uplink grant for a PUSCH transmission, e.g., as described in connection with 3206 of FIG. 32. The communication manager 3332 further includes a receiving component  3346 that is configured to receive the PUSCH based on a processing time corresponding to the type of the PUSCH transmission, e.g., as described in connection with 3208 of FIG. 32.
The apparatus may include additional components that perform each of the blocks of the algorithm in the flowchart of FIG. 32. As such, each block in the flowcharts of FIG. 32 may be performed by a component and the apparatus may include one or more of those components. The components may be one or more hardware components specifically configured to carry out the stated processes/algorithm, implemented by a processor configured to perform the stated processes/algorithm, stored within a computer-readable medium for implementation by a processor, or some combination thereof. In one configuration, the apparatus 3302, and in particular the baseband unit 3304, includes means for receiving, from a UE, a first processing time capability for a first type of PUSCH. The apparatus 3302 includes means for receiving, from the UE, a second processing time capability for a second type of PUSCH. The apparatus 3302 includes means for transmitting an uplink grant for a PUSCH transmission. The apparatus 3302 includes means for receiving the PUSCH based on a processing time corresponding to the type of the PUSCH transmission. The means may be one or more of the components of the apparatus 3302 configured to perform the functions recited by the means. As described supra, the apparatus 3302 may include the TX Processor 316, the RX Processor 370, and the controller/processor 375. As such, in one configuration, the means may be the TX Processor 316, the RX Processor 370, and the controller/processor 375 configured to perform the functions recited by the means.
FIG. 34 is a flowchart 3400 of a method of wireless communication. The method may be performed by a UE or a component of a UE (e.g., the  UE  104, 350, 502, 602, 1202, 1502, 1602; a processing system, which may include the memory 360 and which may be the entire UE 350 or a component of the UE 350, such as the TX processor 368, the RX processor 356, and/or the controller/processor 359) . The method may enable the UE to report maximum or available computational resources for processing one or more HARQ-processes, and then the UE may expect scheduling based on the reported computational resources.
At 3402, the UE may report, to a base station, a UE capability based on a HARQ process unit (e.g., the UE may indicate to the base station the number of available or maximum HARQ process unit (s) or available computational resource for processing  the HARQ at the UE, etc. ) , such as described in connection with FIG. 15. For example, at 1506, the UE 1502 may report number of supported simultaneous HARQ-processes to the base station 1504. The UE capability may be based on processing an UL grant, processing an uplink grant, processing a physical downlink shared channel. After reporting to the base station about the number of unoccupied HARQ-process units, the UE may receive a scheduling offset from the base station based on a number of unoccupied HARQ-process units.
In one configuration, the UE may determine a number of unoccupied HPUs in a duration of time based on the number of supported simultaneous HARQ processes and a current number of occupied HPUs for processing one or more of an uplink grant, a downlink grant, or a physical downlink shared channel. In such configuration, the duration may be based on one or more symbols and/or slots. In such configuration, the UE may not receive additional uplink grants if the UE has no unoccupied HPUs for uplink. In such configuration, the UE may not determine HARQ feedback for a PDSCH if the UE has no unoccupied HPUs for downlink. In such configuration, the UE may not receive additional downlink grants for a PDSCH if the UE has no unoccupied HPUs for downlink.
At 3404, the UE may receive downlink communication from the base station, such as described in connection with FIG. 15. For example, at 1512, the UE 1502 may receive a downlink communication from the bas e station 1504.
At 3406, the UE may process the downlink communication from the base station and provide HARQ feedback based on the reported UE capability (e.g., based on the number of available HARQ process unit (s) or computational resources for processing the HARQ at the UE) , such as described in connection with FIG. 15. For example, at 1514, the UE 1502 may process the downlink communication from the base station 1504 and provide HARQ feedback based on the reported UE capability.
FIG. 35 is a diagram 3500 illustrating an example of a hardware implementation for an apparatus 3502. The apparatus 3502 is a UE and includes a cellular baseband processor 3504 (also referred to as a modem) coupled to a cellular RF transceiver 3522 and one or more subscriber identity modules (SIM) cards 3520, an application processor 3506 coupled to a secure digital (SD) card 3508 and a screen 3510, a Bluetooth module 3512, a wireless local area network (WLAN) module 3514, a Global Positioning System (GPS) module 3516, and a power supply 3518. The cellular baseband processor 3504 communicates through the cellular RF transceiver  3522 with the UE 104 and/or BS 102/180. The cellular baseband processor 3504 may include a computer-readable medium/memory. The computer-readable medium/memory may be non-transitory. The cellular baseband processor 3504 is responsible for general processing, including the execution of software stored on the computer-readable medium/memory. The software, when executed by the cellular baseband processor 3504, causes the cellular baseband processor 3504 to perform the various functions described supra. The computer-readable medium/memory may also be used for storing data that is manipulated by the cellular baseband processor 3504 when executing software. The cellular baseband processor 3504 further includes a reception component 3530, a communication manager 3532, and a transmission component 3534. The communication manager 3532 includes the one or more illustrated components. The components within the communication manager 3532 may be stored in the computer-readable medium/memory and/or configured as hardware within the cellular baseband processor 3504. The cellular baseband processor 3504 may be a component of the UE 350 and may include the memory 360 and/or at least one of the TX processor 368, the RX processor 356, and the controller/processor 359. In one configuration, the apparatus 3502 may be a modem chip and include just the baseband processor 3504, and in another configuration, the apparatus 3502 may be the entire UE (e.g., see 350 of FIG. 3) and include the additional modules of the apparatus 3502.
The communication manager 3532 includes a reporting component 3540 that is configured to report, to a base station, a UE capability based on a HARQ process unit, e.g., as described in connection with 3402 of FIG. 34. The communication manager 3532 further includes a receiving component 3542 that is configured to receive downlink communication from the base station, e.g., as described in connection with 3404 of FIG. 34. The communication manager 3532 further includes a processing component 3544 that is configured to process the downlink communication from the base station and providing HARQ feedback based on the reported UE capability, e.g., as described in connection with 3406 of FIG. 34.
The apparatus may include additional components that perform each of the blocks of the algorithm in the flowchart of FIG. 34. As such, each block in the flowchart of FIG. 34 may be performed by a component and the apparatus may include one or more of those components. The components may be one or more hardware components specifically configured to carry out the stated processes/algorithm, implemented by a  processor configured to perform the stated processes/algorithm, stored within a computer-readable medium for implementation by a processor, or some combination thereof. In one configuration, the apparatus 3502, and in particular the cellular baseband processor 3504, includes means for reporting, to a base station, a UE capability based on a HARQ process unit. The apparatus 3502 includes means for processing the downlink communication from the base station and providing HARQ feedback based on the reported UE capability. The means may be one or more of the components of the apparatus 3502 configured to perform the functions recited by the means. As described supra, the apparatus 3502 may include the TX Processor 368, the RX Processor 356, and the controller/processor 359. As such, in one configuration, the means may be the TX Processor 368, the RX Processor 356, and the controller/processor 359 configured to perform the functions recited by the means.
FIG. 36 is a flowchart 3600 of a method of wireless communication. The method may be performed by a UE or a component of a UE (e.g., the  UE  104, 350, 502, 602, 1202, 1502, 1602; a processing system, which may include the memory 360 and which may be the entire UE 350 or a component of the UE 350, such as the TX processor 368, the RX processor 356, and/or the controller/processor 359) . The method may enable the UE to indicate a duration to a base station in which the base station may be refrained from transmitting a DL or a UL grant DCI to the UE during the indicated duration.
At 3602, the UE may report, to a base station, a duration of time following reception of one or more grants when the UE does not expect to receive an additional grant, such as described in connection with FIG. 16. For example, at 1606, the UE 1602 may transmit a DCI forbidden time duration T or T combination (for multiple DCIs) to the base station 1604. The UE may report the duration of time for one or more uplink grants, for one or more downlink grants, or both, where the duration of time may be reported to the base station as a UE capability. In addition, the duration of time may apply to reception of a single grant or to reception of multiple grants.
At 3604, the UE may receive the one or more grants from the base station, such as described in connection with FIG. 16. For example, at 1608, the UE 1602 may receive first one or more grants from the base station 1604.
At 3606, the UE may receive an additional grant from the base station following the one or more grants by at least the duration of time, such as described in connection  with FIG. 16. For example, at 1608, the UE 1602 may receive second one or more grants from the base station 1604 after the DCI forbidden time duration expires.
In one configuration, as shown in connection with FIG. 17, the UE may report a maximum number of HARQ processes based on a BWP. In such configuration, the UE may report one or more processing timing capabilities dependent on one or more HARQ processes for a first BWP and a processing timing capability independent of the number of HARQ processes for a second BWP. Then, the UE may process the downlink communication based on the one or more processing timing capabilities corresponding to the number of HARQ processes if the downlink communication is received in the first BWP and processes the downlink communication using the processing timing capability independent of the number of HARQ processes if the downlink communication is received in the second BWP. The maximum number of HARQ processes in the first BWP and in the second BWP is RRC configured by the base station. Additionally, or optionally, the UE may also report a maximum number of HARQ processes based on a CC. Similarly, the UE may report one or more processing timing capabilities dependent on one or more HARQ processes for a first CC and a processing timing capability independent of the number of HARQ processes for a second CC. Then, the UE may process the downlink communication based on the one or more processing timing capabilities corresponding to the number of HARQ processes if the downlink communication is received in the first CC and processes the downlink communication using the processing timing capability independent of the number of HARQ processes if the downlink communication is received in the second CC.The maximum number of HARQ processes in the first CC and in the second CC may also be RRC configured by the base station.
FIG. 37 is a diagram 3700 illustrating an example of a hardware implementation for an apparatus 3702. The apparatus 3702 is a UE and includes a cellular baseband processor 3704 (also referred to as a modem) coupled to a cellular RF transceiver 3722 and one or more subscriber identity modules (SIM) cards 3720, an application processor 3706 coupled to a secure digital (SD) card 3708 and a screen 3710, a Bluetooth module 3712, a wireless local area network (WLAN) module 3714, a Global Positioning System (GPS) module 3716, and a power supply 3718. The cellular baseband processor 3704 communicates through the cellular RF transceiver 3722 with the UE 104 and/or BS 102/180. The cellular baseband processor 3704 may include a computer-readable medium/memory. The computer-readable medium/ memory may be non-transitory. The cellular baseband processor 3704 is responsible for general processing, including the execution of software stored on the computer-readable medium/memory. The software, when executed by the cellular baseband processor 3704, causes the cellular baseband processor 3704 to perform the various functions described supra. The computer-readable medium/memory may also be used for storing data that is manipulated by the cellular baseband processor 3704 when executing software. The cellular baseband processor 3704 further includes a reception component 3730, a communication manager 3732, and a transmission component 3734. The communication manager 3732 includes the one or more illustrated components. The components within the communication manager 3732 may be stored in the computer-readable medium/memory and/or configured as hardware within the cellular baseband processor 3704. The cellular baseband processor 3704 may be a component of the UE 350 and may include the memory 360 and/or at least one of the TX processor 368, the RX processor 356, and the controller/processor 359. In one configuration, the apparatus 3702 may be a modem chip and include just the baseband processor 3704, and in another configuration, the apparatus 3702 may be the entire UE (e.g., see 350 of FIG. 3) and include the additional modules of the apparatus 3702.
The communication manager 3732 includes a reporting component 3740 that is configured to report, to a base station, a duration of time following reception of one or more grants when the UE does not expect to receive an additional grant, e.g., as described in connection with 3602 of FIG. 36. The communication manager 3732 further includes a receiving component 3742 that is configured to receive the one or more grants from the base station, e.g., as described in connection with 3604 of FIG. 36. The communication manager 3732 further includes a receiving component 3744 that is configured to receive an additional grant from the base station following the one or more grants by at least the duration of time, e.g., as described in connection with 3606 of FIG. 36.
The apparatus may include additional components that perform each of the blocks of the algorithm in the flowchart of FIG. 36. As such, each block in the flowchart of FIG. 36 may be performed by a component and the apparatus may include one or more of those components. The components may be one or more hardware components specifically configured to carry out the stated processes/algorithm, implemented by a processor configured to perform the stated processes/algorithm, stored within a computer-readable medium for implementation by a processor, or some combination  thereof. In one configuration, the apparatus 3702, and in particular the cellular baseband processor 3704, includes means for reporting, to a base station, a duration of time following reception of one or more grants when the UE does not expect to receive an additional grant. The apparatus 3702 includes means for receiving the one or more grants from the base station. The apparatus 3702 includes means for receiving an additional grant from the base station following the one or more grants by at least the duration of time. The means may be one or more of the components of the apparatus 3702 configured to perform the functions recited by the means. As described supra, the apparatus 3702 may include the TX Processor 368, the RX Processor 356, and the controller/processor 359. As such, in one configuration, the means may be the TX Processor 368, the RX Processor 356, and the controller/processor 359 configured to perform the functions recited by the means.
Figure 38 is a flowchart 3800 of a method of wireless communication. The method may be performed by a base station or a component of a base station (e.g.,  base station  102, 180, 310, 604, 1204, 1504, 1604; which may include the memory 376 and which may be the entire base station 310 or a component of the base station 310, such as the TX processor 316, the RX processor 370, and/or the controller/processor 375) . The method may enable the base station to schedule one or more offsets for a UE based at least in part on the UE’s available computational resources for processing one or more HARQ-processes.
At 3802, the base station may receive, from a UE, a UE capability based on an HPU, where the UE capability may include a number of supported simultaneous HARQ processes based on the HPU, such as described in connection with FIG. 15. In one configuration, the UE capability may be based on processing an uplink grant, processing an uplink grant, and/or processing a physical downlink shared channel.
At 3804, the base station may transmit downlink communication to the UE, such as described in connection with FIG. 15. In one configuration, prior to transmit the downlink communication, the base station may determine a number of unoccupied HPUs for the UE in a duration of time based on the number of supported simultaneous HARQ processes and a current number of occupied HPUs for processing one or more of an uplink grant, a downlink grant, or a physical downlink shared channel. In such configuration, the duration may be based on one or more symbols and/or slots. In such configuration, the base station may not transmit additional uplink grants if the UE has no unoccupied HPUs for uplink. Similarly, the base station may not transmit  additional downlink grants for a PDSCH if the UE has no unoccupied HPUs for downlink. Thus, the base station may transmit a scheduling offset to the UE based on a number of unoccupied HARQ-process units.
At 3806, the base station may receive HARQ feedback based on the UE capability, such as described in connection with FIG. 15. However, the base station may not receive HARQ feedback for a PDSCH if the UE has no unoccupied HPUs for downlink.
In another configuration, as described in connection with FIG. 17, the base station may receive an indication of a maximum number of HARQ processes based on a BWP or a CC, such as described in connection with FIG. 17. In such configuration, the base station may receive a report of one or more processing timing capabilities dependent on one or more HARQ processes for a first BWP or CC and a processing timing capability independent of the number of HARQ processes for a second BWP or CC. Then, the base station may schedule the downlink communication based on the one or more processing timing capabilities corresponding to the number of HARQ processes if the downlink communication is received in the first BWP or CC and schedules the downlink communication using the processing timing capability independent of the number of HARQ processes if the downlink communication is received in the second BWP or CC. The base station may configure the maximum number of HARQ processes in the first BWP or CC and in the second BWP or CC via an RRC for the UE.
FIG. 39 is a diagram 3900 illustrating an example of a hardware implementation for an apparatus 3902. The apparatus 3902 is a base station and includes a baseband unit 3904. The baseband unit 3904 may communicate through a cellular RF transceiver with the UE 104. The baseband unit 3904 may include a computer-readable medium/memory. The baseband unit 3904 is responsible for general processing, including the execution of software stored on the computer-readable medium/memory. The software, when executed by the baseband unit 3904, causes the baseband unit 3904 to perform the various functions described supra. The computer-readable medium/memory may also be used for storing data that is manipulated by the baseband unit 3904 when executing software. The baseband unit 3904 further includes a reception component 3930, a communication manager 3932, and a transmission component 3934. The communication manager 3932 includes the one or more illustrated components. The components within the communication manager 3932 may be stored  in the computer-readable medium/memory and/or configured as hardware within the baseband unit 3904. The baseband unit 3904 may be a component of the BS 310 and may include the memory 376 and/or at least one of the TX processor 316, the RX processor 370, and the controller/processor 375.
The communication manager 3932 includes a receiving component 3940 that is configured to receive, from a UE, a UE capability based on a HPU, e.g., as described in connection with 3802 of FIG. 38. The communication manager 3932 further includes a transmitting component 3942 that is configured to transmit downlink communication to the UE, e.g., as described in connection with 3804 of FIG. 38. The communication manager 3932 includes a receiving component 3944 that is configured to receive HARQ feedback based on the UE capability, e.g., as described in connection with 3806 of FIG. 38.
The apparatus may include additional components that perform each of the blocks of the algorithm in the flowchart of FIG. 38. As such, each block in the flowcharts of FIG. 38 may be performed by a component and the apparatus may include one or more of those components. The components may be one or more hardware components specifically configured to carry out the stated processes/algorithm, implemented by a processor configured to perform the stated processes/algorithm, stored within a computer-readable medium for implementation by a processor, or some combination thereof. In one configuration, the apparatus 3902, and in particular the baseband unit 3904, includes means for receiving, from a UE, a UE capability based on an HPU. The apparatus 3902 includes means for transmitting downlink communication to the UE. The apparatus 3902 includes means for receiving HARQ feedback based on the UE capability. The means may be one or more of the components of the apparatus 3902 configured to perform the functions recited by the means. As described supra, the apparatus 3902 may include the TX Processor 316, the RX Processor 370, and the controller/processor 375. As such, in one configuration, the means may be the TX Processor 316, the RX Processor 370, and the controller/processor 375 configured to perform the functions recited by the means.
Figure 40 is a flowchart 4000 of a method of wireless communication. The method may be performed by a base station or a component of a base station (e.g.,  base station  102, 180, 310, 604, 1204, 1504, 1604; which may include the memory 376 and which may be the entire base station 310 or a component of the base station 310, such as the TX processor 316, the RX processor 370, and/or the controller/processor 375) . The  method may enable the base station to refrain from transmitting a DL or a UL grant DCI to a UE in a duration of time indicated by the UE.
At 4002, the base station may receive, from a UE, a duration of time following reception of one or more grants when the UE does not expect to receive an additional grant, such as described in connection with FIG. 16. In one configuration, the base station may receive the duration of time for one or more uplink grants and/or one or more downlink grants. In such configuration, the duration of time may be indicated to the base station as a UE capability by the UE, where the base station may refrain from sending the additional grant to the UE during the duration of time following the one or more grants. The duration of time in which the base station is refrained from sending the additional grant may apply to transmission of a single grant or multiple grants.
At 4004, the base station may transmit the one or more grants to the UE, such as described in connection with FIG. 16. However, the base station may not transmit additional grant with the duration of time after transmitting the one or more grants to the UE.
At 4006, after the duration of time expires, the base station may transmit an additional grant (s) to the UE (e.g., following the one or more grants by at least the duration of time) , such as described in connection with FIG. 16. In another configuration, as described in connection with FIG. 17, the base station may receive an indication of a maximum number of HARQ processes based on a BWP or a CC, such as described in connection with FIG. 17. In such configuration, the base station may receive a report of one or more processing timing capabilities dependent on one or more HARQ processes for a first BWP or CC and a processing timing capability independent of the number of HARQ processes for a second BWP or CC. Then, the base station may schedule the downlink communication based on the one or more processing timing capabilities corresponding to the number of HARQ processes if the downlink communication is received in the first BWP or CC and schedules the downlink communication using the processing timing capability independent of the number of HARQ processes if the downlink communication is received in the second BWP or CC. The base station may configure the maximum number of HARQ processes in the first BWP or CC and in the second BWP or CC via an RRC for the UE.
FIG. 41 is a diagram 4100 illustrating an example of a hardware implementation for an apparatus 4102. The apparatus 4102 is a base station and includes a baseband unit  4104. The baseband unit 4104 may communicate through a cellular RF transceiver with the UE 104. The baseband unit 4104 may include a computer-readable medium /memory. The baseband unit 4104 is responsible for general processing, including the execution of software stored on the computer-readable medium /memory. The software, when executed by the baseband unit 4104, causes the baseband unit 4104 to perform the various functions described supra. The computer-readable medium /memory may also be used for storing data that is manipulated by the baseband unit 4104 when executing software. The baseband unit 4104 further includes a reception component 4130, a communication manager 4132, and a transmission component 4134. The communication manager 4132 includes the one or more illustrated components. The components within the communication manager 4132 may be stored in the computer-readable medium /memory and/or configured as hardware within the baseband unit 4104. The baseband unit 4104 may be a component of the BS 310 and may include the memory 376 and/or at least one of the TX processor 316, the RX processor 370, and the controller/processor 375.
The communication manager 4132 includes a receiving component 4140 that is configured to receive, from a UE, a duration of time following reception of one or more grants when the UE does not expect to receive an additional grant, e.g., as described in connection with 4002 of FIG. 40. The communication manager 4132 further includes a transmitting component 4142 that is configured to transmit the one or more grants to the UE, e.g., as described in connection with 4004 of FIG. 40. The communication manager 4132 includes a transmitting component 4144 that is configured to transmit an additional grant to the UE following the one or more grants by at least the duration of time, e.g., as described in connection with 4006 of FIG. 40.
The apparatus may include additional components that perform each of the blocks of the algorithm in the flowchart of FIG. 40. As such, each block in the flowcharts of FIG. 40 may be performed by a component and the apparatus may include one or more of those components. The components may be one or more hardware components specifically configured to carry out the stated processes/algorithm, implemented by a processor configured to perform the stated processes/algorithm, stored within a computer-readable medium for implementation by a processor, or some combination thereof. In one configuration, the apparatus 4102, and in particular the baseband unit 4104, includes means for receiving, from a UE, a duration of time following reception of one or more grants when the UE does not expect to receive an  additional grant. The apparatus 4102 includes means for transmitting the one or more grants to the UE. The apparatus 4102 includes means for transmitting an additional grant to the UE following the one or more grants by at least the duration of time. The means may be one or more of the components of the apparatus 4102 configured to perform the functions recited by the means. As described supra, the apparatus 4102 may include the TX Processor 316, the RX Processor 370, and the controller/processor 375. As such, in one configuration, the means may be the TX Processor 316, the RX Processor 370, and the controller/processor 375 configured to perform the functions recited by the means.
The following aspects are illustrative only and may be combined with other aspects or teachings described herein, without limitation.
Aspect 1 is a method of wireless communication at a UE, comprising: reporting multiple UE capabilities to a base station, each capability including a set of one or more processing time parameters for a group of HARQ processes; receiving downlink communication from the base station based on a number of HARQ processes; and processing the downlink communication from the base station based on a UE capability corresponding to the number of HARQ processes.
In Aspect 2, the method of Aspect 1 further includes that the one or more processing time parameters reported for each group of HARQ processes comprise one or more of:a minimum delay in slots or symbols, between a DL grant and a corresponding PDSCH reception, a minimum delay in slots or symbols, between the PDSCH reception and a corresponding UL HARQ feedback transmission, a minimum delay in slots or symbols, between an UL grant reception and a corresponding PUSCH transmission, or a minimum delay in slots or symbols, between the UL HARQ feedback transmission and a corresponding retransmission of a PDSCH.
In Aspect 3, the method of Aspect 1 or Aspect 2 further includes that the UE reports N UE capabilities for N groups of HARQ processes, N being an integer number greater than 1, wherein a first UE capability is reported for a first group of HARQ processes comprising a first number of HARQ processes and a second UE capability is reported for a second group of additional HARQ processes in addition to the first number of HARQ processes.
In Aspect 4, the method of any of Aspects 1-3 further comprises: receiving scheduling based on the first UE capability if a scheduled number of active HARQ processes that is no more than the first number of HARQ processes; and receiving scheduling based  on the first UE capability for a first set of HARQ processes that is no more than the first number of HARQ processes and based on the second UE capability for a second set of HARQ processes if the scheduled number of active HARQ processes is more than the first number of HARQ processes.
In Aspect 5, the method of any of Aspects 1-4 further includes that the scheduled number of active HARQ processes is calculated separately for an uplink grant, a downlink grant, and a HARQ feedback.
In Aspect 6, the method of any of Aspects 1-5 further includes that the scheduled number of active HARQ processes is determined based on one or more of: the number of HARQ processes that have a running HARQ RTT timer, the number of HARQ processes that have downlink grant DCI decoded but their corresponding PDSCHs have not been received by the UE, the number of HARQ processes that have uplink grant DCI decoded but their corresponding PUSCHs have not been transmitted, and the number of HARQ processes in which the UE has received a PDSCH but a corresponding scheduled HARQ feedback has not been reported.
In Aspect 7, the method of any of Aspects 1-6 further includes that the UE reports N UE capabilities for N levels of HARQ processing, N being an integer number greater than 1, wherein each of the N levels is based on a total number of active HARQ processes.
In Aspect 8, the method of any of Aspects 1-7 further comprises: receiving scheduling based on the UE capability corresponding to the total number of active HARQ processes.
In Aspect 9, the method of any of Aspects 1-8 further includes that the UE is scheduled a longer processing time based on a reported UE capability that has a higher level or a higher number of total active HARQ processes, and is scheduled a shorter processing time based on a reported UE capability that has a lower level or a smaller number of total active HARQ processes.
In Aspect 10, the method of any of Aspects 1-9 further comprises: receiving SPS indicating scheduling timeline information for the UE based on one or more of multiple UE capabilities reported by the UE.
In Aspect 11, the method of any of Aspects 1-10 further comprises: reporting a maximum number of HARQ processes based on a BWP.
In Aspect 12, the method of any of Aspects 1-11 further includes that the UE reports one or more processing timing capabilities dependent on one or more HARQ  processes for a first BWP and a processing timing capability independent of the number of HARQ processes for a second BWP.
In Aspect 13, the method of any of Aspects 1-12 further includes that the UE processes a downlink communication based on the one or more processing timing capabilities corresponding to the number of HARQ processes if the downlink communication is received in the first BWP and processes the downlink communication using the processing timing capability independent of the number of HARQ processes if the downlink communication is received in the second BWP.
In Aspect 14, the method of any of Aspects 1-13 further includes that the maximum number of HARQ processes in the first BWP and in the second BWP is RRC configured by the base station.
In Aspect 15, the method of any of Aspects 1-14 further comprises: reporting a maximum number of HARQ processes based on a CC.
In Aspect 16, the method of any of Aspects 1-15 further includes that the UE reports one or more processing timing capabilities dependent on one or more HARQ processes for a first CC and a processing timing capability independent of the number of HARQ processes for a second CC.
In Aspect 17, the method of any of Aspects 1-16 further includes that the UE processes a downlink communication based on the one or more processing timing capabilities corresponding to the number of HARQ processes if the downlink communication is received in the first CC and processes the downlink communication using the processing timing capability independent of the number of HARQ processes if the downlink communication is received in the second CC.
In Aspect 18, the method of any of Aspects 1-17 further includes that the maximum number of HARQ processes in the first CC and in the second CC is RRC configured by the base station.
Aspect 19 is an apparatus for wireless communication at a UE, comprising: means for reporting multiple UE capabilities to a base station, each capability including a set of one or more processing time parameters for a group of ARQ processes; means for receiving downlink communication from the base station based on a number of HARQ processes; and means for processing the downlink communication from the base station based on a UE capability corresponding to the number of HARQ processes.
In Aspect 20, the apparatus of Aspect 19 further comprises means to perform the method of any of Aspects 2-18.
Aspect 21 is an apparatus for wireless communication at a UE, comprising: a memory; and at least one processor coupled to the memory, the memory and the at least one processor configured to perform the method of Aspects 1-18.
Aspect 22 is a computer-readable medium storing computer executable code for wireless communication at a UE, the code when executed by a processor cause the processor to perform the method of any of Aspects 1-18.
Aspect 23 is a method of wireless communication at a UE, comprising: reporting a reduced capability for the UE; and receiving a scheduling timeline with an adjustment based on at least one of the reduced capability for the UE or a total number of active HARQ processes exceeding a HARQ processes threshold.
In Aspect 24, the method of Aspect 23 further includes that the scheduling timeline with the adjustment is determined by one or more increased or modified number of slots.
In Aspect 25, the method of Aspect 23 or Aspect 24 further: reporting, to a base station, a number of HARQ processes to which a first processing delay between receiving a PDSCH and a corresponding HARQ feedback and a second processing delay between reception of a PDCCH to transmission of a corresponding PUSCH apply, wherein the scheduling timeline is adjusted based on the total number of active HARQ processes exceeding the number of HARQ processes to which the first processing delay and the second processing delay apply.
In Aspect 26, the method of any of Aspects 23-25 further comprises: receiving, from the base station, a configuration of the number of HARQ processes, wherein the scheduling timeline is adjusted based on the total number of active HARQ processes exceeding the number of HARQ processes to which the first processing delay and the second processing delay apply.
In Aspect 27, the method of any of Aspects 23-26 further includes that reporting the number of HARQ processes is defined and the scheduling timeline is adjusted based on the total number of active HARQ processes exceeding the number of HARQ processes to which the first processing delay and the second processing delay apply.
In Aspect 28, the method of any of Aspects 23-27 further includes that each of the active HARQ processes is associated with a running HARQ RTT timer.
In Aspect 29, the method of any of Aspects 23-28 further includes that the total number of active HARQ processes is calculated separately for an uplink grant, a downlink grant, and a HARQ feedback.
In Aspect 30, the method of any of Aspects 23-29 further includes that the total number of active HARQ processes is determined based on one or more of: the number of HARQ processes that have a running HARQ RTT timer, the number of HARQ processes that have downlink grant DCI decoded but their corresponding PDSCHs have not been received by the UE, the number of HARQ processes that have uplink grant DCI decoded but their corresponding PUSCHs have not been transmitted, and the number of HARQ processes in which the UE has received a PDSCH but a corresponding scheduled HARQ feedback has not been reported.
In Aspect 31, the method of any of Aspects 23-30 further includes that the scheduling timeline with an adjustment comprises one or more of: an increased minimum delay between a DL grant and a corresponding PDSCH reception, an increased minimum delay between the PDSCH reception and a corresponding UL HARQ feedback transmission, an increased minimum delay between an UL grant reception and a corresponding PUSCH transmission, or an increased delay between the UL HARQ feedback transmission and a corresponding retransmission of a PDSCH.
In Aspect 32, the method of any of Aspects 23-31 further comprises: reporting a timing adjustment with one or more increased processing time parameters, wherein the scheduling timeline is adjusted based on the timing adjustment reported by the UE.
In Aspect 33, the method of any of Aspects 23-32 further comprises: receiving, from a base station, a timing adjustment configuration with one or more increased processing time parameters, wherein the scheduling timeline is adjusted based on the timing adjustment configuration from the base station.
In Aspect 34, the method of any of Aspects 23-33 further includes that the scheduling timeline is adjusted based on a defined timing adjustment comprising one or more increased processing time parameters.
In Aspect 35, the method of any of Aspects 23-34 further includes that the one or more increased processing time parameters includes one or more of: an increased minimum delay between a DL grant and a corresponding PDSCH reception, an increased minimum delay between the PDSCH reception and a corresponding UL HARQ feedback transmission, an increased minimum delay between an UL grant  reception and a corresponding PUSCH transmission, or an increased delay between the UL HARQ feedback transmission and a corresponding retransmission of a PDSCH.
In Aspect 36, the method of any of Aspects 23-35 further comprises: reporting a maximum number of HARQ processes based on a BWP.
In Aspect 37, the method of any of Aspects 23-36 further includes that the UE reports one or more processing timing capabilities dependent on one or more HARQ processes for a first BWP and a processing timing capability independent of the number of HARQ processes for a second BWP.
In Aspect 38, the method of any of Aspects 23-37 further includes that the UE processes a downlink communication based on the one or more processing timing capabilities corresponding to the number of HARQ processes if the downlink communication is received in the first BWP and processes the downlink communication using the processing timing capability independent of the number of HARQ processes if the downlink communication is received in the second BWP.
In Aspect 39, the method of any of Aspects 23-38 further includes that the maximum number of HARQ processes in the first BWP and in the second BWP is RRC configured by a base station.
In Aspect 40, the method of any of Aspects 23-39 further comprises: reporting a maximum number of HARQ processes based on a CC.
In Aspect 41, the method of any of Aspects 23-40 further includes that the UE reports one or more processing timing capabilities dependent on one or more HARQ processes for a first CC and a processing timing capability independent of the number of HARQ processes for a second CC.
In Aspect 42, the method of any of Aspects 23-41 further includes that the UE processes a downlink communication based on the one or more processing timing capabilities corresponding to the number of HARQ processes if the downlink communication is received in the first CC and processes the downlink communication using the processing timing capability independent of the number of HARQ processes ifthe downlink communication is received in the second CC.
In Aspect 43, the method of any of Aspects 23 -42 further includes that the maximum number of HARQ processes in the first CC and in the second CC is RRC configured by a base station.
Aspect 44 is an apparatus for wireless communication at a UE, comprising: means for reporting a reduced capability for the UE; means for receiving a scheduling timeline with an adjustment based on at least one of the reduced capability for the UE or a total number of active HARQ processes exceeding a HARQ processes threshold.
In Aspect 45, the apparatus of Aspect 44 further comprises means to perform the method of any of Aspects 24-43.
Aspect 46 is an apparatus for wireless communication at a UE, comprising: a memory; and at least one processor coupled to the memory, the memory and the at least one processor configured to perform the method of Aspects 23-43.
Aspect 47 is a computer-readable medium storing computer executable code for wireless communication at a UE, the code when executed by a processor cause the processor to perform the method of any of Aspects 23-43.
Aspect 48 is yet another method of wireless communication at a user equipment. The method (like other techniques discussed herein) may include one or more optional actions and/or steps (such as those that follow) . For Aspect, the method may include reporting multiple UE capabilities to a base station, each capability including a set of one or more processing time parameters for a group of HARQ processes. The method may also include receiving downlink communication from the base station based on a number of HARQ processes. Further, the method may optionally include processing the downlink communication from the base station based on a UE capability corresponding to the number of HARQ processes.
Aspect 49 is yet another method of wireless communication at a user equipment. The method (like other techniques discussed herein) may include one or more optional actions and/or steps (such as those that follow) . For Aspect, the method may include reporting a reduced capability for the UE. The method may also include receiving a scheduling timeline with an adjustment based on at least one of the reduced capability for the UE or a total number of active HARQ processes exceeding a HARQ processes threshold.
Aspect 50 is a method of wireless communication at a UE, comprising: reporting, to a base station, N UE capabilities for N groups of TBS, N being an integer number greater than 1, wherein a first UE capability is reported for a first TBS group and a second UE capability is reported for a second TBS group; receiving downlink communication having a TBS from the base station; and processing the downlink  communication from the base station based on a UE capability from the N UE capabilities corresponding to the TBS.
In Aspect 51, the method of Aspect 50 further includes that the UE reports a first UE capability for a first TBS group and reports a second UE capability for a second TBS group.
In Aspect 52, the method of Aspect 50 or Aspect 51 further comprises: receiving scheduling based on the first UE capability if the TBS is within the first TBS group; and receiving scheduling based on the first UE capability for a first TBS within the first TBS group and based on the second UE capability for a second TBS within the second TBS group.
In Aspect 53, the method of any of Aspects 1-3 further includes that the UE reports a longer processing time for a first TBS group associated with a larger TBS and reports a shorter processing time for a second TBS group with smaller TBS.
In Aspect 54, the method of any of Aspects 50-53 further includes that each of the N UE capabilities includes one or more of: a minimum delay in slots or symbols between a DL grant and a corresponding PDSCH reception, a minimum delay in slots or symbols between the PDSCH reception and a corresponding UL HARQ feedback transmission, a minimum delay in slots or symbols between an UL grant reception and a corresponding PUSCH transmission, or a minimum delay in slots or symbols between the UL HARQ feedback transmission and a corresponding retransmission of a PDSCH.
In Aspect 55, the method of any of Aspects 50-54 further comprises: reporting a maximum number of HARQ processes based on a BWP.
In Aspect 56, the method of any of Aspects 50-55 further includes that the UE reports one or more processing timing capabilities dependent on one or more HARQ processes for a first BWP and a processing timing capability independent of the number of HARQ processes for a second BWP.
In Aspect 57, the method of any of Aspects 50-56 further includes that the UE processes the downlink communication based on the one or more processing timing capabilities corresponding to the number of HARQ processes if the downlink communication is received in the first BWP and processes the downlink communication using the processing timing capability independent of the number of HARQ processes if the downlink communication is received in the second BWP.
In Aspect 58, the method of any of Aspects 50-57 further includes that the maximum number of HARQ processes in the first BWP and in the second BWP is RRC configured by the base station.
In Aspect 59, the method of any of Aspects 50-58 further comprises: reporting a maximum number of HARQ processes based on a CC.
In Aspect 60, the method of any of Aspects 50-59 further includes that the UE reports one or more processing timing capabilities dependent on one or more HARQ processes for a first CC and a processing timing capability independent of the number of HARQ processes for a second CC.
In Aspect 61, the method of any of Aspects 50-60 further includes that the UE processes the downlink communication based on the one or more processing timing capabilities corresponding to the number of HARQ processes if the downlink communication is received in the first CC and processes the downlink communication using the processing timing capability independent of the number of HARQ processes ifthe downlink communication is received in the second CC.
Aspect 62 is an apparatus for wireless communication at a UE, comprising: means for reporting, to a base station, N UE capabilities for N groups of TBS, N being an integer number greater than 1, wherein a first UE capability is reported for a first TBS group and a second UE capability is reported for a second TBS group; means for receiving downlink communication having a TBS from the base station; and means for processing the downlink communication from the base station based on a UE capability from the N UE capabilities corresponding to the TBS.
In Aspect 63, the apparatus of Aspect 62 further comprises means to perform the method of any of Aspects 51-61.
Aspect 64 is an apparatus for wireless communication at a UE, comprising: a memory; and at least one processor coupled to the memory, the memory and the at least one processor configured to perform the method of Aspects 50-61.
Aspect 65 is a computer-readable medium storing computer executable code for wireless communication at a UE, the code when executed by a processor cause the processor to perform the method of any of Aspects 50-61.
Aspect 66 is a method of wireless communication at a UE, comprising: reporting, to a base station, a first processing time capability for a first type of PUSCH; reporting, to the base station, a second processing time capability for a second type of PUSCH;  receiving an uplink grant for a PUSCH transmission; and transmitting the PUSCH based on a processing time corresponding to the type of the PUSCH transmission.
In Aspect 67, the method of Aspect 66 further includes that the first type of the PUSCH includes multiplexed UCI and the second type of the PUSCH does not include the multiplexed UCI.
In Aspect 68, the method of Aspect 66 or Aspect 67 further includes that the processing time is longer for the PUSCH with the multiplexed UCI than for the PUSCH without the multiplexed UCI.
In Aspect 69, the method of any of Aspects 66-68 further comprises: determining the processing time based on whether the PUSCH transmission will include multiplexed UCI.
In Aspect 70, the method of any of Aspects 66-69 further includes that the first processing time capability and the second processing time capability indicate a delay between reception of an uplink grant from the base station and transmission of a corresponding PUSCH transmission by the UE.
In Aspect 71, the method of any of Aspects 66-70 further includes that the delay is reported as a number of slots.
In Aspect 72, the method of any of Aspects 66-71 further includes that the delay is reported as a number of symbols.
In Aspect 73, the method of any of Aspects 66-72 further comprises: reporting a maximum number of HARQ processes based on a BWP.
In Aspect 74, the method of any of Aspects 66-73 further includes that the UE reports one or more processing timing capabilities dependent on one or more HARQ processes for a first BWP and a processing timing capability independent of the number of HARQ processes for a second BWP.
In Aspect 75, the method of any of Aspects 66-74 further includes that the UE processes a downlink communication based on the one or more processing timing capabilities corresponding to the number of HARQ processes if the downlink communication is received in the first BWP and processes the downlink communication using the processing timing capability independent of the number of HARQ processes if the downlink communication is received in the second BWP.
In Aspect 76, the method of any of Aspects 66-75 further includes that the maximum number of HARQ processes in the first BWP and in the second BWP is RRC configured by the base station.
In Aspect 77, the method of any of Aspects 66-76 further comprises: reporting a maximum number of HARQ processes based on a CC.
In Aspect 78, the method of any of Aspects 66-77 further includes that the UE reports one or more processing timing capabilities dependent on one or more HARQ processes for a first CC and a processing timing capability independent of the number of HARQ processes for a second CC.
In Aspect 79, the method of any of Aspects 66-78 further includes that the UE processes a downlink communication based on the one or more processing timing capabilities corresponding to the number of HARQ processes if the downlink communication is received in the first CC and processes the downlink communication using the processing timing capability independent of the number of HARQ processes ifthe downlink communication is received in the second CC.
In Aspect 80, the method of any of Aspects 66-79 further includes that the maximum number of HARQ processes in the first CC and in the second CC is RRC configured by the base station.
Aspect 81 is an apparatus for wireless communication at a UE, comprising: means for reporting, to a base station, a first processing time capability for a first type of PUSCH; means for reporting, to the base station, a second processing time capability for a second type of PUSCH; means for receiving an uplink grant for a PUSCH transmission; and means for transmitting the PUSCH based on a processing time corresponding to the type of the PUSCH transmission.
In Aspect 82, the apparatus of Aspect 81 further comprises means to perform the method of any of Aspects 67-80.
Aspect 83 is an apparatus for wireless communication at a UE, comprising: a memory; and at least one processor coupled to the memory, the memory and the at least one processor configured to perform the method of Aspects 66-80.
Aspect 84 is a computer-readable medium storing computer executable code for wireless communication at a UE, the code when executed by a processor cause the processor to perform the method of any of Aspects 66-80.
Aspect 85 is a method of wireless communication at a base station, comprising: receiving, from a UE, N UE capabilities for N groups of TBS, N being an integer number greater than 1, wherein a first UE capability is received for a first TBS group and a second UE capability is received for a second TBS group; and scheduling the  UE for downlink communication having a TBS based on a capability reported by the UE for a group including the TBS.
In Aspect 86, the method of Aspect 85 further includes that the UE reports a first UE capability for a first TBS group and reports a second UE capability for a second TBS group.
In Aspect 87, the method of Aspect 85 or Aspect 86 further comprises: transmitting scheduling based on the first UE capability if the TBS is within the first TBS group; and transmitting scheduling based on the first UE capability for a first TBS within the first TBS group and based on the second UE capability for a second TBS within the second TBS group.
In Aspect 88, the method of any of Aspects 85-87 further includes that the UE reports a longer processing time for a first TBS group associated with a larger TBS and reports a shorter processing time for a second TBS group with smaller TBS.
In Aspect 89, the method of any of Aspects 85-88 further includes that each of the N UE capabilities includes one or more of: a minimum delay in slots or symbols between a DL grant and a corresponding PDSCH reception, a minimum delay in slots or symbols between the PDSCH reception and a corresponding UL HARQ feedback transmission, a minimum delay in slots or symbols between an UL grant reception and a corresponding PUSCH transmission, or a minimum delay in slots or symbols between the UL HARQ feedback transmission and a corresponding retransmission of a PDSCH.
In Aspect 90, the method of any of Aspects 85-89 further comprises: receiving an indication of a maximum number of HARQ processes based on a BWP.
In Aspect 91, the method of any of Aspects 85-90 further includes that the base station receives a report of one or more processing timing capabilities dependent on one or more HARQ processes for a first BWP and a processing timing capability independent of the number of HARQ processes for a second BWP.
In Aspect 92, the method of any of Aspects 85-91 further includes that the base station schedules the downlink communication based on the one or more processing timing capabilities corresponding to the number of HARQ processes if the downlink communication is received in the first BWP and schedules the downlink communication using the processing timing capability independent of the number of HARQ processes if the downlink communication is received in the second BWP.
In Aspect 93, the method of any of Aspects 85-92 further comprises: configuring the maximum number of HARQ processes in the first BWP and in the second BWP via an RRC for the UE.
In Aspect 94, the method of any of Aspects 85-93 further comprises: receiving a maximum number of HARQ processes based on a CC.
In Aspect 95, the method of any of Aspects 85-94 further includes that the base station receives a report of one or more processing timing capabilities dependent on one or more HARQ processes for a first CC and a processing timing capability independent of the number of HARQ processes for a second CC.
In Aspect 96, the method of any of Aspects 85-95 further includes that the base station schedules the downlink communication based on the one or more processing timing capabilities corresponding to the number of HARQ processes if the downlink communication is received in the first CC and schedules the downlink communication using the processing timing capability independent of the number of HARQ processes ifthe downlink communication is received in the second CC.
In Aspect 97, the method of any of Aspects 85-96 further comprises: configuring the maximum number of HARQ processes in the first CC and in the second CC via an RRC for the UE.
Aspect 98 is an apparatus for wireless communication at a base station, comprising: means for receiving, from a UE, N UE capabilities for N groups of TBS, N being an integer number greater than 1, wherein a first UE capability is received for a first TBS group and a second UE capability is received for a second TBS group; and means for transmitting downlink communication having a TBS to the UE.
In Aspect 99, the apparatus of Aspect 98 further comprises means to perform the method of any of Aspects 86-97.
Aspect 100 is an apparatus for wireless communication at a base station, comprising: a memory; and at least one processor coupled to the memory, the memory and the at least one processor configured to perform the method of Aspects 85-97.
Aspect 101 is a computer-readable medium storing computer executable code for wireless communication at a base station, the code when executed by a processor cause the processor to perform the method of any of Aspects 85-97.
Aspect 102 is a method of wireless communication at a base station, comprising: receiving, from a UE, a first processing time capability for a first type of PUSCH; receiving, from the UE, a second processing time capability for a second type of  PUSCH; transmitting an uplink grant for a PUSCH transmission; and receiving the PUSCH based on a processing time corresponding to the type of the PUSCH transmission.
In Aspect 103, the method of Aspect 102 further includes that the first type of the PUSCH includes multiplexed UCI and the second type of the PUSCH does not include the multiplexed UCI.
In Aspect 104, the method of Aspect 102 or Aspect 103 further includes that the processing time is longer for the PUSCH with the multiplexed UCI than for the PUSCH without the multiplexed UCI.
In Aspect 105, the method of any of Aspects 102-104 further comprises: determining the processing time based on whether the PUSCH transmission will include multiplexed UCI.
In Aspect 106, the method of any of Aspects 102-105 further includes that the first processing time capability and the second processing time capability indicate a delay between reception of an uplink grant at the UE and transmission of a corresponding PUSCH by the UE.
In Aspect 107, the method of any of Aspects 102-106 further includes that the delay is reported as a number of slots.
In Aspect 108, the method of any of Aspects 102-107 further includes that the delay is reported as a number of symbols.
In Aspect 109, the method of any of Aspects 102-108 further comprises: receiving an indication of a maximum number of HARQ processes based on a BWP.
In Aspect 110, the method of any of Aspects 102-109 further includes that the base station receives a report of one or more processing timing capabilities dependent on one or more HARQ processes for a first BWP and a processing timing capability independent of the number of HARQ processes for a second BWP.
In Aspect 111, the method of any of Aspects 102-110 further includes that the base station schedules the downlink communication based on the one or more processing timing capabilities corresponding to the number of HARQ processes if the downlink communication is received in the first BWP and schedules the downlink communication using the processing timing capability independent of the number of HARQ processes if the downlink communication is received in the second BWP.
In Aspect 112, the method of any of Aspects 102-111 further comprises: configuring the maximum number of HARQ processes in the first BWP and in the second BWP via an RRC for the UE.
In Aspect 113, the method of any of Aspects 102-112 further comprises: receiving an indication of a maximum number of HARQ processes based on a CC.
In Aspect 114, the method of any of Aspects 102-113 further includes that the base station receives a report of one or more processing timing capabilities dependent on one or more HARQ processes for a first CC and a processing timing capability independent of the number of HARQ processes for a second CC.
In Aspect 115, the method of any of Aspects 102-114 further includes that the base station schedules the downlink communication based on the one or more processing timing capabilities corresponding to the number of HARQ processes if the downlink communication is received in the first CC and schedules the downlink communication using the processing timing capability independent of the number of HARQ processes if the downlink communication is received in the second CC.
In Aspect 116, the method of any of Aspects 102-115 further comprises: configuring the maximum number of HARQ processes in the first CC and in the second CC via an RRC for the UE.
Aspect 117 is an apparatus for wireless communication at a base station, comprising: means for receiving, from a UE, a first processing time capability for a first type of PUSCH; means for receiving, from the UE, a second processing time capability for a second type of PUSCH; means for transmitting an uplink grant for a PUSCH transmission; and means for receiving the PUSCH based on a processing time corresponding to the type of the PUSCH transmission.
In Aspect 118, the apparatus of Aspect 117 further comprises means to perform the method of any of Aspects 103-116.
Aspect 119 is an apparatus for wireless communication at a base station, comprising: a memory; and at least one processor coupled to the memory, the memory and the at least one processor configured to perform the method of Aspects 102-116.
Aspect 120 is a computer-readable medium storing computer executable code for wireless communication at a base station, the code when executed by a processor cause the processor to perform the method of any of Aspects 102-116.
Aspect 121 is yet another method of wireless communication at a user equipment. The method (like other techniques discussed herein) may include one or more optional  actions and/or steps (such as those that follow) . For Aspect, the method may include reporting, to a base station, N UE capabilities for N groups of TBS, N being an integer number greater than 1, wherein a first UE capability is reported for a first TBS group and a second UE capability is reported for a second TBS group. The method may also include receiving downlink communication having a TBS from the base station. Further, the method may optionally include processing the downlink communication from the base station based on a UE capability from the N UE capabilities corresponding to the TBS.
Aspect 122 is yet another method of wireless communication at a user equipment. The method (like other techniques discussed herein) may include one or more optional actions and/or steps (such as those that follow) . For Aspect, the method may include reporting, to a base station, a first processing time capability for a first type of PUSCH. The method may also include reporting, to the base station, a second processing time capability for a second type of PUSCH. Further, the method may optionally include receiving an uplink grant for a PUSCH transmission. Further, the method may optionally include transmitting the PUSCH based on a processing time corresponding to the type of the PUSCH transmission.
Aspect 123 is yet another method of wireless communication at a base station. The method (like other techniques discussed herein) may include one or more optional actions and/or steps (such as those that follow) . For Aspect, the method may include receiving, from a UE, N UE capabilities for N groups of TBS, N being an integer number greater than 1, wherein a first UE capability is received for a first TBS group and a second UE capability is received for a second TBS group. The method may also include scheduling the UE for downlink communication having a TBS based on a capability reported by the UE for a group including the TBS.
Aspect 124 is yet another method of wireless communication at a base station. The method (like other techniques discussed herein) may include one or more optional actions and/or steps (such as those that follow) . For Aspect, the method may include receiving, from a UE, a first processing time capability for a first type of PUSCH. The method may also include receiving, from the UE, a second processing time capability for a second type of PUSCH. Further, the method may optionally include transmitting an uplink grant for a PUSCH transmission. Further, the method may optionally include receiving the PUSCH based on a processing time corresponding to the type of the PUSCH transmission.
Aspect 125 is a method of wireless communication at a UE, comprising: reporting, to a base station, a UE capability based on an HPU; receiving downlink communication from the base station; and processing the downlink communication from the base station and providing HARQ feedback based on the reported UE capability.
In Aspect 126, the method of Aspect 125 further includes that the UE capability includes a number of supported simultaneous HARQ processes based on the HPU.
In Aspect 127, the method of Aspect 125 or Aspect 126 further comprises: determining a number of unoccupied HPUs in a duration of time based on the number of supported simultaneous HARQ processes and a current number of occupied HPUs for processing one or more of an uplink grant, a downlink grant, or a physical downlink shared channel.
In Aspect 128, the method of any of Aspects 125-127 further includes that the duration is based on one or more symbols.
In Aspect 129, the method of any of Aspects 125-128 further includes that the duration is based on one or more slots.
In Aspect 130, the method of any of Aspects 125-129 further includes that the UE does not receive additional uplink grants if the UE has no unoccupied HPUs for uplink.
In Aspect 131, the method of any of Aspects 125-130 further includes that the UE does not determine HARQ feedback for a PDSCH if the UE has no unoccupied HPUs for downlink.
In Aspect 132, the method of any of Aspects 125-131 further includes that the UE does not receive additional downlink grants for a PDSCH if the UE has no unoccupied HPUs for downlink.
In Aspect 133, the method of any of Aspects 125-132 further includes that the UE capability is based on processing an uplink grant.
In Aspect 134, the method of any of Aspects 125-133 further includes that the UE capability is based on processing a downlink grant.
In Aspect 135, the method of any of Aspects 125-134 further includes that the UE capability is based on processing a physical downlink shared channel.
In Aspect 136, the method of any of Aspects 125-135 further comprises: receiving a scheduling offset from the base station based on a number of unoccupied HARQ-process units.
Aspect 137 is an apparatus for wireless communication at a UE, comprising: means for reporting, to a base station, a UE capability based on an HPU; means for receiving downlink communication from the base station; and means for processing the downlink communication from the base station and providing HARQ feedback based on the reported UE capability.
In Aspect 138, the apparatus of Aspect 137 further comprises means to perform the method of any of Aspects 126-136.
Aspect 139 is an apparatus for wireless communication at a UE, comprising: a memory; and at least one processor coupled to the memory, the memory and the at least one processor configured to perform the method of Aspects 125-136.
Aspect 140 is a computer-readable medium storing computer executable code for wireless communication at a UE, the code when executed by a processor cause the processor to perform the method of any of Aspects 125-136.
Aspect 141 is a method of wireless communication at a UE, comprising: reporting, to a base station, a duration of time following reception of one or more grants when the UE does not expect to receive an additional grant; receiving the one or more grants from the base station; and receiving an additional grant from the base station following the one or more grants by at least the duration of time.
In Aspect 142, the method of Aspect 141 further includes that the UE reports the duration of time for one or more uplink grants.
In Aspect 143, the method of Aspect 141 or Aspect 142 further includes that the UE reports the duration of time for one or more downlink grants.
In Aspect 144, the method of any of Aspects 141-143 further includes that the duration of time is reported to the base station as a UE capability.
In Aspect 145, the method of any of Aspects 141-144 further includes that the duration of time applies to reception of a single grant.
In Aspect 146, the method of any of Aspects 141-145 further includes that the duration of time applies to reception of multiple grants.
In Aspect 147, the method of any of Aspects 141-146 further includes that the duration of time applies following reception of the multiple grants within a period of time.
In Aspect 148, the method of any of Aspects 141-147 further comprises: reporting a maximum number of HARQ processes based on a BWP.
In Aspect 149, the method of any of Aspects 141-148 further includes that the UE reports one or more processing timing capabilities dependent on one or more HARQ  processes for a first BWP and a processing timing capability independent of the number of HARQ processes for a second BWP.
In Aspect 150, the method of any of Aspects 141-149 further includes that the UE processes a downlink communication based on the one or more processing timing capabilities corresponding to the number of HARQ processes if the downlink communication is received in the first BWP and processes the downlink communication using the processing timing capability independent of the number of HARQ processes if the downlink communication is received in the second BWP.
In Aspect 151, the method of any of Aspects 141-150 further includes that the maximum number of HARQ processes in the first BWP and in the second BWP is RRC configured by the base station.
In Aspect 152, the method of any of Aspects 141-151 further comprises: reporting a maximum number of HARQ processes based on a CC.
In Aspect 153, the method of any of Aspects 141-152 further includes that the UE reports one or more processing timing capabilities dependent on one or more HARQ processes for a first CC and a processing timing capability independent of the number of HARQ processes for a second CC.
In Aspect 154, the method of any of Aspects 141-153 further includes that the UE processes a downlink communication based on the one or more processing timing capabilities corresponding to the number of HARQ processes if the downlink communication is received in the first CC and processes the downlink communication using the processing timing capability independent of the number of HARQ processes if the downlink communication is received in the second CC.
In Aspect 155, the method of any of Aspects 141-154 further includes that the maximum number of HARQ processes in the first CC and in the second CC is RRC configured by the base station.
Aspect 156 is an apparatus for wireless communication at a UE, comprising: means for reporting, to a base station, a duration of time following reception of one or more grants when the UE does not expect to receive an additional grant; means for receiving the one or more grants from the base station; and means for receiving an additional grant from the base station following the one or more grants by at least the duration of time.
In Aspect 157, the apparatus of Aspect 156 further comprises means to perform the method of any of Aspects 142-155.
Aspect 158 is an apparatus for wireless communication at a UE, comprising: a memory; and at least one processor coupled to the memory, the memory and the at least one processor configured to perform the method of Aspects 141-155.
Aspect 159 is a computer-readable medium storing computer executable code for wireless communication at a UE, the code when executed by a processor cause the processor to perform the method of any of Aspects 141-155.
Aspect 160 is a method of wireless communication at a base station, comprising: receiving, from a UE, a UE capability based on an HPU; transmitting downlink communication to the UE; and receiving HARQ feedback based on the UE capability.
In Aspect 161, the method of Aspect 160 further includes that the UE capability includes a number of supported simultaneous HARQ processes based on the HPU.
In Aspect 162, the method of Aspect 160 or Aspect 161 further comprises: determining a number of unoccupied HPUs for the UE in a duration of time based on the number of supported simultaneous HARQ processes and a current number of occupied HPUs for processing one or more of an uplink grant, a downlink grant, or a physical downlink shared channel.
In Aspect 163, the method of any of Aspects 160-162 further includes that the duration is based on one or more symbols.
In Aspect 164, the method of any of Aspects 160-163 further includes that the duration is based on one or more slots.
In Aspect 165, the method of any of Aspects 160-164 further includes that the base station does not transmit additional uplink grants if the UE has no unoccupied HPUs for uplink.
In Aspect 166, the method of any of Aspects 160-165 further includes that the base station does not receive HARQ feedback for a PDSCH if the UE has no unoccupied HPUs for downlink.
In Aspect 167, the method of any of Aspects 160-166 further includes that the base station does not transmit additional downlink grants for a PDSCH if the UE has no unoccupied HPUs for downlink.
In Aspect 168, the method of any of Aspects 160-167 further includes that the UE capability is based on processing an uplink grant.
In Aspect 169, the method of any of Aspects 160-168 further includes that the UE capability is processing an uplink grant.
In Aspect 170, the method of any of Aspects 160-169 further includes that the UE capability is based on processing a physical downlink shared channel.
In Aspect 171, the method of any of Aspects 160-170 further comprises: transmitting a scheduling offset to the UE based on a number of unoccupied HARQ-process units.
Aspect 172 is an apparatus for wireless communication at a base station, comprising: means for receiving, from a UE, a UE capability based on an HPU; means for transmitting downlink communication to the UE; and means for receiving HARQ feedback based on the UE capability.
In Aspect 173, the apparatus of Aspect 172 further comprises means to perform the method of any of Aspects 161-171.
Aspect 174 is an apparatus for wireless communication at a base station, comprising: a memory; and at least one processor coupled to the memory, the memory and the at least one processor configured to perform the method of Aspects 160-171.
Aspect 175 is a computer-readable medium storing computer executable code for wireless communication at a base station, the code when executed by a processor cause the processor to perform the method of any of Aspects 160-171.
Aspect 176 is a method of wireless communication at a base station, comprising: receiving, from a UE, a duration of time following reception of one or more grants when the UE does not expect to receive an additional grant; transmitting the one or more grants to the UE; and transmitting an additional grant to the UE following the one or more grants by at least the duration of time.
In Aspect 177, the method of Aspect 176 further includes that the base station receives the duration of time for one or more uplink grants.
In Aspect 178, the method of Aspect 176 or Aspect 177 further includes that the base station receives the duration of time for one or more downlink grants.
In Aspect 179, the method of any of Aspects 176-178 further includes that the duration of time is received by the base station as a UE capability, and wherein the base station refrains from sending the additional grant to the UE during the duration of time following the one or more grants.
In Aspect 180, the method of any of Aspects 176-179 further includes that the duration of time applies to transmission of a single grant.
In Aspect 181, the method of any of Aspects 176-180 further includes that the duration of time applies to transmission of multiple grants.
In Aspect 182, the method of any of Aspects 176-181 further includes that the duration of time applies following transmission of the multiple grants within a period of time.
In Aspect 183, the method of any of Aspects 176-182 further comprises: receiving an indication of a maximum number of HARQ processes based on a BWP.
In Aspect 184, the method of any of Aspects 176-183 further includes that the base station receives a report of one or more processing timing capabilities dependent on one or more HARQ processes for a first BWP and a processing timing capability independent of the number of HARQ processes for a second BWP.
In Aspect 185, the method of any of Aspects 176-184 further includes that the base station schedules communication for the UE based on the one or more processing timing capabilities corresponding to the number of HARQ processes if the downlink communication is received in the first BWP and schedules the communication for the UE using the processing timing capability independent of the number of HARQ processes if the downlink communication is received in the second BWP.
In Aspect 186, the method of any of Aspects 176-185 further comprises: configuring the maximum number of HARQ processes in the first BWP and in the second BWP via an RRC for the UE.
In Aspect 187, the method of any of Aspects 176-186 further comprises: receiving an indication of a maximum number of HARQ processes based on a CC.
In Aspect 188, the method of any of Aspects 176-187 further includes that the base station receives a report of one or more processing timing capabilities dependent on one or more HARQ processes for a first CC and a processing timing capability independent of the number of HARQ processes for a second CC.
In Aspect 189, the method of any of Aspects 176-188 further includes that the base station schedules communication for the UE based on the one or more processing timing capabilities corresponding to the number of HARQ processes if the downlink communication is received in the first CC and schedules the communication for the UE using the processing timing capability independent of the number of HARQ processes if the downlink communication is received in the second CC.
In Aspect 190, the method of any of Aspects 176-189 further comprises: configuring the maximum number of HARQ processes in the first CC and in the second CC via an RRC for the UE.
Aspect 191 is an apparatus for wireless communication at a base station, comprising: means for receiving, from a UE, a duration of time following reception of one or more  grants when the UE does not expect to receive an additional grant; means for transmitting the one or more grants to the UE; and means for transmitting an additional grant to the UE following the one or more grants by at least the duration of time.
In Aspect 192, the apparatus of Aspect 191 further comprises means to perform the method of any of Aspects 177-190.
Aspect 193 is an apparatus for wireless communication at a base station, comprising: a memory; and at least one processor coupled to the memory, the memory and the at least one processor configured to perform the method of Aspects 176-190.
Aspect 194 is a computer-readable medium storing computer executable code for wireless communication at a base station, the code when executed by a processor cause the processor to perform the method of any of Aspects 176-190.
Aspect 195 is yet another method of wireless communication at a user equipment. The method (like other techniques discussed herein) may include one or more optional actions and/or steps (such as those that follow) . For Aspect, the method may include reporting, to a base station, a UE capability based on an HPU. The method may also include receiving downlink communication from the base station. Further, the method may optionally include processing the downlink communication from the base station and providing HARQ feedback based on the reported UE capability.
Aspect 196 is yet another method of wireless communication at a user equipment. The method (like other techniques discussed herein) may include one or more optional actions and/or steps (such as those that follow) . For Aspect, the method may include reporting, to a base station, a duration of time following reception of one or more grants when the UE does not expect to receive an additional grant. The method may also include receiving the one or more grants from the base station. Further, the method may optionally include receiving an additional grant from the base station following the one or more grants by at least the duration of time.
Aspect 197 is yet another method of wireless communication at a base station. The method (like other techniques discussed herein) may include one or more optional actions and/or steps (such as those that follow) . For Aspect, the method may include receiving, from a UE, a UE capability based on an HPU. The method may also include transmitting downlink communication to the UE. Further, the method may optionally include receiving HARQ feedback based on the UE capability.
Aspect 198 is yet another method of wireless communication at a base station. The method (like other techniques discussed herein) may include one or more optional actions and/or steps (such as those that follow) . For Aspect, the method may include receiving, from a UE, a duration of time following reception of one or more grants when the UE does not expect to receive an additional grant. The method may also include transmitting the one or more grants to the UE. Further, the method may optionally include transmitting an additional grant to the UE following the one or more grants by at least the duration of time.
It is understood that the specific order or hierarchy of blocks in the processes /flowcharts disclosed is an illustration of example approaches. Based upon design preferences, it is understood that the specific order or hierarchy of blocks in the processes /flowcharts may be rearranged. Further, some blocks may be combined or omitted. The accompanying method claims present elements of the various blocks in a sample order, and are not meant to be limited to the specific order or hierarchy presented.
The previous description is provided to enable any person skilled in the art to practice the various aspects described herein. Various modifications to these aspects will be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other aspects. Thus, the claims are not intended to be limited to the aspects shown herein, but is to be accorded the full scope consistent with the language claims, wherein reference to an element in the singular is not intended to mean “one and only one” unless specifically so stated, but rather “one or more. ” Terms such as “if, ” “when, ” and “while” should be interpreted to mean “under the condition that” rather than imply an immediate temporal relationship or reaction. That is, these phrases, e.g., “when, ” do not imply an immediate action in response to or during the occurrence of an action, but simply imply that if a condition is met then an action will occur, but without requiring a specific or immediate time constraint for the action to occur. The word “exemplary” is used herein to mean “serving as an example, instance, or illustration. ” Any aspect described herein as “exemplary” is not necessarily to be construed as preferred or advantageous over other aspects. Unless specifically stated otherwise, the term “some” refers to one or more. Combinations such as “at least one of A, B, or C, ” “one or more of A, B, or C, ” “at least one of A, B, and C, ” “one or more of A, B, and C, ” and “A, B, C, or any combination thereof” include any combination of A, B, and/or C, and may include multiples of A, multiples of B, or  multiples of C. Specifically, combinations such as “at least one of A, B, or C, ” “one or more of A, B, or C, ” “at least one of A, B, and C, ” “one or more of A, B, and C, ” and “A, B, C, or any combination thereof” may be A only, B only, C only, A and B, A and C, B and C, or A and B and C, where any such combinations may contain one or more member or members of A, B, or C. All structural and functional equivalents to the elements of the various aspects described throughout this disclosure that are known or later come to be known to those of ordinary skill in the art are expressly incorporated herein by reference and are intended to be encompassed by the claims. Moreover, nothing disclosed herein is intended to be dedicated to the public regardless of whether such disclosure is explicitly recited in the claims. The words “module, ” “mechanism, ” “element, ” “device, ” and the like may not be a substitute for the word “means. ” As such, no claim element is to be construed as a means plus function unless the element is expressly recited using the phrase “means for. ”

Claims (30)

  1. An apparatus for wireless communication at a user equipment (UE) , comprising:
    a memory; and
    at least one processor, communicatively connected to the memory, the memory and the at least one processor configured to:
    report a reduced capability for the UE; and
    receive a scheduling timeline with an adjustment based on at least one of the reduced capability for the UE or a total number of active HARQ processes exceeding a HARQ processes threshold.
  2. The apparatus of claim 1, wherein the memory and the at least one processor is further configured to determine the scheduling timeline by one or more modified or increased number of slots.
  3. The apparatus of claim 1, wherein the memory and the at least one processor is further configured to:
    report, to a base station, a number of HARQ processes to which a first processing delay between receiving a physical downlink shared channel (PDSCH) and a corresponding HARQ feedback and a second processing delay between reception of a physical downlink control channel (PDCCH) to transmission of a corresponding physical uplink shared channel (PUSCH) apply, wherein the scheduling timeline is adjusted based on the total number of active HARQ processes exceeding the number of HARQ processes to which the first processing delay and the second processing delay apply.
  4. The apparatus of claim 3, wherein the memory and the at least one processor is further configured to:
    receive, from the base station, a configuration of the number of HARQ processes, wherein the scheduling timeline is adjusted based on the total number of active HARQ processes exceeding the number of HARQ processes to which the first processing delay and the second processing delay apply.
  5. The apparatus of claim 3, wherein the number of HARQ processes is defined and the scheduling timeline is adjusted based on the total number of active HARQ processes exceeding the number of HARQ processes to which the first processing delay and the second processing delay apply.
  6. The apparatus of claim 1, wherein each of the active HARQ processes is associated with a running HARQ round trip time (RTT) timer.
  7. The apparatus of claim 1, wherein the total number of active HARQ processes is calculated separately for an uplink grant, a downlink grant, and a HARQ feedback.
  8. The apparatus of claim 7, wherein the total number of active HARQ processes is determined based on one or more of:
    the number of HARQ processes that have a running HARQ round trip time (RTT) timer,
    the number of HARQ processes that have downlink grant downlink control information (DCI) decoded but their corresponding physical downlink shared channels (PDSCHs) have not been received by the UE,
    the number of HARQ processes that have uplink grant DCI decoded but their corresponding physical uplink shared channels (PUSCHs) have not been transmitted, and
    the number of HARQ processes in which the UE has received a PDSCH but a corresponding scheduled HARQ feedback has not been reported.
  9. The apparatus of claim 1, wherein the scheduling timeline with the adjustment comprises one or more of:
    an increased minimum delay between a downlink (DL) grant and a corresponding physical downlink shared channel (PDSCH) reception,
    an increased minimum delay between the PDSCH reception and a corresponding uplink (UL) HARQ feedback transmission,
    an increased minimum delay between an UL grant reception and a corresponding physical uplink shared channel (PUSCH) transmission, or
    an increased delay between the UL HARQ feedback transmission and a corresponding retransmission of a PDSCH.
  10. The apparatus of claim 1, wherein the memory and the at least one processor is further configured to:
    report a timing adjustment with one or more increased processing time parameters, wherein the scheduling timeline is adjusted based on the timing adjustment reported by the UE.
  11. The apparatus of claim 1, wherein the memory and the at least one processor is further configured to:
    receive, from a base station, a timing adjustment configuration with one or more increased processing time parameters, wherein the scheduling timeline is adjusted based on the timing adjustment configuration from the base station.
  12. The apparatus of claim 1, wherein the scheduling timeline is adjusted based on a defined timing adjustment comprising one or more increased processing time parameters.
  13. The apparatus of claim 12, wherein the one or more increased processing time parameters includes one or more of:
    an increased minimum delay between a downlink (DL) grant and a corresponding physical downlink shared channel (PDSCH) reception,
    an increased minimum delay between the PDSCH reception and a corresponding uplink (UL) HARQ feedback transmission,
    an increased minimum delay between an UL grant reception and a corresponding physical uplink shared channel (PUSCH) transmission, or
    an increased delay between the UL HARQ feedback transmission and a corresponding retransmission of a PDSCH.
  14. The apparatus of claim 1, wherein the memory and the at least one processor is further configured to:
    report a maximum number of HARQ processes based on a BWP.
  15. The apparatus of claim 14, wherein the memory and the at least one processor is further configured to report one or more processing timing capabilities dependent on one or more HARQ processes for a first BWP and a processing timing capability independent of a number of HARQ processes for a second BWP.
  16. The apparatus of claim 15, wherein the memory and the at least one processor is further configured to process a downlink communication based on the one or more processing timing capabilities corresponding to the number of HARQ processes if the downlink communication is received in the first BWP and processes the downlink communication using the processing timing capability independent of the number of HARQ processes if the downlink communication is received in the second BWP.
  17. The apparatus of claim 16, wherein the maximum number of HARQ processes in the first BWP and in the second BWP is radio resource control (RRC) configured by a base station.
  18. The apparatus of claim 1, wherein the memory and the at least one processor is further configured to:
    report a maximum number of HARQ processes based on a component carrier (CC) .
  19. The apparatus of claim 18, wherein the memory and the at least one processor is further configured to report one or more processing timing capabilities dependent on one or more HARQ processes for a first CC and a processing timing capability independent of a number of HARQ processes for a second CC.
  20. The apparatus of claim 19, wherein the memory and the at least one processor is further configured to process a downlink communication based on the one or more processing timing capabilities corresponding to the number of HARQ processes if the downlink communication is received in the first CC and processes the downlink  communication using the processing timing capability independent of the number of HARQ processes if the downlink communication is received in the second CC.
  21. The apparatus of claim 20, wherein the maximum number of HARQ processes in the first CC and in the second CC is radio resource control (RRC) configured by a base station.
  22. The apparatus of claim 1, further comprising a transceiver coupled to the at least one processor.
  23. A method of wireless communication at a user equipment (UE) , comprising:
    reporting a reduced capability for the UE; and
    receiving a scheduling timeline with an adjustment based on at least one of the reduced capability for the UE or a total number of active HARQ processes exceeding a HARQ processes threshold.
  24. An apparatus for wireless communication at a base station, comprising:
    a memory; and
    at least one processor, communicatively connected to the memory, the memory and the at least one processor configured to:
    receive a reduced capability for a user equipment (UE) ; and
    schedule communication with the UE based on a scheduling timeline with an adjustment, wherein the adjustment is based on the reduced capability for the UE or a total number of active HARQ processes exceeding a HARQ processes threshold.
  25. The apparatus of claim 24, wherein the scheduling timeline with the adjustment includes one or more modified or increased number of slots.
  26. The apparatus of claim 24, wherein the memory and the at least one processor is further configured to:
    receive, from the UE, a number of HARQ processes to which a first processing delay between receiving a physical downlink shared channel (PDSCH) and a  corresponding HARQ feedback and a second processing delay between reception of a physical downlink control channel (PDCCH) to transmission of a corresponding physical uplink shared channel (PUSCH) apply, wherein the scheduling timeline is adjusted based on the total number of active HARQ processes exceeding the number of HARQ processes to which the first processing delay and the second processing delay apply.
  27. The apparatus of claim 26, wherein the memory and the at least one processor is further configured to:
    transmit, to the UE, a configuration of the number of HARQ processes, wherein the scheduling timeline is adjusted based on the total number of active HARQ processes exceeding the number of HARQ processes to which the first processing delay and the second processing delay apply.
  28. The apparatus of claim 24, wherein each of the active HARQ processes is associated with a running HARQ round trip time (RTT) timer, and wherein the total number of active HARQ processes is calculated separately for an uplink grant, a downlink grant, and a HARQ feedback.
  29. The apparatus of claim 24, wherein the scheduling timeline with the adjustment comprises one or more of:
    an increased minimum delay between a downlink (DL) grant and a corresponding physical downlink shared channel (PDSCH) reception,
    an increased minimum delay between the PDSCH reception and a corresponding uplink (UL) HARQ feedback transmission,
    an increased minimum delay between an UL grant reception and a corresponding physical uplink shared channel (PUSCH) transmission, or
    an increased delay between the UL HARQ feedback transmission and a corresponding retransmission of a PDSCH.
  30. A method of wireless communication at a base station, comprising:
    receiving a reduced capability for a user equipment (UE) ; and
    scheduling communication with the UE based on a scheduling timeline with an adjustment, wherein the adjustment is based on the reduced capability for the UE or a total number of active HARQ processes exceeding a HARQ processes threshold.
PCT/CN2021/112050 2020-08-12 2021-08-11 Harq-process specific user equipment configuration for reduced capability complexity reduction WO2022033515A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CNPCT/CN2020/108590 2020-08-12
PCT/CN2020/108607 WO2022032511A1 (en) 2020-08-12 2020-08-12 Harq-process specific user equipment configuration for reduced capability complexity reduction
CNPCT/CN2020/108607 2020-08-12
PCT/CN2020/108590 WO2022032509A1 (en) 2020-08-12 2020-08-12 Harq-process specific user equipment configuration for reduced capability complexity reduction
PCT/CN2020/108638 WO2022032519A1 (en) 2020-08-12 2020-08-12 Harq-process specific user equipment configuration for reduced capability complexity reduction
CNPCT/CN2020/108638 2020-08-12

Publications (1)

Publication Number Publication Date
WO2022033515A1 true WO2022033515A1 (en) 2022-02-17

Family

ID=80246974

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/112050 WO2022033515A1 (en) 2020-08-12 2021-08-11 Harq-process specific user equipment configuration for reduced capability complexity reduction

Country Status (1)

Country Link
WO (1) WO2022033515A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023174957A1 (en) * 2022-03-14 2023-09-21 Nordic Semiconductor Asa Adaptation of downlink to uplink scheduling gaps in radio communications

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170230148A1 (en) * 2014-10-31 2017-08-10 China Mobile Communications Corporation Method and device for implementing flexbile harq timing between base station and terminal
CN110431864A (en) * 2017-03-09 2019-11-08 Lg电子株式会社 Equipment for transmitting the method for UE capability and supporting this method
CN110463117A (en) * 2017-03-29 2019-11-15 高通股份有限公司 Feedback processing technology in wireless transmission
WO2020042076A1 (en) * 2018-08-30 2020-03-05 Mediatek Singapore Pte. Ltd. Methods for reducing power consumption of a communication apparatus and a communication apparatus utilizing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170230148A1 (en) * 2014-10-31 2017-08-10 China Mobile Communications Corporation Method and device for implementing flexbile harq timing between base station and terminal
CN110431864A (en) * 2017-03-09 2019-11-08 Lg电子株式会社 Equipment for transmitting the method for UE capability and supporting this method
CN110463117A (en) * 2017-03-29 2019-11-15 高通股份有限公司 Feedback processing technology in wireless transmission
WO2020042076A1 (en) * 2018-08-30 2020-03-05 Mediatek Singapore Pte. Ltd. Methods for reducing power consumption of a communication apparatus and a communication apparatus utilizing the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZTE CORPORATION, SANECHIPS: "Define and Constrain Reduced Capability", 3GPP DRAFT; R2-2006903, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. electronic; 20200817 - 20200828, 7 August 2020 (2020-08-07), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051911778 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023174957A1 (en) * 2022-03-14 2023-09-21 Nordic Semiconductor Asa Adaptation of downlink to uplink scheduling gaps in radio communications

Similar Documents

Publication Publication Date Title
US20220086850A1 (en) Ul transmission control
WO2023283019A1 (en) Early beam failure detection
US20220061048A1 (en) Sps and ulcg enhancements
WO2022033515A1 (en) Harq-process specific user equipment configuration for reduced capability complexity reduction
US11864219B2 (en) Per UE priority definition for multi-UE scheduling conflict handling
US20220132543A1 (en) Multiple trp pdsch scheduling using dci without tci field
US20220232401A1 (en) Pdcch monitoring capability indication per search space set group
US11791944B2 (en) UE triggered one-shot HARQ-ACK feedback
US11812462B2 (en) CSI enhancement for NR SL and UU
WO2022216452A1 (en) Enhanced aperiodic or semi-persistent channel state information report on multi-beam pusch repetition
US11690075B2 (en) Multi-slot blind detection limits
WO2022032519A1 (en) Harq-process specific user equipment configuration for reduced capability complexity reduction
US11729706B2 (en) Methods and apparatus for multi-coreset PDCCH aggregation
WO2022032511A1 (en) Harq-process specific user equipment configuration for reduced capability complexity reduction
WO2022032509A1 (en) Harq-process specific user equipment configuration for reduced capability complexity reduction
US11751231B2 (en) Switching configuration for periodic resources
US11895058B2 (en) Methods for scheduling offset determination in ultra wide bandwidth beamforming systems
US20220232616A1 (en) Dynamic indication of pucch repetition factor
US20230116936A1 (en) Dynamic network power mode switching and timeline
US20220231791A1 (en) Pucch/pusch dmrs bundling duration
US20230098875A1 (en) Sidelink and uplink prioritization
US20220386324A1 (en) Different modulation orders and number of mimo layers for hp and lp uci multiplexing on pusch
US20230422250A1 (en) Transmission of deferred sps harq feedback coinciding with current pucch
WO2023050446A1 (en) Uci multiplexing for simultaneous pusch transmission
US20220330289A1 (en) Enhanced aperiodic or semi-persistent channel state information report on multi-beam pusch repetition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21855566

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21855566

Country of ref document: EP

Kind code of ref document: A1