WO2022032465A1 - 一种垃圾焚烧发电厂垃圾池的智能控制方法 - Google Patents

一种垃圾焚烧发电厂垃圾池的智能控制方法 Download PDF

Info

Publication number
WO2022032465A1
WO2022032465A1 PCT/CN2020/108335 CN2020108335W WO2022032465A1 WO 2022032465 A1 WO2022032465 A1 WO 2022032465A1 CN 2020108335 W CN2020108335 W CN 2020108335W WO 2022032465 A1 WO2022032465 A1 WO 2022032465A1
Authority
WO
WIPO (PCT)
Prior art keywords
garbage
data
waste
dimensional
pond
Prior art date
Application number
PCT/CN2020/108335
Other languages
English (en)
French (fr)
Inventor
尤兴权
Original Assignee
武汉深能环保新沟垃圾发电有限公司
深圳市能源环保有限公司
深圳市深能环保东部有限公司
深圳市深能环保城市环境服务有限公司
潮州深能环保有限公司
桂林市深能环保有限公司
单县深能环保有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉深能环保新沟垃圾发电有限公司, 深圳市能源环保有限公司, 深圳市深能环保东部有限公司, 深圳市深能环保城市环境服务有限公司, 潮州深能环保有限公司, 桂林市深能环保有限公司, 单县深能环保有限公司 filed Critical 武汉深能环保新沟垃圾发电有限公司
Priority to PCT/CN2020/108335 priority Critical patent/WO2022032465A1/zh
Publication of WO2022032465A1 publication Critical patent/WO2022032465A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C13/00Other constructional features or details
    • B66C13/16Applications of indicating, registering, or weighing devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C13/00Other constructional features or details
    • B66C13/18Control systems or devices
    • B66C13/46Position indicators for suspended loads or for crane elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C13/00Other constructional features or details
    • B66C13/18Control systems or devices
    • B66C13/48Automatic control of crane drives for producing a single or repeated working cycle; Programme control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/50Control or safety arrangements
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/06Energy or water supply
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T17/00Three dimensional [3D] modelling, e.g. data description of 3D objects

Definitions

  • the patent of the present invention relates to a garbage management method in a garbage incineration power plant, and in particular, to an intelligent control method for a garbage pond in a garbage incineration power plant.
  • incineration treatment technology Compared with waste treatment technologies such as sanitary landfill and composting, incineration treatment technology has obvious volume and weight reduction effects, complete harmlessness, and small footprint. In addition, waste heat can also be used for heating or power generation. With the advantages of less pollution and controllable, it has gradually become the mainstream technology of urban domestic waste treatment in my country.
  • the garbage In the incineration technology, the garbage is placed in the garbage pond for about 5 days for anaerobic fermentation to remove water. After dehydration, it is put into the special furnace for waste incineration for incineration. The moisture content of the incoming waste is generally above 20%.
  • the management of garbage ponds relies entirely on personal experience, and then uses black and white versions, record books, etc. to record the conditions of the stacking area and the feeding area.
  • the management has a lot to do with personal experience, and because of shifts, etc., it is difficult to predict the previous situation in the garbage pond; Estimation, can not get the specific situation.
  • black and white board records and personal experience it is difficult to have a relatively accurate estimate of the garbage piled in the garbage pond.
  • the management of the garbage pond is not visualized, and the inexperienced shift personnel will make it difficult to continuously and effectively manage the garbage pond.
  • the present invention proposes an intelligent control method for the garbage pond in a garbage incineration power plant, which mainly includes the following steps: first, the grid space positioning step of the garbage pond; second, the data acquisition step, Third, the data system analysis step, and fourth, the three-dimensional model display step.
  • the obtained data is used for systematic analysis to construct a real-time three-dimensional digital model of garbage stacking in the garbage pond, and the calculation results are output to the automatic control of garbage cranes through the data output system.
  • the system realizes the automatic operation of the garbage hoist, and can output the system data to the remote management system to realize the remote situation monitoring, which can effectively solve the existing technical problems.
  • the technical solution adopted by the present invention to solve the technical problem is an intelligent control method for a garbage pond in a garbage incineration power plant, which is characterized in that it includes the following steps:
  • the grid space positioning steps including:
  • each reference square of the garbage pool including positioning and stacking identification.
  • Each reference square is defined by a five-bit code, namely X, Y, Z, A, T, among which,
  • X, Y, and Z represent the three-dimensional coordinates of the reference square (that is, the coordinates on the X-axis, Y-axis and Z-axis);
  • A represents whether there is garbage in the reference square, and its value is 0 or 1, 0 means no garbage, 1 means there is garbage;
  • T represents the number of garbage scans, from which the time of garbage dumping can be calculated according to the frequency of data collection
  • the data collection step including installing a set of three-dimensional scanning system (the three-dimensional scanning system can be in various ways such as laser, picture, infrared, etc.), scanning the garbage storage situation in the garbage pool at regular intervals (it can be tentatively set for half an hour , which can be determined according to the debugging situation later) and then use the data obtained after scanning by the 3D scanning system to carry out 3D reconstruction of the garbage pool, and match the 3D reconstructed data with the model.
  • the three-dimensional scanning system can be in various ways such as laser, picture, infrared, etc.
  • the three-dimensional model display step using the data obtained by the three-dimensional scanning system to scan regularly, update the data of each reference square of the garbage pool after each scan, and rebuild the three-dimensional digital model.
  • the reference square is set as a cube whose length, width and height are all 1 meter.
  • the values of different T values are classified, and T ⁇ 100; 101 ⁇ T ⁇ 150; 151 ⁇ T ⁇ 200; 201 ⁇ T ⁇ 250; T>251 are classified , so as to display the coordinate position of the reference grid for different T value ranges.
  • the stacking situation of garbage in the garbage pond is automatically identified through the system data, and the stacking height of the unloading area, the stacking area, and the feeding area is controlled by identifying and controlling the stacking height of the data and the garbage crane operating system. Then realize the automation of garbage crane operation.
  • a remote management system is established to remotely view the coordinate positions of the reference grids in different T value ranges at any time, so as to query historical records for a period of time.
  • the garbage stacking situation in the garbage pond is displayed in real time, and the reference squares with different T value ranges display different colors.
  • a remote management system in the step of displaying the three-dimensional model, is established, which can be accessed through a remote terminal to remotely check the material level of the garbage pond at any time.
  • the numerical values of different T values are classified, and T ⁇ 100; 101 ⁇ T ⁇ 150; 151 ⁇ T ⁇ 200; 201 ⁇ T ⁇ 250; T>251 are classified , thereby showing a three-dimensional digital model for different ranges of T values.
  • the three-dimensional model display step only the three-dimensional digital model in a certain T value range is displayed.
  • T value range For example, according to the requirements of garbage fermentation time, only three-dimensional digital models with T ⁇ 151 are displayed.
  • the present invention has beneficial effects.
  • the present invention provides an intelligent control method for a garbage pond in a waste incineration power plant, which mainly includes the following steps: first, a step of locating a reference grid space of a garbage pond, second, a data acquisition step, and third, a data acquisition step.
  • the obtained data is used for systematic analysis to construct a real-time three-dimensional digital model of garbage stacking in the garbage pond, and the calculation results are output to the garbage crane through the data output system.
  • the control system realizes the automatic operation of the garbage hoist, and can output the system data to the remote management system to realize the remote situation monitoring.
  • the existing technical problems can be effectively solved.
  • FIG. 1 , FIG. 2 and FIG. 3 are system layout diagrams and corresponding process flow diagrams of the first embodiment proposed by the present invention.
  • Fig. 1 is a schematic diagram of a three-dimensional coordinate system of a garbage pond
  • Fig. 2 is a schematic diagram of a three-dimensional coordinate system of a square in the garbage pond
  • Fig. 3 is a schematic diagram of a three-dimensional digital model of the garbage pond.
  • Garbage pool 1X. Garbage pool length, 1Y. Garbage pool width, 1Z. Garbage pool height,
  • FIG. 1 , FIG. 2 and FIG. 3 are system layout diagrams and corresponding process flow diagrams of the first embodiment proposed by the present invention.
  • Fig. 1 is a schematic diagram of a three-dimensional coordinate system of a garbage pond
  • Fig. 2 is a schematic diagram of a three-dimensional coordinate system of a square in the garbage pond
  • Fig. 3 is a schematic diagram of a three-dimensional digital model of the garbage pond.
  • an intelligent control method for a waste pond in a waste incineration power plant includes the following steps:
  • the grid space positioning steps including:
  • each grid is a reference square.
  • the reference square is set as a cube whose length, width and height are all 1 meter.
  • the length of the garbage pool is 52 meters
  • the width is 25 meters
  • each reference square of the garbage pool including positioning and stacking identification, each square is defined by a five-bit code, namely X, Y, Z, A, T, among which,
  • X, Y, and Z represent the three-dimensional coordinates of the grid (that is, the coordinates on the X-axis, Y-axis, and Z-axis);
  • A represents whether there is garbage in the square, and its value is 0 or 1, 0 means no garbage, 1 means there is garbage;
  • the data collection step includes installing a set of three-dimensional scanning system (the three-dimensional scanning system can be in various ways such as laser, picture, infrared, etc.), and scanning the garbage pool by the three-dimensional scanning system at regular intervals, analyzing Garbage storage in the garbage pond.
  • the three-dimensional scanning system can be in various ways such as laser, picture, infrared, etc.
  • the data system analysis step use the data obtained by the 3D scanning system to scan regularly, and perform statistics on the data of each reference square of the garbage pond after each scan.
  • the 3D coordinates are XL , YL , ZL .
  • the three-dimensional model display step using the data obtained by the three-dimensional scanning system to scan regularly, update the data of each reference square of the garbage pool after each scan, and rebuild the three-dimensional digital model.
  • the numerical values of different T values are classified, and T ⁇ 100; 101 ⁇ T ⁇ 150; 151 ⁇ T ⁇ 200; 201 ⁇ T ⁇ 250; T>251 are classified, Thus, the coordinate positions of the reference grids in different T value ranges are displayed.
  • the stacking situation of the garbage in the garbage pond is automatically identified through the system data, and the stacking height of the unloading area, the stacking area and the feeding area is controlled by identifying and controlling the stacking height of the unloading area, the stacking area, and the feeding area. Realize the automation of garbage crane operation.
  • a remote management system is established to remotely view the coordinate positions of the reference grids in different T value ranges at any time, thereby querying historical records for a period of time.
  • the garbage stacking situation in the garbage pond is displayed in real time, and the reference squares with different T value ranges display different colors.
  • a remote management system in the step of displaying the three-dimensional model, is established, which can be accessed through a remote terminal to remotely check the material level of the garbage pond at any time.
  • the numerical values of different T values are classified, and T ⁇ 100; 101 ⁇ T ⁇ 150; 151 ⁇ T ⁇ 200; 201 ⁇ T ⁇ 250; T>251. classification, thereby showing a three-dimensional numerical model of different ranges of T values.
  • the step of displaying the three-dimensional model only the three-dimensional digital model in a certain T value range is displayed. For example, according to the requirements of garbage fermentation time, only three-dimensional digital models with T ⁇ 151 are displayed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Business, Economics & Management (AREA)
  • Theoretical Computer Science (AREA)
  • Economics (AREA)
  • Mechanical Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Strategic Management (AREA)
  • Human Resources & Organizations (AREA)
  • Marketing (AREA)
  • Tourism & Hospitality (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Automation & Control Theory (AREA)
  • Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • General Business, Economics & Management (AREA)
  • Geometry (AREA)
  • Evolutionary Computation (AREA)
  • Development Economics (AREA)
  • Computer Hardware Design (AREA)
  • Public Health (AREA)
  • Software Systems (AREA)
  • Computer Graphics (AREA)
  • General Health & Medical Sciences (AREA)
  • Primary Health Care (AREA)
  • Educational Administration (AREA)
  • Water Supply & Treatment (AREA)
  • Game Theory and Decision Science (AREA)
  • Operations Research (AREA)
  • Quality & Reliability (AREA)
  • Incineration Of Waste (AREA)

Abstract

一种垃圾焚烧发电厂垃圾池(1)的智能控制方法,主要包括以下步骤:第一、垃圾池(1)网格化空间定位步骤,第二、数据采集步骤,第三、数据系统分析步骤,第四、三维模型显示步骤。通过对垃圾池(1)进行网格化定位并通过三维扫描系统定时扫描,利用获得的数据进行系统分析从而构建实时的垃圾池(1)垃圾(2)堆放的三维数字模型,通过数据输出系统将计算结果输出至垃圾(2)吊自动控制系统实现垃圾(2)吊的全自动操作,并可以将系统数据输出至远程管理系统实现远端情况监视,从而最终实现垃圾池(1)管理可视化,对垃圾池(1)进行连续的有效管理。

Description

一种垃圾焚烧发电厂垃圾池的智能控制方法 技术领域
本发明专利涉及一种垃圾焚烧发电厂垃圾池垃圾管理方法,尤其涉及一种垃圾焚烧发电厂垃圾池的智能控制方法。
背景技术
鉴于与卫生填埋、堆肥等垃圾处理技术相比,焚烧处理技术具有减容、减重效果明显,无害化彻底,且占地面积小,另外余热还能用于供热或发电,二次污染较少且可控等优点,已逐渐成为我国城市生活垃圾处理的主流技术。在焚烧技术中,垃圾放于垃圾池内5天左右厌氧发酵,脱去水分。脱水后投入到垃圾焚烧专用炉内焚烧,进厂垃圾含水率一般在20%以上,只有脱水后才能在焚烧炉内稳定的燃烧。
目前垃圾池的管理完全依靠个人经验,然后辅助采用黑白版、记录本等记录堆料区、投料区情况。该方式的垃圾池管理存在很多局限性,管理跟个人经验有较大关系,并且由于交接班等情况,导致垃圾池内之前情况难预估;垃圾池内各个区域的垃圾堆放情况也只能是大概预估,并不能得到具体情况。借助黑白板记录及个人经验,对于垃圾池内堆放的垃圾很难有一个比较准确的估计,垃圾池管理不具有可视化,交接班人员经验不足将难以对垃圾池进行连续的有效管理。
发明内容
为了克服现有垃圾焚烧发电厂的垃圾池管理主要是借助黑白板记录及个人经验,对于垃圾池内堆放的垃圾很难有一个比较准确的估计,垃圾池管理不具有可视化,交接班人员经验不足将难以对垃圾池进行连续的有效管理,本发明提出一种垃圾焚烧发电厂垃圾池的智能控制方法,主要包括以下步骤:第一、垃圾池网格化空间定位步骤,第二、数据采集步骤,第三、数据系统分析步骤,第四、三维模型显示步骤。通过对垃圾池进行网格化定位并通过三维扫描系统定时扫描,利用获得的数据进行系统分析从而构建实时的垃圾池垃圾堆放的三维数字模型,通过数据输出系统将计算结果输出至垃圾吊自动控制系统实现垃圾吊的全自动操作,并可以将系统数据输出至远程管理系统实现远端情况监视,可以有效地解决现有技术问题。
本发明解决技术问题采用的技术方案是,一种垃圾焚烧发电厂垃圾池的智能控制方法,其特征是,包括以下步骤:
第一、网格化空间定位步骤,包括:
第1、将垃圾池按网格进行划分,构建一个立体的网格化垃圾池数字模型,将整个垃圾池空间网格化,每一个网格为一个基准方格;
第2、对垃圾池各个基准方格进行定义,包括定位和堆放识别,每个基准方格由一个五位编码即X,Y,Z,A,T进行定义,其中,
X,Y,Z分别代表基准方格的三维坐标(即X轴、Y轴及Z轴上的坐标);
A代表该基准方格内有无垃圾,其值为0或1,0代表无垃圾,1代表有垃圾;
T代表垃圾扫描的次数,根据数据采集的频率可以由此计算出垃圾堆放的时间;
第二、数据采集步骤,包括,安装一套三维扫描系统(该三维扫描系统可以是激光、图片、红外等各种方式),每隔一定时间扫描一次垃圾池内垃圾存储情况(可暂定半小时,后期可根据调试情况确定)然后利用三维扫描系统扫描后获得的数据进行垃圾池三维重建,将三维重建的数据与模型进行匹配,当某一基准方格中出现垃圾时a值为1,否则为0;
第三、数据系统分析步骤,利用三维扫描系统定时扫描获得的数据,在每次扫描后对垃圾池每个基准方格的数据进行统计;例如,三维坐标为X L、Y L、Z L的某一个基准方格L,在某次扫描中,A=1,则T=T 0+1(T 0为上一次扫描后的累计值,T为本次累计值),当某一次扫描时获得A=0,则T=0;
第四、三维模型显示步骤,利用三维扫描系统定时扫描获得的数据,在每次扫描后对垃圾池每个基准方格的数据进行更新并重新构建三维数字模型。
优选方案,所述基准方格设定为长、宽、高均为1米的一个立方体。
优选方案,在所述数据系统分析步骤中,对不同T值的数值进行归类,将T<100;101≤T≤150;151≤T≤200;201≤T≤250;T>251进行分类,从而显示出不同T值范围的基准方格坐标位置。
优选方案,在所述数据系统分析步骤中,通过系统数据自动识别垃圾池垃圾的堆放情况,并通过识别控制卸料区、堆料区、投料区的堆放高度,将数据与垃圾吊操作系统结合后实现垃圾吊操作自动化。
优选方案,在所述数据系统分析步骤中,建立远程管理系统,随时远程查看不同T值范围的基准方格坐标位置,从而查询一段时间的历史记录。
优选方案,在所述三维模型显示步骤中,实时显示垃圾池内垃圾堆放情况,不同T值范围的基准方格显示不同的颜色。
优选方案,在所述三维模型显示步骤中,建立一个远程管理系统,可以通过远程端进入,随时远程查看垃圾池料位情况。
优选方案,在所述三维模型显示步骤中,对不同T值的数值进行归类,将T<100;101≤T≤150;151≤T≤200;201≤T≤250;T>251进行分类,从而显示出不同T值范围的三维数字模型。
优选方案,在所述三维模型显示步骤中,仅显示某一T值范围的三维数字模型。如,根据垃圾发酵时间的要求,仅显示T≥151的三维数字模型。
本发明有益效果,本发明提出一种垃圾焚烧发电厂垃圾池的智能控制方法,主要包括以下步骤:第一、垃圾池基准方格化空间定位步骤,第二、数据采集步骤,第三、数据系统分析步骤,第四、三维模型显示步骤。通过对垃圾池进行基准方格化定位并通过三维扫描系统定时扫描,利用获得的数据进行系统分析从而构建实时的垃圾池垃圾堆放的三维数字模型,通过数据输出系统将计算结果输出至垃圾吊自动控制系统实现垃圾吊的全自动操作,并可以将系统数据输出至远程管理系统实现远端情况监视。可以有效地解决现 有技术问题。
附图说明
图1图2及图3为本发明提出的第一个实施例的系统布置图及其对应的工艺流程图。其中,图1为垃圾池三维坐标系统示意图,图2为垃圾池中方格的三维坐标示意图,图3为垃圾池三维数字模型示意图。
图中,
1.垃圾池,1X.垃圾池长,1Y.垃圾池宽,1Z.垃圾池高,
1.1基准方格,
2垃圾。
具体实施方式
图1图2及图3为本发明提出的第一个实施例的系统布置图及其对应的工艺流程图。其中,图1为垃圾池三维坐标系统示意图,图2为垃圾池中方格的三维坐标示意图,图3为垃圾池三维数字模型示意图。
图中显示,本例中,一种垃圾焚烧发电厂垃圾池的智能控制方法,包括以下步骤:
第一、网格化空间定位步骤,包括:
第1、将垃圾池1按网格进行划分,构建一个立体的网格化垃圾池数字模型,将整个垃圾池空间网格化,每一个网格为一个基准方格。本例中,基准方格设定为长、宽、高均为1米的一个立方体。例如,垃圾池的长度为52米、宽25米、高28米,可以划分成52*25*28=36400个基准方格,整个垃圾池由所述基本方块通过空间堆积而成。
第2、对垃圾池各个基准方格进行定义,包括定位和堆放识别,每个方格由一个五位编码即X,Y,Z,A,T进行定义,其中,
X,Y,Z分别代表方格的三维坐标(即X轴、Y轴及Z轴上的坐标);
A代表该方格内有无垃圾,其值为0或1,0代表无垃圾,1代表有垃圾;
T代表垃圾扫描的次数,根据数据采集的频率可以由此计算出垃圾堆放的时间;例如,当数据采集频率为0.5小时/次,则即当T=10时,堆放时间=10×0.5小时=5小时);
当A=0时,T=0。
图2中显示,某一个基准方格1.1的定义为(25,12,10,1,10),则表示在X=25、Y=12、Z=10的基准方格上,垃圾的累计堆放时间已经达到5小时(当数据采集频率为0.5小时/次)。
第二、数据采集步骤,包括,安装一套三维扫描系统(该三维扫描系统可以是激光、图片、红外等各种方式),并且每隔一定时间由三维扫描系统对垃圾池进行一次扫描,分析垃圾池内垃圾存储情况。本例中,可以每半小时扫描一次,然后利用三维扫描系统扫描后获得的数据进行垃圾池三维模型重建,将三维重建的数据与模型进行匹配;当某一基准方格中存在垃圾时a值为1,否则为0。
第三、数据系统分析步骤,利用三维扫描系统定时扫描获得的数据,在每次扫描后对垃圾池每个基准方格 的数据进行统计,例如,三维坐标为X L、Y L、Z L的某一个基准方格L,在某次扫描中,A=1,则T=T 0+1(T 0为上一次扫描后的累计值,T为本次的累计值)。当某一次扫描时获得A=0,则T=0;
第四、三维模型显示步骤,利用三维扫描系统定时扫描获得的数据,在每次扫描后对垃圾池每个基准方格的数据进行更新并重新构建三维数字模型。
优选实施例,在数据系统分析步骤中,对不同T值的数值进行归类,将T<100;101≤T≤150;151≤T≤200;201≤T≤250;T>251进行分类,从而显示出不同T值范围的基准方格坐标位置。
优选实施例,在数据系统分析步骤中,通过系统数据自动识别垃圾池垃圾的堆放情况,并通过识别控制卸料区、堆料区、投料区的堆放高度,将数据与垃圾吊操作系统结合后实现垃圾吊操作自动化。
优选实施例,在数据系统分析步骤中,建立远程管理系统,随时远程查看不同T值范围的基准方格坐标位置,从而查询一段时间的历史记录。
优选实施例,在所述三维模型显示步骤中,实时显示垃圾池内垃圾堆放情况,不同T值范围的基准方格显示不同的颜色。
优选实施例,在所述三维模型显示步骤中,建立一个远程管理系统,可以通过远程端进入,随时远程查看垃圾池料位情况。
优选实施例,在所述三维模型显示步骤中,对不同T值的数值进行归类,将T<100;101≤T≤150;151≤T≤200;201≤T≤250;T>251进行分类,从而显示出不同T值范围的三维数字模型。
优选实施例,在所述三维模型显示步骤中,仅显示某一T值范围的三维数字模型。如,根据垃圾发酵时间的要求,仅显示T≥151的三维数字模型。

Claims (9)

  1. 一种垃圾焚烧发电厂垃圾池的智能控制方法,其特征是,包括以下步骤:
    第一、网格化空间定位步骤,包括:
    第1、将垃圾池按网格进行划分,构建一个立体的网格化垃圾池数字模型,将整个垃圾池空间网格化,每一个网格为一个基准方格;
    第2、对垃圾池各个基准方格进行定义,包括定位和堆放识别,每个基准方格由一个五位编码即X,Y,Z,A,T进行定义,其中,
    X,Y,Z分别代表基准方格的三维坐标(即X轴、Y轴及Z轴上的坐标);
    A代表该基准方格内有无垃圾,其值为0或1,0代表无垃圾,1代表有垃圾;
    T代表垃圾扫描的次数,根据数据采集的频率可以由此计算出垃圾堆放的时间;
    第二、所述数据采集步骤,包括,安装一套三维扫描系统(该三维扫描系统可以是激光、图片、红外等各种方式),每隔一定时间扫描一次垃圾池内垃圾存储情况(可暂定半小时,后期可根据调试情况确定)然后利用三维扫描系统扫描后获得的数据进行垃圾池三维重建,将三维重建的数据与模型进行匹配,当某一基准方格中出现垃圾时a值为1,否则为0;
    第三、数据系统分析步骤,利用三维扫描系统定时扫描获得的数据,在每次扫描后对垃圾池每个基准方格的数据进行统计;
    第四、三维模型显示步骤,利用三维扫描系统定时扫描获得的数据,在每次扫描后对垃圾池每个基准方格的数据进行更新并重新构建三维数字模型。
  2. 根据权利要求1所述的一种垃圾焚烧发电厂垃圾池的智能控制方法,其特征是,在所述网格化空间定位步骤的第1步骤中,所述基准方格设定为长、宽、高均为1米的一个立方体。
  3. 根据权利要求1所述的一种垃圾焚烧发电厂垃圾池的智能控制方法,其特征是,在所述数据系统分析步骤中,对不同T值的数值进行归类,将T<100;101≤T≤150;151≤T≤200;201≤T≤250;T>251进行分类,从而显示出不同T值范围的基准方格坐标位置。
  4. 根据权利要求1所述的一种垃圾焚烧发电厂垃圾池的智能控制方法,其特征是,在所述数据系统分析步骤中,通过系统数据自动识别垃圾池垃圾的堆放情况,并通过识别控制卸料区、堆料区、投料区的堆放高度,将数据与垃圾吊操作系统结合后实现垃圾吊操作自动化。
  5. 根据权利要求1所述的一种垃圾焚烧发电厂垃圾池的智能控制方法,其特征是,在所述数据系统分析步骤中,建立远程管理系统,随时远程查看不同T值范围的基准方格坐标位置,从而查询一段时间的历史记录。
  6. 根据权利要求1所述的一种垃圾焚烧发电厂垃圾池的智能控制方法,其特征是,在所述三维模型显示步骤中,实时显示垃圾池内垃圾堆放情况,不同T值范围的基准方格显示不同的颜色。
  7. 根据权利要求1所述的一种垃圾焚烧发电厂垃圾池的智能控制方法,其特征是,在所述三维模型 显示步骤中,建立一个远程管理系统,可以通过远程端进入,随时远程查看垃圾池料位情况。
  8. 根据权利要求1所述的一种垃圾焚烧发电厂垃圾池的智能控制方法,其特征是,在所述三维模型显示步骤中,对不同T值的数值进行归类,将T<100;101≤T≤150;151≤T≤200;201≤T≤250;T>251进行分类,从而显示出不同T值范围的三维数字模型。
  9. 根据权利要求1所述的一种垃圾焚烧发电厂垃圾池的智能控制方法,其特征是,在所述三维模型显示步骤中,仅显示某一T值范围的三维数字模型。
PCT/CN2020/108335 2020-08-11 2020-08-11 一种垃圾焚烧发电厂垃圾池的智能控制方法 WO2022032465A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/108335 WO2022032465A1 (zh) 2020-08-11 2020-08-11 一种垃圾焚烧发电厂垃圾池的智能控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/108335 WO2022032465A1 (zh) 2020-08-11 2020-08-11 一种垃圾焚烧发电厂垃圾池的智能控制方法

Publications (1)

Publication Number Publication Date
WO2022032465A1 true WO2022032465A1 (zh) 2022-02-17

Family

ID=80247541

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/108335 WO2022032465A1 (zh) 2020-08-11 2020-08-11 一种垃圾焚烧发电厂垃圾池的智能控制方法

Country Status (1)

Country Link
WO (1) WO2022032465A1 (zh)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101334897A (zh) * 2007-06-27 2008-12-31 宝山钢铁股份有限公司 实现料堆实时动态跟踪的三维成像方法
CN103065005A (zh) * 2012-12-20 2013-04-24 招商局国际信息技术有限公司 堆场配位的方法和系统
CN104183021A (zh) * 2014-07-10 2014-12-03 北京建筑大学 一种利用可移动空间网格精简点云数据的方法
CN207068040U (zh) * 2017-08-17 2018-03-02 国网江西省电力公司南昌供电分公司 一种基于无线传感器网络的无人值守智能仓库系统
KR20180125843A (ko) * 2017-05-16 2018-11-26 광운대학교 산학협력단 (국문)다양한 cnn 모델에 적용 가능한 하드웨어 분류기
CN110047140A (zh) * 2019-05-30 2019-07-23 北京中盛博方环保工程技术有限公司 一种料场的无人值守系统和智能料场监控系统
CN110525842A (zh) * 2019-09-12 2019-12-03 深圳市盘龙环境技术有限公司 大件垃圾自动分类管理系统
CN110968567A (zh) * 2019-11-21 2020-04-07 苏州大学应用技术学院 起重机货物三维位置信息数据库的智能构建方法及系统
CN111260289A (zh) * 2020-01-16 2020-06-09 四川中烟工业有限责任公司 一种基于视觉导航的微型无人机仓库盘点系统及方法
EP3085070B1 (de) * 2013-12-19 2020-07-15 Fraunhofer Gesellschaft zur Förderung der Angewand Mehrkanaloptik-bildaufnahmevorrichtung
CN111985800A (zh) * 2020-08-11 2020-11-24 武汉深能环保新沟垃圾发电有限公司 一种垃圾焚烧发电厂垃圾池的智能控制方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101334897A (zh) * 2007-06-27 2008-12-31 宝山钢铁股份有限公司 实现料堆实时动态跟踪的三维成像方法
CN103065005A (zh) * 2012-12-20 2013-04-24 招商局国际信息技术有限公司 堆场配位的方法和系统
EP3085070B1 (de) * 2013-12-19 2020-07-15 Fraunhofer Gesellschaft zur Förderung der Angewand Mehrkanaloptik-bildaufnahmevorrichtung
CN104183021A (zh) * 2014-07-10 2014-12-03 北京建筑大学 一种利用可移动空间网格精简点云数据的方法
KR20180125843A (ko) * 2017-05-16 2018-11-26 광운대학교 산학협력단 (국문)다양한 cnn 모델에 적용 가능한 하드웨어 분류기
CN207068040U (zh) * 2017-08-17 2018-03-02 国网江西省电力公司南昌供电分公司 一种基于无线传感器网络的无人值守智能仓库系统
CN110047140A (zh) * 2019-05-30 2019-07-23 北京中盛博方环保工程技术有限公司 一种料场的无人值守系统和智能料场监控系统
CN110525842A (zh) * 2019-09-12 2019-12-03 深圳市盘龙环境技术有限公司 大件垃圾自动分类管理系统
CN110968567A (zh) * 2019-11-21 2020-04-07 苏州大学应用技术学院 起重机货物三维位置信息数据库的智能构建方法及系统
CN111260289A (zh) * 2020-01-16 2020-06-09 四川中烟工业有限责任公司 一种基于视觉导航的微型无人机仓库盘点系统及方法
CN111985800A (zh) * 2020-08-11 2020-11-24 武汉深能环保新沟垃圾发电有限公司 一种垃圾焚烧发电厂垃圾池的智能控制方法

Similar Documents

Publication Publication Date Title
CN104077725B (zh) 马铃薯种植物联网监测、控制及信息服务云平台综合系统
CN101236410B (zh) 一种智能灌溉施肥决策控制系统
CN114742294A (zh) 一种碳排放预测的神经网络算法
CN111311023A (zh) 一种配煤掺烧方法、装置、设备及计算机可读存储介质
CN207022661U (zh) 一种智能化多功能绿色植物墙
CN105184427A (zh) 一种对农田生态环境进行预警的方法及装置
CN106814709A (zh) 基于物联网的污水处理智能监控系统
CN107256442B (zh) 基于移动客户端的线损计算方法
CN111899143A (zh) 一种基于大数据分析策略的区域水环境智慧管控系统
CN106910144A (zh) 基于分时刻实际用能系数的大型建筑逐时能耗在线预测方法
CN106972528A (zh) 可再生能源绿色建筑系统
CN106774222A (zh) 城市污水处理数字化精确控制系统及智能仿真方法
CN110488891A (zh) 一种物联网的太阳能远程精准灌溉系统
Jia [Retracted] Intelligent Garden Planning and Design Based on Agricultural Internet of Things
CN111985800B (zh) 一种垃圾焚烧发电厂垃圾池的智能控制方法
WO2022032465A1 (zh) 一种垃圾焚烧发电厂垃圾池的智能控制方法
CN207908944U (zh) 一种智能型植物浇灌装置
CN2864766Y (zh) 垃圾焚烧发电厂智能化控制管理成套装置
CN108763595B (zh) 污水处理数据回溯方法和系统
CN112001808A (zh) 一种建立区域养殖废弃物处理工程的评估系统及评估方法
Castro-Lacouture et al. GIS-BIM framework for integrating urban systems, waste stream and algal cultivation in residential construction
Fourati et al. Information and communication technologies for the improvement of the irrigation scheduling
CN112116107A (zh) 水务运营管理方法及其系统、计算机可读存储介质
Abtahi Isfahan University of Technology (IUT): Towards a Green Campus Energy, Climate and Sustainable Development Initiatives at IUT
Chen et al. Application of Artificial Intelligence Technology in Water Resouces Planning of River Basin

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20948964

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20948964

Country of ref document: EP

Kind code of ref document: A1