WO2022032485A1 - Apparatus and method for beam based positioning of user equipment by mmw small cell - Google Patents

Apparatus and method for beam based positioning of user equipment by mmw small cell Download PDF

Info

Publication number
WO2022032485A1
WO2022032485A1 PCT/CN2020/108469 CN2020108469W WO2022032485A1 WO 2022032485 A1 WO2022032485 A1 WO 2022032485A1 CN 2020108469 W CN2020108469 W CN 2020108469W WO 2022032485 A1 WO2022032485 A1 WO 2022032485A1
Authority
WO
WIPO (PCT)
Prior art keywords
mobile device
identification value
radio beam
radio
location
Prior art date
Application number
PCT/CN2020/108469
Other languages
French (fr)
Inventor
Li Tan
Chaofeng HUI
Meng Liu
Ying Wang
Xuesong Chen
Haichao SONG
Liang Xue
Original Assignee
Qualcomm Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Incorporated filed Critical Qualcomm Incorporated
Priority to PCT/CN2020/108469 priority Critical patent/WO2022032485A1/en
Publication of WO2022032485A1 publication Critical patent/WO2022032485A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management

Definitions

  • Subject matter disclosed herein relates to estimation of a location of a mobile device and more particularly to estimation of a location using beams produced by a mmW small cells.
  • the location of a mobile device may be useful or essential to a number of applications including emergency calls, navigation, direction finding, asset tracking and Internet service.
  • the location of a mobile device may be estimated based on information gathered from various systems.
  • a base station may transmit a positioning reference signal (PRS) .
  • PRS positioning reference signal
  • a mobile device acquiring PRSs transmitted by different base stations may deliver signal-based measurements to a location server, which may be part of an Evolved Packet Core (EPC) or 5G Core Network (5GCN) , for use in computing a location estimate of the mobile device.
  • EPC Evolved Packet Core
  • 5GCN 5G Core Network
  • a UE may generate positioning measurements from the downlink (DL) PRS such as Reference Signal Time Difference (RSTD) , Reference Signal Received Power (RSRP) , and reception and transmission (RX-TX) time difference measurements, which may be used in various positioning methods, such as Time Difference of Arrival (TDOA) , Angle of Departure (AoD) , and multi-cell Round Trip Time (RTT) .
  • TDOA Time Difference of Arrival
  • AoD Angle of Departure
  • RTT Round Trip Time
  • a mobile device may compute an estimate of its own location using various positioning methods.
  • GNSS Global Navigation Satellite System
  • A-GNSS Assisted GNSS
  • small cells are playing a more and more important role. For example, it is sometimes desirable for operators to deploy many small cells to enhance capacity on top of macrocell coverage.
  • Small cells which use Millimeter Wave ( “mmW” ) transmission (sometimes referred to as Frequency 2) , are predicted to expand their footprint worldwide because mmW can provide a greater spectrum width and shorter air interface latency than found in macrocells.
  • mmW small cell deployment is expected to be particularly useful for indoor environments, e.g., driven by extremely high data rate expectations, e.g. Gbps level.
  • the expanding deployment of small cells, particularly in environments where positioning is difficult, e.g., indoor environments provides additional positioning opportunities.
  • the position of a mobile device is estimated based on the intersection of a number of beams received by the mobile device from a plurality of small cell base stations.
  • the mobile device may determine a beam identifier from beams received from the small cell base stations.
  • the beam identifier for example, may be used to determine the azimuth angle and elevation angle of the beam relative to the transmitting base station.
  • the mobile device provides the beam identifiers of received beams to a location server.
  • the location server determines the orientation of the beams with respect to a coordinate system, e.g., based on the position and the angle of the beam relative to the small cell base stations.
  • the position of the mobile device is at the intersection of two or more beams in the coordinate system.
  • a method for determining a location of a mobile device performed by the mobile device includes receiving a first radio beam transmitted by a serving small cell base station, the first radio beam comprising a first beam identification value; measuring a second radio beam transmitted by a first neighboring small cell base station, the second radio beam comprising a second beam identification value; and sending to a location server a measurement report including at least the second beam identification value to determine the location of the mobile device based on an intersection of at least the first radio beam and the second radio beam.
  • a mobile device configured to support determining a location of the mobile device, includes a wireless transceiver configured to wirelessly communicate in a wireless network; at least one memory; at least one processor coupled to the wireless transceiver and the at least one memory, wherein the at least one processor is configured to: receive a first radio beam transmitted by a serving small cell base station, the first radio beam comprising a first beam identification value; measure a second radio beam transmitted by a first neighboring small cell base station, the second radio beam comprising a second beam identification value; and send to a location server a measurement report including at least the second beam identification value to determine the location of the mobile device based on an intersection of at least the first radio beam and the second radio beam.
  • a mobile device configured to support determining a location of the mobile device, includes means for receiving a first radio beam transmitted by a serving small cell base station, the first radio beam comprising a first beam identification value; means for measuring a second radio beam transmitted by a first neighboring small cell base station, the second radio beam comprising a second beam identification value; and means for sending to a location server a measurement report including at least the second beam identification value to determine the location of the mobile device based on an intersection of at least the first radio beam and the second radio beam.
  • a non-transitory storage medium including program code stored thereon, the program code is operable to configure a processor of a mobile device to support determining a location of the mobile device, includes program code to receive a first radio beam transmitted by a serving small cell base station, the first radio beam comprising a first beam identification value; program code to measure a second radio beam transmitted by a first neighboring small cell base station, the second radio beam comprising a second beam identification value; and program code to send to a location server a measurement report including at least the second beam identification value to determine the location of the mobile device based on an intersection of at least the first radio beam and the second radio beam.
  • a method for determining a location of a mobile device performed by a location server includes receiving a measurement report for the mobile device including a first beam identification value for a first radio beam received by the mobile device from a serving small cell base station and a second beam identification value for a second radio beam measured by the mobile device and transmitted by a first neighboring small cell base station; and determining the location of the mobile device based on an intersection of at least the first radio beam and the second radio beam.
  • a location server configured to support determining a location of a mobile device, includes an external interface configured to communicate with in a wireless network; at least one memory; at least one processor coupled to the external interface and the at least one memory, wherein the at least one processor is configured to: receive a measurement report for the mobile device including a first beam identification value for a first radio beam received by the mobile device from a serving small cell base station and a second beam identification value for a second radio beam measured by the mobile device and transmitted by a first neighboring small cell base station; and determine the location of the mobile device based on an intersection of at least the first radio beam and the second radio beam.
  • a location server configured to support determining a location of a mobile device, includes means for receiving a measurement report for the mobile device including a first beam identification value for a first radio beam received by the mobile device from a serving small cell base station and a second beam identification value for a second radio beam measured by the mobile device and transmitted by a first neighboring small cell base station; and means for determining the location of the mobile device based on an intersection of at least the first radio beam and the second radio beam.
  • a non-transitory storage medium including program code stored thereon, the program code is operable to configure a processor of a location server configured to support determining a location of a mobile device, includes program code to receive a measurement report for the mobile device including a first beam identification value for a first radio beam received by the mobile device from a serving small cell base station and a second beam identification value for a second radio beam measured by the mobile device and transmitted by a first neighboring small cell base station; and program code to determine the location of the mobile device based on an intersection of at least the first radio beam and the second radio beam.
  • FIG. 1 illustrates an exemplary wireless communications system, according to various aspects of the disclosure.
  • FIGS. 2A and 2B illustrate example wireless network structures, according to various aspects of the disclosure.
  • FIG. 3 illustrates a block diagram of a design of base station and user equipment (UE) , which may be one of the base stations and one of the UEs in Fig. 1.
  • UE user equipment
  • FIG. 4A shows an example synchronization signal in a 5G NR wireless network is shown.
  • FIG. 4B shows an example CSI-RS periodicity configuration in a 5G NR wireless network.
  • FIG. 5 illustrates an example of narrow beams produced by a mmW small cell antenna panel.
  • FIG. 6 illustrates directional beams transmitted from a base station based on a synchronization signal (SS) burst.
  • SS synchronization signal
  • FIG. 7 illustrates an array of beams over a spatial extent that may be produced by the base station.
  • FIG. 8 illustrates a network including the UE receiving beams from multiple small cell base stations.
  • FIG. 9 illustrates a coordinate system in which the intersection of beams, represented by lines is used to determine the position of the UE.
  • FIG. 10 illustrates an example of a signaling flow showing various messages sent between components of the communication system during a location session in which the location of the UE is determined using beams from small cell base stations.
  • FIG. 11 shows a schematic block diagram illustrating certain exemplary features of a UE enabled to support positioning using beams transmitted from small cell base stations.
  • FIG. 12 shows a schematic block diagram illustrating certain exemplary features of a location server enabled to support positioning of a UE based on identifiers of beams received by the UE from small cell base stations.
  • FIG. 13 shows a flowchart for an exemplary method for determining a location of a mobile device performed by the mobile device.
  • FIG. 14 shows a flowchart for an exemplary method for determining a location of a mobile device performed by a location server.
  • sequences of actions to be performed by, for example, elements of a computing device. It will be recognized that various actions described herein can be performed by specific circuits (e.g., application specific integrated circuits (ASICs) ) , by program instructions being executed by one or more processors, or by a combination of both. Additionally, the sequence (s) of actions described herein can be considered to be embodied entirely within any form of non-transitory computer-readable storage medium having stored therein a corresponding set of computer instructions that, upon execution, would cause or instruct an associated processor of a device to perform the functionality described herein.
  • ASICs application specific integrated circuits
  • a UE may be any wireless communication device (e.g., a mobile phone, router, tablet computer, laptop computer, tracking device, wearable (e.g., smartwatch, glasses, augmented reality (AR) /virtual reality (VR) headset, etc. ) , vehicle (e.g., automobile, motorcycle, bicycle, etc. ) , Internet of Things (IoT) device, etc. ) used by a user to communicate over a wireless communications network.
  • wireless communication device e.g., a mobile phone, router, tablet computer, laptop computer, tracking device, wearable (e.g., smartwatch, glasses, augmented reality (AR) /virtual reality (VR) headset, etc. )
  • vehicle e.g., automobile, motorcycle, bicycle, etc.
  • IoT Internet of Things
  • a UE may be mobile or may (e.g., at certain times) be stationary, and may communicate with a Radio Access Network (RAN) .
  • RAN Radio Access Network
  • the term “UE” may be referred to interchangeably as an “access terminal” or “AT, ” a “client device, ” a “wireless device, ” a “subscriber device, ” a “subscriber terminal, ” a “subscriber station, ” a “user terminal” or UT, a “mobile terminal, ” a “mobile station, ” “mobile device, ” or variations thereof.
  • AT access terminal
  • client device e.g., a “client device, ” a “wireless device
  • UEs can communicate with a core network via a RAN, and through the core network the UEs can be connected with external networks such
  • a base station may operate according to one of several RATs in communication with UEs depending on the network in which it is deployed, and may be alternatively referred to as an access point (AP) , a network node, a NodeB, an evolved NodeB (eNB) , a New Radio (NR) Node B (also referred to as a gNB or gNodeB) , etc.
  • AP access point
  • eNB evolved NodeB
  • NR New Radio
  • a base station may provide purely edge node signaling functions while in other systems it may provide additional control and/or network management functions.
  • a communication link through which UEs can send signals to a base station is called an uplink (UL) channel (e.g., a reverse traffic channel, a reverse control channel, an access channel, etc. ) .
  • UL uplink
  • a communication link through which the base station can send signals to UEs is called a downlink (DL) or forward link channel (e.g., a paging channel, a control channel, a broadcast channel, a forward traffic channel, etc. ) .
  • DL downlink
  • forward link channel e.g., a paging channel, a control channel, a broadcast channel, a forward traffic channel, etc.
  • TCH traffic channel
  • TCH can refer to either an UL/reverse or DL/forward traffic channel.
  • base station may refer to a single physical transmission point or to multiple physical transmission points that may or may not be co-located.
  • the physical transmission point may be an antenna of the base station corresponding to a cell of the base station.
  • the physical transmission points may be an array of antennas (e.g., as in a multiple-input multiple-output (MIMO) system or where the base station employs beamforming) of the base station.
  • MIMO multiple-input multiple-output
  • the physical transmission points may be a distributed antenna system (DAS) (a network of spatially separated antennas connected to a common source via a transport medium) or a remote radio head (RRH) (a remote base station connected to a serving base station) .
  • DAS distributed antenna system
  • RRH remote radio head
  • the non-co-located physical transmission points may be the serving base station receiving the measurement report from the UE and a neighbor base station whose reference RF signals the UE is measuring.
  • control plane To support positioning of a UE, two broad classes of location solution have been defined: control plane and user plane.
  • control plane CP
  • CP control plane
  • UP user plane
  • IP Internet Protocol
  • TCP Transmission Control Protocol
  • UDP User Datagram Protocol
  • the Third Generation Partnership Project (3GPP) has defined control plane location solutions for UEs that use radio access according to Global System for Mobile communications GSM (2G) , Universal Mobile Telecommunications System (UMTS) (3G) , LTE (4G) and New Radio (NR) for Fifth Generation (5G) . These solutions are defined in 3GPP Technical Specifications (TSs) 23.271 and 23.273 (common parts) , 43.059 (GSM access) , 25.305 (UMTS access) , 36.305 (LTE access) and 38.305 (NR access) .
  • TSs 3GPP Technical Specifications
  • OMA Open Mobile Alliance
  • SUPL Secure User Plane Location
  • Both CP and UP location solutions may employ a location server (LS) to support positioning.
  • the LS may be part of or accessible from a serving network or a home network for a UE or may simply be accessible over the Internet or over a local Intranet. If positioning of a UE is needed, an LS may instigate a session (e.g. a location session or a SUPL session) with the UE and coordinate location measurements by the UE and determination of an estimated location of the UE.
  • a session e.g. a location session or a SUPL session
  • an LS may request positioning capabilities of the UE (or the UE may provide them without a request) , may provide assistance data to the UE (e.g.
  • Assistance data may be used by a UE to acquire and measure GNSS and/or PRS signals (e.g. by providing expected characteristics of these signals such as frequency, expected time of arrival, signal coding, signal Doppler) .
  • assistance data may also or instead be used by a UE to help determine a location estimate from the resulting location measurements (e.g., if the assistance data provides satellite ephemeris data in the case of GNSS positioning or base station locations and other base station characteristics such as PRS timing in the case of terrestrial positioning using, e.g., TDOA, AoD, Multi-RTT, etc. ) .
  • the assistance data provides satellite ephemeris data in the case of GNSS positioning or base station locations and other base station characteristics such as PRS timing in the case of terrestrial positioning using, e.g., TDOA, AoD, Multi-RTT, etc.
  • a UE may return location measurements to an LS which may determine an estimated location of the UE based on these measurements and possibly based also on other known or configured data (e.g. satellite ephemeris data for GNSS location or base station characteristics including base station locations and possibly PRS timing in the case of terrestrial positioning using , e.g., TDOA, AoD, Multi-RTT, etc. ) .
  • satellite ephemeris data for GNSS location or base station characteristics including base station locations and possibly PRS timing in the case of terrestrial positioning using , e.g., TDOA, AoD, Multi-RTT, etc.
  • a UE may make location related measurements without any positioning assistance data from an LS and may further compute a location or a change in location without any positioning assistance data from an LS.
  • Position methods that may be used in a standalone mode include GPS and GNSS (e.g. if a UE obtains satellite orbital data from data broadcast by GPS and GNSS satellites themselves) as well as sensors.
  • an LS may be an enhanced serving mobile location center (E-SMLC) in the case of LTE access, a standalone SMLC (SAS) in the case of UMTS access, a serving mobile location center (SMLC) in the case of GSM access, or a Location Management Function (LMF) in the case of 5G NR access.
  • E-SMLC enhanced serving mobile location center
  • SAS standalone SMLC
  • SMLC serving mobile location center
  • LMF Location Management Function
  • an LS may be a SUPL Location Platform (SLP) which may act as any of: (i) a home SLP (H-SLP) if in or associated with the home network of a UE or if providing a permanent subscription to a UE for location services; (ii) a discovered SLP (D-SLP) if in or associated with some other (non-home) network or if not associated with any network; (iii) an Emergency SLP (E-SLP) if supporting location for an emergency call instigated by the UE; or (iv) a visited SLP (V-SLP) if in or associated with a serving network or a current local area for a UE.
  • SLP SUPL Location Platform
  • an LS and UE may exchange messages defined according to some positioning protocol in order to coordinate the determination of an estimated location.
  • Possible positioning protocols may include, for example, the LTE Positioning Protocol (LPP) defined by 3GPP in 3GPP TS 36.355 and the LPP Extensions (LPPe) protocol defined by OMA in OMA TSs OMA-TS-LPPe-V1_0, OMA-TS-LPPe-V1_1 and OMA-TS-LPPe-V2_0.
  • LPP and LPPe protocols may be used in combination where an LPP message contains one embedded LPPe message.
  • the combined LPP and LPPe protocols may be referred to as LPP/LPPe.
  • LPP and LPP/LPPe may be used to help support the 3GPP control plane solution for LTE or NR access, in which case LPP or LPP/LPPe messages are exchanged between a UE and E-SMLC or between a UE and LMF.
  • LPP or LPPe messages may be exchanged between a UE and E-SMLC via a serving Mobility Management Entity (MME) and a serving eNodeB for the UE.
  • MME Mobility Management Entity
  • eNodeB serving eNodeB
  • LPP or LPPe messages may also be exchanged between a UE and LMF via a serving Access and Mobility Management Function (AMF) and a serving NR Node B (gNB) for the UE.
  • AMF Access and Mobility Management Function
  • gNB serving NR Node B
  • LPP and LPP/LPPe may also be used to help support the OMA SUPL solution for many types of wireless access that support IP messaging (such as LTE, NR and WiFi) , where LPP or LPP/LPPe messages are exchanged between a SUPL Enabled Terminal (SET) , which is the term used for a UE with SUPL, and an SLP, and may be transported within SUPL messages such as a SUPL POS or SUPL POS INIT message
  • An LS and a base station may exchange messages to enable the LS to (i) obtain position measurements for a particular UE from the base station, or (ii) obtain location information from the base station not related to a particular UE such as the location coordinates of an antenna for the base station, the cells (e.g. cell identities) supported by the base station, cell timing for the base station and/or parameters for signals transmitted by the base station such as PRS signals.
  • the LPP A (LPPa) protocol may be used to transfer such messages between a base station that is an eNodeB and an LS that is an E-SMLC.
  • the NRPPA protocol may be used to transfer such messages between a base station that is a gNodeB and an LS that is an LMF.
  • IE information element
  • posSIB refers to a System Information Block (SIB) which includes assistance data (also referred to as “positioning assistance data” ) to support positioning of one or more UEs.
  • SIB System Information Block
  • the term “SIB” is used herein to refer to a SIB containing assistance data to support positioning of one or more UEs.
  • SI messages and “positioning SI messages” are used interchangeably herein to refer to system information messages containing assistance data, e.g. assistance data in the form of one or more posSIBs.
  • Small cells using mmW transmissions are expected to be deployed in 5G NR cellular networks in increasing amounts and in environments where radio signal based positioning is conventionally difficult, e.g., in indoor environment or urban canyons.
  • Small cells utilize an array of antennas in a MIMO system for beamforming. With a large number of antenna elements, beamforming can be used to produce very narrow beams, e.g. 3dB width at 15° or even smaller. Very narrow beams may be swept horizontally (azimuthally) and vertically (elevation) to form a spatial array.
  • Information related to which beam in the spatial array is received by a UE provides accurate position information for the UE, without requiring the transmission of specific reference signals by the TRP or positioning measurements of reference signals by the UE. By combining information related to which beams are received by the UE from several neighboring small cell TRPs, an accurate position estimate for the UE may be produced, e.g., based on intersection of the beams.
  • FIG. 1 illustrates an exemplary wireless communications system 100.
  • the wireless communications system 100 (which may also be referred to as a wireless wide area network (WWAN) ) may include various base stations 102 and various UEs 104.
  • the base stations 102 may include macro cell base stations (high power cellular base stations) and/or small cell base stations (low power cellular base stations) .
  • small cell base stations may be “Medium Range Base Stations” and “Local Area Base Stations” as defined in section 4.4 of 3GPP Technical Specification (TS) 38.104, which include base stations characterized by requirements derived from Micro Cell scenarios with a BS to UE minimum distance along the ground equal to 5 m or a minimum coupling loss equals to 53 dB or by requirements derived from Pico Cell scenarios with a BS to UE minimum distance along the ground equal to 2 m or a minimum coupling loss equal to 45 dB.
  • TS Technical Specification
  • the macro cell base station may include eNBs where the wireless communications system 100 corresponds to an LTE network, or gNBs where the wireless communications system 100 corresponds to a 5G network, or a combination of both, and the small cell base stations may include femtocells, picocells, microcells, etc.
  • the base stations 102 may collectively form a RAN and interface with a core network 170 (e.g., an evolved packet core (EPC) or next generation core (NGC) ) through backhaul links 122, and through the core network 170 to one or more location servers 172.
  • a core network 170 e.g., an evolved packet core (EPC) or next generation core (NGC)
  • EPC evolved packet core
  • NTC next generation core
  • the base stations 102 may perform functions that relate to one or more of transferring user data, radio channel ciphering and deciphering, integrity protection, header compression, mobility control functions (e.g., handover, dual connectivity) , inter-cell interference coordination, connection setup and release, load balancing, distribution for non-access stratum (NAS) messages, NAS node selection, synchronization, RAN sharing, multimedia broadcast multicast service (MBMS) , subscriber and equipment trace, RAN information management (RIM) , paging, positioning, and delivery of warning messages.
  • the base stations 102 may communicate with each other directly or indirectly (e.g., through the EPC/NGC) over backhaul links 134, which may be wired or wireless.
  • the base stations 102 may wirelessly communicate with the UEs 104. Each of the base stations 102 may provide communication coverage for a respective geographic coverage area 110. In an aspect, one or more cells may be supported by a base station 102 in each coverage area 110.
  • a “cell” is a logical communication entity used for communication with a base station (e.g., over some frequency resource, referred to as a carrier frequency, component carrier, carrier, band, or the like) , and may be associated with an identifier (e.g., a physical cell identifier (PCID) , a virtual cell identifier (VCID) ) for distinguishing cells operating via the same or a different carrier frequency.
  • PCID physical cell identifier
  • VCID virtual cell identifier
  • different cells may be configured according to different protocol types (e.g., machine-type communication (MTC) , narrowband IoT (NB-IoT) , enhanced mobile broadband (eMBB) , or others) that may provide access for different types of UEs.
  • MTC machine-type communication
  • NB-IoT narrowband IoT
  • eMBB enhanced mobile broadband
  • the term “cell” may also refer to a geographic coverage area of a base station (e.g., a sector) , insofar as a carrier frequency can be detected and used for communication within some portion of geographic coverage areas 110.
  • While neighboring macro cell base station 102 geographic coverage areas 110 may partially overlap (e.g., in a handover region) , some of the geographic coverage areas 110 may be substantially overlapped by a larger geographic coverage area 110.
  • a small cell base station 102' may have a coverage area 110' that substantially overlaps with the coverage area 110 of one or more macro cell base stations 102.
  • a network that includes both small cell and macro cell base stations may be known as a heterogeneous network.
  • a heterogeneous network may also include home eNBs (HeNBs) , which may provide service to a restricted group known as a closed subscriber group (CSG) .
  • HeNBs home eNBs
  • CSG closed subscriber group
  • the communication links 120 between the base stations 102 and the UEs 104 may include UL (also referred to as reverse link) transmissions from a UE 104 to a base station 102 and/or downlink (DL) (also referred to as forward link) transmissions from a base station 102 to a UE 104.
  • the communication links 120 may use MIMO antenna technology, including spatial multiplexing, beamforming, and/or transmit diversity.
  • the communication links 120 may be through one or more carrier frequencies. Allocation of carriers may be asymmetric with respect to DL and UL (e.g., more or less carriers may be allocated for DL than for UL) .
  • the wireless communications system 100 may further include a wireless local area network (WLAN) access point (AP) 150 in communication with WLAN stations (STAs) 152 via communication links 154 in an unlicensed frequency spectrum (e.g., 5 GHz) .
  • WLAN wireless local area network
  • AP access point
  • the WLAN STAs 152 and/or the WLAN AP 150 may perform a clear channel assessment (CCA) prior to communicating in order to determine whether the channel is available.
  • CCA clear channel assessment
  • the small cell base station 102' may operate in a licensed and/or an unlicensed frequency spectrum. When operating in an unlicensed frequency spectrum, the small cell base station 102' may employ LTE or 5G technology and use the same 5 GHz unlicensed frequency spectrum as used by the WLAN AP 150. The small cell base station 102', employing LTE/5G in an unlicensed frequency spectrum, may boost coverage to and/or increase capacity of the access network.
  • LTE in an unlicensed spectrum may be referred to as LTE-unlicensed (LTE-U) , licensed assisted access (LAA) , or MulteFire.
  • the wireless communications system 100 may further include a millimeter wave (mmW) base station 102, which may be a small cell base station, that may operate in mmW frequencies and/or near mmW frequencies in communication with a UE 104.
  • Extremely high frequency (EHF) is part of the RF in the electromagnetic spectrum. EHF has a range of 30 GHz to 300 GHz and a wavelength between 1 millimeter and 10 millimeters. Radio waves in this band may be referred to as a millimeter wave.
  • Near mmW may extend down to a frequency of 3 GHz with a wavelength of 100 millimeters.
  • the super high frequency (SHF) band extends between 3 GHz and 30 GHz, also referred to as centimeter wave.
  • the mmW base station 102 and the UE 104 may utilize beamforming (transmit and/or receive) over a mmW communication link 120 to compensate for the extremely high path loss and short range. Further, it will be appreciated that in alternative configurations, one or more base stations 102 may also transmit using mmW or near mmW and beamforming. Accordingly, it will be appreciated that the foregoing illustrations are merely examples and should not be construed to limit the various aspects disclosed herein.
  • Transmit beamforming is a technique for focusing an RF signal in a specific direction.
  • a network node e.g., a base station
  • transmit beamforming the network node determines where a given target device (e.g., a UE) is located (relative to the transmitting network node) and projects a stronger downlink RF signal in that specific direction, thereby providing a faster (in terms of data rate) and stronger RF signal for the receiving device (s) .
  • a network node can control the phase and relative amplitude of the RF signal at each of the one or more transmitters that are broadcasting the RF signal.
  • a network node may use an array of antennas (referred to as a “phased array” or an “antenna array” ) that creates a beam of RF waves that can be “steered” to point in different directions, without actually moving the antennas.
  • the RF current from the transmitter is fed to the individual antennas with the correct phase relationship so that the radio waves from the separate antennas add together to increase the radiation in a desired direction, while cancelling to suppress radiation in undesired directions.
  • the receiver uses a receive beam to amplify RF signals detected on a given channel. For example, the receiver can increase the gain setting and/or adjust the phase setting of an array of antennas in a particular direction to amplify (e.g., to increase the gain level of) the RF signals received from that direction.
  • a receiver is said to beamform in a certain direction, it means the beam gain in that direction is high relative to the beam gain along other directions, or the beam gain in that direction is the highest compared to the beam gain in that direction of all other receive beams available to the receiver.
  • RSRP reference signal received power
  • RSRQ reference signal received quality
  • SINR signal-to-interference-plus-noise ratio
  • the frequency spectrum in which wireless nodes is divided into multiple frequency ranges, FR1 (from 450 to 6000 MHz) , FR2 (from 24250 to 52600 MHz) , FR3 (above 52600 MHz) , and FR4 (between FR1 and FR2) .
  • FR1 from 450 to 6000 MHz
  • FR2 from 24250 to 52600 MHz
  • FR3 above 52600 MHz
  • FR4 between FR1 and FR2
  • FR1 and FR2 FR4
  • one of the carrier frequencies is referred to as the “primary carrier” or “anchor carrier” or “primary serving cell” or “PCell, ” and the remaining carrier frequencies are referred to as “secondary carriers” or “secondary serving cells” or “SCells.
  • the anchor carrier is the carrier operating on the primary frequency (e.g., FR1) utilized by a UE 104 and the cell in which the UE 104 either performs the initial radio resource control (RRC) connection establishment procedure or initiates the RRC connection re-establishment procedure.
  • the primary carrier carries all common and UE-specific control channels.
  • a secondary carrier is a carrier operating on a second frequency (e.g., FR2) that may be configured once the RRC connection is established between the UE 104 and the anchor carrier and that may be used to provide additional radio resources.
  • the secondary carrier may contain only necessary signaling information and signals, for example, those that are UE-specific may not be present in the secondary carrier, since both primary uplink and downlink carriers are typically UE-specific. This means that different UEs 104 in a cell may have different downlink primary carriers. The same is true for the uplink primary carriers.
  • the network is able to change the primary carrier of any UE 104 at any time. This is done, for example, to balance the load on different carriers. Because a “serving cell” (whether a PCell or an SCell) corresponds to a carrier frequency/component carrier over which some base station is communicating, the term “cell, ” “serving cell, ” “component carrier, ” “carrier frequency, ” and the like can be used interchangeably.
  • one of the frequencies utilized by a macro cell base stations 102 may be an anchor carrier (or “PCell” ) and other frequencies utilized by the macro cell base stations 102 and/or the mmW base station 102 may be secondary carriers ( “SCells” ) .
  • the simultaneous transmission and/or reception of multiple carriers enables the UE 104 to significantly increase its data transmission and/or reception rates. For example, two 20 MHz aggregated carriers in a multi-carrier system would theoretically lead to a two-fold increase in data rate (i.e., 40 MHz) , compared to that attained by a single 20 MHz carrier.
  • the wireless communications system 100 may further include one or more UEs, such as UE 190, that connects indirectly to one or more communication networks via one or more device-to-device (D2D) peer-to-peer (P2P) links.
  • D2D device-to-device
  • P2P peer-to-peer
  • UE 190 has a D2D P2P link 192 with one of the UEs 104 connected to one of the base stations 102 (e.g., through which UE 190 may indirectly obtain cellular connectivity) and a D2D P2P link 194 with WLAN STA 152 connected to the WLAN AP 150 (through which UE 190 may indirectly obtain WLAN-based Internet connectivity) .
  • the D2D P2P links 192 and 194 may be supported with any well-known D2D RAT, such as LTE Direct (LTE-D) , WiFi Direct (WiFi-D) , and so on.
  • the wireless communications system 100 may further include a UE 104 that may communicate with a macro cell base station 102 over a communication link 120 and/or the mmW base station 102 over a mmW communication link 120.
  • the macro cell base station 102 may support a PCell and one or more SCells for the UE 164 and the mmW base station 1102 may support one or more SCells for the UE 164.
  • FIG. 2A illustrates an example wireless network structure 200.
  • an NGC 210 also referred to as a “5GC”
  • control plane functions 214 e.g., UE registration, authentication, network access, gateway selection, etc.
  • user plane functions 212 e.g., UE gateway function, access to data networks, IP routing, etc.
  • User plane interface (NG-U) 213 and control plane interface (NG-C) 215 connect the gNB 222 to the NGC 210 and specifically to the control plane functions 214 and user plane functions 212.
  • an eNB 224 may also be connected to the NGC 210 via NG-C 215 to the control plane functions 214 and NG-U 213 to user plane functions 212. Further, eNB 224 may directly communicate with gNB 222 via a backhaul connection 223. In some configurations, the New RAN 220 may only have one or more gNBs 222, while other configurations include one or more of both eNBs 224 and gNBs 222. Either gNB 222 or eNB 224 may communicate with UEs 204 (e.g., any of the UEs depicted in FIG. 1) .
  • Another optional aspect may include one or more location servers 230a, 230b (sometimes collectively referred to as location server 230) (which may correspond to location server 172) , which may be in communication with the control plane functions 214 and user plane functions 212, respectively, in the NGC 210 to provide location assistance for UEs 204.
  • the location server 230 can be implemented as a plurality of separate servers (e.g., physically separate servers, different software modules on a single server, different software modules spread across multiple physical servers, etc. ) , or alternately may each correspond to a single server.
  • the location server 230 can be configured to support one or more location services for UEs 204 that can connect to the location server 230 via the core network, NGC 210, and/or via the Internet (not illustrated) . Further, the location server 230 may be integrated into a component of the core network, or alternatively may be external to the core network, e.g., in the New RAN 220.
  • FIG. 2B illustrates another example wireless network structure 250.
  • an NGC 260 (also referred to as a “5GC” ) can be viewed functionally as control plane functions, provided by an access and mobility management function (AMF) 264, user plane function (UPF) 262, a session management function (SMF) 266, SLP 268, and an LMF 270, which operate cooperatively to form the core network (i.e., NGC 260) .
  • AMF access and mobility management function
  • UPF user plane function
  • SMF session management function
  • LMF LMF
  • a gNB 222 may also be connected to the NGC 260 via control plane interface 265 to AMF 264 and user plane interface 263 to UPF 262. Further, eNB 224 may directly communicate with gNB 222 via the backhaul connection 223, with or without gNB direct connectivity to the NGC 260.
  • the New RAN 220 may only have one or more gNBs 222, while other configurations include one or more of both ng-eNBs 224 and gNBs 222. Either ng-gNB 222 or eNB 224 may communicate with UEs 204 (e.g., any of the UEs depicted in FIG. 1) .
  • the base stations of the New RAN 220 communicate with the AMF 264 over the N2 interface and the UPF 262 over the N3 interface.
  • the functions of the AMF include registration management, connection management, reachability management, mobility management, lawful interception, transport for session management (SM) messages between the UE 204 and the SMF 266, transparent proxy services for routing SM messages, access authentication and access authorization, transport for short message service (SMS) messages between the UE 204 and the short message service function (SMSF) (not shown) , and security anchor functionality (SEAF) .
  • the AMF also interacts with the authentication server function (AUSF) (not shown) and the UE 204, and receives the intermediate key that was established as a result of the UE 204 authentication process.
  • AUSF authentication server function
  • the AMF retrieves the security material from the AUSF.
  • the functions of the AMF also include security context management (SCM) .
  • SCM receives a key from the SEAF that it uses to derive access-network specific keys.
  • the functionality of the AMF also includes location services management for regulatory services, transport for location services messages between the UE 204 and the location management function (LMF) 270 (which may correspond to location server 172) , as well as between the New RAN 220 and the LMF 270, evolved packet system (EPS) bearer identifier allocation for interworking with the EPS, and UE 204 mobility event notification.
  • LMF location management function
  • EPS evolved packet system
  • the AMF also supports functionalities for non-Third Generation Partnership Project (3GPP) access networks.
  • Functions of the UPF include acting as an anchor point for intra-/inter-RAT mobility (when applicable) , acting as an external protocol data unit (PDU) session point of interconnect to the data network (not shown) , providing packet routing and forwarding, packet inspection, user plane policy rule enforcement (e.g., gating, redirection, traffic steering) , lawful interception (user plane collection) , traffic usage reporting, quality of service (QoS) handling for the user plane (e.g., UL/DL rate enforcement, reflective QoS marking in the DL) , UL traffic verification (service data flow (SDF) to QoS flow mapping) , transport level packet marking in the UL and DL, DL packet buffering and DL data notification triggering, and sending and forwarding of one or more “end markers” to the source RAN node.
  • PDU protocol data unit
  • the functions of the SMF 266 include session management, UE Internet protocol (IP) address allocation and management, selection and control of user plane functions, configuration of traffic steering at the UPF to route traffic to the proper destination, control of part of policy enforcement and QoS, and downlink data notification.
  • IP Internet protocol
  • the interface over which the SMF 266 communicates with the AMF 264 is referred to as the N11 interface.
  • LMF 270 may be in communication with the NGC 260 to provide location assistance for UEs 204.
  • the LMF 270 can be implemented as a plurality of separate servers (e.g., physically separate servers, different software modules on a single server, different software modules spread across multiple physical servers, etc. ) , or alternately may each correspond to a single server.
  • the LMF 270 can be configured to support one or more location services for UEs 204 that can connect to the LMF 270 via the core network, NGC 260, and/or via the Internet (not illustrated) .
  • FIG. 3 shows a block diagram of a design 300 of base station 102 and UE 104, which may be one of the base stations and one of the UEs in FIG. 1.
  • Base station 102 may be equipped with T antennas 334a through 334t
  • UE 104 may be equipped with R antennas 352a through 352r, where in general T ⁇ 1 and R ⁇ 1.
  • a transmit processor 320 may receive data from a data source 312 for one or more UEs, select one or more modulation and coding schemes (MCS) for each UE based at least in part on channel quality indicators (CQIs) received from the UE, process (e.g., encode and modulate) the data for each UE based at least in part on the MCS (s) selected for the UE, and provide data symbols for all UEs. Transmit processor 320 may also process system information (e.g., for semi-static resource partitioning information (SRPI) and/or the like) and control information (e.g., CQI requests, grants, upper layer signaling, and/or the like) and provide overhead symbols and control symbols.
  • MCS modulation and coding schemes
  • Transmit processor 320 may also generate reference symbols for reference signals (e.g., the cell-specific reference signal (CRS) ) and synchronization signals (e.g., the primary synchronization signal (PSS) and secondary synchronization signal (SSS) ) .
  • a transmit (TX) multiple-input multiple-output (MIMO) processor 330 may perform spatial processing (e.g., precoding) on the data symbols, the control symbols, the overhead symbols, and/or the reference symbols, if applicable, and may provide T output symbol streams to T modulators (MODs) 332a through 332t. Each modulator 332 may process a respective output symbol stream (e.g., for OFDM and/or the like) to obtain an output sample stream.
  • TX transmit
  • MIMO multiple-input multiple-output
  • Each modulator 332 may process a respective output symbol stream (e.g., for OFDM and/or the like) to obtain an output sample stream.
  • Each modulator 332 may further process (e.g., convert to analog, amplify, filter, and upconvert) the output sample stream to obtain a downlink signal.
  • T downlink signals from modulators 332a through 332t may be transmitted via T antennas 334a through 334t, respectively.
  • the synchronization signals can be generated with location encoding to convey additional information.
  • antennas 352a through 352r may receive the downlink signals from base station 102 and/or other base stations and may provide received signals to demodulators (DEMODs) 354a through 354r, respectively.
  • Each demodulator 354 may condition (e.g., filter, amplify, down convert, and digitize) a received signal to obtain input samples.
  • Each demodulator 354 may further process the input samples (e.g., for OFDM and/or the like) to obtain received symbols.
  • a MIMO detector 356 may obtain received symbols from all R demodulators 354a through 354r, perform MIMO detection on the received symbols if applicable, and provide detected symbols.
  • a receive processor 358 may process (e.g., demodulate and decode) the detected symbols, provide decoded data for UE 104 to a data sink 360, and provide decoded control information and system information to a controller/processor 380.
  • a channel processor may determine reference signal received power (RSRP) , received signal strength indicator (RSSI) , reference signal received quality (RSRQ) , channel quality indicator (CQI) , and/or the like.
  • RSRP reference signal received power
  • RSSI received signal strength indicator
  • RSRQ reference signal received quality
  • CQI channel quality indicator
  • one or more components of UE 104 may be included in a housing.
  • a transmit processor 364 may receive and process data from a data source 362 and control information (e.g., for reports comprising RSRP, RSSI, RSRQ, CQI, and/or the like) from controller/processor 380. Transmit processor 364 may also generate reference symbols for one or more reference signals. The symbols from transmit processor 364 may be precoded by a TX MIMO processor 366 if applicable, further processed by modulators 354a through 354r (e.g., for DFT-s-OFDM, CP-OFDM, and/or the like) , and transmitted to base station 102.
  • modulators 354a through 354r e.g., for DFT-s-OFDM, CP-OFDM, and/or the like
  • the uplink signals from UE 104 and other UEs may be received by antennas 334, processed by demodulators 332, detected by a MIMO detector 336 if applicable, and further processed by a receive processor 338 to obtain decoded data and control information sent by UE 104.
  • Receive processor 338 may provide the decoded data to a data sink 339 and the decoded control information to controller/processor 340.
  • Base station 102 may include communication unit 344 and communicate to network controller 389 via communication unit 344.
  • Network controller 389 may include communication unit 394, controller/processor 390, and memory 392.
  • Controller/processor 340 of base station 102, controller/processor 380 of UE 104, controller 390 of network controller 389, which may be location server 172, and/or any other component (s) of FIG. 3 may perform one or more techniques associated broadcasting positioning assistance data in a differential manner, as described in more detail elsewhere herein.
  • controller/processor 340 of base station 102, controller 390 of network controller 389, controller/processor 380 of UE 104, and/or any other component (s) of FIG. 3 may perform or direct operations of, for example, processes 1300 and 1400 of FIGs. 13 and 14, and/or other processes as described herein.
  • Memories 342, 382, and 392 may store data and program codes for base station 102, UE 104, and network controller 389, respectively.
  • memory 342 and/or memory 382 and/or memory392 may comprise a non-transitory computer-readable medium storing one or more instructions for wireless communication.
  • the one or more instructions when executed by one or more processors of the base station 102 network controller 389, and/or the UE 104, may perform or direct operations of, for example, processes 1300 and 1400 of FIGs. 13 and 14 and/or other processes as described herein.
  • a scheduler 346 may schedule UEs for data transmission on the downlink and/or uplink.
  • FIG. 3 is provided as an example. Other examples may differ from what is described with regard to FIG. 3.
  • the UE 104 may have circuitry and processing resources capable of obtaining location related measurements (also referred to as location measurements) , such as measurements for signals received from GPS or other Satellite Positioning Systems (SPS’s ) , measurements for cellular transceivers such as base stations 102, and/or measurements for local transceivers. UE 104 may further have circuitry and processing resources capable of computing a position fix or estimated location of UE 104 based on these location related measurements.
  • location related measurements obtained by UE 104 may be transferred to a location server, such as the location server 172, location servers 230a, 230b, or LMF 270, after which the location server may estimate or determine a location for UE 104 based on the measurements.
  • Location related measurements obtained by UE 104 may include measurements of signals received from satellite vehicles (SVs) that are part of an SPS or Global Navigation Satellite System (GNSS) such as GPS, GLONASS, Galileo or Beidou and/or may include measurements of signals received from terrestrial transmitters fixed at known locations (e.g., such as base station 102 or other local transceivers) .
  • SVs satellite vehicles
  • GNSS Global Navigation Satellite System
  • UE 104 or a separate location server e.g.
  • location server 172 may then obtain a location estimate for the UE 104 based on these location related measurements using any one of several position methods such as, for example, GNSS, Assisted GNSS (A-GNSS) , Advanced Forward Link Trilateration (AFLT) , Observed Time Difference Of Arrival (OTDOA) , Enhanced Cell ID (ECID) , TDOA, AoA, multi-RTT, or combinations thereof.
  • position methods such as, for example, GNSS, Assisted GNSS (A-GNSS) , Advanced Forward Link Trilateration (AFLT) , Observed Time Difference Of Arrival (OTDOA) , Enhanced Cell ID (ECID) , TDOA, AoA, multi-RTT, or combinations thereof.
  • GNSS Assisted GNSS
  • AFLT Advanced Forward Link Trilateration
  • OTDOA Observed Time Difference Of Arrival
  • ECID Enhanced Cell ID
  • TDOA TDOA
  • AoA multi-RTT
  • A-GNSS, AFLT and OTDOA) , pseudoranges or timing differences may be measured by UE 104 relative to three or more terrestrial transmitters fixed at known locations or relative to four or more SVs with accurately known orbital data, or combinations thereof, based at least in part, on pilot signals, positioning reference signals (PRS) or other positioning related signals transmitted by the transmitters or SVs and received at the UE 104.
  • PRS positioning reference signals
  • location servers such as location server 172, location servers 230a, 230b, or LMF 270 may be capable of providing positioning assistance data to UE 104 including, for example, information regarding signals to be measured by UE 104 (e.g., expected signal timing, signal coding, signal frequencies, signal Doppler) , locations and/or identities of terrestrial transmitters, and/or signal, timing and orbital information for GNSS SVs to facilitate positioning techniques such as A-GNSS, AFLT, OTDOA TDOA, AoA, multi-RTT, and ECID.
  • the facilitation may include improving signal acquisition and measurement accuracy by UE 104 and/or, in some cases, enabling UE 104 to compute its estimated location based on the location measurements.
  • a location server may comprise an almanac (e.g., a Base Station Almanac (BSA) ) which indicates the locations and identities of cellular transceivers and transmitters (e.g. base stations 102) and/or local transceivers and transmitters in a particular region or regions such as a particular venue, and may further contain information descriptive of signals transmitted by these transceivers and transmitters such as signal power, signal timing, signal bandwidth, signal coding and/or signal frequency.
  • BSA Base Station Almanac
  • a UE 104 may obtain measurements of signal strength (e.g.
  • RSSI received signal strength indication
  • RSRP reference signal received power
  • S/N signal to noise ratio
  • RTT round trip signal propagation time
  • a UE 104 may transfer these measurements to a location server, to determine a location for UE 104, or in some implementations, UE 104 may use these measurements together with positioning assistance data (e.g. terrestrial almanac data or GNSS SV data such as GNSS Almanac and/or GNSS Ephemeris information) received from the location server to determine a location for UE 104.
  • positioning assistance data e.g. terrestrial almanac data or GNSS SV data such as GNSS Almanac and/or GNSS Ephemeris information
  • An estimate of a location of a UE 104 may be referred to as a location, location estimate, location fix, fix, position, position estimate or position fix, and may be geodetic, thereby providing location coordinates for the UE 104 (e.g., latitude and longitude) which may or may not include an altitude component (e.g., height above sea level, height above or depth below ground level, floor level or basement level) .
  • a location of the UE 104 may be expressed as a civic location (e.g., as a postal address or the designation of some point or small area in a building such as a particular room or floor) .
  • a location of a UE 104 may also include an uncertainty and may then be expressed as an area or volume (defined either geodetically or in civic form) within which the UE 104 is expected to be located with some given or default probability or confidence level (e.g., 67%or 95%) .
  • a location of a UE 104 may further be an absolute location (e.g. defined in terms of a latitude, longitude and possibly altitude and/or uncertainty) or may be a relative location comprising, for example, a distance and direction or relative X, Y (and Z) coordinates defined relative to some origin at a known absolute location. In the description contained herein, the use of the term location may comprise any of these variants unless indicated otherwise. Measurements (e.g.
  • a location estimate for UE 104 may be referred to as measurements, location measurements, location related measurements, positioning measurements or position measurements and the act of determining a location for the UE 104 may be referred to as positioning of the UE 104 or locating the UE 104.
  • the 5G mmW small cell beam information may be leveraged for positioning of the UE 104.
  • the UE 104 may be connected with a serving small cell base station 102 that transmits mmW beams.
  • the particular beam from the serving small cell base station 102 that is received by the UE 104 is known by the serving base station 102.
  • the UE 104 may additionally receive beams from neighboring small cell base stations 102.
  • the UE 104 may send a measurement report message that includes identifiers of one or more beams received from neighboring small cell base stations 102, and in some implementations, may include an identifier for the beam received from the serving small cell base station 102.
  • a location server 172 which may be co-located with the serving small cell base station 102 or may be separate, may use the identifiers for the beams and known locations of the small cell base stations 102 to determine the position of the UE 104. For example, the UE position may be determined based on the intersection of the beams (e.g., treated as lines) from the various small cell base stations 102. The position of the UE 104 may be determined using only two beams, e.g., one from the serving base station 102, plus another from neighbor base station 102) , but additional beams may increase accuracy.
  • the positioning method only relies on the index information for the best beams received by the UE 104, and does not require positioning measurements by the UE 104, such as signal strength, RTT, TDOA, or satellite positioning measurements, such as a GNSS or GPS, etc.
  • the determination of the best beam received by the UE 104 may be based on, e.g., synchronization signals, and does not require the transmission of specific reference signals, such as PRS, by the base stations 102 for positioning measurements.
  • FIG. 4A an example synchronization signal in a 5G NR wireless network is shown.
  • the Synchronization Signal and Physical Broadcast Channel (PBCH) block may include a primary and a secondary synchronization signals (PSS, SSS) , each occupying 1 symbol and 127 subcarriers, and PBCH spanning across 3 OFDM symbols and 240 subcarriers.
  • PSS, SSS primary and a secondary synchronization signals
  • PSS, SSS secondary synchronization signals
  • the periodicity of the SSB can be configured by the network and the time locations where SSB can be sent are determined by sub-carrier spacing. Within the frequency span of a carrier, multiple SSBs can be transmitted.
  • the Physical Cell Identifiers (PCIs) of the SSBs do not have to be unique, i.e. different SSBs can have different PCIs.
  • An SS block may be a group of 4 OFDM symbols in time and 240 subcarriers m frequency (i.e., 20 resource blocks) , as shown in FIG 4A.
  • the SS block may carry the PSS, the SSS and the PBCH.
  • a Demodulation Reference Signal (DMRS) associated with the PBCH may be used to estimate the Reference Signal Received Power (RSRP) of the SS block.
  • DMRS Demodulation Reference Signal
  • RSRP Reference Signal Received Power
  • the SS blocks may be grouped into the first 5 ms of an SS burst, which can have different periodicities TSS.
  • TSS may be on the order of 5, 10, 20, 40, 80, or 160 ms.
  • each SS block may be mapped to a certain angular direction.
  • SS may be sent through wide beams, while data transmission for the active UE may usually performed through narrow beams, to increase the gain produced by beamforming.
  • CSI-RSs may be used for Radio Resource Management (RRM) measurements for mobility management purposes in connected mode.
  • RRM Radio Resource Management
  • the CSI-RS measurement window configuration may contain at least the periodicity and time/frequency offsets relative to the associated SS burst.
  • FIG. 4B an example CSI-RS periodicity configuration in a 5G NR wireless network is shown.
  • SS blocks may be sent every TSS ms, and they embed time and frequency offsets indicating the time and frequency allocation of CSI-RS signals within the frame structure.
  • a CSI-RS signal may be sent T csi ms after the end of an SS burst.
  • the best directions for the beams of the transceiver need to be periodically identified (e.g., through beam search operations) , in order to maintain the alignment between the communicating nodes.
  • SS-and CSI-based measurement results can be jointly used to reflect the different coverage which can be achieved through different beamforming architectures.
  • FIG. 5 illustrates an example of narrow beams produced by a mmW small cell antenna panel 502.
  • the antenna panel 502 includes a number of separate antennas which are provided RF current from the transmitter with the correct phase relationship so that the radio waves from the separate antennas add together to increase the radiation in a desired direction, while cancelling to suppress radiation in undesired directions, to produce a beam.
  • the beam can be steered to point in different directions, e.g., changing the azimuth angle and elevation angle, without moving the antenna panel 502.
  • the antenna panel 502 may be controlled to produce beams at various angles, illustrated as beams 504, 506, and 508. In general, the antenna panel 502 may produce an azimuth span of 120° and an elevation span of 60°. By increasing the number of individual antennas present in the antenna panel 502, the width of the beams produced may be reduced.
  • FIG. 6 is a diagram illustrating directional beams transmitted from a base station based on a synchronization signal (SS) burst.
  • the SS Burst includes a plurality of SS blocks such as a first SS Block 602, a second SS Block 604, a third SS Block 606, and a fourth SS block 608.
  • An SS burst may include additional SS blocks.
  • each SS block 602, 604, 606, 608 may be mapped to an angular direction and a specific beam ID.
  • the first SS block 602 is mapped to a first beam 602a with a beam identification value (e.g., index) of 1
  • the second SS block 604 is mapped to a second beam 604a with a beam identification value of 5
  • the third SS block 606 is mapped to a third beam 606a with a beam identification value of 9
  • the fourth SS block 608 is mapped to a fourth beam 608a with a beam identification value of 13.
  • a UE 104 may receive one or more beam identification values from base stations (e.g., gNB) in a wireless network.
  • base stations e.g., gNB
  • the UE may be configured to map the received beam identification value and a cell identification based on a codebook. For example, when the UE 104 receives the second beam 604a with the beam identification value of 5 (i.e., associated with SS Block 2) , the UE may be configured to reference a codebook (e.g., a data structure) with the beam identification value to determine the angular information associated with the second beam 604a. In an example, the UE 104 may report the beam identification back to a network node configured to determine the angular information based on a codebook (i.e., stored remote from the UE) .
  • a codebook e.g., stored remote from the UE
  • a beam identification value e.g., a SSB ID
  • a spatial angle of the transmitted beam e.g., a spatial angle of the transmitted beam.
  • One or more data structures such as a codebook (e.g., data table) located on a network node and/or the UE may be used to determine the angular direction of the transmitted beam based on the beam identification value.
  • the base station 102 sweeps the beam horizontally (azimuth) and vertically (elevation) over time.
  • the beams may be swept over a 120° azimuth span and a 60° elevation span.
  • individual narrow beams are swept over a spatial extent that is related to the base station 102 by azimuth angle and elevation angle.
  • FIG. 7, illustrates an array 700 of beams over a spatial extent that may be produced by the base station.
  • each beam may be identified with a broad beam index, e.g., SSB1-SSB16, and may be further identified with a fine beam index, e.g., 1-64.
  • the UE 104 will determine which of the narrow beams is the best beam, which as illustrated in FIG. 7, may be identified as SSB10 with the broad beam index and beam 40 with the fine beam index.
  • the best directions for the beams of the transceiver need to be periodically identified (e.g., through beam search operations) , in order to maintain the alignment between the communicating nodes.
  • IDLE mode for example, the UE 104 may determine the best beam based on SS (Synchronization Signal) , and in the connected mode based on CSI-RS in DL.
  • SS Synchronization Signal
  • CSI-RS measurement window configuration like periodicity and time/frequency offsets are relative to the associated SS burst.
  • the best beam needs to be searched periodically, by using the SS and CSI-RS measurement results.
  • the UE 104 may measure the received signal strength of each transmitted beam.
  • the beam with the greatest received signal strength may be considered the best beam, and is considered the beam that is received by the UE 104.
  • the UE 104 may include several antennas or an antenna array that may be used to generate receive beams using beamforming.
  • the UE 104 may perform beam latching, or RxTx pairing to identify the best transmission beam.
  • the UE 104 may measure the received signal power of each transmission beam for each receive beam formed by the UE’s antenna array. Assuming all transmitted beams are transmitted with the same power, the highest measured signal power for a combination of receive and transmit beams, likely corresponds to a line of sight beam from the base station, and thus, identifies the best beam received by the UE 104.
  • receive beams may additionally provide information related to the angle of arrival of the transmitted beam, e.g., based on the angle of the best receive beam with respect to the UE antenna array, which may be used, e.g. to provide an orientation of the UE 104.
  • FIG. 8 illustrates a network 800 including the UE 104 receiving beams 802A, 802B, and 802C from multiple base stations 102A, 102B, and 102C, respectively, which may be small cell base stations transmitting mmW beams.
  • the base station 102A may be the serving base station for the UE 104, while base stations 102B and 102C may be neighboring base stations.
  • Base stations 102A, 102B, and 102C may sometimes be referred to as base stations 102.
  • the UE 104 may identify the beam received from each base station, e.g., using a fine beam index or SSB Index, which indicates the azimuth angle and elevation angle of the received beam with respect to the respective transmitting base station, as illustrated in FIG. 7.
  • the UE 104 may provide the identifying beam information for each received beams to a location server 172 (shown in FIG. 1) via the serving base station 102A.
  • the serving base station 102A knows the beam identifier for the received serving beam 802A and the serving base station 102A may provide this information to the location server 172, and thus, the UE 104 may only provide identifying beam information for beams from one or more neighboring base stations 102B and 102C to the location server 172.
  • the location server 172 may determine a line 804A, 804B, and 804C between each respective base station 102A, 102B, and 102C and the UE 104 in a physical coordinate system.
  • the lines may be center angle of each narrow beam.
  • the position of the UE 104 may be determined based on the intersection of two or more of the lines 804A, 804B, and 804C.
  • the location of the UE 104 may be determined based solely on the direction of the received beams and the positions of the base stations 102.
  • the UE 104 only needs to identify the received beams for the location server. Because a range (distance) between the base station and the UE 104 is not required for positioning, there is no need for the UE 104 to measure and report conventional positioning measurements, such as signal strength, time of arrival, RSTD, etc.
  • the base stations 102 are not required to transmit special reference signals, such as PRS, for positioning. Further, as can be seen in FIG.
  • the position of the UE 104 may be determined based on the intersection of only two beams, e.g., beams 804A and 804B transmitted by serving base station 102A and neighboring base station 102B, although the use of additional beams, e.g., beam 804C from neighboring base station 102C, may provide additional accuracy in the measurement. Moreover, if an angle of arrival of one or more of the beams is determined, e.g., using receive beams produced using beamforming with an antenna array on the UE 104, the orientation of the UE 104 may also be determined.
  • FIG. 9 illustrates a coordinate system 900 in which the intersection of beams, represented by lines 804A, 804B, and 804C from FIG. 8, used to determine a position of the UE 104.
  • the location server 172 may receive the beam identifier for each beam received by the UE 104 and may map the beam identifier to the spatial angle (in azimuth and elevation angle) with respect to the base station, based on stored data, e.g., previously provided to the location server 172 by each base station. Based on the spatial angle relative to the base station and with knowledge of the position and orientation of the base stations relative to the coordinate system 900, the location server may map each beam received by the UE 104 to the coordinate system as illustrated in FIG.
  • the intersection of the lines 804A, 804B, and 804C is the location of the UE 104. As illustrated in FIG. 9, the lines 804A, 804B, and 804C may not intersect at a single point and, thus, the position of the UE 104 may be interpolated based on the intersections of the lines.
  • FIG. 10 shows an example of a signaling flow 1000 that illustrates various messages sent between components of the communication system 100 depicted in FIG. 1, during a location session between the UE 104 and the location server 172 in which the location of the UE is determined using beams from small cell base stations.
  • FIG. 10 illustrates UE 104, a serving base station 102A, a neighboring base station 102B, and a location server 172.
  • Base stations 102A and 102B may be, gNBs, ng-eNBs, or eNBs.
  • the location server 172 may be, e.g., LMF 270 or an SLP 268, and may be co-located with a base station 102 or RAN or may be in (or external) to the core network. It should be understood that the UE 104 communications with the location server 172 through the serving base station 102A and one or more intervening components in the core network, such as AMF 264 or UPF 262.
  • the signaling flow 1000 it may be assumed that the UE 104 and location server 172 communicate using the LPP positioning protocol referred to earlier, although use of other protocols may be used.
  • the signaling flow 1000 may be performed in control plane or user plane.
  • the messages shown in signaling flow 1000 are provided for illustration and additional messages and actions may be included in the positioning session. For example, a positioning session may further include messages including a capabilities request, capabilities response, assistance data, etc.
  • the location server 172 may send an Information Request message to the base stations 102A and 102B.
  • the Information Request may request location related information from the base stations 102, such as the location of base stations 102, the orientation of the base stations 102, and configuration parameters related to beams produced by the base stations, such as the directional SS Blocks, e.g., a mapping of beam identifiers to spatial angles (azimuth and elevation angles) relative to the base stations.
  • the base stations 102A and 102B may send an Information Response message to the location server 172 that includes the requested location related information, such as positions, orientations, and signal characteristics, beam angles, and other configuration information for each SS Block supported by the base stations, such as mapping of beam identifiers to spatial angles (azimuth and elevation angles) relative to the base stations.
  • the location server 172 may receive one or more parameters from other sources, e.g., a positioning database store in memory.
  • the parameters may be requested only one time or may be periodically updated.
  • the location server 172 may send a Request Location Information message to the serving base station 102A for UE 104 requesting one or more location measurements from the UE 104, and at stage 3b, the serving base station 102A may send the UE 104 an RRC Connection Reconfiguration message instructing the UE to perform the location measurements.
  • the serving base station 102A may provide the RRC Connection Reconfiguration message, as well as other communications with the UE 104 using a serving beam received by the UE 104, which includes an identifier that corresponds to the spatial angle of the beam with respect to the serving base station 102A.
  • the requested positioning measurements may be received beam identifiers, e.g., that identify the base station that transmits a received beam and the spatial angle of the received beam with respect to the transmitting base station.
  • the UE 104 is already in a connected state with the serving base station 102A, and accordingly, the received beam has already been identified by the UE 104.
  • the serving base station 102A is already aware of the identity of the serving beam received by the UE 104.
  • the UE 104 may receive beams transmitted by the neighboring base station 102B.
  • the UE 104 may request that the neighboring base station 102B transmit beams for measurements, e.g., by sending a request to the location server 172, the serving base station 102A, or other network node, which may communicate with neighboring base station 102B.
  • the UE 104 may opportunistically measure beams that are being produced by neighboring base station 102B without the need to specifically request that the neighboring base station 102B produce the beams.
  • the UE 104 may determine which of the beams from the neighboring base station 102B is the best beam, e.g., by monitoring the received signal strength of each beam, where the beam with the greatest signal strength is considered to be the best beam, i.e., the beam received by the UE 104.
  • the location measurements may be made based, in part, on the directional SS Blocks transmitted by the neighboring base station 102B, and serving base station 102A (if necessary) .
  • SS Blocks may be transmitted by base station 102B within the neighbor cell and serving base station 102A in the serving cell.
  • the UE 104 obtains the beam identifier for the received beam (s) .
  • the UE 104 may be configured to determine the spatial angle (e.g., azimuth and elevation angles) of the received beam relative to the transmitting base station. In some implementations, the UE 104 may receive and determine the beam identifier for multiple neighboring base stations. In some implementations, the UE 104 may further measure the angle of arrival of beams, e.g., using receive beams that are beamformed using a number of antennas or antenna array in the UE 104.
  • the UE 104 sends a Measurement Report message to the serving base station 102A with the requested location measurements
  • the serving base station 102A sends a Provide Location Information message to the location server 172 with the requested location measurements.
  • the location measurements may include the beam identifier for the received beam from at least one neighboring base station 102B.
  • the angle of arrival for the beam received from one or more of the serving base station and neighboring base station may be included.
  • the location information may further include the beam identifier for the serving beam transmitted by serving base station 102A.
  • the serving base station 102A may include the beam identifier for the serving beam to the location server 172 in the Provide Location Information message along with the location information provided by the UE 104 in the Measurement Report message.
  • the location server 172 may determine the UE location based on the received location information. For example, the location server 172 may identify the directional azimuth angle and elevation angle of the serving and neighboring beams received by the UE 104, e.g., based on the beam identifiers and the beam angle information received at stage 2. The location server 172 may determine the position of the UE 104 based on the intersection of lines generated from the known positions of the base stations and the angles of the received beams with respect to the base stations. If the angle of arrival with respect to one or more beams is provided by the UE 104, the location server 172 may further determine the orientation of the UE 104. The location server 172 may provide the UE 104 location to a requesting entity.
  • FIG. 11 shows a schematic block diagram illustrating certain exemplary features of a UE 1100, e.g., which may be UE 104 shown in FIG. 1, enabled to support positioning using beams transmitted from small cell base stations, as described herein.
  • the UE 1100 may perform the process flow shown in FIG. 13.
  • UE 1100 may, for example, include one or more processors 1102, memory 1104, an external interface such as a transceiver 1110 (e.g., wireless network interface) , which may be operatively coupled with one or more connections 1106 (e.g., buses, lines, fibers, links, etc. ) to non-transitory computer readable medium 1120 and memory 1104.
  • a transceiver 1110 e.g., wireless network interface
  • connections 1106 e.g., buses, lines, fibers, links, etc.
  • the UE 1100 may further include additional items, which are not shown, such as a user interface that may include e.g., a display, a keypad or other input device, such as virtual keypad on the display, through which a user may interface with the UE, or a satellite positioning system receiver.
  • a user interface may include e.g., a display, a keypad or other input device, such as virtual keypad on the display, through which a user may interface with the UE, or a satellite positioning system receiver.
  • All or part of UE 1100 may take the form of a chipset, and/or the like.
  • Transceiver 1110 may, for example, include a transmitter 1112 enabled to transmit one or more signals over one or more types of wireless communication networks and a receiver 1114 to receive one or more signals transmitted over the one or more types of wireless communication networks.
  • UE 1100 may include antenna 1111, which may be internal or external. UE antenna 1111 may be used to transmit and/or receive signals processed by transceiver 1110. In some embodiments, UE antenna 1111 may be coupled to transceiver 1110. In some embodiments, measurements of signals received (transmitted) by UE 1100 may be performed at the point of connection of the UE antenna 1111 and transceiver 1110. For example, the measurement point of reference for received (transmitted) RF signal measurements may be an input (output) terminal of the receiver 1114 (transmitter 1112) and an output (input) terminal of the UE antenna 1111.
  • the antenna connector may be viewed as a virtual point representing the aggregate output (input) of multiple UE antennas.
  • UE 1100 may measure received signals including signal strength and TOA measurements and the raw measurements may be processed by the one or more processors 1102.
  • the UE 104 may measure the received signal strength of each transmitted beam to determine the best beam received by the UE 104.
  • the transmitted beam with the highest received signal strength relative to the other beams may be treated as the best beam, i.e., the beam that is directed towards the UE 104.
  • the UE 104 may use an antenna array to beamform receive beams, which may similarly be used to determine the best beam, e.g., using beam latching or RxTx pairing.
  • the use of receive beams may additionally provide information related to the angle of arrival of the transmitted beam, e.g., based on the angle of the best receive beam with respect to the UE antenna array.
  • the angle of arrival of the transmitted beam (which has a defined direction) may be used to determine the orientation of the UE 1100.
  • the one or more processors 1102 may be implemented using a combination of hardware, firmware, and software.
  • the one or more processors 1102 may be configured to perform the functions discussed herein by implementing one or more instructions or program code 1108 on a non-transitory computer readable medium, such as medium 1120 and/or memory 1104.
  • the one or more processors 1102 may represent one or more circuits configurable to perform at least a portion of a data signal computing procedure or process related to the operation of UE 1100.
  • the medium 1120 and/or memory 1104 may store instructions or program code 1108 that contain executable code or software instructions that when executed by the one or more processors 1102 cause the one or more processors 1102 to operate as a special purpose computer programmed to perform the techniques disclosed herein.
  • the medium 1120 and/or memory 1104 may include one or more components or modules that may be implemented by the one or more processors 1102 to perform the methodologies described herein. While the components or modules are illustrated as software in medium 1120 that is executable by the one or more processors 1102, it should be understood that the components or modules may be stored in memory 1104 or may be dedicated hardware either in the one or more processors 1102 or off the processors.
  • a number of software modules and data tables may reside in the medium 1120 and/or memory 1104 and be utilized by the one or more processors 1102 in order to manage both communications and the functionality described herein. It should be appreciated that the organization of the contents of the medium 1120 and/or memory 1104 as shown in UE 1100 is merely exemplary, and as such the functionality of the modules and/or data structures may be combined, separated, and/or be structured in different ways depending upon the implementation of the UE 1100.
  • the medium 1120 and/or memory 1104 may include a receive radio beam module 1122 that when implemented by the one or more processors 1102 configures the one or more processors 1102 to receive a beam from a small cell base station, e.g., as discussed in FIGs. 6-10.
  • the one or more processors 1102 may be configured to determine a best beam received from a base station.
  • the medium 1120 and/or memory 1104 may include a determine radio beam identifier module 1124 that when implemented by the one or more processors 1102 configures the one or more processors 1102 to determine the beam identifier for a received beam, such as the SSB Index number or fine index number, e.g., as discussed in FIGs. 6-10.
  • a determine radio beam identifier module 1124 that when implemented by the one or more processors 1102 configures the one or more processors 1102 to determine the beam identifier for a received beam, such as the SSB Index number or fine index number, e.g., as discussed in FIGs. 6-10.
  • the medium 1120 and/or memory 1104 may include a measurement request module 1126 that when implemented by the one or more processors 1102 configures the one or more processors 1102 to receive, via transceiver 1110, request for location information from a location server, and in particular a request for identifiers of received beams, e.g., as discussed in FIGs. 6-10.
  • a measurement request module 1126 that when implemented by the one or more processors 1102 configures the one or more processors 1102 to receive, via transceiver 1110, request for location information from a location server, and in particular a request for identifiers of received beams, e.g., as discussed in FIGs. 6-10.
  • the medium 1120 and/or memory 1104 may include a measurement report module 1128 that when implemented by the one or more processors 1102 configures the one or more processors 1102 to send, via transceiver 1110, a measurement report to the location server that includes the identifiers for received beams, e.g., as discussed in FIGs. 6-10.
  • a measurement report module 1128 that when implemented by the one or more processors 1102 configures the one or more processors 1102 to send, via transceiver 1110, a measurement report to the location server that includes the identifiers for received beams, e.g., as discussed in FIGs. 6-10.
  • the one or more processors 1102 may be implemented within one or more application specific integrated circuits (ASICs) , digital signal processors (DSPs) , digital signal processing devices (DSPDs) , programmable logic devices (PLDs) , field programmable gate arrays (FPGAs) , processors, controllers, micro-controllers, microprocessors, electronic devices, other electronic units designed to perform the functions described herein, or a combination thereof.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGAs field programmable gate arrays
  • the methodologies may be implemented with modules (e.g., procedures, functions, and so on) that perform the functions described herein.
  • Any machine readable medium tangibly embodying instructions may be used in implementing the methodologies described herein.
  • software codes may be stored in a non-transitory computer readable medium 1120 or memory 1104 that is connected to and executed by the one or more processors 1102.
  • Memory may be implemented within the one or more processors or external to the one or more processors.
  • the term “memory” refers to any type of long term, short term, volatile, nonvolatile, or other memory and is not to be limited to any particular type of memory or number of memories, or type of media upon which memory is stored.
  • the functions may be stored as one or more instructions or program code 1108 on a non-transitory computer readable medium, such as medium 1120 and/or memory 1104.
  • a non-transitory computer readable medium such as medium 1120 and/or memory 1104.
  • Examples include computer readable media encoded with a data structure and computer readable media encoded with a computer program 1108.
  • the non-transitory computer readable medium including program code 1108 stored thereon may include program code 1108 to support positioning using beam identifiers in a manner consistent with disclosed embodiments.
  • Non-transitory computer readable medium 1120 includes physical computer storage media.
  • a storage medium may be any available medium that can be accessed by a computer.
  • non-transitory computer readable media can comprise RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other medium that can be used to store desired program code 1108 in the form of instructions or data structures and that can be accessed by a computer; disk and disc, as used herein, includes compact disc (CD) , laser disc, optical disc, digital versatile disc (DVD) , floppy disk and Blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above should also be included within the scope of computer readable media.
  • instructions and/or data may be provided as signals on transmission media included in a communication apparatus.
  • a communication apparatus may include a transceiver 1110 having signals indicative of instructions and data.
  • the instructions and data are configured to cause one or more processors to implement the functions outlined in the claims. That is, the communication apparatus includes transmission media with signals indicative of information to perform disclosed functions.
  • Memory 1104 may represent any data storage mechanism.
  • Memory 1104 may include, for example, a primary memory and/or a secondary memory.
  • Primary memory may include, for example, a random access memory, read only memory, etc. While illustrated in this example as being separate from one or more processors 1102, it should be understood that all or part of a primary memory may be provided within or otherwise co-located/coupled with the one or more processors 1102.
  • Secondary memory may include, for example, the same or similar type of memory as primary memory and/or one or more data storage devices or systems, such as, for example, a disk drive, an optical disc drive, a tape drive, a solid state memory drive, etc.
  • secondary memory may be operatively receptive of, or otherwise configurable to couple to a non-transitory computer readable medium 1120.
  • the methods and/or apparatuses presented herein may take the form in whole or part of a computer readable medium 1120 that may include computer implementable code 1108 stored thereon, which if executed by one or more processors 1102 may be operatively enabled to perform all or portions of the example operations as described herein.
  • Computer readable medium 1120 may be a part of memory 1104.
  • FIG. 12 shows a schematic block diagram illustrating certain exemplary features of a location server 1200, e.g., location server 172, enabled to support positioning of a UE based on identifiers of beams received by the UE, as described herein.
  • the location server 1200 may be, e.g., a E-SMLC, SLP, or LMF.
  • the location server 1200 may perform the process flow shown in FIG. 14.
  • Location server 1200 may, for example, include one or more processors 1202, memory 1204, and an external interface 1216 (e.g., wireline or wireless network interface to other network entities, such as core network entities and base stations) , which may be operatively coupled with one or more connections 1206 (e.g., buses, lines, fibers, links, etc.
  • connections 1206 e.g., buses, lines, fibers, links, etc.
  • the base station 1200 may further include additional items, which are not shown, such as a user interface that may include e.g., a display, a keypad or other input device, such as virtual keypad on the display, through which a user may interface with the location server.
  • a user interface may include e.g., a display, a keypad or other input device, such as virtual keypad on the display, through which a user may interface with the location server.
  • all or part of location server 1200 may take the form of a chipset, and/or the like.
  • the external interface 1216 may be a wired or wireless interface capable of connecting to base stations in the RAN or network entities, such as an AMF, MME, or UPF.
  • the one or more processors 1202 may be implemented using a combination of hardware, firmware, and software.
  • the one or more processors 1202 may be configured to perform the functions discussed herein by implementing one or more instructions or program code 1208 on a non-transitory computer readable medium, such as medium 1220 and/or memory 1204.
  • the one or more processors 1202 may represent one or more circuits configurable to perform at least a portion of a data signal computing procedure or process related to the operation of location server 1200.
  • the medium 1220 and/or memory 1204 may store instructions or program code 1208 that contain executable code or software instructions that when executed by the one or more processors 1202 cause the one or more processors 1202 to operate as a special purpose computer programmed to perform the techniques disclosed herein.
  • the medium 1220 and/or memory 1204 may include one or more components or modules that may be implemented by the one or more processors 1202 to perform the methodologies described herein. While the components or modules are illustrated as software in medium 1220 that is executable by the one or more processors 1202, it should be understood that the components or modules may be stored in memory 1204 or may be dedicated hardware either in the one or more processors 1202 or off the processors.
  • a number of software modules and data tables may reside in the medium 1220 and/or memory 1204 and be utilized by the one or more processors 1202 in order to manage both communications and the functionality described herein. It should be appreciated that the organization of the contents of the medium 1220 and/or memory 1204 as shown in location server 1200 is merely exemplary, and as such the functionality of the modules and/or data structures may be combined, separated, and/or be structured in different ways depending upon the implementation of the location server 1200.
  • the medium 1220 and/or memory 1204 may include measurement request module 1221 that when implemented by the one or more processors 1202 configures the one or more processors 1202 to send, via the external interface 1216, a request for location information to the UE, and in particular a request for identifiers of beams received by the UE, e.g., as discussed in FIGs. 6-10.
  • the medium 1220 and/or memory 1204 may include a measurement response module 1222 that when implemented by the one or more processors 1202 configures the one or more processors 1202 to receive, via the external interface 1216, a measurement report from the UE that includes the identifiers for beams received by the UE, e.g., as discussed in FIGs. 6-10.
  • the medium 1220 and/or memory 1204 may include a position determination module 1224 that when implemented by the one or more processors 1202 configures the one or more processors 1202 to determine the position of the UE using the identifiers for beams received by the UE, e.g., as discussed in FIGs. 6-10.
  • the one or more processors 12022 may be configured to determine the position of the UE based on the intersection of the received beams.
  • the one or more processors 12022 may be configured to determine the azimuth angle and elevation angle of a beam with respect to a base station based on the beam identifier, and determine the azimuth angle and elevation angle of a beam with respect to a coordinate system based on the known position and orientation of the base station with respect to the coordinate system.
  • the one or more processors 1202 may be implemented within one or more application specific integrated circuits (ASICs) , digital signal processors (DSPs) , digital signal processing devices (DSPDs) , programmable logic devices (PLDs) , field programmable gate arrays (FPGAs) , processors, controllers, micro-controllers, microprocessors, electronic devices, other electronic units designed to perform the functions described herein, or a combination thereof.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGAs field programmable gate arrays
  • the methodologies may be implemented with modules (e.g., procedures, functions, and so on) that perform the functions described herein.
  • Any machine readable medium tangibly embodying instructions may be used in implementing the methodologies described herein.
  • software codes may be stored in a non-transitory computer readable medium 1220 or memory 1204 that is connected to and executed by the one or more processors 1202.
  • Memory may be implemented within the one or more processors or external to the one or more processors.
  • the term “memory” refers to any type of long term, short term, volatile, nonvolatile, or other memory and is not to be limited to any particular type of memory or number of memories, or type of media upon which memory is stored.
  • the functions may be stored as one or more instructions or program code 1208 on a non-transitory computer readable medium, such as medium 1220 and/or memory 1204.
  • a non-transitory computer readable medium such as medium 1220 and/or memory 1204.
  • Examples include computer readable media encoded with a data structure and computer readable media encoded with a computer program 1208.
  • the non-transitory computer readable medium including program code 1208 stored thereon may include program code 1208 to support determining a position of UE based on the identifiers of beams received by the UE in a manner consistent with disclosed embodiments.
  • Non-transitory computer readable medium 1220 includes physical computer storage media.
  • a storage medium may be any available medium that can be accessed by a computer.
  • non-transitory computer readable media can comprise RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other medium that can be used to store desired program code 1208 in the form of instructions or data structures and that can be accessed by a computer; disk and disc, as used herein, includes compact disc (CD) , laser disc, optical disc, digital versatile disc (DVD) , floppy disk and Blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above should also be included within the scope of computer readable media.
  • instructions and/or data may be provided as signals on transmission media included in a communication apparatus.
  • a communication apparatus may include a communications interface 1216 having signals indicative of instructions and data.
  • the instructions and data are configured to cause one or more processors to implement the functions outlined in the claims. That is, the communication apparatus includes transmission media with signals indicative of information to perform disclosed functions.
  • Memory 1204 may represent any data storage mechanism.
  • Memory 1204 may include, for example, a primary memory and/or a secondary memory.
  • Primary memory may include, for example, a random access memory, read only memory, etc. While illustrated in this example as being separate from one or more processors 1202, it should be understood that all or part of a primary memory may be provided within or otherwise co-located/coupled with the one or more processors 1202.
  • Secondary memory may include, for example, the same or similar type of memory as primary memory and/or one or more data storage devices or systems, such as, for example, a disk drive, an optical disc drive, a tape drive, a solid state memory drive, etc.
  • secondary memory may be operatively receptive of, or otherwise configurable to couple to a non-transitory computer readable medium 1220.
  • the methods and/or apparatuses presented herein may take the form in whole or part of a computer readable medium 1220 that may include computer implementable code 1208 stored thereon, which if executed by one or more processors 1202 may be operatively enabled to perform all or portions of the example operations as described herein.
  • Computer readable medium 1220 may be a part of memory 1204.
  • FIG. 13 shows a flowchart for an exemplary method 1300 for determining a location of a mobile device performed by the mobile device, such as UE 104, in a manner consistent with disclosed implementation.
  • the mobile device receives a first radio beam transmitted by a serving small cell base station, the first radio beam comprising a first beam identification value, e.g., as discussed in FIGs. 6-9, and stage 3b of FIG. 10.
  • the first radio beam may be used to provide a Request for Location Information message sent by a location server or other communications between the serving small cell base station and the mobile device.
  • the first beam identification value identifies a first azimuth angle and a first elevation angle for the first radio beam.
  • a means for receiving a first radio beam transmitted by a serving small cell base station, the first radio beam comprising a first beam identification value may include, e.g., the wireless transceiver 1110 and one or more processors 1102 with dedicated hardware or implementing executable code or software instructions in memory 1104 and/or medium 1120 in UE 1100 shown in FIG. 11.
  • the mobile device measures a second radio beam transmitted by a first neighboring small cell base station, the second radio beam comprising a second beam identification value, e.g., as discussed in FIGs. 6-9, and stages 4 and 5 of FIG. 10.
  • the second beam identification value identifies a second azimuth angle and a second elevation angle for the second radio beam.
  • a means for measuring a second radio beam transmitted by a first neighboring small cell base station, the second radio beam comprising a second beam identification value may include, e.g., the wireless transceiver 1110 and one or more processors 1102 with dedicated hardware or implementing executable code or software instructions in memory 1104 and/or medium 1120 in UE 1100 shown in FIG. 11.
  • the mobile device sends to a location server a measurement report including at least the second beam identification value to determine the location of the mobile device based on an intersection of at least the first radio beam and the second radio beam, e.g., as discussed in FIGs. 6-9, and stages 6a and 6b of FIG. 10.
  • the measurement report may further include the first beam identification value.
  • the measurement report does not include the first beam identification value and the serving small cell base station may provide the first beam identification value to the location server.
  • a means for sending to a location server a measurement report including at least the second beam identification value to determine the location of the mobile device based on an intersection of at least the first radio beam and the second radio beam may be, e.g., the wireless transceiver 1110 and one or more processors 1102 with dedicated hardware or implementing executable code or software instructions in memory 1104 and/or medium 1120 in UE 1100 shown in FIG. 11.
  • the method may further include measuring a third radio beam transmitted by a second neighboring small cell base station.
  • the third radio beam may include a third beam identification value.
  • the measurement report further includes the third beam identification value, and the location of the mobile device is determined based on the intersection of the first radio beam, the second radio beam, and the third radio beam, e.g., as discussed in FIG. 8-10.
  • a means for measuring a third radio beam transmitted by a second neighboring small cell base station may be, e.g., the wireless transceiver 1110 and one or more processors 1102 with dedicated hardware or implementing executable code or software instructions in memory 1104 and/or medium 1120 in UE 1100 shown in FIG. 11.
  • FIG. 14 shows a flowchart for an exemplary method 1400 for determining a location of a mobile device performed by a location server, such as location server 172, which may be an E-SMLC, SLP, or LMF.
  • a location server such as location server 172, which may be an E-SMLC, SLP, or LMF.
  • the location server receives a measurement report for the mobile device including a first beam identification value for a first radio beam received by the mobile device from a serving small cell base station and a second beam identification value for a second radio beam measured by the mobile device and transmitted by a first neighboring small cell base station, e.g., as discussed in FIGs. 6-9, and stages 6a and 6b of FIG. 10.
  • the first beam identification value may be sent by the mobile device in the measurement report.
  • the first beam identification value may be sent by the serving small cell base station.
  • the first beam identification value may identify a first azimuth angle and a first elevation angle for the first radio beam and the second beam identification value may identify a second azimuth angle and a second elevation angle for the second radio beam.
  • a means for receiving a measurement report for the mobile device including a first beam identification value for a first radio beam received by the mobile device from a serving small cell base station and a second beam identification value for a second radio beam measured by the mobile device and transmitted by a first neighboring small cell base station may include, e.g., the external interface 1216 and one or more processors 1202 with dedicated hardware or implementing executable code or software instructions in memory 1204 and/or medium 1220 in the location server 1200 shown in FIG. 12.
  • the location server may determine the location of the mobile device based on an intersection of at least the first radio beam and the second radio beam, e.g., as discussed in FIGs. 6-9, and stage 7 of FIG. 10. For example, in some implementations, the location of the mobile device is determined based on the intersection of at least the first radio beam and the second radio beam using the first azimuth angle and the first elevation angle for the first radio beam relative to a coordinate system and the second azimuth angle and the second elevation angle for the second radio beam relative to the coordinate system.
  • a means for determining the location of the mobile device based on an intersection of at least the first radio beam and the second radio beam may include, e.g., the one or more processors 1202 with dedicated hardware or implementing executable code or software instructions in memory 1204 and/or medium 1220 in the location server 1200 shown in FIG. 12.
  • the measurement report may further include a third beam identification value for a third radio beam measured by the mobile device and transmitted by a second neighboring small cell base station, and the location of the mobile device may be determined based on the intersection of the first radio beam, the second radio beam, and the third radio beam, e.g., as discussed in FIG. 8-10.
  • such quantities may take the form of electrical or magnetic signals capable of being stored, transferred, combined, compared or otherwise manipulated. It has proven convenient at times, principally for reasons of common usage, to refer to such signals as bits, data, values, elements, symbols, characters, terms, numbers, numerals, or the like. It should be understood, however, that all of these or similar terms are to be associated with appropriate physical quantities and are merely convenient labels. Unless specifically stated otherwise, as apparent from the discussion herein, it is appreciated that throughout this specification discussions utilizing terms such as “processing, “ “computing, “ “calculating, “ “determining” or the like refer to actions or processes of a specific apparatus, such as a special purpose computer, special purpose computing apparatus or a similar special purpose electronic computing device.
  • a special purpose computer or a similar special purpose electronic computing device is capable of manipulating or transforming signals, typically represented as physical electronic or magnetic quantities within memories, registers, or other information storage devices, transmission devices, or display devices of the special purpose computer or similar special purpose electronic computing device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

The position of a mobile device is estimated based on the intersection of a number of beams received by the mobile device from a plurality of small cell base stations. The mobile device may determine a beam identifier from beams received from the small cell base stations. The beam identifier, for example, may be used to determine the azimuth angle and elevation angle of the beam relative to the transmitting base station. The mobile device provides the beam identifiers of received beams to a location server. The location server determines the orientation of the beams with respect to a coordinate system, e.g., based on the position and the angle of the beam relative to the small cell base stations. The position of the mobile device is at the intersection of two or more beams in the coordinate system.

Description

APPARATUS AND METHOD FOR BEAM BASED POSITIONING OF USER EQUIPMENT BY MMW SMALL CELL BACKGROUND Field:
Subject matter disclosed herein relates to estimation of a location of a mobile device and more particularly to estimation of a location using beams produced by a mmW small cells.
Information:
The location of a mobile device, such as a cellular telephone, may be useful or essential to a number of applications including emergency calls, navigation, direction finding, asset tracking and Internet service. The location of a mobile device may be estimated based on information gathered from various systems. In a cellular network implemented according to 4G (also referred to as Fourth Generation) Long Term Evolution (LTE) radio access or 5G (also referred to as Fifth Generation) “New Radio” (NR) , for example, a base station may transmit a positioning reference signal (PRS) . A mobile device acquiring PRSs transmitted by different base stations may deliver signal-based measurements to a location server, which may be part of an Evolved Packet Core (EPC) or 5G Core Network (5GCN) , for use in computing a location estimate of the mobile device. For example, a UE may generate positioning measurements from the downlink (DL) PRS such as Reference Signal Time Difference (RSTD) , Reference Signal Received Power (RSRP) , and reception and transmission (RX-TX) time difference measurements, which may be used in various positioning methods, such as Time Difference of Arrival (TDOA) , Angle of Departure (AoD) , and multi-cell Round Trip Time (RTT) . Alternatively, a mobile device may compute an estimate of its own location using various positioning methods. Other position methods that may be used for a mobile device include use of a Global Navigation Satellite System (GNSS) such as GPS, GLONASS or Galileo and use of Assisted GNSS (A-GNSS) where a network provides assistance data to a mobile decide to assist the mobile device in acquiring and measuring GNSS signals and/or in computing a location estimate from the GNSS measurements.
With 5G NR cellular networks, small cells are playing a more and more important role. For example, it is sometimes desirable for operators to deploy many small cells to enhance capacity on top of macrocell coverage. Small cells, which use Millimeter Wave ( “mmW” ) transmission (sometimes referred to as Frequency 2) , are predicted to expand their footprint worldwide because mmW can provide a greater spectrum width and shorter air interface latency than found in macrocells. In particular, mmW small cell deployment is expected to be particularly useful for indoor environments, e.g., driven by extremely high data rate expectations, e.g. Gbps level. The expanding deployment of small cells, particularly in environments where positioning is difficult, e.g., indoor environments, provides additional positioning opportunities.
SUMMARY
The position of a mobile device is estimated based on the intersection of a number of beams received by the mobile device from a plurality of small cell base stations. The mobile device may determine a beam identifier from beams received from the small cell base stations. The beam identifier, for example, may be used to determine the azimuth angle and elevation angle of the beam relative to the transmitting base station. The mobile device provides the beam identifiers of received beams to a location server. The location server determines the orientation of the beams with respect to a coordinate system, e.g., based on the position and the angle of the beam relative to the small cell base stations. The position of the mobile device is at the intersection of two or more beams in the coordinate system.
In one implementation, a method for determining a location of a mobile device performed by the mobile device, includes receiving a first radio beam transmitted by a serving small cell base station, the first radio beam comprising a first beam identification value; measuring a second radio beam transmitted by a first neighboring small cell base station, the second radio beam comprising a second beam identification value; and sending to a location server a measurement report including at least the second beam identification value to determine the location of the mobile device based on an intersection of at least the first radio beam and the second radio beam.
In one implementation, a mobile device configured to support determining a location of the mobile device, includes a wireless transceiver configured to wirelessly  communicate in a wireless network; at least one memory; at least one processor coupled to the wireless transceiver and the at least one memory, wherein the at least one processor is configured to: receive a first radio beam transmitted by a serving small cell base station, the first radio beam comprising a first beam identification value; measure a second radio beam transmitted by a first neighboring small cell base station, the second radio beam comprising a second beam identification value; and send to a location server a measurement report including at least the second beam identification value to determine the location of the mobile device based on an intersection of at least the first radio beam and the second radio beam.
In one implementation, a mobile device configured to support determining a location of the mobile device, includes means for receiving a first radio beam transmitted by a serving small cell base station, the first radio beam comprising a first beam identification value; means for measuring a second radio beam transmitted by a first neighboring small cell base station, the second radio beam comprising a second beam identification value; and means for sending to a location server a measurement report including at least the second beam identification value to determine the location of the mobile device based on an intersection of at least the first radio beam and the second radio beam.
In one implementation, a non-transitory storage medium including program code stored thereon, the program code is operable to configure a processor of a mobile device to support determining a location of the mobile device, includes program code to receive a first radio beam transmitted by a serving small cell base station, the first radio beam comprising a first beam identification value; program code to measure a second radio beam transmitted by a first neighboring small cell base station, the second radio beam comprising a second beam identification value; and program code to send to a location server a measurement report including at least the second beam identification value to determine the location of the mobile device based on an intersection of at least the first radio beam and the second radio beam.
In one implementation, a method for determining a location of a mobile device performed by a location server, includes receiving a measurement report for the mobile device including a first beam identification value for a first radio beam received by the mobile device from a serving small cell base station and a second beam identification  value for a second radio beam measured by the mobile device and transmitted by a first neighboring small cell base station; and determining the location of the mobile device based on an intersection of at least the first radio beam and the second radio beam.
In one implementation, a location server configured to support determining a location of a mobile device, includes an external interface configured to communicate with in a wireless network; at least one memory; at least one processor coupled to the external interface and the at least one memory, wherein the at least one processor is configured to: receive a measurement report for the mobile device including a first beam identification value for a first radio beam received by the mobile device from a serving small cell base station and a second beam identification value for a second radio beam measured by the mobile device and transmitted by a first neighboring small cell base station; and determine the location of the mobile device based on an intersection of at least the first radio beam and the second radio beam.
In one implementation, a location server configured to support determining a location of a mobile device, includes means for receiving a measurement report for the mobile device including a first beam identification value for a first radio beam received by the mobile device from a serving small cell base station and a second beam identification value for a second radio beam measured by the mobile device and transmitted by a first neighboring small cell base station; and means for determining the location of the mobile device based on an intersection of at least the first radio beam and the second radio beam.
In one implementation, a non-transitory storage medium including program code stored thereon, the program code is operable to configure a processor of a location server configured to support determining a location of a mobile device, includes program code to receive a measurement report for the mobile device including a first beam identification value for a first radio beam received by the mobile device from a serving small cell base station and a second beam identification value for a second radio beam measured by the mobile device and transmitted by a first neighboring small cell base station; and program code to determine the location of the mobile device based on an intersection of at least the first radio beam and the second radio beam.
Other objects and advantages associated with the aspects disclosed herein will be apparent to those skilled in the art based on the accompanying drawings and detailed  description.
BRIEF DESCRIPTION OF THE DRAWINGS
The accompanying drawings are presented to aid in the description of various aspects of the disclosure and are provided solely for illustration of the aspects and not limitation thereof.
FIG. 1 illustrates an exemplary wireless communications system, according to various aspects of the disclosure.
FIGS. 2A and 2B illustrate example wireless network structures, according to various aspects of the disclosure.
FIG. 3 illustrates a block diagram of a design of base station and user equipment (UE) , which may be one of the base stations and one of the UEs in Fig. 1.
FIG. 4A shows an example synchronization signal in a 5G NR wireless network is shown.
FIG. 4B shows an example CSI-RS periodicity configuration in a 5G NR wireless network.
FIG. 5 illustrates an example of narrow beams produced by a mmW small cell antenna panel.
FIG. 6 illustrates directional beams transmitted from a base station based on a synchronization signal (SS) burst.
FIG. 7 illustrates an array of beams over a spatial extent that may be produced by the base station.
FIG. 8 illustrates a network including the UE receiving beams from multiple small cell base stations.
FIG. 9 illustrates a coordinate system in which the intersection of beams, represented by lines is used to determine the position of the UE.
FIG. 10 illustrates an example of a signaling flow showing various messages sent between components of the communication system during a location session in which the location of the UE is determined using beams from small cell base stations.
FIG. 11 shows a schematic block diagram illustrating certain exemplary features of a UE enabled to support positioning using beams transmitted from small cell base stations.
FIG. 12 shows a schematic block diagram illustrating certain exemplary features of a location server enabled to support positioning of a UE based on identifiers of beams received by the UE from small cell base stations.
FIG. 13 shows a flowchart for an exemplary method for determining a location of a mobile device performed by the mobile device.
FIG. 14 shows a flowchart for an exemplary method for determining a location of a mobile device performed by a location server.
DETAILED DESCRIPTION
Aspects of the disclosure are provided in the following description and related drawings directed to various examples provided for illustration purposes. Alternate aspects may be devised without departing from the scope of the disclosure. Additionally, well-known elements of the disclosure will not be described in detail or will be omitted so as not to obscure the relevant details of the disclosure.
The words “exemplary” and/or “example” are used herein to mean “serving as an example, instance, or illustration. ” Any aspect described herein as “exemplary” and/or “example” is not necessarily to be construed as preferred or advantageous over other aspects. Likewise, the term “aspects of the disclosure” does not require that all aspects of the disclosure include the discussed feature, advantage or mode of operation.
Those of skill in the art will appreciate that the information and signals described below may be represented using any of a variety of different technologies and techniques. For example, data, instructions, commands, information, signals, bits, symbols, and chips that may be referenced throughout the description below may be represented by voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or particles, or any combination thereof, depending in part on the  particular application, in part on the desired design, in part on the corresponding technology, etc.
Further, many aspects are described in terms of sequences of actions to be performed by, for example, elements of a computing device. It will be recognized that various actions described herein can be performed by specific circuits (e.g., application specific integrated circuits (ASICs) ) , by program instructions being executed by one or more processors, or by a combination of both. Additionally, the sequence (s) of actions described herein can be considered to be embodied entirely within any form of non-transitory computer-readable storage medium having stored therein a corresponding set of computer instructions that, upon execution, would cause or instruct an associated processor of a device to perform the functionality described herein. Thus, the various aspects of the disclosure may be embodied in a number of different forms, all of which have been contemplated to be within the scope of the claimed subject matter. In addition, for each of the aspects described herein, the corresponding form of any such aspects may be described herein as, for example, “logic configured to” perform the described action.
As used herein, the terms “user equipment” (UE) and “base station” are not intended to be specific or otherwise limited to any particular Radio Access Technology (RAT) , unless otherwise noted. In general, a UE may be any wireless communication device (e.g., a mobile phone, router, tablet computer, laptop computer, tracking device, wearable (e.g., smartwatch, glasses, augmented reality (AR) /virtual reality (VR) headset, etc. ) , vehicle (e.g., automobile, motorcycle, bicycle, etc. ) , Internet of Things (IoT) device, etc. ) used by a user to communicate over a wireless communications network. A UE may be mobile or may (e.g., at certain times) be stationary, and may communicate with a Radio Access Network (RAN) . As used herein, the term “UE” may be referred to interchangeably as an “access terminal” or “AT, ” a “client device, ” a “wireless device, ” a “subscriber device, ” a “subscriber terminal, ” a “subscriber station, ” a “user terminal” or UT, a “mobile terminal, ” a “mobile station, ” “mobile device, ” or variations thereof. Generally, UEs can communicate with a core network via a RAN, and through the core network the UEs can be connected with external networks such as the Internet and with other UEs. Of course, other mechanisms of connecting to the core network and/or the Internet are also possible for the UEs, such as over wired access networks, wireless local area network (WLAN) networks (e.g., based on IEEE 802.11,  etc. ) and so on.
A base station may operate according to one of several RATs in communication with UEs depending on the network in which it is deployed, and may be alternatively referred to as an access point (AP) , a network node, a NodeB, an evolved NodeB (eNB) , a New Radio (NR) Node B (also referred to as a gNB or gNodeB) , etc. In addition, in some systems a base station may provide purely edge node signaling functions while in other systems it may provide additional control and/or network management functions. A communication link through which UEs can send signals to a base station is called an uplink (UL) channel (e.g., a reverse traffic channel, a reverse control channel, an access channel, etc. ) . A communication link through which the base station can send signals to UEs is called a downlink (DL) or forward link channel (e.g., a paging channel, a control channel, a broadcast channel, a forward traffic channel, etc. ) . As used herein the term traffic channel (TCH) can refer to either an UL/reverse or DL/forward traffic channel.
The term “base station” may refer to a single physical transmission point or to multiple physical transmission points that may or may not be co-located. For example, where the term “base station” refers to a single physical transmission point, the physical transmission point may be an antenna of the base station corresponding to a cell of the base station. Where the term “base station” refers to multiple co-located physical transmission points, the physical transmission points may be an array of antennas (e.g., as in a multiple-input multiple-output (MIMO) system or where the base station employs beamforming) of the base station. Where the term “base station” refers to multiple non-co-located physical transmission points, the physical transmission points may be a distributed antenna system (DAS) (a network of spatially separated antennas connected to a common source via a transport medium) or a remote radio head (RRH) (a remote base station connected to a serving base station) . Alternatively, the non-co-located physical transmission points may be the serving base station receiving the measurement report from the UE and a neighbor base station whose reference RF signals the UE is measuring.
To support positioning of a UE, two broad classes of location solution have been defined: control plane and user plane. With control plane (CP) location, signaling related to positioning and support of positioning may be carried over existing network (and UE) interfaces and using existing protocols dedicated to the transfer of signaling.  With user plane (UP) location, signaling related to positioning and support of positioning may be carried as part of other data using such protocols as the Internet Protocol (IP) , Transmission Control Protocol (TCP) and User Datagram Protocol (UDP) .
The Third Generation Partnership Project (3GPP) has defined control plane location solutions for UEs that use radio access according to Global System for Mobile communications GSM (2G) , Universal Mobile Telecommunications System (UMTS) (3G) , LTE (4G) and New Radio (NR) for Fifth Generation (5G) . These solutions are defined in 3GPP Technical Specifications (TSs) 23.271 and 23.273 (common parts) , 43.059 (GSM access) , 25.305 (UMTS access) , 36.305 (LTE access) and 38.305 (NR access) . The Open Mobile Alliance (OMA) has similarly defined a UP location solution known as Secure User Plane Location (SUPL) which can be used to locate a UE accessing any of a number of radio interfaces that support IP packet access such as General Packet Radio Service (GPRS) with GSM, GPRS with UMTS, or IP access with LTE or NR.
Both CP and UP location solutions may employ a location server (LS) to support positioning. The LS may be part of or accessible from a serving network or a home network for a UE or may simply be accessible over the Internet or over a local Intranet. If positioning of a UE is needed, an LS may instigate a session (e.g. a location session or a SUPL session) with the UE and coordinate location measurements by the UE and determination of an estimated location of the UE. During a location session, an LS may request positioning capabilities of the UE (or the UE may provide them without a request) , may provide assistance data to the UE (e.g. if requested by the UE or in the absence of a request) and may request a location estimate or location measurements from a UE, e.g. for the GNSS, TDOA, AoD, Multi-RTT, and/or Enhanced Cell ID (ECID) position methods. Assistance data may be used by a UE to acquire and measure GNSS and/or PRS signals (e.g. by providing expected characteristics of these signals such as frequency, expected time of arrival, signal coding, signal Doppler) .
In a UE based mode of operation, assistance data may also or instead be used by a UE to help determine a location estimate from the resulting location measurements (e.g., if the assistance data provides satellite ephemeris data in the case of GNSS positioning or base station locations and other base station characteristics such as PRS  timing in the case of terrestrial positioning using, e.g., TDOA, AoD, Multi-RTT, etc. ) .
In a UE assisted mode of operation, a UE may return location measurements to an LS which may determine an estimated location of the UE based on these measurements and possibly based also on other known or configured data (e.g. satellite ephemeris data for GNSS location or base station characteristics including base station locations and possibly PRS timing in the case of terrestrial positioning using , e.g., TDOA, AoD, Multi-RTT, etc. ) .
In another standalone mode of operation, a UE may make location related measurements without any positioning assistance data from an LS and may further compute a location or a change in location without any positioning assistance data from an LS. Position methods that may be used in a standalone mode include GPS and GNSS (e.g. if a UE obtains satellite orbital data from data broadcast by GPS and GNSS satellites themselves) as well as sensors.
In the case of 3GPP CP location, an LS may be an enhanced serving mobile location center (E-SMLC) in the case of LTE access, a standalone SMLC (SAS) in the case of UMTS access, a serving mobile location center (SMLC) in the case of GSM access, or a Location Management Function (LMF) in the case of 5G NR access. In the case of OMA SUPL location, an LS may be a SUPL Location Platform (SLP) which may act as any of: (i) a home SLP (H-SLP) if in or associated with the home network of a UE or if providing a permanent subscription to a UE for location services; (ii) a discovered SLP (D-SLP) if in or associated with some other (non-home) network or if not associated with any network; (iii) an Emergency SLP (E-SLP) if supporting location for an emergency call instigated by the UE; or (iv) a visited SLP (V-SLP) if in or associated with a serving network or a current local area for a UE.
During a location session, an LS and UE may exchange messages defined according to some positioning protocol in order to coordinate the determination of an estimated location. Possible positioning protocols may include, for example, the LTE Positioning Protocol (LPP) defined by 3GPP in 3GPP TS 36.355 and the LPP Extensions (LPPe) protocol defined by OMA in OMA TSs OMA-TS-LPPe-V1_0, OMA-TS-LPPe-V1_1 and OMA-TS-LPPe-V2_0. The LPP and LPPe protocols may be used in combination where an LPP message contains one embedded LPPe message. The combined LPP and LPPe protocols may be referred to as LPP/LPPe. LPP and LPP/LPPe  may be used to help support the 3GPP control plane solution for LTE or NR access, in which case LPP or LPP/LPPe messages are exchanged between a UE and E-SMLC or between a UE and LMF. LPP or LPPe messages may be exchanged between a UE and E-SMLC via a serving Mobility Management Entity (MME) and a serving eNodeB for the UE. LPP or LPPe messages may also be exchanged between a UE and LMF via a serving Access and Mobility Management Function (AMF) and a serving NR Node B (gNB) for the UE. LPP and LPP/LPPe may also be used to help support the OMA SUPL solution for many types of wireless access that support IP messaging (such as LTE, NR and WiFi) , where LPP or LPP/LPPe messages are exchanged between a SUPL Enabled Terminal (SET) , which is the term used for a UE with SUPL, and an SLP, and may be transported within SUPL messages such as a SUPL POS or SUPL POS INIT message
An LS and a base station (e.g. an eNodeB for LTE access) may exchange messages to enable the LS to (i) obtain position measurements for a particular UE from the base station, or (ii) obtain location information from the base station not related to a particular UE such as the location coordinates of an antenna for the base station, the cells (e.g. cell identities) supported by the base station, cell timing for the base station and/or parameters for signals transmitted by the base station such as PRS signals. In the case of LTE access, the LPP A (LPPa) protocol may be used to transfer such messages between a base station that is an eNodeB and an LS that is an E-SMLC. In the case of NR access, the NRPPA protocol may be used to transfer such messages between a base station that is a gNodeB and an LS that is an LMF. It is noted that the terms “parameter” and “information element” (IE) are synonymous and are used interchangeably herein. It is also noted that the term “posSIB” , as used herein, refers to a System Information Block (SIB) which includes assistance data (also referred to as “positioning assistance data” ) to support positioning of one or more UEs. However, in some instances, the term “SIB” is used herein to refer to a SIB containing assistance data to support positioning of one or more UEs. It is further noted that the terms “SI messages” and “positioning SI messages” are used interchangeably herein to refer to system information messages containing assistance data, e.g. assistance data in the form of one or more posSIBs.
Small cells using mmW transmissions are expected to be deployed in 5G NR cellular networks in increasing amounts and in environments where radio signal based  positioning is conventionally difficult, e.g., in indoor environment or urban canyons. Small cells utilize an array of antennas in a MIMO system for beamforming. With a large number of antenna elements, beamforming can be used to produce very narrow beams, e.g. 3dB width at 15° or even smaller. Very narrow beams may be swept horizontally (azimuthally) and vertically (elevation) to form a spatial array. Information related to which beam in the spatial array is received by a UE provides accurate position information for the UE, without requiring the transmission of specific reference signals by the TRP or positioning measurements of reference signals by the UE. By combining information related to which beams are received by the UE from several neighboring small cell TRPs, an accurate position estimate for the UE may be produced, e.g., based on intersection of the beams.
FIG. 1 illustrates an exemplary wireless communications system 100. The wireless communications system 100 (which may also be referred to as a wireless wide area network (WWAN) ) may include various base stations 102 and various UEs 104. The base stations 102 may include macro cell base stations (high power cellular base stations) and/or small cell base stations (low power cellular base stations) . For example, small cell base stations may be “Medium Range Base Stations” and “Local Area Base Stations” as defined in section 4.4 of 3GPP Technical Specification (TS) 38.104, which include base stations characterized by requirements derived from Micro Cell scenarios with a BS to UE minimum distance along the ground equal to 5 m or a minimum coupling loss equals to 53 dB or by requirements derived from Pico Cell scenarios with a BS to UE minimum distance along the ground equal to 2 m or a minimum coupling loss equal to 45 dB. In an aspect, the macro cell base station may include eNBs where the wireless communications system 100 corresponds to an LTE network, or gNBs where the wireless communications system 100 corresponds to a 5G network, or a combination of both, and the small cell base stations may include femtocells, picocells, microcells, etc.
The base stations 102 may collectively form a RAN and interface with a core network 170 (e.g., an evolved packet core (EPC) or next generation core (NGC) ) through backhaul links 122, and through the core network 170 to one or more location servers 172. In addition to other functions, the base stations 102 may perform functions that relate to one or more of transferring user data, radio channel ciphering and deciphering, integrity protection, header compression, mobility control functions (e.g.,  handover, dual connectivity) , inter-cell interference coordination, connection setup and release, load balancing, distribution for non-access stratum (NAS) messages, NAS node selection, synchronization, RAN sharing, multimedia broadcast multicast service (MBMS) , subscriber and equipment trace, RAN information management (RIM) , paging, positioning, and delivery of warning messages. The base stations 102 may communicate with each other directly or indirectly (e.g., through the EPC/NGC) over backhaul links 134, which may be wired or wireless.
The base stations 102 may wirelessly communicate with the UEs 104. Each of the base stations 102 may provide communication coverage for a respective geographic coverage area 110. In an aspect, one or more cells may be supported by a base station 102 in each coverage area 110. A “cell” is a logical communication entity used for communication with a base station (e.g., over some frequency resource, referred to as a carrier frequency, component carrier, carrier, band, or the like) , and may be associated with an identifier (e.g., a physical cell identifier (PCID) , a virtual cell identifier (VCID) ) for distinguishing cells operating via the same or a different carrier frequency. In some cases, different cells may be configured according to different protocol types (e.g., machine-type communication (MTC) , narrowband IoT (NB-IoT) , enhanced mobile broadband (eMBB) , or others) that may provide access for different types of UEs. In some cases, the term “cell” may also refer to a geographic coverage area of a base station (e.g., a sector) , insofar as a carrier frequency can be detected and used for communication within some portion of geographic coverage areas 110.
While neighboring macro cell base station 102 geographic coverage areas 110 may partially overlap (e.g., in a handover region) , some of the geographic coverage areas 110 may be substantially overlapped by a larger geographic coverage area 110. For example, a small cell base station 102' may have a coverage area 110' that substantially overlaps with the coverage area 110 of one or more macro cell base stations 102. A network that includes both small cell and macro cell base stations may be known as a heterogeneous network. A heterogeneous network may also include home eNBs (HeNBs) , which may provide service to a restricted group known as a closed subscriber group (CSG) .
The communication links 120 between the base stations 102 and the UEs 104 may include UL (also referred to as reverse link) transmissions from a UE 104 to a base  station 102 and/or downlink (DL) (also referred to as forward link) transmissions from a base station 102 to a UE 104. The communication links 120 may use MIMO antenna technology, including spatial multiplexing, beamforming, and/or transmit diversity. The communication links 120 may be through one or more carrier frequencies. Allocation of carriers may be asymmetric with respect to DL and UL (e.g., more or less carriers may be allocated for DL than for UL) .
The wireless communications system 100 may further include a wireless local area network (WLAN) access point (AP) 150 in communication with WLAN stations (STAs) 152 via communication links 154 in an unlicensed frequency spectrum (e.g., 5 GHz) . When communicating in an unlicensed frequency spectrum, the WLAN STAs 152 and/or the WLAN AP 150 may perform a clear channel assessment (CCA) prior to communicating in order to determine whether the channel is available.
The small cell base station 102' may operate in a licensed and/or an unlicensed frequency spectrum. When operating in an unlicensed frequency spectrum, the small cell base station 102' may employ LTE or 5G technology and use the same 5 GHz unlicensed frequency spectrum as used by the WLAN AP 150. The small cell base station 102', employing LTE/5G in an unlicensed frequency spectrum, may boost coverage to and/or increase capacity of the access network. LTE in an unlicensed spectrum may be referred to as LTE-unlicensed (LTE-U) , licensed assisted access (LAA) , or MulteFire.
The wireless communications system 100 may further include a millimeter wave (mmW) base station 102, which may be a small cell base station, that may operate in mmW frequencies and/or near mmW frequencies in communication with a UE 104. Extremely high frequency (EHF) is part of the RF in the electromagnetic spectrum. EHF has a range of 30 GHz to 300 GHz and a wavelength between 1 millimeter and 10 millimeters. Radio waves in this band may be referred to as a millimeter wave. Near mmW may extend down to a frequency of 3 GHz with a wavelength of 100 millimeters. The super high frequency (SHF) band extends between 3 GHz and 30 GHz, also referred to as centimeter wave. Communications using the mmW/near mmW radio frequency band have high path loss and a relatively short range. The mmW base station 102 and the UE 104 may utilize beamforming (transmit and/or receive) over a mmW communication link 120 to compensate for the extremely high path loss and short range.  Further, it will be appreciated that in alternative configurations, one or more base stations 102 may also transmit using mmW or near mmW and beamforming. Accordingly, it will be appreciated that the foregoing illustrations are merely examples and should not be construed to limit the various aspects disclosed herein.
Transmit beamforming is a technique for focusing an RF signal in a specific direction. Traditionally, when a network node (e.g., a base station) broadcasts an RF signal, it broadcasts the signal in all directions (omni-directionally) . With transmit beamforming, the network node determines where a given target device (e.g., a UE) is located (relative to the transmitting network node) and projects a stronger downlink RF signal in that specific direction, thereby providing a faster (in terms of data rate) and stronger RF signal for the receiving device (s) . To change the directionality of the RF signal when transmitting, a network node can control the phase and relative amplitude of the RF signal at each of the one or more transmitters that are broadcasting the RF signal. For example, a network node may use an array of antennas (referred to as a “phased array” or an “antenna array” ) that creates a beam of RF waves that can be “steered” to point in different directions, without actually moving the antennas. Specifically, the RF current from the transmitter is fed to the individual antennas with the correct phase relationship so that the radio waves from the separate antennas add together to increase the radiation in a desired direction, while cancelling to suppress radiation in undesired directions.
In receive beamforming, the receiver uses a receive beam to amplify RF signals detected on a given channel. For example, the receiver can increase the gain setting and/or adjust the phase setting of an array of antennas in a particular direction to amplify (e.g., to increase the gain level of) the RF signals received from that direction. Thus, when a receiver is said to beamform in a certain direction, it means the beam gain in that direction is high relative to the beam gain along other directions, or the beam gain in that direction is the highest compared to the beam gain in that direction of all other receive beams available to the receiver. This results in a stronger received signal strength (e.g., reference signal received power (RSRP) , reference signal received quality (RSRQ) , signal-to-interference-plus-noise ratio (SINR) , etc. ) of the RF signals received from that direction.
In 5G, the frequency spectrum in which wireless nodes (e.g., base stations 102,  UEs 104) operate is divided into multiple frequency ranges, FR1 (from 450 to 6000 MHz) , FR2 (from 24250 to 52600 MHz) , FR3 (above 52600 MHz) , and FR4 (between FR1 and FR2) . In a multi-carrier system, such as 5G, one of the carrier frequencies is referred to as the “primary carrier” or “anchor carrier” or “primary serving cell” or “PCell, ” and the remaining carrier frequencies are referred to as “secondary carriers” or “secondary serving cells” or “SCells. ” In carrier aggregation, the anchor carrier is the carrier operating on the primary frequency (e.g., FR1) utilized by a UE 104 and the cell in which the UE 104 either performs the initial radio resource control (RRC) connection establishment procedure or initiates the RRC connection re-establishment procedure. The primary carrier carries all common and UE-specific control channels. A secondary carrier is a carrier operating on a second frequency (e.g., FR2) that may be configured once the RRC connection is established between the UE 104 and the anchor carrier and that may be used to provide additional radio resources. The secondary carrier may contain only necessary signaling information and signals, for example, those that are UE-specific may not be present in the secondary carrier, since both primary uplink and downlink carriers are typically UE-specific. This means that different UEs 104 in a cell may have different downlink primary carriers. The same is true for the uplink primary carriers. The network is able to change the primary carrier of any UE 104 at any time. This is done, for example, to balance the load on different carriers. Because a “serving cell” (whether a PCell or an SCell) corresponds to a carrier frequency/component carrier over which some base station is communicating, the term “cell, ” “serving cell, ” “component carrier, ” “carrier frequency, ” and the like can be used interchangeably.
For example, still referring to FIG. 1, one of the frequencies utilized by a macro cell base stations 102 may be an anchor carrier (or “PCell” ) and other frequencies utilized by the macro cell base stations 102 and/or the mmW base station 102 may be secondary carriers ( “SCells” ) . The simultaneous transmission and/or reception of multiple carriers enables the UE 104 to significantly increase its data transmission and/or reception rates. For example, two 20 MHz aggregated carriers in a multi-carrier system would theoretically lead to a two-fold increase in data rate (i.e., 40 MHz) , compared to that attained by a single 20 MHz carrier.
The wireless communications system 100 may further include one or more UEs, such as UE 190, that connects indirectly to one or more communication networks via one or more device-to-device (D2D) peer-to-peer (P2P) links. In the example of FIG. 1,  UE 190 has a D2D P2P link 192 with one of the UEs 104 connected to one of the base stations 102 (e.g., through which UE 190 may indirectly obtain cellular connectivity) and a D2D P2P link 194 with WLAN STA 152 connected to the WLAN AP 150 (through which UE 190 may indirectly obtain WLAN-based Internet connectivity) . In an example, the D2D P2P links 192 and 194 may be supported with any well-known D2D RAT, such as LTE Direct (LTE-D) , WiFi Direct (WiFi-D) , 
Figure PCTCN2020108469-appb-000001
and so on.
The wireless communications system 100 may further include a UE 104 that may communicate with a macro cell base station 102 over a communication link 120 and/or the mmW base station 102 over a mmW communication link 120. For example, the macro cell base station 102 may support a PCell and one or more SCells for the UE 164 and the mmW base station 1102 may support one or more SCells for the UE 164.
FIG. 2A illustrates an example wireless network structure 200. For example, an NGC 210 (also referred to as a “5GC” ) can be viewed functionally as control plane functions 214 (e.g., UE registration, authentication, network access, gateway selection, etc. ) and user plane functions 212, (e.g., UE gateway function, access to data networks, IP routing, etc. ) which operate cooperatively to form the core network. User plane interface (NG-U) 213 and control plane interface (NG-C) 215 connect the gNB 222 to the NGC 210 and specifically to the control plane functions 214 and user plane functions 212. In an additional configuration, an eNB 224 may also be connected to the NGC 210 via NG-C 215 to the control plane functions 214 and NG-U 213 to user plane functions 212. Further, eNB 224 may directly communicate with gNB 222 via a backhaul connection 223. In some configurations, the New RAN 220 may only have one or more gNBs 222, while other configurations include one or more of both eNBs 224 and gNBs 222. Either gNB 222 or eNB 224 may communicate with UEs 204 (e.g., any of the UEs depicted in FIG. 1) . Another optional aspect may include one or  more location servers  230a, 230b (sometimes collectively referred to as location server 230) (which may correspond to location server 172) , which may be in communication with the control plane functions 214 and user plane functions 212, respectively, in the NGC 210 to provide location assistance for UEs 204. The location server 230 can be implemented as a plurality of separate servers (e.g., physically separate servers, different software modules on a single server, different software modules spread across multiple physical servers, etc. ) , or alternately may each correspond to a single server. The location server 230 can be configured to support one or more location services for  UEs 204 that can connect to the location server 230 via the core network, NGC 210, and/or via the Internet (not illustrated) . Further, the location server 230 may be integrated into a component of the core network, or alternatively may be external to the core network, e.g., in the New RAN 220.
FIG. 2B illustrates another example wireless network structure 250. For example, an NGC 260 (also referred to as a “5GC” ) can be viewed functionally as control plane functions, provided by an access and mobility management function (AMF) 264, user plane function (UPF) 262, a session management function (SMF) 266, SLP 268, and an LMF 270, which operate cooperatively to form the core network (i.e., NGC 260) . User plane interface 263 and control plane interface 265 connect the ng-eNB 224 to the NGC 260 and specifically to UPF 262 and AMF 264, respectively. In an additional configuration, a gNB 222 may also be connected to the NGC 260 via control plane interface 265 to AMF 264 and user plane interface 263 to UPF 262. Further, eNB 224 may directly communicate with gNB 222 via the backhaul connection 223, with or without gNB direct connectivity to the NGC 260. In some configurations, the New RAN 220 may only have one or more gNBs 222, while other configurations include one or more of both ng-eNBs 224 and gNBs 222. Either ng-gNB 222 or eNB 224 may communicate with UEs 204 (e.g., any of the UEs depicted in FIG. 1) . The base stations of the New RAN 220 communicate with the AMF 264 over the N2 interface and the UPF 262 over the N3 interface.
The functions of the AMF include registration management, connection management, reachability management, mobility management, lawful interception, transport for session management (SM) messages between the UE 204 and the SMF 266, transparent proxy services for routing SM messages, access authentication and access authorization, transport for short message service (SMS) messages between the UE 204 and the short message service function (SMSF) (not shown) , and security anchor functionality (SEAF) . The AMF also interacts with the authentication server function (AUSF) (not shown) and the UE 204, and receives the intermediate key that was established as a result of the UE 204 authentication process. In the case of authentication based on a UMTS (universal mobile telecommunications system) subscriber identity module (USIM) , the AMF retrieves the security material from the AUSF. The functions of the AMF also include security context management (SCM) . The SCM receives a key from the SEAF that it uses to derive access-network specific  keys. The functionality of the AMF also includes location services management for regulatory services, transport for location services messages between the UE 204 and the location management function (LMF) 270 (which may correspond to location server 172) , as well as between the New RAN 220 and the LMF 270, evolved packet system (EPS) bearer identifier allocation for interworking with the EPS, and UE 204 mobility event notification. In addition, the AMF also supports functionalities for non-Third Generation Partnership Project (3GPP) access networks.
Functions of the UPF include acting as an anchor point for intra-/inter-RAT mobility (when applicable) , acting as an external protocol data unit (PDU) session point of interconnect to the data network (not shown) , providing packet routing and forwarding, packet inspection, user plane policy rule enforcement (e.g., gating, redirection, traffic steering) , lawful interception (user plane collection) , traffic usage reporting, quality of service (QoS) handling for the user plane (e.g., UL/DL rate enforcement, reflective QoS marking in the DL) , UL traffic verification (service data flow (SDF) to QoS flow mapping) , transport level packet marking in the UL and DL, DL packet buffering and DL data notification triggering, and sending and forwarding of one or more “end markers” to the source RAN node.
The functions of the SMF 266 include session management, UE Internet protocol (IP) address allocation and management, selection and control of user plane functions, configuration of traffic steering at the UPF to route traffic to the proper destination, control of part of policy enforcement and QoS, and downlink data notification. The interface over which the SMF 266 communicates with the AMF 264 is referred to as the N11 interface.
Another optional aspect may include an LMF 270, which may be in communication with the NGC 260 to provide location assistance for UEs 204. The LMF 270 can be implemented as a plurality of separate servers (e.g., physically separate servers, different software modules on a single server, different software modules spread across multiple physical servers, etc. ) , or alternately may each correspond to a single server. The LMF 270 can be configured to support one or more location services for UEs 204 that can connect to the LMF 270 via the core network, NGC 260, and/or via the Internet (not illustrated) .
FIG. 3 shows a block diagram of a design 300 of base station 102 and UE 104, which may be one of the base stations and one of the UEs in FIG. 1. Base station 102 may be equipped with T antennas 334a through 334t, and UE 104 may be equipped with R antennas 352a through 352r, where in general T ≥ 1 and R ≥ 1.
At base station 102, a transmit processor 320 may receive data from a data source 312 for one or more UEs, select one or more modulation and coding schemes (MCS) for each UE based at least in part on channel quality indicators (CQIs) received from the UE, process (e.g., encode and modulate) the data for each UE based at least in part on the MCS (s) selected for the UE, and provide data symbols for all UEs. Transmit processor 320 may also process system information (e.g., for semi-static resource partitioning information (SRPI) and/or the like) and control information (e.g., CQI requests, grants, upper layer signaling, and/or the like) and provide overhead symbols and control symbols. Transmit processor 320 may also generate reference symbols for reference signals (e.g., the cell-specific reference signal (CRS) ) and synchronization signals (e.g., the primary synchronization signal (PSS) and secondary synchronization signal (SSS) ) . A transmit (TX) multiple-input multiple-output (MIMO) processor 330 may perform spatial processing (e.g., precoding) on the data symbols, the control symbols, the overhead symbols, and/or the reference symbols, if applicable, and may provide T output symbol streams to T modulators (MODs) 332a through 332t. Each modulator 332 may process a respective output symbol stream (e.g., for OFDM and/or the like) to obtain an output sample stream. Each modulator 332 may further process (e.g., convert to analog, amplify, filter, and upconvert) the output sample stream to obtain a downlink signal. T downlink signals from modulators 332a through 332t may be transmitted via T antennas 334a through 334t, respectively. According to various aspects described in more detail below, the synchronization signals can be generated with location encoding to convey additional information.
At UE 104, antennas 352a through 352r may receive the downlink signals from base station 102 and/or other base stations and may provide received signals to demodulators (DEMODs) 354a through 354r, respectively. Each demodulator 354 may condition (e.g., filter, amplify, down convert, and digitize) a received signal to obtain input samples. Each demodulator 354 may further process the input samples (e.g., for OFDM and/or the like) to obtain received symbols. A MIMO detector 356 may obtain received symbols from all R demodulators 354a through 354r, perform MIMO detection  on the received symbols if applicable, and provide detected symbols. A receive processor 358 may process (e.g., demodulate and decode) the detected symbols, provide decoded data for UE 104 to a data sink 360, and provide decoded control information and system information to a controller/processor 380. A channel processor may determine reference signal received power (RSRP) , received signal strength indicator (RSSI) , reference signal received quality (RSRQ) , channel quality indicator (CQI) , and/or the like. In some aspects, one or more components of UE 104 may be included in a housing.
On the uplink, at UE 104, a transmit processor 364 may receive and process data from a data source 362 and control information (e.g., for reports comprising RSRP, RSSI, RSRQ, CQI, and/or the like) from controller/processor 380. Transmit processor 364 may also generate reference symbols for one or more reference signals. The symbols from transmit processor 364 may be precoded by a TX MIMO processor 366 if applicable, further processed by modulators 354a through 354r (e.g., for DFT-s-OFDM, CP-OFDM, and/or the like) , and transmitted to base station 102. At base station 102, the uplink signals from UE 104 and other UEs may be received by antennas 334, processed by demodulators 332, detected by a MIMO detector 336 if applicable, and further processed by a receive processor 338 to obtain decoded data and control information sent by UE 104. Receive processor 338 may provide the decoded data to a data sink 339 and the decoded control information to controller/processor 340. Base station 102 may include communication unit 344 and communicate to network controller 389 via communication unit 344. Network controller 389 may include communication unit 394, controller/processor 390, and memory 392.
Controller/processor 340 of base station 102, controller/processor 380 of UE 104, controller 390 of network controller 389, which may be location server 172, and/or any other component (s) of FIG. 3 may perform one or more techniques associated broadcasting positioning assistance data in a differential manner, as described in more detail elsewhere herein. For example, controller/processor 340 of base station 102, controller 390 of network controller 389, controller/processor 380 of UE 104, and/or any other component (s) of FIG. 3 may perform or direct operations of, for example, processes 1300 and 1400 of FIGs. 13 and 14, and/or other processes as described herein.  Memories  342, 382, and 392 may store data and program codes for base station 102, UE 104, and network controller 389, respectively. In some aspects, memory 342 and/or  memory 382 and/or memory392 may comprise a non-transitory computer-readable medium storing one or more instructions for wireless communication. For example, the one or more instructions, when executed by one or more processors of the base station 102 network controller 389, and/or the UE 104, may perform or direct operations of, for example, processes 1300 and 1400 of FIGs. 13 and 14 and/or other processes as described herein. A scheduler 346 may schedule UEs for data transmission on the downlink and/or uplink.
As indicated above, FIG. 3 is provided as an example. Other examples may differ from what is described with regard to FIG. 3.
In particular implementations, the UE 104 may have circuitry and processing resources capable of obtaining location related measurements (also referred to as location measurements) , such as measurements for signals received from GPS or other Satellite Positioning Systems (SPS’s ) , measurements for cellular transceivers such as base stations 102, and/or measurements for local transceivers. UE 104 may further have circuitry and processing resources capable of computing a position fix or estimated location of UE 104 based on these location related measurements. In some implementations, location related measurements obtained by UE 104 may be transferred to a location server, such as the location server 172,  location servers  230a, 230b, or LMF 270, after which the location server may estimate or determine a location for UE 104 based on the measurements.
Location related measurements obtained by UE 104 may include measurements of signals received from satellite vehicles (SVs) that are part of an SPS or Global Navigation Satellite System (GNSS) such as GPS, GLONASS, Galileo or Beidou and/or may include measurements of signals received from terrestrial transmitters fixed at known locations (e.g., such as base station 102 or other local transceivers) . UE 104 or a separate location server (e.g. location server 172) may then obtain a location estimate for the UE 104 based on these location related measurements using any one of several position methods such as, for example, GNSS, Assisted GNSS (A-GNSS) , Advanced Forward Link Trilateration (AFLT) , Observed Time Difference Of Arrival (OTDOA) , Enhanced Cell ID (ECID) , TDOA, AoA, multi-RTT, or combinations thereof. In some of these techniques (e.g. A-GNSS, AFLT and OTDOA) , pseudoranges or timing differences may be measured by UE 104 relative to three or more terrestrial  transmitters fixed at known locations or relative to four or more SVs with accurately known orbital data, or combinations thereof, based at least in part, on pilot signals, positioning reference signals (PRS) or other positioning related signals transmitted by the transmitters or SVs and received at the UE 104. Here, location servers, such as location server 172,  location servers  230a, 230b, or LMF 270 may be capable of providing positioning assistance data to UE 104 including, for example, information regarding signals to be measured by UE 104 (e.g., expected signal timing, signal coding, signal frequencies, signal Doppler) , locations and/or identities of terrestrial transmitters, and/or signal, timing and orbital information for GNSS SVs to facilitate positioning techniques such as A-GNSS, AFLT, OTDOA TDOA, AoA, multi-RTT, and ECID. The facilitation may include improving signal acquisition and measurement accuracy by UE 104 and/or, in some cases, enabling UE 104 to compute its estimated location based on the location measurements. For example, a location server may comprise an almanac (e.g., a Base Station Almanac (BSA) ) which indicates the locations and identities of cellular transceivers and transmitters (e.g. base stations 102) and/or local transceivers and transmitters in a particular region or regions such as a particular venue, and may further contain information descriptive of signals transmitted by these transceivers and transmitters such as signal power, signal timing, signal bandwidth, signal coding and/or signal frequency. In the case of ECID, a UE 104 may obtain measurements of signal strength (e.g. received signal strength indication (RSSI) or reference signal received power (RSRP) ) for signals received from cellular transceivers (e.g., base stations 102) and/or local transceivers and/or may obtain a signal to noise ratio (S/N) , a reference signal received quality (RSRQ) , or a round trip signal propagation time (RTT) between UE 104 and a cellular transceiver (e.g., base stations 102) or a local transceiver. A UE 104 may transfer these measurements to a location server, to determine a location for UE 104, or in some implementations, UE 104 may use these measurements together with positioning assistance data (e.g. terrestrial almanac data or GNSS SV data such as GNSS Almanac and/or GNSS Ephemeris information) received from the location server to determine a location for UE 104.
An estimate of a location of a UE 104 may be referred to as a location, location estimate, location fix, fix, position, position estimate or position fix, and may be geodetic, thereby providing location coordinates for the UE 104 (e.g., latitude and longitude) which may or may not include an altitude component (e.g., height above sea  level, height above or depth below ground level, floor level or basement level) . Alternatively, a location of the UE 104 may be expressed as a civic location (e.g., as a postal address or the designation of some point or small area in a building such as a particular room or floor) . A location of a UE 104 may also include an uncertainty and may then be expressed as an area or volume (defined either geodetically or in civic form) within which the UE 104 is expected to be located with some given or default probability or confidence level (e.g., 67%or 95%) . A location of a UE 104 may further be an absolute location (e.g. defined in terms of a latitude, longitude and possibly altitude and/or uncertainty) or may be a relative location comprising, for example, a distance and direction or relative X, Y (and Z) coordinates defined relative to some origin at a known absolute location. In the description contained herein, the use of the term location may comprise any of these variants unless indicated otherwise. Measurements (e.g. obtained by UE 104 or by another entity such as base station 102) that are used to determine (e.g. calculate) a location estimate for UE 104 may be referred to as measurements, location measurements, location related measurements, positioning measurements or position measurements and the act of determining a location for the UE 104 may be referred to as positioning of the UE 104 or locating the UE 104.
In an implementation, the 5G mmW small cell beam information may be leveraged for positioning of the UE 104. For example, the UE 104 may be connected with a serving small cell base station 102 that transmits mmW beams. The particular beam from the serving small cell base station 102 that is received by the UE 104 is known by the serving base station 102. The UE 104 may additionally receive beams from neighboring small cell base stations 102. The UE 104 may send a measurement report message that includes identifiers of one or more beams received from neighboring small cell base stations 102, and in some implementations, may include an identifier for the beam received from the serving small cell base station 102. A location server 172, which may be co-located with the serving small cell base station 102 or may be separate, may use the identifiers for the beams and known locations of the small cell base stations 102 to determine the position of the UE 104. For example, the UE position may be determined based on the intersection of the beams (e.g., treated as lines) from the various small cell base stations 102. The position of the UE 104 may be determined using only two beams, e.g., one from the serving base station 102, plus  another from neighbor base station 102) , but additional beams may increase accuracy. Thus, the positioning method only relies on the index information for the best beams received by the UE 104, and does not require positioning measurements by the UE 104, such as signal strength, RTT, TDOA, or satellite positioning measurements, such as a GNSS or GPS, etc. Moreover, the determination of the best beam received by the UE 104 may be based on, e.g., synchronization signals, and does not require the transmission of specific reference signals, such as PRS, by the base stations 102 for positioning measurements.
FIG. 4A, an example synchronization signal in a 5G NR wireless network is shown. The Synchronization Signal and Physical Broadcast Channel (PBCH) block (SSB/SS Block) may include a primary and a secondary synchronization signals (PSS, SSS) , each occupying 1 symbol and 127 subcarriers, and PBCH spanning across 3 OFDM symbols and 240 subcarriers. The periodicity of the SSB can be configured by the network and the time locations where SSB can be sent are determined by sub-carrier spacing. Within the frequency span of a carrier, multiple SSBs can be transmitted. The Physical Cell Identifiers (PCIs) of the SSBs do not have to be unique, i.e. different SSBs can have different PCIs.
In some versions of the 3GPP specifications (e.g., 3 GPP “NR and NG-RAN Overall Description -Rel. 15, ” TS 38.300, 2018) , the concept of SSB and burst emerged for periodic synchronization signal transmission from the gNBs. An SS block may be a group of 4 OFDM symbols in time and 240 subcarriers m frequency (i.e., 20 resource blocks) , as shown in FIG 4A. The SS block may carry the PSS, the SSS and the PBCH. A Demodulation Reference Signal (DMRS) associated with the PBCH may be used to estimate the Reference Signal Received Power (RSRP) of the SS block. In a slot of 14 symbols, there are two possible locations for SS blocks: symbols 2-5 and symbols 8-11. The SS blocks may be grouped into the first 5 ms of an SS burst, which can have different periodicities TSS. For example, value of TSS may be on the order of 5, 10, 20, 40, 80, or 160 ms. When accessing the network for the first time, a UE may assume a periodicity TSS = 20 ms. When considering frequencies for which beam operations are required, each SS block may be mapped to a certain angular direction. To reduce the impact of SS transmissions, SS may be sent through wide beams, while data transmission for the active UE may usually performed through narrow beams, to increase the gain produced by beamforming.
In an embodiment, CSI-RSs may be used for Radio Resource Management (RRM) measurements for mobility management purposes in connected mode. For example, it may be possible to configure multiple CSI-RS to the same SS burst, in such a way that a UE 104 may first obtain synchronization with a given cell using the SS bursts, and then use that as a reference to search for CSI-RS resources. The CSI-RS measurement window configuration may contain at least the periodicity and time/frequency offsets relative to the associated SS burst. FIG. 4B, an example CSI-RS periodicity configuration in a 5G NR wireless network is shown. SS blocks may be sent every TSS ms, and they embed time and frequency offsets indicating the time and frequency allocation of CSI-RS signals within the frame structure. As depicted, a CSI-RS signal may be sent T csi ms after the end of an SS burst. In general, in a 5G NR network, the best directions for the beams of the transceiver need to be periodically identified (e.g., through beam search operations) , in order to maintain the alignment between the communicating nodes. In an example, SS-and CSI-based measurement results can be jointly used to reflect the different coverage which can be achieved through different beamforming architectures.
FIG. 5 illustrates an example of narrow beams produced by a mmW small cell antenna panel 502. The antenna panel 502 includes a number of separate antennas which are provided RF current from the transmitter with the correct phase relationship so that the radio waves from the separate antennas add together to increase the radiation in a desired direction, while cancelling to suppress radiation in undesired directions, to produce a beam. The beam can be steered to point in different directions, e.g., changing the azimuth angle and elevation angle, without moving the antenna panel 502. FIG. 5, for example, illustrates the antenna panel 502 in the center of a sphere 500 showing azimuth angles from 0°, ±90°, to 180°, and elevation angles from 0°, ±90°, to 180°. The antenna panel 502 may be controlled to produce beams at various angles, illustrated as  beams  504, 506, and 508. In general, the antenna panel 502 may produce an azimuth span of 120° and an elevation span of 60°. By increasing the number of individual antennas present in the antenna panel 502, the width of the beams produced may be reduced.
FIG. 6 is a diagram illustrating directional beams transmitted from a base station based on a synchronization signal (SS) burst. The SS Burst includes a plurality of SS  blocks such as a first SS Block 602, a second SS Block 604, a third SS Block 606, and a fourth SS block 608. An SS burst may include additional SS blocks. As discussed above, each SS block 602, 604, 606, 608 may be mapped to an angular direction and a specific beam ID. For example, the first SS block 602 is mapped to a first beam 602a with a beam identification value (e.g., index) of 1, the second SS block 604 is mapped to a second beam 604a with a beam identification value of 5, the third SS block 606 is mapped to a third beam 606a with a beam identification value of 9, and the fourth SS block 608 is mapped to a fourth beam 608a with a beam identification value of 13. During an initial signal acquisition procedure, a UE 104 may receive one or more beam identification values from base stations (e.g., gNB) in a wireless network. Once the UE 104 receives a beam from a particular base station, the UE may be configured to map the received beam identification value and a cell identification based on a codebook. For example, when the UE 104 receives the second beam 604a with the beam identification value of 5 (i.e., associated with SS Block 2) , the UE may be configured to reference a codebook (e.g., a data structure) with the beam identification value to determine the angular information associated with the second beam 604a. In an example, the UE 104 may report the beam identification back to a network node configured to determine the angular information based on a codebook (i.e., stored remote from the UE) . In general, there may be a one-to-one mapping between a beam identification value (e.g., a SSB ID) with a spatial angle of the transmitted beam. One or more data structures such as a codebook (e.g., data table) located on a network node and/or the UE may be used to determine the angular direction of the transmitted beam based on the beam identification value.
The base station 102 sweeps the beam horizontally (azimuth) and vertically (elevation) over time. For example, the beams may be swept over a 120° azimuth span and a 60° elevation span. Thus, individual narrow beams are swept over a spatial extent that is related to the base station 102 by azimuth angle and elevation angle.
FIG. 7, for example, illustrates an array 700 of beams over a spatial extent that may be produced by the base station. As illustrated, each beam may be identified with a broad beam index, e.g., SSB1-SSB16, and may be further identified with a fine beam index, e.g., 1-64. The UE 104 will determine which of the narrow beams is the best  beam, which as illustrated in FIG. 7, may be identified as SSB10 with the broad beam index and beam 40 with the fine beam index.
The best directions for the beams of the transceiver need to be periodically identified (e.g., through beam search operations) , in order to maintain the alignment between the communicating nodes. In IDLE mode, for example, the UE 104 may determine the best beam based on SS (Synchronization Signal) , and in the connected mode based on CSI-RS in DL. The CSI-RS measurement window configuration like periodicity and time/frequency offsets are relative to the associated SS burst. The best beam needs to be searched periodically, by using the SS and CSI-RS measurement results. For example, in one implementation, the UE 104 may measure the received signal strength of each transmitted beam. The beam with the greatest received signal strength may be considered the best beam, and is considered the beam that is received by the UE 104. In some implementations, the UE 104 may include several antennas or an antenna array that may be used to generate receive beams using beamforming. The UE 104 may perform beam latching, or RxTx pairing to identify the best transmission beam. For example, the UE 104 may measure the received signal power of each transmission beam for each receive beam formed by the UE’s antenna array. Assuming all transmitted beams are transmitted with the same power, the highest measured signal power for a combination of receive and transmit beams, likely corresponds to a line of sight beam from the base station, and thus, identifies the best beam received by the UE 104. The use of receive beams may additionally provide information related to the angle of arrival of the transmitted beam, e.g., based on the angle of the best receive beam with respect to the UE antenna array, which may be used, e.g. to provide an orientation of the UE 104.
FIG. 8 illustrates a network 800 including the UE 104 receiving  beams  802A, 802B, and 802C from  multiple base stations  102A, 102B, and 102C, respectively, which may be small cell base stations transmitting mmW beams. By way of example, the base station 102A may be the serving base station for the UE 104, while  base stations  102B and 102C may be neighboring base stations.  Base stations  102A, 102B, and 102C may sometimes be referred to as base stations 102.
The UE 104 may identify the beam received from each base station, e.g., using a fine beam index or SSB Index, which indicates the azimuth angle and elevation angle of  the received beam with respect to the respective transmitting base station, as illustrated in FIG. 7. The UE 104 may provide the identifying beam information for each received beams to a location server 172 (shown in FIG. 1) via the serving base station 102A. In some implementations, the serving base station 102A knows the beam identifier for the received serving beam 802A and the serving base station 102A may provide this information to the location server 172, and thus, the UE 104 may only provide identifying beam information for beams from one or more  neighboring base stations  102B and 102C to the location server 172.
Based on the known position and orientation of each  base station  102A, 102B, and 102C relative to a physical coordinate system, and the mapping between beam identification values and the azimuth and elevation angles of the transmitted beams from each  base station  102A, 102B, and 102C, the location server 172 may determine a  line  804A, 804B, and 804C between each  respective base station  102A, 102B, and 102C and the UE 104 in a physical coordinate system. The lines, for example, may be center angle of each narrow beam. The position of the UE 104 may be determined based on the intersection of two or more of the  lines  804A, 804B, and 804C.
Thus, the location of the UE 104 may be determined based solely on the direction of the received beams and the positions of the base stations 102. The UE 104 only needs to identify the received beams for the location server. Because a range (distance) between the base station and the UE 104 is not required for positioning, there is no need for the UE 104 to measure and report conventional positioning measurements, such as signal strength, time of arrival, RSTD, etc. Moreover, the base stations 102 are not required to transmit special reference signals, such as PRS, for positioning. Further, as can be seen in FIG. 8, the position of the UE 104 may be determined based on the intersection of only two beams, e.g., beams 804A and 804B transmitted by serving base station 102A and neighboring base station 102B, although the use of additional beams, e.g., beam 804C from neighboring base station 102C, may provide additional accuracy in the measurement. Moreover, if an angle of arrival of one or more of the beams is determined, e.g., using receive beams produced using beamforming with an antenna array on the UE 104, the orientation of the UE 104 may also be determined.
FIG. 9 illustrates a coordinate system 900 in which the intersection of beams, represented by  lines  804A, 804B, and 804C from FIG. 8, used to determine a position of the UE 104. The location server 172, for example, may receive the beam identifier for each beam received by the UE 104 and may map the beam identifier to the spatial angle (in azimuth and elevation angle) with respect to the base station, based on stored data, e.g., previously provided to the location server 172 by each base station. Based on the spatial angle relative to the base station and with knowledge of the position and orientation of the base stations relative to the coordinate system 900, the location server may map each beam received by the UE 104 to the coordinate system as illustrated in FIG. 9, e.g., using 3D Euclidean space. The intersection of the  lines  804A, 804B, and 804C is the location of the UE 104. As illustrated in FIG. 9, the  lines  804A, 804B, and 804C may not intersect at a single point and, thus, the position of the UE 104 may be interpolated based on the intersections of the lines.
FIG. 10, by way of example, shows an example of a signaling flow 1000 that illustrates various messages sent between components of the communication system 100 depicted in FIG. 1, during a location session between the UE 104 and the location server 172 in which the location of the UE is determined using beams from small cell base stations. FIG. 10 illustrates UE 104, a serving base station 102A, a neighboring base station 102B, and a location server 172.  Base stations  102A and 102B, sometimes collectively referred to as base stations 102, may be, gNBs, ng-eNBs, or eNBs. The location server 172 may be, e.g., LMF 270 or an SLP 268, and may be co-located with a base station 102 or RAN or may be in (or external) to the core network. It should be understood that the UE 104 communications with the location server 172 through the serving base station 102A and one or more intervening components in the core network, such as AMF 264 or UPF 262. In the signaling flow 1000, it may be assumed that the UE 104 and location server 172 communicate using the LPP positioning protocol referred to earlier, although use of other protocols may be used. The signaling flow 1000 may be performed in control plane or user plane. The messages shown in signaling flow 1000 are provided for illustration and additional messages and actions may be included in the positioning session. For example, a positioning session may further include messages including a capabilities request, capabilities response, assistance data, etc.
At stage 1, the location server 172 may send an Information Request message to the  base stations  102A and 102B. The Information Request may request location related information from the base stations 102, such as the location of base stations 102, the orientation of the base stations 102, and configuration parameters related to beams produced by the base stations, such as the directional SS Blocks, e.g., a mapping of beam identifiers to spatial angles (azimuth and elevation angles) relative to the base stations.
At stage 2, the  base stations  102A and 102B may send an Information Response message to the location server 172 that includes the requested location related information, such as positions, orientations, and signal characteristics, beam angles, and other configuration information for each SS Block supported by the base stations, such as mapping of beam identifiers to spatial angles (azimuth and elevation angles) relative to the base stations. In some implementations, the location server 172 may receive one or more parameters from other sources, e.g., a positioning database store in memory. Moreover, the parameters may be requested only one time or may be periodically updated.
At stage 3a, the location server 172 may send a Request Location Information message to the serving base station 102A for UE 104 requesting one or more location measurements from the UE 104, and at stage 3b, the serving base station 102A may send the UE 104 an RRC Connection Reconfiguration message instructing the UE to perform the location measurements. The serving base station 102A, for example, may provide the RRC Connection Reconfiguration message, as well as other communications with the UE 104 using a serving beam received by the UE 104, which includes an identifier that corresponds to the spatial angle of the beam with respect to the serving base station 102A. The requested positioning measurements, for example, may be received beam identifiers, e.g., that identify the base station that transmits a received beam and the spatial angle of the received beam with respect to the transmitting base station. The UE 104 is already in a connected state with the serving base station 102A, and accordingly, the received beam has already been identified by the UE 104. Moreover, because the UE 104 and serving base station 102 are in communication, the serving base station 102A is already aware of the identity of the serving beam received by the UE 104.
At stage 4, the UE 104 may receive beams transmitted by the neighboring base station 102B. In some implementation, the UE 104 may request that the neighboring base station 102B transmit beams for measurements, e.g., by sending a request to the location server 172, the serving base station 102A, or other network node, which may communicate with neighboring base station 102B. In other implementations, the UE 104 may opportunistically measure beams that are being produced by neighboring base station 102B without the need to specifically request that the neighboring base station 102B produce the beams.
At stage 5, the UE 104 may determine which of the beams from the neighboring base station 102B is the best beam, e.g., by monitoring the received signal strength of each beam, where the beam with the greatest signal strength is considered to be the best beam, i.e., the beam received by the UE 104. The location measurements may be made based, in part, on the directional SS Blocks transmitted by the neighboring base station 102B, and serving base station 102A (if necessary) . For example, SS Blocks may be transmitted by base station 102B within the neighbor cell and serving base station 102A in the serving cell. The UE 104 obtains the beam identifier for the received beam (s) . In some implementations, the UE 104 may be configured to determine the spatial angle (e.g., azimuth and elevation angles) of the received beam relative to the transmitting base station. In some implementations, the UE 104 may receive and determine the beam identifier for multiple neighboring base stations. In some implementations, the UE 104 may further measure the angle of arrival of beams, e.g., using receive beams that are beamformed using a number of antennas or antenna array in the UE 104.
At stage 6a, the UE 104 sends a Measurement Report message to the serving base station 102A with the requested location measurements, and at stage 6b, the serving base station 102A sends a Provide Location Information message to the location server 172 with the requested location measurements. The location measurements, for example, may include the beam identifier for the received beam from at least one neighboring base station 102B. In some implementations, the angle of arrival for the beam received from one or more of the serving base station and neighboring base station may be included. In one implementation, the location information may further include the beam identifier for the serving beam transmitted by serving base station 102A. In some implementations, the serving base station 102A may include the beam identifier for the serving beam to the location server 172 in the Provide Location  Information message along with the location information provided by the UE 104 in the Measurement Report message.
At stage 7, the location server 172 may determine the UE location based on the received location information. For example, the location server 172 may identify the directional azimuth angle and elevation angle of the serving and neighboring beams received by the UE 104, e.g., based on the beam identifiers and the beam angle information received at stage 2. The location server 172 may determine the position of the UE 104 based on the intersection of lines generated from the known positions of the base stations and the angles of the received beams with respect to the base stations. If the angle of arrival with respect to one or more beams is provided by the UE 104, the location server 172 may further determine the orientation of the UE 104. The location server 172 may provide the UE 104 location to a requesting entity.
FIG. 11 shows a schematic block diagram illustrating certain exemplary features of a UE 1100, e.g., which may be UE 104 shown in FIG. 1, enabled to support positioning using beams transmitted from small cell base stations, as described herein. The UE 1100 may perform the process flow shown in FIG. 13. UE 1100 may, for example, include one or more processors 1102, memory 1104, an external interface such as a transceiver 1110 (e.g., wireless network interface) , which may be operatively coupled with one or more connections 1106 (e.g., buses, lines, fibers, links, etc. ) to non-transitory computer readable medium 1120 and memory 1104. The UE 1100 may further include additional items, which are not shown, such as a user interface that may include e.g., a display, a keypad or other input device, such as virtual keypad on the display, through which a user may interface with the UE, or a satellite positioning system receiver. In certain example implementations, all or part of UE 1100 may take the form of a chipset, and/or the like. Transceiver 1110 may, for example, include a transmitter 1112 enabled to transmit one or more signals over one or more types of wireless communication networks and a receiver 1114 to receive one or more signals transmitted over the one or more types of wireless communication networks.
In some embodiments, UE 1100 may include antenna 1111, which may be internal or external. UE antenna 1111 may be used to transmit and/or receive signals processed by transceiver 1110. In some embodiments, UE antenna 1111 may be coupled to transceiver 1110. In some embodiments, measurements of signals received  (transmitted) by UE 1100 may be performed at the point of connection of the UE antenna 1111 and transceiver 1110. For example, the measurement point of reference for received (transmitted) RF signal measurements may be an input (output) terminal of the receiver 1114 (transmitter 1112) and an output (input) terminal of the UE antenna 1111. In a UE 1100 with multiple UE antennas 1111 or antenna arrays, the antenna connector may be viewed as a virtual point representing the aggregate output (input) of multiple UE antennas. In some embodiments, UE 1100 may measure received signals including signal strength and TOA measurements and the raw measurements may be processed by the one or more processors 1102. For example, the UE 104 may measure the received signal strength of each transmitted beam to determine the best beam received by the UE 104. For example, the transmitted beam with the highest received signal strength relative to the other beams may be treated as the best beam, i.e., the beam that is directed towards the UE 104. The UE 104 may use an antenna array to beamform receive beams, which may similarly be used to determine the best beam, e.g., using beam latching or RxTx pairing. The use of receive beams may additionally provide information related to the angle of arrival of the transmitted beam, e.g., based on the angle of the best receive beam with respect to the UE antenna array. The angle of arrival of the transmitted beam (which has a defined direction) may be used to determine the orientation of the UE 1100.
The one or more processors 1102 may be implemented using a combination of hardware, firmware, and software. For example, the one or more processors 1102 may be configured to perform the functions discussed herein by implementing one or more instructions or program code 1108 on a non-transitory computer readable medium, such as medium 1120 and/or memory 1104. In some embodiments, the one or more processors 1102 may represent one or more circuits configurable to perform at least a portion of a data signal computing procedure or process related to the operation of UE 1100.
The medium 1120 and/or memory 1104 may store instructions or program code 1108 that contain executable code or software instructions that when executed by the one or more processors 1102 cause the one or more processors 1102 to operate as a special purpose computer programmed to perform the techniques disclosed herein. As illustrated in UE 1100, the medium 1120 and/or memory 1104 may include one or more components or modules that may be implemented by the one or more processors 1102  to perform the methodologies described herein. While the components or modules are illustrated as software in medium 1120 that is executable by the one or more processors 1102, it should be understood that the components or modules may be stored in memory 1104 or may be dedicated hardware either in the one or more processors 1102 or off the processors. A number of software modules and data tables may reside in the medium 1120 and/or memory 1104 and be utilized by the one or more processors 1102 in order to manage both communications and the functionality described herein. It should be appreciated that the organization of the contents of the medium 1120 and/or memory 1104 as shown in UE 1100 is merely exemplary, and as such the functionality of the modules and/or data structures may be combined, separated, and/or be structured in different ways depending upon the implementation of the UE 1100.
The medium 1120 and/or memory 1104 may include a receive radio beam module 1122 that when implemented by the one or more processors 1102 configures the one or more processors 1102 to receive a beam from a small cell base station, e.g., as discussed in FIGs. 6-10. For example, the one or more processors 1102 may be configured to determine a best beam received from a base station.
The medium 1120 and/or memory 1104 may include a determine radio beam identifier module 1124 that when implemented by the one or more processors 1102 configures the one or more processors 1102 to determine the beam identifier for a received beam, such as the SSB Index number or fine index number, e.g., as discussed in FIGs. 6-10.
The medium 1120 and/or memory 1104 may include a measurement request module 1126 that when implemented by the one or more processors 1102 configures the one or more processors 1102 to receive, via transceiver 1110, request for location information from a location server, and in particular a request for identifiers of received beams, e.g., as discussed in FIGs. 6-10.
The medium 1120 and/or memory 1104 may include a measurement report module 1128 that when implemented by the one or more processors 1102 configures the one or more processors 1102 to send, via transceiver 1110, a measurement report to the location server that includes the identifiers for received beams, e.g., as discussed in FIGs. 6-10.
The methodologies described herein may be implemented by various means depending upon the application. For example, these methodologies may be implemented in hardware, firmware, software, or any combination thereof. For a hardware implementation, the one or more processors 1102 may be implemented within one or more application specific integrated circuits (ASICs) , digital signal processors (DSPs) , digital signal processing devices (DSPDs) , programmable logic devices (PLDs) , field programmable gate arrays (FPGAs) , processors, controllers, micro-controllers, microprocessors, electronic devices, other electronic units designed to perform the functions described herein, or a combination thereof.
For a firmware and/or software implementation, the methodologies may be implemented with modules (e.g., procedures, functions, and so on) that perform the functions described herein. Any machine readable medium tangibly embodying instructions may be used in implementing the methodologies described herein. For example, software codes may be stored in a non-transitory computer readable medium 1120 or memory 1104 that is connected to and executed by the one or more processors 1102. Memory may be implemented within the one or more processors or external to the one or more processors. As used herein the term “memory” refers to any type of long term, short term, volatile, nonvolatile, or other memory and is not to be limited to any particular type of memory or number of memories, or type of media upon which memory is stored.
If implemented in firmware and/or software, the functions may be stored as one or more instructions or program code 1108 on a non-transitory computer readable medium, such as medium 1120 and/or memory 1104. Examples include computer readable media encoded with a data structure and computer readable media encoded with a computer program 1108. For example, the non-transitory computer readable medium including program code 1108 stored thereon may include program code 1108 to support positioning using beam identifiers in a manner consistent with disclosed embodiments. Non-transitory computer readable medium 1120 includes physical computer storage media. A storage medium may be any available medium that can be accessed by a computer. By way of example, and not limitation, such non-transitory computer readable media can comprise RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other medium that can be used to store desired program code 1108 in the form of  instructions or data structures and that can be accessed by a computer; disk and disc, as used herein, includes compact disc (CD) , laser disc, optical disc, digital versatile disc (DVD) , floppy disk and Blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above should also be included within the scope of computer readable media.
In addition to storage on computer readable medium 1120, instructions and/or data may be provided as signals on transmission media included in a communication apparatus. For example, a communication apparatus may include a transceiver 1110 having signals indicative of instructions and data. The instructions and data are configured to cause one or more processors to implement the functions outlined in the claims. That is, the communication apparatus includes transmission media with signals indicative of information to perform disclosed functions.
Memory 1104 may represent any data storage mechanism. Memory 1104 may include, for example, a primary memory and/or a secondary memory. Primary memory may include, for example, a random access memory, read only memory, etc. While illustrated in this example as being separate from one or more processors 1102, it should be understood that all or part of a primary memory may be provided within or otherwise co-located/coupled with the one or more processors 1102. Secondary memory may include, for example, the same or similar type of memory as primary memory and/or one or more data storage devices or systems, such as, for example, a disk drive, an optical disc drive, a tape drive, a solid state memory drive, etc.
In certain implementations, secondary memory may be operatively receptive of, or otherwise configurable to couple to a non-transitory computer readable medium 1120. As such, in certain example implementations, the methods and/or apparatuses presented herein may take the form in whole or part of a computer readable medium 1120 that may include computer implementable code 1108 stored thereon, which if executed by one or more processors 1102 may be operatively enabled to perform all or portions of the example operations as described herein. Computer readable medium 1120 may be a part of memory 1104.
FIG. 12 shows a schematic block diagram illustrating certain exemplary features of a location server 1200, e.g., location server 172, enabled to support positioning of a UE based on identifiers of beams received by the UE, as described herein. The location  server 1200 may be, e.g., a E-SMLC, SLP, or LMF. The location server 1200 may perform the process flow shown in FIG. 14. Location server 1200 may, for example, include one or more processors 1202, memory 1204, and an external interface 1216 (e.g., wireline or wireless network interface to other network entities, such as core network entities and base stations) , which may be operatively coupled with one or more connections 1206 (e.g., buses, lines, fibers, links, etc. ) to non-transitory computer readable medium 1220 and memory 1204. The base station 1200 may further include additional items, which are not shown, such as a user interface that may include e.g., a display, a keypad or other input device, such as virtual keypad on the display, through which a user may interface with the location server. In certain example implementations, all or part of location server 1200 may take the form of a chipset, and/or the like. The external interface 1216 may be a wired or wireless interface capable of connecting to base stations in the RAN or network entities, such as an AMF, MME, or UPF.
The one or more processors 1202 may be implemented using a combination of hardware, firmware, and software. For example, the one or more processors 1202 may be configured to perform the functions discussed herein by implementing one or more instructions or program code 1208 on a non-transitory computer readable medium, such as medium 1220 and/or memory 1204. In some embodiments, the one or more processors 1202 may represent one or more circuits configurable to perform at least a portion of a data signal computing procedure or process related to the operation of location server 1200.
The medium 1220 and/or memory 1204 may store instructions or program code 1208 that contain executable code or software instructions that when executed by the one or more processors 1202 cause the one or more processors 1202 to operate as a special purpose computer programmed to perform the techniques disclosed herein. As illustrated in location server 1200, the medium 1220 and/or memory 1204 may include one or more components or modules that may be implemented by the one or more processors 1202 to perform the methodologies described herein. While the components or modules are illustrated as software in medium 1220 that is executable by the one or more processors 1202, it should be understood that the components or modules may be stored in memory 1204 or may be dedicated hardware either in the one or more processors 1202 or off the processors. A number of software modules and data tables  may reside in the medium 1220 and/or memory 1204 and be utilized by the one or more processors 1202 in order to manage both communications and the functionality described herein. It should be appreciated that the organization of the contents of the medium 1220 and/or memory 1204 as shown in location server 1200 is merely exemplary, and as such the functionality of the modules and/or data structures may be combined, separated, and/or be structured in different ways depending upon the implementation of the location server 1200.
The medium 1220 and/or memory 1204 may include measurement request module 1221 that when implemented by the one or more processors 1202 configures the one or more processors 1202 to send, via the external interface 1216, a request for location information to the UE, and in particular a request for identifiers of beams received by the UE, e.g., as discussed in FIGs. 6-10.
The medium 1220 and/or memory 1204 may include a measurement response module 1222 that when implemented by the one or more processors 1202 configures the one or more processors 1202 to receive, via the external interface 1216, a measurement report from the UE that includes the identifiers for beams received by the UE, e.g., as discussed in FIGs. 6-10.
The medium 1220 and/or memory 1204 may include a position determination module 1224 that when implemented by the one or more processors 1202 configures the one or more processors 1202 to determine the position of the UE using the identifiers for beams received by the UE, e.g., as discussed in FIGs. 6-10. For example, the one or more processors 12022 may be configured to determine the position of the UE based on the intersection of the received beams. The one or more processors 12022 may be configured to determine the azimuth angle and elevation angle of a beam with respect to a base station based on the beam identifier, and determine the azimuth angle and elevation angle of a beam with respect to a coordinate system based on the known position and orientation of the base station with respect to the coordinate system.
The methodologies described herein may be implemented by various means depending upon the application. For example, these methodologies may be implemented in hardware, firmware, software, or any combination thereof. For a hardware implementation, the one or more processors 1202 may be implemented within one or more application specific integrated circuits (ASICs) , digital signal processors  (DSPs) , digital signal processing devices (DSPDs) , programmable logic devices (PLDs) , field programmable gate arrays (FPGAs) , processors, controllers, micro-controllers, microprocessors, electronic devices, other electronic units designed to perform the functions described herein, or a combination thereof.
For a firmware and/or software implementation, the methodologies may be implemented with modules (e.g., procedures, functions, and so on) that perform the functions described herein. Any machine readable medium tangibly embodying instructions may be used in implementing the methodologies described herein. For example, software codes may be stored in a non-transitory computer readable medium 1220 or memory 1204 that is connected to and executed by the one or more processors 1202. Memory may be implemented within the one or more processors or external to the one or more processors. As used herein the term “memory” refers to any type of long term, short term, volatile, nonvolatile, or other memory and is not to be limited to any particular type of memory or number of memories, or type of media upon which memory is stored.
If implemented in firmware and/or software, the functions may be stored as one or more instructions or program code 1208 on a non-transitory computer readable medium, such as medium 1220 and/or memory 1204. Examples include computer readable media encoded with a data structure and computer readable media encoded with a computer program 1208. For example, the non-transitory computer readable medium including program code 1208 stored thereon may include program code 1208 to support determining a position of UE based on the identifiers of beams received by the UE in a manner consistent with disclosed embodiments. Non-transitory computer readable medium 1220 includes physical computer storage media. A storage medium may be any available medium that can be accessed by a computer. By way of example, and not limitation, such non-transitory computer readable media can comprise RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other medium that can be used to store desired program code 1208 in the form of instructions or data structures and that can be accessed by a computer; disk and disc, as used herein, includes compact disc (CD) , laser disc, optical disc, digital versatile disc (DVD) , floppy disk and Blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers.  Combinations of the above should also be included within the scope of computer readable media.
In addition to storage on computer readable medium 1220, instructions and/or data may be provided as signals on transmission media included in a communication apparatus. For example, a communication apparatus may include a communications interface 1216 having signals indicative of instructions and data. The instructions and data are configured to cause one or more processors to implement the functions outlined in the claims. That is, the communication apparatus includes transmission media with signals indicative of information to perform disclosed functions.
Memory 1204 may represent any data storage mechanism. Memory 1204 may include, for example, a primary memory and/or a secondary memory. Primary memory may include, for example, a random access memory, read only memory, etc. While illustrated in this example as being separate from one or more processors 1202, it should be understood that all or part of a primary memory may be provided within or otherwise co-located/coupled with the one or more processors 1202. Secondary memory may include, for example, the same or similar type of memory as primary memory and/or one or more data storage devices or systems, such as, for example, a disk drive, an optical disc drive, a tape drive, a solid state memory drive, etc.
In certain implementations, secondary memory may be operatively receptive of, or otherwise configurable to couple to a non-transitory computer readable medium 1220. As such, in certain example implementations, the methods and/or apparatuses presented herein may take the form in whole or part of a computer readable medium 1220 that may include computer implementable code 1208 stored thereon, which if executed by one or more processors 1202 may be operatively enabled to perform all or portions of the example operations as described herein. Computer readable medium 1220 may be a part of memory 1204.
FIG. 13 shows a flowchart for an exemplary method 1300 for determining a location of a mobile device performed by the mobile device, such as UE 104, in a manner consistent with disclosed implementation.
At block 1302, the mobile device receives a first radio beam transmitted by a serving small cell base station, the first radio beam comprising a first beam  identification value, e.g., as discussed in FIGs. 6-9, and stage 3b of FIG. 10. The first radio beam, for example, may be used to provide a Request for Location Information message sent by a location server or other communications between the serving small cell base station and the mobile device. In some implementations, the first beam identification value identifies a first azimuth angle and a first elevation angle for the first radio beam. A means for receiving a first radio beam transmitted by a serving small cell base station, the first radio beam comprising a first beam identification value may include, e.g., the wireless transceiver 1110 and one or more processors 1102 with dedicated hardware or implementing executable code or software instructions in memory 1104 and/or medium 1120 in UE 1100 shown in FIG. 11.
At block 1304, the mobile device measures a second radio beam transmitted by a first neighboring small cell base station, the second radio beam comprising a second beam identification value, e.g., as discussed in FIGs. 6-9, and stages 4 and 5 of FIG. 10. In some implementations, the second beam identification value identifies a second azimuth angle and a second elevation angle for the second radio beam. A means for measuring a second radio beam transmitted by a first neighboring small cell base station, the second radio beam comprising a second beam identification value may include, e.g., the wireless transceiver 1110 and one or more processors 1102 with dedicated hardware or implementing executable code or software instructions in memory 1104 and/or medium 1120 in UE 1100 shown in FIG. 11.
At block 1306, the mobile device sends to a location server a measurement report including at least the second beam identification value to determine the location of the mobile device based on an intersection of at least the first radio beam and the second radio beam, e.g., as discussed in FIGs. 6-9, and stages 6a and 6b of FIG. 10. In some implementations, the measurement report may further include the first beam identification value. In some implementations, the measurement report does not include the first beam identification value and the serving small cell base station may provide the first beam identification value to the location server. A means for sending to a location server a measurement report including at least the second beam identification value to determine the location of the mobile device based on an intersection of at least the first radio beam and the second radio beam may be, e.g., the wireless transceiver 1110 and one or more processors 1102 with dedicated hardware or implementing  executable code or software instructions in memory 1104 and/or medium 1120 in UE 1100 shown in FIG. 11.
In one implementation, the method may further include measuring a third radio beam transmitted by a second neighboring small cell base station. The third radio beam may include a third beam identification value. The measurement report further includes the third beam identification value, and the location of the mobile device is determined based on the intersection of the first radio beam, the second radio beam, and the third radio beam, e.g., as discussed in FIG. 8-10. A means for measuring a third radio beam transmitted by a second neighboring small cell base station may be, e.g., the wireless transceiver 1110 and one or more processors 1102 with dedicated hardware or implementing executable code or software instructions in memory 1104 and/or medium 1120 in UE 1100 shown in FIG. 11.
FIG. 14 shows a flowchart for an exemplary method 1400 for determining a location of a mobile device performed by a location server, such as location server 172, which may be an E-SMLC, SLP, or LMF.
At block 1402, the location server receives a measurement report for the mobile device including a first beam identification value for a first radio beam received by the mobile device from a serving small cell base station and a second beam identification value for a second radio beam measured by the mobile device and transmitted by a first neighboring small cell base station, e.g., as discussed in FIGs. 6-9, and stages 6a and 6b of FIG. 10. In some implementations, the first beam identification value may be sent by the mobile device in the measurement report. In some implementations, the first beam identification value may be sent by the serving small cell base station. The first beam identification value may identify a first azimuth angle and a first elevation angle for the first radio beam and the second beam identification value may identify a second azimuth angle and a second elevation angle for the second radio beam. A means for receiving a measurement report for the mobile device including a first beam identification value for a first radio beam received by the mobile device from a serving small cell base station and a second beam identification value for a second radio beam measured by the mobile device and transmitted by a first neighboring small cell base station may include, e.g., the external interface 1216 and one or more processors 1202  with dedicated hardware or implementing executable code or software instructions in memory 1204 and/or medium 1220 in the location server 1200 shown in FIG. 12.
At block 1404, the location server may determine the location of the mobile device based on an intersection of at least the first radio beam and the second radio beam, e.g., as discussed in FIGs. 6-9, and stage 7 of FIG. 10. For example, in some implementations, the location of the mobile device is determined based on the intersection of at least the first radio beam and the second radio beam using the first azimuth angle and the first elevation angle for the first radio beam relative to a coordinate system and the second azimuth angle and the second elevation angle for the second radio beam relative to the coordinate system. A means for determining the location of the mobile device based on an intersection of at least the first radio beam and the second radio beam may include, e.g., the one or more processors 1202 with dedicated hardware or implementing executable code or software instructions in memory 1204 and/or medium 1220 in the location server 1200 shown in FIG. 12.
In one implementation, the measurement report may further include a third beam identification value for a third radio beam measured by the mobile device and transmitted by a second neighboring small cell base station, and the location of the mobile device may be determined based on the intersection of the first radio beam, the second radio beam, and the third radio beam, e.g., as discussed in FIG. 8-10.
Reference throughout this specification to "one example" , "an example" , “certain examples” , or “exemplary implementation” means that a particular feature, structure, or characteristic described in connection with the feature and/or example may be included in at least one feature and/or example of claimed subject matter. Thus, the appearances of the phrase "in one example" , "an example" , “in certain examples” or “in certain implementations” or other like phrases in various places throughout this specification are not necessarily all referring to the same feature, example, and/or limitation. Furthermore, the particular features, structures, or characteristics may be combined in one or more examples and/or features.
Some portions of the detailed description included herein are presented in terms of algorithms or symbolic representations of operations on binary digital signals stored within a memory of a specific apparatus or special purpose computing device or platform. In the context of this particular specification, the term specific apparatus or  the like includes a general purpose computer once it is programmed to perform particular operations pursuant to instructions from program software. Algorithmic descriptions or symbolic representations are examples of techniques used by those of ordinary skill in the signal processing or related arts to convey the substance of their work to others skilled in the art. An algorithm is here, and generally, is considered to be a self-consistent sequence of operations or similar signal processing leading to a desired result. In this context, operations or processing involve physical manipulation of physical quantities. Typically, although not necessarily, such quantities may take the form of electrical or magnetic signals capable of being stored, transferred, combined, compared or otherwise manipulated. It has proven convenient at times, principally for reasons of common usage, to refer to such signals as bits, data, values, elements, symbols, characters, terms, numbers, numerals, or the like. It should be understood, however, that all of these or similar terms are to be associated with appropriate physical quantities and are merely convenient labels. Unless specifically stated otherwise, as apparent from the discussion herein, it is appreciated that throughout this specification discussions utilizing terms such as "processing, " "computing, " "calculating, " "determining" or the like refer to actions or processes of a specific apparatus, such as a special purpose computer, special purpose computing apparatus or a similar special purpose electronic computing device. In the context of this specification, therefore, a special purpose computer or a similar special purpose electronic computing device is capable of manipulating or transforming signals, typically represented as physical electronic or magnetic quantities within memories, registers, or other information storage devices, transmission devices, or display devices of the special purpose computer or similar special purpose electronic computing device.
In the preceding detailed description, numerous specific details have been set forth to provide a thorough understanding of claimed subject matter. However, it will be understood by those skilled in the art that claimed subject matter may be practiced without these specific details. In other instances, methods and apparatuses that would be known by one of ordinary skill have not been described in detail so as not to obscure claimed subject matter.
The terms, “and” , “or” , and “and/or” as used herein may include a variety of meanings that also are expected to depend at least in part upon the context in which such terms are used. Typically, “or” if used to associate a list, such as A, B or C, is  intended to mean A, B, and C, here used in the inclusive sense, as well as A, B or C, here used in the exclusive sense. In addition, the term “one or more” as used herein may be used to describe any feature, structure, or characteristic in the singular or may be used to describe a plurality or some other combination of features, structures or characteristics. Though, it should be noted that this is merely an illustrative example and claimed subject matter is not limited to this example.
While there has been illustrated and described what are presently considered to be example features, it will be understood by those skilled in the art that various other modifications may be made, and equivalents may be substituted, without departing from claimed subject matter. Additionally, many modifications may be made to adapt a particular situation to the teachings of claimed subject matter without departing from the central concept described herein.
Therefore, it is intended that claimed subject matter not be limited to the particular examples disclosed, but that such claimed subject matter may also include all aspects falling within the scope of appended claims, and equivalents thereof.

Claims (44)

  1. A method for determining a location of a mobile device performed by the mobile device, the method comprising:
    receiving a first radio beam transmitted by a serving small cell base station, the first radio beam comprising a first beam identification value;
    measuring a second radio beam transmitted by a first neighboring small cell base station, the second radio beam comprising a second beam identification value; and
    sending to a location server a measurement report including at least the second beam identification value to determine the location of the mobile device based on an intersection of at least the first radio beam and the second radio beam.
  2. The method of claim 1, wherein the measurement report further includes the first beam identification value.
  3. The method of claim 1, wherein the measurement report does not include the first beam identification value and wherein the serving small cell base station provides the first beam identification value to the location server.
  4. The method of claim 1, further comprising measuring a third radio beam transmitted by a second neighboring small cell base station, the third radio beam comprising a third beam identification value, wherein the measurement report further includes the third beam identification value, and the location of the mobile device is determined based on the intersection of the first radio beam, the second radio beam, and the third radio beam.
  5. The method of claim 1, wherein the first beam identification value identifies a first azimuth angle and a first elevation angle for the first radio beam and the second beam identification value identifies a second azimuth angle and a second elevation angle for the second radio beam.
  6. A mobile device configured to support determining a location of the mobile device, comprising:
    a wireless transceiver configured to wirelessly communicate in a wireless network;
    at least one memory;
    at least one processor coupled to the wireless transceiver and the at least one memory, wherein the at least one processor is configured to:
    receive a first radio beam transmitted by a serving small cell base station, the first radio beam comprising a first beam identification value;
    measure a second radio beam transmitted by a first neighboring small cell base station, the second radio beam comprising a second beam identification value; and
    send to a location server a measurement report including at least the second beam identification value to determine the location of the mobile device based on an intersection of at least the first radio beam and the second radio beam.
  7. The mobile device of claim 6, wherein the measurement report further includes the first beam identification value.
  8. The mobile device of claim 6, wherein the measurement report does not include the first beam identification value and wherein the serving small cell base station provides the first beam identification value to the location server.
  9. The mobile device of claim 6, wherein the at least one processor is further configured to measure a third radio beam transmitted by a second neighboring small cell base station, the third radio beam comprising a third beam identification value, wherein the measurement report further includes the third beam identification value, and the location of the mobile device is determined based on the intersection of the first radio beam, the second radio beam, and the third radio beam.
  10. The mobile device of claim 6, wherein the first beam identification value identifies a first azimuth angle and a first elevation angle for the first radio beam and the second beam identification value identifies a second azimuth angle and a second elevation angle for the second radio beam.
  11. A mobile device configured to support determining a location of the mobile device, comprising:
    means for receiving a first radio beam transmitted by a serving small cell base station, the first radio beam comprising a first beam identification value;
    means for measuring a second radio beam transmitted by a first neighboring small cell base station, the second radio beam comprising a second beam identification value; and
    means for sending to a location server a measurement report including at least the second beam identification value to determine the location of the mobile device based on an intersection of at least the first radio beam and the second radio beam.
  12. The mobile device of claim 11, wherein the measurement report further includes the first beam identification value.
  13. The mobile device of claim 11, wherein the measurement report does not include the first beam identification value and wherein the serving small cell base station provides the first beam identification value to the location server.
  14. The mobile device of claim 11, further comprising means for measuring a third radio beam transmitted by a second neighboring small cell base station, the third radio beam comprising a third beam identification value, wherein the measurement report further includes the third beam identification value, and the location of the mobile device is determined based on the intersection of the first radio beam, the second radio beam, and the third radio beam.
  15. The mobile device of claim 11, wherein the first beam identification value identifies a first azimuth angle and a first elevation angle for the first radio beam and the second beam identification value identifies a second azimuth angle and a second elevation angle for the second radio beam.
  16. A non-transitory storage medium including program code stored thereon, the program code is operable to configure a processor of a mobile device to support determining a location of the mobile device, comprising:
    program code to receive a first radio beam transmitted by a serving small cell base station, the first radio beam comprising a first beam identification value;
    program code to measure a second radio beam transmitted by a first neighboring small cell base station, the second radio beam comprising a second beam identification value; and
    program code to send to a location server a measurement report including at least the second beam identification value to determine the location of the mobile device based on an intersection of at least the first radio beam and the second radio beam.
  17. The non-transitory storage medium of claim 16, wherein the measurement report further includes the first beam identification value.
  18. The non-transitory storage medium of claim 16, wherein the measurement report does not include the first beam identification value and wherein the serving small cell base station provides the first beam identification value to the location server.
  19. The non-transitory storage medium of claim 16, further comprising program code to measure a third radio beam transmitted by a second neighboring small cell base station, the third radio beam comprising a third beam identification value, wherein the measurement report further includes the third beam identification value, and the location  of the mobile device is determined based on the intersection of the first radio beam, the second radio beam, and the third radio beam.
  20. The non-transitory storage medium of claim 16, wherein the first beam identification value identifies a first azimuth angle and a first elevation angle for the first radio beam and the second beam identification value identifies a second azimuth angle and a second elevation angle for the second radio beam.
  21. A method for determining a location of a mobile device performed by a location server, the method comprising:
    receiving a measurement report for the mobile device including a first beam identification value for a first radio beam received by the mobile device from a serving small cell base station and a second beam identification value for a second radio beam measured by the mobile device and transmitted by a first neighboring small cell base station; and
    determining the location of the mobile device based on an intersection of at least the first radio beam and the second radio beam.
  22. The method of claim 21, wherein the first beam identification value is sent by the mobile device in the measurement report.
  23. The method of claim 21, wherein the first beam identification value is sent by the serving small cell base station.
  24. The method of claim 21, wherein the measurement report further includes a third beam identification value for a third radio beam measured by the mobile device and transmitted by a second neighboring small cell base station, wherein the location of the mobile device is determined based on the intersection of the first radio beam, the second radio beam, and the third radio beam.
  25. The method of claim 21, wherein the first beam identification value identifies a first azimuth angle and a first elevation angle for the first radio beam and the second beam identification value identifies a second azimuth angle and a second elevation angle for the second radio beam.
  26. The method of claim 25, wherein determining the location of the mobile device based on the intersection of at least the first radio beam and the second radio beam uses the first azimuth angle and the first elevation angle for the first radio beam relative to a coordinate system and the second azimuth angle and the second elevation angle for the second radio beam relative to the coordinate system.
  27. A location server configured to support determining a location of a mobile device, comprising:
    an external interface configured to communicate with in a wireless network;
    at least one memory;
    at least one processor coupled to the external interface and the at least one memory, wherein the at least one processor is configured to:
    receive a measurement report for the mobile device including a first beam identification value for a first radio beam received by the mobile device from a serving small cell base station and a second beam identification value for a second radio beam measured by the mobile device and transmitted by a first neighboring small cell base station; and
    determine the location of the mobile device based on an intersection of at least the first radio beam and the second radio beam.
  28. The location server of claim 27, wherein the first beam identification value is sent by the mobile device in the measurement report.
  29. The location server of claim 27, wherein the first beam identification value is sent by the serving small cell base station.
  30. The location server of claim 27, wherein the measurement report further includes a third beam identification value for a third radio beam measured by the mobile device and transmitted by a second neighboring small cell base station, wherein the location of the mobile device is determined based on the intersection of the first radio beam, the second radio beam, and the third radio beam.
  31. The location server of claim 27, wherein the first beam identification value identifies a first azimuth angle and a first elevation angle for the first radio beam and the second beam identification value identifies a second azimuth angle and a second elevation angle for the second radio beam.
  32. The location server of claim 31, wherein the at least one processor is configured to determine the location of the mobile device based on the intersection of at least the first radio beam and the second radio beam uses the first azimuth angle and the first elevation angle for the first radio beam relative to a coordinate system and the second azimuth angle and the second elevation angle for the second radio beam relative to the coordinate system.
  33. A location server configured to support determining a location of a mobile device, comprising:
    means for receiving a measurement report for the mobile device including a first beam identification value for a first radio beam received by the mobile device from a serving small cell base station and a second beam identification value for a second radio beam measured by the mobile device and transmitted by a first neighboring small cell base station; and
    means for determining the location of the mobile device based on an intersection of at least the first radio beam and the second radio beam.
  34. The location server of claim 33, wherein the first beam identification value is sent by the mobile device in the measurement report.
  35. The location server of claim 33, wherein the first beam identification value is sent by the serving small cell base station.
  36. The location server of claim 33, wherein the measurement report further includes a third beam identification value for a third radio beam measured by the mobile device and transmitted by a second neighboring small cell base station, wherein the location of the mobile device is determined based on the intersection of the first radio beam, the second radio beam, and the third radio beam.
  37. The location server of claim 33, wherein the first beam identification value identifies a first azimuth angle and a first elevation angle for the first radio beam and the second beam identification value identifies a second azimuth angle and a second elevation angle for the second radio beam.
  38. The location server of claim 37, wherein the means for determining the location of the mobile device based on the intersection of at least the first radio beam and the second radio beam uses the first azimuth angle and the first elevation angle for the first radio beam relative to a coordinate system and the second azimuth angle and the second elevation angle for the second radio beam relative to the coordinate system.
  39. A non-transitory storage medium including program code stored thereon, the program code is operable to configure a processor of a location server configured to support determining a location of a mobile device, comprising:
    program code to receive a measurement report for the mobile device including a first beam identification value for a first radio beam received by the mobile device from a serving small cell base station and a second beam identification value for a second radio  beam measured by the mobile device and transmitted by a first neighboring small cell base station; and
    program code to determine the location of the mobile device based on an intersection of at least the first radio beam and the second radio beam.
  40. The non-transitory storage medium of claim 39, wherein the first beam identification value is sent by the mobile device in the measurement report.
  41. The non-transitory storage medium of claim 39, wherein the first beam identification value is sent by the serving small cell base station.
  42. The non-transitory storage medium of claim 39, wherein the measurement report further includes a third beam identification value for a third radio beam measured by the mobile device and transmitted by a second neighboring small cell base station, wherein the location of the mobile device is determined based on the intersection of the first radio beam, the second radio beam, and the third radio beam.
  43. The non-transitory storage medium of claim 39, wherein the first beam identification value identifies a first azimuth angle and a first elevation angle for the first radio beam and the second beam identification value identifies a second azimuth angle and a second elevation angle for the second radio beam.
  44. The non-transitory storage medium of claim 43, wherein the program code to determine the location of the mobile device based on the intersection of at least the first radio beam and the second radio beam uses the first azimuth angle and the first elevation angle for the first radio beam relative to a coordinate system and the second azimuth angle and the second elevation angle for the second radio beam relative to the coordinate system.
PCT/CN2020/108469 2020-08-11 2020-08-11 Apparatus and method for beam based positioning of user equipment by mmw small cell WO2022032485A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/108469 WO2022032485A1 (en) 2020-08-11 2020-08-11 Apparatus and method for beam based positioning of user equipment by mmw small cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/108469 WO2022032485A1 (en) 2020-08-11 2020-08-11 Apparatus and method for beam based positioning of user equipment by mmw small cell

Publications (1)

Publication Number Publication Date
WO2022032485A1 true WO2022032485A1 (en) 2022-02-17

Family

ID=80247495

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/108469 WO2022032485A1 (en) 2020-08-11 2020-08-11 Apparatus and method for beam based positioning of user equipment by mmw small cell

Country Status (1)

Country Link
WO (1) WO2022032485A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023196097A1 (en) * 2022-04-04 2023-10-12 Qualcomm Incorporated Device region estimation for near-field operation

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107431894A (en) * 2015-03-31 2017-12-01 索尼公司 Method and apparatus for positioning mobile terminal in a radio network
US20190281574A1 (en) * 2018-03-06 2019-09-12 Telefonaktiebolaget Lm Ericsson (Publ) Radio location technique
US20190320408A1 (en) * 2018-04-11 2019-10-17 Qualcomm Incorporated Navigation and positioning system using radio beam
US20200145977A1 (en) * 2018-11-01 2020-05-07 Qualcomm Incorporated Positioning enhancements for locating a mobile device in a wireless network

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107431894A (en) * 2015-03-31 2017-12-01 索尼公司 Method and apparatus for positioning mobile terminal in a radio network
US20190281574A1 (en) * 2018-03-06 2019-09-12 Telefonaktiebolaget Lm Ericsson (Publ) Radio location technique
US20190320408A1 (en) * 2018-04-11 2019-10-17 Qualcomm Incorporated Navigation and positioning system using radio beam
US20200145977A1 (en) * 2018-11-01 2020-05-07 Qualcomm Incorporated Positioning enhancements for locating a mobile device in a wireless network

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LG ELECTRONICS: "Discussion on necessity and details for physical-layer procedures to support UE/gNB measurements", 3GPP TSG RAN WG1 #96BIS,R1-1904202;, 12 April 2019 (2019-04-12), XP051707159 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023196097A1 (en) * 2022-04-04 2023-10-12 Qualcomm Incorporated Device region estimation for near-field operation

Similar Documents

Publication Publication Date Title
US11460532B2 (en) Methods and apparatus for hybrid positioning measurement and reporting using different types of physical signals
US11757507B2 (en) Apparatus and method for low overhead frequency-averaged beam pattern feedback in millimeter wave positioning systems
US20220091221A1 (en) Relative location reporting for ue based positioning
US20230144714A1 (en) Transmission of differential broadcast positioning sibs for reduced power consumption
US20240077570A1 (en) Systems and methods for positioning enhancements using beam relation crowdsourcing
US20240040370A1 (en) Storing positioning-related capabilities in the network
WO2022032485A1 (en) Apparatus and method for beam based positioning of user equipment by mmw small cell
US11924799B2 (en) Enhancements in position determination in 5G cellular communications
US11917653B2 (en) Dynamic positioning capability reporting in millimeter wave bands
US20230422190A1 (en) Fft window adjustment based on prs peak processing
US20240114473A1 (en) Optimization of signaling for beam shape assistance data for mobile device location
TW202308413A (en) Relative location anchor group and local coordinate system
WO2022260743A1 (en) Methods and apparatus for banning devices performing active security attacks
EP4360350A1 (en) Methods and apparatus for maintaining transmission integrity and authenticity through channel measurements and reporting
CN116710798A (en) Basis function based beam shape assistance for downlink departure angle positioning
CN117716638A (en) Beam shape reporting for positioning

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20948984

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20948984

Country of ref document: EP

Kind code of ref document: A1