WO2022032963A1 - 电池剩余寿命的估算方法、装置和介质 - Google Patents
电池剩余寿命的估算方法、装置和介质 Download PDFInfo
- Publication number
- WO2022032963A1 WO2022032963A1 PCT/CN2020/138712 CN2020138712W WO2022032963A1 WO 2022032963 A1 WO2022032963 A1 WO 2022032963A1 CN 2020138712 W CN2020138712 W CN 2020138712W WO 2022032963 A1 WO2022032963 A1 WO 2022032963A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- aging
- battery
- current
- soc
- life
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/36—Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
- G01R31/367—Software therefor, e.g. for battery testing using modelling or look-up tables
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/36—Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
- G01R31/3644—Constructional arrangements
- G01R31/3648—Constructional arrangements comprising digital calculation means, e.g. for performing an algorithm
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/36—Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
- G01R31/382—Arrangements for monitoring battery or accumulator variables, e.g. SoC
- G01R31/3842—Arrangements for monitoring battery or accumulator variables, e.g. SoC combining voltage and current measurements
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/36—Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
- G01R31/385—Arrangements for measuring battery or accumulator variables
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/36—Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
- G01R31/392—Determining battery ageing or deterioration, e.g. state of health
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/48—Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present application relates to the field of battery technology, and in particular, to a method, device and medium for estimating the remaining life of a battery.
- the remaining life of the battery can be used as an important basis for judging the use value of the battery, and is one of the current state parameters of the battery concerned by the user.
- the remaining battery life of the individual battery is evaluated according to the material aging parameter of the individual battery, which can improve the estimation accuracy of the remaining battery life.
- a method for estimating the remaining life of a battery including: obtaining a material aging parameter of the battery, where the material aging parameter represents the aging degree of the battery material; The remaining life of the battery corresponding to the material aging parameter, where the material aging parameter includes: a first aging parameter representing the aging degree of the electrode active material of the battery, and/or a second aging parameter representing the battery's active ion aging degree; wherein, the first aging parameter
- the aging parameters include: a positive electrode aging parameter representing the aging degree of the positive electrode active material of the battery, and/or a negative electrode aging parameter representing the aging degree of the negative electrode active material of the battery.
- the corresponding relationship between the material aging parameter and the remaining battery life can be preset, and based on the corresponding relationship, the remaining battery life corresponding to the acquired material aging parameter of the individual battery can be determined. .
- the remaining life of the battery gradually decreases, and the battery material also ages in the process of decreasing the remaining life of the battery. Therefore, the material aging parameter reflecting the aging degree of the individual battery material is used to determine the remaining battery life of the individual battery. The evaluation was carried out to improve the estimation accuracy of the remaining battery life.
- the corresponding relationship includes: a first corresponding relationship between the material aging parameter and the material concentration change, and a second corresponding relationship between the material concentration change and the remaining battery life, based on a preset material aging
- the corresponding relationship between the parameters and the remaining battery life, and determining the remaining battery life corresponding to the acquired material aging parameters specifically includes: based on the first correspondence, determining the current material concentration change corresponding to the material aging parameters; using the second correspondence. , and determine the remaining battery life corresponding to the change in the current material concentration.
- the material concentration change can be used to measure the material aging parameter, and the remaining battery life can be determined according to the material aging parameter, so that the battery remaining life can be accurately measured according to the material concentration change.
- the remaining battery life includes the current remaining life of the positive electrode active material; if the material aging parameter includes the negative electrode aging parameter, the remaining battery life includes the negative electrode active material. Current remaining life; if the material aging parameter includes the second aging parameter, the remaining battery life includes the current remaining life of active ions.
- the remaining life of the battery can be evaluated from multiple dimensions, such as the current remaining life of the positive electrode active material, the current remaining life of the negative electrode active material, and the current remaining life of the active example, which improves the estimation accuracy of the remaining battery life. .
- the material aging parameter includes at least two aging parameters among the positive electrode aging parameter, the negative electrode aging parameter, and the second aging parameter; based on the preset correspondence between the material aging parameter and the remaining battery life, determine The remaining life of the battery corresponding to the material aging parameter includes: determining the minimum value of the current remaining life corresponding to at least one aging parameter as the remaining life of the battery.
- the minimum value of the current remaining life corresponding to each of at least one aging parameter is determined as the remaining life of the battery. The estimation accuracy of the remaining battery life is improved.
- the material aging parameters include a positive electrode aging parameter representing the aging degree of the positive electrode active material of the battery, a negative electrode aging parameter representing the aging degree of the negative electrode active material of the battery, and a negative electrode aging parameter representing the aging degree of the active ions of the battery.
- the second aging parameter obtaining material aging parameters of the battery, specifically including: obtaining multiple sets of first data to be processed within a preset time period, wherein each set of first data to be processed includes an open circuit of the battery under a quasi-static condition Voltage OCV and cumulative net charge-discharge capacity Q corresponding to OCV; use the first correspondence function between Q and the current SOC to determine the first current SOC corresponding to the current Q in each set of first data to be processed, and construct each set of The corresponding relationship between the OCV and the first current SOC in the first data to be processed is obtained, and multiple sets of corresponding OCVs and the first current SOC are obtained, wherein the relationship coefficient between Q and the current SOC in the first corresponding relationship function is the capacity aging parameter; Acquiring multiple sets of second data to be processed, wherein each set of second data to be processed includes the positive electrode potential and the initial SOC corresponding to the positive electrode potential when the battery is in an initial life period and operates in a quasi-static condition; using the initial SOC
- each A third set of data to be processed includes the negative electrode potential and the initial SOC corresponding to the negative electrode potential when the battery is in the initial life period and operates in a quasi-static condition; using the third correspondence function between the initial SOC and the current SOC, it is determined
- the third current SOC corresponding to the initial SOC in each set of third data to be processed is constructed, the corresponding relationship between the negative electrode potential and the third current SOC in each set of third data to be processed is constructed, and multiple sets of corresponding negative electrode potential and the third current SOC are obtained.
- the relationship coefficient between the initial SOC and the current SOC in the third correspondence function is the negative electrode aging parameter, and the constant term in the third correspondence function is the second aging parameter;
- the SOC, a plurality of sets of corresponding OCVs are fitted with the third current SOC, and the second aging parameter, the positive electrode aging parameter and the negative electrode aging parameter are obtained by fitting;
- the quasi-static condition includes that the battery is operated with a current smaller than a preset current threshold.
- the charging duration reaches the first preset duration, or, the battery's current standing duration is longer than the second preset duration.
- the positive electrode aging parameter, the negative electrode aging parameter, and the second aging parameter can be accurately obtained by fitting, thereby improving the estimation accuracy of the remaining battery life.
- a device for estimating remaining battery life including:
- the aging parameter acquisition module is used to obtain the material aging parameters of the battery, and the material aging parameters represent the aging degree of the battery material; the remaining life estimation module is used to determine the corresponding relationship between the preset material aging parameters and the remaining battery life based on the material aging.
- the remaining life of the battery corresponding to the parameter wherein the material aging parameter includes: a first aging parameter representing the aging degree of the electrode active material of the battery, and/or a second aging parameter representing the aging degree of the active ions of the battery; wherein, the first aging parameter Including: a positive electrode aging parameter representing the aging degree of the positive electrode active material of the battery, and/or a negative electrode aging parameter representing the aging degree of the negative electrode active material of the battery.
- the corresponding relationship between the material aging parameters and the remaining battery life can be preset, and based on the corresponding relationship, the remaining battery life corresponding to the acquired material aging parameters of the individual batteries can be determined. .
- the remaining life of the battery gradually decreases, and the battery material also ages in the process of decreasing the remaining life of the battery. Therefore, the material aging parameter reflecting the aging degree of the individual battery material is used to determine the remaining battery life of the individual battery. The evaluation was carried out to improve the estimation accuracy of the remaining battery life.
- the corresponding relationship includes: a first corresponding relationship between the material aging parameter and the material concentration change, and a second corresponding relationship between the material concentration change and the remaining life of the battery, the remaining life estimation module, specifically Including: a first determination unit, for determining the current material concentration change amount corresponding to the material aging parameter based on the first correspondence relationship; a second determination unit for using the second correspondence relationship to determine the current material concentration change amount corresponding to the amount of change remaining battery life.
- the material concentration change can be used to measure the material aging parameter, and the remaining battery life can be determined according to the material aging parameter, so that the battery remaining life can be accurately measured according to the material concentration change.
- a third aspect provides an apparatus for estimating remaining battery life, including: a memory for storing a program; a processor for running the program stored in the memory to execute the first aspect or any optional option of the first aspect A method for estimating the remaining life of a battery provided by the embodiment.
- the corresponding relationship between the material aging parameters and the remaining battery life can be preset, and based on the corresponding relationship, the remaining battery life corresponding to the acquired material aging parameters of the individual batteries can be determined. .
- the remaining life of the battery gradually decreases, and the battery material also ages in the process of decreasing the remaining life of the battery. Therefore, the material aging parameter reflecting the aging degree of the individual battery material is used to determine the remaining battery life of the individual battery. The evaluation was carried out to improve the estimation accuracy of the remaining battery life.
- a fourth aspect provides a computer storage medium, where computer program instructions are stored on the computer storage medium, and when the computer program instructions are executed by a processor, the remaining battery life provided by the first aspect or any optional implementation manner of the first aspect is realized. estimation method.
- the corresponding relationship between the material aging parameter and the remaining battery life can be preset, and based on the corresponding relationship, the remaining battery life corresponding to the acquired material aging parameter of the individual battery can be determined.
- the remaining life of the battery gradually decreases, and the battery material also ages in the process of decreasing the remaining life of the battery. Therefore, the material aging parameter reflecting the aging degree of the individual battery material is used to determine the remaining battery life of the individual battery. The evaluation was carried out to improve the estimation accuracy of the remaining battery life.
- FIG. 1 is a schematic flowchart of a method for estimating the remaining life of a battery provided by an embodiment of the present application
- FIG. 2 is a schematic diagram of a corresponding relationship between a voltage and SOC of a battery provided by an embodiment of the present application;
- FIG. 3 is a schematic flowchart of an exemplary method for estimating remaining battery life provided by an embodiment of the present application
- FIG. 4 is a schematic structural diagram of a device for estimating remaining battery life provided by an embodiment of the present application.
- FIG. 5 is a structural diagram of an exemplary hardware architecture of an apparatus for estimating remaining battery life in an embodiment of the present application.
- the embodiment of the present application provides a solution for estimating the remaining battery life, which can be applied to the scenario of calculating the remaining battery life.
- the remaining life of the battery of the vehicle may be estimated when the vehicle is in a driving state.
- FIG. 1 is a schematic flowchart of a method for estimating remaining battery life provided by an embodiment of the present application. As shown in FIG. 1 , the method 100 for estimating the remaining battery life includes S110 and S120.
- the material aging parameter represents the aging degree of the battery material.
- the material aging parameters include: a first aging parameter representing the aging degree of the electrode active material of the battery, and/or a second aging parameter representing the aging degree of the active ions of the battery.
- the second aging parameter is used to characterize the aging degree of active ions in the battery. Taking a lithium battery as an example, the second aging parameter may be related to the loss of active lithium in the battery.
- the active ion aging degree is positively correlated with the second aging parameter, that is, the deeper the active ion aging degree, the greater the second aging parameter.
- FIG. 2 is a schematic diagram of a corresponding relationship between a voltage and a state of charge (State of Charge, SOC) of a battery provided by an embodiment of the present application.
- SOC state of Charge
- the curve 1 represented by the dotted line is the relationship between the negative electrode potential OCVNeg and SOC of the aged battery
- the curve 2 represented by the solid line is the negative electrode of the battery in the initial life period (Beginning of Life, BOL).
- the relationship between the potential OCVNeg and SOC can be seen that curve 1 can be regarded as obtained by scaling curve 2 first and then translating it. At this time, the shift amount of curve 1 compared to curve 2 can be used to characterize the second aging parameter.
- the first aging parameter may include: a positive aging parameter representing the aging degree of the positive electrode active material of the battery, and/or a negative electrode aging parameter representing the aging degree of the negative electrode active material of the battery.
- Negative aging parameters Anode aging parameters can be related to anode material loss.
- the curve 1 can be regarded as the result obtained by scaling the curve 2 first and then translating it.
- the amount of scaling of Curve 1 compared to Curve 2 can be used to characterize the anode aging parameter.
- the aging degree of the negative electrode material is positively correlated with the negative electrode aging parameter, that is, the deeper the negative electrode material aging degree, the greater the negative electrode aging parameter.
- Positive aging parameters can be related to cathode material loss.
- the curve 3 represented by the dotted line is the relationship between the positive electrode potential OCVPos and SOC of the battery after aging
- the curve 4 represented by the solid line is the relationship curve of the positive electrode potential OCVPos and SOC of the battery in the initial life period.
- the overall curve 3 is higher than the curve 4, and it can be seen from the comparison that the curve 3 can be regarded as being obtained by scaling the curve 4.
- the amount of scaling of curve 3 compared to curve 4 can be used to characterize the anode aging parameter.
- the curve 5 indicated by the dotted line in FIG. 2 is the relation curve between the open circuit voltage OCV and SOC of the battery after aging
- the curve 6 indicated by the solid line is the relation curve of the open circuit voltage OCV and the SOC of the battery in the initial life period.
- the aging degree of the positive electrode active material is positively correlated with the positive electrode aging parameter, that is, the deeper the positive electrode active material aging degree, the greater the positive electrode aging parameter.
- the material aging parameter may include at least one of the following parameters: a positive electrode aging parameter Wp, a negative electrode aging parameter Wn, and a second aging parameter KLL.
- the positive electrode aging parameter Wp, the negative electrode aging parameter Wn, and the second aging parameter KLL may be obtained by fitting.
- S110 specifically includes steps A1 to A8. details as follows.
- Step A1 acquiring multiple sets of first data to be processed within a preset time period.
- multiple sets of first data to be processed may be acquired within a preset time period.
- the preset time period can be determined according to specific needs and actual scenarios. Exemplarily, the preset time period may be determined according to the overall aging rate of the battery. If the battery aging rate is fast, for example, multiple sets of first data to be processed may be acquired within one week or half a month.
- each set of first data to be processed includes a battery open circuit voltage OCV under a quasi-standby condition and a cumulative net charge-discharge capacity Q corresponding to the OCV. If each set of first data to be processed can be represented as OCV-Q, then multiple sets of first data to be processed can be one OCV-Q sequence. The symbol "—" is used to indicate that each pair of OCV and Q in the sequence has a corresponding relationship.
- specific manners for acquiring multiple sets of first data to be processed may be the following two.
- the first acquisition method There may be multiple quasi-static conditions within a preset time period, then an OCV value can be calculated in each quasi-static condition, and the quasi-stationary conditions can be obtained.
- the battery voltage, battery current and temperature under the quasi-static condition can be acquired, and then the OCV is calculated according to the battery voltage, battery current and temperature.
- the battery voltage at the last moment before the end of the quasi-static condition can be used as the OCV.
- the cumulative net charge and discharge capacity the cumulative charge capacity - the cumulative discharge capacity
- the ampere-hour integration method can be used to calculate the cumulative net charge and discharge capacity corresponding to each quasi-static working condition.
- the quasi-static condition refers to a condition in which the battery is charged with a current smaller than the preset current threshold for a period of time that reaches the first preset period, or the current standing period of the battery is greater than the second preset period.
- the second acquisition method within a preset time period, the battery may be charged in the maintenance mode for many times, wherein the maintenance mode refers to charging the battery to a preset capacity. For example, a mode that stops charging after 90% of the nominal capacity, maintenance mode can prolong battery life.
- the battery is controlled to run in the quasi-static operating conditions, wherein the quasi-static operating conditions include that the battery temperature is within the specified temperature range, and the battery enters the quasi-static operating condition.
- the SOC of the battery before the operating condition is less than a certain threshold, or within a certain set threshold range.
- the specific implementation manner of determining the OCV and the cumulative net charge-discharge capacity Q in the quasi-static condition is similar to the first acquisition manner, and details are not repeated here.
- Step A2 Determine the first current SOC corresponding to the current accumulated net charge and discharge capacity Q in each group of first data to be processed by using the first correspondence function between the accumulated net charge and discharge capacity Q and the current SOC, and construct each group of the first current SOC. A corresponding relationship between the OCV in the data to be processed and the first current SOC, to obtain a plurality of sets of corresponding OCVs and the first current SOC.
- the relationship coefficient between the cumulative net charge-discharge capacity Q and the current SOC in the first correspondence function is the capacity aging parameter k.
- the capacity aging parameter represents the current aging degree of the battery capacity.
- the multiple sets of corresponding OCVs and the first current SOC may be represented as an OCV-k*Q+b sequence.
- the symbol "—" is used to indicate that each pair of OCVs in the sequence has a corresponding relationship with k*Q+b.
- Step A3 Acquire multiple sets of second data to be processed.
- each set of second data to be processed includes a positive electrode potential and an initial SOC corresponding to the positive electrode potential when the battery is in an initial life period and operates in a quasi-static condition.
- each group of second data to be processed can be represented as OCVp0-SOCp0
- multiple groups of second data to be processed can be represented as a sequence of OCVp0-SOCp0.
- the plurality of second sets of data to be processed may be determined from the positive electrode potential OCVPos versus SOC curve (eg, curve 4 in FIG. 2 ) of the battery at the initial lifetime.
- Step A4 Using the second correspondence function between the initial SOC and the current SOC, determine the second current SOC corresponding to the initial SOC in each group of the second data to be processed, and construct the positive electrode potential and the positive electrode potential in each group of the second data to be processed.
- the corresponding relationship of the second current SOC is obtained by obtaining a plurality of sets of corresponding positive electrode potentials and the second current SOC.
- the relationship coefficient between the initial SOC and the current SOC in the second corresponding relationship function is a positive electrode aging parameter.
- the multiple sets of second data to be processed are represented as an OCVp0-SOCp0 sequence
- the multiple sets of corresponding positive electrode potentials and the second current SOC may be represented as an OCVp0-SOCp0*Wp sequence, or may be represented as an OCVp0-SOCp1 sequence.
- Step A5 acquiring multiple sets of third data to be processed.
- each set of third data to be processed includes the negative electrode potential and the initial SOC corresponding to the negative electrode potential when the battery is in the initial life period and operates in a quasi-static condition.
- each group of third data to be processed may be represented as OCVn0-SOCn0, and a plurality of groups of third data to be processed may be represented as a sequence of OCVn0-SOCn0.
- a plurality of third sets of data to be processed may be determined from a plot of negative electrode potential OCVNeg versus SOC of a battery at an initial lifetime (eg, plot 2 in FIG. 2 ).
- Step A6 Using the third correspondence function between the initial SOC and the current SOC, determine the third current SOC corresponding to the initial SOC in each group of the third data to be processed, and construct the negative electrode potential and the negative electrode potential in each group of the third data to be processed. Corresponding relationship of the third current SOC, multiple sets of corresponding negative electrode potentials and the third current SOC are obtained.
- step A6 the relationship coefficient between the initial SOC and the current SOC in the third correspondence function is the anode aging parameter, and the constant term in the third correspondence function is the second aging parameter.
- multiple sets of third data to be processed are represented as an OCVn0-SOCn0 sequence
- the multiple sets of corresponding negative electrode potentials and the third current SOC can be represented as an OCVn0-SOCn0*Wn+KLL sequence, or an OCVn0-SOCn1 sequence.
- Step A7 Perform data processing on multiple sets of corresponding positive electrode potential and second current SOC, multiple sets of corresponding negative electrode potential and third current SOC, to obtain multiple sets of corresponding OCV and fourth current SOC.
- Step A8 Fitting multiple sets of corresponding OCVs and the first current SOC, and multiple sets of corresponding OCVs and the fourth current SOC, to obtain the capacity aging parameter k, the second aging parameter KLL, the positive aging parameter Wp, and the negative aging parameter by fitting. parameter Wn.
- the OCV'-SOC' sequence is used to reflect the first fitting correspondence between the current battery OCV and SOC, and this sequence contains three unknowns KLL, Wp and Wn.
- the OCV-k*Q+b sequence is used to reflect the second fitting correspondence between the current battery OCV and SOC, and includes the unknown quantity k. By fitting the two, KLL, Wp, Wn, and k can be fitted. specific value.
- S120 Determine the remaining battery life corresponding to the material aging parameter based on the preset correspondence between the material aging parameter and the remaining battery life.
- the correspondence can be specifically implemented as a relationship curve, or multiple corresponding data, such as multiple pairs of material aging parameters-battery remaining in the form of key values. life.
- the correspondence between material aging parameters and remaining battery life may be experimentally measured.
- the preset corresponding relationship between the material aging parameter and the remaining battery life may specifically include: a first corresponding relationship between the material aging parameter and the material concentration change, and a second relationship between the material concentration change and the remaining battery life. Correspondence.
- FIG. 3 is a schematic flowchart of an exemplary method for estimating remaining battery life provided by an embodiment of the present application.
- S120 may include S121 and S122.
- the first correspondence may be experimentally measured.
- the specific form of the first corresponding relationship reference may be made to the specific form of the corresponding relationship between the preset material aging parameters and the remaining battery life, which will not be repeated here.
- the current material concentration change amount is equal to the difference between the initial material concentration and the current material concentration.
- the initial material concentration is the material concentration of the battery in the initial life period.
- the specific contents of the first correspondence shown in the above embodiments of the present application are also different.
- the material aging parameter includes the second aging parameter and the positive electrode aging parameter
- the first corresponding relationship may include the first corresponding sub-relationship between the second aging parameter and the concentration change of active ions, and the positive electrode aging parameter and the positive electrode active material.
- S122 Determine the remaining battery life corresponding to the current material concentration change by using the second correspondence between the material concentration change and the battery remaining life.
- the second correspondence may be experimentally measured.
- reference may be made to the specific form of the corresponding relationship between the preset material aging parameters and the remaining battery life, which will not be repeated here.
- the remaining battery life of the battery may be specifically expressed in the form of a percentage. The larger the percentage, the longer the remaining life. For example, the remaining battery life of a factory battery can be set to 100%, and the remaining battery life of a discarded battery can be set to 0. %. Alternatively, the remaining life of the battery can be expressed in the form of remaining service life, remaining number of charge-discharge cycles, etc., which is not specifically limited.
- the remaining battery life in S120 is related to a specific type of material aging parameter.
- the remaining battery life includes the current remaining life of the positive electrode active material.
- the remaining battery life includes the current remaining life of the negative active material.
- the remaining battery life includes the current remaining life of the active ions.
- the material aging parameter includes one aging parameter among the positive aging parameter, the negative aging parameter, and the second aging parameter. Then, the current remaining life corresponding to the aging parameter can be determined as the remaining life of the battery.
- the remaining battery life is the current remaining life of the negative active material.
- the material aging parameter includes at least two aging parameters among the positive electrode aging parameter, the negative electrode aging parameter, and the second aging parameter.
- the specific process of determining the remaining life of the battery may include: determining the minimum value of the current remaining life corresponding to each of the at least two aging parameters as the remaining life of the battery.
- the material aging parameters include a positive electrode aging parameter, a negative electrode aging parameter, and a second aging parameter
- the current remaining life of the positive active material is 52%
- the current remaining life of the negative active material is 48%
- the current remaining life of the active ions is 26%
- the remaining battery life is 26%.
- the applicant considers that the remaining life of the battery often depends on the material with the highest degree of aging, so by determining the minimum value of the current remaining life corresponding to at least two aging parameters as the remaining life of the battery, it is possible to accurately Measures remaining battery life.
- the corresponding relationship between the material aging parameter and the remaining battery life can be preset, and based on the corresponding relationship, the remaining battery life corresponding to the acquired material aging parameter of the individual battery can be determined. .
- the remaining life of the battery gradually decreases, and the battery material also ages in the process of decreasing the remaining life of the battery. Therefore, the material aging parameter reflecting the aging degree of the individual battery material is used to determine the remaining battery life of the individual battery. Life evaluation is performed, which improves the estimation accuracy of the remaining battery life.
- the embodiments of the present application not only provide a method for estimating the remaining battery life, but also provide a corresponding device for estimating the remaining battery life.
- the device according to the embodiments of the present application will be described in detail below with reference to the accompanying drawings.
- FIG. 4 is a schematic structural diagram of an apparatus for estimating the remaining life of a battery provided by an embodiment of the present application. As shown in FIG. 4 , the apparatus 400 for estimating the remaining life of the battery includes an aging parameter obtaining module 410 and a remaining life estimating module 420 .
- the aging parameter acquisition module 410 is used to acquire material aging parameters of the battery, and the material aging parameters represent the aging degree of the battery material.
- the remaining life estimation module 420 is configured to determine the remaining battery life corresponding to the material aging parameter based on the corresponding relationship between the preset material aging parameter and the battery remaining life.
- the corresponding relationship includes: a first corresponding relationship between the material aging parameter and the amount of material concentration change, and a second corresponding relationship between the amount of material concentration change and the remaining battery life.
- the remaining life estimation module 420 specifically includes:
- the first determination unit is configured to determine, based on the first correspondence, the current material concentration change amount corresponding to the material aging parameter.
- the second determining unit is configured to use the second correspondence relationship to determine the remaining battery life corresponding to the current change in material concentration.
- the material aging parameters include: a first aging parameter representing the degree of aging of the electrode active material of the battery, and/or a second aging parameter representing the degree of aging of the active ions of the battery.
- the first aging parameter includes: a positive electrode aging parameter representing the aging degree of the positive electrode active material of the battery, and/or a negative electrode aging parameter representing the aging degree of the negative electrode active material of the battery.
- the remaining battery life includes the current remaining life of the positive active material.
- the remaining battery life includes the current remaining life of the negative active material.
- the remaining battery life includes the current remaining life of the active ions.
- the material aging parameters include at least two aging parameters among a positive aging parameter, a negative aging parameter, and a second aging parameter.
- the remaining life estimation module 420 is specifically configured to: determine the minimum value of the current remaining life corresponding to the at least one aging parameter as the remaining battery life.
- the material aging parameters include a positive aging parameter characterizing the aging degree of the positive electrode active material of the battery, a negative electrode aging parameter characterizing the aging degree of the negative electrode active material of the battery, and a second aging parameter characterizing the active ion aging degree of the battery .
- the aging parameter acquisition module 410 specifically includes:
- the first acquiring unit is configured to acquire multiple sets of first data to be processed within a preset time period.
- each set of first data to be processed includes the battery open circuit voltage OCV and the accumulated net charge-discharge capacity Q corresponding to the OCV under the quasi-static condition.
- the first calculation unit is used to determine the first current SOC corresponding to the current Q in each group of first data to be processed by using the first correspondence function between the accumulated net charge and discharge capacity Q and the current SOC, and construct each group of the first current SOC. According to the correspondence between the OCV in the data to be processed and the first current SOC, a plurality of sets of corresponding OCVs and the first current SOC are obtained. Wherein, the relationship coefficient between the cumulative net charge-discharge capacity Q and the current SOC in the first correspondence function is the capacity aging parameter.
- the second acquiring unit is configured to acquire multiple sets of second data to be processed.
- each set of second data to be processed includes a positive electrode potential and an initial SOC corresponding to the positive electrode potential when the battery is in an initial life period and operates in a quasi-static condition.
- the second calculation unit is configured to use the second correspondence function between the initial SOC and the current SOC to determine the second current SOC corresponding to the initial SOC in each group of the second data to be processed, and construct the second current SOC corresponding to the initial SOC in each group of the second data to be processed.
- the corresponding relationship between the positive electrode potential and the second current SOC to obtain a plurality of sets of corresponding positive electrode potentials and the second current SOC.
- the relationship coefficient between the initial SOC and the current SOC in the second corresponding relationship function is a positive electrode aging parameter.
- the third acquiring unit is configured to acquire multiple sets of third data to be processed.
- each set of third data to be processed includes the negative electrode potential and the initial SOC corresponding to the negative electrode potential when the battery is in the initial life period and operates in a quasi-static condition.
- the third calculation unit is configured to use the third correspondence function between the initial SOC and the current SOC to determine the third current SOC corresponding to the initial SOC in each set of third data to be processed, and construct the third current SOC in each set of third data to be processed.
- the corresponding relationship between the negative electrode potential of , and the third current SOC, multiple sets of corresponding negative electrode potentials and the third current SOC are obtained.
- the relationship coefficient between the initial SOC and the current SOC in the third correspondence function is the anode aging parameter
- the constant term in the third correspondence function is the second aging parameter.
- the fourth calculation unit is configured to perform data processing on multiple sets of corresponding positive electrode potential and second current SOC, multiple sets of corresponding negative electrode potential and third current SOC, and obtain multiple sets of corresponding OCV and fourth current SOC.
- the fitting unit is used for fitting the corresponding OCVs of the multiple groups and the first current SOC, the OCVs corresponding to the multiple groups and the second current SOC, and the OCVs corresponding to the multiple groups and the third current SOC, and obtains the second aging parameter by fitting , positive aging parameters and negative aging parameters.
- the quasi-standby condition includes a condition in which the battery is charged with a current smaller than the preset current threshold for a period of time that reaches the first preset period, or the current standing period of the battery is greater than the second preset period.
- the corresponding relationship between the material aging parameter and the remaining battery life can be preset, and based on the corresponding relationship, the remaining battery life corresponding to the acquired material aging parameter of the individual battery can be determined. .
- the remaining life of the battery gradually decreases, and the battery material also ages during the process of decreasing the remaining life of the battery. Therefore, the material aging parameter reflecting the aging degree of the individual battery material is used to determine the remaining battery life of the individual battery. The evaluation was performed to improve the estimation accuracy of the remaining battery life.
- FIG. 5 is a structural diagram of an exemplary hardware architecture of an apparatus for estimating remaining battery life in an embodiment of the present application.
- the battery remaining life estimation apparatus 500 includes an input device 501 , an input interface 502 , a central processing unit 503 , a memory 504 , an output interface 505 , and an output device 506 .
- the input interface 502, the central processing unit 503, the memory 504, and the output interface 505 are connected to each other through the bus 510, and the input device 501 and the output device 506 are respectively connected to the bus 510 through the input interface 502 and the output interface 505, and then to the remaining battery life.
- the other components of the estimating device 500 are connected.
- the input device 501 receives input information from the outside, and transmits the input information to the central processing unit 503 through the input interface 502; the central processing unit 503 processes the input information based on the computer-executable instructions stored in the memory 504 to generate output information, store the output information temporarily or permanently in the memory 504, and then transmit the output information to the output device 506 through the output interface 505; the output device 506 outputs the output information to the outside of the remaining battery life estimation device 500 for the user to use.
- the apparatus for estimating the remaining battery life shown in FIG. 5 can also be implemented to include: a memory storing computer-executable instructions; and a processor, which, when executing the computer-executable instructions, can be implemented in conjunction with FIG. 1 .
- the method for estimating the remaining battery life of the battery described in FIG. 3 can also be implemented to include: a memory storing computer-executable instructions; and a processor, which, when executing the computer-executable instructions, can be implemented in conjunction with FIG. 1 .
- the method for estimating the remaining battery life of the battery described in FIG. 3 described in FIG. 3 .
- the battery remaining life estimation device 500 shown in FIG. 5 may be implemented as a device, and the device may include: a memory for storing a program; a processor for running the program stored in the memory, To implement the method for estimating the remaining battery life of the embodiment of the present application.
- Embodiments of the present application further provide a computer storage medium, where computer program instructions are stored thereon, and when the computer program instructions are executed by a processor, the method for estimating the remaining battery life of the embodiments of the present application is implemented.
- the functional blocks shown in the above structural block diagrams may be implemented as hardware, software, firmware, or a combination thereof.
- hardware When implemented in hardware, it may be, for example, an electronic circuit, an application specific integrated circuit (ASIC), suitable firmware, a plug-in, a function card, or the like.
- ASIC application specific integrated circuit
- elements of the present application are programs or code segments used to perform the required tasks.
- the program or code segments may be stored in a machine-readable medium or transmitted over a transmission medium or communication link by a data signal carried in a carrier wave.
- a "machine-readable medium” may include any medium that can store or transmit information.
- machine-readable media examples include electronic circuits, semiconductor memory devices, ROM, flash memory, erasable ROM (EROM), floppy disks, CD-ROMs, optical disks, hard disks, fiber optic media, radio frequency (RF) links, and the like.
- the code segments may be downloaded via a computer network such as the Internet, an intranet, or the like.
- a computer-readable storage medium refers to a non-transitory readable medium.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Secondary Cells (AREA)
Abstract
一种电池剩余寿命的估算方法(100)、装置(400, 500)和介质,其中,估算方法(100)包括:获取电池的材料老化参数(S110),材料老化参数表征电池材料的老化程度;基于预设的材料老化参数与电池剩余寿命的对应关系,确定与材料老化参数对应的电池剩余寿命(S120)。
Description
相关申请的交叉引用
本申请要求享有于2020年08月11日提交的名称为“电池剩余寿命的估算方法、装置和介质”的中国专利申请202010798925.0的优先权,该申请的全部内容通过引用并入本文中。
本申请涉及电池技术领域,特别是涉及一种电池剩余寿命的估算方法、装置和介质。
随着新能源的发展,越来越多的领域采用新能源作为动力。由于具有能量密度高、可循环充电、安全环保等优点,电池被广泛应用于新能源汽车、储能系统等领域中。
由于随着电池的服役年限、服役里程的增长或者循环充电次数的增多等,电池逐渐老化,电池剩余寿命逐渐减小。因此,电池剩余寿命可以作为电池使用价值的重要判断依据,是用户关注的电池当前状态参数之一。
然而,现阶段往往通过训练模型的方式来对电池剩余寿命进行整体上的评估,该种评估方法未考虑电池个体间的差异性,无法对电池剩余寿命进行准确评估。因此,需要一种能够准确评估电池剩余寿命的估算方法。
发明内容
本申请实施例提供的电池剩余寿命的估算方法、装置、装置和介质,根据个体电池的材料老化参数对个体电池的电池剩余寿命进行评估,可以提高电池剩余寿命的估算准确度。
第一方面,提供一种电池剩余寿命的估算方法,包括:获取电池的材料老化参数,材料老化参数表征电池材料的老化程度;基于预设的材料老化参数与电池剩余寿命的对应关系,确定与材料老化参数对应的电池剩余寿命,其中材料老化参数包括:表征电池的电极活性材料老化程度的第一老化参数,和/或,表征电池的活性离子老化程度的第二老化参数;其中,第一老化参数包括:表征电池的正极活性材料的老化程 度的正极老化参数,和/或,表征电池的负极活性材料的老化程度的负极老化参数。
根据本申请实施例中的电池剩余寿命的估算方法,可以预先设置材料老化参数与电池剩余寿命的对应关系,基于该对应关系,可以确定与所获取的个体电池的材料老化参数对应的电池剩余寿命。由于电池投入使用之后,电池剩余寿命逐渐减小,且在电池剩余寿命减小过程中,电池材料也随之老化,因此利用反映个体电池材料的老化程度的材料老化参数对个体电池的电池剩余寿命进行评估,提高了电池剩余寿命的估算准确度。
在一种可选的实施方式中,对应关系包括:材料老化参数与材料浓度变化量的第一对应关系,以及,材料浓度变化量与电池剩余寿命的第二对应关系,基于预设的材料老化参数与电池剩余寿命的对应关系,确定与所获取的材料老化参数对应的电池剩余寿命,具体包括:基于第一对应关系,确定与材料老化参数对应的当前材料浓度变化量;利用第二对应关系,确定与当前材料浓度变化量对应的电池剩余寿命。
在本实施方式中,可以利用材料浓度变化量来衡量材料老化参数,并根据材料老化参数确定电池剩余寿命,从而能够根据材料浓度变化量来准确的衡量电池剩余寿命。
在一种可选的实施方式中,若材料老化参数包括正极老化参数,则电池剩余寿命包括正极活性材料的当前剩余寿命;若材料老化参数包括负极老化参数,则电池剩余寿命包括负极活性材料的当前剩余寿命;若材料老化参数包括第二老化参数,则电池剩余寿命包括活性离子的当前剩余寿命。
在本实施方式中,可以从正极活性材料的当前剩余寿命、负极活性材料的当前剩余寿命以及活性例子的当前剩余寿命等多个维度对电池剩余寿命进行评估,提高了电池剩余寿命的估算准确度。
在一种可选的实施方式中,材料老化参数包括正极老化参数、负极老化参数和第二老化参数中的至少两个老化参数;基于预设的材料老化参数与电池剩余寿命的对应关系,确定与材料老化参数对应的电池剩余寿命,包括:将至少一个老化参数各自对应的当前剩余寿命中的最小值,确定为电池剩余寿命。
在本实施方式中,由于在电池剩余寿命结束之前应保证电池各部件的寿命均未结束,因此,通过将至少一个老化参数各自对应的当前剩余寿命中的最小值确定为电池剩余寿命,可以提高了电池剩余寿命的估算准确度。
在一种可选的实施方式中,材料老化参数包括表征电池的正极活性材料的老化程度的正极老化参数、表征电池的负极活性材料的老化程度的负极老化参数和表征电池的活性离子老化程度的第二老化参数;获取电池的材料老化参数,具体包括:获取预设时间周期内的多组第一待处理数据,其中,每一组第一待处理数据包括准静置工况下的电池开路电压OCV和与OCV对应的累计净充放电容量Q;利用Q与当前SOC的第一对应关系函数,确定每一组第一待处理数据中的当前Q对应的第一当前SOC,构建每一组第一待处理数据中的OCV与第一当前SOC的对应关系,得到多组对应的OCV和第一当前SOC,其中,第一对应关系函数中的Q与当前SOC的关系系数为容量老化参数;获取多组第二待处理数据,其中,每一组第二待处理数据包括电池在处 于初始寿命时期且运行于准静置工况的情况下的正极电势和正极电势对应的初始SOC;利用初始SOC与当前SOC的第二对应关系函数,确定每一组第二待处理数据中的初始SOC对应的第二当前SOC,构建每一组第二待处理数据中的正极电势与第二当前SOC的对应关系,得到多组对应的正极电势和第二当前SOC,其中,第二对应关系函数中的初始SOC与当前SOC的关系系数为正极老化参数;获取多组第三待处理数据,其中,每一组第三待处理数据包括电池在处于初始寿命时期且运行于准静置工况的情况下的负极电势和负极电势对应的初始SOC;利用初始SOC与当前SOC的第三对应关系函数,确定每一组第三待处理数据中的初始SOC对应的第三当前SOC,构建每一组第三待处理数据中的负极电势与第三当前SOC的对应关系,得到多组对应的负极电势和第三当前SOC,第三对应关系函数中的初始SOC与当前SOC的关系系数为负极老化参数,第三对应关系函数中的常数项为第二老化参数;对多组对应的正极电势和第二当前SOC、多组对应的负极电势和第三当前SOC进行数据处理,得到多组对应的OCV与第四当前SOC;对多组对应的OCV和第一当前SOC、多组对应的OCV与第二当前SOC、多组对应的OCV与第三当前SOC进行拟合,拟合得到第二老化参数、正极老化参数和负极老化参数;其中,准静置工况包括电池以小于预设电流阈值的电流进行充电的时长达到第一预设时长,或者,电池的本次静置时长大于第二预设时长的工况。
在本实施方式中,可以通过拟合的方式准确得到正极老化参数、负极老化参数以及第二老化参数,从而提高了电池剩余寿命的估算准确度。
第二方面,提供一种电池剩余寿命的估算装置,包括:
老化参数获取模块,用于获取电池的材料老化参数,材料老化参数表征电池材料的老化程度;剩余寿命估算模块,用于基于预设的材料老化参数与电池剩余寿命的对应关系,确定与材料老化参数对应的电池剩余寿命,其中材料老化参数包括:表征电池的电极活性材料老化程度的第一老化参数,和/或,表征电池的活性离子老化程度的第二老化参数;其中,第一老化参数包括:表征电池的正极活性材料的老化程度的正极老化参数,和/或,表征电池的负极活性材料的老化程度的负极老化参数。
根据本申请实施例中的电池剩余寿命的估算装置,可以预先设置材料老化参数与电池剩余寿命的对应关系,基于该对应关系,可以确定与所获取的个体电池的材料老化参数对应的电池剩余寿命。由于电池投入使用之后,电池剩余寿命逐渐减小,且在电池剩余寿命减小过程中,电池材料也随之老化,因此利用反映个体电池材料的老化程度的材料老化参数对个体电池的电池剩余寿命进行评估,提高了电池剩余寿命的估算准确度。
在一种可选的实施方式中,对应关系包括:材料老化参数与材料浓度变化量的第一对应关系,以及,材料浓度变化量与电池剩余寿命的第二对应关系,剩余寿命估算模块,具体包括:第一确定单元,用于基于第一对应关系,确定与材料老化参数对应的当前材料浓度变化量;第二确定单元,用于利用第二对应关系,确定与当前材料浓度变化量对应的电池剩余寿命。
在本实施方式中,可以利用材料浓度变化量来衡量材料老化参数,并根据材料 老化参数确定电池剩余寿命,从而能够根据材料浓度变化量来准确的衡量电池剩余寿命。
第三方面,提供一种电池剩余寿命的估算装置,包括:存储器,用于存储程序;处理器,用于运行存储器中存储的程序,以执行第一方面或第一方面的任一可选的实施方式提供的电池剩余寿命的估算方法。
根据本申请实施例中的电池剩余寿命的估算装置,可以预先设置材料老化参数与电池剩余寿命的对应关系,基于该对应关系,可以确定与所获取的个体电池的材料老化参数对应的电池剩余寿命。由于电池投入使用之后,电池剩余寿命逐渐减小,且在电池剩余寿命减小过程中,电池材料也随之老化,因此利用反映个体电池材料的老化程度的材料老化参数对个体电池的电池剩余寿命进行评估,提高了电池剩余寿命的估算准确度。
第四方面,提供一种计算机存储介质,计算机存储介质上存储有计算机程序指令,计算机程序指令被处理器执行时实现第一方面或第一方面的任一可选的实施方式提供的电池剩余寿命的估算方法。
根据本申请实施例中的计算机存储介质,可以预先设置材料老化参数与电池剩余寿命的对应关系,基于该对应关系,可以确定与所获取的个体电池的材料老化参数对应的电池剩余寿命。由于电池投入使用之后,电池剩余寿命逐渐减小,且在电池剩余寿命减小过程中,电池材料也随之老化,因此利用反映个体电池材料的老化程度的材料老化参数对个体电池的电池剩余寿命进行评估,提高了电池剩余寿命的估算准确度。
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据附图获得其他的附图。
图1是本申请实施例提供的一种电池剩余寿命的估算方法的流程示意图;
图2是本申请实施例提供的电池的一种电压与SOC的对应关系示意图;
图3是本申请实施例提供的一种示例性的电池剩余寿命的估算方法的流程示意图;
图4是本申请实施例提供的一种电池剩余寿命的估算装置的结构示意图;
图5是本申请实施例中电池剩余寿命的估算装置的示例性硬件架构的结构图。
下面将详细描述本申请的各个方面的特征和示例性实施例,为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细描述。应理解,此处所描述的具体实施例仅被配置为解释本申请,并不被配置为限定本申请。对于本领域技术人员来说,本申请可以在不需要这些具体细节中的一些细节的情况下实施。下面对实施例的描述仅仅是为了通过示出本申请的示例来提供对本申请更好的理解。
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括……”限定的要素,并不排除在包括要素的过程、方法、物品或者装置中还存在另外的相同要素。
本申请实施例提供了一种电池剩余寿命的估算方案,可以应用于计算电池剩余寿命的场景中。示例性地,可以在车辆处于行车状态时,对车辆的电池进行剩余寿命估算的具体场景中。
图1是本申请实施例提供的一种电池剩余寿命的估算方法的流程示意图。如图1所示,电池剩余寿命的估算方法100包括S110和S120。
S110,获取电池的材料老化参数。
在S110中,材料老化参数表征电池材料的老化程度。
具体地,材料老化参数包括:表征电池的电极活性材料老化程度的第一老化参数,和/或,表征电池的活性离子老化程度的第二老化参数。
首先,对于第二老化参数,第二老化参数用于表征电池内的活性离子的老化程度。电池以锂电池为例,则第二老化参数可以与电池中的活性锂损失相关。
在一些实施例中,活性离子老化程度与第二老化参数正相关,也就是说,活性离子老化程度越深,第二老化参数越大。
本申请实施例的下述部分将结合附图对第二老化参数进行详细说明。图2是本申请实施例提供的电池的一种电压与荷电状态(State of Charge,SOC)的对应关系示意图。
如图2所示,用虚线表示的曲线1是老化后的电池的负极电势OCVNeg与SOC的关系曲线,用实线表示的曲线2是处于初始寿命时期(Beginning of Life, BOL)的电池的负极电势OCVNeg与SOC的关系曲线。通过对比可知,可以将曲线1看作是对曲线2先缩放后平移得到的。此时,曲线1相较于曲线2的平移量可以用于表征第二老化参数。示例性地,根据图2中示出的曲线1和曲线2,可以计算得到第二老化参数KLL=0.1。
需要说明的是,虽然由于电池负极电势的取值整体较小,图2中的曲线1和曲线2看起来几乎重叠在一起,但是实现上曲线1整体高于曲线2。
其次,对于第一老化参数,其可以包括:表征电池的正极活性材料的老化程度的正极老化参数,和/或,表征电池的负极活性材料的老化程度的负极老化参数。
本申请实施例的下述部分将结合附图2对负极老化参数和正极老化参数进行详细说明。
1、负极老化参数。负极老化参数可以与负极材料损失相关。
继续参见图2,由于可以将曲线1看作是对曲线2先缩放后平移得到的结果。在这种情况下,曲线1相较于曲线2的缩放量可以用于表征负极老化参数。示例性地,根据图2中示出的曲线1和曲线2,可以计算得到负极老化参数Wn=0.1。
在一些实施例中,负极材料老化程度与负极老化参数正相关,也就是说,负极材料老化程度越深,负极老化参数越大。
2、正极老化参数。对于正极老化参数可以与正极材料损失相关。
继续参见图2,用虚线表示的曲线3是老化后的电池的正极电势OCVPos与SOC的关系曲线,用实线表示的曲线4是处于初始寿命时期的电池的正极电势OCVPos与SOC的关系曲线。曲线3整体高于曲线4,通过对比可知,可以将曲线3看作是对曲线4缩放得到的。在这种情况下,曲线3相较于曲线4的缩放量可以用于表征正极老化参数。示例性地,根据图2中示出的曲线3和曲线4,可以计算得到正极老化参数Wp=0.1。另外,图2中用虚线表示的曲线5是老化后的电池的开路电压OCV与SOC的关系曲线,用实线表示的曲线6是处于初始寿命时期的电池的开路电压OCV与SOC的关系曲线。
在一些实施例中,正极活性材料老化程度与正极老化参数正相关,也就是说,正极活性材料老化程度越深,正极老化参数越大。
综上所述,材料老化参数可以包括以下参数的至少一种:正极老化参数Wp、负极老化参数Wn、第二老化参数KLL。
在一些实施例中,可以通过拟合的方式得到正极老化参数Wp、负极老化参数Wn、第二老化参数KLL。
具体地,S110具体包括步骤A1至步骤A8。具体如下。
步骤A1,获取预设时间周期内的多组第一待处理数据。
首先,为了保证计算准确度,可以在预设时间周期内获取多组第一待处理数据。预设时间周期可以根据具体需要和实际场景确定。示例性地,可以根据电池整体老化速率确定预设时间周期,若电池老化速率快,则选取比如可以在一周或半月内获取多组第一待处理数据。
其次,对于每一组第一待处理数据,每一组第一待处理数据包括一个准静置工 况下的电池开路电压OCV和与OCV对应的累计净充放电容量Q。若每一组第一待处理数据可以表示为OCV—Q,则多组第一待处理数据可以为一个OCV—Q序列。其中,符号“—”用于表示序列中每对OCV与Q之间具有对应关系。
在一些实施例中获取多组第一待处理数据的具体方式可以为下述两种。
第一种获取方式:在预设时间周期内的可能会出现多次准静置工况,则每次准静置工况下均可以计算一个OCV值,并获取在该次准静置工况的持续过程中的累计净充放电容量Q。则每次准静置工况下计算的OCV和累计净充放电容量Q作为一组第一待处理数据。
在第一种获取方式中,可以获取该次准静置工况下的电池电压、电池电流和温度,然后根据电池电压、电池电流和温度计算OCV。示例性地,可以将准静置工况结束前的最后时刻的电池电压作为OCV。
其中,累计净充放电容量=累计充电容量-累计放电容量,可以采用安时积分法来计算各准静置工况对应的累计净充放电容量。其中,准静置工况是指电池以小于预设电流阈值的电流进行充电的时长达到第一预设时长,或者,电池的本次静置时长大于第二预设时长的工况。
第二种获取方式:在预设时间周期内,电池可能会多次在保养模式下进行充电,其中,保养模式是指将电池充到预设容量。例如标定容量的90%后停止充电的一种模式,保养模式可以延长电池使用寿命。在每次保养模式过程中,若满足准静置工况运行条件,则控制电池运行于准静置工况,其中准静置工况运行条件包括电池温度在指定温度范围内,且进入准静置工况前的电池SOC小于某阈值,或者介于某设定的阈值范围内。其中,准静置工况中确定OCV和累计净充放电容量Q的具体实施方式与第一种获取方式类似,在此不再赘述。
步骤A2,利用累计净充放电容量Q与当前SOC的第一对应关系函数,确定每一组第一待处理数据中的当前累计净充放电容量Q对应的第一当前SOC,构建每一组第一待处理数据中的OCV与第一当前SOC的对应关系,得到多组对应的OCV和第一当前SOC。
在步骤A2中,第一对应关系函数中的累计净充放电容量Q与当前SOC的关系系数为容量老化参数k。其中,容量老化参数表征电池容量的当前老化程度。示例性地,第一对应关系函数可以表示为SOC=k*Q+b。需要说明的是,第一对应关系函数中k和b均为未知量。
若多组第一待处理数据表示为OCV—Q序列,则多组对应的OCV和第一当前SOC可以表示为OCV—k*Q+b序列。其中,符号“—”用于表示序列中每对OCV与k*Q+b之间具有对应关系。
步骤A3,获取多组第二待处理数据。
在步骤A3中,每一组第二待处理数据包括电池在处于初始寿命时期且运行于准静置工况的情况下的正极电势和正极电势对应的初始SOC。示例性地,若每一组第二待处理数据均可以表示为OCVp0—SOCp0,多组第二待处理数据可以表示为OCVp0—SOCp0序列。
在一些实施例中,可以从处于初始寿命时期的电池的正极电势OCVPos与SOC的关系曲线(例如图2中的曲线4)上确定多组第二待处理数据。
步骤A4,利用初始SOC与当前SOC的第二对应关系函数,确定每一组第二待处理数据中的初始SOC对应的第二当前SOC,构建每一组第二待处理数据中的正极电势与第二当前SOC的对应关系,得到多组对应的正极电势和第二当前SOC。
在步骤A4,第二对应关系函数中的初始SOC与当前SOC的关系系数为正极老化参数。示例性地,第二对应关系函数可以表示为SOCp1=SOCp0*Wp,SOCp0表示初始SOC,SOCp1表示当前SOC。需要说明的是,第二对应关系函数中Wp为未知量。
若多组第二待处理数据表示为OCVp0—SOCp0序列,则多组对应的正极电势和第二当前SOC可以表示为OCVp0—SOCp0*Wp序列,或者可以表示为OCVp0—SOCp1序列。
步骤A5,获取多组第三待处理数据。
在步骤A5中,每一组第三待处理数据包括电池在处于初始寿命时期且运行于准静置工况的情况下的负极电势和负极电势对应的初始SOC。示例性地,每一组第三待处理数据可以表示为OCVn0—SOCn0,多组第三待处理数据可以表示为OCVn0—SOCn0序列。
在一些实施例中,可以从处于初始寿命时期的电池的负极电势OCVNeg与SOC的关系曲线(例如图2中的曲线2)上确定多组第三待处理数据。
步骤A6,利用初始SOC与当前SOC的第三对应关系函数,确定每一组第三待处理数据中的初始SOC对应的第三当前SOC,构建每一组第三待处理数据中的负极电势与第三当前SOC的对应关系,得到多组对应的负极电势和第三当前SOC。
在步骤A6中,第三对应关系函数中的初始SOC与当前SOC的关系系数为负极老化参数,第三对应关系函数中的常数项为第二老化参数。示例性地,第三对应关系函数可以表示为SOCn1=SOCn0*Wn+KLL,SOCn0表示初始SOC,SOCn1表示当前SOC。
需要说明的是,第三对应关系函数中的关系系数Wn和常数项KLL为未知量。
若多组第三待处理数据表示为OCVn0—SOCn0序列,则多组对应的负极电势和第三当前SOC可以表示为OCVn0—SOCn0*Wn+KLL序列,或者OCVn0—SOCn1序列。
步骤A7,对多组对应的正极电势和第二当前SOC、多组对应的负极电势和第三当前SOC进行数据处理,得到多组对应的OCV与第四当前SOC。
步骤A8,对多组对应的OCV和第一当前SOC、多组对应的OCV与第四当前SOC进行拟合,拟合得到容量老化参数k、第二老化参数KLL、正极老化参数Wp和负极老化参数Wn。
示例性地,对于OCVp0—SOCp1序列和OCVn0—SOCn1序列,对SOCp1和SOCn1进行归一化后,可获得OCVp0’—SOCp1’序列和OCVn0’—SOCn1’序列。由于 电池开路电压等于电池正极电势与电池负极电势的差值,OCV’=OCVp0’-OCVn0’,利用OCVp0’—SOCp1’序列和OCVn0’—SOCn1’序列可以生成OCV’—SOC’序列。
由于OCV’—SOC’序列用于反映当前电池OCV与SOC的第一拟合对应关系,且这个序列包含有KLL、Wp和Wn三个未知量。而OCV—k*Q+b序列用于反映当前电池OCV与SOC的第二拟合对应关系,且包含有k这个未知量,对二者拟合可以拟合得到KLL、Wp、Wn、k的具体取值。
S120,基于预设的材料老化参数与电池剩余寿命的对应关系,确定与材料老化参数对应的电池剩余寿命。
首先,对于预设的材料老化参数与电池剩余寿命的对应关系,该对应关系可以具体实现为关系曲线,或者是多个对应的数据,例如以键值形式呈现的多对材料老化参数-电池剩余寿命。例如,材料老化参数与电池剩余寿命的对应关系可以是实验测得的。
在一些实施例中,预设的材料老化参数与电池剩余寿命的对应关系可以具体包括:材料老化参数与材料浓度变化量的第一对应关系,以及,材料浓度变化量与电池剩余寿命的第二对应关系。
相应地,图3是本申请实施例提供的一种示例性地电池剩余寿命的估算方法的流程示意图。如图3所示,S120的具体实施方式可以包括S121和S122。
S121,基于材料老化参数与材料浓度变化量的第一对应关系,确定与材料老化参数对应的当前材料浓度变化量。
对于该第一对应关系,该第一对应关系可以是实验测得的。该第一对应关系的具体形式可以参见预设的材料老化参数与电池剩余寿命的对应关系的具体形式,在此不再赘述。
对于当前材料浓度变化量,当前材料浓度变化量等于初始材料浓度与当前材料浓度的差值。其中,初始材料浓度为处于初始寿命时期的电池的材料浓度。
需要说明的是,材料老化参数的具体类型不同时,本申请上述实施例示出的第一对应关系的具体内容也不同。例如,若材料老化参数包括第二老化参数和正极老化参数,则第一对应关系可以包括第二老化参数与活性离子的浓度变化量的第一对应子关系,以及正极老化参数与正极活性材料的浓度变化量的第二对应子关系。
S122,利用材料浓度变化量与电池剩余寿命的第二对应关系,确定与当前材料浓度变化量对应的电池剩余寿命。
对于该第二对应关系,该第二对应关系可以是实验测得的。该第二对应关系的具体形式可以参见预设的材料老化参数与电池剩余寿命的对应关系的具体形式,在此不再赘述。
首先,对于电池剩余寿命。在一些实施例中,电池剩余寿命可以具体用百分比的形式进行表示,百分比越大,剩余寿命越长,比如出厂电池的电池剩余寿命可以设置为100%,报废电池的电池剩余寿命可以设置为0%。又或者,电池剩余寿命可以用剩余使用年限、剩余充放电循环次数等形式体现,对此不作具体限制。
在一些实施例中,S120中的电池剩余寿命与材料老化参数的具体类型相关。
具体地,若材料老化参数包括正极老化参数,则电池剩余寿命包括正极活性材料的当前剩余寿命。
若材料老化参数包括负极老化参数,则电池剩余寿命包括负极活性材料的当前剩余寿命。
若材料老化参数包括第二老化参数,则电池剩余寿命包括活性离子的当前剩余寿命。
最后,对于材料老化参数与电池剩余寿命的对应关系。
在第一种情况中,材料老化参数包括正极老化参数、负极老化参数和第二老化参数中的一个老化参数。则可以将该老化参数对应的当前剩余寿命确定为电池剩余寿命。
示例性地,若材料老化参数包括负极老化参数,则电池剩余寿命为负极活性材料的当前剩余寿命。
在第二种情况中,材料老化参数包括正极老化参数、负极老化参数和第二老化参数中的至少两个老化参数。
则电池剩余寿命的具体确定过程可以包括:将至少两个老化参数各自对应的当前剩余寿命中的最小值,确定为电池剩余寿命。
示例性地,若材料老化参数包括正极老化参数、负极老化参数和第二老化参数,正极活性材料的当前剩余寿命为52%,负极活性材料的当前剩余寿命为48%,活性离子的当前剩余寿命为26%,则电池剩余寿命为26%。
在第二种情况中,申请人考虑到电池剩余寿命往往取决于老化程度最高的材料,因此通过将至少两个老化参数各自对应的当前剩余寿命中的最小值确定为电池剩余寿命,能够准确的衡量电池剩余寿命。
根据本申请实施例中的电池剩余寿命的估算方法,可以预先设置材料老化参数与电池剩余寿命的对应关系,基于该对应关系,可以确定与所获取的个体电池的材料老化参数对应的电池剩余寿命。由于电池投入使用之后,电池剩余寿命逐渐减小,且在电池剩余寿命减小过程中,电池材料也随之老化,因此利用反映个体电池材料的老化程度的材料老化参数,对个体电池的电池剩余寿命进行评估,提高了电池剩余寿命的估算准确度。
基于相同的申请构思,本申请实施例除了提供了电池剩余寿命的估算方法之外,还提供了与之对应的电池剩余寿命的估算装置。下面结合附图,详细介绍根据本申请实施例的装置。
本申请实施例提供了一种电池剩余寿命的估算装置。图4是本申请实施例提供的一种电池剩余寿命的估算装置的结构示意图。如图4所示,电池剩余寿命的估算装置400包括老化参数获取模块410和剩余寿命估算模块420。
其中,老化参数获取模块410,用于获取电池的材料老化参数,材料老化参数表征电池材料的老化程度。
剩余寿命估算模块420,用于基于预设的材料老化参数与电池剩余寿命的对应关系,确定与材料老化参数对应的电池剩余寿命。
在一些实施例中,对应关系包括:材料老化参数与材料浓度变化量的第一对应关系,以及,材料浓度变化量与电池剩余寿命的第二对应关系。
相应地,剩余寿命估算模块420,具体包括:
第一确定单元,用于基于第一对应关系,确定与材料老化参数对应的当前材料浓度变化量。
第二确定单元,用于利用第二对应关系,确定与当前材料浓度变化量对应的电池剩余寿命。
在一些实施例中,材料老化参数包括:表征电池的电极活性材料老化程度的第一老化参数,和/或,表征电池的活性离子老化程度的第二老化参数。
其中,第一老化参数包括:表征电池的正极活性材料的老化程度的正极老化参数,和/或,表征电池的负极活性材料的老化程度的负极老化参数。
在一些实施例中,若材料老化参数包括正极老化参数,则电池剩余寿命包括正极活性材料的当前剩余寿命。
若材料老化参数包括负极老化参数,则电池剩余寿命包括负极活性材料的当前剩余寿命。
若材料老化参数包括第二老化参数,则电池剩余寿命包括活性离子的当前剩余寿命。
在一些实施例中,材料老化参数包括正极老化参数、负极老化参数和第二老化参数中的至少两个老化参数。
相应地,剩余寿命估算模块420,具体用于:将至少一个老化参数各自对应的当前剩余寿命中的最小值,确定为电池剩余寿命。
在一些实施例中,材料老化参数包括表征电池的正极活性材料的老化程度的正极老化参数、表征电池的负极活性材料的老化程度的负极老化参数和表征电池的活性离子老化程度的第二老化参数。
老化参数获取模块410,具体包括:
第一获取单元,用于获取预设时间周期内的多组第一待处理数据。其中,每一组第一待处理数据包括准静置工况下的电池开路电压OCV和与OCV对应的累计净充放电容量Q。
第一计算单元,用于利用累计净充放电容量Q与当前SOC的第一对应关系函数,确定每一组第一待处理数据中的当前Q对应的第一当前SOC,构建每一组第一待处理数据中的OCV与第一当前SOC的对应关系,得到多组对应的OCV和第一当前SOC。其中,第一对应关系函数中的累计净充放电容量Q与当前SOC的关系系数为容量老化参数。
第二获取单元,用于获取多组第二待处理数据。其中,每一组第二待处理数据包括电池在处于初始寿命时期且运行于准静置工况的情况下的正极电势和正极电势对应的初始SOC。
第二计算单元,用于利用初始SOC与当前SOC的第二对应关系函数,确定每一组第二待处理数据中的初始SOC对应的第二当前SOC,构建每一组第二待处理数据 中的正极电势与第二当前SOC的对应关系,得到多组对应的正极电势和第二当前SOC。其中,第二对应关系函数中的初始SOC与当前SOC的关系系数为正极老化参数。
第三获取单元,用于获取多组第三待处理数据。其中,每一组第三待处理数据包括电池在处于初始寿命时期且运行于准静置工况的情况下的负极电势和负极电势对应的初始SOC。
第三计算单元,用于利用初始SOC与当前SOC的第三对应关系函数,确定每一组第三待处理数据中的初始SOC对应的第三当前SOC,构建每一组第三待处理数据中的负极电势与第三当前SOC的对应关系,得到多组对应的负极电势和第三当前SOC。其中,第三对应关系函数中的初始SOC与当前SOC的关系系数为负极老化参数,第三对应关系函数中的常数项为第二老化参数。
第四计算单元,用于对多组对应的正极电势和第二当前SOC、多组对应的负极电势和第三当前SOC进行数据处理,得到多组对应的OCV与第四当前SOC。
拟合单元,用于对多组对应的OCV和第一当前SOC、多组对应的OCV与第二当前SOC、多组对应的OCV与第三当前SOC进行拟合,拟合得到第二老化参数、正极老化参数和负极老化参数。其中,准静置工况包括电池以小于预设电流阈值的电流进行充电的时长达到第一预设时长,或者,电池的本次静置时长大于第二预设时长的工况。
根据本申请实施例中的电池剩余寿命的估算装置,可以预先设置材料老化参数与电池剩余寿命的对应关系,基于该对应关系,可以确定与所获取的个体电池的材料老化参数对应的电池剩余寿命。由于电池投入使用之后,电池剩余寿命逐渐减小,且在电池剩余寿命减小过程中,电池材料也随之老化,因此利用反映个体电池材料的老化程度的材料老化参数对个体电池的电池剩余寿命进行评估,提高了电池剩余寿命的估算准确度。
根据本申请实施例的电池剩余寿命的估算装置的其他细节,与以上结合图1至图3所示实例描述的电池剩余寿命的估算方法类似,并能达到其相应的技术效果,为简洁描述,在此不再赘述。
图5是本申请实施例中电池剩余寿命的估算装置的示例性硬件架构的结构图。
如图5所示,电池剩余寿命的估算装置500包括输入设备501、输入接口502、中央处理器503、存储器504、输出接口505、以及输出设备506。其中,输入接口502、中央处理器503、存储器504、以及输出接口505通过总线510相互连接,输入设备501和输出设备506分别通过输入接口502和输出接口505与总线510连接,进而与电池剩余寿命的估算装置500的其他组件连接。
具体地,输入装置501接收来自外部的输入信息,并通过输入接口502将输入信息传送到中央处理器503;中央处理器503基于存储器504中存储的计算机可执行指令对输入信息进行处理以生成输出信息,将输出信息临时或者永久地存储在存储器504中,然后通过输出接口505将输出信息传送到输出设备506;输出设备506将输出信息输出到电池剩余寿命的估算装置500的外部供用户使用。
也就是说,图5所示的电池剩余寿命的估算装置也可以被实现为包括:存储有计算机可执行指令的存储器;以及处理器,该处理器在执行计算机可执行指令时可以实现结合图1至图3描述的电池剩余寿命的估算装置的方法。
在一个实施例中,图5所示的电池剩余寿命的估算装置500可以被实现为一种装置,该装置可以包括:存储器,用于存储程序;处理器,用于运行存储器中存储的程序,以执行本申请实施例的电池剩余寿命的估算方法。
本申请实施例还提供了一种计算机存储介质,计算机存储介质上存储有计算机程序指令,计算机程序指令被处理器执行时实现本申请实施例的电池剩余寿命的估算方法。
需要明确的是,本申请并不局限于上文所描述并在图中示出的特定配置和处理。为了简明起见,这里省略了对已知方法的详细描述。在上述实施例中,描述和示出了若干具体的步骤作为示例。但是,本申请的方法过程并不限于所描述和示出的具体步骤,本领域的技术人员可以在领会本申请的精神后,作出各种改变、修改和添加,或者改变步骤之间的顺序。
以上的结构框图中所示的功能块可以实现为硬件、软件、固件或者它们的组合。当以硬件方式实现时,其可以例如是电子电路、专用集成电路(ASIC)、适当的固件、插件、功能卡等等。当以软件方式实现时,本申请的元素是被用于执行所需任务的程序或者代码段。程序或者代码段可以存储在机器可读介质中,或者通过载波中携带的数据信号在传输介质或者通信链路上传送。“机器可读介质”可以包括能够存储或传输信息的任何介质。机器可读介质的例子包括电子电路、半导体存储器设备、ROM、闪存、可擦除ROM(EROM)、软盘、CD-ROM、光盘、硬盘、光纤介质、射频(RF)链路,等等。代码段可以经由诸如因特网、内联网等的计算机网络被下载。在本申请的一个实施例,计算机可读存储介质是指非暂态可读介质。
以上,仅为本申请的具体实施方式,所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,上述描述的系统、模块和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
Claims (12)
- 一种电池剩余寿命的估算方法,包括:获取电池的材料老化参数,所述材料老化参数表征所述电池材料的老化程度;基于预设的材料老化参数与电池剩余寿命的对应关系,确定与所述材料老化参数对应的电池剩余寿命,其中,所述材料老化参数包括:表征所述电池的电极活性材料老化程度的第一老化参数,所述第一老化参数包括表征所述电池的正极活性材料的老化程度的正极老化参数,和/或表征所述电池的负极活性材料的老化程度的负极老化参数;和/或表征所述电池的活性离子老化程度的第二老化参数。
- 根据权利要求1所述的电池剩余寿命的估算方法,其中,所述对应关系包括:材料老化参数与材料浓度变化量的第一对应关系,以及,材料浓度变化量与电池剩余寿命的第二对应关系,所述基于预设的材料老化参数与电池剩余寿命的对应关系,确定与所获取的材料老化参数对应的电池剩余寿命,具体包括:基于所述第一对应关系,确定与所述材料老化参数对应的当前材料浓度变化量;利用所述第二对应关系,确定与所述当前材料浓度变化量对应的电池剩余寿命。
- 根据权利要求1或2所述的电池剩余寿命的估算方法,其中,若所述材料老化参数包括所述正极老化参数,则所述电池剩余寿命包括所述正极活性材料的当前剩余寿命;若所述材料老化参数包括所述负极老化参数,则所述电池剩余寿命包括所述负极活性材料的当前剩余寿命;若所述材料老化参数包括所述第二老化参数,则所述电池剩余寿命包括所述活性离子的当前剩余寿命。
- 根据权利要求1或权利要求3所述的电池剩余寿命的估算方法,其中,所述材料老化参数包括正极老化参数、负极老化参数和第二老化参数中的至少两个老化参数;所述基于预设的材料老化参数与电池剩余寿命的对应关系,确定与所述材料老化参数对应的电池剩余寿命,包括:将所述至少两个老化参数各自对应的当前剩余寿命中的最小值,确定为所述电池剩余寿命。
- 根据权利要求1-4任一项所述的电池剩余寿命的估算方法,其中所述材料老化参数包括表征所述电池的正极活性材料的老化程度的正极老化参数、表征所述电池的负极活性材料的老化程度的负极老化参数和表征所述电池的活性离子老化程度的第二老化参数;所述获取电池的材料老化参数,具体包括:获取预设时间周期内的多组第一待处理数据,其中,每一组第一待处理数据包括准静置工况下的电池开路电压OCV和与所述OCV对应的累计净充放电容量Q;利用Q与当前SOC的第一对应关系函数,确定所述每一组第一待处理数据中的当前Q对应的第一当前SOC,构建所述每一组第一待处理数据中的OCV与所述第一当前SOC的对应关系,得到多组对应的OCV和第一当前SOC,其中,所述第一对应关系函数中的Q与当前SOC的关系系数为容量老化参数;获取多组第二待处理数据,其中,每一组第二待处理数据包括所述电池在处于初始寿命时期且运行于准静置工况的情况下的正极电势和所述正极电势对应的初始SOC;利用初始SOC与当前SOC的第二对应关系函数,确定所述每一组第二待处理数据中的初始SOC对应的第二当前SOC,构建所述每一组第二待处理数据中的正极电势与所述第二当前SOC的对应关系,得到多组对应的正极电势和第二当前SOC,其中,所述第二对应关系函数中的初始SOC与当前SOC的关系系数为所述正极老化参数;获取多组第三待处理数据,其中,每一组第三待处理数据包括所述电池在处于初始寿命时期且运行于准静置工况的情况下的负极电势和所述负极电势对应的初始SOC;利用初始SOC与当前SOC的第三对应关系函数,确定所述每一组第三待处理数据中的初始SOC对应的第三当前SOC,构建所述每一组第三待处理数据中的负极电势与所述第三当前SOC的对应关系,得到多组对应的负极电势和第三当前SOC,所述第三对应关系函数中的初始SOC与当前SOC的关系系数为所述负极老化参数,所述第三对应关系函数中的常数项为所述第二老化参数;对所述多组对应的正极电势和第二当前SOC、所述多组对应的负极电势和第三当前SOC进行数据处理,得到多组对应的OCV与第四当前SOC;对所述多组对应的OCV和第一当前SOC、多组对应的OCV与第二当前SOC、多组对应的OCV与第三当前SOC进行拟合,拟合得到所述第二老化参数、所述正极老化参数和所述负极老化参数;其中,所述准静置工况包括所述电池以小于预设电流阈值的电流进行充电的时长达到第一预设时长,或者,所述电池的本次静置时长大于第二预设时长的工况。
- 一种电池剩余寿命的估算装置,包括:老化参数获取模块,用于获取电池的材料老化参数,所述材料老化参数表征所述电池材料的老化程度;剩余寿命估算模块,用于基于预设的材料老化参数与电池剩余寿命的对应关系,确定与所述材料老化参数对应的电池剩余寿命,其中,所述材料老化参数包括:表征所述电池的电极活性材料老化程度的第一老化参数,所述第一老化参数包括表征所述电池的正极活性材料的老化程度的正极老化参数,和/或表征所述电池的负极活性材料的老化程度的负极老化参数;和/或表征所述电池的活性离子老化程度的第二老化参数。
- 根据权利要求6所述的电池剩余寿命的估算装置,其中,所述对应关系包括:材料老化参数与材料浓度变化量的第一对应关系,以及,材料浓度变化量与电池剩余寿命的第二对应关系,所述剩余寿命估算模块,具体包括:第一确定单元,用于基于所述第一对应关系,确定与所述材料老化参数对应的当前材料浓度变化量;第二确定单元,用于利用所述第二对应关系,确定与所述当前材料浓度变化量对应的电池剩余寿命。
- 根据权利要求6或7所述的电池剩余寿命的估算装置,其中,若所述材料老化参数包括所述正极老化参数,则所述电池剩余寿命包括所述正极活性材料的当前剩余寿命;若所述材料老化参数包括所述负极老化参数,则所述电池剩余寿命包括所述负极活性材料的当前剩余寿命;若所述材料老化参数包括所述第二老化参数,则所述电池剩余寿命包括所述活性离子的当前剩余寿命。
- 根据权利要求6或权利要求8所述的电池剩余寿命的估算装置,其中,所述材料老化参数包括正极老化参数、负极老化参数和第二老化参数中的至少两个老化参数;所述剩余寿命估算模块,具体用于:将所述至少两个老化参数各自对应的当前剩余寿命中的最小值,确定为所述电池剩余寿命。
- 根据权利要求6-9任一项所述的电池剩余寿命的估算装置,其中,所述材料老化参数包括表征所述电池的正极活性材料的老化程度的正极老化参数、表征所述电池的负极活性材料的老化程度的负极老化参数和表征所述电池的活性离子老化程度的第二老化参数;所述老化参数获取模块,具体包括:第一获取单元,用于获取预设时间周期内的多组第一待处理数据,其中,每一组第一待处理数据包括准静置工况下的电池开路电压OCV和与所述OCV对应的累计净充放电容量Q;第一计算单元,用于利用Q与当前SOC的第一对应关系函数,确定所述每一组第一待处理数据中的当前Q对应的第一当前SOC,构建所述每一组第一待处理数据中的OCV与所述第一当前SOC的对应关系,得到多组对应的OCV和第一当前SOC,其中,所述第一对应关系函数中的Q与当前SOC的关系系数为容量老化参数;第二获取单元,用于获取多组第二待处理数据,其中,每一组第二待处理数据包括所述电池在处于初始寿命时期且运行于准静置工况的情况下的正极电势和所述正极电势对应的初始SOC;第二计算单元,用于利用初始SOC与当前SOC的第二对应关系函数,确定所述每一组第二待处理数据中的初始SOC对应的第二当前SOC,构建所述每一组第二待处理 数据中的正极电势与所述第二当前SOC的对应关系,得到多组对应的正极电势和第二当前SOC,其中,所述第二对应关系函数中的初始SOC与当前SOC的关系系数为所述正极老化参数;第三获取单元,用于获取多组第三待处理数据,其中,每一组第三待处理数据包括所述电池在处于初始寿命时期且运行于准静置工况的情况下的负极电势和所述负极电势对应的初始SOC;第三计算单元,用于利用初始SOC与当前SOC的第三对应关系函数,确定所述每一组第三待处理数据中的初始SOC对应的第三当前SOC,构建所述每一组第三待处理数据中的负极电势与所述第三当前SOC的对应关系,得到多组对应的负极电势和第三当前SOC,所述第三对应关系函数中的初始SOC与当前SOC的关系系数为所述负极老化参数,所述第三对应关系函数中的常数项为所述第二老化参数;第四计算单元,用于对所述多组对应的正极电势和第二当前SOC、所述多组对应的负极电势和第三当前SOC进行数据处理,得到多组对应的OCV与第四当前SOC;拟合单元,用于对所述多组对应的OCV和第一当前SOC、多组对应的OCV与第二当前SOC、多组对应的OCV与第三当前SOC进行拟合,拟合得到所述第二老化参数、所述正极老化参数和所述负极老化参数;其中,所述准静置工况包括所述电池以小于预设电流阈值的电流进行充电的时长达到第一预设时长,或者,所述电池的本次静置时长大于第二预设时长的工况。
- 一种电池剩余寿命的估算装置,包括:存储器,用于存储程序;处理器,用于运行所述存储器中存储的所述程序,以执行权利要求1-5任一权利要求所述的电池剩余寿命的估算方法。
- 一种计算机存储介质,所述计算机存储介质上存储有计算机程序指令,所述计算机程序指令被处理器执行时实现权利要求1-5任一权利要求所述的电池剩余寿命的估算方法。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP20925005.9A EP3985405A4 (en) | 2020-08-11 | 2020-12-23 | METHOD AND DEVICE FOR ESTIMATING THE REMAINING LIFE OF A BATTERY AND ASSOCIATED MEDIA |
US17/566,705 US11619679B2 (en) | 2020-08-11 | 2021-12-31 | Method, apparatus and medium for estimating battery remaining life |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010798925.0 | 2020-08-11 | ||
CN202010798925.0A CN111707955B (zh) | 2020-08-11 | 2020-08-11 | 电池剩余寿命的估算方法、装置和介质 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/566,705 Continuation US11619679B2 (en) | 2020-08-11 | 2021-12-31 | Method, apparatus and medium for estimating battery remaining life |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022032963A1 true WO2022032963A1 (zh) | 2022-02-17 |
Family
ID=72547091
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/138712 WO2022032963A1 (zh) | 2020-08-11 | 2020-12-23 | 电池剩余寿命的估算方法、装置和介质 |
Country Status (4)
Country | Link |
---|---|
US (1) | US11619679B2 (zh) |
EP (1) | EP3985405A4 (zh) |
CN (1) | CN111707955B (zh) |
WO (1) | WO2022032963A1 (zh) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111707955B (zh) * | 2020-08-11 | 2021-01-12 | 江苏时代新能源科技有限公司 | 电池剩余寿命的估算方法、装置和介质 |
US20220294027A1 (en) * | 2021-03-12 | 2022-09-15 | Zebra Technologies Corporation | Battery management system for monitoring a battery status |
CN115372850B (zh) * | 2021-05-18 | 2024-10-18 | 宁德时代新能源科技股份有限公司 | 电池材料老化数据的生成和确定方法、装置、设备及介质 |
JP7506265B2 (ja) * | 2021-09-08 | 2024-06-25 | 寧徳時代新能源科技股▲分▼有限公司 | 動力電池充電の方法と電池管理システム |
CN115114878B (zh) * | 2022-07-26 | 2022-12-27 | 中国长江三峡集团有限公司 | 一种储能电站电池寿命在线预测方法、装置及存储介质 |
CN115792642B (zh) * | 2023-02-02 | 2023-04-28 | 中创新航科技股份有限公司 | 一种动力电池寿命的估算方法及装置 |
CN118294819B (zh) * | 2024-06-06 | 2024-08-06 | 深圳市力通威电子科技有限公司 | 一种bms保护板的智能测试控制方法、装置及存储介质 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102009002496A1 (de) * | 2009-04-20 | 2010-10-21 | Deutronic Elektronik Gmbh | Lade- und Diagnoseverfahren für Batterien |
CN106383324A (zh) * | 2016-12-07 | 2017-02-08 | 上海动力储能电池系统工程技术有限公司 | 一种基于容量衰减机理分解分析的锂离子电池寿命预测方法 |
CN108896913A (zh) * | 2018-05-10 | 2018-11-27 | 燕山大学 | 一种锂离子电池健康状态的估算方法 |
CN109613438A (zh) * | 2018-12-17 | 2019-04-12 | 欣旺达电动汽车电池有限公司 | 一种soc-ocv关系估算方法 |
CN110133527A (zh) * | 2019-05-08 | 2019-08-16 | 深圳市比克动力电池有限公司 | 一种基于三电极锂离子电池分析容量衰减的方法 |
CN110954832A (zh) * | 2019-12-19 | 2020-04-03 | 北京交通大学 | 一种识别老化模式的锂离子电池健康状态在线诊断方法 |
CN111707955A (zh) * | 2020-08-11 | 2020-09-25 | 江苏时代新能源科技有限公司 | 电池剩余寿命的估算方法、装置和介质 |
Family Cites Families (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102004007904B4 (de) * | 2004-02-18 | 2008-07-03 | Vb Autobatterie Gmbh & Co. Kgaa | Verfahren zur Bestimmung mindestens einer Kenngröße für den Zustand einer elektrochemischen Speicherbatterie und Überwachungseinrichtung |
JP5839052B2 (ja) * | 2012-02-17 | 2016-01-06 | トヨタ自動車株式会社 | 電池システムおよび劣化判別方法 |
US9316699B2 (en) * | 2012-04-05 | 2016-04-19 | Samsung Sdi Co., Ltd. | System for predicting lifetime of battery |
EP2899837A4 (en) * | 2012-09-20 | 2016-06-29 | Sekisui Chemical Co Ltd | OPERATING CONTROL DEVICE FOR ACCUMULATOR, OPERATING CONTROL PROCEDURE FOR ACCUMULATOR AND PROGRAM |
US10371753B1 (en) * | 2013-12-20 | 2019-08-06 | Hrl Laboratories, Llc | Methods for online estimation of battery capacity and state of health |
JP6284824B2 (ja) * | 2014-05-14 | 2018-02-28 | 日立オートモティブシステムズ株式会社 | 二次電池監視装置、二次電池劣化予測装置、および、二次電池の電池容量の予測方法 |
CN105158696A (zh) * | 2015-08-24 | 2015-12-16 | 中汽科技发展(苏州)有限公司 | 一种电池使用寿命的评估方法 |
CN106814320B (zh) * | 2015-11-28 | 2019-05-14 | 华南理工大学 | 一种磷酸铁锂动力电池循环寿命预测系统 |
CN107271610A (zh) * | 2017-06-16 | 2017-10-20 | 长沙新材料产业研究院有限公司 | 一种用于预测锰酸锂‑钛酸锂电池剩余生命周期的方法 |
CN107356877B (zh) * | 2017-06-26 | 2020-09-11 | 合肥国轩高科动力能源有限公司 | 一种可实现锂离子电池循环寿命快速预测的方法 |
CN108427074A (zh) * | 2018-01-20 | 2018-08-21 | 郑州比克电池有限公司 | 一种锂离子电池循环寿命预测的方法 |
CN108375624A (zh) * | 2018-02-27 | 2018-08-07 | 山西长征动力科技有限公司 | 应用参比电极分析锂离子电池寿命衰减机理的测试方法 |
KR102452626B1 (ko) * | 2018-03-07 | 2022-10-06 | 주식회사 엘지에너지솔루션 | Soc-ocv 프로파일 추정 방법 및 장치 |
CN109164396B (zh) * | 2018-09-21 | 2020-10-09 | 华北电力大学(保定) | 一种实时磷酸铁锂电池寿命损耗评估方法 |
CN110045293A (zh) * | 2019-03-15 | 2019-07-23 | 天津力神电池股份有限公司 | 一种无损分析电池活性物质材料失效的方法 |
CN110618387B (zh) * | 2019-09-25 | 2021-09-03 | 华霆(合肥)动力技术有限公司 | 锂电池失效分析方法、装置、电子设备和存储介质 |
DE102019007510A1 (de) * | 2019-10-28 | 2020-07-16 | Daimler Ag | Verfahren zum Bestimmen eines Gesundheitszustands eines elektrischen Energiespeichers mittels eines hinterlegten Kapazitätsmodells in Abhängigkeit eines Anodenüberhangeffekts sowie elektronische Recheneinrichtung |
CN114280478B (zh) * | 2019-12-20 | 2024-07-12 | 宁德时代新能源科技股份有限公司 | 电池组的ocv-soc曲线更新方法、电池管理系统及车辆 |
CN111208431B (zh) * | 2020-01-07 | 2022-05-10 | 天津市捷威动力工业有限公司 | 一种电动汽车用锂离子电池全气候日历寿命预测方法 |
-
2020
- 2020-08-11 CN CN202010798925.0A patent/CN111707955B/zh active Active
- 2020-12-23 EP EP20925005.9A patent/EP3985405A4/en active Pending
- 2020-12-23 WO PCT/CN2020/138712 patent/WO2022032963A1/zh unknown
-
2021
- 2021-12-31 US US17/566,705 patent/US11619679B2/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102009002496A1 (de) * | 2009-04-20 | 2010-10-21 | Deutronic Elektronik Gmbh | Lade- und Diagnoseverfahren für Batterien |
CN106383324A (zh) * | 2016-12-07 | 2017-02-08 | 上海动力储能电池系统工程技术有限公司 | 一种基于容量衰减机理分解分析的锂离子电池寿命预测方法 |
CN108896913A (zh) * | 2018-05-10 | 2018-11-27 | 燕山大学 | 一种锂离子电池健康状态的估算方法 |
CN109613438A (zh) * | 2018-12-17 | 2019-04-12 | 欣旺达电动汽车电池有限公司 | 一种soc-ocv关系估算方法 |
CN110133527A (zh) * | 2019-05-08 | 2019-08-16 | 深圳市比克动力电池有限公司 | 一种基于三电极锂离子电池分析容量衰减的方法 |
CN110954832A (zh) * | 2019-12-19 | 2020-04-03 | 北京交通大学 | 一种识别老化模式的锂离子电池健康状态在线诊断方法 |
CN111707955A (zh) * | 2020-08-11 | 2020-09-25 | 江苏时代新能源科技有限公司 | 电池剩余寿命的估算方法、装置和介质 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3985405A4 * |
Also Published As
Publication number | Publication date |
---|---|
EP3985405A4 (en) | 2022-06-08 |
CN111707955A (zh) | 2020-09-25 |
US11619679B2 (en) | 2023-04-04 |
US20220120821A1 (en) | 2022-04-21 |
EP3985405A1 (en) | 2022-04-20 |
CN111707955B (zh) | 2021-01-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2022032963A1 (zh) | 电池剩余寿命的估算方法、装置和介质 | |
US11175343B2 (en) | Method and device for estimating remaining available energy of a power battery | |
CN108828461B (zh) | 动力电池soh值估算方法及系统 | |
CN106909716B (zh) | 计及容量损耗的磷酸铁锂电池建模及soc估计方法 | |
CN107576918B (zh) | 锂电池的剩余电量的估算方法及系统 | |
CN108717164B (zh) | 电池的荷电状态soc标定方法及系统 | |
KR100759706B1 (ko) | 하이브리드 차량용 배터리의 충전상태 추정 방법 | |
EP3018753B1 (en) | Battery control method based on ageing-adaptive operation window | |
JP6657967B2 (ja) | 状態推定装置、状態推定方法 | |
RU2524050C1 (ru) | Устройство оценки состояния аккумулятора и способ оценки состояния аккумулятора | |
CN109946623A (zh) | 一种锂电池的soc在线估测方法 | |
US20200209316A1 (en) | New method for iteratively identifying parameters of equivalent circuit model of battery | |
JP6440377B2 (ja) | 二次電池状態検出装置および二次電池状態検出方法 | |
CN108445422B (zh) | 基于极化电压恢复特性的电池荷电状态估算方法 | |
KR101777334B1 (ko) | 배터리 soh 추정 장치 및 방법 | |
EP4152022B1 (en) | Method for determining full-charge capacity of battery pack, method for determining state of health of battery pack, system, and apparatus | |
CN113484762B (zh) | 电池健康状态估算方法、装置、设备及存储介质 | |
CN114609530A (zh) | 修正电池荷电状态的方法、装置、设备及介质 | |
CN117368767A (zh) | 一种基于安时积分法的锂电池荷电状态预估方法及系统 | |
US10422824B1 (en) | System and method for efficient adaptive joint estimation of battery cell state-of-charge, resistance, and available energy | |
CN113933730B (zh) | Soh及电池残值的计算方法、装置、设备和介质 | |
CN113900028B (zh) | 一种考虑初始荷电状态和充放电路径的电池健康状态估计方法及系统 | |
CN113740754A (zh) | 一种检测电池组不一致性的方法与系统 | |
CN115372850B (zh) | 电池材料老化数据的生成和确定方法、装置、设备及介质 | |
CN117741439A (zh) | 修正参数的确定方法、装置及设备 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2020925005 Country of ref document: EP Effective date: 20210924 |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20925005 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |