WO2022033098A1 - 一种基于无人机的水稻冠层温度检测方法 - Google Patents

一种基于无人机的水稻冠层温度检测方法 Download PDF

Info

Publication number
WO2022033098A1
WO2022033098A1 PCT/CN2021/093800 CN2021093800W WO2022033098A1 WO 2022033098 A1 WO2022033098 A1 WO 2022033098A1 CN 2021093800 W CN2021093800 W CN 2021093800W WO 2022033098 A1 WO2022033098 A1 WO 2022033098A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
rice
image
uav
reading
Prior art date
Application number
PCT/CN2021/093800
Other languages
English (en)
French (fr)
Inventor
蒋敏
沈新平
徐文
黄丽芬
陈涨
刘世平
戴其根
霍中洋
许轲
Original Assignee
扬州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 扬州大学 filed Critical 扬州大学
Publication of WO2022033098A1 publication Critical patent/WO2022033098A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/48Thermography; Techniques using wholly visual means
    • G01J5/485Temperature profile
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/10Simultaneous control of position or course in three dimensions
    • G05D1/101Simultaneous control of position or course in three dimensions specially adapted for aircraft
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J2005/0077Imaging

Definitions

  • the invention relates to a water channel canopy temperature detection method, in particular to a rice canopy temperature detection method based on an unmanned aerial vehicle.
  • the function of the rice canopy determines the formation of yield and quality, and the canopy temperature reflects the average surface temperature of each organ of the rice canopy, which is closely related to the canopy function. Therefore, canopy temperature is also an important indicator to directly reflect the characteristics and growth status of rice varieties. It is of great significance to explore and clarify the biological basis of canopy temperature formation and its effects to improve canopy function and promote high-quality and high-yield cultivation.
  • the purpose of the present invention is to provide a method for detecting the temperature of the rice canopy based on the drone, so that the temperature detection accuracy is higher and the efficiency is higher.
  • a kind of rice canopy temperature detection method based on UAV comprising the following steps:
  • UAV route planning plan the area to be measured on the platform, and select the area to be measured;
  • Image temperature data extraction use the infrared camera to collect ground images, set the repetition rate of the collected adjacent images to be between 30-40%, randomly select multiple areas in the collected images, and read the temperature, Take the average value as the average rice temperature for this image and record it.
  • the beneficial effects of the present invention are: (1) large-area non-destructive measurement is realized by the present invention; (2) the present invention unifies the environmental standards during measurement, and the acquisition of data is more meaningful; (3) it can be The realization of temperature detection in different growth periods is beneficial to the determination of the whole growth period of rice; (4) the present invention also improves the test efficiency.
  • the rice area is preferentially selected in step 4), and the temperature of the cave area is preferentially read when reading the temperature.
  • step 4) recording the temperature is specifically as follows: the display temperatures of the first and second images are: T 1 and T 2 ; the ambient temperatures of the first and second images are: T a1 , T a2 ; read the display temperatures T 1-1 and T 1-2 at the corresponding positions of the overlapping regions of the first and second images; if T 1-1 is equal to T 1-2 , the temperature of the second recorded image is: T2; If T 1-1 is not equal to T 1-2 , the temperature of the second recorded image is: T 2 +(T 1-2 -T 1-1 )-(T a2 -T a1 ).
  • step 2) the UAV route planning travel route adopts an "S" shape.
  • Fig. 1 is a flow chart of the present invention.
  • Fig. 2 is a schematic diagram of reading the temperature of rice before sealing in the present invention.
  • Figure 3 is a schematic diagram of temperature reading after the rice is sealed in the present invention.
  • a UAV-based rice canopy temperature detection method includes the following steps:
  • S4) Image temperature data extraction use an infrared camera to collect ground images, randomly select multiple areas in the collected images, preferentially select the rice area, and read the temperature, preferentially read the temperature of the cave area, and take the average value as the image the average temperature of rice, and record;
  • the detection accuracy can be improved by the following two methods, specifically:
  • Method 2 read image 1 and image 2 display temperatures: T 1 , T 2 respectively ; read image 1, image 2 ambient temperature respectively: Ta1 , Ta
  • the display temperatures T 1-1 and T 1-2 of is: T 2 +(T 1-2 -T 1-1 )-(T a2 -T a1 ).
  • the bare ground effect is significant, especially the water surface temperature between rows at this time, which will affect the reading of the rice canopy temperature; 10 points are randomly selected in the collected thermal infrared images to avoid Open the effect of bare ground, select the rice area in each hole after enlarging the image, read the canopy temperature of rice in each hole, and effectively remove the influence of the bare ground effect on the temperature of the rice canopy at this time; after sealing: as shown in Figure 3, At this time, the rice has been closed, and there is no influence of bare ground. According to the shooting height and resolution of the image, 5 areas are selected by the 5-point method for each processing to read the surface canopy temperature data.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Automation & Control Theory (AREA)
  • Radiation Pyrometers (AREA)
  • Image Processing (AREA)

Abstract

本发明公开了一种基于无人机的水稻冠层温度检测方法,包括以下步骤:1)搭建无人机检测系统:选取无人机、红外摄像头以及控制平台,同时建立相互之间的通信,将摄像头安装在无人机上;2)无人机航线规划:在平台上进行待测区域的规划,选取待测区域;3)确定飞行高度:基于飞行气流不对底面产生影响与照片像素清晰要求确定飞行高度;4)图像温度数据提取:利用红外摄像头进行地面图像的采集,设定采集的相邻图像的重复率在30-40%之间,随机选取采集到的图像中多块区域,并读取温度,取平均值作为该图像的水稻平均温度,并记录,本发明使得温度检测精度更高,效率更高。

Description

一种基于无人机的水稻冠层温度检测方法 技术领域
本发明涉及一种水道冠层温度检测方法,特别涉及一种基于无人机的水稻冠层温度检测方法。
背景技术
水稻冠层功能决定着产量与品质的形成,冠层温度反映了水稻冠层各器官表面温度的平均值,与冠层功能关系密切。因此冠层温度也是直观反映水稻品种特性、生长状态的重要指标,探索阐明冠层温度形成的生物学基础及其效应对提高冠层功能,促进优质高产栽培具有十分重要的意义。
近年来,围绕灌溉抗旱等方面对水稻冠层温度进行了一定的研究,但由于水稻冠层温度随着环境变化(例如空气温度、湿度、风速等)而上下波动,很难进行冠层温度方面的直接研究,受限于冠层温度测定方法的效率及准确度,在实际生产中应用还较少。但是,目前随着无人机及热成像技术在农业上的发展,无人机搭载高精度红外测温装置技术,实现了高通量、无损、大面积测定,搭建起水稻冠层温度与生产应用间的桥梁。
针对以上情况,亟需对现有的水稻冠层温度测定技术进行改进,发明一种利用无人机快速监测水稻冠层温度的方法。
发明内容
本发明的目的是提供一种基于无人机的水稻冠层温度检测方法,使得温度检测精度更高,效率更高。
本发明的目的是这样实现的:一种基于无人机的水稻冠层温度检测方法,包括以下步骤:
1)搭建无人机检测系统:选取无人机、红外摄像头以及控制平台,同时建立相互之间的通信,将摄像头安装在无人机上;
2)无人机航线规划:在平台上进行待测区域的规划,选取待测区域;
3)确定飞行高度:基于飞行气流不对底面产生影响与照片像素清晰要求确定飞行高度;
4)图像温度数据提取:利用红外摄像头进行地面图像的采集,设定采集的相邻图像的重复率在30-40%之间,随机选取采集到的图像中多块区域,并读取温度,取平均值作为该图像的水稻平均温度,并记录。
与现有技术相比,本发明的有益效果在于:(1)通过本发明实现了大面积无损测定; (2)本发明统一了测定时的环境标准,获取数据更有意义;(3)可实现不同生育时期温度检测,有利于水稻全生育期的测定;(4)本发明还提高测试效率。
为了进一步提高检测精度,步骤4)中优先选取水稻区域,读取温度时优先读取穴区温度。
为了降低环境温度的影响,进一步提高检测精度,步骤4)记录温度具体为:预先在地面放置冰水混合物,读取温度时,先读取冰水混合物桶表面的温度T 对照,再读取水稻冠层温度T 读数,则记录的区域温度应为T 水稻=T 读数-T 对照
为了降低环境温度的影响,进一步提高检测精度,步骤4)记录温度具体为:读取图像一、图像二显示温度分别为:T 1、T 2;读取图像一、图像二环境温度分别为:T a1、T a2;读取图像一、图像二重叠区域对应位置的显示温度T 1-1、T 1-2;若T 1-1等于T 1-2,则记录图像二温度为:T2;若T 1-1不等于T 1-2,则记录图像二温度为:T 2+(T 1-2-T 1-1)-(T a2-T a1)。
作为本发明的进一步限定,步骤2)无人机航线规划行驶路线采用“S”形。
附图说明
图1为本发明流程图。
图2为本发明中水稻封行前温度读取示意图。
图3为本发明中水稻封行后温度读取示意图。
具体实施方式
实施例
如图1所示的一种基于无人机的水稻冠层温度检测方法,包括以下步骤:
S1)搭建无人机检测系统:采用ZENMUSE-XT热成像相机(灵敏度<0.05摄氏度)直接安装至大疆无人机“DJI M210”Inspire 1接口使用,选用DJI GS Pro地面站平台;
S2)无人机航线规划:通过DJI GS Pro地面站规划飞行路线和拍摄航点;相邻图像的重复率在35%,无人机飞行路线采用“S”型,连续获取图像;
S3)确定飞行高度:根据大疆无人机“DJI M210”说明书,当飞行距离高于10m时,螺旋桨产生的气流不会对地面产生影响,配合ZENMUSE-XT的飞行高度-像素表,选择飞行高度15m,此时采集热红外图像的像素可以有效分辨出水稻叶片;
S4)图像温度数据提取:利用红外摄像头进行地面图像的采集,随机选取采集到的图像中多块区域,优先选取水稻区域,并读取温度,优先读取穴区温度,取平均值作为该图像的水稻平均温度,并记录;
为了进一步消除环境温度对冠层温度温度的影响,还可通过以下两种方法来提高检测精度, 具体为:
方法一:预先在地面放置冰水混合物,读取温度时,先读取冰水混合物桶表面的温度T 对照,再读取水稻冠层温度T 读数,则记录的区域温度应为T 水稻=T 读数-T 对照
方法二:读取图像一、图像二显示温度分别为:T 1、T 2;读取图像一、图像二环境温度分别为:T a1、T a2;读取图像一、图像二重叠区域对应位置的显示温度T 1-1、T 1-2;若T 1-1等于T 1-2,则记录图像二温度为:T2;若T 1-1不等于T 1-2,则记录图像二温度为:T 2+(T 1-2-T 1-1)-(T a2-T a1)。
在实际检测过程中,对于水稻封行前后的温度读取方法也不相同;
封行前:如图2所示,裸地效应显著,尤其是此时行间水面温度,将影响到对于水稻冠层温度的读数;在采集到的热红外图像中随机选取10个点,避开裸地影响,放大图像后每穴选取水稻区域,读取每穴水稻的冠层温度,有效去除此时的裸地效应对水稻冠层温度的影响;封行后:如图3所示,此时水稻已经封行,不存在裸地影响,按照图像的拍摄高度和分辨率,每处理用5点法选取5个区域面积读取面上冠层温度数据即可。
本发明并不局限于上述实施例,在本发明公开的技术方案的基础上,本领域的技术人员根据所公开的技术内容,不需要创造性的劳动就可以对其中的一些技术特征作出一些替换和变形,这些替换和变形均在本发明的保护范围内。

Claims (4)

  1. 一种基于无人机的水稻冠层温度检测方法,其特征在于,包括以下步骤:
    1)搭建无人机检测系统:选取无人机、红外摄像头以及控制平台,同时建立相互之间的通信,将摄像头安装在无人机上;
    2)无人机航线规划:在平台上进行待测区域的规划,选取待测区域;
    3)确定飞行高度:基于飞行气流不对地面产生影响与照片像素清晰要求确定飞行高度;
    4)图像温度数据提取:利用红外摄像头进行地面图像的采集,设定采集的相邻图像的重复率在35%,随机选取采集到的图像中多块区域,并读取温度,读取温度时,对于水稻封行前后的温度读取方法也不相同,具体为:
    封行前:在采集到的热红外图像中随机选取10个点,避开裸地影响,放大图像后每穴选取水稻区域,读取每穴水稻的冠层温度;
    封行后:按照图像的拍摄高度和分辨率,用五点法选取5个区域面积读取面上冠层温度数据。
  2. 根据权利要求1所述的一种基于无人机的水稻冠层温度检测方法,其特征在于,步骤4)记录温度具体为:预先在地面放置冰水混合物,读取温度时,先读取冰水混合物桶表面的温度T 对照,再读取水稻冠层温度T 读数,则记录的区域温度应为T 水稻=T 读数-T 对照
  3. 根据权利要求1所述的一种基于无人机的水稻冠层温度检测方法,其特征在于,步骤4)记录温度具体为:读取图像一、图像二显示温度分别为:T 1、T 2;读取图像一、图像二环境温度分别为:T a1、T a2;读取图像一、图像二重叠区域对应位置的显示温度T 1-1、T 1-2;若T 1- 1等于T 1-2,则记录图像二温度为:T2;若T 1-1不等于T 1-2,则记录图像二温度为:T 2+(T 1- 2-T 1-1)-(T a2-T a1)。
  4. 根据权利要求1所述的一种基于无人机的水稻冠层温度检测方法,其特征在于,步骤2)无人机航线规划行驶路线采用“S”形。
PCT/CN2021/093800 2020-08-14 2021-05-14 一种基于无人机的水稻冠层温度检测方法 WO2022033098A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010816717.9A CN111982298B (zh) 2020-08-14 2020-08-14 一种基于无人机的水稻冠层温度检测方法
CN202010816717.9 2020-08-14

Publications (1)

Publication Number Publication Date
WO2022033098A1 true WO2022033098A1 (zh) 2022-02-17

Family

ID=73435014

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/093800 WO2022033098A1 (zh) 2020-08-14 2021-05-14 一种基于无人机的水稻冠层温度检测方法

Country Status (2)

Country Link
CN (1) CN111982298B (zh)
WO (1) WO2022033098A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111982298B (zh) * 2020-08-14 2021-06-25 扬州大学 一种基于无人机的水稻冠层温度检测方法
CN113834281A (zh) * 2021-09-24 2021-12-24 珠海格力电器股份有限公司 一种化霜控制方法、装置及冰箱

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109269645A (zh) * 2018-09-06 2019-01-25 西北农林科技大学 一种基于无人机可见光和热红外遥感的大田玉米冠层温度提取方法
US20190212315A1 (en) * 2015-01-23 2019-07-11 Airscout Inc. Methods and systems for analyzing a field
CN110210142A (zh) * 2019-06-05 2019-09-06 扬州大学 一种南方大型灌区水稻实时需水量测算方法
CN111982298A (zh) * 2020-08-14 2020-11-24 扬州大学 一种基于无人机的水稻冠层温度检测方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105527657A (zh) * 2016-01-14 2016-04-27 河海大学 基于无人机红外热图像采集的大面积农田作物水分状态监测方法及系统
CN106872043A (zh) * 2017-01-17 2017-06-20 石家庄高新区天遥航空设备科技有限公司 一种土壤墒情监测方法和系统
US20180348760A1 (en) * 2017-05-31 2018-12-06 James Peverill Automatic Change Detection System
IL253260B (en) * 2017-07-02 2021-07-29 Manna Irrigation Ltd Methods and systems for directing irrigation
CN108169138B (zh) * 2017-12-18 2020-10-30 扬州大学 一种利用热红外图像的水稻倒伏监测方法
CN108226224A (zh) * 2018-01-30 2018-06-29 浙江大学 一种基于无人机热成像技术的作物病害监测方法和系统
CN109444069A (zh) * 2018-09-13 2019-03-08 南京农业大学 一种基于无人机载主动冠层传感器的水稻氮素营养监测方法
CN110057367A (zh) * 2019-05-08 2019-07-26 广州知行机器人科技有限公司 一种无人机的航线规划的方法及装置
CN111307291B (zh) * 2020-03-02 2021-04-20 武汉大学 基于无人机的地表温度异常检测和定位方法、装置及系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190212315A1 (en) * 2015-01-23 2019-07-11 Airscout Inc. Methods and systems for analyzing a field
CN109269645A (zh) * 2018-09-06 2019-01-25 西北农林科技大学 一种基于无人机可见光和热红外遥感的大田玉米冠层温度提取方法
CN110210142A (zh) * 2019-06-05 2019-09-06 扬州大学 一种南方大型灌区水稻实时需水量测算方法
CN111982298A (zh) * 2020-08-14 2020-11-24 扬州大学 一种基于无人机的水稻冠层温度检测方法

Also Published As

Publication number Publication date
CN111982298A (zh) 2020-11-24
CN111982298B (zh) 2021-06-25

Similar Documents

Publication Publication Date Title
WO2022033098A1 (zh) 一种基于无人机的水稻冠层温度检测方法
Jiang et al. Real‐time crack assessment using deep neural networks with wall‐climbing unmanned aerial system
WO2020093630A1 (zh) 一种基于多尺度深度语义分割网络的天线下倾角测量方法
CN111931565A (zh) 一种基于光伏电站uav的自主巡检与热斑识别方法及系统
CN109002048B (zh) 多旋翼无人机规模化集中式光伏电站图像数据采集方法
CN113012150A (zh) 一种特征融合的高密度稻田无人机图像稻穗计数方法
CN104076817A (zh) 一种高清视频航拍多模传感器自外感知智能导航系统及其方法
CN104820250A (zh) 一种极轨气象卫星virr海洋上云检测的处理方法
CN107607091A (zh) 一种测量无人机飞行航迹的方法
CN113286129A (zh) 一种光伏电站的巡检方法及系统
CN116754076B (zh) 一种城市复杂三维场景高异质性地表温度的反演方法
CN111860571A (zh) 一种基于cip数据质量控制的云微粒子分类方法
CN110766333A (zh) 一种天气现象信息智能处理方法及系统
Long et al. Row and water front detection from UAV thermal-infrared imagery for furrow irrigation monitoring
CN106772697B (zh) 云海自然景观预报方法及系统
CN113655003B (zh) 一种利用无人机照片估算冬小麦返青期土壤墒情的方法
CN107576399A (zh) 面向modis 林火探测的亮温预测方法和系统
CN115080629B (zh) 一种基于遥感技术的气象要素预报系统及方法
CN114778476A (zh) 一种基于无人机遥感的苜蓿棉田土壤含水量监测模型
CN109523509A (zh) 小麦抽穗期的检测方法、装置及电子设备
CN112241691B (zh) 基于无人机巡检与图像特征的渠道冰情智能识别方法
CN113744196A (zh) 一种工程建设实时监控方法及系统
CN104866897A (zh) 蚜虫虫情调查方法及装置
CN111121781A (zh) 基于地基云图的太阳定位和太阳光干扰判别方法
CN117953445B (zh) 基于交通监控相机雨天道路能见度测定方法、系统及介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21855154

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21855154

Country of ref document: EP

Kind code of ref document: A1