WO2022032507A1 - 液晶屏幕的帧频控制方法、装置及液晶屏幕显示系统 - Google Patents

液晶屏幕的帧频控制方法、装置及液晶屏幕显示系统 Download PDF

Info

Publication number
WO2022032507A1
WO2022032507A1 PCT/CN2020/108577 CN2020108577W WO2022032507A1 WO 2022032507 A1 WO2022032507 A1 WO 2022032507A1 CN 2020108577 W CN2020108577 W CN 2020108577W WO 2022032507 A1 WO2022032507 A1 WO 2022032507A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
liquid crystal
preset
crystal screen
ranges
Prior art date
Application number
PCT/CN2020/108577
Other languages
English (en)
French (fr)
Inventor
梁春颂
樊胡兵
林喜跃
Original Assignee
海能达通信股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 海能达通信股份有限公司 filed Critical 海能达通信股份有限公司
Priority to PCT/CN2020/108577 priority Critical patent/WO2022032507A1/zh
Publication of WO2022032507A1 publication Critical patent/WO2022032507A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals

Definitions

  • the present application relates to the field of optoelectronic display, and in particular, to a frame rate control method and device of a liquid crystal screen, and a liquid crystal screen display system.
  • Liquid crystal screens eg, FSTN screens
  • FSTN screens Liquid crystal screens
  • the FSTN LCD screen will have a flickering problem, which affects the display effect and customer experience. In severe cases, it will also affect the real-time nature of information acquisition, resulting in missing important information.
  • the present application provides a frame rate control method and device for a liquid crystal screen, and a liquid crystal screen display system, aiming at solving the problem of screen flickering on the liquid crystal screen in a low temperature environment.
  • the present application provides a frame rate control method for a liquid crystal screen, including:
  • the multiple temperature ranges are determined by multiple preset temperature nodes
  • the temperature of the liquid crystal screen changes from one temperature range in a plurality of preset temperature ranges to another temperature range
  • the temperature is determined according to the preset relationship between the plurality of temperature ranges and the frame frequency
  • the frame frequency corresponding to the temperature range to which it belongs is obtained, and the target frame frequency is obtained; wherein, the frame frequencies corresponding to different temperature ranges in the corresponding relationship are different;
  • the frame rate of the integrated circuit controlling the liquid crystal screen is adjusted to the target frame rate.
  • the detecting whether the temperature of the liquid crystal screen changes from one of the preset multiple temperature ranges to another temperature range includes:
  • the plurality of first temperature ranges are set by a plurality of preset first temperature nodes. obtained by dividing the axis; the plurality of first temperature nodes are determined and obtained according to the plurality of temperature nodes;
  • the plurality of second temperature ranges are determined by a plurality of preset second temperature nodes Obtained by dividing the temperature axis; the plurality of second temperature nodes are determined according to the plurality of temperature nodes;
  • the frame rates corresponding to the temperature ranges in the same sorting position are the same.
  • detecting whether the temperature of the liquid crystal screen decreases from one of the preset multiple first temperature ranges to another temperature range including:
  • Detecting whether the temperature of the liquid crystal screen rises from one of a plurality of preset second temperature ranges to another temperature range including:
  • the difference between the second temperature node and the first temperature node in the same sorting position belongs to a preset range
  • the second temperature node sequence is obtained by sorting the plurality of second temperature nodes according to a preset sequence; the first temperature node sequence is obtained by sorting the plurality of first temperature nodes according to the sequence .
  • the method before the detecting whether the temperature of the liquid crystal screen changes from one of the preset multiple temperature ranges to another temperature range, the method further includes:
  • the VOP voltage provided by the integrated circuit to the liquid crystal screen is controlled to be higher than a preset VOP voltage; the preset VOP voltage Indicates the VOP voltage when the LCD screen displays normally after startup.
  • controlling the integrated circuit to increase the VOP voltage provided to the liquid crystal screen is higher than the preset VOP voltage, including:
  • the VOP voltage provided by the integrated circuit to the liquid crystal screen is controlled to be higher than the preset VOP voltage.
  • the present application also provides a frame rate control device for a liquid crystal screen, including:
  • a detection module for detecting whether the temperature of the liquid crystal screen changes from one temperature range in a plurality of preset temperature ranges to another temperature range; the multiple temperature ranges are determined by a plurality of preset temperature nodes;
  • a determination module configured to, when the temperature of the liquid crystal screen changes from one of the preset multiple temperature ranges to another temperature range, according to the preset relationship between the multiple temperature ranges and the frame rate , determine the frame frequency corresponding to the temperature range to which the temperature belongs, and obtain the target frame frequency; wherein, the frame frequencies corresponding to different temperature ranges in the corresponding relationship are different;
  • the first control module is configured to control the frame rate of the integrated circuit of the liquid crystal screen to be adjusted to the target frame rate.
  • the detection module is configured to detect whether the temperature of the liquid crystal screen changes from one temperature range in a plurality of preset temperature ranges to another temperature range, including:
  • the detection module is specifically configured to detect whether the temperature of the liquid crystal screen has decreased from one temperature range in a plurality of preset first temperature ranges to another temperature range; the plurality of first temperature ranges are determined by the preset temperature range.
  • a plurality of first temperature nodes are obtained by dividing the temperature axis; the plurality of first temperature nodes are determined and obtained according to the plurality of temperature nodes;
  • the plurality of second temperature ranges are determined by a plurality of preset second temperature nodes Obtained by dividing the temperature axis; the plurality of second temperature nodes are determined according to the plurality of temperature nodes;
  • the frame rates corresponding to the temperature ranges in the same sorting position among the plurality of first temperature ranges sorted according to the sequence and the plurality of second temperature ranges sorted according to the sequence are the same.
  • the present application also provides a storage medium, where the storage medium includes a stored program, wherein the program executes any one of the above-mentioned frame rate control methods for a liquid crystal screen.
  • the present application also provides a liquid crystal display system, including: a liquid crystal screen and a processor; the liquid crystal screen includes an integrated circuit; the processor is configured to execute any one of the above-mentioned frame rate control methods for the liquid crystal screen.
  • the frame rate control method, device and liquid crystal screen display system of the liquid crystal screen described in the present application detects whether the temperature of the liquid crystal screen changes from one temperature range of the preset multiple temperature ranges to another temperature range; When the temperature changes from one of the preset multiple temperature ranges to another temperature range, the frame corresponding to the temperature range to which the temperature belongs is determined according to the preset relationship between the multiple temperature ranges and the frame frequency frequency, obtain the target frame frequency, and control the frame frequency of the integrated circuit of the liquid crystal screen to be adjusted to the target frame frequency.
  • the frame rates corresponding to different temperature ranges are different in the corresponding relationship of the present application, when the temperature of the liquid crystal screen belongs to different temperature ranges, the frame rates of the integrated circuits of the liquid crystal screen are different, so as to avoid the whole temperature
  • the integrated circuits of the liquid crystal screen all use the same frame rate, and the frame rate is higher than the frame rate required for the normal display of the liquid crystal screen under low temperature conditions, resulting in the flickering screen problem. Therefore, by adopting the solution of the present application, the problem of screen flickering in the liquid crystal screen under the condition of low temperature can be solved.
  • FIG. 1 is a schematic diagram of an application scenario of a frame rate control method for a liquid crystal screen disclosed in an embodiment of the present application;
  • FIG. 2 is a flowchart of a method for controlling a frame rate of a liquid crystal screen disclosed in an embodiment of the present application
  • FIG. 3 is an example diagram of the correspondence between the time range and the frame frequency of the temperature reduction and temperature rise processes disclosed in the embodiment of the present application;
  • FIG. 4 is a schematic diagram of the change of liquid crystal angle under normal VOP and overdrive VOP disclosed in an embodiment of the present application
  • FIG. 5 is a schematic structural diagram of a frame rate control device of a liquid crystal screen disclosed in an embodiment of the present application.
  • the inventor found that the reasons for the screen flicker of the liquid crystal screen at low temperature include: because the entire temperature axis uses a set of frame rates, the frame rate used is higher than the normal display of the liquid crystal screen under low temperature conditions. The required frame rate, which in turn causes the LCD screen to appear flickering at low temperatures.
  • FIG. 1 is a schematic diagram of an application scenario of a frame rate control method for a liquid crystal screen provided by an embodiment of the present application, including a liquid crystal screen and a processor, wherein the liquid crystal screen includes an integrated circuit.
  • the processor is used to control the integrated circuit of the liquid crystal screen.
  • FIG. 2 is a frame rate control method of a liquid crystal screen provided by an embodiment of the present application.
  • the execution body of this embodiment is a processor, which may include the following steps:
  • an integrated circuit (Integrated circuit, IC) of the liquid crystal screen has a function of detecting the temperature of the liquid crystal screen, that is, detecting the temperature of the environment where the liquid crystal screen is located.
  • the temperature of the liquid crystal screen IC is obtained.
  • the acquisition in this step may be real-time acquisition.
  • the change of the temperature of the liquid crystal screen can be judged.
  • the temperature change may include temperature increase and temperature decrease.
  • the multiple preset temperature ranges may be determined according to multiple preset temperature nodes, wherein the multiple temperature nodes need to be determined according to the temperature characteristics of the liquid crystal screen. This embodiment does not limit the specific content of the temperature node.
  • the three preset temperature nodes are -25°C, 0°C, and 50°C, respectively.
  • the manner of using the three temperature nodes to determine the multiple temperature ranges may include: the temperature ranges divided into the temperature axis by the three temperature nodes, as multiple temperature ranges, are the temperature range below -25°C, A temperature range from -25°C to 0°C, a temperature range from 0°C to 50°C, and a temperature range above 50°C.
  • this step can specifically determine whether the temperature of the liquid crystal screen has decreased from one temperature range to another temperature range among the multiple temperature ranges. , or, to determine whether the temperature of the LCD screen has risen from one temperature range to another temperature range among multiple temperature ranges, as long as any one of these two conditions is judged, it means that the temperature of the LCD screen has increased from the preset temperature range. Change from one of the temperature ranges to another temperature range.
  • the purpose of the above S201 to S202 is to detect whether the temperature of the liquid crystal screen changes from one temperature range to another temperature range among the preset multiple temperature ranges.
  • a frame rate is also set for each temperature range, so as to obtain the correspondence between the multiple temperature ranges and the corresponding frame rates.
  • the frame rates set for different temperature ranges are different, and the frame rates set for each temperature range are consistent with the frame rates that the liquid crystal screen can display normally in the temperature range.
  • the specific value of the frame frequency set for each temperature range needs to be based on the actual situation, and this embodiment does not limit the specific value of the frame frequency corresponding to each temperature range.
  • the frame corresponding to the temperature range to which the temperature of the liquid crystal screen belongs is determined from the correspondence between the temperature range and the frame frequency
  • the frame frequency corresponding to the temperature range to which the temperature of the LCD screen belongs is called the target frame frequency.
  • the frame rate of the integrated circuit controlling the liquid crystal screen is adjusted to the target frame rate.
  • the frame rate of the integrated circuit controlling the liquid crystal screen is adjusted to the target frame rate.
  • the preset multiple temperature nodes are divided into temperature ranges as multiple temperature ranges
  • the The temperature is described as changing from a first temperature range to a second temperature range. Since the temperature of the liquid crystal screen may be unstable, the critical temperature that appears in the "second temperature range" fluctuates up and down, so that the temperature of the liquid crystal screen changes from the first temperature range to the second temperature range, and from the second temperature range to the first temperature range.
  • the process of the temperature range is frequently switched, so that the target frame rate determined for the temperature of the LCD screen is frequently switched between the frame rates corresponding to the first temperature range and the second temperature range respectively, so that the frame rate of the integrated circuit that controls the LCD screen occurs. Frequent changes cause the LCD screen to flicker.
  • the frame rate of the integrated circuit needs to be adjusted from FRD to FRC.
  • the temperature of the LCD screen drops to 10°C and it is still unstable, the temperature of the LCD screen may change from FRD to FRC.
  • the frame rate of the integrated circuit needs to be adjusted from FRC to FRD. If the temperature of the LCD screen is lowered from 11°C to 10°C, the frame rate of the integrated circuit needs to be adjusted from FRD to FRC. , if the process is repeated repeatedly, the LCD screen will have a flickering problem.
  • the temperature change may include temperature reduction and temperature increase
  • the determined temperature nodes for forming multiple temperature ranges are different.
  • the temperature nodes determined for forming multiple temperature ranges according to the preset temperature nodes will be referred to as the first temperature nodes.
  • a node for forming a plurality of temperature ranges determined according to a preset temperature node is referred to as a second temperature node.
  • the multiple first temperature points are different from the multiple second temperature points, and, in the second temperature node sequence and the second temperature node sequence, the difference between the second temperature node and the first temperature node in the same sorting position falls within the preset range.
  • the first temperature node sequence is obtained by sorting a plurality of first temperature nodes according to a preset sequence
  • the second temperature node sequence is obtained by sorting a plurality of second temperature nodes according to the sequence.
  • the difference between the second temperature node and the first temperature node in different sorting positions may be different, as long as they all belong to the preset range. That is, the purpose of the embodiment of the present application is to stagger the second temperature node and the first temperature node in the same sorting position in the second temperature node sequence and the first temperature node sequence.
  • multiple temperature ranges obtained by dividing the temperature axis by multiple first temperature nodes are referred to as multiple first temperature ranges.
  • the multiple temperature ranges obtained by dividing the temperature axis by multiple second temperature nodes are referred to as multiple second temperature ranges.
  • a specific implementation manner of detecting whether the temperature of the liquid crystal screen has decreased from one of the preset multiple temperature ranges to another temperature range may include: detecting whether the temperature of the liquid crystal screen has decreased from multiple preset first temperatures One temperature range in the range is reduced to the maximum temperature value of the other temperature range.
  • a specific implementation manner of detecting whether the temperature of the liquid crystal screen rises from one of a plurality of preset temperature ranges to another temperature range may include: detecting whether the temperature of the liquid crystal screen has risen from a plurality of preset second temperature ranges. The minimum temperature value for one temperature range to rise to another.
  • the horizontal axis represents the temperature
  • the vertical axis represents the frame rate
  • TA, TB and TC represent three preset temperature nodes, where TA takes a value of -10°C, TB takes a value of 0°C, and The value of TC is 10°C.
  • FRA, FRB, FRC and FRD respectively represent different frame frequency values.
  • the rising arrow indicates that the temperature of the liquid crystal screen increases
  • the falling arrow indicates that the temperature of the liquid crystal screen decreases.
  • the response speed of the LCD screen is very slow, that is, it takes a long time for the LCD screen to reach the preset gray-scale voltage.
  • the response speed of the LCD screen cannot keep up, so that the LCD screen cannot be rotated to a predetermined angle in a short period of time. Therefore, the LCD screen will have problems such as weak display and no display.
  • overdriving refers to: within the preset grayscale voltage range of the LCD screen, adding an overvoltage (slightly higher than the preset grayscale voltage) to both ends of the LCD screen in a short time, so that the LCD screen can quickly reach the Preset angles, so that the content can be displayed faster and more clearly.
  • the frame rate control method for the liquid crystal screen may further include:
  • the control integrated circuit increases the VOP voltage provided to the liquid crystal screen.
  • the BootLoader program can be used to perform overvoltage driving.
  • the VOP voltage of the BootLoader is increased, and after the LCD screen responds, the VOP voltage applied to the integrated circuit is the preset VOP voltage, that is, the VOP voltage at startup is higher than the preset VOP voltage after the LCD screen is normally displayed, which makes the liquid crystal molecules fast. Turn to a predetermined angle so that the screen can be displayed normally. That is, by increasing the VOP voltage of the preset Bootloader program, the VOP voltage provided by the control integrated circuit to the LCD screen is higher than the preset VOP voltage.
  • FIG. 4 The variation of the liquid crystal angle (the angle reached by the liquid crystal screen) under normal VOP (preset VOP voltage) and overdrive VOP (overdrive VOP voltage) is shown in FIG. 4 . It can be seen from Figure 4 that during the time period when the Bootloader is working, the VOP voltage provided to the LCD screen is the overdrive VOP voltage, and the angle change time of the LCD screen is significantly lower than the time when the VOP voltage provided to the LCD screen is under normal VOP. .
  • FIG. 5 is a frame rate control device of a liquid crystal screen provided by an embodiment of the present application, which may include: a detection module 501, a determination module 502, and a control module 503, wherein,
  • the detection module 501 is configured to detect whether the temperature of the liquid crystal screen changes from one temperature range in a plurality of preset temperature ranges to another temperature range; the multiple temperature ranges are determined by multiple preset temperature nodes.
  • the determining module 502 is configured to determine the temperature according to the preset relationship between the multiple temperature ranges and the frame frequency when the temperature of the liquid crystal screen changes from one of the preset multiple temperature ranges to another temperature range
  • the frame frequency corresponding to the temperature range to which it belongs is obtained, and the target frame frequency is obtained; wherein, the frame frequency corresponding to different temperature ranges in the corresponding relationship is different.
  • the first control module 503 is used to control the frame rate of the integrated circuit of the liquid crystal screen to be adjusted to the target frame rate.
  • the detection module 501 is configured to detect whether the temperature of the liquid crystal screen changes from one of the preset multiple temperature ranges to another temperature range, including:
  • the detection module 501 is specifically configured to detect whether the temperature of the liquid crystal screen has decreased from one of the preset multiple first temperature ranges to another temperature range; the multiple first temperature ranges are determined by the preset multiple first temperature ranges The nodes are obtained by dividing the temperature axis; the plurality of first temperature nodes are determined according to the plurality of temperature nodes;
  • the plurality of second temperature ranges are carried out by a plurality of preset second temperature nodes along the temperature axis
  • the multiple second temperature nodes are determined and obtained according to the multiple temperature nodes; the multiple first temperature ranges sorted according to the sequence and the multiple second temperature ranges sorted according to the sequence are in the same sorting position.
  • the detection module 501 is configured to detect whether the temperature of the liquid crystal screen has decreased from one of the preset multiple first temperature ranges to another temperature range, including:
  • the detection module 501 is specifically configured to detect whether the temperature of the liquid crystal screen decreases from one of the preset multiple first temperature ranges to the maximum temperature value of the other temperature range;
  • the detection module 501 is used to detect whether the temperature of the liquid crystal screen rises from one temperature range of a plurality of preset second temperature ranges to another temperature range, including:
  • the detection module 501 is specifically configured to detect whether the temperature of the liquid crystal screen rises from one temperature range of a plurality of preset second temperature ranges to a minimum temperature value of another temperature range.
  • the difference between the second temperature node and the first temperature node in the same sorting position belongs to a preset range; wherein, the second temperature node sequence is one-to-many.
  • the second temperature nodes are sorted and obtained according to a preset sequence.
  • the first temperature node sequence is obtained by sorting a plurality of first temperature nodes according to the sequence.
  • the frame rate control device of the liquid crystal screen may further include:
  • the second control module is configured to, before the detection module 501 detects whether the temperature of the liquid crystal screen changes from one of the preset multiple temperature ranges to another temperature range, when a power-on instruction is received and the temperature of the liquid crystal screen is lower than In the case of the preset temperature, the VOP voltage provided by the control integrated circuit to the liquid crystal screen is higher than the preset VOP voltage; the preset VOP voltage represents the VOP voltage under the normal display condition of the liquid crystal screen after startup.
  • the second control module is used to control the integrated circuit to increase the VOP voltage provided to the liquid crystal screen to be higher than the preset VOP voltage, including:
  • the second control module is specifically configured to control the VOP voltage provided by the integrated circuit to the liquid crystal screen to be higher than the preset VOP voltage by increasing the VOP voltage of the preset Bootloader program.
  • the frame rate control device of the liquid crystal screen includes a processor and a memory, and the above-mentioned detection module 501, the determination module 502 and the first control module 503 are all stored in the memory as program units, and the processor executes the above-mentioned program units stored in the memory. implement the corresponding function.
  • the processor includes a kernel, and the kernel calls the corresponding program unit from the memory.
  • the kernel can be set to one or more, by adjusting the kernel parameters to solve the flickering problem of the LCD screen in the case of low temperature.
  • An embodiment of the present invention provides a storage medium on which a program is stored, and when the program is executed by a processor, a method for controlling the frame rate of the liquid crystal screen is implemented.
  • the application also provides a computer program product that, when executed on a data processing device, is adapted to execute a program initialized with the following method steps:
  • the multiple temperature ranges are determined by multiple preset temperature nodes
  • the temperature of the liquid crystal screen changes from one temperature range in a plurality of preset temperature ranges to another temperature range
  • the temperature is determined according to the preset relationship between the plurality of temperature ranges and the frame frequency
  • the frame frequency corresponding to the temperature range to which it belongs is obtained, and the target frame frequency is obtained; wherein, the frame frequencies corresponding to different temperature ranges in the corresponding relationship are different;
  • the frame rate of the integrated circuit controlling the liquid crystal screen is adjusted to the target frame rate.
  • Computer-readable media includes both persistent and non-permanent, removable and non-removable media, and storage of information may be implemented by any method or technology.
  • Information may be computer readable instructions, data structures, modules of programs, or other data.
  • Examples of computer storage media include, but are not limited to, phase-change memory (PRAM), static random access memory (SRAM), dynamic random access memory (DRAM), other types of random access memory (RAM), read only memory (ROM), Electrically Erasable Programmable Read Only Memory (EEPROM), Flash Memory or other memory technology, Compact Disc Read Only Memory (CD-ROM), Digital Versatile Disc (DVD) or other optical storage, Magnetic tape cassettes, magnetic tape magnetic disk storage or other magnetic storage devices or any other non-transmission medium that can be used to store information that can be accessed by a computing device.
  • computer-readable media does not include transitory computer-readable media, such as modulated data signals and carrier waves.
  • the embodiments of the present application may be provided as a method, a system or a computer program product. Accordingly, the present application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, the present application may take the form of a computer program product embodied on one or more computer-usable storage media (including, but not limited to, disk storage, CD-ROM, optical storage, etc.) having computer-usable program code embodied therein.
  • computer-usable storage media including, but not limited to, disk storage, CD-ROM, optical storage, etc.
  • the functions described in the methods of the embodiments of the present application are implemented in the form of software functional units and sold or used as independent products, they may be stored in a readable storage medium of a computing device.
  • the part of the embodiments of the present application that contribute to the prior art or the part of the technical solution may be embodied in the form of a software product, and the software product is stored in a storage medium and includes several instructions to make a
  • a computing device which may be a personal computer, a server, a mobile computing device or a network device, etc.
  • the aforementioned storage medium includes: U disk, mobile hard disk, Read-Only Memory (ROM, Read-Only Memory), Random Access Memory (RAM, Random Access Memory), magnetic disk or optical disk and other media that can store program codes .

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

液晶屏幕的帧频控制方法、装置及液晶屏幕显示系统,其中,方法包括:检测液晶屏幕的温度是否从预设的多个温度范围中的一个温度范围变化到另一个温度范围;多个温度范围由预设的多个温度节点确定;在液晶屏幕的温度从预设的多个温度范围中的一个温度范围变化到另一个温度范围的情况下,依据多个温度范围与帧频间的预设关系,确定温度所属的温度范围对应的帧频,得到目标帧频(S203);其中,对应关系中不同温度范围对应的帧频不同;控制液晶屏幕的集成电路的帧频调整为目标帧频(S204)。该方法可以解决低温情况下该液晶屏幕出现的闪屏问题。

Description

液晶屏幕的帧频控制方法、装置及液晶屏幕显示系统 技术领域
本申请涉及光电显示领域,尤其涉及液晶屏幕的帧频控制方法、装置及液晶屏幕显示系统。
背景技术
液晶屏幕(例如,FSTN屏幕)由于其低成本、低功耗、户外可视的特点,广泛应用于对讲机等设备。
但是,在低温环境下,FSTN液晶屏幕会出现闪屏的问题,影响到显示的效果和客户体验。在严重的情况下,还会影响信息获取的实时性,导致错过重要信息。
发明内容
本申请提供了液晶屏幕的帧频控制方法、装置及液晶屏幕显示系统,目的在于解决低温环境下液晶屏幕出现闪屏的问题。
为了实现上述目的,本申请提供了以下技术方案:
本申请提供了一种液晶屏幕的帧频控制方法,包括:
检测所述液晶屏幕的温度是否从预设的多个温度范围中的一个温度范围变化到另一个温度范围;所述多个温度范围由预设的多个温度节点确定;
在所述液晶屏幕的温度从预设的多个温度范围中的一个温度范围变化到另一个温度范围的情况下,依据所述多个温度范围与帧频间的预设关系,确定所述温度所属的温度范围对应的帧频,得到目标帧频;其中,所述对应关系中不同温度范围对应的帧频不同;
控制所述液晶屏幕的集成电路的帧频调整为所述目标帧频。
可选的,所述检测所述液晶屏幕的温度是否从预设的多个温度范围中的一个温度范围变化到另一个温度范围,包括:
检测所述液晶屏幕的温度是否从预设的多个第一温度范围中的一个温度范围降低到另一个温度范围;所述多个第一温度范围由预设的多个第一温度节点将温度轴进行分割得到;所述多个第一温度节点依据所述多个温度节点确定得到;
或者,检测所述液晶屏幕的温度是否从预设的多个第二温度范围中的一个温度范 围上升到另一个温度范围;所述多个第二温度范围由预设的多个第二温度节点将温度轴进行分割得到;所述多个第二温度节点依据所述多个温度节点确定得到;
按照先后顺序排序后的多个第一温度范围与按照所述先后顺序排序后的多个第二温度范围中,相同排序位置下的温度范围对应的帧频相同。
可选的,检测所述液晶屏幕的温度是否从预设的多个第一温度范围中的一个温度范围降低到另一个温度范围,包括:
检测所述液晶屏幕的温度是否从预设的多个第一温度范围中的一个温度范围降低到另一个温度范围的最大温度值;
检测所述液晶屏幕的温度是否从预设的多个第二温度范围中的一个温度范围上升到另一个温度范围,包括:
检测所述液晶屏幕的温度是否从预设的多个第二温度范围中的一个温度范围上升到另一个温度范围的最小温度值。
可选的,第二温度节点序列与第一温度节点序列中,相同排序位置下的第二温度节点与第一温度节点间的差值属于预设范围;
所述第二温度节点序列是对所述多个第二温度节点按照预设的先后顺序排序得到;所述第一温度节点序列是对所述多个第一温度节点按照所述先后顺序排序得到。
可选的,在所述检测所述液晶屏幕的温度是否从预设的多个温度范围中的一个温度范围变化到另一个温度范围之前,还包括:
在接收到开机指令并且所述液晶屏幕的温度低于预设温度的情况下,控制所述集成电路提供给所述液晶屏幕的VOP电压高于预设的VOP电压;所述预设的VOP电压表示所述液晶屏幕在启动后正常显示情况下的VOP电压。
可选的,所述控制所述集成电路增加提供给所述液晶屏幕的VOP电压高于预设的VOP电压,包括:
通过提高预设的Bootloader程序的VOP电压,控制所述集成电路提供给所述液晶屏幕的VOP电压高于预设的VOP电压。
本申请还提供了一种液晶屏幕的帧频控制装置,包括:
检测模块,用于检测所述液晶屏幕的温度是否从预设的多个温度范围中的一个温 度范围变化到另一个温度范围;所述多个温度范围由预设的多个温度节点确定;
确定模块,用于在所述液晶屏幕的温度从预设的多个温度范围中的一个温度范围变化到另一个温度范围的情况下,依据所述多个温度范围与帧频间的预设关系,确定所述温度所属的温度范围对应的帧频,得到目标帧频;其中,所述对应关系中不同温度范围对应的帧频不同;
第一控制模块,用于控制所述液晶屏幕的集成电路的帧频调整为所述目标帧频。
可选的,所述检测模块,用于检测所述液晶屏幕的温度是否从预设的多个温度范围中的一个温度范围变化到另一个温度范围,包括:
所述检测模块,具体用于检测所述液晶屏幕的温度是否从预设的多个第一温度范围中的一个温度范围降低到另一个温度范围;所述多个第一温度范围由预设的多个第一温度节点将温度轴进行分割得到;所述多个第一温度节点依据所述多个温度节点确定得到;
或者,检测所述液晶屏幕的温度是否从预设的多个第二温度范围中的一个温度范围上升到另一个温度范围;所述多个第二温度范围由预设的多个第二温度节点将温度轴进行分割得到;所述多个第二温度节点依据所述多个温度节点确定得到;
其中,按照先后顺序排序后的多个第一温度范围与按照所述先后顺序排序后的多个第二温度范围中,相同排序位置下的温度范围对应的帧频相同。
本申请还提供了一种存储介质,所述存储介质包括存储的程序,其中,所述程序执行上述任一所述的液晶屏幕的帧频控制方法。
本申请还提供了一种液晶显示系统,包括:液晶屏幕和处理器;所述液晶屏幕包括集成电路;所述处理器用于执行上述任一所述的液晶屏幕的帧频控制方法。
本申请所述的液晶屏幕的帧频控制方法、装置及液晶屏幕显示系统,检测液晶屏幕的温度是否从预设的多个温度范围中的一个温度范围变化到另一个温度范围;在该液晶屏幕的温度从预设的多个温度范围中的一个温度范围变化到另一个温度范围的情况下,依据该多个温度范围与帧频间的预设关系,确定该温度所属的温度范围对应的帧频,得到目标帧频,并控制该液晶屏幕的集成电路的帧频调整为目标帧频。
由于本申请的对应关系中不同温度范围对应的帧频不同,使得该液晶屏幕的温度 属于不同的温度范围的情况下,该液晶屏幕的集成电路的帧频不同,从而,避免了由于在整个温度轴该液晶屏幕的集成电路都使用同一帧频,并且,该帧频高于低温情况下液晶屏幕正常显示所需的帧频而导致的闪屏问题。因此,采用本申请的方案,可以解决低温情况下该液晶屏幕出现的闪屏问题。
附图说明
图1为本申请实施例公开的一种液晶屏幕的帧频控制方法的应用场景示意图;
图2为本申请实施例公开的一种液晶屏幕的帧频控制方法的流程图;
图3为本申请实施例公开的温度降低和温度上升过程的时间范围与帧频的对应关系示例图;
图4为本申请实施例公开的在正常VOP与过驱动VOP下,液晶角度的变化情况示意图;
图5为本申请实施例公开的一种液晶屏幕的帧频控制装置的结构示意图。
具体实施方式
下面结合附图,对本发明的实施例进行描述。
发明人在研究中发现,目前导致液晶屏幕在低温情况下出现闪屏的原因包括:由于整个温度轴都使用一套帧频,使得所使用的帧频,高于液晶屏幕在低温情况下正常显示所需的帧频,进而导致液晶屏幕在低温情况下会出现致闪屏。
图1为本申请实施例提供的液晶屏幕的帧频控制方法的应用场景示意图,包括液晶屏幕和处理器,其中,液晶屏幕包括集成电路。其中,处理器用于控制液晶屏幕的集成电路。
图2为本申请实施例提供的一种液晶屏幕的帧频控制方法,本实施例的执行主体为处理器,可以包括以下步骤:
S201、获取液晶屏幕的集成电路检测的温度。
在本实施例中,液晶屏幕的集成电路(Integrated circuit,IC)具有检测液晶屏幕的温度的功能,即检测液晶屏幕所处环境的温度。
在本步骤中,获取液晶屏幕IC的温度。在实际中,本步骤的获取可以为实时获取。
由于可以获取到液晶屏幕的温度,因此,可以判断液晶屏幕的温度的变化情况。其中,温度变化可以包括温度升高和温度降低。
S202、判断液晶屏幕的温度是否从预设的多个温度范围中的一个温度范围变化到另一个温度范围,如果是,则执行S203,如果否,则执行S201。
在本实施例中,预设的多个温度范围可以依据预设的多个温度节点确定,其中,该多个温度节点需要根据液晶屏幕的温度特性进行确定。本实施例不对温度节点的具体内容作限定。
例如,在本实施例中,预设的三个温度节点分别为-25℃、0℃和50℃。其中,利用该三个温度节点确定多个温度范围的方式可以包括:将该三个温度节点将温度轴分割成的温度范围,作为多个温度范围,分别是低于-25℃的温度范围、从-25℃到0℃的温度范围,从0℃到50℃的温度范围,以及高于50℃的温度范围。
在本步骤中,判断液晶屏幕的温度是否从多个温度范围变化到另一个温度范围,其中,另一个温度范围是多个温度范围中的哪个温度范围,本实施例不作限定。
在实际中,由于温度变化包括温度上升和温度下降两种情况下,因此,在实际中,本步骤可以具体判断液晶屏幕的温度是否从多个温度范围中的一个温度范围降低到另一个温度范围,或者,判断液晶屏幕的温度是否从多个温度范围中的一个温度范围上升到另一个温度范围,只要判断出这两种情况中的任意一种,则表示液晶屏幕的温度从预设的多个温度范围中的一个温度范围变化到另一个温度范围。
上述S201~S202的目的是:检测液晶屏幕的温度是否从预设的多个温度范围中的一个温度范围变化到另一个温度范围。
S203、依据多个温度范围与帧频间的预设关系,确定液晶屏幕的温度所属的温度范围对应的帧频,得到目标帧频。
在本实施例中,在设定出多个温度范围的情况下,还为每个温度范围设定帧频,从而,得到多个温度范围与对应的帧频之间形成的对应关系。其中,为不同的温度范围设定的帧频不同,并且,为每个温度范围设定的帧频是符合液晶屏幕在温度范围能够正常显示的帧频。
在本实施例中,为每个温度范围设定的帧频的具体取值,需要根据实际情况,本 实施例不对每个温度范围对应的帧频的具体取值作限定。
在本步骤中,在判断到液晶屏幕的温度从一个温度范围变化到另一个温度范围的情况下,从温度范围与帧频间的对应关系中,确定液晶屏幕的温度所属的温度范围对应的帧频,为了描述方便,将液晶屏幕的温度所属的温度范围对应的帧频,称为目标帧频。
S204、控制液晶屏幕的集成电路的帧频调整为目标帧频。
在确定出目标帧频的情况下,控制液晶屏幕的集成电路的帧频调整为目标帧频。
在实际中,如果将预设的多个温度节点将温度轴分割成温度范围,作为多个温度范围,在液晶屏幕的温度从一个温度范围变化到另一个温度范围的情况下,以液晶屏幕的温度从第一温度范围变化到第二温度范围进行描述。由于液晶屏幕的温度可能不稳定,出现在“第二温度范围”的临界温度上下浮动,使得液晶屏幕的温度从第一温度范围变化到第二温度范围,以及从第二温度范围变化到第一温度范围的过程频繁切换,使得针对液晶屏幕的温度确定出的目标帧频在第一温度范围和第二温度范围分别对应的帧频之间频繁切换,使得控制液晶屏幕的集成电路的帧频发生频繁的改变,导致液晶屏幕出现闪屏的问题。
例如,假设设定三个温度节点分别为-10℃、0℃和10℃。如果将该三个温度节点将温度轴分割成的温度范围,作为多个温度范围,则得到四个温度范围,分别是低于-10℃的温度范围、从-10℃到0℃的温度范围,从0℃到10℃的温度范围,以及高于10℃的温度范围。假设高于10℃的温度范围对应的帧频为FRD,0℃到10℃的温度范围对应的帧频为FRC。
则在液晶屏幕的温度降低到10℃的情况下,需要控制集成电路的帧频从FRD调整为FRC,在液晶屏幕的温度降低为10℃还不稳定的情况下,可能出现液晶屏幕的温度从10℃上升到11℃,则需要控制集成电路的帧频从FRC调整为FRD,如果液晶屏幕的温度再从11℃降低到10℃的情况下,需要控制集成电路的帧频从FRD调整为FRC,如果该过程反复重复,则液晶屏幕会出现闪屏的问题。
为了解决由于控制液晶屏幕的集成电路的帧频频繁改变,导致的液晶屏幕出现闪屏的问题,本申请实施例,由于温度变化可以包括温度降低和温度升高,因此,可以对于温度降低和温度升高这两种情况,分别基于预设的多个温度节点,确定出的用于构成多个温度范围的温度节点不同。为了描述方便,对于温度降低的情况,将依据预设的温度节点,确定出的用于构成多个温度范围的温度节点,称为第一温度节点。对于温度升高的情况,将依据预设的温度节点,确定出的用于构成多个温度范围的节点,称为第二温度节点。其中,多个第一温度点与多个第二温度点不同,并且,第二温度节点序列与第二温度节点序列中,相同排序位置下的第二温度节点与第一温度节点间的差值属于预设范围。其中,第一温度节点序列是对多个第一温度节点按照预设的先后顺序排序得到,第二温度节点序列是对多个第二温度节点按照该先后顺序排序得到。
需要说明的是,第二温度节点序列与第一温度节点序列中,不同排序位置下的第二温度节点与第一温度节点的差值可以不同,只要都属于预设范围即可。即本申请实施例的目的主要是将第二温度节点序列与第一温度节点序列中,相同排序位置下的第二温度节点与第一温度节点错开。
在本实施例中,为了描述方便,将由多个第一温度节点将温度轴分割得到的多个温度范围,称为多个第一温度范围。将由多个第二温度节点将温度轴分割得到的多个温度范围,称为多个第二温度范围。
需要说明的是,在本实施例中,按照先后顺序排序后的多个第一温度范围与按照该先后顺序排序后的多个第二温度范围中,相同排序位置下的温度范围对应的帧频相同。
具体的,检测液晶屏幕的温度是否从预设的多个温度范围中的一个温度范围降低到另一个温度范围的具体实现方式可以包括:检测液晶屏幕的温度是否从预设的多个第一温度范围中的一个温度范围降低到另一个温度范围的最大温度值。
检测液晶屏幕的温度是否从预设的多个温度范围中的一个温度范围上升到另一个温度范围的具体实现方式可以包括:检测液晶屏幕的温度是否从预设的多个第二温度范围中的一个温度范围上升到另一个温度范围的最小温度值。
例如,还以预设的三个温度节点分别为-10℃、0℃和10℃为例,假设三个第 一温度节点的取值为-10℃、0℃和10℃,三个第二温度节点的取值为-5℃、5℃和15℃,如图3所示。
在图3中,横轴表示温度,纵轴表示帧频,TA、TB和TC表示预设的三个温度节点,其中,TA的取值为-10℃、TB的取值为0℃,以及TC的取值为10℃。其中,FRA、FRB、FRC和FRD分别表示不同的帧频取值。其中,上升的箭头表示液晶屏幕的温度上升,下降的箭头表示液晶屏幕的温度降低。
从图3中可以看出,在液晶屏幕的温度降低到10℃的情况下,需要控制集成电路的帧频从FRD调整为FRC,液晶屏幕的温度从10℃上升到11℃,此时,还未到达15℃,因此,无需控制集成电路的帧频从FRC调整为FRD,即集成电路的帧频还是FRC。如果液晶屏幕的温度再从11℃降低到10℃的情况下,控制集成电路的帧频为FRC,即集成电路的帧频还是FRC,如果该过程反复重复,集成控制电路的帧频不会频繁变化,进而,液晶屏幕不会出现闪屏的问题。
在实际中,在低温下,液晶屏幕的响应速度很慢,即液晶屏幕要达到预设的灰阶电压,用时会很长。具体的,在低温下开机时,液晶屏幕的响应速度跟不上,使得液晶屏幕在短时间内转不到预定的角度,因此,液晶屏幕会出现显示偏淡,无显等问题。
发明人在研究中发现,采用过驱动可以解决该问题。其中,过驱动指:在液晶屏幕的预设的灰阶电压范围内,短时间内给液晶屏幕的两端增加一个过电压(比预设的灰阶电压稍高),让液晶屏幕快速地达到预设的角度,从而,可以更快更清晰的显示内容。
因此,在本申请实施例中,在检测液晶屏幕的温度是否从预设的多个温度范围中的一个温度范围变化到另一个温度范围之前,对液晶屏幕的帧频控制方法还可以包括:
在接收到开机指令并且液晶屏幕的温度低于预设温度的情况下,控制集成电路增加提供给液晶屏幕的VOP电压。
可选的,由于BootLoader程序在设备开机的起始阶段有效,且时间相对很短,因此,可以利用该BootLoader程序进行过电压驱动。具体的,提高BootLoader的VOP电压,液晶屏幕响应之后,施加给集成电路的VOP电压为预设的VOP电压,即开机 时VOP电压比液晶屏幕正常显示后的预设VOP电压高,使得液晶分子快速转到预定角度,从而使屏幕能够正常显示。即通过提高预设的Bootloader程序的VOP电压,控制集成电路提供给液晶屏幕的VOP电压高于预设的VOP电压。
其中,分别在正常VOP(预设的VOP电压)与过驱动VOP(过驱动VOP电压)下,液晶角度(液晶屏幕达到的角度)的变化情况,如图4所示。从图4中可以看出在Bootloader工作的时间段,给液晶屏幕提供的VOP电压为过驱动VOP电压,液晶屏幕的角度变化时间,明显低于给液晶屏幕提供的VOP电压为正常VOP下的时间。
图5为本申请实施例提供的一种液晶屏幕的帧频控制装置,可以包括:检测模块501、确定模块502和控制模块503,其中,
检测模块501,用于检测液晶屏幕的温度是否从预设的多个温度范围中的一个温度范围变化到另一个温度范围;多个温度范围由预设的多个温度节点确定。
确定模块502,用于在液晶屏幕的温度从预设的多个温度范围中的一个温度范围变化到另一个温度范围的情况下,依据多个温度范围与帧频间的预设关系,确定温度所属的温度范围对应的帧频,得到目标帧频;其中,对应关系中不同温度范围对应的帧频不同。
第一控制模块503,用于控制液晶屏幕的集成电路的帧频调整为目标帧频。
可选的,检测模块501,用于检测液晶屏幕的温度是否从预设的多个温度范围中的一个温度范围变化到另一个温度范围,包括:
检测模块501,具体用于检测液晶屏幕的温度是否从预设的多个第一温度范围中的一个温度范围降低到另一个温度范围;多个第一温度范围由预设的多个第一温度节点将温度轴进行分割得到;多个第一温度节点依据多个温度节点确定得到;
或者,检测液晶屏幕的温度是否从预设的多个第二温度范围中的一个温度范围上升到另一个温度范围;多个第二温度范围由预设的多个第二温度节点将温度轴进行分割得到;多个第二温度节点依据多个温度节点确定得到;按照先后顺序排序后的多个第一温度范围与按照所述先后顺序排序后的多个第二温度范围中,相同排序位置下的温度范围对应的帧频相同。
可选的,检测模块501,用于检测液晶屏幕的温度是否从预设的多个第一温度范围中的一个温度范围降低到另一个温度范围,包括:
检测模块501,具体用于检测液晶屏幕的温度是否从预设的多个第一温度范围中的一个温度范围降低到另一个温度范围的最大温度值;
检测模块501,用于检测液晶屏幕的温度是否从预设的多个第二温度范围中的一个温度范围上升到另一个温度范围,包括:
检测模块501,具体用于检测液晶屏幕的温度是否从预设的多个第二温度范围中的一个温度范围上升到另一个温度范围的最小温度值。
可选的,第二温度节点序列与第一温度节点序列中,相同排序位置下的第二温度节点与第一温度节点间的差值属于预设范围;其中,第二温度节点序列是对多个第二温度节点按照预设的先后顺序排序得到。第一温度节点序列是对多个第一温度节点按照所述先后顺序排序得到。
可选的,该液晶屏幕的帧频控制装置还可以包括:
第二控制模块,用于在检测模块501检测液晶屏幕的温度是否从预设的多个温度范围中的一个温度范围变化到另一个温度范围之前,在接收到开机指令并且液晶屏幕的温度低于预设温度的情况下,控制集成电路提供给液晶屏幕的VOP电压高于预设的VOP电压;预设的VOP电压表示液晶屏幕在启动后正常显示情况下的VOP电压。
可选的,第二控制模块,用于控制集成电路增加提供给液晶屏幕的VOP电压高于预设的VOP电压,包括:
第二控制模块,具体用于通过提高预设的Bootloader程序的VOP电压,控制集成电路提供给所述液晶屏幕的VOP电压高于预设的VOP电压。
液晶屏幕的帧频控制装置包括处理器和存储器,上述检测模块501、确定模块502和第一控制模块503等均作为程序单元存储在存储器中,由处理器执行存储在存储器中的上述程序单元来实现相应的功能。
处理器中包含内核,由内核去存储器中调取相应的程序单元。内核可以设置一个或以上,通过调整内核参数来解决低温情况下该液晶屏幕出现的闪屏问题。
本发明实施例提供了一种存储介质,其上存储有程序,该程序被处理器执行时实 现所述液晶屏幕的帧频控制方法。
本申请还提供了一种计算机程序产品,当在数据处理设备上执行时,适于执行初始化有如下方法步骤的程序:
检测所述液晶屏幕的温度是否从预设的多个温度范围中的一个温度范围变化到另一个温度范围;所述多个温度范围由预设的多个温度节点确定;
在所述液晶屏幕的温度从预设的多个温度范围中的一个温度范围变化到另一个温度范围的情况下,依据所述多个温度范围与帧频间的预设关系,确定所述温度所属的温度范围对应的帧频,得到目标帧频;其中,所述对应关系中不同温度范围对应的帧频不同;
控制所述液晶屏幕的集成电路的帧频调整为所述目标帧频。
本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
计算机可读介质包括永久性和非永久性、可移动和非可移动媒体可以由任何方法或技术来实现信息存储。信息可以是计算机可读指令、数据结构、程序的模块或其他数据。计算机的存储介质的例子包括,但不限于相变内存(PRAM)、静态随机存取存储器(SRAM)、动态随机存取存储器(DRAM)、其他类型的随机存取存储器(RAM)、只读存储器(ROM)、电可擦除可编程只读存储器(EEPROM)、快闪记忆体或其他内存技术、只读光盘只读存储器(CD-ROM)、数字多功能光盘(DVD)或其他光学存储、磁盒式磁带,磁带磁磁盘存储或其他磁性存储设备或任何其他非传输介质,可用于存储可以被计算设备访问的信息。按照本文中的界定,计算机可读介质不包括暂存电脑可读媒体(transitory media),如调制的数据信号和载波。
还需要说明的是,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包 含,从而使得包括一系列要素的过程、方法、商品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、商品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括要素的过程、方法、商品或者设备中还存在另外的相同要素。
本领域技术人员应明白,本申请的实施例可提供为方法、系统或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
以上仅为本申请的实施例而已,并不用于限制本申请。对于本领域技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原理之内所作的任何修改、等同替换、改进等,均应包含在本申请的权利要求范围之内。
本申请实施例方法所述的功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算设备可读取存储介质中。基于这样的理解,本申请实施例对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该软件产品存储在一个存储介质中,包括若干指令用以使得一台计算设备(可以是个人计算机,服务器,移动计算设备或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
本说明书的各个实施例中记载的特征可以相互替换或者组合,每个实施例重点说明的都是与其它实施例的不同之处,各个实施例之间相同或相似部分互相参见即可。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本申请。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本申请的精神或范围的情况下,在其它实施例中实现。因此,本申请将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (10)

  1. 一种液晶屏幕的帧频控制方法,其特征在于,包括:
    检测所述液晶屏幕的温度是否从预设的多个温度范围中的一个温度范围变化到另一个温度范围;所述多个温度范围由预设的多个温度节点确定;
    在所述液晶屏幕的温度从预设的多个温度范围中的一个温度范围变化到另一个温度范围的情况下,依据所述多个温度范围与帧频间的预设关系,确定所述温度所属的温度范围对应的帧频,得到目标帧频;其中,所述对应关系中不同温度范围对应的帧频不同;
    控制所述液晶屏幕的集成电路的帧频调整为所述目标帧频。
  2. 根据权利要求1所述的方法,其特征在于,所述检测所述液晶屏幕的温度是否从预设的多个温度范围中的一个温度范围变化到另一个温度范围,包括:
    检测所述液晶屏幕的温度是否从预设的多个第一温度范围中的一个温度范围降低到另一个温度范围;所述多个第一温度范围由预设的多个第一温度节点将温度轴进行分割得到;所述多个第一温度节点依据所述多个温度节点确定得到;
    或者,检测所述液晶屏幕的温度是否从预设的多个第二温度范围中的一个温度范围上升到另一个温度范围;所述多个第二温度范围由预设的多个第二温度节点将温度轴进行分割得到;所述多个第二温度节点依据所述多个温度节点确定得到;
    按照先后顺序排序后的多个第一温度范围与按照所述先后顺序排序后的多个第二温度范围中,相同排序位置下的温度范围对应的帧频相同。
  3. 根据权利要求2所述的方法,其特征在于,检测所述液晶屏幕的温度是否从预设的多个第一温度范围中的一个温度范围降低到另一个温度范围,包括:
    检测所述液晶屏幕的温度是否从预设的多个第一温度范围中的一个温度范围降低到另一个温度范围的最大温度值;
    检测所述液晶屏幕的温度是否从预设的多个第二温度范围中的一个温度范围上升到另一个温度范围,包括:
    检测所述液晶屏幕的温度是否从预设的多个第二温度范围中的一个温度范围上升到另一个温度范围的最小温度值。
  4. 根据权利要求3所述的方法,其特征在于,第二温度节点序列与第一温度节点序列中,相同排序位置下的第二温度节点与第一温度节点间的差值属于预设范围;
    所述第二温度节点序列是对所述多个第二温度节点按照预设的先后顺序排序得到;所述第一温度节点序列是对所述多个第一温度节点按照所述先后顺序排序得到。
  5. 根据权利要求1所述的方法,其特征在于,在所述检测所述液晶屏幕的温度是否从预设的多个温度范围中的一个温度范围变化到另一个温度范围之前,还包括:
    在接收到开机指令并且所述液晶屏幕的温度低于预设温度的情况下,控制所述集成电路提供给所述液晶屏幕的VOP电压高于预设的VOP电压;所述预设的VOP电压表示所述液晶屏幕在启动后正常显示情况下的VOP电压。
  6. 根据权利要求5所述的方法,其特征在于,所述控制所述集成电路增加提供给所述液晶屏幕的VOP电压高于预设的VOP电压,包括:
    通过提高预设的Bootloader程序的VOP电压,控制所述集成电路提供给所述液晶屏幕的VOP电压高于预设的VOP电压。
  7. 一种液晶屏幕的帧频控制装置,其特征在于,包括:
    检测模块,用于检测所述液晶屏幕的温度是否从预设的多个温度范围中的一个温度范围变化到另一个温度范围;所述多个温度范围由预设的多个温度节点确定;
    确定模块,用于在所述液晶屏幕的温度从预设的多个温度范围中的一个温度范围变化到另一个温度范围的情况下,依据所述多个温度范围与帧频间的预设关系,确定所述温度所属的温度范围对应的帧频,得到目标帧频;其中,所述对应关系中不同温度范围对应的帧频不同;
    第一控制模块,用于控制所述液晶屏幕的集成电路的帧频调整为所述目标帧频。
  8. 根据权利要求7所述的装置,其特征在于,所述检测模块,用于检测所述液晶屏幕的温度是否从预设的多个温度范围中的一个温度范围变化到另一个温度范围,包括:
    所述检测模块,具体用于检测所述液晶屏幕的温度是否从预设的多个第一温度范围中的一个温度范围降低到另一个温度范围;所述多个第一温度范围由预设的多个第一温度节点将温度轴进行分割得到;所述多个第一温度节点依据所述多个温度节点确 定得到;
    或者,检测所述液晶屏幕的温度是否从预设的多个第二温度范围中的一个温度范围上升到另一个温度范围;所述多个第二温度范围由预设的多个第二温度节点将温度轴进行分割得到;所述多个第二温度节点依据所述多个温度节点确定得到;
    其中,按照先后顺序排序后的多个第一温度范围与按照所述先后顺序排序后的多个第二温度范围中,相同排序位置下的温度范围对应的帧频相同。
  9. 一种存储介质,其特征在于,所述存储介质包括存储的程序,其中,所述程序执行权利要求1~6任意一项权利要求所述的液晶屏幕的帧频控制方法。
  10. 一种液晶显示系统,其特征在于,包括:液晶屏幕和处理器;所述液晶屏幕包括集成电路;所述处理器用于执行如权利要求1~6中任一项权利要求所述的液晶屏幕的帧频控制方法。
PCT/CN2020/108577 2020-08-12 2020-08-12 液晶屏幕的帧频控制方法、装置及液晶屏幕显示系统 WO2022032507A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/108577 WO2022032507A1 (zh) 2020-08-12 2020-08-12 液晶屏幕的帧频控制方法、装置及液晶屏幕显示系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/108577 WO2022032507A1 (zh) 2020-08-12 2020-08-12 液晶屏幕的帧频控制方法、装置及液晶屏幕显示系统

Publications (1)

Publication Number Publication Date
WO2022032507A1 true WO2022032507A1 (zh) 2022-02-17

Family

ID=80247576

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/108577 WO2022032507A1 (zh) 2020-08-12 2020-08-12 液晶屏幕的帧频控制方法、装置及液晶屏幕显示系统

Country Status (1)

Country Link
WO (1) WO2022032507A1 (zh)

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06230750A (ja) * 1993-02-08 1994-08-19 Hitachi Ltd マトリクス表示装置
JP2002108302A (ja) * 2000-09-29 2002-04-10 Seiko Epson Corp 電気光学装置の駆動方法、駆動回路及び電気光学装置並びに電子機器
EP1291842A1 (en) * 2001-09-07 2003-03-12 Delphi Technologies, Inc. Control method for a cold start of a liquid crystal display and control unit therefor
CN1637819A (zh) * 2003-12-24 2005-07-13 株式会社半导体能源研究所 半导体显示器件的驱动电路及其驱动方法以及电子装置
US6930667B1 (en) * 1999-11-10 2005-08-16 Seiko Epson Corporation Liquid crystal panel driving method, liquid crystal device, and electronic apparatus
CN1703650A (zh) * 2002-10-10 2005-11-30 三洋电机株式会社 液晶面板驱动装置
JP2008107732A (ja) * 2006-10-27 2008-05-08 Optrex Corp 液晶表示装置の駆動装置
CN101266764A (zh) * 2007-03-16 2008-09-17 晨星半导体股份有限公司 可根据温度来过驱动液晶显示面板的过驱动电路及其方法
CN101577101A (zh) * 2008-05-06 2009-11-11 联咏科技股份有限公司 过驱动装置及其方法
CN101587687A (zh) * 2008-05-22 2009-11-25 比亚迪股份有限公司 温度检测装置、方法及液晶驱动装置
CN101661713A (zh) * 2008-08-29 2010-03-03 深圳Tcl新技术有限公司 Lcd显示装置及其驱动电压调整的方法
CN102436786A (zh) * 2011-12-19 2012-05-02 深圳市航盛电子股份有限公司 一种汽车显示屏的驱动方法及装置
CN202615079U (zh) * 2012-01-16 2012-12-19 信利半导体有限公司 液晶显示模组及液晶屏电子产品
CN110727559A (zh) * 2019-10-09 2020-01-24 Oppo广东移动通信有限公司 电子设备、电子设备控制方法及存储介质

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06230750A (ja) * 1993-02-08 1994-08-19 Hitachi Ltd マトリクス表示装置
US6930667B1 (en) * 1999-11-10 2005-08-16 Seiko Epson Corporation Liquid crystal panel driving method, liquid crystal device, and electronic apparatus
JP2002108302A (ja) * 2000-09-29 2002-04-10 Seiko Epson Corp 電気光学装置の駆動方法、駆動回路及び電気光学装置並びに電子機器
EP1291842A1 (en) * 2001-09-07 2003-03-12 Delphi Technologies, Inc. Control method for a cold start of a liquid crystal display and control unit therefor
CN1703650A (zh) * 2002-10-10 2005-11-30 三洋电机株式会社 液晶面板驱动装置
CN1637819A (zh) * 2003-12-24 2005-07-13 株式会社半导体能源研究所 半导体显示器件的驱动电路及其驱动方法以及电子装置
JP2008107732A (ja) * 2006-10-27 2008-05-08 Optrex Corp 液晶表示装置の駆動装置
CN101266764A (zh) * 2007-03-16 2008-09-17 晨星半导体股份有限公司 可根据温度来过驱动液晶显示面板的过驱动电路及其方法
CN101577101A (zh) * 2008-05-06 2009-11-11 联咏科技股份有限公司 过驱动装置及其方法
CN101587687A (zh) * 2008-05-22 2009-11-25 比亚迪股份有限公司 温度检测装置、方法及液晶驱动装置
CN101661713A (zh) * 2008-08-29 2010-03-03 深圳Tcl新技术有限公司 Lcd显示装置及其驱动电压调整的方法
CN102436786A (zh) * 2011-12-19 2012-05-02 深圳市航盛电子股份有限公司 一种汽车显示屏的驱动方法及装置
CN202615079U (zh) * 2012-01-16 2012-12-19 信利半导体有限公司 液晶显示模组及液晶屏电子产品
CN110727559A (zh) * 2019-10-09 2020-01-24 Oppo广东移动通信有限公司 电子设备、电子设备控制方法及存储介质

Similar Documents

Publication Publication Date Title
US10134455B2 (en) Efficient calibration of a data eye for memory devices
US10867573B2 (en) Common voltage control circuit and method, display panel and display device
US10140941B2 (en) Method and apparatus for adjusting a screen refresh frequency and display
US9620054B2 (en) Timing controller, organic light-emitting diode (OLED) display having the same and method for driving the OLED display
US9898954B2 (en) Liquid crystal panel common electrode voltage adjustment device and liquid crystal panel common electrode voltage adjustment method
US9747847B2 (en) Dynamically updating an electronic paper display by computational modeling
US8149201B2 (en) Liquid crystal display (LCD) driving apparatus and method
US8555156B2 (en) Inferring that a message has been read
US20090237338A1 (en) Liquid crystal display device and driving method thereof, over-drive correction device and data production method thereof and electronic device
CN110472168B (zh) 页面数据更新方法、装置、计算机设备及存储介质
US10853216B2 (en) Mechanism for facilitating write tracking for following data eye movements across changing thermal conditions in memory systems
CN112102769A (zh) 显示屏公共电压调整方法、装置、计算机设备和存储介质
WO2020073433A1 (zh) 液晶显示面板的驱动装置以及驱动方法
WO2022032507A1 (zh) 液晶屏幕的帧频控制方法、装置及液晶屏幕显示系统
US20170193882A1 (en) Display device and method for displaying an image thereon
US10909941B2 (en) Liquid crystal display device having a timing controller for reducing crosstalk defect and driving method thereof
CN111369925A (zh) 显示面板的vcom调试方法、装置、系统及存储介质
US9413353B2 (en) Thermal voltage margin recovery
CN114077072A (zh) 液晶屏幕的帧频控制方法、装置及液晶屏幕显示系统
US10553177B2 (en) Techniques for robust reliability operation of a thin-film transistor (TFT) display
US20150228235A1 (en) Display power saving utilizing non volatile memory
US10522108B2 (en) Optimized histogram reads for efficient display post processing and improved power gains
US20100171749A1 (en) Driving apparatus of display and over driving method thereof
WO2017201796A1 (zh) 一种驱动方法、驱动装置及内嵌式触摸屏
WO2024041018A1 (zh) 调节压测系统响应时长的方法、装置、设备、介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20949006

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20949006

Country of ref document: EP

Kind code of ref document: A1