WO2022032715A1 - 一种热塑复合材料杆塔及其制备方法 - Google Patents

一种热塑复合材料杆塔及其制备方法 Download PDF

Info

Publication number
WO2022032715A1
WO2022032715A1 PCT/CN2020/110584 CN2020110584W WO2022032715A1 WO 2022032715 A1 WO2022032715 A1 WO 2022032715A1 CN 2020110584 W CN2020110584 W CN 2020110584W WO 2022032715 A1 WO2022032715 A1 WO 2022032715A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
core
thermoplastic
tightening
tower
Prior art date
Application number
PCT/CN2020/110584
Other languages
English (en)
French (fr)
Inventor
朱华平
田宇飞
沃晓剑
Original Assignee
江苏奇一科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏奇一科技有限公司 filed Critical 江苏奇一科技有限公司
Publication of WO2022032715A1 publication Critical patent/WO2022032715A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H12/00Towers; Masts or poles; Chimney stacks; Water-towers; Methods of erecting such structures
    • E04H12/02Structures made of specified materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C69/00Combinations of shaping techniques not provided for in a single one of main groups B29C39/00 - B29C67/00, e.g. associations of moulding and joining techniques; Apparatus therefore
    • B29C69/001Combinations of shaping techniques not provided for in a single one of main groups B29C39/00 - B29C67/00, e.g. associations of moulding and joining techniques; Apparatus therefore a shaping technique combined with cutting, e.g. in parts or slices combined with rearranging and joining the cut parts
    • B29C69/002Winding
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/0405Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres
    • C08J5/042Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres with carbon fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/766Poles, masts, posts
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/10Homopolymers or copolymers of propene
    • C08J2323/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/06Elements

Definitions

  • the invention relates to the technical field of poles and towers, in particular to a thermoplastic composite material pole and tower and a preparation method thereof.
  • the composite material tower is light in weight, convenient for transportation and installation, maintenance-free or low maintenance cost, and saves labor resources; it can adapt to various organic solvents and corrosive agents, so composite material towers are especially suitable for use in coastal areas, strong ultraviolet, humid, strong ultraviolet areas , as well as industrial development, acid rain prone areas; and good insulation, so composite poles are suitable for coastal areas with frequent typhoons and severe salt spray corrosion; mountainous areas, islands, swamps and other remote areas with inconvenient transportation, inland salt It can be used in areas with severe flooding, freezing cycle, frequent lightning strikes and acid rain areas, military stations, radar stations, base stations and other occasions with special requirements for wave permeability, and high-cold areas. It can be used for communication signal towers, overhead lines It can be used in many application fields such as transmission towers, transformer stands and substation pillars, street light poles, monitoring poles, solar poles and flag poles.
  • the main product manufacturing process of composite material towers in the prior art adopts multi-layered glass fibers and cured products of polyurethane or epoxy resin from the inside to the outside.
  • the compressive strength and flexural strength properties are difficult to meet the requirements of typhoon-frequent areas.
  • this patent provides a thermoplastic composite material tower and a preparation method thereof. Compared with the existing composite material tower, the composite material tower has lower cost, higher strength and lighter weight. At the same time, it has the characteristics of corrosion resistance and good insulation.
  • thermoplastic composite material tower comprising:
  • a core layer is composed of a number of core units in a surrounding fit, the core units include support layers on both sides and a hollow core layer arranged in the middle, and a number of the core units face away from the center of the tower
  • the lines are arranged radially to form a sandwich annular column structure.
  • the core layer of the sandwich annular column structure is used as the main body of the structure, which effectively ensures the overall structural strength, and at the same time, the internal hollow core layer greatly reduces the structural weight and cost.
  • the support layer includes a support body layer, and at least one side of the support body layer is provided with a support interface layer; the support body layer is made of at least one layer of continuous fiber reinforced thermoplastic material.
  • the supporting interface layer is made of at least one layer of continuous fiber reinforced thermoplastic material, thermoplastic resin film, aluminum plate, stainless steel plate or thermosetting composite material plate.
  • the continuous fiber reinforced thermoplastic material has high strength, is easy to process thermoplastically, and is easy to manufacture.
  • the material of the hollow core layer is a thermoplastic material honeycomb core board, a thermoplastic material hollow board, a PET foam material, a PP foam material or a polyurethane foam material.
  • At least one loop of tightening ties is wound around the core layer.
  • the tightening strap tightens the inner core layer, thereby improving the structural strength.
  • At least one layer of tightening layer is wound outside the core layer, the winding direction of the tightening layer is at an angle of 15-90° with the center line of the tower cylinder, and the winding direction of the adjacent tightening layer is on the contrary.
  • the core layer is wrapped and tightened by the tightening layer, which not only ensures the structural strength, but also plays the role of protecting the core layer; the winding directions of the adjacent tightening layers are opposite to further improve the strength.
  • the tightening layer includes a tightening main body layer in the middle and a tightening interface layer on both sides;
  • the tightening main body layer is made of at least one layer of continuous fiber reinforced thermoplastic material, and the tightening interface layer is It is made of at least one layer of continuous fiber reinforced thermoplastic material or one layer of thermoplastic resin film.
  • the sides of the adjacent core units are closely fitted to form the core layer, and the outer surface and the inner surface of the core unit are one or more combinations of arc surface, plane surface and corrugated plate surface; Both sides of the core unit are matched planes or curved surfaces.
  • the adjacent core units are closely attached to form a complete sandwich annular column structure, which effectively improves the overall structural strength.
  • one side of the core unit is provided with a convex edge, and the other side is provided with a groove matching the convex edge.
  • the adjacent core unit abutting surface ridges and grooves are matched and clamped, which ensures accurate positioning and effectively improves the connection stability.
  • both ends of the pole tower are provided with end caps.
  • the end cap improves the structural strength, and also prevents the internal structure from being affected by the external environment.
  • the outermost side of the pole tower is sequentially provided with a reinforcing film layer and an anti-ultraviolet film layer from inside to outside.
  • the reinforced membrane improves the flexural strength of the structure, and the anti-ultraviolet membrane layer prevents the interior of the tower from being affected by external ultraviolet rays.
  • the continuous fiber reinforced thermoplastic material in the present invention is obtained by compounding a thermoplastic resin material and a reinforcing fiber material, wherein the thermoplastic resin material can be polypropylene, polyethylene terephthalate, polycarbonate, polyethylene terephthalate Ethylene glycol formate-1,4-cyclohexane dimethanol ester, nylon 6 and other thermoplastic resin materials; the reinforcing fiber material can be glass fiber, carbon fiber, aramid fiber and other material fibers.
  • the thermoplastic resin material can be polypropylene, polyethylene terephthalate, polycarbonate, polyethylene terephthalate Ethylene glycol formate-1,4-cyclohexane dimethanol ester, nylon 6 and other thermoplastic resin materials
  • the reinforcing fiber material can be glass fiber, carbon fiber, aramid fiber and other material fibers.
  • the present invention discloses a method for preparing a thermoplastic composite material tower, comprising the following steps:
  • S1 uses continuous fiber reinforced thermoplastic material to make the support layer, and composites the support layer and the hollow core layer through a thermal composite process to make a composite board, wherein the hollow core layer is a thermoplastic material honeycomb core board, a thermoplastic material hollow board, PET hair foam material, PP foam material or polyurethane foam material;
  • step S2 segmenting the surface of the composite plate according to the geometrical principle of expanding the fan-shaped plane of the annular cylinder refers to determining, according to the geometrical principle, the redundant part of the composite plate when the composite plate is wound into a ring-shaped cylinder, and calibrating the redundant part; cutting may be used.
  • the excess part can be cut off by the method, or the excess part can be melted by hot pressing and heating melting method. When the excess part is heated and melted, the support layers on both sides and the inner hollow core layer of the excess part are melted and bonded to the core units on both sides due to their thermoplastic properties. It can effectively improve the overall structural strength.
  • the setting method of the insert block in step S4 may be bonding, thermal compounding, or reserving the insert block structure in the process of step S3.
  • the core layer of the sandwich conical structure is used as the main body of the structure, and the tightening layer tightens the core layer on the outside, which effectively ensures the structural strength and the cost is low;
  • the support layer and the hoop layer of the core unit of the present invention are both continuous fiber reinforced thermoplastic materials, which have high strength, are easy to form and manufacture, and have low overall cost. While ensuring the strength of the tower, it has excellent corrosion resistance. , good insulation and other characteristics, greatly improving the popularity of composite towers.
  • FIG. 1 is a schematic structural diagram of the core layer and the tightening layer according to the first embodiment of the present invention.
  • FIG. 2 is a cross-sectional structural schematic diagram of the tower according to the first embodiment of the present invention.
  • FIG. 3 is a schematic diagram of the expanded structure of the core layer according to the first embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of the core layer and the tightening layer according to the third embodiment of the present invention.
  • FIG. 5 is a schematic diagram of the expanded structure of the core layer according to the third embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of the tower according to the fourth embodiment of the present invention.
  • FIG. 7 is a schematic cross-sectional structure diagram of FIG. 6 .
  • Core layer 101, Core unit; 1011, Support layer; 1012, Hollow core layer; 1013, Rib; 1014, Groove; 1015, Slot;
  • the present embodiment discloses a thermoplastic composite material tower, which includes a core layer 1 .
  • the core layer 1 is composed of twenty core units 101 that are encircled and fitted together.
  • the core unit 101 includes two sides.
  • the supporting layer 1011 and the hollow core layer 1012 arranged in the middle, twenty core units 101 are radially arranged in the direction away from the center line of the tower to form a sandwich ring-shaped cylindrical structure.
  • the support layer 1011 includes a support body layer in the middle and a support interface layer on both sides (not shown in the figure); the support body layer is made of a layer of continuous fiber reinforced thermoplastic material, and the support interface layer is made of a layer of continuous fiber reinforcement Manufactured from thermoplastic material.
  • Continuous fiber reinforced thermoplastic materials have high strength, easy thermoplastic processing, and easy manufacturing.
  • the material of the hollow core layer 1012 is a thermoplastic material honeycomb core board.
  • the cross section of the core unit 101 is an isosceles trapezoid.
  • the sides of adjacent core units 101 are closely fitted to form the core layer 1 , the outer and inner surfaces of the core units 101 are arc surfaces; the two sides of the core units 101 are matching planes or matching curved surfaces.
  • Adjacent core units 101 are closely attached to form a complete annular cylindrical sandwich structure, which effectively improves the overall structural strength.
  • the outer side of the core layer 1 is wound with two layers of tightening layers 3 .
  • the winding direction of the tightening layer 3 is at an angle of 30 degrees with the center line of the tower cylinder, and the winding directions of the two tightening layers 3 are opposite.
  • the tightening layer 3 includes a tightening main body layer in the middle and a tightening interface layer on both sides (not shown in the figure); the tightening main body layer is made of a layer of continuous fiber reinforced thermoplastic material, and the tightening interface layer is made of a Layers of continuous fiber-reinforced thermoplastic material.
  • End caps 4 are provided at both ends of the tower, and the end caps 4 can be made of thermoplastic composite material or thermosetting composite material or metal material product or non-metal material product or a combination of different materials.
  • the outer side of the tightening layer 3 is sequentially provided with a reinforcing film layer 5 and an anti-ultraviolet film layer 6 from inside to outside.
  • the anti-ultraviolet film 6 may be a glass film or a plastic film, etc., which are common technical means in the field, and will not be repeated here.
  • the continuous fiber reinforced thermoplastic material in this embodiment is a composite material of polypropylene and carbon fiber; it is foreseeable that other thermoplastic resin materials and reinforcing fiber materials may also be suitable for use in this embodiment, such as ethylene terephthalate, polyethylene Carbonate, polyethylene terephthalate-1,4-cyclohexanedimethanol, nylon 6, glass fiber, aramid fiber, etc.
  • S1 uses continuous fiber reinforced thermoplastic material to make the support layer 1011, and composites the support layer 1011 and the hollow core layer 1012 through a thermal compounding process to make a composite board, wherein the hollow core layer 1012 is a thermoplastic material honeycomb core board, a thermoplastic material hollow core board, PET foam, PP foam or polyurethane foam;
  • a slot 1015 is provided on one side of the fan-shaped plane composite board, and the other side is cut into a plug 1016 matching the slot;
  • step S3 the redundant part of the support layers 1011 on both sides and the inner hollow core layer 1012 are melted and bonded to the core units 101 on both sides due to their thermoplastic properties, which can effectively improve the overall structural strength.
  • the setting method of the insert block in step S4 may be bonding, thermal compounding, or reserving the insert block structure in the process of step S3.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • the structure of the composite material tower in this embodiment is the same as that in the first embodiment, the difference is that the preparation method of the composite material tower in this embodiment is different from that in the first embodiment, and the details are as follows:
  • S1 uses continuous fiber reinforced thermoplastic material to make the support layer 1011, and composites the support layer 1011 and the hollow core layer 1012 through a thermal compounding process to make a composite board, wherein the hollow core layer 1012 is a thermoplastic material honeycomb core board, a thermoplastic material hollow core board, PET foam, PP foam or polyurethane foam;
  • a slot 1015 is provided on one side of the fan-shaped plane composite board, and the other side is cut into a plug 1016 matching the slot;
  • the redundant part is cut by the cutting method, so that the integral sandwich annular column structure can be formed by rolling.
  • the structure of the composite material tower in this embodiment is basically the same as that in Embodiment 1, the difference is that in this embodiment, one side of the core unit 101 is provided with a rib 1013 , and the other side is provided with a rib 1013 .
  • the protruding ribs 1013 and the grooves 1014 of the adjacent core units 101 on the abutting surface are matched and clamped, which ensures accurate positioning and effectively improves the connection stability.
  • Embodiment 4 is a diagrammatic representation of Embodiment 4:
  • the present embodiment discloses a thermoplastic composite pole tower, which includes a core layer 1 , and the core layer 1 is composed of twenty core units 101 in a surrounding fit.
  • the core unit 101 includes two The supporting layer 1011 on the side and the hollow core layer 1012 arranged in the middle, twenty core units 101 are radially arranged in the direction away from the center line of the tower to form a sandwich ring-shaped cylindrical structure.
  • the support layer 1011 includes a support body layer in the middle and a support interface layer on both sides (not shown in the figure); the support body layer is made of a layer of continuous fiber reinforced thermoplastic material, and the support interface layer is made of a layer of continuous fiber reinforcement Manufactured from thermoplastic material.
  • Continuous fiber reinforced thermoplastic materials have high strength, easy thermoplastic processing, and easy manufacturing.
  • the material of the hollow core layer 1012 is a thermoplastic material honeycomb core board.
  • the cross section of the core unit 101 is an isosceles trapezoid.
  • the sides of adjacent core units 101 are closely fitted to form the core layer 1 , the outer and inner surfaces of the core units 101 are arc surfaces; the two sides of the core units 101 are matching planes or matching curved surfaces.
  • Adjacent core units 101 are closely attached to form a complete annular cylindrical sandwich structure, which effectively improves the overall structural strength.
  • the outer surface of the core layer 1 is sequentially provided with a reinforcing film layer 5 and an anti-ultraviolet film layer 6 .
  • the core layer 1 is wound with three loops of tightening straps 2 , and the three loops of tightening straps 2 are respectively arranged on the upper, middle and lower parts of the outer peripheral surface of the core layer 1 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Architecture (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Inorganic Chemistry (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Laminated Bodies (AREA)

Abstract

本发明公开一种热塑复合材料杆塔及其制备方法,包括芯体层,所述芯体层由若干个芯体单元环绕配合组成,所述芯体单元包括两侧的支撑层和设置在中间的中空芯层,若干个所述芯体单元朝背离杆塔中心线方向辐射状排列形成三明治环形柱状结构。本发明通过三明治环形状柱体结构的芯体层作为结构主体,有效保证了结构强度,并且成本较低;在保证杆塔强度的同时,具有优异的有耐腐蚀、绝缘性好以及重量轻等特点,大大提高了复合材料杆塔的普及性。

Description

一种热塑复合材料杆塔及其制备方法 技术领域
本发明涉及杆塔技术领域,具体涉及一种热塑复合材料杆塔及其制备方法。
背景技术
目前现代产业对供电可靠性、安全性、高效性的要求逐渐增高,电力负荷需求日渐增大,使得电力输电网络、电力行业面临越发严峻的考验,杆塔在输电线路中占据十分重要的位置,在整个线路工程中,其施工、运输、安装、维护都需消耗很大的人力物力。目前输电技术的不断进步,电压等级不断升高,输电线路对杆塔材料性能的要求也越来越高,传统输电线路杆塔存在质量大、安装成本高、易锈蚀、易开裂、寿命短等缺点,容易出现各种安全隐患。而复合材料杆塔质量轻,方便运输和安装、免维护或维护成本低、节省劳动力资源;能适应各种有机溶剂和腐蚀剂,所以复合材料杆塔特别适合用在沿海、强紫外线、潮湿、强紫外线地区、以及工业发达,酸雨多发地;以及良好的绝缘性,所以复合材料电杆适用于台风频繁、盐雾腐蚀严重的沿海地区;山区、海岛、沼泽地等运输欠方便的偏远地区、内陆盐渍地、冻隔循环严重的地区、雷击频发地区及酸雨多发地区、对透波性有特殊要求的军事驻地、雷达站、基站等场合、高寒地区,可以用于通信用信号塔,架空线路的输电杆塔、变压器台架及变电站支柱、路灯杆、监控杆、太阳能杆以及旗杆等诸多应用领域。
目前现有技术中出现的复合材料杆塔主要的产品制作工艺采用的是由内到外采用多层的玻璃纤维与聚氨酯或环氧树脂的固化产物,其整体制造成本较高,导致难以普及使用,并且抗压强度和抗弯曲强度性能难以满足台风频繁地区的要求。
因此,开发一种新型复合材料杆塔十分有必要。
发明内容
为解决现有技术中存在的问题,本专利提供了一种热塑复合材料杆塔及其制备方法,该复合材料杆塔相较于现有复合材料杆塔成本更低,强度更高,重量更轻,并且同时具有耐腐蚀、绝缘性好等特点。
为了实现上述目的,本发明的技术方案是:
第一方面,本发明公开了一种热塑复合材料杆塔,包括:
芯体层,所述芯体层由若干个芯体单元环绕配合组成,所述芯体单元包括两侧的支撑层和设置在中间的中空芯层,若干个所述芯体单元朝背离杆塔中心线方向辐射状排列形成三明治环形柱状结构。
通过采用上述方案,三明治环形柱状结构的芯体层作为结构主体,有效保证整体结构强度,同时内部的中空芯层大大降低结构重量,并降低了成本。
在上述方案的基础上,本发明还可以做如下改进:
在本发明的某一个实施例中,所述支撑层包括支撑主体层,所述支撑主体层至少一侧设有支撑界面层;所述支撑主体层采用至少一层连续纤维增强热塑材料制造而成,所述支撑界面层采用至少一层连续纤维增强热塑材料、热塑树脂膜、铝板、不锈钢板或热固复合材料板制成。
通过采用上述方案,连续纤维增强热塑材料强度较高,易于热塑加工,便于制造。
在本发明的某一个实施例中,所述中空芯层的材料为热塑材料蜂窝芯板、热塑材料中空板、PET发泡材料、PP发泡材料或聚氨酯发泡材料。
在本发明的某一个实施例中,所述芯体层外缠绕有至少一圈箍紧扎带。
通过采用上述方案,箍紧扎带将内部的芯体层轧紧,提高结构强度。
进一步的,所述芯体层外缠绕有至少一层箍紧层,所述箍紧层的缠绕方向与杆塔柱体中心线呈15-90°角,且相邻所述箍紧层的缠绕方向相反。
通过采用上述方案,箍紧层将芯体层包裹箍紧,既保证结构强度,也起到保护芯体层作用;相邻箍紧层缠绕方向相反进一步提高强度。
进一步的,所述箍紧层包括中部的箍紧主体层和两侧的箍紧界面层;所述箍紧主体层采用至少一层连续纤维增强热塑材料制造而成,所述箍紧界面层采用至少一层连续纤维增强热塑材料或一层热塑树脂膜制成。
进一步的,相邻所述芯体单元侧面贴紧配合形成所述芯体层,所述芯体单元的外表面和内表面为弧面、平面和波纹板面中的一种或多种组合;所述芯体单元的两侧面为相匹配的平面或相匹配的曲面。
通过采用上述方案,相邻芯体单元贴紧形成完整的三明治环形柱状结构,有效提高整体结构强度。
进一步的,所述芯体单元一侧面设有凸棱,另一侧面设有与所述凸棱匹配的凹槽。
通过采用上述方案,相邻芯体单元贴紧面凸棱和凹槽相配合卡紧,保证定位准确,也有效提升了连接稳定性。
进一步的,所述杆塔两端设有端盖。
通过采用上述方案,端盖提高结构强度,也避免内部结构受到外部环境影响。
进一步的,杆塔最外侧由内至外依次设有加强膜层和抗紫外线膜层。
通过采用上述方案,加强膜提高结构抗弯强度,抗紫外线膜层避免杆塔内部受到外部紫外线影响。
本发明中的连续纤维增强热塑材料是由热塑树脂材料和增强纤维材料复合得到,其中热塑树脂材料可以是聚丙烯、聚对苯二甲酸乙二酯、聚碳酸酯、聚对苯二甲酸乙二醇酯-1,4-环己烷二甲醇酯、尼龙6等其他热塑树脂材料;增强纤维材料可以是玻璃纤维,碳纤维,芳纶纤维以及其它材料纤维。
第二方面,本发明公开了一种热塑复合材料杆塔的制备方法,包括如下步骤:
S1采用连续纤维增强热塑材料制成支撑层,通过热复合工艺将支撑层与中空芯层复合制得复合板,其中中空芯层为热塑材料蜂窝芯板、热塑材料中空板、PET发泡材料、PP发泡材料或聚氨酯发泡材料;
S2按照环形柱体展开扇形平面的几何原理,对复合板表面进行分段并划线确定多余部分的位置轨迹;
S3:按照划线位置轨迹,采用热压成型工艺热熔多余部分或者采用切割工艺切割多余部分,得到一侧面均匀开设有坡口槽的扇形平面复合板;
S4:在扇形平面复合板一侧边开设插槽,另一侧边设置与插槽匹配的插块;
S5:将扇形平面复合板朝开设有坡口槽一侧面进行折叠翻卷,采用热熔焊接或涂胶工艺将插块插入插槽内固定形成搭接结构,得到芯体层;
S6:采用热熔连接工艺或涂胶工艺,以芯体层的中心线为旋转轴,以旋转的方式将箍紧层缠绕在芯体层外侧,得到热塑复合材料杆塔。
步骤S2中的按照环形柱体展开扇形平面的几何原理对复合板表面进行分段是指根据几何原理确定复合板卷绕成型呈环形柱体时的多余部分,并将多余部分标定;可采用切割方法切掉多余部分,也可以采用热压成型加热融化方法融化多余部分,其中加热融化时多余部分的两侧支撑层和内侧中空芯层由于热塑特性被融化粘合两侧的芯体单元,可有效提高整体结构强度。
步骤S4中插块的设置方法可以是黏合、热复合,或者在步骤S3过程中预留插块结构。
与现有技术相比,本发明的有益效果是:
1、本发明通过三明治圆锥状结构的芯体层作为结构主体,箍紧层在外侧将芯体层箍紧,有效保证了结构强度,并且成本较低;
2、本发明芯体单元的支撑层和箍紧层均为连续纤维增强热塑材料,强度较高,并且便 于成型制造,整体成本很低,在保证杆塔强度的同时,具有优异的有耐腐蚀、绝缘性好等特点,大大提高了复合材料杆塔的普及性。
附图说明
为了更清楚地说明本发明具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍。在所有附图中,类似的元件或部分一般由类似的附图标记标识。附图中,各元件或部分并不一定按照实际的比例绘制。
图1是本发明的实施例一的芯体层和箍紧层的结构示意图。
图2是本发明的实施例一的杆塔的剖视结构示意图。
图3是本发明的实施例一的芯体层的展开结构示意图。
图4是本发明的实施例三的芯体层和箍紧层的结构示意图。
图5是本发明的实施例三的芯体层的展开结构示意图。
图6是本发明的实施例四的杆塔的结构示意图。
图7是图6的剖视结构示意图。
图中所示:
1、芯体层;101、芯体单元;1011、支撑层;1012、中空芯层;1013、凸棱;1014、凹槽;1015、插槽;1016、插块;
2、箍紧扎带;
3、箍紧层;
4、端盖;
5、加强膜层;
6、抗紫外线膜层。
具体实施方式
下面将结合附图对本发明技术方案的实施例进行详细的描述。以下实施例仅用于更加清楚地说明本发明的技术方案,因此只作为示例,而不能以此来限制本发明的保护范围。
需要注意的是,除非另有说明,本申请使用的技术术语或者科学术语应当为本发明所属领域技术人员所理解的通常意义。
实施例一:
如图1至3所示,本实施例公开了一种热塑复合材料杆塔,包括芯体层1,芯体层1由二十个芯体单元101环绕配合组成,芯体单元101包括两侧的支撑层1011和设置在中间 的中空芯层1012,二十个芯体单元101朝背离杆塔中心线方向辐射状排列形成三明治环形状柱体结构。
其中支撑层1011包括中部的支撑主体层和两侧的支撑界面层(图中未示出);支撑主体层采用一层连续纤维增强热塑材料制造而成,支撑界面层采用一层连续纤维增强热塑材料制造而成。
连续纤维增强热塑材料强度较高,易于热塑加工,便于制造。
中空芯层1012的材料为热塑材料蜂窝芯板。
芯体单元101的横截面为等腰梯形。相邻芯体单元101侧面贴紧配合形成芯体层1,芯体单元101的外表面和内表面均为弧面;芯体单元101的两侧面为相匹配的平面或相匹配的曲面。
相邻芯体单元101贴紧形成完整的环形柱体三明治结构,有效提高整体结构强度。
芯体层1外侧缠绕有两层箍紧层3。
箍紧层3的缠绕方向与杆塔柱体中心线呈30度角,且两层箍紧层3的缠绕方向相反。
箍紧层3包括中部的箍紧主体层和两侧的箍紧界面层(图中未示出);箍紧主体层采用一层连续纤维增强热塑材料制造而成,箍紧界面层采用一层连续纤维增强热塑材料制成。
杆塔两端设有端盖4,端盖4可以采用热塑复合材料或热固复合材料或金属材料制品或非金属材料制品或不同材料组合制成。
箍紧层3外侧由内至外依次设置有加强膜层5和抗紫外线膜层6,作为本领域的常用技术手段加强膜层5可以为铝塑膜等强度较高的金属膜或非金属膜,抗紫外线膜6可以是玻璃膜也可以是塑料薄膜等,均为领域的常用技术手段,在此不再赘述。
本实施例中的连续纤维增强热塑材料是聚丙烯和碳纤维的复合材料;可以预见其他热塑树脂材料和增强纤维材料也可以适用与本实施例中,例如对苯二甲酸乙二酯、聚碳酸酯、聚对苯二甲酸乙二醇酯-1,4-环己烷二甲醇酯、尼龙6、玻璃纤维、芳纶纤维等。
本实施例的杆塔的制备方法包括如下步骤:
S1采用连续纤维增强热塑材料制成支撑层1011,通过热复合工艺将支撑层1011与中空芯层1012复合制得复合板,其中中空芯层1012为热塑材料蜂窝芯板、热塑材料中空板、PET发泡材料、PP发泡材料或聚氨酯发泡材料;
S2按照环形柱体展开扇形平面的几何原理,对复合板表面进行分段并确定多余部分的位置轨迹;
S3:采用热压成型工艺按照位置轨迹对多余部分进行热熔,得到一侧面均匀设有坡口槽的扇形平面复合板;
S4:在扇形平面复合板一侧边开设插槽1015,另一侧边切割成与插槽匹配的插块1016;
S5:将扇形平面复合板朝开设有坡口槽一侧面翻卷,采用热熔焊接或涂胶工艺将插块插入插槽内固定形成搭接结构,得到芯体层1;
S6:采用热熔连接工艺,以芯体层1的中心线为旋转轴,以旋转的方式将箍紧层3缠绕在芯体层外侧;
S7:依次黏合加强膜层5和抗紫外线膜层6。
步骤S3中热压成型时,多余部分的两侧支撑层1011和内侧中空芯层1012由于热塑特性被融化粘合两侧的芯体单元101,可有效提高整体结构强度。
步骤S4中插块的设置方法可以是黏合、热复合,或者在步骤S3过程中预留插块结构。
实施例二:
本实施例的复合材料杆塔结构与实施例一相同,不同之处在于本实施例的复合材料杆塔的制备方法与实施例一不同,具体如下:
本实施例的杆塔的制备方法包括如下步骤:
S1采用连续纤维增强热塑材料制成支撑层1011,通过热复合工艺将支撑层1011与中空芯层1012复合制得复合板,其中中空芯层1012为热塑材料蜂窝芯板、热塑材料中空板、PET发泡材料、PP发泡材料或聚氨酯发泡材料;
S2按照环形柱体展开扇形平面的几何原理,对复合板表面进行分段并确定多余部分的位置轨迹;
S3:采用切割工艺按照位置轨迹切割多余部分,得到一侧面均匀设有坡口槽的扇形平面复合板;
S4:在扇形平面复合板一侧边开设插槽1015,另一侧边切割成与插槽匹配的插块1016;
S5:将扇形平面复合板朝开设有坡口槽一侧面翻卷,采用热熔焊接或涂胶工艺将插块插入插槽内固定形成搭接结构,得到芯体层1;
S6:采用热熔连接工艺,以芯体层1的中心线为旋转轴,以旋转的方式将箍紧层3缠绕在芯体层外侧,得到热塑复合材料杆塔;
S7:依次黏合加强膜层和抗紫外线膜层。
本实施例采用切割方法将多余部分切割,从而能够翻卷形成整体的三明治环形柱体结构。
实施例三:
如图4和图5所示,本实施例的复合材料杆塔的结构与实施例一基本相同,不同之处在于本实施例中芯体单元101一侧面设有凸棱1013,另一侧面设有与凸棱1013匹配的凹 槽1014。相邻芯体单元101贴紧面凸棱1013和凹槽1014相配合卡紧,保证定位准确,也有效提升了连接稳定性。
实施例四:
如图6和图7所示,本实施例公开了一种热塑复合材料杆塔,包括芯体层1,芯体层1由二十个芯体单元101环绕配合组成,芯体单元101包括两侧的支撑层1011和设置在中间的中空芯层1012,二十个芯体单元101朝背离杆塔中心线方向辐射状排列形成三明治环形状柱体结构。
其中支撑层1011包括中部的支撑主体层和两侧的支撑界面层(图中未示出);支撑主体层采用一层连续纤维增强热塑材料制造而成,支撑界面层采用一层连续纤维增强热塑材料制造而成。
连续纤维增强热塑材料强度较高,易于热塑加工,便于制造。
中空芯层1012的材料为热塑材料蜂窝芯板。
芯体单元101的横截面为等腰梯形。相邻芯体单元101侧面贴紧配合形成芯体层1,芯体单元101的外表面和内表面均为弧面;芯体单元101的两侧面为相匹配的平面或相匹配的曲面。
相邻芯体单元101贴紧形成完整的环形柱体三明治结构,有效提高整体结构强度。
芯体层1外表面依次设有加强膜层5和抗紫外线膜层6。
芯体层1外缠绕有三圈箍紧扎带2,三圈箍紧扎带2分别设置在芯体层1外周面的上中下三处。
本发明的说明书中,说明了大量具体细节。然而,能够理解,本发明的实施例可以在没有这些具体细节的情况下实践。在一些实例中,并未详细示出公知的方法、结构和技术,以便不模糊对本说明书的理解。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然 可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围,其均应涵盖在本发明的权利要求和说明书的范围当中。

Claims (11)

  1. 一种热塑复合材料杆塔,其特征在于,包括:
    芯体层,所述芯体层由若干个芯体单元环绕配合组成,所述芯体单元包括两侧的支撑层和设置在中间的中空芯层,若干个所述芯体单元朝背离杆塔中心线方向辐射状排列形成三明治环形柱状结构。
  2. 根据权利要求1所述的热塑复合材料杆塔,其特征在于,所述支撑层包括支撑主体层,所述支撑主体层至少一侧设有支撑界面层;所述支撑主体层采用至少一层连续纤维增强热塑材料制造而成,所述支撑界面层采用至少一层连续纤维增强热塑材料、热塑树脂膜、铝板、不锈钢板或热固复合材料板制成。
  3. 根据权利要求1所述的热塑复合材料杆塔,其特征在于,所述中空芯层的材料为热塑材料蜂窝芯板、热塑材料中空板、PET发泡材料、PP发泡材料或聚氨酯发泡材料。
  4. 根据权利要求1所述的热塑复合材料杆塔,其特征在于,所述芯体层外缠绕有至少一圈箍紧扎带。
  5. 根据权利要求1所述的热塑复合材料杆塔,其特征在于,所述芯体层外缠绕有至少一层箍紧层,所述箍紧层的缠绕方向与杆塔柱体中心线呈15-90°角,且相邻所述箍紧层的缠绕方向相反。
  6. 根据权利要求5所述的热塑复合材料杆塔,其特征在于,所述箍紧层包括中部的箍紧主体层和两侧的箍紧界面层;所述箍紧主体层采用至少一层连续纤维增强热塑材料制造而成,所述箍紧界面层采用至少一层连续纤维增强热塑材料或一层热塑树脂膜制成。
  7. 根据权利要求1至6任一所述的热塑复合材料杆塔,其特征在于,相邻所述芯体单元侧面贴紧配合形成所述芯体层,所述芯体单元的外表面和内表面为弧面、平面和波纹板面中的一种或多种组合;所述芯体单元的两侧面为相匹配的平面或相匹配的曲面。
  8. 根据权利要求7所述的热塑复合材料杆塔,其特征在于,所述芯体单元一侧面设有凸棱,另一侧面设有与所述凸棱匹配的凹槽。
  9. 根据权利要求1所述的热塑复合材料杆塔,其特征在于,所述杆塔两端设有端盖。
  10. 根据权利要求1所述的热塑复合材料杆塔,其特征在于,杆塔最外侧由内至外依次设有加强膜层和抗紫外线膜层。
  11. 如权利要求7所述的热塑复合材料杆塔的制备方法,其特征在于,包括如下步骤:
    S1采用连续纤维增强热塑材料制成支撑层,通过热复合工艺将支撑层与中空芯层复合制得复合板,其中中空芯层为热塑材料蜂窝芯板、热塑材料中空板、PET发泡材料、PP发泡材料或聚氨酯发泡材料;
    S2按照环形柱体展开扇形平面的几何原理,对复合板表面进行分段并划线确定多余部分的位置轨迹;
    S3:按照划线位置轨迹,采用热压成型工艺热熔多余部分或者采用切割工艺切割多余部分,得到一侧面均匀开设有坡口槽的扇形平面复合板;
    S4:在扇形平面复合板一侧边开设插槽,另一侧边设置与插槽匹配的插块;
    S5:将扇形平面复合板朝开设有坡口槽一侧面进行折叠翻卷,采用热熔焊接或涂胶工艺将插块插入插槽内固定形成搭接结构,得到芯体层;
    S6:采用热熔连接工艺或涂胶工艺,以芯体层的中心线为旋转轴,以旋转的方式将箍紧层缠绕在芯体层外侧,得到热塑复合材料杆塔。
PCT/CN2020/110584 2020-08-13 2020-08-21 一种热塑复合材料杆塔及其制备方法 WO2022032715A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010814741.9 2020-08-13
CN202010814741.9A CN111894331B (zh) 2020-08-13 2020-08-13 一种热塑复合材料杆塔的制备方法

Publications (1)

Publication Number Publication Date
WO2022032715A1 true WO2022032715A1 (zh) 2022-02-17

Family

ID=73230219

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/110584 WO2022032715A1 (zh) 2020-08-13 2020-08-21 一种热塑复合材料杆塔及其制备方法

Country Status (2)

Country Link
CN (1) CN111894331B (zh)
WO (1) WO2022032715A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112727223A (zh) * 2021-01-05 2021-04-30 王茂良 一种易于拼装的复合材料锥形管
CN113914698A (zh) * 2021-11-05 2022-01-11 合肥海银杆塔有限公司 一种热塑复合材料杆塔

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102345406A (zh) * 2010-07-19 2012-02-08 麦克·温特哈特 复合材料杆塔
CN103711354A (zh) * 2013-12-27 2014-04-09 曾义强 一种复合材料电线杆和路灯杆和路灯杆及其制作方法
CN204645795U (zh) * 2015-05-14 2015-09-16 江苏沃能电气科技有限公司 一种复合材料电杆
CN105927024A (zh) * 2016-05-06 2016-09-07 国网山东省电力公司滨州市滨城区供电公司 一种低压配电网电杆
CN108086773A (zh) * 2017-12-21 2018-05-29 江苏佑能实业有限公司 一种高强度轻量杆塔
CN207553711U (zh) * 2017-11-28 2018-06-29 湖南景明电力器材有限责任公司 复合材料电杆
US20190119938A1 (en) * 2017-10-23 2019-04-25 Composipole Inc. Lightweight eco-conscious composite utility pole

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0447084A (ja) * 1990-06-15 1992-02-17 Nippon Steel Corp 電柱小柱、及び街灯用複合材ポール
DE19701445C1 (de) * 1997-01-17 1998-08-06 Deutsch Zentr Luft & Raumfahrt Verbindungselement zur Verbindung von Stäben unterschiedlichen Durchmessers, Verfahren zur Herstellung dieser Verbindungselemente und längliches Strukturelement
WO2000071317A1 (en) * 1999-05-21 2000-11-30 Vieira Alberto Tomas Process for the production of hollow tubular parts, parts and assembly obtained from them
FR2865679B1 (fr) * 2004-01-29 2006-07-07 Olivier Bioulac Poteaux et structures analogues en materiau composite a base de bois, procede de fabrication et applications
DE202005011492U1 (de) * 2005-07-14 2005-12-08 Lisitano, Alexandro Hohlprofilmast
CN101718150B (zh) * 2009-11-06 2013-01-30 常熟风范电力设备股份有限公司 一种复合材料杆塔及其制造工艺
CN202000722U (zh) * 2009-11-06 2011-10-05 常熟风范电力设备股份有限公司 一种复合材料杆塔
CN104265048B (zh) * 2014-10-21 2016-08-31 合肥海银杆塔有限公司 一种复合材料电力杆塔

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102345406A (zh) * 2010-07-19 2012-02-08 麦克·温特哈特 复合材料杆塔
CN103711354A (zh) * 2013-12-27 2014-04-09 曾义强 一种复合材料电线杆和路灯杆和路灯杆及其制作方法
CN204645795U (zh) * 2015-05-14 2015-09-16 江苏沃能电气科技有限公司 一种复合材料电杆
CN105927024A (zh) * 2016-05-06 2016-09-07 国网山东省电力公司滨州市滨城区供电公司 一种低压配电网电杆
US20190119938A1 (en) * 2017-10-23 2019-04-25 Composipole Inc. Lightweight eco-conscious composite utility pole
CN207553711U (zh) * 2017-11-28 2018-06-29 湖南景明电力器材有限责任公司 复合材料电杆
CN108086773A (zh) * 2017-12-21 2018-05-29 江苏佑能实业有限公司 一种高强度轻量杆塔

Also Published As

Publication number Publication date
CN111894331A (zh) 2020-11-06
CN111894331B (zh) 2021-06-15

Similar Documents

Publication Publication Date Title
WO2022032715A1 (zh) 一种热塑复合材料杆塔及其制备方法
US8281547B2 (en) Modular tower apparatus and method of manufacture
WO2017177708A1 (zh) 一种超大口径的竹缠绕复合管及其制造方法
US20120237356A1 (en) Wind turbine blade and its producing method
CN104275804A (zh) 一种大尺寸薄壁泡沫夹层结构的制备方法及该结构的应用
CN108692181B (zh) 一种复合材料气瓶的制备方法
CN110239200A (zh) 一种轻质网格蒙皮蜂窝结构的制备方法
CN109927943B (zh) 返回式飞船防热与承载一体化结构
CN111021632A (zh) 一种基于环-夹协同作用的frp多层片材锚固体系
CN110524913B (zh) 一种复合材料发射筒泡沫夹层结构及其一体化成型方法
CN105464898A (zh) 一种风力涡轮的转子叶片结构及其制备方法
CN105674041A (zh) 一种航天用球形复合材料气瓶
WO2022129878A1 (en) A rotor sail
CN202073726U (zh) 一种风力机分段叶片
CN111923556B (zh) 一种大型复杂异形曲面复合保温层及其制备方法
CN101943106A (zh) 一种适用于500kw以下三叶片风力机高分子复合材料叶片
CN205423056U (zh) 一种分段式风电叶片
CN204003279U (zh) 一种风力发电机的复合材料塔筒及制备模具
EP3444472A1 (en) Advanced composite nacelle
CN203270458U (zh) 一种复合材料缠绕丝
CN103644083A (zh) 一种风力发电机的复合材料塔筒及其制备方法和制备模具
CN202088536U (zh) 小型无人机专用蜂窝复合材料
CN211525731U (zh) 一种用于极寒地区的钢丝网骨架聚乙烯复合管材保温结构
CN107399251B (zh) 一种接触网支撑装置的成型方法
CN102834607B (zh) 用于风力发电机的塔架

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20949213

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20949213

Country of ref document: EP

Kind code of ref document: A1