WO2022033020A1 - 一种微透镜阵列的光学投影系统 - Google Patents

一种微透镜阵列的光学投影系统 Download PDF

Info

Publication number
WO2022033020A1
WO2022033020A1 PCT/CN2021/079797 CN2021079797W WO2022033020A1 WO 2022033020 A1 WO2022033020 A1 WO 2022033020A1 CN 2021079797 W CN2021079797 W CN 2021079797W WO 2022033020 A1 WO2022033020 A1 WO 2022033020A1
Authority
WO
WIPO (PCT)
Prior art keywords
microlens
lens
projection
micro
unit
Prior art date
Application number
PCT/CN2021/079797
Other languages
English (en)
French (fr)
Inventor
江程
佘俊
南基学
Original Assignee
广东烨嘉光电科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东烨嘉光电科技股份有限公司 filed Critical 广东烨嘉光电科技股份有限公司
Publication of WO2022033020A1 publication Critical patent/WO2022033020A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2033LED or laser light sources
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/142Adjusting of projection optics
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0037Arrays characterized by the distribution or form of lenses
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/26Projecting separately subsidiary matter simultaneously with main image

Definitions

  • the invention relates to a projection system, and specifically discloses an optical projection system of a microlens array.
  • the projection system is an optical system that images the object on the projection screen after illuminating it.
  • the short-distance projection system can be applied to the side of the car to welcome guests, to the front and rear of the car as a warning reminder, and can also be applied to desktop projection, such as keyboard image projection.
  • the projection system mainly includes three important components: light source, projection source and imaging unit. According to whether the image in the projection source appears repeatedly on the receiving surface, it is divided into single-channel projection system and multi-channel projection system.
  • the single-channel projection system is equipped with multi-piece imaging units, including projection sources such as LEDs, collimating lenses, film films, and projection unit lens groups, which can obtain high-definition projected real images at different distances.
  • projection sources such as LEDs, collimating lenses, film films, and projection unit lens groups, which can obtain high-definition projected real images at different distances.
  • the depth of field is shallow, the number of lenses is large, and the overall length of the system is large.
  • the multi-channel projection system is shown in Figure 2, including a light source, a collimating lens, a first microlens array, a projection source and a second microlens array, which can achieve far-field imaging, but when the receiving surface is close, the microlens unit Compared with the image height of the projected real image, the height cannot be ignored. For example, when the ratio of the height of the microlens unit to the height of the projected real image is greater than 1/50, due to the offset of each imaging optical path, it will cause many formations on the receiving surface. A staggered real image unit, resulting in the final inability to form a clear and single projected real image.
  • the prior art patent No. 201480039253.8 discloses a multi-aperture projection display and a single image generator for the multi-aperture projection display, the center of the second microlens array in FIG. 2 is offset, The corresponding optical axis is not coincident with the optical axis of the first microlens array, so as to realize the overlapping and superposition of multi-channel images, and finally achieve close-range projection and the projected real image is single, but due to the first microlens array and the second microlens array
  • the optical axis offset is staggered, that is, part of the light from a certain unit in the first microlens array enters the adjacent unit of the second microlens array, and the optical information between adjacent channels will crosstalk with each other, which will eventually cause the projected real image to form a heavy image. film.
  • the projection system in the prior art cannot ensure that the projected real image is clear and free from ghosts when a close-range projection is obtained.
  • the present invention discloses an optical projection system of a microlens array, which includes a light source, a collimating lens, a first microlens array, a projection source, a positive lens module, a second microlens array and a receiving device arranged in sequence.
  • the first microlens array includes n first microlens units arranged in an array
  • the projection source includes n projection image units arranged in an array
  • the positive lens module includes at least one optical structure surface with positive refractive power
  • the second The microlens array includes n second microlens units arranged in an array;
  • Each projection image unit corresponds to each first microlens unit and each second microlens unit on both sides respectively, and the opposite first microlens unit and second microlens unit have a common optical axis;
  • the distance between the projection source and the positive lens module is s
  • the distance between the second microlens array and the receiving surface is L'
  • the focal length of the first microlens unit is f 1 ⁇ s
  • the focal length of the second microlens unit f 2 s.
  • the first micro-lens unit is a plano-convex lens, and the plane of the first micro-lens unit is close to the projection source.
  • the projection source includes at least two projection image units having different projection images.
  • optical structure surface of the positive lens module with positive refractive power is an aspheric surface or a Fresnel structure surface.
  • the positive lens module includes an optical structure surface with positive refractive power and a flat surface.
  • the second microlens unit is a plano-convex lens.
  • the positive lens module and the second microlens array are integrally formed into a composite lens, and the plane of the positive lens module is close to the plane of the second microlens array.
  • the present invention discloses an optical projection system of a microlens array.
  • a projection source and a positive lens module are arranged between two groups of microlens arrays.
  • Each sub-real image unit in the multi-optical channel is compounded and superimposed on the receiving surface to obtain a clear projected real image.
  • the centers of the first micro-lens unit, the projected image unit and the second micro-lens unit are coaxial, which can effectively avoid adjacent Cross-light occurs between the light channels, which can effectively avoid ghosting of the final projected real image.
  • FIG. 1 is a schematic diagram of an optical path structure of a single-channel projection system in the prior art.
  • FIG. 2 is a schematic diagram of an optical path structure of a multi-channel projection system in the prior art.
  • FIG. 3 is a schematic structural diagram of the present invention.
  • FIG. 4 is a schematic diagram of the imaging principle after the light source and the collimating lens are hidden in the present invention.
  • FIG. 5 is a schematic structural diagram of an embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of another embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of another embodiment of the present invention.
  • Reference numerals are: light source 10, collimating lens 20, first microlens array 30, first microlens unit 31, projection source 40, projection image unit 41, positive lens module 50, second microlens array 60, second Micro lens unit 61 , receiving surface 70 , compound lens 80 .
  • the basic embodiment of the present invention discloses an optical projection system with a microlens array.
  • a light source 10 can be LED lamp beads
  • the projection source 40 can be a film, a liquid crystal screen, etc.
  • the positive lens module 50 is located between the projection source 40 and the second microlens array 60
  • receiving The surface 70 can be a plane structure such as a wall, a ground, a white screen, etc.
  • the microlens array is also called a fly-eye lens
  • the first microlens array 30 includes n first microlens units 31 arranged in an array
  • the projection source 40 includes n arrays
  • the arranged projection image unit 41, the positive lens module 50 includes at least one optical structure surface with positive refractive power, and the second microlens array 60 includes n second microlens units 61 arranged in an array;
  • Each projection image unit 41 is in one-to-one correspondence with each first microlens unit 31 and each second microlens unit 61 on both sides, and the opposite first microlens unit 31 and second microlens unit 61 have a common optical axis, An optical channel unit is formed between the opposite first microlens unit 31 and the second microlens unit 61, and each projection image unit 41 is located in each optical channel unit;
  • the positive lens module 50 can form an upright and enlarged virtual image on the projection source 40 and the first microlens array 30.
  • the distance between the projection source 40 and the positive lens module 50 is s
  • the second microlens array 60 The distance from the receiving surface 70 is L', L' is the projection distance, the distance between the centers of two adjacent first microlens units 31, the distance between the centers of two adjacent projected image units 41, and the distance between two adjacent second
  • the distance between the centers of the microlens units 61 is d 1
  • the distance between the virtual image centers of two adjacent projection image units 41 is d 2 , that is, the distance between the centers of two adjacent sub-object image units is d 2
  • the virtual image of the projection source 40 is the same as
  • the second micro-lens unit 61 plays the role of projection imaging.
  • the value is an ideal value, and can be adjusted on the basis of the ideal value according to the actual situation in specific applications to suit the corresponding needs.
  • the light emitted by the light source 10 arrives at the collimating lens 20, the first microlens array 30, the projection source 40, the positive lens module 50, the second microlens array 60 and the receiving surface 70 in sequence. 40 and the first microlens array 30 form an upright magnified virtual image, as shown in FIG.
  • the optical axis of the second microlens unit 61 is not collinear with the virtual image optical axis of the first microlens unit 31,
  • the optical axis of 61 and the virtual image optical axis of the projection image unit 41 are not collinear, and the virtual image of the projection pattern unit is a sub-object image unit, and each sub-object image unit is a sub-real image unit obtained after the projection of the second microlens array 60. It can be superimposed and composited on the receiving surface 70 to finally obtain a clear projected real image.
  • the first micro-lens unit 31 is a miniature plano-convex lens, and the plane of the first micro-lens unit 31 is disposed close to the projection source 40, which can effectively improve the utilization rate of light energy and effectively reduce the loss of light energy.
  • the microlens unit 31 may also be a biconvex lens or a meniscus lens, or even a combination of multiple microlenses.
  • the projection source 40 includes at least two types of projection image units 41 having different projection images, that is, at least two types of projection image units 41 are provided. As shown in FIG. 5 , the projection images of different types of projection image units 41 are not In the same way, various sub-real image units with different images finally formed are compounded and superimposed on the receiving surface 70 to form a specific projected real image of the image.
  • the optical structure surface of the positive lens module 50 with positive refractive power is an aspheric surface with positive refractive power or a Fresnel structure surface with positive refractive power, and the Fresnel structure surface is composed of several concentric Fresnel structures.
  • the convex ring is formed, the aspheric surface has good imaging quality, and the Fresnel structure surface can reduce the thickness of the positive lens module 50 .
  • the positive lens module 50 includes an optical structure surface with positive refractive power and a flat surface, that is, the positive lens module 50 is a plano-convex lens or a plano-convex Fresnel lens.
  • the second microlens unit 61 is a microplano-convex lens.
  • the positive lens module 50 and the second microlens array 60 are integrally formed with a composite lens 80 , the plane of the positive lens module 50 is close to the plane of the second microlens array 60 , and the composite lens 80 is an integrally formed lens structure .
  • one side of the compound lens 80 close to the projection source 40 has an aspheric structure, and the other side of the compound lens 80 has the structure of the second microlens array 60 ; as shown in FIG. 7 , the compound lens 80 is close to the projection source 40 .
  • One side is a Fresnel lens structure, and the other side of the compound lens 80 is a second microlens array 60 structure.
  • the integrated compound lens 80 obtained by the compound positive lens module 50 and the second microlens array 60 can effectively reduce the number of optical parts of the system, thereby effectively reducing the reflection and other losses of light energy caused by the optical parts, and can effectively improve the system performance.
  • the utilization rate of light energy can also reduce system cost and assembly difficulty.
  • the positive lens module 50 can also be a biconvex lens or a meniscus lens, and the positive lens module 50 can also be a multi-piece lens group with positive refractive power; the second microlens unit 61 can also be a biconvex lens or a meniscus lens, or even Set to multi-lens combination.

Abstract

一种微透镜阵列的光学投影系统,包括依次设置的光源(10)、准直透镜(20)、第一微透镜阵列(30)、投影源(40)、正透镜模块(50)、第二微透镜阵列(60)和接收面(70),第一微透镜阵列(30)包括n个阵列排布的第一微透镜单元(31),投影源(40)包括n个阵列排布的投影图像单元(41),第二微透镜阵列(60)包括n个阵列排布的第二微透镜单元(61);相对的第一微透镜单元(31)和第二微透镜单元(61)具有共同的光轴;投影源(40)与正透镜模块(50)之间的距离为s,第二微透镜阵列(60)与接收面(70)之间的距离为L',正透镜模块(50)的等效焦距F=L',第一微透镜单元(31)的焦距f 1≈s,第二微透镜单元(61)的焦距f 2=s。能够使子实像单元在接收面(70)上复合叠加,能够避免相邻的光通道之间发生串光。

Description

一种微透镜阵列的光学投影系统 技术领域
本发明涉及投影系统,具体公开了一种微透镜阵列的光学投影系统。
背景技术
投影系统即将物体照明后成像于投影屏上的光学系统。短距离的投影系统可应用于汽车侧面用于迎宾,也可以应用于汽车前后用作警示提醒,还能设于应用于桌面投影,如键盘图像的投影。
投影系统主要包括三个重要部件:光源、投影源以及成像单元。以投影源中的图像是否重复出现在接收面上为依据,分为单通道投影系统和多通道投影系统。
单通道投影系统如图1所示,设置多片式的成像单元,包括LED、准直透镜、菲林片等投影源和投影单元镜片组,可以在不同的距离获得清晰度较高的投影实像,但景深较浅,镜片数目较多,系统的总长度大。
多通道投影系统如图2所示,包括光源、准直透镜、第一微透镜阵列、投影源和第二微透镜阵列,可实现远场的成像,但接收面距离较近时,微透镜单元的高度相较于投影实像的像高较大,不能忽略,如微透镜单元的高度与投影实像的高度比大于1/50时,由于每个成像光路的偏移,会造成接收面上形成多个错开的实像单元,导致最终无法形成清晰且单一的投影实像。
为解决上述问题,专利号为201480039253.8的现有技术公开了一种多孔径投影显示器和针对所述多孔经投影显示器的单图像生成器,对图2中第二微透镜阵列的中心进行偏置,使之对应的光轴与第一微透镜阵列的光轴不重合,从而实现多通道的图像重合叠加,最终实现近距离投影且投影实像单一,但由于第一微透镜阵列与第二微透镜阵列的光轴偏置错开,即第一微透镜阵列中某单元中的部分光进入到第二微透镜阵列的相邻单元,相邻通道之间的光信息会相互串扰,最终造成投影实像形成重影。
现有技术中的投影系统无法在获得近距离投影时确保投影实像清晰无重影。
发明内容
基于此,有必要针对现有技术问题,提供一种微透镜阵列的光学投影系统,能够实现近距离投影成像,同时能够确保投影实像清晰无重影。
为解决现有技术问题,本发明公开一种微透镜阵列的光学投影系统,包括依次设置的光源、准直透镜、第一微透镜阵列、投影源、正透镜模块、第二微透镜阵列和接收面,第一微 透镜阵列包括n个阵列排布的第一微透镜单元,投影源包括n个阵列排布的投影图像单元,正透镜模块包括至少一个具有正光焦度的光学结构面,第二微透镜阵列包括n个阵列排布的第二微透镜单元;
各个投影图像单元分别与两侧的各个第一微透镜单元和各个第二微透镜单元对应,相对的第一微透镜单元和第二微透镜单元具有共同的光轴;
投影源与正透镜模块之间的距离为s,第二微透镜阵列与接收面之间的距离为L′,正透镜模块的等效焦距F=L′,第一微透镜单元的焦距f 1≈s,第二微透镜单元的焦距f 2=s。
进一步的,第一微透镜单元为平凸透镜,第一微透镜单元的平面紧贴投影源。
进一步的,投影源包括至少两种具有不同投影图像的投影图像单元。
进一步的,正透镜模块具有正光焦度的光学结构面为非球面或菲涅尔结构面。
进一步的,正透镜模块包括一个具有正光焦度的光学结构面和一个平面。
进一步的,第二微透镜单元为平凸透镜。
进一步的,正透镜模块与第二微透镜阵列为一体成型的复合透镜,正透镜模块的平面紧贴第二微透镜阵列的平面。
本发明的有益效果为:本发明公开一种微透镜阵列的光学投影系统,在两组微透镜阵列之间设置投影源和正透镜模块,通过正透镜的放大作用配合第二微透镜阵列,能够使多光通道中的各个子实像单元在接收面上复合叠加,从而获得清晰的投影实像,此外,第一微透镜单元、投影图像单元和第二微透镜单元的中心共轴,能够有效避免相邻的光通道之间发生串光,可有效避免最终所获的投影实像形成重影。
附图说明
图1为现有技术中单通道投影系统的光路结构示意图。
图2为现有技术中多通道投影系统的光路结构示意图。
图3为本发明的结构示意图。
图4为本发明隐藏光源和准直透镜后的成像原理示意图。
图5为本发明一实施例的结构示意图。
图6为本发明另一实施例的结构示意图。
图7为本发明又一实施例的结构示意图。
附图标记为:光源10、准直透镜20、第一微透镜阵列30、第一微透镜单元31、投影源40、投影图像单元41、正透镜模块50、第二微透镜阵列60、第二微透镜单元61、接收面70、复合透镜80。
具体实施方式
为能进一步了解本发明的特征、技术手段以及所达到的具体目的、功能,下面结合附图与具体实施方式对本发明作进一步详细描述。
参考图3至图7。
本发明基础实施例公开一种微透镜阵列的光学投影系统,如图3所示,包括依次设置的光源10、准直透镜20、第一微透镜阵列30、投影源40、正透镜模块50、第二微透镜阵列60和接收面70,光源10可以为LED灯珠,投影源40可以为菲林片、液晶屏等,正透镜模块50位于投影源40和第二微透镜阵列60之间,接收面70可以为墙面、地面、白屏等平面结构,微透镜阵列也称复眼透镜,第一微透镜阵列30包括n个阵列排布的第一微透镜单元31,投影源40包括n个阵列排布的投影图像单元41,正透镜模块50包括至少一个具有正光焦度的光学结构面,第二微透镜阵列60包括n个阵列排布的第二微透镜单元61;
各个投影图像单元41分别与两侧的各个第一微透镜单元31和各个第二微透镜单元61一一对应,相对的第一微透镜单元31和第二微透镜单元61具有共同的光轴,相对的第一微透镜单元31和第二微透镜单元61之间形成一个光通道单元,各个投影图像单元41分别位于各个光通道单元中;
正透镜模块50能够对投影源40和第一微透镜阵列30形成正立放大的虚像,如图4所示,投影源40与正透镜模块50之间的距离为s,第二微透镜阵列60与接收面70之间的距离为L′,L′为投影距离,相邻两个第一微透镜单元31中心的间距、相邻两个投影图像单元41中心的间距以及相邻两个第二微透镜单元61中心的间距均为d 1,相邻两个投影图像单元41的虚像中心的间距为d 2,即相邻两个子物像单元中心的间距为d 2,投影源40的虚像与正透镜之间的距离为s′,根据薄透镜的成像公式可得s′=(F*s)/(F-s),d 2=(F*d 1)/(F-s),根据图4中的三角比例关系可得,(L′+s′)/L′=d 2/d 1,设置正透镜模块50的等效焦距F=L′,由于第一微透镜单元31的作用是场镜,能够把来自准直透镜20的平行光聚焦于第二微透镜单元61的中心,设置第一微透镜单元31的焦距f 1≈s,可取f 1=s,能够确保第一微透镜单元31能够将平行光聚焦到第二微透镜单元61的中心,能够有效确保光能的利用率,第二微透镜单元61起投影成像的作用,根据图4中心处投影图像单元41的成像光路图,薄透镜的成像公式可得1/L′+1/s′=1/f 2,设置第二微透镜单元61的焦距f 2=s,通过上述关系式计算获得的F、f 1、f 2的数值为理想值,在具体应用中可根据实际情况在理想值的基础上进行调整以适配对应的需求。
工作时,光源10发出的光线依次到达准直透镜20、第一微透镜阵列30、投影源40、正 透镜模块50、第二微透镜阵列60和接收面70,正透镜模块50能够对投影源40和第一微透镜阵列30形成正立放大的虚像,如图4所示,第二微透镜单元61的光轴与第一微透镜单元31的虚像光轴不共线,第二微透镜单元61的光轴与投影图像单元41的虚像光轴也不共线,投影图案单元的虚像为子物像单元,各个子物像单元经过第二微透镜阵列60的投影作用后获得的子实像单元能够在接收面70上叠加复合,最终获得清晰的投影实像。
正透镜模块50和第二微透镜阵列60的组合从数学角度看事实上是个光学加法器,接收面70的照度分布满足以下关系式:E(x,y)=∑ i=1..nE i(x i,y i),其中(x,y)为接收面70的位置坐标,E为接收面70的照度,(x i,y i)为投影源40的位置坐标,E i为投影源40的照度。
在本实施例中,第一微透镜单元31为微型平凸透镜,第一微透镜单元31的平面紧贴投影源40设置,能够有效提高光能的利用率,可有效减少光能损耗,第一微透镜单元31还可以是双凸面透镜或凹凸透镜,甚至可以设置为多微透镜组合。
在本实施例中,投影源40包括至少两种具有不同投影图像的投影图像单元41,即投影图像单元41设置有至少两种,如图5所示,不同种投影图像单元41的投影图像不相同,最终所形成图像不同的各种子实像单元在接收面70上复合叠加,从而形成图像特定的投影实像。
在本实施例中,正透镜模块50具有正光焦度的光学结构面为具有正光焦度的非球面或具有正光焦度的菲涅尔结构面,菲涅尔结构面由若干同心的菲涅尔凸环组成,非球面的成像质量好,菲涅尔结构面能够降低正透镜模块50的厚度。
基于上述实施例,正透镜模块50包括一个具有正光焦度的光学结构面和一个平面,即正透镜模块50为平凸透镜或平凸型的菲涅尔透镜。
基于上述实施例,第二微透镜单元61为微型平凸透镜。
基于上述实施例,正透镜模块50与第二微透镜阵列60为一体成型的复合透镜80,正透镜模块50的平面紧贴第二微透镜阵列60的平面,复合透镜80为一体成型的透镜结构。如图6所示,复合透镜80靠近投影源40的一侧为非球面结构,复合透镜80的另一面为第二微透镜阵列60结构;如图7所示,复合透镜80靠近投影源40的一侧为菲涅尔透镜结构,复合透镜80的另一面为第二微透镜阵列60结构。通过复合正透镜模块50和第二微透镜阵列60获得一体化的复合透镜80,能够有效减少系统的光学零件数量,从而有效减少因光学零件对光能造成的反射等损耗,可有效提高系统对光能的利用率,还能降低系统成本,降低装配难度。
正透镜模块50还可以是双凸面透镜或凹凸透镜,正透镜模块50还可以是具有正光焦度的多片式透镜组;第二微透镜单元61还可以是双凸面透镜或凹凸透镜,甚至可以设置为多微透镜组合。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (7)

  1. 一种微透镜阵列的光学投影系统,其特征在于,包括依次设置的光源(10)、准直透镜(20)、第一微透镜阵列(30)、投影源(40)、正透镜模块(50)、第二微透镜阵列(60)和接收面(70),所述第一微透镜阵列(30)包括n个阵列排布的第一微透镜单元(31),所述投影源(40)包括n个阵列排布的投影图像单元(41),所述正透镜模块(50)包括至少一个具有正光焦度的光学结构面,所述第二微透镜阵列(60)包括n个阵列排布的第二微透镜单元(61);
    各个投影图像单元(41)分别与两侧的各个所述第一微透镜单元(31)和各个所述第二微透镜单元(61)对应,相对的所述第一微透镜单元(31)和所述第二微透镜单元(61)具有共同的光轴;
    所述投影源(40)与所述正透镜模块(50)之间的距离为s,所述第二微透镜阵列(60)与所述接收面(70)之间的距离为L′,所述正透镜模块(50)的等效焦距F=L′,所述第一微透镜单元(31)的焦距f 1≈s,所述第二微透镜单元(61)的焦距f 2=s。
  2. 根据权利要求1所述的一种微透镜阵列的光学投影系统,其特征在于,所述第一微透镜单元(31)为平凸透镜,所述第一微透镜单元(31)的平面紧贴所述投影源(40)。
  3. 根据权利要求1所述的一种微透镜阵列的光学投影系统,其特征在于,所述投影源(40)包括至少两种具有不同投影图像的所述投影图像单元(41)。
  4. 根据权利要求1所述的一种微透镜阵列的光学投影系统,其特征在于,所述正透镜模块(50)具有正光焦度的光学结构面为非球面或菲涅尔结构面。
  5. 根据权利要求4所述的一种微透镜阵列的光学投影系统,其特征在于,所述正透镜模块(50)包括一个具有正光焦度的光学结构面和一个平面。
  6. 根据权利要求5所述的一种微透镜阵列的光学投影系统,其特征在于,所述第二微透镜单元(61)为平凸透镜。
  7. 根据权利要求6所述的一种微透镜阵列的光学投影系统,其特征在于,所述正透镜模块(50)与所述第二微透镜阵列(60)为一体成型的复合透镜(80),所述正透镜模块(50)的平面紧贴所述第二微透镜阵列(60)的平面。
PCT/CN2021/079797 2020-08-12 2021-03-09 一种微透镜阵列的光学投影系统 WO2022033020A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010805929.7 2020-08-12
CN202010805929.7A CN111856852B (zh) 2020-08-12 2020-08-12 一种微透镜阵列的光学投影系统

Publications (1)

Publication Number Publication Date
WO2022033020A1 true WO2022033020A1 (zh) 2022-02-17

Family

ID=72972080

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/079797 WO2022033020A1 (zh) 2020-08-12 2021-03-09 一种微透镜阵列的光学投影系统

Country Status (3)

Country Link
US (1) US11199761B1 (zh)
CN (1) CN111856852B (zh)
WO (1) WO2022033020A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111856852B (zh) * 2020-08-12 2021-03-30 广东烨嘉光电科技股份有限公司 一种微透镜阵列的光学投影系统
EP4071541B1 (en) * 2021-04-07 2024-03-06 Yazaki Corporation Vehicle display device
CN113608400B (zh) * 2021-06-22 2023-09-01 北京一数科技有限公司 一种图案投影设备
CN114114814A (zh) * 2021-10-21 2022-03-01 成都派斯光学有限公司 一种适用于汽车的动态投影系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1375723A (zh) * 2001-03-19 2002-10-23 台达电子工业股份有限公司 适用不同液晶显示照明系统的可调整尺寸的光分布模组
JP2004361980A (ja) * 1997-02-13 2004-12-24 Canon Inc 投影装置
CN106019795A (zh) * 2016-08-10 2016-10-12 海信集团有限公司 一种背投屏幕及投影系统
CN106647138A (zh) * 2016-10-31 2017-05-10 海信集团有限公司 一种投影屏幕及投影系统
CN111176056A (zh) * 2020-01-21 2020-05-19 北京耐德佳显示技术有限公司 一种适用于短距离场景的集成投影成像光学系统
CN111367136A (zh) * 2020-02-15 2020-07-03 江西微瑞光学有限公司 多通道投影光学组件、多通道投影设备以及投影方法
CN111856852A (zh) * 2020-08-12 2020-10-30 广东烨嘉光电科技股份有限公司 一种微透镜阵列的光学投影系统

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4670876B2 (ja) * 2008-02-14 2011-04-13 三菱電機株式会社 照明光学系および画像表示装置
TWI459122B (zh) * 2013-01-17 2014-11-01 Delta Electronics Inc 光學系統
WO2014147688A1 (ja) * 2013-03-22 2014-09-25 ソニー株式会社 画像表示装置及び画像表示方法
DE102013208625A1 (de) * 2013-05-10 2014-11-13 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Multiapertur-projektionsdisplay und einzelbilderzeuger für ein solches
JP6897401B2 (ja) * 2017-08-01 2021-06-30 セイコーエプソン株式会社 光源装置およびプロジェクター
CN107861253B (zh) * 2017-12-08 2020-11-10 青岛海信激光显示股份有限公司 激光投影装置
CN111505892A (zh) * 2019-01-30 2020-08-07 王杰芳 一种基于微透镜阵列的投影系统
JP7268556B2 (ja) * 2019-09-24 2023-05-08 セイコーエプソン株式会社 プロジェクター

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004361980A (ja) * 1997-02-13 2004-12-24 Canon Inc 投影装置
CN1375723A (zh) * 2001-03-19 2002-10-23 台达电子工业股份有限公司 适用不同液晶显示照明系统的可调整尺寸的光分布模组
CN106019795A (zh) * 2016-08-10 2016-10-12 海信集团有限公司 一种背投屏幕及投影系统
CN106647138A (zh) * 2016-10-31 2017-05-10 海信集团有限公司 一种投影屏幕及投影系统
CN111176056A (zh) * 2020-01-21 2020-05-19 北京耐德佳显示技术有限公司 一种适用于短距离场景的集成投影成像光学系统
CN111367136A (zh) * 2020-02-15 2020-07-03 江西微瑞光学有限公司 多通道投影光学组件、多通道投影设备以及投影方法
CN111856852A (zh) * 2020-08-12 2020-10-30 广东烨嘉光电科技股份有限公司 一种微透镜阵列的光学投影系统

Also Published As

Publication number Publication date
CN111856852A (zh) 2020-10-30
US11199761B1 (en) 2021-12-14
CN111856852B (zh) 2021-03-30

Similar Documents

Publication Publication Date Title
WO2022033020A1 (zh) 一种微透镜阵列的光学投影系统
KR20160073915A (ko) 초단초점 투사렌즈
WO2019080506A1 (zh) 一种图案投影灯光学模组结构
CN108732823B (zh) 一种抬头显示装置的背光系统
CN111856851B (zh) 一种复合微透镜和微棱镜的投影系统
CN111856850B (zh) 一种多通道微透镜阵列投影系统
US20190377185A1 (en) Projection apparatus and head-mounted display device
CN106019796A (zh) 一种投影屏幕、大尺寸拼接屏幕及投影系统
US10613375B2 (en) Backlight module and liquid crystal display device
US7295379B2 (en) LED light converging system
CN109143765A (zh) 成像结构、投影屏幕及投影系统
WO2022147911A1 (zh) 一种双远心投影镜头及汽车的抬头显示装置
CN106019795B (zh) 一种背投屏幕及投影系统
CN213210527U (zh) 一种大投射范围的复合微透镜阵列及投影系统
CN106647140A (zh) 一种投影屏幕及投影系统
CN113960868A (zh) 激光光源及激光投影设备
CN103713451B (zh) 多重投影系统以及使用该系统的显示系统
CN111856853B (zh) 一种复合微棱镜的微透镜阵列投影系统
CN115628423A (zh) 一种大视场角微透镜车灯投影装置
CN213690208U (zh) 照明系统及投影装置
CN112946893B (zh) 近场显示装置
US20220035094A1 (en) Optical waveguide unit, array, and flat lens
CN212135077U (zh) 一种阵列式空气成像全息光学系统
US1946088A (en) Condensing lens system for motion picture projection
CN213635296U (zh) 一种应用mla的投影灯

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21855076

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 03/07/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21855076

Country of ref document: EP

Kind code of ref document: A1