WO2022031077A1 - Method and device for transmitting and receiving channel state information in wireless communication system - Google Patents

Method and device for transmitting and receiving channel state information in wireless communication system Download PDF

Info

Publication number
WO2022031077A1
WO2022031077A1 PCT/KR2021/010338 KR2021010338W WO2022031077A1 WO 2022031077 A1 WO2022031077 A1 WO 2022031077A1 KR 2021010338 W KR2021010338 W KR 2021010338W WO 2022031077 A1 WO2022031077 A1 WO 2022031077A1
Authority
WO
WIPO (PCT)
Prior art keywords
csi
resource
resources
base station
trp
Prior art date
Application number
PCT/KR2021/010338
Other languages
French (fr)
Korean (ko)
Inventor
김규석
김형태
강지원
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Publication of WO2022031077A1 publication Critical patent/WO2022031077A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/022Site diversity; Macro-diversity
    • H04B7/024Co-operative use of antennas of several sites, e.g. in co-ordinated multipoint or co-operative multiple-input multiple-output [MIMO] systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path

Definitions

  • the present disclosure relates to a wireless communication system, and more particularly, to a method and apparatus for transmitting and receiving channel state information in a wireless communication system.
  • the mobile communication system has been developed to provide a voice service while ensuring user activity.
  • the mobile communication system has expanded its scope to not only voice but also data service.
  • the explosive increase in traffic causes a shortage of resources and users demand higher-speed services, so a more advanced mobile communication system is required. have.
  • next-generation mobile communication system requirements of the next-generation mobile communication system are largely to support explosive data traffic acceptance, a dramatic increase in the transmission rate per user, a significantly increased number of connected devices, very low end-to-end latency, and high energy efficiency.
  • Dual Connectivity Massive Multiple Input Multiple Output (MIMO), In-band Full Duplex, Non-Orthogonal Multiple Access (NOMA), Super Wideband
  • MIMO Massive Multiple Input Multiple Output
  • NOMA Non-Orthogonal Multiple Access
  • An object of the present disclosure is to provide a method and apparatus for transmitting and receiving channel state information.
  • an additional technical problem of the present disclosure is a method for transmitting and receiving joint channel state information for a channel state information reference signal (CSI-RS) transmitted from multiple transmission reception points (TRPs). and to provide an apparatus.
  • CSI-RS channel state information reference signal
  • an additional technical task of the present disclosure is to provide a method and apparatus for individually/independently setting the number of ranks and/or a precoding matrix required for calculating channel state information in a terminal for each resource.
  • a method for transmitting channel state information (CSI) in a wireless communication system includes: receiving configuration information related to a CSI report from a base station; receiving a CSI-RS on a plurality of channel state information-reference signal (CSI-RS) resources from the base station; and transmitting the CSI calculated based on the CSI-RS to the base station.
  • the plurality of CSI-RS resources for channel measurement are configured by the configuration information related to the CSI report, and an individual rank configured for each of the plurality of CSI-RS resources based on the configuration information related to the CSI report ( The CSI may be calculated based on the number of ranks and/or precoding matrix information.
  • a method of receiving channel state information (CSI) transmitting configuration information related to CSI reporting to a terminal; transmitting a CSI-RS to the terminal on a plurality of channel state information-reference signal (CSI-RS) resources; and receiving the CSI calculated based on the CSI-RS from the terminal.
  • the plurality of CSI-RS resources for channel measurement are configured by the configuration information related to the CSI report, and an individual rank configured for each of the plurality of CSI-RS resources based on the configuration information related to the CSI report ( The CSI may be calculated based on the number of ranks and/or precoding matrix information.
  • TRPs transmission reception points
  • scheduling more suitable for a channel situation may be performed by acquiring/reporting optimal channel state information for performing transmission of multiple transmission reception points (TRPs).
  • TRPs transmission reception points
  • wireless communication system performance may be improved by acquiring/reporting optimal channel state information for performing transmission of multiple transmission reception points (TRPs).
  • TRPs transmission reception points
  • FIG. 1 illustrates a structure of a wireless communication system to which the present disclosure can be applied.
  • FIG. 2 illustrates a frame structure in a wireless communication system to which the present disclosure can be applied.
  • FIG. 3 illustrates a resource grid in a wireless communication system to which the present disclosure can be applied.
  • FIG. 4 illustrates a physical resource block in a wireless communication system to which the present disclosure can be applied.
  • FIG. 5 illustrates a slot structure in a wireless communication system to which the present disclosure can be applied.
  • FIG. 6 illustrates physical channels used in a wireless communication system to which the present disclosure can be applied and a general signal transmission/reception method using them.
  • FIG. 7 illustrates a multiple TRP transmission scheme in a wireless communication system to which the present disclosure can be applied.
  • FIG 8 illustrates CSI reporting in a wireless communication system to which the present disclosure may be applied.
  • FIG 9 illustrates a CSI reporting procedure according to an embodiment of the present disclosure.
  • FIG. 10 illustrates a signaling procedure between a network and a terminal according to an embodiment of the present disclosure.
  • FIG. 11 illustrates an operation of a terminal for transmitting channel state information according to an embodiment of the present disclosure.
  • FIG. 12 illustrates an operation of a base station for transmitting channel state information according to an embodiment of the present disclosure.
  • FIG. 13 illustrates a block diagram of a wireless communication apparatus according to an embodiment of the present disclosure.
  • a component when it is said that a component is “connected”, “coupled” or “connected” with another component, it is not only a direct connection relationship, but also an indirect connection relationship in which another component exists between them. may also include. Also in this disclosure the terms “comprises” or “having” specify the presence of a recited feature, step, operation, element and/or component, but one or more other features, steps, operations, elements, components and/or The presence or addition of groups thereof is not excluded.
  • first and second are used only for the purpose of distinguishing one component from other components and are not used to limit the components, unless otherwise specified. It does not limit the order or importance between them. Accordingly, within the scope of the present disclosure, a first component in one embodiment may be referred to as a second component in another embodiment, and similarly, a second component in one embodiment is referred to as a first component in another embodiment. can also be called
  • the present disclosure describes a wireless communication network or a wireless communication system as a target, and operations performed in the wireless communication network control the network and transmit or receive a signal by a device (eg, a base station) having jurisdiction over the wireless communication network. It may be made in the process of receiving (receive), or it may be made in the process of transmitting or receiving a signal from a terminal coupled to a corresponding wireless network to a network or between terminals.
  • a device eg, a base station
  • transmitting or receiving a channel includes the meaning of transmitting or receiving information or a signal through a corresponding channel.
  • transmitting the control channel means transmitting control information or a signal through the control channel.
  • transmit a data channel means to transmit data information or a signal over the data channel.
  • downlink means communication from a base station to a terminal
  • uplink means communication from a terminal to a base station
  • DL downlink
  • UL uplink
  • the transmitter may be a part of the base station
  • the receiver may be a part of the terminal
  • the transmitter may be a part of the terminal
  • the receiver may be a part of the base station.
  • the base station may be represented as a first communication device
  • the terminal may be represented as a second communication device.
  • Base station is a fixed station (fixed station), Node B, evolved-NodeB (eNB), gNB (Next Generation NodeB), BTS (base transceiver system), access point (AP: Access Point), network (5G) network), AI (Artificial Intelligence) system/module, RSU (road side unit), robot (robot), drone (UAV: Unmanned Aerial Vehicle), AR (Augmented Reality) device, VR (Virtual Reality) device, etc.
  • BS Base station
  • Node B evolved-NodeB
  • gNB Next Generation NodeB
  • BTS base transceiver system
  • AP Access Point
  • 5G network
  • AI Artificial Intelligence
  • RSU road side unit
  • robot robot
  • drone UAV: Unmanned Aerial Vehicle
  • AR Algmented Reality
  • VR Virtual Reality
  • the terminal may be fixed or have mobility, UE (User Equipment), MS (Mobile Station), UT (user terminal), MSS (Mobile Subscriber Station), SS (Subscriber Station), AMS (Advanced Mobile) Station), WT (Wireless terminal), MTC (Machine-Type Communication) device, M2M (Machine-to-Machine) device, D2D (Device-to-Device) device, vehicle, RSU (road side unit), It may be replaced by terms such as a robot, an artificial intelligence (AI) module, an unmanned aerial vehicle (UAV), an augmented reality (AR) device, and a virtual reality (VR) device.
  • AI artificial intelligence
  • UAV unmanned aerial vehicle
  • AR augmented reality
  • VR virtual reality
  • CDMA may be implemented with a radio technology such as Universal Terrestrial Radio Access (UTRA) or CDMA2000.
  • TDMA may be implemented with a radio technology such as Global System for Mobile communications (GSM)/General Packet Radio Service (GPRS)/Enhanced Data Rates for GSM Evolution (EDGE).
  • GSM Global System for Mobile communications
  • GPRS General Packet Radio Service
  • EDGE Enhanced Data Rates for GSM Evolution
  • OFDMA may be implemented with a radio technology such as IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, Evolved UTRA (E-UTRA), and the like.
  • UTRA is part of the Universal Mobile Telecommunications System (UMTS).
  • 3GPP 3rd Generation Partnership Project
  • Long Term Evolution is a part of Evolved UMTS (E-UMTS) using E-UTRA and LTE-A (Advanced)/LTE-A pro is an evolved version of 3GPP LTE.
  • 3GPP NR New Radio or New Radio Access Technology is an evolved version of 3GPP LTE/LTE-A/LTE-A pro.
  • LTE refers to technology after 3GPP Technical Specification (TS) 36.xxx Release 8.
  • TS Technical Specification
  • LTE technology after 3GPP TS 36.xxx Release 10 is referred to as LTE-A
  • LTE technology after 3GPP TS 36.xxx Release 13 is referred to as LTE-A pro
  • 3GPP NR refers to technology after TS 38.xxx Release 15.
  • LTE/NR may be referred to as a 3GPP system.
  • "xxx" stands for standard document detail number.
  • LTE/NR may be collectively referred to as a 3GPP system.
  • TS 36.211 physical channels and modulation
  • TS 36.212 multiplex and channel coding
  • TS 36.213 physical layer procedures
  • TS 36.300 overall description
  • TS 36.331 radio resource control
  • TS 38.211 physical channels and modulation
  • TS 38.212 multiplex and channel coding
  • TS 38.213 physical layer procedures for control
  • TS 38.214 physical layer procedures for data
  • TS 38.300 Overall description of NR and New Generation-Radio Access Network (NG-RAN)
  • TS 38.331 Radio Resource Control Protocol Specification
  • channel quality indicator channel quality indicator
  • channel state information - reference signal resource indicator channel state information - reference signal resource indicator
  • channel state information channel state information
  • channel state information - interference measurement channel state information - interference measurement
  • channel state information - reference signal channel state information - reference signal
  • demodulation reference signal demodulation reference signal
  • interleaved frequency division multiple access (interleaved frequency division multiple access)
  • first layer reference signal received power (Layer 1 reference signal received power)
  • first layer reference signal received quality (Layer 1 reference signal received quality)
  • PDCCH physical downlink control channel (physical downlink control channel)
  • precoding matrix indicator precoding matrix indicator
  • radio resource control radio resource control
  • SSB (or SS / PBCH block): synchronization signal block (including primary synchronization signal (PSS), secondary synchronization signal (SSS: secondary synchronization signal) and physical broadcast channel (PBCH: physical broadcast channel))
  • PSS primary synchronization signal
  • SSS secondary synchronization signal
  • PBCH physical broadcast channel
  • tracking reference signal tracking reference signal
  • NR is an expression showing an example of 5G RAT.
  • a new RAT system including NR uses an OFDM transmission scheme or a similar transmission scheme.
  • the new RAT system may follow OFDM parameters different from those of LTE.
  • the new RAT system may support a larger system bandwidth (eg, 100 MHz) while following the existing numerology of LTE/LTE-A.
  • one cell may support a plurality of numerologies. That is, terminals operating in different numerology can coexist in one cell.
  • Numerology corresponds to one subcarrier spacing in the frequency domain.
  • different numerology can be defined.
  • FIG. 1 illustrates a structure of a wireless communication system to which the present disclosure can be applied.
  • NG-RAN is NG-RA (NG-Radio Access) user plane (ie, new access stratum (AS) sublayer / Packet Data Convergence Protocol (PDCP) / RLC (Radio Link Control) / MAC / PHY) and gNBs that provide control plane (RRC) protocol termination for the UE.
  • the gNBs are interconnected through an Xn interface.
  • the gNB is also connected to a New Generation Core (NGC) through an NG interface. More specifically, the gNB is connected to an Access and Mobility Management Function (AMF) through an N2 interface and a User Plane Function (UPF) through an N3 interface.
  • AMF Access and Mobility Management Function
  • UPF User Plane Function
  • FIG. 2 illustrates a frame structure in a wireless communication system to which the present disclosure can be applied.
  • An NR system can support multiple numerologies.
  • numerology may be defined by subcarrier spacing and cyclic prefix (CP) overhead.
  • CP cyclic prefix
  • a plurality of subcarrier spacings may be derived by scaling the basic (reference) subcarrier spacing to an integer N (or ⁇ ).
  • the numerology used can be selected independently of the frequency band, although it is assumed that very low subcarrier spacing is not used at very high carrier frequencies.
  • various frame structures according to multiple numerologies may be supported.
  • OFDM numerology and frame structure that can be considered in the NR system will be described.
  • a number of OFDM numerologies supported in the NR system may be defined as shown in Table 1 below.
  • NR supports multiple numerology (or subcarrier spacing (SCS)) to support various 5G services. For example, when SCS is 15kHz, it supports a wide area in traditional cellular bands, and when SCS is 30kHz/60kHz, dense-urban, lower latency and wider carrier bandwidth, and when SCS is 60 kHz or higher, a bandwidth greater than 24.25 GHz to overcome phase noise.
  • the NR frequency band is defined as two types of frequency ranges (FR1, FR2).
  • FR1 and FR2 may be configured as shown in Table 2 below.
  • FR2 may mean a millimeter wave (mmW: millimeter wave).
  • ⁇ f max 480 ⁇ 10 3 Hz
  • N f 4096.
  • slots are numbered in increasing order of n s ⁇ ⁇ 0,..., N slot subframe, ⁇ -1 ⁇ within the subframe, and within the radio frame They are numbered in increasing order of n s,f ⁇ ⁇ 0,..., N slot frame, ⁇ -1 ⁇ .
  • One slot consists of consecutive OFDM symbols of N symb slots , and N symb slots are determined according to CP.
  • the start of the slot n s ⁇ in a subframe is temporally aligned with the start of the OFDM symbol n s ⁇ N symb slot in the same subframe. Not all terminals can transmit and receive at the same time, which means that all OFDM symbols of a downlink slot or an uplink slot cannot be used.
  • Table 3 shows the number of OFDM symbols per slot (N symb slot ), the number of slots per radio frame (N slot frame, ⁇ ), and the number of slots per subframe (N slot subframe, ⁇ ) in the general CP
  • Table 4 denotes the number of OFDM symbols per slot, the number of slots per radio frame, and the number of slots per subframe in the extended CP.
  • one subframe may include four slots.
  • One subframe ⁇ 1,2,4 ⁇ slots shown in FIG. 2 is an example, and the number of slot(s) that can be included in one subframe is defined as shown in Table 3 or Table 4.
  • a mini-slot may contain 2, 4 or 7 symbols, or may contain more or fewer symbols.
  • an antenna port antenna port
  • resource grid resource grid
  • resource element resource element
  • resource block resource block
  • carrier part carrier part
  • an antenna port is defined such that a channel on which a symbol on an antenna port is carried can be inferred from a channel on which another symbol on the same antenna port is carried.
  • the two antenna ports are QC/QCL (quasi co-located or QC/QCL) It can be said that there is a quasi co-location) relationship.
  • the wide range characteristic includes one or more of delay spread, Doppler spread, frequency shift, average received power, and received timing.
  • FIG. 3 illustrates a resource grid in a wireless communication system to which the present disclosure can be applied.
  • the resource grid is composed of N RB ⁇ N sc RB subcarriers in the frequency domain and that one subframe is composed of 14 ⁇ 2 ⁇ OFDM symbols, but limited to this it is not going to be
  • a transmitted signal is described by one or more resource grids consisting of N RB ⁇ N sc RB subcarriers and OFDM symbols of 2 ⁇ N symb ( ⁇ ) .
  • N RB ⁇ N RB max, ⁇ The N RB max, ⁇ represents the maximum transmission bandwidth, which may vary between uplink and downlink as well as numerologies.
  • one resource grid may be configured for each ⁇ and each antenna port p.
  • Each element of the resource grid for ⁇ and antenna port p is referred to as a resource element, and is uniquely identified by an index pair (k,l').
  • l' 0,...,2 ⁇ N symb ( ⁇ ) -1 is a symbol in a subframe indicates the location of
  • an index pair (k,l) is used.
  • l 0,...,N symb ⁇ -1 .
  • a resource element (k,l') for ⁇ and an antenna port p corresponds to a complex value a k,l' (p, ⁇ ) .
  • indices p and ⁇ may be dropped, so that the complex value is a k,l' (p) or a k,l' can be
  • Point A serves as a common reference point of the resource block grid and is obtained as follows.
  • - OffsetToPointA for the primary cell (PCell: Primary Cell) downlink represents a frequency offset between point A and the lowest subcarrier of the lowest resource block overlapping the SS/PBCH block used by the UE for initial cell selection. It is expressed in resource block units assuming a 15 kHz subcarrier spacing for FR1 and a 60 kHz subcarrier spacing for FR2.
  • - absoluteFrequencyPointA indicates the frequency-position of point A expressed as in ARFCN (absolute radio-frequency channel number).
  • Common resource blocks are numbered upwards from 0 in the frequency domain for the subcarrier interval setting ⁇ .
  • the center of subcarrier 0 of common resource block 0 for subcarrier interval setting ⁇ coincides with 'point A'.
  • the relationship between the common resource block number n CRB ⁇ and the resource element (k,l) for the subcarrier interval setting ⁇ in the frequency domain is given by Equation 1 below.
  • Physical resource blocks are numbered from 0 to N BWP,i size, ⁇ -1 in the bandwidth part (BWP: bandwidth part), and i is the number of the BWP.
  • BWP bandwidth part
  • i the number of the BWP.
  • Equation 2 The relationship between the physical resource block n PRB and the common resource block n CRB in BWP i is given by Equation 2 below.
  • N BWP,i start, ⁇ is a common resource block in which BWP starts relative to common resource block 0.
  • FIG. 4 illustrates a physical resource block in a wireless communication system to which the present disclosure can be applied.
  • FIG. 5 illustrates a slot structure in a wireless communication system to which the present disclosure can be applied.
  • a slot includes a plurality of symbols in the time domain. For example, in the case of a normal CP, one slot includes 7 symbols, but in the case of an extended CP, one slot includes 6 symbols.
  • the carrier includes a plurality of subcarriers in the frequency domain.
  • a resource block (RB) is defined as a plurality of (eg, 12) consecutive subcarriers in the frequency domain.
  • a bandwidth part (BWP) is defined as a plurality of contiguous (physical) resource blocks in the frequency domain, and may correspond to one numerology (eg, SCS, CP length, etc.).
  • a carrier wave may include a maximum of N (eg, 5) BWPs. Data communication is performed through the activated BWP, and only one BWP can be activated for one terminal.
  • Each element in the resource grid is referred to as a resource element (RE), and one complex symbol may be mapped.
  • RE resource element
  • the NR system may support up to 400 MHz per one component carrier (CC). If a terminal operating in such a wideband CC always operates with a radio frequency (RF) chip for the entire CC turned on, battery consumption of the terminal may increase.
  • a radio frequency (RF) chip for the entire CC turned on, battery consumption of the terminal may increase.
  • RF radio frequency
  • different numerology eg, subcarrier spacing, etc.
  • the capability for the maximum bandwidth may be different for each terminal.
  • the base station may instruct the terminal to operate only in a partial bandwidth rather than the entire bandwidth of the broadband CC, and the partial bandwidth is defined as a bandwidth part (BWP: bandwidth part) for convenience.
  • the BWP may consist of consecutive RBs on the frequency axis, and may correspond to one numerology (eg, subcarrier interval, CP length, slot/mini-slot interval).
  • the base station may set a plurality of BWPs even within one CC configured for the terminal. For example, in the PDCCH monitoring slot, a BWP occupying a relatively small frequency domain may be configured, and a PDSCH indicated by the PDCCH may be scheduled on a larger BWP.
  • some UEs may be configured as a different BWP for load balancing.
  • a part of the entire bandwidth may be excluded and both BWPs may be configured in the same slot. That is, the base station may configure at least one DL/UL BWP to the terminal associated with the broadband CC.
  • the base station may activate at least one DL/UL BWP among the DL/UL BWP(s) configured at a specific time (by L1 signaling, MAC CE (Control Element) or RRC signaling, etc.).
  • the base station may indicate switching to another configured DL/UL BWP (by L1 signaling or MAC CE or RRC signaling, etc.).
  • the timer value expires based on the timer, it may be switched to a predetermined DL/UL BWP.
  • the activated DL/UL BWP is defined as an active DL/UL BWP.
  • the terminal may not receive the configuration for the DL/UL BWP in a situation such as when the terminal is performing an initial access process or before the RRC connection is set up, in this situation, the terminal This assumed DL/UL BWP is defined as the first active DL/UL BWP.
  • FIG. 6 illustrates physical channels used in a wireless communication system to which the present disclosure can be applied and a general signal transmission/reception method using them.
  • a terminal receives information from a base station through a downlink, and the terminal transmits information to a base station through an uplink.
  • Information transmitted and received between the base station and the terminal includes data and various control information, and various physical channels exist according to the type/use of the information they transmit and receive.
  • the terminal When the terminal is powered on or newly enters a cell, the terminal performs an initial cell search operation such as synchronizing with the base station (S601). To this end, the terminal receives a primary synchronization signal (PSS) and a secondary synchronization channel (SSS) from the base station to synchronize with the base station, and to obtain information such as a cell identifier (ID: Identifier). can Thereafter, the terminal may receive a physical broadcast channel (PBCH) from the base station to obtain intra-cell broadcast information. Meanwhile, the UE may receive a downlink reference signal (DL RS) in the initial cell search step to check the downlink channel state.
  • PSS primary synchronization signal
  • SSS secondary synchronization channel
  • ID cell identifier
  • the terminal may receive a physical broadcast channel (PBCH) from the base station to obtain intra-cell broadcast information.
  • PBCH physical broadcast channel
  • the UE may receive a downlink reference signal (DL RS) in the initial cell search step to check the downlink channel state.
  • the UE After completing the initial cell search, the UE acquires more specific system information by receiving a Physical Downlink Control Channel (PDCCH) and a Physical Downlink Control Channel (PDSCH) according to information carried on the PDCCH. It can be done (S602).
  • PDCCH Physical Downlink Control Channel
  • PDSCH Physical Downlink Control Channel
  • the terminal may perform a random access procedure (RACH) for the base station (steps S603 to S606).
  • RACH random access procedure
  • the UE transmits a specific sequence as a preamble through a Physical Random Access Channel (PRACH) (S603 and S605), and receives a response message to the preamble through the PDCCH and the corresponding PDSCH ( S604 and S606).
  • PRACH Physical Random Access Channel
  • a contention resolution procedure may be additionally performed.
  • the UE After performing the procedure as described above, the UE performs PDCCH/PDSCH reception (S607) and a physical uplink shared channel (PUSCH)/physical uplink control channel (PUCCH) as a general uplink/downlink signal transmission procedure.
  • Physical Uplink Control Channel) transmission (S608) may be performed.
  • the UE receives downlink control information (DCI) through the PDCCH.
  • DCI downlink control information
  • the DCI includes control information such as resource allocation information for the terminal, and has a different format depending on the purpose of its use.
  • the control information that the terminal transmits to the base station through the uplink or the terminal receives from the base station is a downlink/uplink ACK/NACK (Acknowledgment/Non-Acknowledgment) signal, a channel quality indicator (CQI), and a precoding matrix (PMI). Indicator), RI (Rank Indicator), and the like.
  • the UE may transmit the above-described control information such as CQI/PMI/RI through PUSCH and/or PUCCH.
  • Table 5 shows an example of a DCI format in the NR system.
  • DCI format uses 0_0 Scheduling of PUSCH in one cell 0_1 Scheduling of one or multiple PUSCHs in one cell, or indication of cell group (CG) downlink feedback information to the UE 0_2 Scheduling of PUSCH in one cell 1_0 Scheduling of PDSCH in one DL cell 1_1 Scheduling of PDSCH in one cell 1_2 Scheduling of PDSCH in one cell
  • DCI formats 0_0, 0_1 and 0_2 are resource information related to PUSCH scheduling (eg, UL/SUL (Supplementary UL), frequency resource allocation, time resource allocation, frequency hopping, etc.), transport block ( TB: Transport Block) related information (eg, MCS (Modulation Coding and Scheme), NDI (New Data Indicator), RV (Redundancy Version), etc.), HARQ (Hybrid - Automatic Repeat and request) related information (eg, , process number, DAI (Downlink Assignment Index), PDSCH-HARQ feedback timing, etc.), multi-antenna related information (eg, DMRS sequence initialization information, antenna port, CSI request, etc.), power control information (eg, PUSCH power control, etc.), and control information included in each DCI format may be predefined.
  • PUSCH scheduling eg, UL/SUL (Supplementary UL), frequency resource allocation, time resource allocation, frequency hopping, etc.
  • DCI format 0_0 is used for scheduling PUSCH in one cell.
  • Information included in DCI format 0_0 is cyclic redundancy check (CRC) by Cell Radio Network Temporary Identifier (C-RNTI) or Configured Scheduling RNTI (CS-RNTI) or Modulation Coding Scheme Cell RNTI (MCS-C-RNTI). ) is scrambled and transmitted.
  • CRC cyclic redundancy check
  • C-RNTI Cell Radio Network Temporary Identifier
  • CS-RNTI Configured Scheduling RNTI
  • MCS-C-RNTI Modulation Coding Scheme Cell RNTI
  • DCI format 0_1 is used to indicate to the UE the scheduling of one or more PUSCHs or configured grant (CG: configure grant) downlink feedback information in one cell.
  • Information included in DCI format 0_1 is CRC scrambled and transmitted by C-RNTI or CS-RNTI or SP-CSI-RNTI (Semi-Persistent CSI RNTI) or MCS-C-RNTI.
  • DCI format 0_2 is used for scheduling PUSCH in one cell.
  • Information included in DCI format 0_2 is CRC scrambled and transmitted by C-RNTI or CS-RNTI or SP-CSI-RNTI or MCS-C-RNTI.
  • DCI formats 1_0, 1_1 and 1_2 are resource information related to PDSCH scheduling (eg, frequency resource allocation, time resource allocation, virtual resource block (VRB)-physical resource block (PRB) mapping, etc.), transport block (TB) related information (eg, MCS, NDI, RV, etc.), HARQ related information (eg, process number, DAI, PDSCH-HARQ feedback timing, etc.), multi-antenna related information (eg, antenna port) , transmission configuration indicator (TCI), sounding reference signal (SRS) request, etc.), PUCCH-related information (eg, PUCCH power control, PUCCH resource indicator, etc.), and control information included in each DCI format is It can be predefined.
  • PDSCH scheduling eg, frequency resource allocation, time resource allocation, virtual resource block (VRB)-physical resource block (PRB) mapping, etc.
  • transport block (TB) related information eg, MCS, NDI, RV, etc.
  • HARQ related information eg
  • DCI format 1_0 is used for scheduling the PDSCH in one DL cell.
  • Information included in DCI format 1_0 is CRC scrambled and transmitted by C-RNTI, CS-RNTI, or MCS-C-RNTI.
  • DCI format 1_1 is used for scheduling PDSCH in one cell.
  • Information included in DCI format 1_1 is CRC scrambled and transmitted by C-RNTI, CS-RNTI, or MCS-C-RNTI.
  • DCI format 1_2 is used for scheduling PDSCH in one cell.
  • Information included in DCI format 1_2 is CRC scrambled and transmitted by C-RNTI, CS-RNTI, or MCS-C-RNTI.
  • CSI-RS channel state information-reference signal
  • time/frequency tracking time/frequency tracking
  • CSI calculation computation
  • L1 (layer 1)-reference signal received (RSRP) power is used for computation and mobility.
  • the CSI computation is related to the CSI acquisition (acquisition)
  • the L1-RSRP computation is related to the beam management (beam management, BM).
  • CSI channel state information refers to information that can indicate the quality of a radio channel (or link) formed between a terminal and an antenna port.
  • a terminal eg, user equipment, UE transmits configuration information related to CSI to a base station (eg, general Node) through radio resource control (RRC) signaling.
  • RRC radio resource control
  • the CSI-related configuration information includes CSI-IM (interference management) resource-related information, CSI measurement configuration-related information, CSI resource configuration-related information, CSI-RS resource-related information. Alternatively, it may include at least one of CSI report configuration related information.
  • CSI-IM interference management
  • CSI-IM resource-related information may include CSI-IM resource information, CSI-IM resource set information, and the like.
  • the CSI-IM resource set is identified by a CSI-IM resource set ID (identifier), and one resource set includes at least one CSI-IM resource.
  • Each CSI-IM resource is identified by a CSI-IM resource ID.
  • CSI resource configuration related information may be expressed as a CSI-ResourceConfig IE.
  • CSI resource configuration related information defines a group including at least one of a non zero power (NZP) CSI-RS resource set, a CSI-IM resource set, or a CSI-SSB resource set. That is, the CSI resource configuration related information includes a CSI-RS resource set list, and the CSI-RS resource set list is at least one of a NZP CSI-RS resource set list, a CSI-IM resource set list, or a CSI-SSB resource set list. may contain one.
  • the CSI-RS resource set is identified by the CSI-RS resource set ID, and one resource set includes at least one CSI-RS resource.
  • Each CSI-RS resource is identified by a CSI-RS resource ID.
  • parameters indicating the use of CSI-RS for each NZP CSI-RS resource set may be set.
  • Table 6 illustrates an NZP CSI-RS resource set information element (IE: information element) for NZP CSI-RS resource set configuration.
  • IE information element
  • NZP-CSI-RS-ResourceSet SEQUENCE ⁇ nzp-CSI-ResourceSetId NZP-CSI-RS-ResourceSetId, nzp-CSI-RS-Resources SEQUENCE (SIZE (1..maxNrofNZP-CSI-RS-ResourcesPerSet)) OF NZP-CSI-RS-ResourceId, repetition ENUMERATED ⁇ on, off ⁇ OPTIONAL, aperiodicTriggeringOffset INTEGER(0..4) OPTIONAL, -- Need S trs-Info ENUMERATED ⁇ true ⁇ OPTIONAL, -- Need R ... ⁇ -- TAG-NZP-CSI-RS-RESOURCESET-STOP -- ASN1STOP
  • the repetition parameter corresponding to the upper layer parameter corresponds to 'CSI-RS-ResourceRep' of the first layer (L1: layer 1) parameter.
  • the repetition parameter corresponding to the upper layer parameter corresponds to 'CSI-RS-ResourceRep' of the first layer (L1: layer 1) parameter.
  • CSI reporting configuration (report configuration) related information includes a report configuration type (reportConfigType) parameter indicating a time domain behavior and a report Quantity (reportQuantity) parameter indicating a CSI related quantity for reporting.
  • the time domain behavior may be periodic, aperiodic or semi-persistent.
  • CSI report configuration related information may be expressed as a CSI-ReportConfig IE, and Table 7 below shows an example of the CSI-ReportConfig IE.
  • CSI-ReportConfig SEQUENCE ⁇ reportConfigId CSI-ReportConfigId, carrier ServCellIndex OPTIONAL, -- Need S resourcesForChannelMeasurement CSI-ResourceConfigId, csi-IM-ResourcesForInterference CSI-ResourceConfigId OPTIONAL, -- Need R nzp-CSI-RS-ResourcesForInterference CSI-ResourceConfigId OPTIONAL, -- Need R reportConfigType CHOICE ⁇ periodic SEQUENCE ⁇ reportSlotConfig CSI-ReportPeriodicityAndOffset, pucch-CSI-ResourceList SEQUENCE (SIZE (1..maxNrofBWPs)) OF PUCCH-CSI-Resource ⁇ , semiPersistentOnPUCCH SEQUENCE ⁇ reportSlotConfig CSI-ReportPeriodicityAndOffset, pu
  • the UE measures CSI based on the configuration information related to the CSI.
  • the CSI measurement may include (1) a process of receiving a CSI-RS by the UE, and (2) a process of calculating CSI through the received CSI-RS, which will be described in detail later.
  • the RE (resource element) mapping of the CSI-RS resource in the time and frequency domains is set by the higher layer parameter CSI-RS-ResourceMapping.
  • Table 8 shows an example of a CSI-RS-ResourceMapping IE for configuring CSI-RS resource mapping.
  • CSI-RS-ResourceMapping SEQUENCE ⁇ frequencyDomainAllocation CHOICE ⁇ row1 BIT STRING (SIZE (4)), row2 BIT STRING (SIZE (12)), row4 BIT STRING (SIZE (3)), other BIT STRING (SIZE (6)) ⁇ , nrofPorts ENUMERATED ⁇ p1,p2,p4,p8,p12,p16,p24,p32 ⁇ , firstOFDMSymbolInTimeDomain INTEGER (0..13), firstOFDMSymbolInTimeDomain2 INTEGER (2..12) OPTIONAL, -- Need R cdm-Type ENUMERATED ⁇ noCDM, fd-CDM2, cdm4-FD2-TD2, cdm8-FD2-TD4 ⁇ , density CHOICE ⁇ dot5 ENUMERATED ⁇ evenPRBs, oddPRBs ⁇ , one NULL
  • density (D: density) represents the density (density) of the CSI-RS resource measured in RE / port (port) / physical resource block (PRB: physical resource block), nrofPorts is the number of antenna ports - The UE reports the measured CSI to the base station.
  • the UE reports the measured CSI to the base station.
  • the terminal may omit the report.
  • the terminal may report to the base station.
  • the quantity is set to 'none', it is when aperiodic TRS is triggered or when repetition is set.
  • the report of the terminal may be omitted.
  • the NR system supports more flexible and dynamic CSI measurement and reporting.
  • the CSI measurement may include a procedure of receiving a CSI-RS and acquiring CSI by computing the received CSI-RS.
  • CM periodic/semi-persistent/periodic channel measurement
  • IM interference measurement
  • a 4-port NZP CSI-RS RE pattern is used to configure the CSI-IM.
  • CSI-IM based IMR of NR has a design similar to CSI-IM of LTE, and is configured independently of ZP CSI-RS resources for PDSCH rate matching. And, in the NZP CSI-RS-based IMR, each port emulates an interference layer with a (preferred channel and) precoded NZP CSI-RS. This is for intra-cell interference measurement for a multi-user case, and mainly targets MU interference.
  • the base station transmits the precoded NZP CSI-RS to the terminal on each port of the configured NZP CSI-RS based IMR.
  • the terminal assumes a channel / interference layer for each port in the resource set and measures the interference.
  • the base station or network For the channel, if there is no PMI and RI feedback, a plurality of resources are set in the set, and the base station or network indicates a subset of NZP CSI-RS resources through DCI for channel / interference measurement.
  • Each CSI resource setting 'CSI-ResourceConfig' includes a configuration for S ⁇ 1 CSI resource set (given by the higher layer parameter csi-RS-ResourceSetList).
  • CSI resource setting corresponds to CSI-RS-resourcesetlist.
  • S represents the number of configured CSI-RS resource sets.
  • the configuration for S ⁇ 1 CSI resource set is each CSI resource set including CSI-RS resources (consisting of NZP CSI-RS or CSI-IM) and SS / PBCH block (SSB) used for L1-RSRP computation ) including resources.
  • Each CSI resource setting is located in the DL BWP (bandwidth part) identified by the higher layer parameter bwp-id. And, all CSI resource settings linked to the CSI reporting setting have the same DL BWP.
  • the time domain behavior of the CSI-RS resource within the CSI resource setting included in the CSI-ResourceConfig IE is indicated by a higher layer parameter resourceType, and may be set to aperiodic, periodic or semi-persistent.
  • resourceType For Periodic and semi-persistent CSI resource setting, the number of set CSI-RS resource sets (S) is limited to '1'.
  • S For Periodic and semi-persistent CSI resource settings, the set periodicity and slot offset are given in the numerology of the associated DL BWP, as given by bwp-id.
  • the same time domain behavior is configured for the CSI-ResourceConfig.
  • the same time domain behavior is configured for the CSI-ResourceConfig.
  • CM channel measurement
  • IM interference measurement
  • a channel measurement resource may be an NZP CSI-RS for CSI acquisition
  • an interference measurement resource may be a CSI-IM and an NZP CSI-RS for IM.
  • CSI-IM (or ZP CSI-RS for IM) is mainly used for inter-cell interference measurement.
  • the NZP CSI-RS for IM is mainly used for intra-cell interference measurement from multi-users.
  • the UE may assume that CSI-RS resource(s) for channel measurement and CSI-IM / NZP CSI-RS resource(s) for interference measurement configured for one CSI reporting are 'QCL-TypeD' for each resource. .
  • resource setting can mean a resource set list.
  • each trigger state set using the higher layer parameter CSI-AperiodicTriggerState is one or more CSI-ReportConfig and each CSI-ReportConfig linked to a periodic, semi-persistent or aperiodic resource setting.
  • One reporting setting can be connected with up to three resource settings.
  • the resource setting (given by the higher layer parameter resourcesForChannelMeasurement) is for channel measurement for L1-RSRP computation.
  • the first resource setting (given by the higher layer parameter resourcesForChannelMeasurement) is for channel measurement, and the second resource (given by csi-IM-ResourcesForInterference or nzp-CSI-RS -ResourcesForInterference)
  • the setting is for interference measurement performed on CSI-IM or NZP CSI-RS.
  • the first resource setting (given by resourcesForChannelMeasurement) is for channel measurement
  • the second resource setting (given by csi-IM-ResourcesForInterference) is for CSI-IM based interference measurement
  • the third resource setting (given by nzp-CSI-RS-ResourcesForInterference) is for NZP CSI-RS based interference measurement.
  • each CSI-ReportConfig is linked to a periodic or semi-persistent resource setting.
  • the resource setting is for channel measurement for L1-RSRP computation.
  • the first resource setting (given by resourcesForChannelMeasurement) is for channel measurement
  • the second resource setting (given by the higher layer parameter csi-IM-ResourcesForInterference) is performed on CSI-IM It is used for interference measurement.
  • each CSI-RS resource for channel measurement is associated with CSI-IM resource and resource by the order of CSI-RS resources and CSI-IM resources in the corresponding resource set. .
  • the number of CSI-RS resources for channel measurement is the same as the number of CSI-IM resources.
  • the UE does not expect to be set to one or more NZP CSI-RS resources in the resource set associated with the resource setting for channel measurement.
  • the UE in which the higher layer parameter nzp-CSI-RS-ResourcesForInterference is configured does not expect that 18 or more NZP CSI-RS ports will be configured in the NZP CSI-RS resource set.
  • the UE assumes the following.
  • Each NZP CSI-RS port configured for interference measurement corresponds to an interfering transport layer.
  • NZP CSI-RS resource for channel measurement NZP CSI-RS resource for measuring interference
  • CSI-IM resource for measuring interference CSI-IM resource for measuring interference
  • time and frequency resources available to the UE are controlled by the base station.
  • CSI channel state information
  • CQI channel quality indicator
  • precoding matrix indicator precoding matrix indicator
  • PMI CSI-RS resource indicator
  • SSBRI SS / PBCH block resource indicator
  • layer It may include at least one of indicator (LI), rank indicator (RI) or L1-RSRP.
  • the terminal is a list of N ⁇ 1 CSI-ReportConfig reporting setting, M ⁇ 1 CSI-ResourceConfig resource setting and one or two trigger states (aperiodicTriggerStateList and semiPersistentOnPUSCH -provided by TriggerStateList), set by a higher layer.
  • aperiodicTriggerStateList each trigger state includes a channel and optionally an associated CSI-ReportConfigs list indicating resource set IDs for interference.
  • semiPersistentOnPUSCH-TriggerStateList each trigger state includes one associated CSI-ReportConfig.
  • time domain behavior of CSI reporting supports periodic, semi-persistent, and aperiodic.
  • Periodic CSI reporting period (periodicity) and slot offset (slot offset) may be set in RRC, refer to the CSI-ReportConfig IE.
  • SP sin-periodic CSI reporting is performed on short PUCCH, long PUCCH, or PUSCH.
  • SP CSI on PUSCH periodicity of SP CSI reporting is set to RRC, but slot offset is not set to RRC, and SP CSI reporting is activated/deactivated by DCI (format 0_1).
  • DCI format 0_1
  • SP-CSI C-RNTI SP-CSI C-RNTI
  • the initial CSI reporting timing follows the PUSCH time domain allocation value indicated by DCI, and the subsequent CSI reporting timing follows the cycle set by the RRC.
  • DCI format 0_1 includes a CSI request field, and can activate/deactivation a specific configured SP-CSI trigger state.
  • SP CSI reporting has the same or similar activation/deactivation as the mechanism with data transmission on the SPS PUSCH.
  • aperiodic CSI reporting is performed on PUSCH and is triggered by DCI.
  • information related to the trigger of aperiodic CSI reporting may be delivered/indicated/configured through the MAC-CE.
  • AP CSI-RS timing is set by RRC, and timing for AP CSI reporting is dynamically controlled by DCI.
  • NR For NR, a method of dividing CSI in multiple reporting instances applied to PUCCH-based CSI reporting in LTE (eg, RI, WB PMI/CQI, SB PMI/CQI transmission in order) is not applied. Instead, NR limits the setting of a specific CSI report in short/long PUCCH, and a CSI omission rule is defined. And, in relation to AP CSI reporting timing, PUSCH symbol/slot location is dynamically indicated by DCI. And, candidate slot offsets are set by RRC. For CSI reporting, slot offset (Y) is set for each reporting setting. For UL-SCH, slot offset K2 is configured separately.
  • Two CSI latency classes are defined in terms of CSI computation complexity.
  • low latency CSI it is WB CSI including a maximum of 4 ports Type-I codebook or a maximum of 4-ports non-PMI feedback CSI.
  • High latency CSI refers to CSI other than low latency CSI.
  • Z, Z ' is defined in the unit of OFDM symbols.
  • Z represents the minimum CSI processing time from receiving an aperiodic CSI triggering DCI to performing CSI reporting.
  • Z' represents the minimum CSI processing time from receiving CSI-RS for channel/interference to performing CSI reporting.
  • the UE reports the number of CSIs that can be simultaneously calculated.
  • the UE calculates the CSI parameters (if reported) by assuming the dependency (dependency) between the following CSI parameters (if reported).
  • An antenna port is defined such that a channel on which a symbol on an antenna port is carried can be inferred from a channel on which another symbol on the same antenna port is carried.
  • the two antenna ports are QC/QCL (quasi co-located or quasi co-location) ) can be said to be in a relationship.
  • the channel characteristics include delay spread, Doppler spread, frequency/Doppler shift, average received power, and received timing/average delay. delay), including one or more of a spatial reception parameter (Spatial RX parameter).
  • the Spatial Rx parameter means a spatial (reception) channel characteristic parameter such as an angle of arrival.
  • TCI-state configuration in the upper layer parameter PDSCH-Config A list of TCI-State configuration is can be set.
  • the M depends on the UE capability.
  • Each TCI-State includes a parameter for establishing a quasi co-location relationship between one or two DL reference signals and a DM-RS (demodulation reference signal) port of the PDSCH.
  • DM-RS demodulation reference signal
  • the quasi co-location relationship is set with the upper layer parameter qcl-Type1 for the first DL RS and qcl-Type2 (if set) for the second DL RS.
  • the QCL type is not the same regardless of whether the reference is the same DL RS or different DL RSs.
  • the QCL type corresponding to each DL RS is given by the upper layer parameter qcl-Type of QCL-Info, and may take one of the following values:
  • the corresponding NZP CSI-RS antenna port has a specific TRS from the QCL-Type A point of view, and a specific SSB and QCL from the QCL-Type D point of view. It can be indicated/set as The UE receiving this instruction/configuration receives the corresponding NZP CSI-RS using the Doppler and delay values measured in QCL-TypeA TRS, and applies the reception beam used for QCL-TypeD SSB reception to the corresponding NZP CSI-RS reception. can do.
  • the UE may receive an activation command by MAC CE signaling used to map up to 8 TCI states to a codepoint of the DCI field 'Transmission Configuration Indication'.
  • Multi-TRP Multi-TRP
  • CoMP Coordinated Multi Point
  • a plurality of base stations exchange channel information (eg, RI/CQI/PMI/layer indicator (LI), etc.) fed back from the terminal with each other (eg, It refers to a method of effectively controlling interference by using the X2 interface) or using the cooperative transmission to the terminal.
  • CoMP is joint transmission (JT), coordinated scheduling (CS), coordinated beamforming (CB), dynamic point selection (DPS), dynamic point blocking ( DPB: Dynamic Point Blocking).
  • the M-TRP transmission method in which M TRPs transmit data to one terminal is largely i) eMBB M-TRP transmission, which is a method to increase the transmission rate, and ii) URLLC M, which is a method for increasing the reception success rate and reducing latency -TRP transmission can be distinguished.
  • the M-TRP transmission method is i) M-DCI (multiple DCI) based M-TRP transmission in which each TRP transmits a different DCI, and ii) S-DCI in which one TRP transmits DCI It can be divided into (single DCI)-based M-TRP transmission.
  • M-DCI multiple DCI
  • S-DCI single DCI
  • S-DCI-based M-TRP transmission since all scheduling information for data transmitted by the M TRP must be delivered to the UE through one DCI, dynamic cooperation between the two TRPs is ideal. It can be used in a backhaul (ideal BH: ideal BackHaul) environment.
  • the UE recognizes a PUSCH (or PUCCH) that transmits a PUSCH (or PUCCH) scheduled by DCI received with a different control resource set (CORESET) (or CORESET belonging to a different CORESET group) with different TRPs (or PUCCH). Or, it can be recognized as a PDSCH (or PDCCH) of a different TRP.
  • the method for UL transmission eg, PUSCH/PUCCH
  • UL transmission eg, PUSCH/PUCCH
  • UL transmission eg, PUSCH/PUCCH
  • the CORESET group identifier (group ID) described / mentioned in the present disclosure may mean an index / identification information (eg, ID) for distinguishing CORESET for each TRP / panel. have.
  • the CORESET group may be a group/union of CORESETs classified by an index/identification information (eg, ID)/the CORESET group ID for discriminating a CORESET for each TRP/panel.
  • the CORESET group ID may be specific index information defined in CORSET configuration.
  • the CORESET group may be set/indicated/defined by an index defined in the CORESET configuration for each CORESET.
  • the CORESET group ID may mean an index/identification information/indicator for classification/identification between CORESETs set/related to each TRP/panel.
  • the CORESET group ID described/mentioned in the present disclosure may be expressed by being replaced with a specific index/specific identification information/specific indicator for classification/identification between CORESETs set/related to each TRP/panel.
  • the CORESET group ID that is, a specific index/specific identification information/specific indicator for classification/identification between CORESETs set/associated in each TRP/panel is higher layer signaling (eg, RRC signaling)/second It may be configured/indicated to the UE through layer signaling (L2 signaling, eg, MAC-CE)/first layer signaling (L1 signaling, eg, DCI). For example, it may be set/instructed so that PDCCH detection is performed for each TRP/panel (ie, for each TRP/panel belonging to the same CORESET group) in a corresponding CORESET group unit.
  • L2 signaling eg, MAC-CE
  • L1 signaling eg, DCI
  • And/or uplink control information eg, CSI, HARQ-A/N (ACK/NACK), SR ( scheduling request) and/or uplink physical channel resources (eg, PUCCH/PRACH/SRS resources) may be set/instructed to be managed/controlled separately.
  • And/or HARQ A/N (process/retransmission) for PDSCH/PUSCH scheduled for each TRP/panel for each CORESET group (ie, for each TRP/panel belonging to the same CORESET group) may be managed.
  • an upper layer parameter a ControlResourceSet information element (IE), is used to set a time/frequency control resource set (CORESET).
  • the control resource set (CORESET) may be related to the detection and reception of downlink control information.
  • the ControlResourceSet IE is a CORESET-related ID (eg, controlResourceSetID) / index of the CORESET pool for CORESET (eg, CORESETPoolIndex) / time / frequency resource setting of CORESET / TCI information related to CORESET, etc. may include
  • the index of the CORESET pool (eg, CORESETPoolIndex) may be set to 0 or 1.
  • a CORESET group may correspond to a CORESET pool
  • a CORESET group ID may correspond to a CORESET pool index (eg, CORESETPoolIndex).
  • the following two methods can be considered as a transmission/reception method for improving reliability using transmission in multiple TRPs.
  • FIG. 7 illustrates a multiple TRP transmission scheme in a wireless communication system to which the present disclosure can be applied.
  • the layer group may mean a predetermined layer set consisting of one or more layers.
  • the amount of transmission resources increases due to the number of layers, which has the advantage that robust channel coding with a low code rate can be used for TB. ) can be expected to improve the reliability of the received signal based on the gain.
  • FIG. 7(b) an example of transmitting different CWs through layer groups corresponding to different TRPs is shown.
  • the TBs corresponding to CW #1 and CW #2 in the figure are the same. That is, CW #1 and CW #2 mean that the same TB is converted into different CWs through channel coding or the like by different TRPs, respectively. Therefore, it can be seen as an example of repeated transmission of the same TB.
  • the code rate corresponding to the TB is high.
  • the code rate may be adjusted by indicating different redundancy version (RV) values for encoded bits generated from the same TB, or the modulation order of each CW may be adjusted. has the advantage of being
  • RV redundancy version
  • the same TB is repeatedly transmitted through different layer groups, and as each layer group is transmitted by different TRP/panel, data reception of the terminal can increase the probability.
  • This is referred to as a Spatial Division Multiplexing (SDM)-based M-TRP URLLC transmission scheme.
  • Layers belonging to different layer groups are transmitted through DMRS ports belonging to different DMRS CDM groups, respectively.
  • multiple TRP-related contents have been described based on a spatial division multiplexing (SDM) scheme using different layers, but this is based on different frequency domain resources (eg, RB/PRB (set), etc.) based on FDM
  • SDM spatial division multiplexing
  • FDM F division multiplexing
  • TDM time division multiplexing
  • Multi-TRP scheduled by at least one DCI, may be performed as follows:
  • Scheme 1 (n is a natural number) TCI states in a single slot in overlapping time and frequency resource allocation
  • Each transmission occasion is one layer or a set of layers of the same TB, and each layer or layer set is associated with one TCI and one set of DMRS port(s).
  • a single codeword with one redundancy version (RV) is used for all layers or layer sets. From a UE perspective, different coded bits are mapped to different layers or layer sets with specific mapping rules.
  • Each transmission occasion is one layer or set of layers of the same TB, and each layer or layer set is associated with one TCI and one set of DMRS port(s).
  • a single codeword with one RV is used for each spatial layer or set of layers. RVs corresponding to each spatial layer or layer set may be the same or different.
  • Each transmission occasion is one layer of the same TB having one DMRS port associated with multiple TCI status indices, or the same with multiple DMRS ports associated with multiple TCI indices in turn (one by one) It is one layer of TB.
  • n is a natural number
  • TCI states in a single slot in non-overlapping frequency resource allocation Each non-overlapping frequency resource allocation is associated with one TCI state.
  • the same single/multiple DMRS port(s) is associated with all non-overlapping frequency resource allocations.
  • a single codeword with one RV is used for each non-overlapping frequency resource allocation.
  • RVs corresponding to each non-overlapping frequency resource allocation may be the same or different.
  • TDM Technique 3
  • n (n is a natural number) TCI states in a single slot in non-overlapping time resource allocation.
  • Each transmission occasion of TB has one TCI and one RV with time granularity of a mini-slot. All transmission occasion(s) in the slot use a common MCS with the same single or multiple DMRS port(s). RV/TCI status may be the same or different among transmission occasions.
  • TDM Technique 4
  • channel state information (CSI: channel state information) reported by the UE is defined to correspond to a single NZP CSI-RS resource for channel measurement (CM). Therefore, there is a disadvantage in that it is not possible to calculate joint CSI considering the multi-TRP (M-TRP) transmission situation (ie, CSI considering the mutual interference between TRPs).
  • M-TRP multi-TRP
  • FIG 8 illustrates CSI reporting in a wireless communication system to which the present disclosure may be applied.
  • NZP CSI-RS resource for each CM in different TRP is set, and the terminal is based on each NZP CSI-RS resource CSI (e.g., CRI / RI / PMI / CQI / LI After calculating, etc.), the CSI corresponding to each TRP may be reported to the base station (eg, either TRP or all TRPs, respectively). In addition, the base station may perform M-TRP transmission based on the CSI reported by the terminal. However, as in the example of FIG. 8 , mutual interference between different TRPs is not reflected in the CSI reported by the UE to the base station.
  • CSI e.g., CRI / RI / PMI / CQI / LI
  • the CSI calculation / reporting operation for each TRP is independently performed based on a separate NZP CSI-RS resource set for each TRP. Therefore, the CSI reported by the UE and the actual CSI value expected from the UE for the eNB to perform M-TRP transmission may be different.
  • Equations 3 and 4 below show an example of calculating a signal to interference plus noise ratio (SINR) value that can be utilized for CQI calculation by the UE using the NZP CSI-RS resource corresponding to each TRP.
  • SINR signal to interference plus noise ratio
  • Equation 3 illustrates the calculation of the SINR value for TRP#1
  • Equation 4 illustrates the calculation of the SINR value for TRP#2
  • SINR 1 and SINR 2 illustrate an SINR calculation method for optimal CQI estimation based on the NZP CSI-RS resource for CM of TRP#1 and TRP#2, respectively.
  • Equations 3 and 4 the h eff,1,i and h eff,2,i are specific free in the downlink channel estimated based on the NZP CSI-RS resource for CM transmitted from TRP#1 and TRP#2, respectively.
  • a specific CQI value may be selected based on the SINR estimated using the CSI-RS.
  • the base station cannot accurately know the actual SINR (ie, CQI) of the terminal when transmitting the M-TRP.
  • MCS modulation and coding scheme
  • Equation 5 shows an example of calculating the SINR reflecting interference between different TRPs.
  • the present disclosure proposes a method for reporting accurate CSI (eg, CQI value) reflecting interference between different TRPs to the base station in consideration of M-TRP transmission.
  • accurate CSI eg, CQI value
  • TRP1/TRP2 two TRPs
  • TRP in the present disclosure may be for convenience of description, and TRP may also be interpreted in terms such as panel/beam.
  • the first layer (L1: layer 1) signaling may mean DCI-based dynamic signaling between the base station and the terminal
  • the second layer (L2: layer 2) signaling is RRC/MAC control between the base station and the terminal It may mean higher layer signaling based on element (CE: control element).
  • transmitting/receiving a (NZP) CSI-RS resource may be interpreted as meaning transmitting/receiving a CSI-RS on a corresponding (NZP) CSI-RS resource.
  • Embodiment #1 The base station may configure different NZP CSI-RS resources in a single reporting setting to the terminal.
  • the base station determines the number of ranks for each NZP CSI-RS resource when the UE calculates CSI (eg, RI/PMI/CQI, etc.) (ie, a transmission layer and/or a port). number) and/or the assumption for the precoding matrix may be set/instructed/defined to the terminal to be applied differently.
  • CSI eg, RI/PMI/CQI, etc.
  • the CQI value reported by the UE is determined according to the reported PMI, RI, and CRI (conditioned).
  • the reported CQI value is calculated by assuming that the base station applies the precoding, rank and CSI-RS selection requested by the terminal. Accordingly, even in the same radio channel situation, options of precoding assumed by the terminal (eg, the number of ranks (ie, the number of transmission layers and/or ports) and/or precoding As the matrix (precoding matrix) changes, the UE may report different CQI values.
  • PMI reporting is based on six codebook categories.
  • the six codebook categories include Type I single-panel codebooks with a maximum rank of 8, Type I multi-panel codebooks with a maximum rank of 4, and Type II optimized for multi-user MIMO but limited to a maximum rank of 2.
  • codebooks and Type II port selection codebooks, and Enhanced Type II codebooks and Enhanced Type II port selection codebooks optimized for multi-user MIMO but limited to a maximum rank of 4 are included.
  • the base station provides relatively coarse information to the terminal, and in the case of the type II codebook, the base station provides relatively detailed information.
  • Information/parameters related to the PMI report may be provided through the codebook configuration (CodebookConfig) in the CSI report (CSI-ReportConfig).
  • codebookConfig a codebook type for a related PMI report is identified using a combination of a codebookType and a subtype.
  • codebookConfig may include the following information/parameters.
  • Codebook configuration (CodebookConfig) is a codebook type (codebook type I (type1) and codebook type II (type2)) and subtype (in the case of type I, type I - single panel (typeI-SinglePanel) and type I - multiple panel ( typeI-MultiPanel) /
  • type II parameters corresponding to type II (typeII) and type II port selection (typeII-PortSelection) may be included.
  • Type I single panel codebook supports up to rank 8. Also, in the case of a Type I single panel codebook, two antenna ports or two or more antenna ports may be used. If only two antenna ports are used, the codebook provides precoding for MIMO. If two or more antenna ports are used, the codebook provides precoding for both MIMO and beamforming.
  • the base station through the 'n1-n2' parameter, the number of antenna ports in the first dimension (n1), the number of antenna ports in the second dimension (n2) ) and codebook subset restrictions can be set. In addition, the base station may set the restriction on the RI through the 'typeI-SinglePanel-ri-Restriction' parameter.
  • Type I multi-panel codebook supports 2 or 4 antenna panels, and supports up to rank 4.
  • the base station through the 'ng-n1-n2' parameter, the number of antenna panels (ng), the number of antenna ports in the first dimension (n1), the number of antenna ports in the second dimension (second deminsion) ( n2) and codebook subset restriction can be set.
  • the base station may set restrictions on RI through the 'ri-Restriction' parameter.
  • Type II codebook supports a maximum of rank 2.
  • the base station through the 'n1-n2-codebookSubsetRestriction' parameter, the number of antenna ports in the first dimension (n1), the number of antenna ports in the second dimension (second deminsion) (n2) and codebook subset restriction (codebook subset) restriction) can be set.
  • the base station may set the restriction on the RI through the 'typeII-RI-Restriction' parameter.
  • the Type II port selection codebook supports a maximum of rank 2.
  • the number of antenna ports used for CSI-RS transmission is set using parameters/information (nrofPorts) for the number of antenna ports in the configuration for CSI-RS resource mapping (CSI-RS-ResourceMapping).
  • the base station may set the size of the port selection codebook through the 'portSelectionSamplingSize' parameter. That is, the 'portSelectionSamplingSize' parameter specifies an interval (eg, 1, 2, 3, 4) between candidate beam selections.
  • the base station may set the restriction on the RI through the 'typeII-PortSelectionRI-Restriction' parameter.
  • Enhanced Type II codebook supports up to rank 4.
  • the base station through the 'n1-n2-codebookSubsetRestriction-r16' parameter, the number of antenna ports in the first dimension (n1), the number of antenna ports in the second dimension (second deminsion) (n2) and the codebook subset restriction ( codebook subset restriction) can be set.
  • the base station may set the restriction on RI through the 'typeII-RI-Restriction-r16' parameter.
  • the enhanced Type II port selection codebook supports up to rank 4.
  • the number of antenna ports used for CSI-RS transmission is set using parameters/information (nrofPorts) for the number of antenna ports in the configuration for CSI-RS resource mapping (CSI-RS-ResourceMapping).
  • the base station may set the size of the port selection codebook through the 'portSelectionSamplingSize-r16' parameter. That is, the 'portSelectionSamplingSize-r16' parameter specifies an interval (eg, 1, 2, 3, 4) between candidate beam selections.
  • the base station may set the restriction on the RI through the 'typeII-PortSelectionRI-Restriction-r16' parameter.
  • the terminal identifies the codebook type for PMI report through the codebook configuration (CodebookConfig), and provides (derived) PMI and/or RI calculated based on the codebook type set for the CSI-RS resource to the base station. can report And, the UE may calculate the CQI based on/under the PMI and/or RI reported to the base station.
  • codebookConfig codebook configuration
  • the UE may calculate the CQI based on/under the PMI and/or RI reported to the base station.
  • codebookConfig parameters in the CSI reporting settings for each NZP CSI-RS resource can be set.
  • RI/PMI/CQI has been described as an example of CSI in the above embodiment, LI/CRI/reference signal received power (RSRP)/SINR may also be considered.
  • RSRP reference signal received power
  • the base station is based on the L1/L2 signaling in the setting (ie, different NZP CSI-RS resource settings in a single report setting and CSI calculation for different NZP CSI-RS resources in a rank assumed when calculating ( rank) number and/or precoding matrix) may be set/indicated to the UE.
  • the configuration may be defined as a fixed rule between the base station and the terminal (that is, in this case, there may be no separate signaling by the base station).
  • CSI-ReportConfig refers to 'CSI-ReportConfig', which is a higher layer parameter (ie, information element (IE)) for setting the characteristics of CSI reporting.
  • CSI-ReportConfig may include a channel measurement resource (CMR) (ie, resourcesForChannelMeasurement parameter).
  • the resourcesForChannelMeasurement parameter indicates a resource for channel measurement, and indicates a CSI resource configuration identifier (ID: identity) (csi-ResourceConfigId) of a CSI resource configuration (CSI-ResourceConfig).
  • CSI-ReportConfig may include an interference measurement resource (IMR) (ie, csi-IM-ResourcesForInterference parameter).
  • the csi-IM-ResourcesForInterference parameter indicates a CSI IM resource for interference measurement, and indicates a CSI resource configuration identifier (ID: identity) (csi-ResourceConfigId) of a CSI resource configuration (CSI-ResourceConfig).
  • CSI-ReportConfig may include a report amount (ie, reportQuantity parameter).
  • the reportQuantity parameter indicates CSI-related quantities to be reported.
  • the CSI-ReportConfig may include a codebook configuration (ie, a codebookConfig parameter).
  • Codebook setting indicates codebook setting of codebook type-1 or codebook type-2 including subset restrictions, codebook type (eg, Type I) / enhanced type (Type) II codebook, etc.).
  • codebook type eg, Type I
  • Type II codebook etc.
  • information not mentioned above may also be included in the CSI-ReportConfig.
  • the UE may assume that all 'different NZP CSI-RS resources' correspond to (desired) intended transmission layer(s) (intended transmission layer(s)). In the current standard, when calculating CSI (desired), it is assumed that the intended transmission layer(s) (intended transmission layer(s)) is included in a single NZP CSI-RS resource.
  • the terminal is a codebook type (eg, type II ('typeII'), type II port selection ('typeII-PortSelection'), release-16 type II ('typeII-r16') or release-16 It is not expected that one or more CSI-RS resources are configured in a resource set for channel measurement for a CSI report configuration (CSI-ReportConfig) having a type II port selection ('typeII-PortSelection-r16').
  • CSI-ReportConfig a type II port selection
  • the CQI value represents a value for a ratio to signal to interference plus noise. This may mean that the UE needs to complete both signal power measurement and interference plus noise power measurement desired by the UE.
  • the desired signal measurement may be measured using the NZP CSI-RS.
  • the related NZP CSI-RS is identified by the resource (resourcesForChannelMeasurement) for measuring the channel in the CSI report configuration (CSI-ReportConfig).
  • Interference and noise (interference plus noise) measurement may be measured using an interference measurement (IM) resource and/or NZP CSI-RS for interference measurement.
  • CSI-IM resource csi-IM-ResourcesForInterference
  • nzp-CSI-RS-ResourcesForInterference the CSI report configuration
  • the UE assumes that 'different NZP CSI-RS resources' correspond to all (desired) intended transmission layer(s) (intended transmission layer(s)), CSI report configuration It may mean that CSI resources (resourcesForChannelMeasurement) for measuring multiple channels having different codebook settings (ie, codebookConfig parameters) may be configured.
  • Example #1-1 For a specific NZP CSI-RS resource (hereinafter, referred to as a first CSI resource) as 'assume for the precoding matrix' in the above embodiment (a specific scaling value is applied) unit matrix It can be set/directed/defined to assume (Identity matrix). That is, when the UE calculates CSI for a specific NZP CSI-RS resource, it may be configured/instructed/defined to perform CSI calculation assuming the identity matrix as a precoding matrix.
  • a specific NZP CSI-RS resource hereinafter, referred to as a first CSI resource
  • a specific scaling value is applied
  • a specific codebook eg, Type I/ (enhanced) Type II codebook, etc.
  • the second CSI resource it may be configured/indicated/defined so that the UE reports a specific RI/PMI for the specific codebook.
  • the UE may not report the PMI (and/or RI) to the base station for the first CSI resource.
  • the terminal may report the RI/PMI to the base station only for a resource (ie, the second CSI resource) that does not correspond to the identity matrix. Accordingly, there is an effect of reducing signaling overhead for CSI reporting.
  • the UE can assume the identity matrix for a specific resource (ie, the first CSI resource) is that the base station has already selected an appropriate precoding matrix for a specific TRP (via UL signal and/or separate CSI feedback) etc.), the selected precoding matrix can be considered because it has already been reflected in the NZP CSI-RS port (s) of the resource (ie, the first CSI resource). A more detailed description will be given later.
  • Embodiment #1-2 In the above proposed method, it may be configured/indicated/defined to assume the number of antenna ports configured in a specific NZP CSI-RS resource as the number of ranks as 'assume for the number of ranks'.
  • the number of ranks may be set/indicated/defined to be applied as a fixed value when the UE calculates CSI.
  • it may be configured/indicated/defined so that the UE calculates CSI while changing the number of ranks, and reports the number of (optimal) ranks preferred by the UE to the base station.
  • the UE can report the optimal rank number to the base station, it may have the advantage of being able to report the optimal rank number by reflecting inter-TRP interference during multi-TRP transmission.
  • the UE when the UE reports/reports the optimal rank number to the base station, the UE is configured to report information on the preferred (optimal) antenna port (s) (and/or layer (number)) to the base station /directed/can be defined.
  • the specific NZP CSI-RS resource to which the proposed method is applied may correspond to a resource assuming that the precoding matrix is an identity matrix.
  • Embodiment #1-3 In the above embodiment, an example of a value reported by the terminal to the base station may be as follows.
  • one or more CRI values, and / or a specific codebook type is set / indicated / PMI for the defined NZP CSI-RS resource (here, PMI may correspond to one of the CRI values above) , and / or RI (the specific codebook type (codebook type) may correspond to a set / indicated / defined resource. Or, the total RI value for resources selected as CRI), and / or CQI, etc.
  • the UE may report CSI to the base station.
  • port selection (port selection) information may be reported.
  • one or more CRI values, and / or a specific codebook type (codebook type) is set / indicated / PMI for the defined NZP CSI-RS resource (here, PMI may correspond to one of the CRI values above)
  • / or RI the specific codebook type (codebook type) may correspond to a set / indicated / defined resource.
  • the total RI value for resources selected as CRI), and / or CQI, and / or A specific codebook type is not set / indicated / defined NZP CSI-RS resource (e.g., a resource that assumes an identity matrix as a precoding matrix) port index (s), etc.
  • the UE may report CSI to the base station.
  • Embodiment #1-4 In the above embodiment, 'different NZP CSI-RS resources' in a single reporting setting / CSI reporting setting (eg, CSI-ReportConfig) An example of a method that can be set As follows.
  • the resource setting ('resource setting') may mean CSI-ResourceConfig which is a higher layer parameter/IE for setting CSI resource characteristics.
  • CM channel measurement
  • IM interference measurement
  • each resource may be set as a resource setting for channel measurement and a resource setting for interference measurement.
  • each resource may be set as a resource setting for CM.
  • each resource may be set based on a single/plural resource setting.
  • setting a different NZP CSI-RS resource in a single reporting setting / CSI reporting setting means that the resource for channel measurement (eg, resourcesForChannelMeasurement) is It may mean that a plurality of settings are made. That is, it may mean that a plurality of CSI resource configurations (e.g. CSI-ResourceConfig) are included in the reporting setting.
  • NZP CSI-RS resource for CSI measurement for different TRPs based on an index / identifier (ID: identity) (eg, CSI-ResourceConfigID) associated with each CSI resource configuration can be determined.
  • ID identity
  • CSI-ResourceConfigID index associated with different CSI resource settings
  • CORESETPoolIndex TRP ID / CORESET pool index
  • index/ID (eg, CSI-ResourceConfigID) associated with different CSI resource configurations may correspond to different TRPs based on a fixed rule between the base station and the terminal.
  • the index associated with the CSI resource setting may correspond in ascending/descending order based on the order in which the index is set in the reporting setting.
  • the first index and the second index associated with the CSI resource configuration may correspond to the first TRP and the second TRP, respectively.
  • the base station may transmit a separate setting/instruction for informing the terminal of the correspondence relationship to the terminal.
  • the UE may calculate CSI based on the CSI resource configuration corresponding to each TRP.
  • Example 2 Setting a different NZP CSI-RS resource in a single reporting setting / CSI reporting setting (eg, CSI-ReportConfig) is a single resource setting (resource setting) / CSI resource setting (eg For example, it may mean that NZP CSI-RS resources belonging to different resource sets are configured in CSI-ResourceConfig). That is, in a single reporting setting / CSI reporting setting, a single resource setting / CSI resource setting is configured / associated, and NZP CSI- associated with different NZP-CSI-RS resource sets within the single resource setting / CSI resource setting.
  • RS resource may be configured.
  • resource setting / CSI resource configuration is one or more NZP CSI-RS resource set (NZP-CSI-RS-Resourceset) / CSI-IM resource set (CSI-IM-Resourceset) / Includes the setting for the group of CSI-SSB resource set (CSI-SSB-Resourceset).
  • NZP-CSI-RS-Resourceset NZP-CSI-RS-Resourceset
  • CSI-IM-Resourceset CSI-IM resource set
  • CSI-IM-Resourceset Includes the setting for the group of CSI-SSB resource set
  • NZP-CSI-RS-Resourceset by setting each NZP-CSI-RS-Resources in different NZP CSI-RS resource sets (NZP-CSI-RS-Resourceset), different NZP-CSI-RS-Resources are single reporting setting (reporting setting) It may be configured in /CSI reporting configuration (eg, CSI-ReportConfig).
  • a plurality of NZP-CSI-RS resource sets in the resource setting / CSI reporting configuration may be configured, and CSI for different TRPs based on the ID associated with each resource set NZP CSI-RS resource (/resource set) for measurement may be determined.
  • an ID associated with a resource set (eg, NZP-CSI-RS-ResourceSetID) and an index associated with multiple TRPs (eg, TRP ID/ CORESET pool index (CORESETPoolIndex)) correspond in ascending/descending order
  • ID associated with the resource set (eg, NZP-CSI-RS-ResourceSetID) may correspond to different TRPs based on a fixed rule between the base station and the terminal.
  • IDs associated with a resource set may respond in ascending/descending order based on the order in which they are set in the resource setting.
  • the first ID and the second ID associated with the resource set may correspond to the first TRP and the second TRP, respectively.
  • the base station may transmit a separate setting/instruction for informing the terminal of the correspondence relationship to the terminal.
  • the UE may calculate CSI based on the resource set corresponding to each TRP.
  • Example 3 Setting a different NZP CSI-RS resource in a single reporting setting / CSI reporting setting (eg, CSI-ReportConfig) is a single resource setting (resource setting) / CSI resource setting (eg For example, it may mean that different NZP CSI-RS resources are set within a single resource set in CSI-ResourceConfig).
  • a single resource set (eg, NZP-CSI-RS-ResourceSet) in resource setting / CSI resource configuration (eg, CSI-ResourceConfig) is one or more NZP-CSI-RS-Resources and related parameters includes
  • different NZP-CSI-RS-Resources within a single resource set (eg, NZP-CSI-RS-ResourceSet) in a single reporting setting / CSI reporting setting (eg, CSI-ReportConfig) can be set.
  • the ID associated with the NZP-CSI-RS-Resource may correspond to different TRPs based on a fixed rule between the base station and the terminal.
  • the ID associated with the NZP-CSI-RS-Resource may respond in ascending/descending order based on the order in which the resource set is set.
  • the first ID and the second ID associated with the NZP-CSI-RS-Resource may correspond to the first TRP and the second TRP, respectively.
  • the base station may transmit a separate setting/instruction for informing the terminal of the correspondence relationship to the terminal.
  • the UE may calculate CSI based on the NZP-CSI-RS-Resource corresponding to each TRP.
  • FIG 9 illustrates a CSI reporting procedure according to an embodiment of the present disclosure.
  • the base station (eg, TRP#1) may transmit the NZP CSI-RS resource for TRP#1 to the terminal in TRP#1.
  • the UE may report CSI (eg, RI/PMI/CQI, etc.) for TRP#1 to the base station (eg, TRP#1) based on the NZP CSI-RS resource.
  • the base station may transmit an NZP CSI-RS resource to the terminal in TRP#2 to obtain CSI for TRP#2.
  • the base station may additionally (or together) transmit an NZP CSI-RS resource to which RI/PMI is applied to the terminal in TRP#1 based on the CSI report value for the TRP#1. Therefore, when the terminal receives the NZP CSI-RS resource for TRP#2, the NZP CSI-RS resource for TRP#1 may also be received.
  • the UE since the RI/PMI value to be applied at the time of M-TRP transmission is applied to the NZP CSI-RS resource corresponding to TRP#1, the UE reflects the influence of the interference between TRPs that will occur during M-TRP transmission. For example, RI/PMI/CQI) may be calculated.
  • Equation 6 shows an example of calculating SINR based on the NZP CSI-RS resource of TRP#1 in FIG. 9(a).
  • Equation 7 shows an example of calculating the SINR based on the NZP CSI-RS resource of TRP#1/#2 in FIG. 9(b).
  • the terminal based on the NZP CSI-RS port(s) of the NZP CSI-RS resource for TRP #2 (that is, based on the CSI-RS transmitted on the NZP CSI-RS port(s)) DL channel Estimate (eg, H 2 ) and find the RI/PMI combination having the best SINR based on the set codebook (eg, W 2 ). And for this, the UE may consider the signal from TRP#1 together as in the equation for SINR 2 in Equation 7 above. The UE may report the RI/PMI combination (eg, information on W 2 ) and CQI having the best SINR value to the base station.
  • the RI/PMI combination eg, information on W 2
  • CQI having the best SINR value
  • the method of SINR 2 in Equation 7 may be an example, and the UE may calculate the CQI based on the average value, the maximum value, or the minimum value after calculating the SINR for each layer.
  • NZP CSI-RS port(s) of the NZP CSI-RS resource for TRP#1 were as it is, and a variable number of ports, and/or a variable port combination can be considered together.
  • 'variable number of ports and/or variable port combination' refers to NZP CSI-RS port(s) corresponding to TRP#1, that is, NZP assuming that the identity matrix is the precoding matrix.
  • port(s) of the CSI-RS resource it may be defined based on a specific column of an effective channel corresponding thereto.
  • the RI/PMI corresponding to TRP#1 obtained by the base station through the preceding process as shown in FIG. 9(a) is transmitted even when M-TRP is transmitted.
  • the UE may apply the information of CSI#1 when reporting CSI#2 for TRP#2 after reporting CSI#1 for TRP#1.
  • the UE may use all of the effective channels for TRP#1 and TRP#2 when reporting CSI#2. Or, conversely, the UE may apply the information of CSI#2 when reporting CSI#1 for TRP#1 after reporting CSI#2 for TRP#2.
  • the base station is more suitable for the channel of the terminal when scheduling the PDSCH based on MTRP transmission to the terminal Scheduling can be performed. Accordingly, unnecessary retransmission due to reception failure of the terminal can be prevented, and throughput can be improved by setting an MCS suitable for the terminal channel.
  • the UE assumes an identity matrix as a precoding matrix even for a resource corresponding to TRP #2, and assumes the number of port(s) corresponding to the resource as the number of ranks. can be applied
  • an example of the value reported by the terminal to the base station may be as follows.
  • Example 1 One or more CRI values, and / or one or more RI values (RI values corresponding to each NZP CSI-RS resource, or total RI values corresponding to all resources), and / or CSI including CQI terminal It can report to this base station.
  • NZP CSI-RS resource assuming an identity matrix as a precoding matrix, for example, one or more CRI values, and/or one or more RI values ( RI value corresponding to each NZP CSI-RS resource, or total RI value corresponding to all resources), and / or a specific port index (port index) combination corresponding to each NZP CSI-RS resource, and / or CQI, etc.
  • the terminal may report the CSI included to the base station.
  • FIG. 10 illustrates a signaling procedure between a network and a terminal according to an embodiment of the present disclosure.
  • FIG. 10 shows multiple methods to which the methods proposed in the present disclosure (eg, at least one of embodiments #1-1, #1-2, #1-3, and #1-4 of embodiment #1) can be applied.
  • (Multiple) TRP ie, M-TRP, or multiple (multiple) cell, hereinafter all TRP can be replaced by a cell) in the situation of a network (Network) (eg, TRP 1, TRP 2) and the terminal (ie , illustrates signaling between UEs.
  • the UE/Network is just an example, and may be substituted for various devices as described in FIG. 13 to be described later. 10 is only for convenience of description, and does not limit the scope of the present disclosure. Also, some step(s) shown in FIG. 10 may be omitted depending on circumstances and/or settings.
  • a Network may be a single base station including a plurality of TRPs, and may be a single cell including a plurality of TRPs.
  • an ideal (ideal) / non-ideal (non-ideal) backhaul (backhaul) may be set between TRP 1 and TRP 2 constituting the network.
  • backhaul backhaul
  • the following description will be described based on a plurality of TRPs, which may be equally extended and applied to transmission through a plurality of panels.
  • the operation of the terminal receiving a signal from TRP1/TRP2 can be interpreted/explained as an operation of the terminal receiving a signal from the Network (via/using TRP1/2) (or it may be an operation)
  • the operation in which the terminal transmits a signal to TRP1/TRP2 can be interpreted/explained as an operation in which the terminal transmits a signal to the network (via/using TRP1/TRP2) (or may be an operation)
  • TRP is a panel, an antenna array, a cell (eg, macro cell (macro cell) / small cell (small cell) / pico cell (pico)) cell), etc.), TP (transmission point), base station (base station, gNB, etc.) may be replaced and applied.
  • the TRP may be classified according to information (eg, index, identifier (ID)) about the CORESET group (or CORESET pool).
  • ID identifier
  • the configuration of such a CORESET group may be performed through higher layer signaling (eg, RRC signaling, etc.).
  • the base station may mean a generic term for an object that transmits and receives data with the terminal.
  • the base station may be a concept including one or more TPs (Transmission Points), one or more TRPs (Transmission and Reception Points), and the like.
  • the TP and/or TRP may include a panel of a base station, a transmission and reception unit, and the like.
  • the TRP may be classified according to information (eg, index, ID) about the CORESET pool (or CORESET group).
  • TRP may be classified according to CORESETPoolIndex.
  • CORESETPoolIndex when one terminal is configured to perform transmission/reception with a plurality of TRPs (or cells), this may mean that a plurality of CORESET pools (or CORESET groups) are configured for one terminal.
  • the setting for CORESET may be performed through higher layer signaling (eg, RRC signaling, etc.).
  • Figure 10 shows M-TRP (or cell, hereinafter all TRPs can be replaced by cell/panel, or when a plurality of CORESETs (/CORESET group) are set from one TRP.
  • M-TRP or cell, hereinafter all TRPs can be replaced by cell/panel, or when a plurality of CORESETs (/CORESET group) are set from one TRP.
  • the UE receives a single DCI (that is, when the representative TRP transmits DCI to the UE), signaling is indicated.
  • a single DCI-based M-TRP operation is assumed for convenience of description, but the technical scope of the present invention is not limited. Therefore, it is of course also applicable to a single DCI-based M-TRP operation (ie, when each TRP transmits DCI to the UE).
  • the UE uses the method proposed in the above-described method (eg, at least one of embodiments #1-1, #1-2, #1-3, and #1-4 of embodiment #1).
  • UE capability including capability information related to the performance of operations may be transmitted to the Network through/using TRP 1 (and/or TRP 2).
  • the UE may receive configuration information related to TRP-based transmission/reception through/using TRP 1 (and/or TRP 2) from the Network (S1001).
  • the setting information may include information related to network configuration (ie, TRP configuration), resource allocation related to multiple TRP-based transmission and reception, and the like.
  • the configuration information may be delivered through higher layer signaling (eg, RRC signaling, MAC-CE, etc.).
  • the setting information is predefined or set, the corresponding step may be omitted.
  • the setting information is as described in the above-described methods (eg, at least one of embodiments #1-1, #1-2, #1-3, and #1-4 of embodiment #1).
  • CORESET-related setting information eg, ControlResourceSet IE
  • the CORESET-related setting information may include a CORESET-related ID (eg, controlResourceSetID), an index of the CORESET pool for CORESET (eg, CORESETPoolIndex), time/frequency resource setting of CORESET, TCI information related to CORESET, etc. have.
  • the index of the CORESET pool (eg, CORESETPoolIndex) may mean a specific index mapped/set to each CORESET (eg, CORESET group index, HARQ codebook index).
  • the setting Information related to CSI reporting configuration information eg, CSI reporting configuration (CSI-ReportConfig) / CSI resource configuration (CSI-ResourceConfig) / NZP CSI-RS resource set information (NZP-CSI-RS-ResourceSet) / NZP CSI) -RS resource information (NZP-CSI-RS-Resource, etc.)/resource configuration information/precoding matrix related indication/codebook related configuration, etc.
  • CSI reporting configuration e.g, CSI reporting configuration (CSI-ReportConfig) / CSI resource configuration (CSI-ResourceConfig) / NZP CSI-RS resource set information (NZP-CSI-RS-ResourceSet) / NZP CSI) -RS resource information (NZP-CSI-RS-Resource, etc.
  • CSI reporting configuration information eg, CSI reporting configuration (CSI-ReportConfig) / CSI resource configuration (CSI-ResourceConfig) / NZP CSI-RS resource set information (NZP
  • a plurality of different NZP CSI-RS resources may be configured in a single report setting/single CSI report setting (eg, CSI-ReportConfig).
  • the plurality of NZP CSI-RS resources may all be resources for channel measurement.
  • some may be resource(s) for channel measurement, and the rest may be resource(s) for interference measurement.
  • a plurality of CSI- The CSI may be calculated based on an individual number of ranks and/or a precoding matrix for each of the RS resources.
  • the configuration information may include independent/individual configuration information for each of a plurality of CSI-RS resources.
  • the configuration information is a plurality of CSI-RSs so that the CSI is calculated based on the number of individual ranks and/or precoding matrix information configured for each of the plurality of CSI-RS resources. It may include an individual rank number and/or precoding matrix information for each of the resources.
  • the configuration information is a codebook associated with each of the plurality of CSI-RS resources settings (eg, CodebookConfig).
  • the configuration information includes a plurality of CSI resource configurations (eg, CSI-ResourceConfig)
  • the plurality of CSI-RS resources may be configured in each CSI resource configuration.
  • the configuration information includes one CSI resource configuration (eg, CSI-ResourceConfig), and the plurality of CSI-RS resources are one in each of a plurality of CSI-RS resource sets in the one CSI resource configuration. may be set.
  • the configuration information related to the CSI report includes one CSI resource configuration (eg, CSI-ResourceConfig), and the plurality of CSI-RSs in one CSI-RS resource set in the one CSI resource configuration Resources may be established.
  • the UE may receive DCI through/using TRP 1 from the Network (S1002). Also, DCI may be transmitted through a control channel (eg, PDCCH, etc.). Although an example of a single DCI-based MTRP operation is mainly described in FIG. 10, of course, it can also be applied to multiple DCI-based MTRP operations. In this case, the UE may receive DCI 1 through/using TRP 1 from the network, and receive DCI 2 through/using TRP2.
  • a control channel eg, PDCCH, etc.
  • the DCI may include scheduling information of an uplink channel (eg, PUCCH/PUSCH)/triggering information of CSI report/MCS/precoding information and a number of layers (Precoding information and number of layers) field.
  • the information for each TRP may be transmitted in each DCI 1 and DCI 2 .
  • the UE may perform a procedure related to TRP 2 and CSI (S1003).
  • the CSI-related procedure may include the above-described method (eg, at least one of Examples #1-1, #1-2, #1-3, and #1-4 of Example #1) and/or It may be performed based on the above-described 'CSI-related operation'.
  • the UE may receive a CSI-related reference signal (eg, CSI-RS) through TRP 2 from the network.
  • the CSI-related reference signal may be transmitted periodically/aperiodically/semi-continuously.
  • the CSI-related reference signal may be received based on the configuration information.
  • the UE may measure (or calculate) CSI based on a CSI-related reference signal, and report/transmit the CSI to the network through TRP 2 .
  • the CSI-related procedure for TRP 1 may be performed based on the CSI reported through TRP 2.
  • FIG. 10 exemplifies an operation in which a CSI-related procedure for TRP 2 is performed and a CSI-related procedure for TRP 1 is performed, it is not limited thereto. That is, a CSI-related procedure for TRP 1 may be performed, and a CSI-related procedure for TRP 1 may be performed. Alternatively, CSI-related procedures for TRP 1 and TRP 2 may be performed together (or simultaneously).
  • the UE may receive a CSI-related reference signal (eg, CSI-RS) through/using TRP 1 from the network (S1004).
  • a CSI-related reference signal eg, CSI-RS
  • the above-described method eg, at least one of embodiments #1-1, #1-2, #1-3, and #1-4 of embodiment #1
  • the above-described 'CSI-related Based on 'operation', the CSI-related reference signal may be received.
  • the CSI-related reference signal may be transmitted periodically/aperiodically/semi-continuously.
  • the CSI-related reference signal may be received based on the configuration information.
  • the UE may receive a CSI-related reference signal (eg, CSI-RS) through/using TRP 2 from the network (S1005).
  • the reference signal transmitted in step S1005 may be a reference signal to which RI/PMI or the like is applied based on the CSI for TRP 2 reported by the UE in step S1003.
  • the plurality of CSI- RS resources are the first CSI-RS resource (ie, CSI-related signal for TRP 2) in which an identity matrix is assumed as a precoding matrix for the CSI calculation and a specific codebook for the CSI calculation. It may include an assumed second CSI-RS resource (ie, a CSI-related signal for TRP 1).
  • the CSI-related signal for TRP 2 ie, the first CSI-RS resource
  • RI/PMI based on the CSI for TRP 2 reported by the UE in step S1003 may be applied (ie, precoding applied). have.
  • the UE may perform CSI measurement/calculation (S1006).
  • the CSI measurement/calculation is performed by the above-described method (eg, at least one of Examples #1-1, #1-2, #1-3, and #1-4 of Example #1) and/ Alternatively, it may be performed based on the 'CSI-related operation' described above.
  • CSI may be measured based on the above-described configuration information and/or DCI and/or CSI-related reference signals.
  • the number of ranks configured for the plurality of CSI-RS resources eg, CSI-RS resource for each TRP
  • the precoding matrix information ie, based on the configuration information
  • the number of ranks ie, the number of transmission layers / ports
  • CSI may be measured differently applied/assumed.
  • the UE may measure the CSI for TRP 1 based on a CSI-related reference signal received through/using TRP 1 and a CSI-related reference signal received through/using TRP 2 (ie, step S1005).
  • the CSI-related reference signal received through / using the TRP 2 may be recognized as interference during CSI measurement for TRP 1.
  • each CSI may be measured/calculated based on a CSI-related reference signal received through/using TRP 1 and a CSI-related reference signal received through/using TRP 2 (ie, step S1005).
  • the UE may assume an identity matrix as a precoding matrix for the CSI calculation when calculating CSI for a CSI-related signal (ie, the first CSI-RS resource) for TRP 2 .
  • the CSI-related signal for TRP 2 ie, the second CSI-RS resource
  • a specific codebook may be assumed for CSI calculation.
  • the configuration information may include a codebook configuration for the second CSI-RS resource (ie, a CSI-related signal for TRP 2).
  • the number of antenna ports of the first CSI-RS resource may be assumed as the number of ranks for the CSI calculation for the first CSI-RS resource (ie, the CSI-related signal for TRP 2).
  • a predetermined value may be assumed as the number of ranks for the CSI calculation for the first CSI-RS resource (ie, a CSI-related signal for TRP 2).
  • the UE may transmit a CSI report to the Network via/using TRP 1 (and/or via/using TRP2) (S1007).
  • the CSI report may be transmitted through an uplink channel (eg, PUCCH/PUSCH).
  • the CSI report may be transmitted periodically/semi-continuously/aperiodically.
  • the CSI is calculated based on the above-described method (eg, at least one of Examples #1-1, #1-2, #1-3, and #1-4 of Example #1).
  • CSI parameters may be included.
  • the CSI may include RI/PMI/CQI/LI/CRI/RSRP/SINR.
  • port selection (port selection) information for a specific CSI-RS resource may be reported more.
  • the specific CSI-RS resource may correspond to the first CSI-RS resource (ie, a CSI-related signal for TRP 2).
  • the above-described Network/UE signaling and operation (eg, at least one of embodiments #1-1, #1-2, #1-3, and #1-4 of embodiment #1) is It may be implemented by an apparatus to be described with reference to FIG. 13 below.
  • the network eg, TRP 1/TRP 2
  • the UE may correspond to the second wireless device, and vice versa may be considered in some cases.
  • the above-described Network/UE signaling and operation (eg, at least one of embodiments #1-1, #1-2, #1-3, and #1-4 of embodiment #1) is shown in FIG. 13 .
  • a memory eg, one or more memories (eg, 104 , 204 ) of FIG. 13 .
  • FIG. 11 illustrates an operation of a terminal for transmitting channel state information according to an embodiment of the present disclosure.
  • FIG. 11 illustrates an operation of a terminal based on the previously proposed methods (eg, at least one of embodiments #1-1, #1-2, #1-3, and #1-4 of embodiment #1) .
  • the example of FIG. 11 is for convenience of description, and does not limit the scope of the present disclosure. Some step(s) illustrated in FIG. 11 may be omitted depending on circumstances and/or settings.
  • the terminal in FIG. 11 is only an example, and may be implemented as the device illustrated in FIG. 13 below.
  • the processor 102/202 of FIG. 13 may control to transmit/receive a channel/signal/data/information using the transceiver 106/206, and transmit or receive a channel/signal/ Data/information may be controlled to be stored in the memory 104/204.
  • FIG. 11 may be processed by one or more processors 102 and 202 of FIG. 13 .
  • the operation of FIG. 11 is a memory in the form of an instruction/program (eg, instruction, executable code) for driving at least one processor (eg, 102 , 202 ) of FIG. 13 . (eg, one or more memories 104 , 204 of FIG. 13 ).
  • instruction/program eg, instruction, executable code
  • the terminal may receive configuration information related to the CSI report from the base station (or network) (S1101).
  • the setting information is Configuration information related to CSI reporting (eg, CSI reporting configuration (CSI-ReportConfig)/ CSI resource configuration (CSI-ResourceConfig)/ NZP CSI-RS resource set information (NZP-CSI-RS-ResourceSet)/ NZP CSI-RS) It may include resource information (NZP-CSI-RS-Resource, etc.)/resource configuration information/precoding matrix related indication/codebook related configuration.
  • CSI reporting configuration CSI reporting configuration (CSI-ReportConfig)/ CSI resource configuration (CSI-ResourceConfig)/ NZP CSI-RS resource set information (NZP-CSI-RS-ResourceSet)/ NZP CSI-RS
  • It may include resource information (NZP-CSI-RS-Resource, etc.)/resource configuration information/precoding matrix related indication/codebook related configuration.
  • a plurality of different NZP CSI-RS resources may be configured in a single report setting/single CSI report setting (eg, CSI-ReportConfig).
  • the plurality of NZP CSI-RS resources may all be resources for channel measurement.
  • some may be resource(s) for channel measurement, and the rest may be resource(s) for interference measurement.
  • a plurality of CSI- The CSI may be calculated based on an individual number of ranks and/or a precoding matrix for each of the RS resources.
  • the configuration information may include independent/individual configuration information for each of a plurality of CSI-RS resources.
  • the configuration information is a plurality of CSI-RSs so that the CSI is calculated based on the number of individual ranks and/or precoding matrix information configured for each of the plurality of CSI-RS resources. It may include an individual rank number and/or precoding matrix information for each of the resources.
  • the configuration information is a codebook associated with each of the plurality of CSI-RS resources settings (eg, CodebookConfig).
  • the configuration information includes a plurality of CSI resource configurations (eg, CSI-ResourceConfig)
  • the plurality of CSI-RS resources may be configured in each CSI resource configuration.
  • the configuration information includes one CSI resource configuration (eg, CSI-ResourceConfig), and the plurality of CSI-RS resources are one in each of a plurality of CSI-RS resource sets in the one CSI resource configuration. may be set.
  • the configuration information related to the CSI report includes one CSI resource configuration (eg, CSI-ResourceConfig), and the plurality of CSI-RSs in one CSI-RS resource set in the one CSI resource configuration Resources may be established.
  • the terminal receives a CSI-related signal on a plurality of CSI-RS resources from the base station (or network) (S1102).
  • the above-described method eg, at least one of embodiments #1-1, #1-2, #1-3, and #1-4 of embodiment #1
  • the above-described 'CSI-related operation' Based on the CSI-related reference signal
  • the UE may receive a CSI-related reference signal (eg, CSI-RS) through TRP 1 and/or TRP 2.
  • CSI-related reference signal may be transmitted periodically/aperiodically/semi-continuously.
  • the CSI-related reference signal may be received based on the configuration information.
  • the plurality of CSI-RS resources are a first CSI-RS resource in which an identity matrix is assumed as a precoding matrix for the CSI calculation and a second CSI-RS resource in which a specific codebook is assumed for the CSI calculation- RS resources may be included. That is, in the case of the first CSI-RS resource, RI/PMI based on the CSI of the previous UE may be applied (ie, precoding application), and accordingly, the UE calculates CSI for the first CSI-RS resource.
  • An identity matrix may be assumed as the precoding matrix.
  • the terminal may receive the CSI-RS on the third CSI-RS resource from the base station, and transmit the first CSI to the base station based on the CSI-RS received on the third CSI-RS resource,
  • One CSI-RS resource may be transmitted by applying a precoding matrix based on (or corresponding to) PMI in the first CSI.
  • the UE measures/calculates CSI based on the CSI-RS, and transmits the measured/calculated CSI based on the CSI-RS to the base station (S1103).
  • the CSI measurement/calculation and CSI reporting are performed by the above-described method (eg, at least one of embodiments #1-1, #1-2, #1-3, and #1-4 of embodiment #1). ) and/or the 'CSI-related operation' described above.
  • CSI may be measured based on the above-described configuration information and/or DCI and/or CSI-related reference signals. For example, the number of ranks configured for the plurality of CSI-RS resources (eg, CSI-RS resource for each TRP) (ie, the number of transmission layers/ports) and/or Based on the precoding matrix information (ie, based on the configuration information), the number of ranks (ie, the number of transmission layers / ports) and / or assumptions about the precoding matrix, etc. CSI may be measured differently applied/assumed.
  • the UE may assume an identity matrix as a precoding matrix for the CSI calculation.
  • the terminal may receive the CSI-RS on the third CSI-RS resource from the base station, and transmit the first CSI to the base station based on the CSI-RS received on the third CSI-RS resource,
  • One CSI-RS resource may be transmitted by applying a precoding matrix based on (or corresponding to) PMI in the first CSI.
  • the configuration information may include a codebook configuration for the second CSI-RS resource.
  • the number of antenna ports of the first CSI-RS resource may be assumed as the number of ranks for the CSI calculation for the first CSI-RS resource.
  • a predetermined value may be assumed as the number of ranks for the CSI calculation for the first CSI-RS resource.
  • the CSI is i) one or more CSI-RS resource indicators (CRI: CSI-RS resource indicator), ii) PMI for the second CSI-RS resource, iii) RI (where RI is the second CSI-RS resource) It may be an RI for RI or a full RI for resources selected by the CRI) and/or iv) may include at least one of CQI.
  • the PMI and/or RI for the first CSI-RS resource in the CSI may not be included.
  • it may include port selection information (eg, a port index) for the first CSI-RS resource in the CSI.
  • FIG. 12 illustrates an operation of a base station for transmitting channel state information according to an embodiment of the present disclosure.
  • FIG. 12 illustrates an operation of a base station based on the previously proposed methods (eg, at least one of embodiments #1-1, #1-2, #1-3, and #1-4 of embodiment #1) .
  • the example of FIG. 12 is for convenience of description, and does not limit the scope of the present disclosure. Some step(s) illustrated in FIG. 12 may be omitted depending on circumstances and/or settings.
  • the base station in FIG. 12 is only one example, and may be implemented with the apparatus illustrated in FIG. 13 below.
  • the processor 102/202 of FIG. 13 may control to transmit/receive a channel/signal/data/information using the transceiver 106/206, and transmit or receive a channel/signal/ Data/information may be controlled to be stored in the memory 104/204.
  • FIG. 12 may be processed by one or more processors 102 and 202 of FIG. 13 .
  • the operation of FIG. 12 is a memory in the form of an instruction/program (eg, instruction, executable code) for driving at least one processor (eg, 102 and 202 ) of FIG. 13 . (eg, one or more memories 104 , 204 of FIG. 13 ).
  • instruction/program eg, instruction, executable code
  • the base station may transmit configuration information related to the CSI report to the terminal (S1201).
  • the setting information is Configuration information related to CSI reporting (eg, CSI reporting configuration (CSI-ReportConfig)/ CSI resource configuration (CSI-ResourceConfig)/ NZP CSI-RS resource set information (NZP-CSI-RS-ResourceSet)/ NZP CSI-RS) It may include resource information (NZP-CSI-RS-Resource, etc.)/resource configuration information/precoding matrix related indication/codebook related configuration.
  • CSI reporting configuration CSI reporting configuration (CSI-ReportConfig)/ CSI resource configuration (CSI-ResourceConfig)/ NZP CSI-RS resource set information (NZP-CSI-RS-ResourceSet)/ NZP CSI-RS
  • It may include resource information (NZP-CSI-RS-Resource, etc.)/resource configuration information/precoding matrix related indication/codebook related configuration.
  • a plurality of different NZP CSI-RS resources may be configured in a single report setting/single CSI report setting (eg, CSI-ReportConfig).
  • the plurality of NZP CSI-RS resources may all be resources for channel measurement.
  • some may be resource(s) for channel measurement, and the rest may be resource(s) for interference measurement.
  • a plurality of CSI- The CSI may be calculated based on an individual number of ranks and/or a precoding matrix for each of the RS resources.
  • the configuration information may include independent/individual configuration information for each of a plurality of CSI-RS resources.
  • the configuration information is a plurality of CSI-RSs so that the CSI is calculated based on the number of individual ranks and/or precoding matrix information configured for each of the plurality of CSI-RS resources. It may include an individual rank number and/or precoding matrix information for each of the resources.
  • the configuration information is a codebook associated with each of the plurality of CSI-RS resources settings (eg, CodebookConfig).
  • the configuration information includes a plurality of CSI resource configurations (eg, CSI-ResourceConfig)
  • the plurality of CSI-RS resources may be configured in each CSI resource configuration.
  • the configuration information includes one CSI resource configuration (eg, CSI-ResourceConfig), and the plurality of CSI-RS resources are one in each of a plurality of CSI-RS resource sets in the one CSI resource configuration. may be set.
  • the configuration information related to the CSI report includes one CSI resource configuration (eg, CSI-ResourceConfig), and the plurality of CSI-RSs in one CSI-RS resource set in the one CSI resource configuration Resources may be established.
  • the base station (or network) transmits a CSI-related signal to the terminal on a plurality of CSI-RS resources (S1202).
  • the above-described method eg, at least one of embodiments #1-1, #1-2, #1-3, and #1-4 of embodiment #1
  • the above-described 'CSI-related operation' Based on the CSI-related reference signal
  • the UE may receive a CSI-related reference signal (eg, CSI-RS) through TRP 1 and/or TRP 2.
  • CSI-related reference signal may be transmitted periodically/aperiodically/semi-continuously.
  • the CSI-related reference signal may be received based on the configuration information.
  • the plurality of CSI-RS resources are a first CSI-RS resource in which an identity matrix is assumed as a precoding matrix for the CSI calculation and a second CSI-RS resource in which a specific codebook is assumed for the CSI calculation- RS resources may be included. That is, in the case of the first CSI-RS resource, RI/PMI based on the CSI of the previous UE may be applied (ie, precoding application), and accordingly, the UE calculates CSI for the first CSI-RS resource.
  • An identity matrix may be assumed as the precoding matrix.
  • the terminal may receive the CSI-RS on the third CSI-RS resource from the base station, and transmit the first CSI to the base station based on the CSI-RS received on the third CSI-RS resource,
  • One CSI-RS resource may be transmitted by applying a precoding matrix based on (or corresponding to) PMI in the first CSI.
  • the base station receives the CSI measured/calculated based on the CSI-RS by the terminal from the terminal (S1203).
  • the CSI measurement/calculation and CSI reporting are performed by the above-described method (eg, at least one of embodiments #1-1, #1-2, #1-3, and #1-4 of embodiment #1). ) and/or the 'CSI-related operation' described above.
  • CSI may be measured based on the above-described configuration information and/or DCI and/or CSI-related reference signals. For example, the number of ranks configured for the plurality of CSI-RS resources (eg, CSI-RS resource for each TRP) (ie, the number of transmission layers/ports) and/or Based on the precoding matrix information (ie, based on the configuration information), the number of ranks (ie, the number of transmission layers / ports) and / or assumptions about the precoding matrix, etc. CSI may be measured differently applied/assumed.
  • the UE may assume an identity matrix as a precoding matrix for the CSI calculation.
  • the terminal may receive the CSI-RS on the third CSI-RS resource from the base station, and transmit the first CSI to the base station based on the CSI-RS received on the third CSI-RS resource,
  • One CSI-RS resource may be transmitted by applying a precoding matrix based on (or corresponding to) PMI in the first CSI.
  • the configuration information may include a codebook configuration for the second CSI-RS resource.
  • the number of antenna ports of the first CSI-RS resource may be assumed as the number of ranks for the CSI calculation for the first CSI-RS resource.
  • a predetermined value may be assumed as the number of ranks for the CSI calculation for the first CSI-RS resource.
  • the CSI is i) one or more CSI-RS resource indicators (CRI: CSI-RS resource indicator), ii) PMI for the second CSI-RS resource, iii) RI (where RI is the second CSI-RS resource) It may be an RI for RI or a full RI for resources selected by the CRI) and/or iv) may include at least one of CQI.
  • the PMI and/or RI for the first CSI-RS resource in the CSI may not be included.
  • it may include port selection information (eg, a port index) for the first CSI-RS resource in the CSI.
  • FIG. 13 illustrates a block diagram of a wireless communication apparatus according to an embodiment of the present disclosure.
  • the first wireless device 100 and the second wireless device 200 may transmit and receive wireless signals through various wireless access technologies (eg, LTE, NR).
  • various wireless access technologies eg, LTE, NR.
  • the first wireless device 100 includes one or more processors 102 and one or more memories 104 , and may further include one or more transceivers 106 and/or one or more antennas 108 .
  • the processor 102 controls the memory 104 and/or the transceiver 106 and may be configured to implement the descriptions, functions, procedures, suggestions, methods, and/or operational flowcharts disclosed in this disclosure.
  • the processor 102 may process information in the memory 104 to generate first information/signal, and then transmit a wireless signal including the first information/signal through the transceiver 106 .
  • the processor 102 may receive the radio signal including the second information/signal through the transceiver 106 , and then store information obtained from signal processing of the second information/signal in the memory 104 .
  • the memory 104 may be connected to the processor 102 and may store various information related to the operation of the processor 102 .
  • memory 104 may provide instructions for performing some or all of the processes controlled by processor 102 , or for performing descriptions, functions, procedures, suggestions, methods, and/or operational flowcharts disclosed herein. may store software code including
  • the processor 102 and the memory 104 may be part of a communication modem/circuit/chip designed to implement a wireless communication technology (eg, LTE, NR).
  • a wireless communication technology eg, LTE, NR
  • the transceiver 106 may be coupled to the processor 102 , and may transmit and/or receive wireless signals via one or more antennas 108 .
  • the transceiver 106 may include a transmitter and/or a receiver.
  • the transceiver 106 may be used interchangeably with a radio frequency (RF) unit.
  • RF radio frequency
  • a wireless device may refer to a communication modem/circuit/chip.
  • the second wireless device 200 includes one or more processors 202 , one or more memories 204 , and may further include one or more transceivers 206 and/or one or more antennas 208 .
  • the processor 202 controls the memory 204 and/or the transceiver 206 , and may be configured to implement the descriptions, functions, procedures, proposals, methods, and/or operational flowcharts disclosed in this disclosure.
  • the processor 202 may process the information in the memory 204 to generate third information/signal, and then transmit a wireless signal including the third information/signal through the transceiver 206 .
  • the processor 202 may receive the radio signal including the fourth information/signal through the transceiver 206 , and then store information obtained from signal processing of the fourth information/signal in the memory 204 .
  • the memory 204 may be connected to the processor 202 and may store various information related to the operation of the processor 202 .
  • the memory 204 may provide instructions for performing some or all of the processes controlled by the processor 202 , or for performing the descriptions, functions, procedures, suggestions, methods, and/or operational flowcharts disclosed in this disclosure. may store software code including
  • the processor 202 and the memory 204 may be part of a communication modem/circuit/chip designed to implement a wireless communication technology (eg, LTE, NR).
  • a wireless communication technology eg, LTE, NR
  • the transceiver 206 may be coupled to the processor 202 and may transmit and/or receive wireless signals via one or more antennas 208 .
  • the transceiver 206 may include a transmitter and/or a receiver.
  • the transceiver 206 may be used interchangeably with an RF unit.
  • a wireless device may refer to a communication modem/circuit/chip.
  • one or more protocol layers may be implemented by one or more processors 102 , 202 .
  • one or more processors 102 , 202 may implement one or more layers (eg, functional layers such as PHY, MAC, RLC, PDCP, RRC, SDAP).
  • the one or more processors 102 and 202 are configured to process one or more Protocol Data Units (PDUs) and/or one or more Service Data Units (SDUs) according to the description, function, procedure, proposal, method, and/or operational flowcharts disclosed in the present disclosure.
  • PDUs Protocol Data Units
  • SDUs Service Data Units
  • One or more processors 102 , 202 may generate messages, control information, data, or information according to the description, function, procedure, proposal, method, and/or flow charts disclosed in this disclosure.
  • the one or more processors 102, 202 may transmit a signal (eg, a baseband signal) including a PDU, SDU, message, control information, data or information according to a function, procedure, proposal and/or method disclosed in the present disclosure. generated and provided to one or more transceivers (106, 206).
  • the one or more processors 102 , 202 may receive signals (eg, baseband signals) from one or more transceivers 106 , 206 , the descriptions, functions, procedures, proposals, methods and/or methods disclosed in this disclosure.
  • PDU, SDU, message, control information, data or information may be obtained according to the operation flowcharts.
  • One or more processors 102, 202 may be referred to as a controller, microcontroller, microprocessor, or microcomputer.
  • One or more processors 102 , 202 may be implemented by hardware, firmware, software, or a combination thereof.
  • ASICs Application Specific Integrated Circuits
  • DSPs Digital Signal Processors
  • DSPDs Digital Signal Processing Devices
  • PLDs Programmable Logic Devices
  • FPGAs Field Programmable Gate Arrays
  • the descriptions, functions, procedures, proposals, methods, and/or flowcharts of operations disclosed in this disclosure may be implemented using firmware or software, and the firmware or software may be implemented to include modules, procedures, functions, and the like.
  • the descriptions, functions, procedures, proposals, methods, and/or flowcharts of operations disclosed in the present disclosure may include firmware or software configured to perform one or more processors 102 , 202 , or stored in one or more memories 104 , 204 . It may be driven by the above processors 102 and 202 .
  • the descriptions, functions, procedures, suggestions, methods, and/or flowcharts of operations disclosed in this disclosure may be implemented using firmware or software in the form of code, instructions, and/or a set of instructions.
  • One or more memories 104 , 204 may be coupled with one or more processors 102 , 202 , and may store various forms of data, signals, messages, information, programs, code, instructions, and/or instructions.
  • the one or more memories 104 and 204 may be comprised of ROM, RAM, EPROM, flash memory, hard drives, registers, cache memory, computer readable storage media, and/or combinations thereof.
  • One or more memories 104 , 204 may be located inside and/or external to one or more processors 102 , 202 . Additionally, one or more memories 104 , 204 may be coupled to one or more processors 102 , 202 through various technologies, such as wired or wireless connections.
  • One or more transceivers 106 , 206 may transmit user data, control information, radio signals/channels, etc. referred to in the methods and/or operational flowcharts of the present disclosure, to one or more other devices.
  • the one or more transceivers 106, 206 may receive user data, control information, radio signals/channels, etc. referred to in the descriptions, functions, procedures, suggestions, methods, and/or flowcharts of operations disclosed in this disclosure, etc., from one or more other devices. have.
  • one or more transceivers 106 , 206 may be coupled to one or more processors 102 , 202 and may transmit and receive wireless signals.
  • one or more processors 102 , 202 may control one or more transceivers 106 , 206 to transmit user data, control information, or wireless signals to one or more other devices.
  • one or more processors 102 , 202 may control one or more transceivers 106 , 206 to receive user data, control information, or wireless signals from one or more other devices.
  • one or more transceivers 106 , 206 may be coupled with one or more antennas 108 , 208 , and the one or more transceivers 106 , 206 may be coupled via one or more antennas 108 , 208 to the descriptions, functions, and functions disclosed in this disclosure.
  • one or more antennas may be a plurality of physical antennas or a plurality of logical antennas (eg, antenna ports).
  • the one or more transceivers 106, 206 convert the received radio signal/channel, etc. from the RF band signal to process the received user data, control information, radio signal/channel, etc. using the one or more processors 102, 202. It can be converted into a baseband signal.
  • One or more transceivers 106 , 206 may convert user data, control information, radio signals/channels, etc. processed using one or more processors 102 , 202 from baseband signals to RF band signals.
  • one or more transceivers 106 , 206 may include (analog) oscillators and/or filters.
  • the scope of the present disclosure includes software or machine-executable instructions (eg, operating system, application, firmware, program, etc.) that cause operation according to the method of various embodiments to be executed on a device or computer, and such software or and non-transitory computer-readable media in which instructions and the like are stored and executable on a device or computer.
  • Instructions that can be used to program a processing system to perform the features described in this disclosure may be stored on/in a storage medium or computer-readable storage medium, and can be viewed using a computer program product including such storage medium.
  • Features described in the disclosure may be implemented.
  • Storage media may include, but are not limited to, high-speed random access memory such as DRAM, SRAM, DDR RAM or other random access solid state memory device, one or more magnetic disk storage devices, optical disk storage devices, flash memory devices, or may include non-volatile memory, such as other non-volatile solid state storage devices.
  • the memory optionally includes one or more storage devices located remotely from the processor(s).
  • the memory or alternatively the non-volatile memory device(s) within the memory includes a non-transitory computer-readable storage medium.
  • Features described in this disclosure may be stored on any one of the machine readable media to control hardware of a processing system and cause the processing system to interact with other mechanisms that utilize results in accordance with embodiments of the present disclosure. It may be incorporated into software and/or firmware.
  • Such software or firmware may include, but is not limited to, application code, device drivers, operating systems, and execution environments/containers.
  • the wireless communication technology implemented in the wireless devices 100 and 200 of the present disclosure may include a narrowband Internet of Things for low-power communication as well as LTE, NR, and 6G.
  • NB-IoT technology may be an example of LPWAN (Low Power Wide Area Network) technology, and may be implemented in standards such as LTE Cat NB1 and/or LTE Cat NB2, and is limited to the above-mentioned names. no.
  • the wireless communication technology implemented in the wireless devices (XXX, YYY) of the present disclosure may perform communication based on LTE-M technology.
  • the LTE-M technology may be an example of an LPWAN technology, and may be called various names such as enhanced machine type communication (eMTC).
  • eMTC enhanced machine type communication
  • LTE-M technology is 1) LTE CAT 0, 2) LTE Cat M1, 3) LTE Cat M2, 4) LTE non-BL (non-Bandwidth Limited), 5) LTE-MTC, 6) LTE Machine Type Communication, and/or 7) may be implemented in at least one of various standards such as LTE M, and is not limited to the above-described name.
  • the wireless communication technology implemented in the wireless device (XXX, YYY) of the present disclosure is at least one of ZigBee, Bluetooth, and Low Power Wide Area Network (LPWAN) in consideration of low power communication. It may include any one, and is not limited to the above-mentioned names.
  • the ZigBee technology can create PAN (personal area networks) related to small/low-power digital communication based on various standards such as IEEE 802.15.4, and can be called by various names.

Abstract

Disclosed are a method and a device for transmitting and receiving channel state information in a wireless communication system. A method for transmitting channel state information (CSI) according to an embodiment of the present disclosure may comprise the steps of: receiving configuration information related to a CSI report from a base station; receiving a channel state information-reference signal (CSI-RS) on a plurality of CSI-RS resources from the base station; and transmitting a CSI calculated on the basis of the CSI-RS to the base station. The plurality of CSI-RS resources for channel measurement may be configured by the configuration information related to the CSI report, and on the basis of the configuration information related to the CSI report, the CSI may be calculated on the basis of precoding matrix information and/or the number of individual ranks configured for each of the plurality of CSI-RS resources.

Description

무선 통신 시스템에서 채널 상태 정보 송수신 방법 및 장치Method and apparatus for transmitting and receiving channel state information in a wireless communication system
본 개시는 무선 통신 시스템에 관한 것으로서, 보다 상세하게 무선 통신 시스템에서 채널 상태 정보를 송수신하는 방법 및 장치에 관한 것이다. The present disclosure relates to a wireless communication system, and more particularly, to a method and apparatus for transmitting and receiving channel state information in a wireless communication system.
이동 통신 시스템은 사용자의 활동성을 보장하면서 음성 서비스를 제공하기 위해 개발되었다. 그러나 이동통신 시스템은 음성뿐 아니라 데이터 서비스까지 영역을 확장하였으며, 현재에는 폭발적인 트래픽의 증가로 인하여 자원의 부족 현상이 야기되고 사용자들이 보다 고속의 서비스에 대한 요구하므로, 보다 발전된 이동 통신 시스템이 요구되고 있다.The mobile communication system has been developed to provide a voice service while ensuring user activity. However, the mobile communication system has expanded its scope to not only voice but also data service. Currently, the explosive increase in traffic causes a shortage of resources and users demand higher-speed services, so a more advanced mobile communication system is required. have.
차세대 이동 통신 시스템의 요구 조건은 크게 폭발적인 데이터 트래픽의 수용, 사용자 당 전송률의 획기적인 증가, 대폭 증가된 연결 디바이스 개수의 수용, 매우 낮은 단대단 지연(End-to-End Latency), 고에너지 효율을 지원할 수 있어야 한다. 이를 위하여 이중 연결성(Dual Connectivity), 대규모 다중 입출력(Massive MIMO: Massive Multiple Input Multiple Output), 전이중(In-band Full Duplex), 비직교 다중접속(NOMA: Non-Orthogonal Multiple Access), 초광대역(Super wideband) 지원, 단말 네트워킹(Device Networking) 등 다양한 기술들이 연구되고 있다.The requirements of the next-generation mobile communication system are largely to support explosive data traffic acceptance, a dramatic increase in the transmission rate per user, a significantly increased number of connected devices, very low end-to-end latency, and high energy efficiency. should be able For this purpose, Dual Connectivity, Massive Multiple Input Multiple Output (MIMO), In-band Full Duplex, Non-Orthogonal Multiple Access (NOMA), Super Wideband Various technologies such as wideband support and device networking are being studied.
본 개시의 기술적 과제는 채널 상태 정보를 송수신하는 방법 및 장치를 제공하는 것이다. An object of the present disclosure is to provide a method and apparatus for transmitting and receiving channel state information.
또한, 본 개시의 추가적인 기술적 과제는 다중의 TRP(transmission reception point)로부터 전송되는 채널 상태 정보 참조 신호(CSI-RS: channel state information reference signal)에 대한 합동의(joint) 채널 상태 정보를 송수신하는 방법 및 장치를 제공하는 것이다. In addition, an additional technical problem of the present disclosure is a method for transmitting and receiving joint channel state information for a channel state information reference signal (CSI-RS) transmitted from multiple transmission reception points (TRPs). and to provide an apparatus.
또한, 본 개시의 추가적인 기술적 과제는 단말에서 채널 상태 정보를 계산하기 위하여 필요한 랭크(rank) 수 및/또는 프리코딩 행렬을 각 자원 별로 개별적으로/독립적으로 설정하는 방법 및 장치를 제공하는 것이다.In addition, an additional technical task of the present disclosure is to provide a method and apparatus for individually/independently setting the number of ranks and/or a precoding matrix required for calculating channel state information in a terminal for each resource.
본 개시에서 이루고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 개시가 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.The technical problems to be achieved in the present disclosure are not limited to the technical problems mentioned above, and other technical problems not mentioned will be clearly understood by those of ordinary skill in the art to which the present disclosure belongs from the description below. will be able
본 개시의 일 양상에 따른 무선 통신 시스템에서 채널 상태 정보(CSI: channel state information)를 전송하는 방법은: 기지국으로부터 CSI 보고와 관련된 설정 정보를 수신하는 단계; 상기 기지국으로부터 복수의 CSI-RS(channel state information-reference signal) 자원들 상에서 CSI-RS를 수신하는 단계; 및 상기 CSI-RS에 기반하여 계산된 CSI를 상기 기지국에게 전송하는 단계를 포함할 수 있다. 상기 CSI 보고와 관련된 설정 정보에 의해 채널 측정을 위한 상기 복수의 CSI-RS 자원들이 설정되고, 상기 CSI 보고와 관련된 설정 정보에 기반하여, 상기 복수의 CSI-RS 자원들 각각에 대하여 설정된 개별적인 랭크(rank) 수 및/또는 프리코딩 행렬(precoding matrix) 정보에 기반하여 상기 CSI가 계산될 수 있다. A method for transmitting channel state information (CSI) in a wireless communication system according to an aspect of the present disclosure includes: receiving configuration information related to a CSI report from a base station; receiving a CSI-RS on a plurality of channel state information-reference signal (CSI-RS) resources from the base station; and transmitting the CSI calculated based on the CSI-RS to the base station. The plurality of CSI-RS resources for channel measurement are configured by the configuration information related to the CSI report, and an individual rank configured for each of the plurality of CSI-RS resources based on the configuration information related to the CSI report ( The CSI may be calculated based on the number of ranks and/or precoding matrix information.
본 개시의 추가적인 양상에 따른 채널 상태 정보(CSI: channel state information)를 수신하는 방법: CSI 보고와 관련된 설정 정보를 단말에게 전송하는 단계; 복수의 CSI-RS(channel state information-reference signal) 자원들 상에서 CSI-RS를 상기 단말에게 전송하는 단계; 및 상기 단말로부터 상기 CSI-RS에 기반하여 계산된 CSI를 수신하는 단계를 포함할 수 있다. 상기 CSI 보고와 관련된 설정 정보에 의해 채널 측정을 위한 상기 복수의 CSI-RS 자원들이 설정되고, 상기 CSI 보고와 관련된 설정 정보에 기반하여, 상기 복수의 CSI-RS 자원들 각각에 대하여 설정된 개별적인 랭크(rank) 수 및/또는 프리코딩 행렬(precoding matrix) 정보에 기반하여 상기 CSI가 계산될 수 있다. A method of receiving channel state information (CSI) according to an additional aspect of the present disclosure: transmitting configuration information related to CSI reporting to a terminal; transmitting a CSI-RS to the terminal on a plurality of channel state information-reference signal (CSI-RS) resources; and receiving the CSI calculated based on the CSI-RS from the terminal. The plurality of CSI-RS resources for channel measurement are configured by the configuration information related to the CSI report, and an individual rank configured for each of the plurality of CSI-RS resources based on the configuration information related to the CSI report ( The CSI may be calculated based on the number of ranks and/or precoding matrix information.
본 개시의 실시예에 따르면, 다중의 TRP(transmission reception point)의 전송을 수행하기 위한 최적의 채널 상태 정보를 획득/보고할 수 있다. According to an embodiment of the present disclosure, it is possible to obtain/report optimal channel state information for performing transmission of multiple transmission reception points (TRPs).
또한, 본 개시의 실시예에 따르면, 다중의 TRP(transmission reception point)의 전송을 수행하기 위한 최적의 채널 상태 정보를 획득/보고함으로써 채널 상황에 보다 적합한 스케줄링을 수행할 수 있다. In addition, according to an embodiment of the present disclosure, scheduling more suitable for a channel situation may be performed by acquiring/reporting optimal channel state information for performing transmission of multiple transmission reception points (TRPs).
또한, 본 개시의 실시예에 따르면, 다중의 TRP(transmission reception point)의 전송을 수행하기 위한 최적의 채널 상태 정보를 획득/보고함으로써 무선 통신 시스템 성능을 향상시킬 수 있다.In addition, according to an embodiment of the present disclosure, wireless communication system performance may be improved by acquiring/reporting optimal channel state information for performing transmission of multiple transmission reception points (TRPs).
본 개시에서 얻을 수 있는 효과는 이상에서 언급한 효과로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 개시가 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.The effects obtainable in the present disclosure are not limited to the above-mentioned effects, and other effects not mentioned will be clearly understood by those of ordinary skill in the art to which the present disclosure belongs from the description below. .
본 개시에 관한 이해를 돕기 위해 상세한 설명의 일부로 포함되는, 첨부 도면은 본 개시에 대한 실시예를 제공하고, 상세한 설명과 함께 본 개시의 기술적 특징을 설명한다.BRIEF DESCRIPTION OF THE DRAWINGS The accompanying drawings, which are included as a part of the detailed description to help understand the present disclosure, provide embodiments of the present disclosure, and together with the detailed description, explain the technical features of the present disclosure.
도 1은 본 개시가 적용될 수 있는 무선 통신 시스템의 구조를 예시한다. 1 illustrates a structure of a wireless communication system to which the present disclosure can be applied.
도 2는 본 개시가 적용될 수 있는 무선 통신 시스템에서 프레임 구조를 예시한다. 2 illustrates a frame structure in a wireless communication system to which the present disclosure can be applied.
도 3은 본 개시가 적용될 수 있는 무선 통신 시스템에서 자원 그리드(resource grid)를 예시한다. 3 illustrates a resource grid in a wireless communication system to which the present disclosure can be applied.
도 4는 본 개시가 적용될 수 있는 무선 통신 시스템에서 물리 자원 블록(physical resource block)을 예시한다. 4 illustrates a physical resource block in a wireless communication system to which the present disclosure can be applied.
도 5는 본 개시가 적용될 수 있는 무선 통신 시스템에서 슬롯 구조를 예시한다. 5 illustrates a slot structure in a wireless communication system to which the present disclosure can be applied.
도 6은 본 개시가 적용될 수 있는 무선 통신 시스템에서 이용되는 물리 채널들 및 이들을 이용한 일반적인 신호 송수신 방법을 예시한다. 6 illustrates physical channels used in a wireless communication system to which the present disclosure can be applied and a general signal transmission/reception method using them.
도 7은 본 개시가 적용될 수 있는 무선 통신 시스템에서 다중 TRP 전송 방식을 예시한다. 7 illustrates a multiple TRP transmission scheme in a wireless communication system to which the present disclosure can be applied.
도 8은 본 개시가 적용될 수 있는 무선 통신 시스템에서 CSI 보고를 예시한다. 8 illustrates CSI reporting in a wireless communication system to which the present disclosure may be applied.
도 9는 본 개시의 일 실시예에 따른 CSI 보고 절차를 예시한다. 9 illustrates a CSI reporting procedure according to an embodiment of the present disclosure.
도 10은 본 개시의 일 실시예에 따른 네트워크와 단말 간의 시그널링 절차를 예시한다.10 illustrates a signaling procedure between a network and a terminal according to an embodiment of the present disclosure.
도 11은 본 개시의 일 실시예에 따른 채널 상태 정보 전송을 위한 단말의 동작을 예시한다. 11 illustrates an operation of a terminal for transmitting channel state information according to an embodiment of the present disclosure.
도 12는 본 개시의 일 실시예에 따른 채널 상태 정보 전송을 위한 기지국의 동작을 예시한다.12 illustrates an operation of a base station for transmitting channel state information according to an embodiment of the present disclosure.
도 13은 본 개시의 일 실시예에 따른 무선 통신 장치의 블록 구성도를 예시한다. 13 illustrates a block diagram of a wireless communication apparatus according to an embodiment of the present disclosure.
이하, 본 개시에 따른 바람직한 실시 형태를 첨부된 도면을 참조하여 상세하게 설명한다. 첨부된 도면과 함께 이하에 개시될 상세한 설명은 본 개시의 예시적인 실시형태를 설명하고자 하는 것이며, 본 개시가 실시될 수 있는 유일한 실시형태를 나타내고자 하는 것이 아니다. 이하의 상세한 설명은 본 개시의 완전한 이해를 제공하기 위해서 구체적 세부사항을 포함한다. 그러나, 당업자는 본 개시가 이러한 구체적 세부사항 없이도 실시될 수 있음을 안다. Hereinafter, preferred embodiments according to the present disclosure will be described in detail with reference to the accompanying drawings. DETAILED DESCRIPTION The detailed description set forth below in conjunction with the appended drawings is intended to describe exemplary embodiments of the present disclosure and is not intended to represent the only embodiments in which the present disclosure may be practiced. The following detailed description includes specific details in order to provide a thorough understanding of the present disclosure. However, it will be apparent to one of ordinary skill in the art that the present disclosure may be practiced without these specific details.
몇몇 경우, 본 개시의 개념이 모호해지는 것을 피하기 위하여 공지의 구조 및 장치는 생략되거나, 각 구조 및 장치의 핵심기능을 중심으로 한 블록도 형식으로 도시될 수 있다. In some cases, well-known structures and devices may be omitted or shown in block diagram form focusing on core functions of each structure and device in order to avoid obscuring the concepts of the present disclosure.
본 개시에 있어서, 어떤 구성요소가 다른 구성요소와 "연결", "결합" 또는 "접속"되어 있다고 할 때, 이는 직접적인 연결관계 뿐만 아니라, 그 사이에 또 다른 구성요소가 존재하는 간접적인 연결관계도 포함할 수 있다. 또한 본 개시에서 용어 "포함한다" 또는 "가진다"는 언급된 특징, 단계, 동작, 요소 및/또는 구성요소의 존재를 특정하지만, 하나 이상의 다른 특징, 단계, 동작, 요소, 구성요소 및/또는 이들의 그룹의 존재 또는 추가를 배제하지 않는다. In the present disclosure, when it is said that a component is "connected", "coupled" or "connected" with another component, it is not only a direct connection relationship, but also an indirect connection relationship in which another component exists between them. may also include. Also in this disclosure the terms “comprises” or “having” specify the presence of a recited feature, step, operation, element and/or component, but one or more other features, steps, operations, elements, components and/or The presence or addition of groups thereof is not excluded.
본 개시에 있어서, "제 1", "제 2" 등의 용어는 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용되고 구성요소들을 제한하기 위해서 사용되지 않으며, 특별히 언급되지 않는 한 구성요소들 간의 순서 또는 중요도 등을 한정하지 않는다. 따라서, 본 개시의 범위 내에서 일 실시예에서의 제 1 구성요소는 다른 실시예에서 제 2 구성요소라고 칭할 수도 있고, 마찬가지로 일 실시예에서의 제 2 구성요소를 다른 실시예에서 제 1 구성요소라고 칭할 수도 있다. In the present disclosure, terms such as "first" and "second" are used only for the purpose of distinguishing one component from other components and are not used to limit the components, unless otherwise specified. It does not limit the order or importance between them. Accordingly, within the scope of the present disclosure, a first component in one embodiment may be referred to as a second component in another embodiment, and similarly, a second component in one embodiment is referred to as a first component in another embodiment. can also be called
본 개시에서 사용된 용어는 특정 실시예에 대한 설명을 위한 것이며 청구범위를 제한하려는 것이 아니다. 실시예의 설명 및 첨부된 청구범위에서 사용되는 바와 같이, 단수 형태는 문맥상 명백하게 다르게 나타내지 않는 한 복수 형태도 포함하도록 의도한 것이다. 본 개시에 사용된 용어 "및/또는"은 관련된 열거 항목 중의 하나를 지칭할 수도 있고, 또는 그 중의 둘 이상의 임의의 및 모든 가능한 조합을 지칭하고 포함하는 것을 의미한다. 또한, 본 개시에서 단어들 사이의 "/"는 달리 설명되지 않는 한 "및/또는"과 동일한 의미를 가진다.The terminology used in this disclosure is for the description of specific embodiments and is not intended to limit the claims. As used in the description of the embodiments and in the appended claims, the singular form is intended to include the plural form as well, unless the context clearly dictates otherwise. As used herein, the term “and/or” may refer to one of the related enumerations, or is meant to refer to and include any and all possible combinations of two or more thereof. Also, in this disclosure, "/" between words has the same meaning as "and/or" unless otherwise specified.
본 개시는 무선 통신 네트워크 또는 무선 통신 시스템을 대상으로 설명하며, 무선 통신 네트워크에서 이루어지는 동작은 해당 무선 통신 네트워크를 관할하는 장치(예를 들어 기지국)에서 네트워크를 제어하고 신호를 송신(transmit) 또는 수신(receive)하는 과정에서 이루어지거나, 해당 무선 네트워크에 결합한 단말에서 네트워크와의 또는 단말간의 신호를 송신 또는 수신하는 과정에서 이루어질 수 있다.The present disclosure describes a wireless communication network or a wireless communication system as a target, and operations performed in the wireless communication network control the network and transmit or receive a signal by a device (eg, a base station) having jurisdiction over the wireless communication network. It may be made in the process of receiving (receive), or it may be made in the process of transmitting or receiving a signal from a terminal coupled to a corresponding wireless network to a network or between terminals.
본 개시에서, 채널을 송신 또는 수신한다는 것은 해당 채널을 통해서 정보 또는 신호를 송신 또는 수신한다는 의미를 포함한다. 예를 들어, 제어 채널을 송신한다는 것은, 제어 채널을 통해서 제어 정보 또는 신호를 송신한다는 것을 의미한다. 유사하게, 데이터 채널을 송신한다는 것은, 데이터 채널을 통해서 데이터 정보 또는 신호를 송신한다는 것을 의미한다.In the present disclosure, transmitting or receiving a channel includes the meaning of transmitting or receiving information or a signal through a corresponding channel. For example, transmitting the control channel means transmitting control information or a signal through the control channel. Similarly, to transmit a data channel means to transmit data information or a signal over the data channel.
이하에서, 하향링크(DL: downlink)는 기지국에서 단말로의 통신을 의미하며, 상향링크(UL: uplink)는 단말에서 기지국으로의 통신을 의미한다. 하향링크에서 송신기는 기지국의 일부이고, 수신기는 단말의 일부일 수 있다. 상향링크에서 송신기는 단말의 일부이고, 수신기는 기지국의 일부일 수 있다. 기지국은 제1 통신 장치로, 단말은 제2 통신 장치로 표현될 수도 있다. 기지국(BS: Base Station)은 고정국(fixed station), Node B, eNB(evolved-NodeB), gNB(Next Generation NodeB), BTS(base transceiver system), 액세스 포인트(AP: Access Point), 네트워크(5G 네트워크), AI(Artificial Intelligence) 시스템/모듈, RSU(road side unit), 로봇(robot), 드론(UAV: Unmanned Aerial Vehicle), AR(Augmented Reality)장치, VR(Virtual Reality)장치 등의 용어에 의해 대체될 수 있다. 또한, 단말(Terminal)은 고정되거나 이동성을 가질 수 있으며, UE(User Equipment), MS(Mobile Station), UT(user terminal), MSS(Mobile Subscriber Station), SS(Subscriber Station), AMS(Advanced Mobile Station), WT(Wireless terminal), MTC(Machine-Type Communication) 장치, M2M(Machine-to-Machine) 장치, D2D(Device-to-Device) 장치, 차량(vehicle), RSU(road side unit), 로봇(robot), AI(Artificial Intelligence) 모듈, 드론(UAV: Unmanned Aerial Vehicle), AR(Augmented Reality)장치, VR(Virtual Reality)장치 등의 용어로 대체될 수 있다.Hereinafter, downlink (DL: downlink) means communication from a base station to a terminal, and uplink (UL: uplink) means communication from a terminal to a base station. In the downlink, the transmitter may be a part of the base station, and the receiver may be a part of the terminal. In the uplink, the transmitter may be a part of the terminal, and the receiver may be a part of the base station. The base station may be represented as a first communication device, and the terminal may be represented as a second communication device. Base station (BS) is a fixed station (fixed station), Node B, evolved-NodeB (eNB), gNB (Next Generation NodeB), BTS (base transceiver system), access point (AP: Access Point), network (5G) network), AI (Artificial Intelligence) system/module, RSU (road side unit), robot (robot), drone (UAV: Unmanned Aerial Vehicle), AR (Augmented Reality) device, VR (Virtual Reality) device, etc. can be replaced by In addition, the terminal (Terminal) may be fixed or have mobility, UE (User Equipment), MS (Mobile Station), UT (user terminal), MSS (Mobile Subscriber Station), SS (Subscriber Station), AMS (Advanced Mobile) Station), WT (Wireless terminal), MTC (Machine-Type Communication) device, M2M (Machine-to-Machine) device, D2D (Device-to-Device) device, vehicle, RSU (road side unit), It may be replaced by terms such as a robot, an artificial intelligence (AI) module, an unmanned aerial vehicle (UAV), an augmented reality (AR) device, and a virtual reality (VR) device.
이하의 기술은 CDMA, FDMA, TDMA, OFDMA, SC-FDMA 등과 같은 다양한 무선 접속 시스템에 사용될 수 있다. CDMA는 UTRA(Universal Terrestrial Radio Access)나 CDMA2000과 같은 무선 기술로 구현될 수 있다. TDMA는 GSM(Global System for Mobile communications)/GPRS(General Packet Radio Service)/EDGE(Enhanced Data Rates for GSM Evolution)와 같은 무선 기술로 구현될 수 있다. OFDMA는 IEEE 802.11(Wi-Fi), IEEE 802.16(WiMAX), IEEE 802-20, E-UTRA(Evolved UTRA) 등과 같은 무선 기술로 구현될 수 있다. UTRA는 UMTS(Universal Mobile Telecommunications System)의 일부이다. 3GPP(3rd Generation Partnership Project) LTE(Long Term Evolution)은 E-UTRA를 사용하는 E-UMTS(Evolved UMTS)의 일부이고 LTE-A(Advanced)/LTE-A pro는 3GPP LTE의 진화된 버전이다. 3GPP NR(New Radio or New Radio Access Technology)는 3GPP LTE/LTE-A/LTE-A pro의 진화된 버전이다. The following techniques can be used in various radio access systems such as CDMA, FDMA, TDMA, OFDMA, SC-FDMA, and the like. CDMA may be implemented with a radio technology such as Universal Terrestrial Radio Access (UTRA) or CDMA2000. TDMA may be implemented with a radio technology such as Global System for Mobile communications (GSM)/General Packet Radio Service (GPRS)/Enhanced Data Rates for GSM Evolution (EDGE). OFDMA may be implemented with a radio technology such as IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, Evolved UTRA (E-UTRA), and the like. UTRA is part of the Universal Mobile Telecommunications System (UMTS). 3GPP (3rd Generation Partnership Project) Long Term Evolution (LTE) is a part of Evolved UMTS (E-UMTS) using E-UTRA and LTE-A (Advanced)/LTE-A pro is an evolved version of 3GPP LTE. 3GPP NR (New Radio or New Radio Access Technology) is an evolved version of 3GPP LTE/LTE-A/LTE-A pro.
설명을 명확하게 하기 위해, 3GPP 통신 시스템(예를 들어, LTE-A, NR)을 기반으로 설명하지만 본 개시의 기술적 사상이 이에 제한되는 것은 아니다. LTE는 3GPP TS(Technical Specification) 36.xxx Release 8 이후의 기술을 의미한다. 세부적으로, 3GPP TS 36.xxx Release 10 이후의 LTE 기술은 LTE-A로 지칭되고, 3GPP TS 36.xxx Release 13 이후의 LTE 기술은 LTE-A pro로 지칭된다. 3GPP NR은 TS 38.xxx Release 15 이후의 기술을 의미한다. LTE/NR은 3GPP 시스템으로 지칭될 수 있다. "xxx"는 표준 문서 세부 번호를 의미한다. LTE/NR은 3GPP 시스템으로 통칭될 수 있다. 본 개시의 설명에 사용된 배경기술, 용어, 약어 등에 관해서는 본 개시 이전에 공개된 표준 문서에 기재된 사항을 참조할 수 있다. 예를 들어, 다음 문서를 참조할 수 있다.For clarity of description, description is based on a 3GPP communication system (eg, LTE-A, NR), but the spirit of the present disclosure is not limited thereto. LTE refers to technology after 3GPP Technical Specification (TS) 36.xxx Release 8. In detail, LTE technology after 3GPP TS 36.xxx Release 10 is referred to as LTE-A, and LTE technology after 3GPP TS 36.xxx Release 13 is referred to as LTE-A pro. 3GPP NR refers to technology after TS 38.xxx Release 15. LTE/NR may be referred to as a 3GPP system. "xxx" stands for standard document detail number. LTE/NR may be collectively referred to as a 3GPP system. For backgrounds, terms, abbreviations, etc. used in the description of the present disclosure, reference may be made to matters described in standard documents published before the present disclosure. For example, you can refer to the following documents:
3GPP LTE의 경우, TS 36.211(물리 채널들 및 변조), TS 36.212(다중화 및 채널 코딩), TS 36.213(물리 계층 절차들), TS 36.300(전반적인 설명), TS 36.331(무선 자원 제어)을 참조할 수 있다. For 3GPP LTE, see TS 36.211 (physical channels and modulation), TS 36.212 (multiplex and channel coding), TS 36.213 (physical layer procedures), TS 36.300 (overall description), TS 36.331 (radio resource control). can
3GPP NR의 경우, TS 38.211(물리 채널들 및 변조), TS 38.212(다중화 및 채널 코딩), TS 38.213(제어를 위한 물리 계층 절차들), TS 38.214(데이터를 위한 물리 계층 절차들), TS 38.300(NR 및 NG-RAN(New Generation-Radio Access Network) 전반적인 설명), TS 38.331(무선 자원 제어 프로토콜 규격)을 참조할 수 있다. For 3GPP NR, TS 38.211 (physical channels and modulation), TS 38.212 (multiplex and channel coding), TS 38.213 (physical layer procedures for control), TS 38.214 (physical layer procedures for data), TS 38.300 (Overall description of NR and New Generation-Radio Access Network (NG-RAN)), TS 38.331 (Radio Resource Control Protocol Specification) may be referred to.
본 개시에서 사용될 수 있는 용어들의 약자는 다음과 같이 정의된다. Abbreviations of terms that may be used in the present disclosure are defined as follows.
- BM: 빔 관리(beam management)- BM: beam management
- CQI: 채널 품질 지시자(channel quality indicator)- CQI: channel quality indicator (channel quality indicator)
- CRI: 채널 상태 정보 - 참조 신호 자원 지시자(channel state information - reference signal resource indicator)- CRI: channel state information - reference signal resource indicator (channel state information - reference signal resource indicator)
- CSI: 채널 상태 정보(channel state information)- CSI: channel state information (channel state information)
- CSI-IM: 채널 상태 정보 - 간섭 측정(channel state information - interference measurement)- CSI-IM: channel state information - interference measurement (channel state information - interference measurement)
- CSI-RS: 채널 상태 정보 - 참조 신호(channel state information - reference signal)- CSI-RS: channel state information - reference signal (channel state information - reference signal)
- DMRS: 복조 참조 신호(demodulation reference signal)- DMRS: demodulation reference signal (demodulation reference signal)
- FDM: 주파수 분할 다중화(frequency division multiplexing)- FDM: frequency division multiplexing (frequency division multiplexing)
- FFT: 고속 푸리에 변환(fast Fourier transform)- FFT: fast Fourier transform
- IFDMA: 인터리빙된 주파수 분할 다중 액세스(interleaved frequency division multiple access)- IFDMA: interleaved frequency division multiple access (interleaved frequency division multiple access)
- IFFT: 역 고속 푸리에 변환(inverse fast Fourier transform)- IFFT: inverse fast Fourier transform
- L1-RSRP: 제1 레이어 참조 신호 수신 파워(Layer 1 reference signal received power)- L1-RSRP: first layer reference signal received power (Layer 1 reference signal received power)
- L1-RSRQ: 제1 레이어 참조 신호 수신 품질(Layer 1 reference signal received quality)- L1-RSRQ: first layer reference signal received quality (Layer 1 reference signal received quality)
- MAC: 매체 액세스 제어(medium access control)- MAC: medium access control (medium access control)
- NZP: 논-제로 파워(non-zero power)- NZP: non-zero power (non-zero power)
- OFDM: 직교 주파수 분할 다중화(orthogonal frequency division multiplexing)- OFDM: orthogonal frequency division multiplexing
- PDCCH: 물리 하향링크 제어 채널(physical downlink control channel)- PDCCH: physical downlink control channel (physical downlink control channel)
- PDSCH: 물리 하향링크 공유 채널(physical downlink shared channel)- PDSCH: physical downlink shared channel (physical downlink shared channel)
- PMI: 프리코딩 행렬 지시자(precoding matrix indicator)- PMI: precoding matrix indicator (precoding matrix indicator)
- RE: 자원 요소(resource element)- RE: resource element
- RI: 랭크 지시자(Rank indicator)- RI: rank indicator (Rank indicator)
- RRC: 무선 자원 제어(radio resource control)- RRC: radio resource control (radio resource control)
- RSSI: 수신 신호 강도 지시자(received signal strength indicator)- RSSI: received signal strength indicator (received signal strength indicator)
- Rx: 수신(Reception)- Rx: Reception
- QCL: 준-동일 위치(quasi co-location)- QCL: quasi co-location
- SINR: 신호 대 간섭 및 잡음비(signal to interference and noise ratio)- SINR: signal to interference and noise ratio
- SSB (또는 SS/PBCH block): 동기 신호 블록(프라이머리 동기 신호(PSS: primary synchronization signal), 세컨더리 동기 신호(SSS: secondary synchronization signal) 및 물리 방송 채널(PBCH: physical broadcast channel)을 포함)- SSB (or SS / PBCH block): synchronization signal block (including primary synchronization signal (PSS), secondary synchronization signal (SSS: secondary synchronization signal) and physical broadcast channel (PBCH: physical broadcast channel))
- TDM: 시간 분할 다중화(time division multiplexing)- TDM: time division multiplexing
- TRP: 전송 및 수신 포인트(transmission and reception point)- TRP: transmission and reception point (transmission and reception point)
- TRS: 트래킹 참조 신호(tracking reference signal)- TRS: tracking reference signal (tracking reference signal)
- Tx: 전송(transmission)- Tx: transmission
- UE: 사용자 장치(user equipment)- UE: user equipment (user equipment)
- ZP: 제로 파워(zero power)- ZP: zero power
시스템 일반system general
더욱 많은 통신 기기들이 더욱 큰 통신 용량을 요구하게 됨에 따라, 기존의 무선 액세스 기술(RAT: radio access technology)에 비해 향상된 모바일 브로드밴드(mobile broadband) 통신에 대한 필요성이 대두되고 있다. 또한 다수의 기기 및 사물들을 연결하여 언제 어디서나 다양한 서비스를 제공하는 매시브(massive) MTC(Machine Type Communications) 역시 차세대 통신에서 고려될 주요 이슈 중 하나이다. 뿐만 아니라 신뢰도(reliability) 및 지연(latency)에 민감한 서비스/단말을 고려한 통신 시스템 디자인이 논의되고 있다. 이와 같이 eMBB(enhanced mobile broadband communication), Mmtc(massive MTC), URLLC (Ultra-Reliable and Low Latency Communication) 등을 고려한 차세대 RAT의 도입이 논의되고 있으며, 본 개시에서는 편의상 해당 기술을 NR이라고 부른다. NR은 5G RAT의 일례를 나타낸 표현이다.As more and more communication devices require greater communication capacity, there is a need for improved mobile broadband communication compared to a conventional radio access technology (RAT). In addition, massive MTC (Machine Type Communications), which provides various services anytime, anywhere by connecting multiple devices and things, is also one of the major issues to be considered in next-generation communication. In addition, a communication system design in consideration of a service/terminal sensitive to reliability and latency is being discussed. As such, the introduction of the next-generation RAT in consideration of enhanced mobile broadband communication (eMBB), massive MTC (Mmtc), and Ultra-Reliable and Low Latency Communication (URLLC) is being discussed, and in the present disclosure, for convenience, the technology is called NR. NR is an expression showing an example of 5G RAT.
NR을 포함하는 새로운 RAT 시스템은 OFDM 전송 방식 또는 이와 유사한 전송 방식을 사용한다. 새로운 RAT 시스템은 LTE의 OFDM 파라미터들과는 다른 OFDM 파라미터들을 따를 수 있다. 또는 새로운 RAT 시스템은 기존의 LTE/LTE-A의 뉴머롤로지(numerology)를 그대로 따르나 더 큰 시스템 대역폭(예를 들어, 100MHz)를 지원할 수 있다. 또는 하나의 셀이 복수 개의 numerology들을 지원할 수도 있다. 즉, 서로 다른 numerology로 동작하는 하는 단말들이 하나의 셀 안에서 공존할 수 있다. A new RAT system including NR uses an OFDM transmission scheme or a similar transmission scheme. The new RAT system may follow OFDM parameters different from those of LTE. Alternatively, the new RAT system may support a larger system bandwidth (eg, 100 MHz) while following the existing numerology of LTE/LTE-A. Alternatively, one cell may support a plurality of numerologies. That is, terminals operating in different numerology can coexist in one cell.
numerology는 주파수 영역에서 하나의 서브캐리어 간격(subcarrier spacing)에 대응한다. 참조 서브캐리어 간격(Reference subcarrier spacing)을 정수 N으로 스케일링(scaling)함으로써, 상이한 numerology가 정의될 수 있다.Numerology corresponds to one subcarrier spacing in the frequency domain. By scaling the reference subcarrier spacing by an integer N, different numerology can be defined.
도 1은 본 개시가 적용될 수 있는 무선 통신 시스템의 구조를 예시한다. 1 illustrates a structure of a wireless communication system to which the present disclosure can be applied.
도 1을 참조하면, NG-RAN은 NG-RA(NG-Radio Access) 사용자 평면(즉, 새로운 AS(access stratum) 서브계층/PDCP(Packet Data Convergence Protocol)/RLC(Radio Link Control)/MAC/PHY) 및 UE에 대한 제어 평면(RRC) 프로토콜 종단을 제공하는 gNB들로 구성된다. 상기 gNB는 Xn 인터페이스를 통해 상호 연결된다. 상기 gNB는 또한, NG 인터페이스를 통해 NGC(New Generation Core)로 연결된다. 보다 구체적으로는, 상기 gNB는 N2 인터페이스를 통해 AMF(Access and Mobility Management Function)로, N3 인터페이스를 통해 UPF(User Plane Function)로 연결된다.1, NG-RAN is NG-RA (NG-Radio Access) user plane (ie, new access stratum (AS) sublayer / Packet Data Convergence Protocol (PDCP) / RLC (Radio Link Control) / MAC / PHY) and gNBs that provide control plane (RRC) protocol termination for the UE. The gNBs are interconnected through an Xn interface. The gNB is also connected to a New Generation Core (NGC) through an NG interface. More specifically, the gNB is connected to an Access and Mobility Management Function (AMF) through an N2 interface and a User Plane Function (UPF) through an N3 interface.
도 2는 본 개시가 적용될 수 있는 무선 통신 시스템에서 프레임 구조를 예시한다. 2 illustrates a frame structure in a wireless communication system to which the present disclosure can be applied.
NR 시스템은 다수의 뉴머롤로지(numerology)들을 지원할 수 있다. 여기서, numerology는 서브캐리어 간격(subcarrier spacing)과 순환 전치(CP: Cyclic Prefix) 오버헤드에 의해 정의될 수 있다. 이때, 다수의 서브캐리어 간격은 기본(참조) 서브캐리어 간격을 정수 N(또는, μ)으로 스케일링(scaling) 함으로써 유도될 수 있다. 또한, 매우 높은 반송파 주파수에서 매우 낮은 서브캐리어 간격을 이용하지 않는다고 가정될지라도, 이용되는 numerology는 주파수 대역과 독립적으로 선택될 수 있다. 또한, NR 시스템에서는 다수의 numerology에 따른 다양한 프레임 구조들이 지원될 수 있다.An NR system can support multiple numerologies. Here, numerology may be defined by subcarrier spacing and cyclic prefix (CP) overhead. In this case, a plurality of subcarrier spacings may be derived by scaling the basic (reference) subcarrier spacing to an integer N (or μ). Also, the numerology used can be selected independently of the frequency band, although it is assumed that very low subcarrier spacing is not used at very high carrier frequencies. In addition, in the NR system, various frame structures according to multiple numerologies may be supported.
이하, NR 시스템에서 고려될 수 있는 OFDM numerology 및 프레임 구조를 살펴본다. NR 시스템에서 지원되는 다수의 OFDM numerology들은 아래 표 1과 같이 정의될 수 있다.Hereinafter, OFDM numerology and frame structure that can be considered in the NR system will be described. A number of OFDM numerologies supported in the NR system may be defined as shown in Table 1 below.
μμ Δf=2μ·15 [kHz]Δf=2 μ ·15 [kHz] CP CP
00 1515 일반(Normal)Normal
1One 3030 일반 Normal
22 6060 일반, 확장(Extended)General, Extended
33 120120 일반 Normal
44 240240 일반Normal
NR은 다양한 5G 서비스들을 지원하기 위한 다수의 numerology(또는 서브캐리어 간격(SCS: subcarrier spacing))를 지원한다. 예를 들어, SCS가 15kHz인 경우, 전통적인 셀룰러 밴드들에서의 넓은 영역(wide area)를 지원하며, SCS가 30kHz/60kHz인 경우, 밀집한-도시(dense-urban), 더 낮은 지연(lower latency) 및 더 넓은 캐리어 대역폭(wider carrier bandwidth)를 지원하며, SCS가 60kHz 또는 그보다 높은 경우, 위상 잡음(phase noise)를 극복하기 위해 24.25GHz보다 큰 대역폭을 지원한다. NR 주파수 밴드(frequency band)는 2가지 타입(FR1, FR2)의 주파수 범위(frequency range)로 정의된다. FR1, FR2는 아래 표 2와 같이 구성될 수 있다. 또한, FR2는 밀리미터 웨이브(mmW: millimeter wave)를 의미할 수 있다.NR supports multiple numerology (or subcarrier spacing (SCS)) to support various 5G services. For example, when SCS is 15kHz, it supports a wide area in traditional cellular bands, and when SCS is 30kHz/60kHz, dense-urban, lower latency and wider carrier bandwidth, and when SCS is 60 kHz or higher, a bandwidth greater than 24.25 GHz to overcome phase noise. The NR frequency band is defined as two types of frequency ranges (FR1, FR2). FR1 and FR2 may be configured as shown in Table 2 below. In addition, FR2 may mean a millimeter wave (mmW: millimeter wave).
주파수 범위 지정(Frequency Range designation)Frequency Range designation 해당 주파수 범위(Corresponding frequency range)Corresponding frequency range 서브캐리어 간격(Subcarrier Spacing)Subcarrier Spacing
FR1FR1 410MHz - 7125MHz410MHz - 7125MHz 15, 30, 60kHz15, 30, 60 kHz
FR2FR2 24250MHz - 52600MHz24250MHz - 52600MHz 60, 120, 240kHz60, 120, 240 kHz
NR 시스템에서의 프레임 구조(frame structure)와 관련하여, 시간 영역의 다양한 필드의 크기는 Tc=1/(Δfmax·Nf) 의 시간 단위의 배수로 표현된다. 여기에서, Δfmax=480·103 Hz 이고, Nf=4096 이다. 하향링크(downlink) 및 상향링크(uplink) 전송은 Tf=1/(ΔfmaxNf/100)·Tc=10ms 의 구간을 가지는 무선 프레임(radio frame)으로 구성(organized)된다. 여기에서, 무선 프레임은 각각 Tsf=(ΔfmaxNf/1000)·Tc=1ms 의 구간을 가지는 10 개의 서브프레임(subframe)들로 구성된다. 이 경우, 상향링크에 대한 한 세트의 프레임들 및 하향링크에 대한 한 세트의 프레임들이 존재할 수 있다. 또한, 단말로부터의 상향링크 프레임 번호 i에서의 전송은 해당 단말에서의 해당 하향링크 프레임의 시작보다 TTA=(NTA+NTA,offset)Tc 이전에 시작해야 한다. 서브캐리어 간격 구성 μ 에 대하여, 슬롯(slot)들은 서브프레임 내에서 ns μ∈{0,..., Nslot subframe,μ-1} 의 증가하는 순서로 번호가 매겨지고, 무선 프레임 내에서 ns,f μ∈{0,..., Nslot frame,μ-1} 의 증가하는 순서로 번호가 매겨진다. 하나의 슬롯은 Nsymb slot 의 연속하는 OFDM 심볼들로 구성되고, Nsymb slot 는, CP에 따라 결정된다. 서브프레임에서 슬롯 ns μ 의 시작은 동일 서브프레임에서 OFDM 심볼 ns μNsymb slot 의 시작과 시간적으로 정렬된다. 모든 단말이 동시에 송신 및 수신을 할 수 있는 것은 아니며, 이는 하향링크 슬롯(downlink slot) 또는 상향링크 슬롯(uplink slot)의 모든 OFDM 심볼들이 이용될 수는 없다는 것을 의미한다. 표 3은 일반 CP에서 슬롯 별 OFDM 심볼의 개수(Nsymb slot), 무선 프레임 별 슬롯의 개수(Nslot frame,μ), 서브프레임 별 슬롯의 개수(Nslot subframe,μ)를 나타내며, 표 4는 확장 CP에서 슬롯 별 OFDM 심볼의 개수, 무선 프레임 별 슬롯의 개수, 서브프레임 별 슬롯의 개수를 나타낸다.Regarding the frame structure in the NR system, the size of various fields in the time domain is expressed as a multiple of the time unit of T c =1/(Δf max ·N f ). Here, Δf max =480·10 3 Hz and N f =4096. Downlink and uplink transmission is organized in a radio frame having a section of T f =1/(Δf max N f /100)·T c =10ms. Here, each radio frame is T sf =(Δf max N f /1000)·T c =1ms It consists of 10 subframes having a period of . In this case, one set of frames for uplink and one set of frames for downlink may exist. In addition, transmission in the uplink frame number i from the terminal should start before T TA = (N TA +N TA,offset )T c than the start of the corresponding downlink frame in the corresponding terminal. For the subcarrier spacing configuration μ, slots are numbered in increasing order of n s μ ∈{0,..., N slot subframe,μ -1} within the subframe, and within the radio frame They are numbered in increasing order of n s,f μ ∈{0,..., N slot frame,μ -1}. One slot consists of consecutive OFDM symbols of N symb slots , and N symb slots are determined according to CP. The start of the slot n s μ in a subframe is temporally aligned with the start of the OFDM symbol n s μ N symb slot in the same subframe. Not all terminals can transmit and receive at the same time, which means that all OFDM symbols of a downlink slot or an uplink slot cannot be used. Table 3 shows the number of OFDM symbols per slot (N symb slot ), the number of slots per radio frame (N slot frame,μ ), and the number of slots per subframe (N slot subframe,μ ) in the general CP, Table 4 denotes the number of OFDM symbols per slot, the number of slots per radio frame, and the number of slots per subframe in the extended CP.
μμ Nsymb slot N symb slot Nslot frame,μ N slot frame, μ Nslot subframe,μ N slot subframe, μ
00 1414 1010 1One
1One 1414 2020 22
22 1414 4040 44
33 1414 8080 88
44 1414 160160 1616
μ μ Nsymb slot N symb slot Nslot frame,μ N slot frame, μ Nslot subframe,μ N slot subframe, μ
22 1212 4040 44
도 2는, μ=2인 경우(SCS가 60kHz)의 일례로서, 표 3을 참고하면 1 서브프레임(subframe)은 4개의 슬롯(slot)들을 포함할 수 있다. 도 2에 도시된 1 subframe={1,2,4} slot은 일례로서, 1 subframe에 포함될 수 있는 slot(들)의 개수는 표 3 또는 표 4와 같이 정의된다. 또한, 미니 슬롯(mini-slot)은 2, 4 또는 7 심볼들을 포함하거나 그 보다 더 많은 또는 더 적은 심볼들을 포함할 수 있다.NR 시스템에서의 물리 자원(physical resource)과 관련하여, 안테나 포트(antenna port), 자원 그리드(resource grid), 자원 요소(resource element), 자원 블록(resource block), 캐리어 파트(carrier part) 등이 고려될 수 있다. 이하, NR 시스템에서 고려될 수 있는 상기 물리 자원들에 대해 구체적으로 살펴본다. 2 is an example of a case where μ=2 (SCS is 60 kHz). Referring to Table 3, one subframe may include four slots. One subframe = {1,2,4} slots shown in FIG. 2 is an example, and the number of slot(s) that can be included in one subframe is defined as shown in Table 3 or Table 4. Also, a mini-slot may contain 2, 4 or 7 symbols, or may contain more or fewer symbols. With respect to a physical resource in an NR system, an antenna port ( antenna port), resource grid (resource grid), resource element (resource element), resource block (resource block), carrier part (carrier part), etc. may be considered. Hereinafter, the physical resources that can be considered in the NR system will be described in detail.
먼저, 안테나 포트와 관련하여, 안테나 포트는 안테나 포트 상의 심볼이 운반되는 채널이 동일한 안테나 포트 상의 다른 심볼이 운반되는 채널로부터 추론될 수 있도록 정의된다. 하나의 안테나 포트 상의 심볼이 운반되는 채널의 광범위 특성(large-scale property)이 다른 안테나 포트 상의 심볼이 운반되는 채널로부터 유추될 수 있는 경우, 2 개의 안테나 포트는 QC/QCL(quasi co-located 혹은 quasi co-location) 관계에 있다고 할 수 있다. 여기서, 상기 광범위 특성은 지연 확산(Delay spread), 도플러 확산(Doppler spread), 주파수 쉬프트(Frequency shift), 평균 수신 파워(Average received power), 수신 타이밍(Received Timing) 중 하나 이상을 포함한다.First, with respect to an antenna port, an antenna port is defined such that a channel on which a symbol on an antenna port is carried can be inferred from a channel on which another symbol on the same antenna port is carried. When the large-scale property of a channel carrying a symbol on one antenna port can be inferred from a channel carrying a symbol on another antenna port, the two antenna ports are QC/QCL (quasi co-located or QC/QCL) It can be said that there is a quasi co-location) relationship. Here, the wide range characteristic includes one or more of delay spread, Doppler spread, frequency shift, average received power, and received timing.
도 3은 본 개시가 적용될 수 있는 무선 통신 시스템에서 자원 그리드(resource grid)를 예시한다. 3 illustrates a resource grid in a wireless communication system to which the present disclosure can be applied.
도 3을 참조하면, 자원 그리드가 주파수 영역 상으로 NRB μNsc RB 서브캐리어들로 구성되고, 하나의 서브프레임이 14·2μ OFDM 심볼들로 구성되는 것을 예시적으로 기술하나, 이에 한정되는 것은 아니다. NR 시스템에서, 전송되는 신호(transmitted signal)는 NRB μNsc RB 서브캐리어들로 구성되는 하나 또는 그 이상의 자원 그리드들 및 2μNsymb (μ) 의 OFDM 심볼들에 의해 설명된다. 여기서, NRB μ≤NRB max,μ 이다. 상기 NRB max,μ 는 최대 전송 대역폭을 나타내고, 이는, numerology들 뿐만 아니라 상향링크와 하향링크 간에도 달라질 수 있다. 이 경우, μ 및 안테나 포트 p 별로 하나의 자원 그리드가 설정될 수 있다. μ 및 안테나 포트 p에 대한 자원 그리드의 각 요소는 자원 요소(resource element)로 지칭되며, 인덱스 쌍 (k,l')에 의해 고유적으로 식별된다. 여기에서, k=0,...,NRB μNsc RB-1 는 주파수 영역 상의 인덱스이고, l'=0,...,2μNsymb (μ)-1 는 서브프레임 내에서 심볼의 위치를 지칭한다. 슬롯에서 자원 요소를 지칭할 때에는, 인덱스 쌍 (k,l) 이 이용된다. 여기서, l=0,...,Nsymb μ-1 이다. μ 및 안테나 포트 p에 대한 자원 요소 (k,l') 는 복소 값(complex value) ak,l' (p,μ) 에 해당한다. 혼동(confusion)될 위험이 없는 경우 혹은 특정 안테나 포트 또는 numerology가 특정되지 않은 경우에는, 인덱스들 p 및 μ 는 드롭(drop)될 수 있으며, 그 결과 복소 값은 ak,l' (p) 또는 ak,l' 이 될 수 있다. 또한, 자원 블록(resource block, RB)은 주파수 영역 상의 Nsc RB=12 연속적인 서브캐리어들로 정의된다.Referring to FIG. 3 , it is exemplarily described that the resource grid is composed of N RB μ N sc RB subcarriers in the frequency domain and that one subframe is composed of 14·2 μ OFDM symbols, but limited to this it is not going to be In an NR system, a transmitted signal is described by one or more resource grids consisting of N RB μ N sc RB subcarriers and OFDM symbols of 2 μ N symb (μ) . Here, N RB μ≤N RB max,μ . The N RB max,μ represents the maximum transmission bandwidth, which may vary between uplink and downlink as well as numerologies. In this case, one resource grid may be configured for each μ and each antenna port p. Each element of the resource grid for μ and antenna port p is referred to as a resource element, and is uniquely identified by an index pair (k,l'). Here, k=0,...,N RB μ N sc RB -1 is an index in the frequency domain, and l'=0,...,2 μ N symb (μ) -1 is a symbol in a subframe indicates the location of When referring to a resource element in a slot, an index pair (k,l) is used. Here, l=0,...,N symb μ -1 . A resource element (k,l') for μ and an antenna port p corresponds to a complex value a k,l' (p,μ) . In cases where there is no risk of confusion or if a specific antenna port or numerology is not specified, the indices p and μ may be dropped, so that the complex value is a k,l' (p) or a k,l' can be In addition, a resource block (RB) is defined as N sc RB = 12 consecutive subcarriers in the frequency domain.
포인트(point) A는 자원 블록 그리드의 공통 기준 포인트(common reference point)로서 역할을 하며 다음과 같이 획득된다.Point A serves as a common reference point of the resource block grid and is obtained as follows.
- 프라이머리 셀(PCell: Primary Cell) 다운링크에 대한 offsetToPointA는 초기 셀 선택을 위해 단말에 의해 사용된 SS/PBCH block과 겹치는 가장 낮은 자원 블록의 가장 낮은 서브 캐리어와 point A 간의 주파수 오프셋을 나타낸다. FR1에 대해 15kHz 서브캐리어 간격 및 FR2에 대해 60kHz 서브캐리어 간격을 가정한 리소스 블록 단위(unit)들로 표현된다.- OffsetToPointA for the primary cell (PCell: Primary Cell) downlink represents a frequency offset between point A and the lowest subcarrier of the lowest resource block overlapping the SS/PBCH block used by the UE for initial cell selection. It is expressed in resource block units assuming a 15 kHz subcarrier spacing for FR1 and a 60 kHz subcarrier spacing for FR2.
- absoluteFrequencyPointA는 ARFCN(absolute radio-frequency channel number)에서와 같이 표현된 point A의 주파수-위치를 나타낸다.- absoluteFrequencyPointA indicates the frequency-position of point A expressed as in ARFCN (absolute radio-frequency channel number).
공통 자원 블록(common resource block)들은 서브캐리어 간격 설정 μ 에 대한 주파수 영역에서 0부터 위쪽으로 numbering된다. 서브캐리어 간격 설정 μ 에 대한 공통 자원 블록 0의 subcarrier 0의 중심은 'point A'와 일치한다. 주파수 영역에서 공통 자원 블록 번호 nCRB μ 와 서브캐리어 간격 설정 μ 에 대한 자원 요소(k,l)와의 관계는 아래 수학식 1과 같이 주어진다.Common resource blocks (common resource blocks) are numbered upwards from 0 in the frequency domain for the subcarrier interval setting μ. The center of subcarrier 0 of common resource block 0 for subcarrier interval setting μ coincides with 'point A'. The relationship between the common resource block number n CRB μ and the resource element (k,l) for the subcarrier interval setting μ in the frequency domain is given by Equation 1 below.
Figure PCTKR2021010338-appb-img-000001
Figure PCTKR2021010338-appb-img-000001
수학식 1에서, k는 k=0이 point A를 중심으로 하는 서브캐리어에 해당하도록 point A에 상대적으로 정의된다. 물리 자원 블록들은 대역폭 파트(BWP: bandwidth part) 내에서 0부터 NBWP,i size,μ-1 까지 번호가 매겨지고, i는 BWP의 번호이다. BWP i에서 물리 자원 블록 nPRB 와 공통 자원 블록 nCRB 간의 관계는 아래 수학식 2에 의해 주어진다.In Equation 1, k is defined relative to point A such that k=0 corresponds to a subcarrier centered on point A. Physical resource blocks are numbered from 0 to N BWP,i size,μ -1 in the bandwidth part (BWP: bandwidth part), and i is the number of the BWP. The relationship between the physical resource block n PRB and the common resource block n CRB in BWP i is given by Equation 2 below.
Figure PCTKR2021010338-appb-img-000002
Figure PCTKR2021010338-appb-img-000002
NBWP,i start,μ 는 BWP가 공통 자원 블록 0에 상대적으로 시작하는 공통 자원 블록이다.N BWP,i start,μ is a common resource block in which BWP starts relative to common resource block 0.
도 4는 본 개시가 적용될 수 있는 무선 통신 시스템에서 물리 자원 블록(physical resource block)을 예시한다. 그리고, 도 5는 본 개시가 적용될 수 있는 무선 통신 시스템에서 슬롯 구조를 예시한다. 4 illustrates a physical resource block in a wireless communication system to which the present disclosure can be applied. And, FIG. 5 illustrates a slot structure in a wireless communication system to which the present disclosure can be applied.
도 4 및 도 5를 참조하면, 슬롯은 시간 도메인에서 복수의 심볼을 포함한다. 예를 들어, 보통 CP의 경우 하나의 슬롯이 7개의 심볼을 포함하나, 확장 CP의 경우 하나의 슬롯이 6개의 심볼을 포함한다. 4 and 5, a slot includes a plurality of symbols in the time domain. For example, in the case of a normal CP, one slot includes 7 symbols, but in the case of an extended CP, one slot includes 6 symbols.
반송파는 주파수 도메인에서 복수의 부반송파를 포함한다. RB(Resource Block)는 주파수 도메인에서 복수(예를 들어, 12)의 연속한 부반송파로 정의된다. BWP(Bandwidth Part)는 주파수 도메인에서 복수의 연속한 (물리) 자원 블록으로 정의되며, 하나의 numerology(예를 들어, SCS, CP 길이 등)에 대응될 수 있다. 반송파는 최대 N개(예를 들어, 5개)의 BWP를 포함할 수 있다. 데이터 통신은 활성화된 BWP를 통해서 수행되며, 하나의 단말한테는 하나의 BWP만 활성화될 수 있다. 자원 그리드에서 각각의 요소는 자원요소(RE: Resource Element)로 지칭되며, 하나의 복소 심볼이 매핑될 수 있다.The carrier includes a plurality of subcarriers in the frequency domain. A resource block (RB) is defined as a plurality of (eg, 12) consecutive subcarriers in the frequency domain. A bandwidth part (BWP) is defined as a plurality of contiguous (physical) resource blocks in the frequency domain, and may correspond to one numerology (eg, SCS, CP length, etc.). A carrier wave may include a maximum of N (eg, 5) BWPs. Data communication is performed through the activated BWP, and only one BWP can be activated for one terminal. Each element in the resource grid is referred to as a resource element (RE), and one complex symbol may be mapped.
NR 시스템은 하나의 컴포넌트 캐리어(CC: Component Carrier) 당 최대 400 MHz까지 지원될 수 있다. 이러한 광대역 CC(wideband CC)에서 동작하는 단말이 항상 CC 전체에 대한 무선 주파수(RF: radio frequency) 칩(chip)를 켜둔 채로 동작한다면 단말 배터리 소모가 커질 수 있다. 혹은 하나의 광대역 CC 내에 동작하는 여러 활용 케이스들(예를 들어, eMBB, URLLC, Mmtc, V2X 등)을 고려할 때 해당 CC 내에 주파수 대역 별로 서로 다른 numerology(예를 들어, 서브캐리어 간격 등)가 지원될 수 있다. 혹은 단말 별로 최대 대역폭에 대한 능력(capability)이 다를 수 있다. 이를 고려하여 기지국은 광대역 CC의 전체 bandwidth이 아닌 일부 bandwidth에서만 동작하도록 단말에게 지시할 수 있으며, 해당 일부 bandwidth를 편의상 대역폭 부분(BWP: bandwidth part)로 정의한다. BWP는 주파수 축 상에서 연속한 RB들로 구성될 수 있으며, 하나의 numerology(예를 들어, 서브캐리어 간격, CP 길이, 슬롯/미니-슬롯 구간)에 대응될 수 있다.The NR system may support up to 400 MHz per one component carrier (CC). If a terminal operating in such a wideband CC always operates with a radio frequency (RF) chip for the entire CC turned on, battery consumption of the terminal may increase. Alternatively, when considering multiple use cases (eg, eMBB, URLLC, Mmtc, V2X, etc.) operating within one broadband CC, different numerology (eg, subcarrier spacing, etc.) is supported for each frequency band within the CC. can be Alternatively, the capability for the maximum bandwidth may be different for each terminal. In consideration of this, the base station may instruct the terminal to operate only in a partial bandwidth rather than the entire bandwidth of the broadband CC, and the partial bandwidth is defined as a bandwidth part (BWP: bandwidth part) for convenience. The BWP may consist of consecutive RBs on the frequency axis, and may correspond to one numerology (eg, subcarrier interval, CP length, slot/mini-slot interval).
한편, 기지국은 단말에게 설정된 하나의 CC 내에서도 다수의 BWP를 설정할 수 있다. 예를 들어, PDCCH 모니터링 슬롯에서는 상대적으로 작은 주파수 영역을 차지하는 BWP를 설정하고, PDCCH에서 지시하는 PDSCH는 그보다 큰 BWP 상에 스케줄링될 수 있다. 혹은, 특정 BWP에 UE 들이 몰리는 경우 로드 밸런싱(load balancing)을 위해 일부 단말들을 다른 BWP로 설정할 수 있다. 혹은, 이웃 셀 간의 주파수 도메인 셀간 간섭 제거(frequency domain inter-cell interference cancellation) 등을 고려하여 전체 bandwidth 중 가운데 일부 스펙트럼(spectrum)을 배제하고 양쪽 BWP들을 동일 슬롯 내에서도 설정할 수 있다. 즉, 기지국은 광대역 CC와 연관된(association) 단말에게 적어도 하나의 DL/UL BWP를 설정할 수 있다. 기지국은 특정 시점에 설정된 DL/UL BWP(들) 중 적어도 하나의 DL/UL BWP를 (L1 시그널링 또는 MAC CE(Control Element) 또는 RRC 시그널링 등에 의해) 활성화시킬 수 있다. 또한, 기지국은 다른 설정된 DL/UL BWP로 스위칭을 (L1 시그널링 또는 MAC CE 또는 RRC 시그널링 등에 의해) 지시할 수 있다. 또는, 타이머 기반으로 타이머 값이 만료되면 정해진 DL/UL BWP로 스위칭될 수도 있다. 이때, 활성화된 DL/UL BWP를 활성(active) DL/UL BWP로 정의한다. 하지만, 단말이 최초 접속(initial access) 과정을 수행하는 중이거나, 혹은 RRC 연결이 셋업(set up)되기 전 등의 상황에서는 DL/UL BWP에 대한 설정을 수신하지 못할 수 있으므로, 이러한 상황에서 단말이 가정하는 DL/UL BWP는 최초 활성 DL/UL BWP라고 정의한다.On the other hand, the base station may set a plurality of BWPs even within one CC configured for the terminal. For example, in the PDCCH monitoring slot, a BWP occupying a relatively small frequency domain may be configured, and a PDSCH indicated by the PDCCH may be scheduled on a larger BWP. Alternatively, when UEs are concentrated in a specific BWP, some UEs may be configured as a different BWP for load balancing. Alternatively, in consideration of frequency domain inter-cell interference cancellation between neighboring cells, a part of the entire bandwidth may be excluded and both BWPs may be configured in the same slot. That is, the base station may configure at least one DL/UL BWP to the terminal associated with the broadband CC. The base station may activate at least one DL/UL BWP among the DL/UL BWP(s) configured at a specific time (by L1 signaling, MAC CE (Control Element) or RRC signaling, etc.). In addition, the base station may indicate switching to another configured DL/UL BWP (by L1 signaling or MAC CE or RRC signaling, etc.). Alternatively, when the timer value expires based on the timer, it may be switched to a predetermined DL/UL BWP. In this case, the activated DL/UL BWP is defined as an active DL/UL BWP. However, since the terminal may not receive the configuration for the DL/UL BWP in a situation such as when the terminal is performing an initial access process or before the RRC connection is set up, in this situation, the terminal This assumed DL/UL BWP is defined as the first active DL/UL BWP.
도 6은 본 개시가 적용될 수 있는 무선 통신 시스템에서 이용되는 물리 채널들 및 이들을 이용한 일반적인 신호 송수신 방법을 예시한다. 6 illustrates physical channels used in a wireless communication system to which the present disclosure can be applied and a general signal transmission/reception method using them.
무선 통신 시스템에서 단말은 기지국으로부터 하향링크(Downlink)를 통해 정보를 수신하고, 단말은 기지국으로 상향링크(Uplink)를 통해 정보를 전송한다. 기지국과 단말이 송수신하는 정보는 데이터 및 다양한 제어 정보를 포함하고, 이들이 송수신 하는 정보의 종류/용도에 따라 다양한 물리 채널이 존재한다.In a wireless communication system, a terminal receives information from a base station through a downlink, and the terminal transmits information to a base station through an uplink. Information transmitted and received between the base station and the terminal includes data and various control information, and various physical channels exist according to the type/use of the information they transmit and receive.
단말은 전원이 켜지거나 새로이 셀에 진입한 경우 기지국과 동기를 맞추는 등의 초기 셀 탐색(Initial cell search) 작업을 수행한다(S601). 이를 위해, 단말은 기지국으로부터 주 동기 신호(PSS: Primary Synchronization Signal) 및 부 동기 채널(SSS: Secondary Synchronization Signal)을 수신하여 기지국과 동기를 맞추고, 셀 식별자(ID: Identifier) 등의 정보를 획득할 수 있다. 그 후, 단말은 기지국으로부터 물리 방송 채널(PBCH: Physical Broadcast Channel)를 수신하여 셀 내 방송 정보를 획득할 수 있다. 한편, 단말은 초기 셀 탐색 단계에서 하향링크 참조 신호(DL RS: Downlink Reference Signal)를 수신하여 하향링크 채널 상태를 확인할 수 있다.When the terminal is powered on or newly enters a cell, the terminal performs an initial cell search operation such as synchronizing with the base station (S601). To this end, the terminal receives a primary synchronization signal (PSS) and a secondary synchronization channel (SSS) from the base station to synchronize with the base station, and to obtain information such as a cell identifier (ID: Identifier). can Thereafter, the terminal may receive a physical broadcast channel (PBCH) from the base station to obtain intra-cell broadcast information. Meanwhile, the UE may receive a downlink reference signal (DL RS) in the initial cell search step to check the downlink channel state.
초기 셀 탐색을 마친 단말은 물리 하향링크 제어 채널(PDCCH: Physical Downlink Control Channel) 및 상기 PDCCH에 실린 정보에 따라 물리 하향링크 공유 채널(PDSCH: Physical Downlink Control Channel)을 수신함으로써 좀더 구체적인 시스템 정보를 획득할 수 있다(S602).After completing the initial cell search, the UE acquires more specific system information by receiving a Physical Downlink Control Channel (PDCCH) and a Physical Downlink Control Channel (PDSCH) according to information carried on the PDCCH. It can be done (S602).
한편, 기지국에 최초로 접속하거나 신호 송신을 위한 무선 자원이 없는 경우 단말은 기지국에 대해 임의 접속 과정(RACH: Random Access Procedure)을 수행할 수 있다(단계 S603 내지 단계 S606). 이를 위해, 단말은 물리 임의 접속 채널(PRACH: Physical Random Access Channel)을 통해 특정 시퀀스를 프리앰블로 송신하고(S603 및 S605), PDCCH 및 대응하는 PDSCH를 통해 프리앰블에 대한 응답 메시지를 수신할 수 있다(S604 및 S606). 경쟁 기반 RACH의 경우, 추가적으로 충돌 해결 절차(Contention Resolution Procedure)를 수행할 수 있다.On the other hand, when there is no radio resource for first accessing the base station or for signal transmission, the terminal may perform a random access procedure (RACH) for the base station (steps S603 to S606). To this end, the UE transmits a specific sequence as a preamble through a Physical Random Access Channel (PRACH) (S603 and S605), and receives a response message to the preamble through the PDCCH and the corresponding PDSCH ( S604 and S606). In the case of contention-based RACH, a contention resolution procedure may be additionally performed.
상술한 바와 같은 절차를 수행한 단말은 이후 일반적인 상/하향링크 신호 송신 절차로서 PDCCH/PDSCH 수신(S607) 및 물리 상향링크 공유 채널(PUSCH: Physical Uplink Shared Channel)/물리 상향링크 제어 채널(PUCCH: Physical Uplink Control Channel) 송신(S608)을 수행할 수 있다. 특히 단말은 PDCCH를 통하여 하향링크 제어 정보(DCI: Downlink Control Information)를 수신한다. 여기서 DCI는 단말에 대한 자원 할당 정보와 같은 제어 정보를 포함하며, 그 사용 목적에 따라 포맷이 서로 다르다. After performing the procedure as described above, the UE performs PDCCH/PDSCH reception (S607) and a physical uplink shared channel (PUSCH)/physical uplink control channel (PUCCH) as a general uplink/downlink signal transmission procedure. Physical Uplink Control Channel) transmission (S608) may be performed. In particular, the UE receives downlink control information (DCI) through the PDCCH. Here, the DCI includes control information such as resource allocation information for the terminal, and has a different format depending on the purpose of its use.
한편, 단말이 상향링크를 통해 기지국에 송신하는 또는 단말이 기지국으로부터 수신하는 제어 정보는 하향링크/상향링크 ACK/NACK(Acknowledgement/Non-Acknowledgement) 신호, CQI(Channel Quality Indicator), PMI(Precoding Matrix Indicator), RI(Rank Indicator) 등을 포함한다. 3GPP LTE 시스템의 경우, 단말은 상술한 CQI/PMI/RI 등의 제어 정보를 PUSCH 및/또는 PUCCH를 통해 송신할 수 있다.On the other hand, the control information that the terminal transmits to the base station through the uplink or the terminal receives from the base station is a downlink/uplink ACK/NACK (Acknowledgment/Non-Acknowledgment) signal, a channel quality indicator (CQI), and a precoding matrix (PMI). Indicator), RI (Rank Indicator), and the like. In the case of the 3GPP LTE system, the UE may transmit the above-described control information such as CQI/PMI/RI through PUSCH and/or PUCCH.
표 5는 NR 시스템에서의 DCI 포맷(format)의 일례를 나타낸다.Table 5 shows an example of a DCI format in the NR system.
DCI 포맷DCI format 활용uses
0_00_0 하나의 셀 내 PUSCH의 스케줄링Scheduling of PUSCH in one cell
0_10_1 하나의 셀 내 하나 또는 다중 PUSCH의 스케줄링, 또는 UE에게 셀 그룹(CG: cell group) 하향링크 피드백 정보의 지시Scheduling of one or multiple PUSCHs in one cell, or indication of cell group (CG) downlink feedback information to the UE
0_20_2 하나의 셀 내 PUSCH의 스케줄링Scheduling of PUSCH in one cell
1_01_0 하나의 DL 셀 내 PDSCH의 스케줄링Scheduling of PDSCH in one DL cell
1_11_1 하나의 셀 내 PDSCH의 스케줄링Scheduling of PDSCH in one cell
1_21_2 하나의 셀 내 PDSCH의 스케줄링Scheduling of PDSCH in one cell
표 5를 참조하면, DCI format 0_0, 0_1 및 0_2는 PUSCH의 스케줄링에 관련된 자원 정보(예를 들어, UL/SUL(Supplementary UL), 주파수 자원 할당, 시간 자원 할당, 주파수 호핑 등), 전송 블록(TB: Transport Block) 관련 정보(예를 들어, MCS(Modulation Coding and Scheme), NDI(New Data Indicator), RV(Redundancy Version) 등), HARQ(Hybrid - Automatic Repeat and request) 관련 정보(예를 들어, 프로세스 번호, DAI(Downlink Assignment Index), PDSCH-HARQ 피드백 타이밍 등), 다중 안테나 관련 정보(예를 들어, DMRS 시퀀스 초기화 정보, 안테나 포트, CSI 요청 등), 전력 제어 정보(예를 들어, PUSCH 전력 제어 등)을 포함할 수 있으며, DCI 포맷 각각에 포함되는 제어 정보들은 미리 정의될 수 있다.DCI format 0_0은 하나의 셀에서 PUSCH의 스케줄링에 사용된다. DCI 포맷 0_0에 포함된 정보는 C-RNTI(Cell RNTI: Cell Radio Network Temporary Identifier) 또는 CS-RNTI(Configured Scheduling RNTI) 또는 MCS-C-RNTI(Modulation Coding Scheme Cell RNTI)에 의해 CRC(cyclic redundancy check) 스크램블링되어 전송된다. Referring to Table 5, DCI formats 0_0, 0_1 and 0_2 are resource information related to PUSCH scheduling (eg, UL/SUL (Supplementary UL), frequency resource allocation, time resource allocation, frequency hopping, etc.), transport block ( TB: Transport Block) related information (eg, MCS (Modulation Coding and Scheme), NDI (New Data Indicator), RV (Redundancy Version), etc.), HARQ (Hybrid - Automatic Repeat and request) related information (eg, , process number, DAI (Downlink Assignment Index), PDSCH-HARQ feedback timing, etc.), multi-antenna related information (eg, DMRS sequence initialization information, antenna port, CSI request, etc.), power control information (eg, PUSCH power control, etc.), and control information included in each DCI format may be predefined. DCI format 0_0 is used for scheduling PUSCH in one cell. Information included in DCI format 0_0 is cyclic redundancy check (CRC) by Cell Radio Network Temporary Identifier (C-RNTI) or Configured Scheduling RNTI (CS-RNTI) or Modulation Coding Scheme Cell RNTI (MCS-C-RNTI). ) is scrambled and transmitted.
DCI format 0_1은 하나의 셀에서 하나 이상의 PUSCH의 스케줄링, 또는 설정된 그랜트(CG: configure grant) 하향링크 피드백 정보를 단말에게 지시하는 데 사용된다. DCI format 0_1에 포함된 정보는 C-RNTI 또는 CS-RNTI 또는 SP-CSI-RNTI(Semi-Persistent CSI RNTI) 또는 MCS-C-RNTI에 의해 CRC 스크램블링되어 전송된다. DCI format 0_1 is used to indicate to the UE the scheduling of one or more PUSCHs or configured grant (CG: configure grant) downlink feedback information in one cell. Information included in DCI format 0_1 is CRC scrambled and transmitted by C-RNTI or CS-RNTI or SP-CSI-RNTI (Semi-Persistent CSI RNTI) or MCS-C-RNTI.
DCI format 0_2는 하나의 셀에서 PUSCH의 스케줄링에 사용된다. DCI format 0_2에 포함된 정보는 C-RNTI 또는 CS-RNTI 또는 SP-CSI-RNTI 또는 MCS-C-RNTI에 의해 CRC 스크램블링되어 전송된다. DCI format 0_2 is used for scheduling PUSCH in one cell. Information included in DCI format 0_2 is CRC scrambled and transmitted by C-RNTI or CS-RNTI or SP-CSI-RNTI or MCS-C-RNTI.
다음으로, DCI format 1_0, 1_1 및 1_2는 PDSCH의 스케줄링에 관련된 자원 정보(예를 들어, 주파수 자원 할당, 시간 자원 할당, VRB(virtual resource block)-PRB(physical resource block) 매핑 등), 전송블록(TB) 관련 정보(예를 들어, MCS, NDI, RV 등), HARQ 관련 정보(예를 들어, 프로세스 번호, DAI, PDSCH-HARQ 피드백 타이밍 등), 다중 안테나 관련 정보(예를 들어, 안테나 포트, TCI(transmission configuration indicator), SRS(sounding reference signal) 요청 등), PUCCH 관련 정보(예를 들어, PUCCH 전력 제어, PUCCH 자원 지시자 등)을 포함할 수 있으며, DCI 포맷 각각에 포함되는 제어 정보들은 미리 정의될 수 있다.Next, DCI formats 1_0, 1_1 and 1_2 are resource information related to PDSCH scheduling (eg, frequency resource allocation, time resource allocation, virtual resource block (VRB)-physical resource block (PRB) mapping, etc.), transport block (TB) related information (eg, MCS, NDI, RV, etc.), HARQ related information (eg, process number, DAI, PDSCH-HARQ feedback timing, etc.), multi-antenna related information (eg, antenna port) , transmission configuration indicator (TCI), sounding reference signal (SRS) request, etc.), PUCCH-related information (eg, PUCCH power control, PUCCH resource indicator, etc.), and control information included in each DCI format is It can be predefined.
DCI format 1_0은 하나의 DL 셀에서 PDSCH의 스케줄링을 위해 사용된다. DCI format 1_0에 포함된 정보는 C-RNTI 또는 CS-RNTI 또는 MCS-C-RNTI에 의해 CRC 스크램블링되어 전송된다. DCI format 1_0 is used for scheduling the PDSCH in one DL cell. Information included in DCI format 1_0 is CRC scrambled and transmitted by C-RNTI, CS-RNTI, or MCS-C-RNTI.
DCI format 1_1은 하나의 셀에서 PDSCH의 스케줄링을 위해 사용된다. DCI format 1_1에 포함되는 정보는 C-RNTI 또는 CS-RNTI 또는 MCS-C-RNTI에 의해 CRC 스크램블링되어 전송된다. DCI format 1_1 is used for scheduling PDSCH in one cell. Information included in DCI format 1_1 is CRC scrambled and transmitted by C-RNTI, CS-RNTI, or MCS-C-RNTI.
DCI format 1_2는 하나의 셀에서 PDSCH의 스케줄링을 위해 사용된다. DCI format 1_2에 포함되는 정보는 C-RNTI 또는 CS-RNTI 또는 MCS-C-RNTI에 의해 CRC 스크램블링되어 전송된다. DCI format 1_2 is used for scheduling PDSCH in one cell. Information included in DCI format 1_2 is CRC scrambled and transmitted by C-RNTI, CS-RNTI, or MCS-C-RNTI.
CSI 관련 동작CSI-related behavior
NR(New Radio) 시스템에서, CSI-RS(channel state information-reference signal)은 시간 및/또는 주파수 트래킹(time/frequency tracking), CSI 계산(computation), L1(layer 1)-RSRP(reference signal received power) 계산(computation) 및 이동성(mobility)를 위해 사용된다. 여기서, CSI computation은 CSI 획득(acquisition)과 관련되며, L1-RSRP computation은 빔 관리(beam management, BM)와 관련된다.In a New Radio (NR) system, a channel state information-reference signal (CSI-RS) is a time and/or frequency tracking (time/frequency tracking), CSI calculation (computation), L1 (layer 1)-reference signal received (RSRP) power) is used for computation and mobility. Here, the CSI computation is related to the CSI acquisition (acquisition), the L1-RSRP computation is related to the beam management (beam management, BM).
CSI(channel state information)은 단말과 안테나 포트 사이에 형성되는 무선 채널(혹은 링크라고도 함)의 품질을 나타낼 수 있는 정보를 통칭한다.CSI (channel state information) refers to information that can indicate the quality of a radio channel (or link) formed between a terminal and an antenna port.
- 상기와 같은 CSI-RS의 용도 중 하나를 수행하기 위해, 단말(예: user equipment, UE)은 CSI와 관련된 설정(configuration) 정보를 RRC(radio resource control) signaling을 통해 기지국(예: general Node B, gNB)으로부터 수신한다.- In order to perform one of the uses of CSI-RS as described above, a terminal (eg, user equipment, UE) transmits configuration information related to CSI to a base station (eg, general Node) through radio resource control (RRC) signaling. B, gNB).
상기 CSI와 관련된 configuration 정보는 CSI-IM(interference management) 자원(resource) 관련 정보, CSI 측정 설정(measurement configuration) 관련 정보, CSI 자원 설정(resource configuration) 관련 정보, CSI-RS 자원(resource) 관련 정보 또는 CSI 보고 설정(report configuration) 관련 정보 중 적어도 하나를 포함할 수 있다. The CSI-related configuration information includes CSI-IM (interference management) resource-related information, CSI measurement configuration-related information, CSI resource configuration-related information, CSI-RS resource-related information. Alternatively, it may include at least one of CSI report configuration related information.
i) CSI-IM 자원 관련 정보는 CSI-IM 자원 정보(resource information), CSI-IM 자원 세트 정보(resource set information) 등을 포함할 수 있다. CSI-IM resource set은 CSI-IM resource set ID(identifier)에 의해 식별되며, 하나의 resource set은 적어도 하나의 CSI-IM resource를 포함한다. 각각의 CSI-IM resource는 CSI-IM resource ID에 의해 식별된다.i) CSI-IM resource-related information may include CSI-IM resource information, CSI-IM resource set information, and the like. The CSI-IM resource set is identified by a CSI-IM resource set ID (identifier), and one resource set includes at least one CSI-IM resource. Each CSI-IM resource is identified by a CSI-IM resource ID.
ii) CSI resource configuration 관련 정보는 CSI-ResourceConfig IE로 표현될 수 있다. CSI resource configuration 관련 정보는 NZP(non zero power) CSI-RS resource set, CSI-IM resource set 또는 CSI-SSB resource set 중 적어도 하나를 포함하는 그룹을 정의한다. 즉, 상기 CSI resource configuration 관련 정보는 CSI-RS resource set list를 포함하며, 상기 CSI-RS resource set list는 NZP CSI-RS resource set list, CSI-IM resource set list 또는 CSI-SSB resource set list 중 적어도 하나를 포함할 수 있다. CSI-RS resource set은 CSI-RS resource set ID에 의해 식별되고, 하나의 resource set은 적어도 하나의 CSI-RS resource를 포함한다. 각각의 CSI-RS resource는 CSI-RS resource ID에 의해 식별된다.ii) CSI resource configuration related information may be expressed as a CSI-ResourceConfig IE. CSI resource configuration related information defines a group including at least one of a non zero power (NZP) CSI-RS resource set, a CSI-IM resource set, or a CSI-SSB resource set. That is, the CSI resource configuration related information includes a CSI-RS resource set list, and the CSI-RS resource set list is at least one of a NZP CSI-RS resource set list, a CSI-IM resource set list, or a CSI-SSB resource set list. may contain one. The CSI-RS resource set is identified by the CSI-RS resource set ID, and one resource set includes at least one CSI-RS resource. Each CSI-RS resource is identified by a CSI-RS resource ID.
아래 표 6과 같이, NZP CSI-RS resource set 별로 CSI-RS의 용도를 나타내는 parameter들(예: BM 관련 'repetition' parameter, tracking 관련 'trs-Info' parameter)이 설정될 수 있다.As shown in Table 6 below, parameters indicating the use of CSI-RS for each NZP CSI-RS resource set (eg, BM-related 'repetition' parameter, tracking-related 'trs-Info' parameter) may be set.
표 6은 NZP CSI-RS 자원 세트 설정을 위한 NZP CSI-RS resource set 정보 요소(IE: information element)를 예시한다. Table 6 illustrates an NZP CSI-RS resource set information element (IE: information element) for NZP CSI-RS resource set configuration.
-- ASN1START
-- TAG-NZP-CSI-RS-RESOURCESET-START
NZP-CSI-RS-ResourceSet ::= SEQUENCE {
nzp-CSI-ResourceSetId NZP-CSI-RS-ResourceSetId,
nzp-CSI-RS-Resources SEQUENCE (SIZE (1..maxNrofNZP-CSI-RS-ResourcesPerSet)) OF NZP-CSI-RS-ResourceId,
repetition ENUMERATED { on, off } OPTIONAL,
aperiodicTriggeringOffset INTEGER(0..4) OPTIONAL, -- Need S
trs-Info ENUMERATED {true} OPTIONAL, -- Need R
...
}

-- TAG-NZP-CSI-RS-RESOURCESET-STOP
-- ASN1STOP
-- ASN1START
-- TAG-NZP-CSI-RS-RESOURCESET-START
NZP-CSI-RS-ResourceSet ::= SEQUENCE {
nzp-CSI-ResourceSetId NZP-CSI-RS-ResourceSetId,
nzp-CSI-RS-Resources SEQUENCE (SIZE (1..maxNrofNZP-CSI-RS-ResourcesPerSet)) OF NZP-CSI-RS-ResourceId,
repetition ENUMERATED { on, off } OPTIONAL,
aperiodicTriggeringOffset INTEGER(0..4) OPTIONAL, -- Need S
trs-Info ENUMERATED {true} OPTIONAL, -- Need R
...
}

-- TAG-NZP-CSI-RS-RESOURCESET-STOP
-- ASN1STOP
그리고, 상위 계층 파라미터에 해당하는 반복 파라미터(repetition parameter)는 제1 계층(L1: layer 1) 파라미터의 'CSI-RS-ResourceRep'에 대응한다.And, the repetition parameter corresponding to the upper layer parameter corresponds to 'CSI-RS-ResourceRep' of the first layer (L1: layer 1) parameter.
그리고, 상위 계층 파라미터에 해당하는 반복 파라미터(repetition parameter)는 제1 계층(L1: layer 1) 파라미터의 'CSI-RS-ResourceRep'에 대응한다.And, the repetition parameter corresponding to the upper layer parameter corresponds to 'CSI-RS-ResourceRep' of the first layer (L1: layer 1) parameter.
iii) CSI 보고 설정(report configuration) 관련 정보는 시간 영역 행동(time domain behavior)을 나타내는 보고 설정 타입(reportConfigType) parameter 및 보고하기 위한 CSI 관련 quantity를 나타내는 보고량(reportQuantity) parameter를 포함한다. 상기 시간 영역 동작(time domain behavior)은 periodic, aperiodic 또는 semi-persistent일 수 있다.iii) CSI reporting configuration (report configuration) related information includes a report configuration type (reportConfigType) parameter indicating a time domain behavior and a report Quantity (reportQuantity) parameter indicating a CSI related quantity for reporting. The time domain behavior may be periodic, aperiodic or semi-persistent.
CSI report configuration 관련 정보는 CSI-ReportConfig IE로 표현될 수 있으며, 아래 표 7은 CSI-ReportConfig IE의 일례를 나타낸다.CSI report configuration related information may be expressed as a CSI-ReportConfig IE, and Table 7 below shows an example of the CSI-ReportConfig IE.
-- ASN1START
-- TAG-CSI-RESOURCECONFIG-START

CSI-ReportConfig ::= SEQUENCE {
reportConfigId CSI-ReportConfigId,
carrier ServCellIndex OPTIONAL, -- Need S
resourcesForChannelMeasurement CSI-ResourceConfigId,
csi-IM-ResourcesForInterference CSI-ResourceConfigId OPTIONAL, -- Need R
nzp-CSI-RS-ResourcesForInterference CSI-ResourceConfigId OPTIONAL, -- Need R
reportConfigType CHOICE {
periodic SEQUENCE {
reportSlotConfig CSI-ReportPeriodicityAndOffset,
pucch-CSI-ResourceList SEQUENCE (SIZE (1..maxNrofBWPs)) OF PUCCH-CSI-Resource
},
semiPersistentOnPUCCH SEQUENCE {
reportSlotConfig CSI-ReportPeriodicityAndOffset,
pucch-CSI-ResourceList SEQUENCE (SIZE (1..maxNrofBWPs)) OF PUCCH-CSI-Resource
},
semiPersistentOnPUSCH SEQUENCE {
reportSlotConfig ENUMERATED {sl5, sl10, sl20, sl40, sl80, sl160, sl320},
reportSlotOffsetList SEQUENCE (SIZE (1.. maxNrofUL-Allocations)) OF INTEGER(0..32),
p0alpha P0-PUSCH-AlphaSetId
},
aperiodic SEQUENCE {
reportSlotOffsetList SEQUENCE (SIZE (1..maxNrofUL-Allocations)) OF INTEGER(0..32)
}
},
reportQuantity CHOICE {
none NULL,
cri-RI-PMI-CQI NULL,
cri-RI-i1 NULL,
cri-RI-i1-CQI SEQUENCE {
pdsch-BundleSizeForCSI ENUMERATED {n2, n4} OPTIONAL
},
cri-RI-CQI NULL,
cri-RSRP NULL,
ssb-Index-RSRP NULL,
cri-RI-LI-PMI-CQI NULL
},
reportFreqConfiguration SEQUENCE {
cqi-FormatIndicator ENUMERATED { widebandCQI, subbandCQI } OPTIONAL, -- Need R
pmi-FormatIndicator ENUMERATED { widebandPMI, subbandPMI } OPTIONAL, -- Need R
csi-ReportingBand CHOICE {
subbands3 BIT STRING(SIZE(3)),
subbands4 BIT STRING(SIZE(4)),
subbands5 BIT STRING(SIZE(5)),
subbands6 BIT STRING(SIZE(6)),
subbands7 BIT STRING(SIZE(7)),
subbands8 BIT STRING(SIZE(8)),
subbands9 BIT STRING(SIZE(9)),
subbands10 BIT STRING(SIZE(10)),
subbands11 BIT STRING(SIZE(11)),
subbands12 BIT STRING(SIZE(12)),
subbands13 BIT STRING(SIZE(13)),
subbands14 BIT STRING(SIZE(14)),
subbands15 BIT STRING(SIZE(15)),
subbands16 BIT STRING(SIZE(16)),
subbands17 BIT STRING(SIZE(17)),
subbands18 BIT STRING(SIZE(18)),
...,
subbands19-v1530 BIT STRING(SIZE(19))
} OPTIONAL -- Need S

} OPTIONAL, -- Need R
timeRestrictionForChannelMeasurements ENUMERATED {configured, notConfigured},
timeRestrictionForInterferenceMeasurements ENUMERATED {configured, notConfigured},
codebookConfig CodebookConfig OPTIONAL, -- Need R
dummy ENUMERATED {n1, n2} OPTIONAL, -- Need R
groupBasedBeamReporting CHOICE {
enabled NULL,
disabled SEQUENCE {
nrofReportedRS ENUMERATED {n1, n2, n3, n4} OPTIONAL -- Need S
}
},
cqi-Table ENUMERATED {table1, table2, table3, spare1} OPTIONAL, -- Need R
subbandSize ENUMERATED {value1, value2},
non-PMI-PortIndication SEQUENCE (SIZE (1..maxNrofNZP-CSI-RS-ResourcesPerConfig)) OF PortIndexFor8Ranks OPTIONAL, -- Need R
...,
[[
semiPersistentOnPUSCH-v1530 SEQUENCE {
reportSlotConfig-v1530 ENUMERATED {sl4, sl8, sl16}
} OPTIONAL -- Need R
]],
[[
semiPersistentOnPUSCH-v1610 SEQUENCE {
reportSlotOffsetListDCI-0-2-r16 SEQUENCE (SIZE (1.. maxNrofUL-Allocations-r16)) OF INTEGER(0..32) OPTIONAL, -- Need R
reportSlotOffsetListDCI-0-1-r16 SEQUENCE (SIZE (1.. maxNrofUL-Allocations-r16)) OF INTEGER(0..32) OPTIONAL -- Need R
} OPTIONAL, -- Need R
aperiodic-v1610 SEQUENCE {
reportSlotOffsetListDCI-0-2-r16 SEQUENCE (SIZE (1.. maxNrofUL-Allocations-r16)) OF INTEGER(0..32) OPTIONAL, -- Need R
reportSlotOffsetListDCI-0-1-r16 SEQUENCE (SIZE (1.. maxNrofUL-Allocations-r16)) OF INTEGER(0..32) OPTIONAL -- Need R
} OPTIONAL, -- Need R
reportQuantity-r16 CHOICE {
cri-SINR-r16 NULL,
ssb-Index-SINR-r16 NULL
} OPTIONAL, -- Need R
codebookConfig-r16 CodebookConfig-r16 OPTIONAL -- Need R
]]
}
-- ASN1START
-- TAG-CSI-RESOURCECONFIG-START

CSI-ReportConfig ::= SEQUENCE {
reportConfigId CSI-ReportConfigId,
carrier ServCellIndex OPTIONAL, -- Need S
resourcesForChannelMeasurement CSI-ResourceConfigId,
csi-IM-ResourcesForInterference CSI-ResourceConfigId OPTIONAL, -- Need R
nzp-CSI-RS-ResourcesForInterference CSI-ResourceConfigId OPTIONAL, -- Need R
reportConfigType CHOICE {
periodic SEQUENCE {
reportSlotConfig CSI-ReportPeriodicityAndOffset,
pucch-CSI-ResourceList SEQUENCE (SIZE (1..maxNrofBWPs)) OF PUCCH-CSI-Resource
},
semiPersistentOnPUCCH SEQUENCE {
reportSlotConfig CSI-ReportPeriodicityAndOffset,
pucch-CSI-ResourceList SEQUENCE (SIZE (1..maxNrofBWPs)) OF PUCCH-CSI-Resource
},
semiPersistentOnPUSCH SEQUENCE {
reportSlotConfig ENUMERATED {sl5, sl10, sl20, sl40, sl80, sl160, sl320},
reportSlotOffsetList SEQUENCE (SIZE (1.. maxNrofUL-Allocations)) OF INTEGER(0..32),
p0alpha P0-PUSCH-AlphaSetId
},
aperiodic SEQUENCE {
reportSlotOffsetList SEQUENCE (SIZE (1..maxNrofUL-Allocations)) OF INTEGER(0..32)
}
},
reportQuantity CHOICE {
none NULL,
cri-RI-PMI-CQI NULL;
cri-RI-i1 NULL;
cri-RI-i1-CQI SEQUENCE {
pdsch-BundleSizeForCSI ENUMERATED {n2, n4} OPTIONAL
},
cri-RI-CQI NULL,
cri-RSRP NULL,
ssb-Index-RSRP NULL,
cri-RI-LI-PMI-CQI NULL
},
reportFreqConfiguration SEQUENCE {
cqi-FormatIndicator ENUMERATED { widebandCQI, subbandCQI } OPTIONAL, -- Need R
pmi-FormatIndicator ENUMERATED { widebandPMI, subbandPMI } OPTIONAL, -- Need R
csi-ReportingBand CHOICE {
subbands3 BIT STRING(SIZE(3)),
subbands4 BIT STRING(SIZE(4)),
subbands5 BIT STRING(SIZE(5)),
subbands6 BIT STRING(SIZE(6)),
subbands7 BIT STRING(SIZE(7)),
subbands8 BIT STRING(SIZE(8)),
subbands9 BIT STRING(SIZE(9)),
subbands10 BIT STRING(SIZE(10)),
subbands11 BIT STRING(SIZE(11)),
subbands12 BIT STRING(SIZE(12)),
subbands13 BIT STRING(SIZE(13)),
subbands14 BIT STRING(SIZE(14)),
subbands15 BIT STRING(SIZE(15)),
subbands16 BIT STRING(SIZE(16)),
subbands17 BIT STRING(SIZE(17)),
subbands18 BIT STRING(SIZE(18)),
...,
subbands19-v1530 BIT STRING(SIZE(19))
} OPTIONAL -- Need S

} OPTIONAL, -- Need R
timeRestrictionForChannelMeasurements ENUMERATED {configured, notConfigured},
timeRestrictionForInterferenceMeasurements ENUMERATED {configured, notConfigured},
codebookConfig CodebookConfig OPTIONAL, -- Need R
dummy ENUMERATED {n1, n2} OPTIONAL, -- Need R
groupBasedBeamReporting CHOICE {
enabled NULL,
disabled SEQUENCE {
nrofReportedRS ENUMERATED {n1, n2, n3, n4} OPTIONAL -- Need S
}
},
cqi-Table ENUMERATED {table1, table2, table3, spare1} OPTIONAL, -- Need R
subbandSize ENUMERATED {value1, value2},
non-PMI-PortIndication SEQUENCE (SIZE (1..maxNrofNZP-CSI-RS-ResourcesPerConfig)) OF PortIndexFor8Ranks OPTIONAL, -- Need R
...,
[[
semiPersistentOnPUSCH-v1530 SEQUENCE {
reportSlotConfig-v1530 ENUMERATED {sl4, sl8, sl16}
} OPTIONAL -- Need R
]],
[[
semiPersistentOnPUSCH-v1610 SEQUENCE {
reportSlotOffsetListDCI-0-2-r16 SEQUENCE (SIZE (1.. maxNrofUL-Allocations-r16)) OF INTEGER(0..32) OPTIONAL, -- Need R
reportSlotOffsetListDCI-0-1-r16 SEQUENCE (SIZE (1.. maxNrofUL-Allocations-r16)) OF INTEGER(0..32) OPTIONAL -- Need R
} OPTIONAL, -- Need R
aperiodic-v1610 SEQUENCE {
reportSlotOffsetListDCI-0-2-r16 SEQUENCE (SIZE (1.. maxNrofUL-Allocations-r16)) OF INTEGER(0..32) OPTIONAL, -- Need R
reportSlotOffsetListDCI-0-1-r16 SEQUENCE (SIZE (1.. maxNrofUL-Allocations-r16)) OF INTEGER(0..32) OPTIONAL -- Need R
} OPTIONAL, -- Need R
reportQuantity-r16 CHOICE {
cri-SINR-r16 NULL,
ssb-Index-SINR-r16 NULL
} OPTIONAL, -- Need R
codebookConfig-r16 CodebookConfig-r16 OPTIONAL -- Need R
]]
}
- 단말은 상기 CSI와 관련된 configuration 정보에 기초하여 CSI를 측정(measurement)한다.- The UE measures CSI based on the configuration information related to the CSI.
상기 CSI 측정은 (1) 단말의 CSI-RS 수신 과정과, (2) 수신된 CSI-RS를 통해 CSI를 계산(computation)하는 과정을 포함할 수 있으며, 이에 대하여 구체적인 설명은 후술한다. The CSI measurement may include (1) a process of receiving a CSI-RS by the UE, and (2) a process of calculating CSI through the received CSI-RS, which will be described in detail later.
CSI-RS는 higher layer parameter CSI-RS-ResourceMapping에 의해 시간(time) 및 주파수(frequency) 영역에서 CSI-RS resource의 RE(resource element) 매핑이 설정된다.In the CSI-RS, the RE (resource element) mapping of the CSI-RS resource in the time and frequency domains is set by the higher layer parameter CSI-RS-ResourceMapping.
표 8은 CSI-RS 자원 매핑 설정을 위한 CSI-RS-ResourceMapping IE의 일례를 나타낸다.Table 8 shows an example of a CSI-RS-ResourceMapping IE for configuring CSI-RS resource mapping.
-- ASN1START
-- TAG-CSI-RS-RESOURCEMAPPING-START

CSI-RS-ResourceMapping ::= SEQUENCE {
frequencyDomainAllocation CHOICE {
row1 BIT STRING (SIZE (4)),
row2 BIT STRING (SIZE (12)),
row4 BIT STRING (SIZE (3)),
other BIT STRING (SIZE (6))
},
nrofPorts ENUMERATED {p1,p2,p4,p8,p12,p16,p24,p32},
firstOFDMSymbolInTimeDomain INTEGER (0..13),
firstOFDMSymbolInTimeDomain2 INTEGER (2..12) OPTIONAL, -- Need R
cdm-Type ENUMERATED {noCDM, fd-CDM2, cdm4-FD2-TD2, cdm8-FD2-TD4},
density CHOICE {
dot5 ENUMERATED {evenPRBs, oddPRBs},
one NULL,
three NULL,
spare NULL
},
freqBand CSI-FrequencyOccupation,
...
}
-- ASN1START
-- TAG-CSI-RS-RESOURCEMAPPING-START

CSI-RS-ResourceMapping ::= SEQUENCE {
frequencyDomainAllocation CHOICE {
row1 BIT STRING (SIZE (4)),
row2 BIT STRING (SIZE (12)),
row4 BIT STRING (SIZE (3)),
other BIT STRING (SIZE (6))
},
nrofPorts ENUMERATED {p1,p2,p4,p8,p12,p16,p24,p32},
firstOFDMSymbolInTimeDomain INTEGER (0..13),
firstOFDMSymbolInTimeDomain2 INTEGER (2..12) OPTIONAL, -- Need R
cdm-Type ENUMERATED {noCDM, fd-CDM2, cdm4-FD2-TD2, cdm8-FD2-TD4},
density CHOICE {
dot5 ENUMERATED {evenPRBs, oddPRBs},
one NULL,
three NULL,
spare NULL
},
freqBand CSI-FrequencyOccupation,
...
}
표 8에서, 밀도(D: density)는 RE/포트(port)/물리 자원 블록(PRB: physical resource block)에서 측정되는 CSI-RS resource의 밀도(density)를 나타내며, nrofPorts는 안테나 포트의 개수를 나타낸다.- 단말은 상기 측정된 CSI를 기지국으로 보고(report)한다.In Table 8, density (D: density) represents the density (density) of the CSI-RS resource measured in RE / port (port) / physical resource block (PRB: physical resource block), nrofPorts is the number of antenna ports - The UE reports the measured CSI to the base station.
- 단말은 상기 측정된 CSI를 기지국으로 보고(report)한다.- The UE reports the measured CSI to the base station.
여기서, CSI-ReportConfig의 quantity가 'none(또는 No report)'로 설정된 경우, 상기 단말은 상기 report를 생략할 수 있다. 다만, 상기 quantity가 'none(또는 No report)'로 설정된 경우에도 상기 단말은 기지국으로 report를 할 수도 있다. 상기 quantity가 'none'으로 설정된 경우는 aperiodic TRS를 trigger하는 경우 또는 repetition이 설정된 경우이다. 여기서, repetition이 'ON'으로 설정된 경우에만 상기 단말의 report를 생략할 수 있다.Here, when the quantity of CSI-ReportConfig is set to 'none (or No report)', the terminal may omit the report. However, even when the quantity is set to 'none (or no report)', the terminal may report to the base station. When the quantity is set to 'none', it is when aperiodic TRS is triggered or when repetition is set. Here, only when repetition is set to 'ON', the report of the terminal may be omitted.
CSI 측정CSI measurement
NR 시스템은 보다 유연하고 동적인 CSI measurement 및 reporting을 지원한다. 여기서, 상기 CSI measurement는 CSI-RS를 수신하고, 수신된 CSI-RS를 computation하여 CSI를 acquisition하는 절차를 포함할 수 있다.The NR system supports more flexible and dynamic CSI measurement and reporting. Here, the CSI measurement may include a procedure of receiving a CSI-RS and acquiring CSI by computing the received CSI-RS.
CSI measurement 및 reporting의 time domain behavior로서, aperiodic/semi-persistent/periodic CM(channel measurement) 및 IM(interference measurement)이 지원된다. CSI-IM의 설정을 위해 4 port NZP CSI-RS RE pattern을 이용한다.As time domain behavior of CSI measurement and reporting, aperiodic/semi-persistent/periodic channel measurement (CM) and interference measurement (IM) are supported. A 4-port NZP CSI-RS RE pattern is used to configure the CSI-IM.
NR의 CSI-IM 기반 IMR은 LTE의 CSI-IM과 유사한 디자인을 가지며, PDSCH rate matching을 위한 ZP CSI-RS resource들과는 독립적으로 설정된다. 그리고, NZP CSI-RS 기반 IMR에서 각각의 port는 (바람직한 channel 및) precoded NZP CSI-RS를 가진 interference layer를 emulate한다. 이는, multi-user case에 대해 intra-cell interference measurement에 대한 것으로, MU interference를 주로 target 한다.CSI-IM based IMR of NR has a design similar to CSI-IM of LTE, and is configured independently of ZP CSI-RS resources for PDSCH rate matching. And, in the NZP CSI-RS-based IMR, each port emulates an interference layer with a (preferred channel and) precoded NZP CSI-RS. This is for intra-cell interference measurement for a multi-user case, and mainly targets MU interference.
기지국은 설정된 NZP CSI-RS 기반 IMR의 각 port 상에서 precoded NZP CSI-RS를 단말로 전송한다. The base station transmits the precoded NZP CSI-RS to the terminal on each port of the configured NZP CSI-RS based IMR.
단말은 resource set에서 각각의 port에 대해 channel/interference layer를 가정하고 interference를 측정한다.The terminal assumes a channel / interference layer for each port in the resource set and measures the interference.
채널에 대해, 어떤 PMI 및 RI feedback도 없는 경우, 다수의 resource들은 set에서 설정되며, 기지국 또는 네트워크는 channel/interference measurement에 대해 NZP CSI-RS resource들의 subset을 DCI를 통해 지시한다.For the channel, if there is no PMI and RI feedback, a plurality of resources are set in the set, and the base station or network indicates a subset of NZP CSI-RS resources through DCI for channel / interference measurement.
resource setting 및 resource setting configuration에 대해 보다 구체적으로 살펴본다.Let's look at resource setting and resource setting configuration in more detail.
자원 세팅 (resource setting)resource setting
각각의 CSI resource setting ‘CSI-ResourceConfig’는 (higher layer parameter csi-RS-ResourceSetList에 의해 주어진) S≥1 CSI resource set에 대한 configuration을 포함한다. CSI resource setting은 CSI-RS- resourcesetlist에 대응한다. 여기서, S는 설정된 CSI-RS resource set의 수를 나타낸다. 여기서, S≥1 CSI resource set에 대한 configuration은 (NZP CSI-RS 또는 CSI-IM으로 구성된) CSI-RS resource들을 포함하는 각각의 CSI resource set과 L1-RSRP computation에 사용되는 SS/PBCH block (SSB) resource를 포함한다.Each CSI resource setting 'CSI-ResourceConfig' includes a configuration for S≥1 CSI resource set (given by the higher layer parameter csi-RS-ResourceSetList). CSI resource setting corresponds to CSI-RS-resourcesetlist. Here, S represents the number of configured CSI-RS resource sets. Here, the configuration for S ≥ 1 CSI resource set is each CSI resource set including CSI-RS resources (consisting of NZP CSI-RS or CSI-IM) and SS / PBCH block (SSB) used for L1-RSRP computation ) including resources.
각 CSI resource setting은 higher layer parameter bwp-id로 식별되는 DL BWP(bandwidth part)에 위치된다. 그리고, CSI reporting setting에 링크된 모든 CSI resource setting들은 동일한 DL BWP를 갖는다.Each CSI resource setting is located in the DL BWP (bandwidth part) identified by the higher layer parameter bwp-id. And, all CSI resource settings linked to the CSI reporting setting have the same DL BWP.
CSI-ResourceConfig IE에 포함되는 CSI resource setting 내에서 CSI-RS resource의 time domain behavior는 higher layer parameter resourceType에 의해 지시되며, aperiodic, periodic 또는 semi-persistent로 설정될 수 있다. Periodic 및 semi-persistent CSI resource setting에 대해, 설정된 CSI-RS resource set의 수(S)는 ‘1’로 제한된다. Periodic 및 semi-persistent CSI resource setting에 대해, 설정된 주기(periodicity) 및 슬롯 오프셋(slot offset)은 bwp-id에 의해 주어지는 것과 같이, 연관된 DL BWP의 numerology에서 주어진다.The time domain behavior of the CSI-RS resource within the CSI resource setting included in the CSI-ResourceConfig IE is indicated by a higher layer parameter resourceType, and may be set to aperiodic, periodic or semi-persistent. For Periodic and semi-persistent CSI resource setting, the number of set CSI-RS resource sets (S) is limited to '1'. For Periodic and semi-persistent CSI resource settings, the set periodicity and slot offset are given in the numerology of the associated DL BWP, as given by bwp-id.
UE가 동일한 NZP CSI-RS resource ID를 포함하는 다수의 CSI-ResourceConfig들로 설정될 때, 동일한 time domain behavior는 CSI-ResourceConfig에 대해 설정된다.When the UE is configured with multiple CSI-ResourceConfigs including the same NZP CSI-RS resource ID, the same time domain behavior is configured for the CSI-ResourceConfig.
UE가 동일한 CSI-IM resource ID를 포함하는 다수의 CSI-ResourceConfig들로 설정될 때, 동일한 time domain behavior는 CSI-ResourceConfig에 대해 설정된다.When the UE is configured with multiple CSI-ResourceConfigs including the same CSI-IM resource ID, the same time domain behavior is configured for the CSI-ResourceConfig.
다음은 channel measurement (CM) 및 interference measurement(IM)을 위한 하나 또는 그 이상의 CSI resource setting들은 higher layer signaling을 통해 설정된다.Next, one or more CSI resource settings for channel measurement (CM) and interference measurement (IM) are set through higher layer signaling.
- interference measurement에 대한 CSI-IM resource.- CSI-IM resource for interference measurement.
- interference measurement에 대한 NZP CSI-RS 자원.- NZP CSI-RS resource for interference measurement.
- channel measurement에 대한 NZP CSI-RS 자원.- NZP CSI-RS resource for channel measurement.
즉, CMR(channel measurement resource)는 CSI acquisition을 위한 NZP CSI-RS일 수 있으며, IMR(Interference measurement resource)는 CSI-IM과 IM을 위한 NZP CSI-RS일 수 있다.That is, a channel measurement resource (CMR) may be an NZP CSI-RS for CSI acquisition, and an interference measurement resource (IMR) may be a CSI-IM and an NZP CSI-RS for IM.
여기서, CSI-IM(또는 IM을 위한 ZP CSI-RS)는 주로 inter-cell interference measurement에 대해 사용된다.Here, CSI-IM (or ZP CSI-RS for IM) is mainly used for inter-cell interference measurement.
그리고, IM을 위한 NZP CSI-RS는 주로 multi-user로부터 intra-cell interference measurement를 위해 사용된다.And, the NZP CSI-RS for IM is mainly used for intra-cell interference measurement from multi-users.
UE는 채널 측정을 위한 CSI-RS resource(들) 및 하나의 CSI reporting을 위해 설정된 interference measurement를 위한 CSI-IM / NZP CSI-RS resource(들)이 자원 별로 'QCL-TypeD'라고 가정할 수 있다.The UE may assume that CSI-RS resource(s) for channel measurement and CSI-IM / NZP CSI-RS resource(s) for interference measurement configured for one CSI reporting are 'QCL-TypeD' for each resource. .
자원 세팅 설정 (resource setting configuration)resource setting configuration
살핀 것처럼, resource setting은 resource set list를 의미할 수 있다.As you can see, resource setting can mean a resource set list.
aperiodic CSI에 대해, higher layer parameter CSI-AperiodicTriggerState를 사용하여 설정되는 각 트리거 상태(trigger state)는 각각의 CSI-ReportConfig가 periodic, semi-persistent 또는 aperiodic resource setting에 링크되는 하나 또는 다수의 CSI-ReportConfig와 연관된다.For aperiodic CSI, each trigger state set using the higher layer parameter CSI-AperiodicTriggerState is one or more CSI-ReportConfig and each CSI-ReportConfig linked to a periodic, semi-persistent or aperiodic resource setting. related
하나의 reporting setting은 최대 3개까지의 resource setting과 연결될 수 있다.One reporting setting can be connected with up to three resource settings.
- 하나의 resource setting이 설정되면, (higher layer parameter resourcesForChannelMeasurement에 의해 주어지는) resource setting 은 L1-RSRP computation을 위한 channel measurement에 대한 것이다.- When one resource setting is set, the resource setting (given by the higher layer parameter resourcesForChannelMeasurement) is for channel measurement for L1-RSRP computation.
- 두 개의 resource setting들이 설정되면, (higher layer parameter resourcesForChannelMeasurement에 의해 주어지는) 첫 번째 resource setting은 channel measurement를 위한 것이고, (csi-IM-ResourcesForInterference 또는 nzp-CSI-RS -ResourcesForInterference에 의해 주어지는) 두 번째 resource setting은 CSI-IM 또는 NZP CSI-RS 상에서 수행되는 interference measurement를 위한 것이다.- If two resource settings are set, the first resource setting (given by the higher layer parameter resourcesForChannelMeasurement) is for channel measurement, and the second resource (given by csi-IM-ResourcesForInterference or nzp-CSI-RS -ResourcesForInterference) The setting is for interference measurement performed on CSI-IM or NZP CSI-RS.
- 세 개의 resource setting들이 설정되면, (resourcesForChannelMeasurement에 의해 주어지는) 첫 번째 resource setting은 channel measurement를 위한 것이고, (csi-IM-ResourcesForInterference에 의해 주어지는) 두 번째 resource setting은 CSI-IM 기반 interference measurement를 위한 것이고, (nzp-CSI-RS-ResourcesForInterference에 의해 주어지는) 세 번째 resource setting 은 NZP CSI-RS 기반 interference measurement를 위한 것이다.- When three resource settings are set, the first resource setting (given by resourcesForChannelMeasurement) is for channel measurement, and the second resource setting (given by csi-IM-ResourcesForInterference) is for CSI-IM based interference measurement and , the third resource setting (given by nzp-CSI-RS-ResourcesForInterference) is for NZP CSI-RS based interference measurement.
Semi-persistent 또는 periodic CSI에 대해, 각 CSI-ReportConfig는 periodic 또는 semi-persistent resource setting에 링크된다.For Semi-persistent or periodic CSI, each CSI-ReportConfig is linked to a periodic or semi-persistent resource setting.
- (resourcesForChannelMeasurement에 의해 주어지는) 하나의 resource setting 이 설정되면, 상기 resource setting은 L1-RSRP computation을 위한 channel measurement에 대한 것이다.- If one resource setting (given by resourcesForChannelMeasurement) is set, the resource setting is for channel measurement for L1-RSRP computation.
- 두 개의 resource setting들이 설정되면, (resourcesForChannelMeasurement에 의해 주어지는) 첫 번째 resource setting은 channel measurement를 위한 것이며, (higher layer parameter csi-IM-ResourcesForInterference에 의해 주어지는) 두 번째 resource setting은 CSI-IM 상에서 수행되는 interference measurement를 위해 사용된다. - When two resource settings are set, the first resource setting (given by resourcesForChannelMeasurement) is for channel measurement, and the second resource setting (given by the higher layer parameter csi-IM-ResourcesForInterference) is performed on CSI-IM It is used for interference measurement.
CSI 계산 (computation)CSI calculation (computation)
간섭 측정이 CSI-IM 상에서 수행되면, 채널 측정을 위한 각각의 CSI-RS resource는 대응하는 resource set 내에서 CSI-RS resource들 및 CSI-IM resource들의 순서에 의해 CSI-IM resource와 자원 별로 연관된다. 채널 측정을 위한 CSI-RS resource의 수는 CSI-IM resource의 수와 동일하다.When interference measurement is performed on CSI-IM, each CSI-RS resource for channel measurement is associated with CSI-IM resource and resource by the order of CSI-RS resources and CSI-IM resources in the corresponding resource set. . The number of CSI-RS resources for channel measurement is the same as the number of CSI-IM resources.
그리고, interference measurement가 NZP CSI-RS에서 수행되는 경우, UE는 채널 측정을 위한 resource setting 내에서 연관된 resource set에서 하나 이상의 NZP CSI-RS resource로 설정될 것으로 기대하지 않는다.And, when the interference measurement is performed in the NZP CSI-RS, the UE does not expect to be set to one or more NZP CSI-RS resources in the resource set associated with the resource setting for channel measurement.
Higher layer parameter nzp-CSI-RS-ResourcesForInterference가 설정된 단말은 NZP CSI-RS resource set 내에 18 개 이상의 NZP CSI-RS port가 설정될 것으로 기대하지 않는다. The UE in which the higher layer parameter nzp-CSI-RS-ResourcesForInterference is configured does not expect that 18 or more NZP CSI-RS ports will be configured in the NZP CSI-RS resource set.
CSI 측정을 위해, 단말은 아래 사항을 가정한다.For CSI measurement, the UE assumes the following.
- 간섭 측정을 위해 설정된 각각의 NZP CSI-RS port는 간섭 전송 계층에 해당한다.- Each NZP CSI-RS port configured for interference measurement corresponds to an interfering transport layer.
- 간섭 측정을 위한 NZP CSI-RS port의 모든 간섭 전송 레이어는 EPRE(energy per resource element) 비율을 고려한다.- All interfering transport layers of the NZP CSI-RS port for interference measurement consider the EPRE (energy per resource element) ratio.
- 채널 측정을 위한 NZP CSI-RS resource의 RE(s) 상에서 다른 간섭 신호, 간섭 측정을 위한 NZP CSI-RS resource 또는 간섭 측정을 위한 CSI-IM resource.- Another interference signal on the RE(s) of the NZP CSI-RS resource for channel measurement, NZP CSI-RS resource for measuring interference, or CSI-IM resource for measuring interference.
CSI 보고CSI reporting
CSI 보고를 위해, UE가 사용할 수 있는 time 및 frequency 자원은 기지국에 의해 제어된다.For CSI reporting, time and frequency resources available to the UE are controlled by the base station.
CSI(channel state information)은 채널 품질 지시자(channel quality indicator, CQI), 프리코딩 행렬 지시자 (precoding matrix indicator, PMI), CSI-RS resource indicator (CRI), SS/PBCH block resource indicator (SSBRI), layer indicator (LI), rank indicator (RI) 또는 L1-RSRP 중 적어도 하나를 포함할 수 있다.CSI (channel state information) is a channel quality indicator (channel quality indicator, CQI), precoding matrix indicator (precoding matrix indicator, PMI), CSI-RS resource indicator (CRI), SS / PBCH block resource indicator (SSBRI), layer It may include at least one of indicator (LI), rank indicator (RI) or L1-RSRP.
CQI, PMI, CRI, SSBRI, LI, RI, L1-RSRP에 대해, 단말은 N≥1 CSI-ReportConfig reporting setting, M≥1 CSI-ResourceConfig resource setting 및 하나 또는 두 개의 trigger state들의 리스트(aperiodicTriggerStateList 및 semiPersistentOnPUSCH-TriggerStateList에 의해 제공되는)로 higher layer에 의해 설정된다. 상기 aperiodicTriggerStateList에서 각 trigger state는 channel 및 선택적으로 interference 대한 resource set ID들을 지시하는 연관된 CSI-ReportConfigs 리스트를 포함한다. semiPersistentOnPUSCH-TriggerStateList에서 각 trigger state는 하나의 연관된 CSI-ReportConfig가 포함된다. For CQI, PMI, CRI, SSBRI, LI, RI, L1-RSRP, the terminal is a list of N≥1 CSI-ReportConfig reporting setting, M≥1 CSI-ResourceConfig resource setting and one or two trigger states (aperiodicTriggerStateList and semiPersistentOnPUSCH -provided by TriggerStateList), set by a higher layer. In the aperiodicTriggerStateList, each trigger state includes a channel and optionally an associated CSI-ReportConfigs list indicating resource set IDs for interference. In semiPersistentOnPUSCH-TriggerStateList, each trigger state includes one associated CSI-ReportConfig.
그리고, CSI reporting의 time domain behavior는 periodic, semi-persistent, aperiodic을 지원한다.And, the time domain behavior of CSI reporting supports periodic, semi-persistent, and aperiodic.
i) periodic CSI reporting은 short PUCCH, long PUCCH 상에서 수행된다. Periodic CSI reporting의 주기(periodicity) 및 슬롯 오프셋(slot offset)은 RRC로 설정될 수 있으며, CSI-ReportConfig IE를 참고한다.i) periodic CSI reporting is performed on short PUCCH and long PUCCH. Periodic CSI reporting period (periodicity) and slot offset (slot offset) may be set in RRC, refer to the CSI-ReportConfig IE.
ii) SP(semi-periodic) CSI reporting은 short PUCCH, long PUCCH, 또는 PUSCH 상에서 수행된다.ii) SP (semi-periodic) CSI reporting is performed on short PUCCH, long PUCCH, or PUSCH.
Short/long PUCCH 상에서 SP CSI인 경우, 주기(periodicity) 및 슬롯 오프셋(slot offset)은 RRC로 설정되며, 별도의 MAC CE / DCI로 CSI 보고가 activation/deactivation 된다. In the case of SP CSI on Short/long PUCCH, periodicity and slot offset are set to RRC, and CSI reporting is activated/deactivated by separate MAC CE/DCI.
PUSCH 상에서 SP CSI인 경우, SP CSI reporting의 periodicity는 RRC로 설정되지만, slot offset은 RRC로 설정되지 않으며, DCI(format 0_1)에 의해 SP CSI reporting은 활성화/비활성화(activation/deactivation)된다. PUSCH 상에서 SP CSI reporting에 대해, 분리된 RNTI(SP-CSI C-RNTI)가 사용된다.In case of SP CSI on PUSCH, periodicity of SP CSI reporting is set to RRC, but slot offset is not set to RRC, and SP CSI reporting is activated/deactivated by DCI (format 0_1). For SP CSI reporting on PUSCH, a separate RNTI (SP-CSI C-RNTI) is used.
최초 CSI 보고 타이밍은 DCI에서 지시되는 PUSCH time domain allocation 값을 따르며, 후속되는 CSI 보고 타이밍은 RRC로 설정된 주기에 따른다. The initial CSI reporting timing follows the PUSCH time domain allocation value indicated by DCI, and the subsequent CSI reporting timing follows the cycle set by the RRC.
DCI format 0_1은 CSI request field를 포함하고, 특정 configured SP-CSI trigger state를 activation/deactivation할 수 있다. SP CSI reporting은, SPS PUSCH 상에서 data 전송을 가진 mechanism과 동일 또는 유사한 활성화/비활성화를 가진다. DCI format 0_1 includes a CSI request field, and can activate/deactivation a specific configured SP-CSI trigger state. SP CSI reporting has the same or similar activation/deactivation as the mechanism with data transmission on the SPS PUSCH.
iii) aperiodic CSI reporting은 PUSCH 상에서 수행되며, DCI에 의해 trigger된다. 이 경우, aperiodic CSI reporting의 trigger와 관련된 정보는 MAC-CE를 통해 전달/지시/설정될 수 있다.iii) aperiodic CSI reporting is performed on PUSCH and is triggered by DCI. In this case, information related to the trigger of aperiodic CSI reporting may be delivered/indicated/configured through the MAC-CE.
AP CSI-RS를 가지는 AP CSI의 경우, AP CSI-RS timing은 RRC에 의해 설정되고, AP CSI reporting에 대한 timing은 DCI에 의해 동적으로 제어된다.In case of AP CSI having AP CSI-RS, AP CSI-RS timing is set by RRC, and timing for AP CSI reporting is dynamically controlled by DCI.
NR은 LTE에서 PUCCH 기반 CSI 보고에 적용되었던 다수의 reporting instance들에서 CSI를 나누어 보고하는 방식 (예를 들어, RI, WB PMI/CQI, SB PMI/CQI 순서로 전송)이 적용되지 않는다. 대신, NR은 short/long PUCCH에서 특정 CSI 보고를 설정하지 못하도록 제한하고, CSI omission rule이 정의된다. 그리고, AP CSI reporting timing과 관련하여, PUSCH symbol/slot location은 DCI에 의해 동적으로 지시된다. 그리고, candidate slot offset들은 RRC에 의해 설정된다. CSI reporting에 대해, slot offset(Y)는 reporting setting 별로 설정된다. UL-SCH에 대해, slot offset K2는 별개로 설정된다. For NR, a method of dividing CSI in multiple reporting instances applied to PUCCH-based CSI reporting in LTE (eg, RI, WB PMI/CQI, SB PMI/CQI transmission in order) is not applied. Instead, NR limits the setting of a specific CSI report in short/long PUCCH, and a CSI omission rule is defined. And, in relation to AP CSI reporting timing, PUSCH symbol/slot location is dynamically indicated by DCI. And, candidate slot offsets are set by RRC. For CSI reporting, slot offset (Y) is set for each reporting setting. For UL-SCH, slot offset K2 is configured separately.
2개의 CSI latency class(low latency class, high latency class)는 CSI computation complexity의 관점에서 정의된다. Low latency CSI의 경우, 최대 4 ports Type-I codebook 또는 최대 4-ports non-PMI feedback CSI를 포함하는 WB CSI이다. High latency CSI는 low latency CSI를 제외한 다른 CSI를 말한다. Normal 단말에 대해, (Z, Z’)는 OFDM symbol들의 unit에서 정의된다. 여기서, Z는 Aperiodic CSI triggering DCI를 수신한 후 CSI 보고를 수행하기 까지의 최소 CSI processing time을 나타낸다. 또한, Z’는 channel/interference에 대한 CSI-RS를 수신한 후 CSI 보고를 수행하기까지의 최소 CSI processing time을 나타낸다. Two CSI latency classes (low latency class, high latency class) are defined in terms of CSI computation complexity. In the case of low latency CSI, it is WB CSI including a maximum of 4 ports Type-I codebook or a maximum of 4-ports non-PMI feedback CSI. High latency CSI refers to CSI other than low latency CSI. For a normal terminal, (Z, Z ') is defined in the unit of OFDM symbols. Here, Z represents the minimum CSI processing time from receiving an aperiodic CSI triggering DCI to performing CSI reporting. In addition, Z' represents the minimum CSI processing time from receiving CSI-RS for channel/interference to performing CSI reporting.
추가적으로, 단말은 동시에 calculation할 수 있는 CSI의 개수를 report한다.Additionally, the UE reports the number of CSIs that can be simultaneously calculated.
이하, CSI 보고 설정(CSI reporting configuration)에 대하여 기술한다. Hereinafter, a CSI reporting configuration will be described.
UE는 다음과 같은 CSI 파라미터들(보고되는 경우) 간의 종속성(dependency)를 가정하여 CSI 파라미터들(보고되는 경우)을 계산한다. The UE calculates the CSI parameters (if reported) by assuming the dependency (dependency) between the following CSI parameters (if reported).
- LI는 보고되는 CQI, PMI, RI 및 CRI를 기준으로 계산된다. - LI is calculated based on the reported CQI, PMI, RI and CRI.
- CQI는 보고되는 PMI, RI 및 CRI를 기준으로 계산된다. - CQI is calculated based on the reported PMI, RI and CRI.
- PMI는 보고되는 RI 및 CRI를 기준으로 계산된다. - PMI is calculated based on the reported RI and CRI.
- RI는 보고되는 CRI를 기준으로 계산된다. - RI is calculated based on the reported CRI.
준-동일 위치(QCL: quasi-co location)quasi-co location (QCL)
안테나 포트는 안테나 포트 상의 심볼이 운반되는 채널이 동일한 안테나 포트 상의 다른 심볼이 운반되는 채널로부터 추론될 수 있도록 정의된다. 하나의 안테나 포트 상의 심볼이 운반되는 채널의 특성(property)이 다른 안테나 포트 상의 심볼이 운반되는 채널로부터 유추될 수 있는 경우, 2 개의 안테나 포트는 QC/QCL(quasi co-located 혹은 quasi co-location) 관계에 있다고 할 수 있다.An antenna port is defined such that a channel on which a symbol on an antenna port is carried can be inferred from a channel on which another symbol on the same antenna port is carried. When the property of a channel carrying a symbol on one antenna port can be inferred from a channel carrying a symbol on another antenna port, the two antenna ports are QC/QCL (quasi co-located or quasi co-location) ) can be said to be in a relationship.
여기서, 상기 채널 특성은 지연 확산(Delay spread), 도플러 확산(Doppler spread), 주파수/도플러 쉬프트(Frequency/Doppler shift), 평균 수신 파워(Average received power), 수신 타이밍/평균지연(Received Timing / average delay), 공간 수신 파라미터(Spatial RX parameter) 중 하나 이상을 포함한다. 여기서 Spatial Rx parameter는 도래각(angle of arrival)과 같은 공간적인 (수신) 채널 특성 파라미터를 의미한다. Here, the channel characteristics include delay spread, Doppler spread, frequency/Doppler shift, average received power, and received timing/average delay. delay), including one or more of a spatial reception parameter (Spatial RX parameter). Here, the Spatial Rx parameter means a spatial (reception) channel characteristic parameter such as an angle of arrival.
단말은 해당 단말 및 주어진 서빙 셀에 대해 의도된 DCI를 가지는 검출된 PDCCH에 따라 PDSCH를 디코딩하기 위해, 상위 계층 파라미터 PDSCH-Config 내 M 개까지의 TCI-상태 설정(TCI-State configuration)의 리스트가 설정될 수 있다. 상기 M은 UE 능력(capability)에 의존한다.In order for the terminal to decode the PDSCH according to the detected PDCCH having the DCI intended for the terminal and the given serving cell, up to M TCI-state configuration in the upper layer parameter PDSCH-Config A list of TCI-State configuration is can be set. The M depends on the UE capability.
각각의 TCI-State는 하나 또는 두 개의 DL 참조 신호와 PDSCH의 DM-RS(demodulation reference signal) 포트 사이의 quasi co-location 관계를 설정하기 위한 파라미터를 포함한다.Each TCI-State includes a parameter for establishing a quasi co-location relationship between one or two DL reference signals and a DM-RS (demodulation reference signal) port of the PDSCH.
Quasi co-location 관계는 첫 번째 DL RS에 대한 상위 계층 파라미터 qcl-Type1과 두 번째 DL RS에 대한 qcl-Type2 (설정된 경우)로 설정된다. 두 개의 DL RS의 경우, 참조(reference)가 동일한 DL RS 또는 서로 다른 DL RS인지에 관계없이 QCL 타입(type)은 동일하지 않다.The quasi co-location relationship is set with the upper layer parameter qcl-Type1 for the first DL RS and qcl-Type2 (if set) for the second DL RS. In the case of two DL RSs, the QCL type is not the same regardless of whether the reference is the same DL RS or different DL RSs.
각 DL RS에 대응하는 QCL type은 QCL-Info의 상위 계층 파라미터 qcl-Type에 의해 주어지며, 다음 값 중 하나를 취할 수 있다:The QCL type corresponding to each DL RS is given by the upper layer parameter qcl-Type of QCL-Info, and may take one of the following values:
- 'QCL-TypeA': {Doppler shift, Doppler spread, average delay, delay spread}- 'QCL-TypeA': {Doppler shift, Doppler spread, average delay, delay spread}
- 'QCL-TypeB': {Doppler shift, Doppler spread}- 'QCL-TypeB': {Doppler shift, Doppler spread}
- 'QCL-TypeC': {Doppler shift, average delay}- 'QCL-TypeC': {Doppler shift, average delay}
- 'QCL-TypeD': {Spatial Rx parameter}- 'QCL-TypeD': {Spatial Rx parameter}
예를 들어, 목표하는 안테나 포트(target antenna port)가 특정 NZP CSI-RS 인 경우, 해당 NZP CSI-RS 안테나 포트는 QCL-Type A관점에서는 특정 TRS와, QCL-Type D관점에서는 특정 SSB과 QCL되었다고 지시/설정될 수 있다. 이러한 지시/설정을 받은 단말은 QCL-TypeA TRS에서 측정된 Doppler, delay값을 이용해서 해당 NZP CSI-RS를 수신하고, QCL-TypeD SSB 수신에 사용된 수신 빔을 해당 NZP CSI-RS 수신에 적용할 수 있다.For example, if the target antenna port is a specific NZP CSI-RS, the corresponding NZP CSI-RS antenna port has a specific TRS from the QCL-Type A point of view, and a specific SSB and QCL from the QCL-Type D point of view. It can be indicated/set as The UE receiving this instruction/configuration receives the corresponding NZP CSI-RS using the Doppler and delay values measured in QCL-TypeA TRS, and applies the reception beam used for QCL-TypeD SSB reception to the corresponding NZP CSI-RS reception. can do.
UE는 8개까지의 TCI state들을 DCI 필드 'Transmission Configuration Indication'의 코드포인트(codepoint)에 매핑하기 위해 사용되는 MAC CE 시그널링에 의한 활성 명령(activation command)을 수신할 수 있다.The UE may receive an activation command by MAC CE signaling used to map up to 8 TCI states to a codepoint of the DCI field 'Transmission Configuration Indication'.
다중 TRP(Multi-TRP) 관련 동작Multi-TRP (Multi-TRP) related behavior
다지점 협력 통신(CoMP: Coordinated Multi Point)의 기법은 다수의 기지국이 단말로부터 피드백 받은 채널 정보(예를 들어, RI/CQI/PMI/LI(layer indicator) 등)를 서로 교환(예를 들어, X2 인터페이스 이용) 혹은 활용하여, 단말에게 협력 전송함으로써 간섭을 효과적으로 제어하는 방식을 말한다. 이용하는 방식에 따라서, CoMP는 연합 전송(JT: Joint transmission), 협력 스케줄링(CS: Coordinated Scheduling), 협력 빔포밍(CB: Coordinated Beamforming), 동적 포인트 선택(DPS: Dynamic Point Selection), 동적 포인트 차단(DPB: Dynamic Point Blocking) 등으로 구분할 수 있다. In the technique of multi-point cooperative communication (CoMP: Coordinated Multi Point), a plurality of base stations exchange channel information (eg, RI/CQI/PMI/layer indicator (LI), etc.) fed back from the terminal with each other (eg, It refers to a method of effectively controlling interference by using the X2 interface) or using the cooperative transmission to the terminal. Depending on the method used, CoMP is joint transmission (JT), coordinated scheduling (CS), coordinated beamforming (CB), dynamic point selection (DPS), dynamic point blocking ( DPB: Dynamic Point Blocking).
M개의 TRP가 하나의 단말에게 데이터를 전송하는 M-TRP 전송 방식은 크게 i) 전송률을 높이기 위한 방식인 eMBB M-TRP 전송과 ii) 수신 성공률 증가 및 지연(latency) 감소를 위한 방식인 URLLC M-TRP 전송으로 구분할 수 있다. The M-TRP transmission method in which M TRPs transmit data to one terminal is largely i) eMBB M-TRP transmission, which is a method to increase the transmission rate, and ii) URLLC M, which is a method for increasing the reception success rate and reducing latency -TRP transmission can be distinguished.
또한, DCI 전송 관점에서, M-TRP 전송 방식은 i) 각 TRP가 서로 다른 DCI를 전송하는 M-DCI(multiple DCI) 기반 M-TRP 전송과 ii) 하나의 TRP가 DCI를 전송하는 S-DCI(single DCI) 기반 M-TRP 전송으로 구분할 수 있다. 예를 들어, S-DCI 기반 M-TRP 전송의 경우, M TRP가 전송하는 데이터에 대한 모든 스케줄링 정보가 하나의 DCI를 통해 단말에게 전달되어야 하므로, 두 TRP간의 동적인(dynamic) 협력이 가능한 이상적 백홀(ideal BH: ideal BackHaul) 환경에서 사용될 수 있다.In addition, from the DCI transmission point of view, the M-TRP transmission method is i) M-DCI (multiple DCI) based M-TRP transmission in which each TRP transmits a different DCI, and ii) S-DCI in which one TRP transmits DCI It can be divided into (single DCI)-based M-TRP transmission. For example, in the case of S-DCI-based M-TRP transmission, since all scheduling information for data transmitted by the M TRP must be delivered to the UE through one DCI, dynamic cooperation between the two TRPs is ideal. It can be used in a backhaul (ideal BH: ideal BackHaul) environment.
UE는 서로 다른 제어 자원 세트(CORESET: control resource set)(또는 서로 다른 CORESET 그룹에 속한 CORESET)으로 수신한 DCI가 스케줄링한 PUSCH(또는 PUCCH)를 서로 다른 TRP로 전송하는 PUSCH(또는 PUCCH)로 인식하거나 또는 서로 다른 TRP의 PDSCH(또는 PDCCH)로 인식할 수 있다. 또한, 후술하는 서로 다른 TRP로 전송하는 UL 전송(예를 들어, PUSCH/PUCCH)에 대한 방식은 동일 TRP에 속한 서로 다른 패널(panel)로 전송하는 UL 전송(예를 들어, PUSCH/PUCCH)에 대해서도 동일하게 적용할 수 있다.The UE recognizes a PUSCH (or PUCCH) that transmits a PUSCH (or PUCCH) scheduled by DCI received with a different control resource set (CORESET) (or CORESET belonging to a different CORESET group) with different TRPs (or PUCCH). Or, it can be recognized as a PDSCH (or PDCCH) of a different TRP. In addition, the method for UL transmission (eg, PUSCH/PUCCH) transmitted with different TRPs, which will be described later, is for UL transmission (eg, PUSCH/PUCCH) transmitted to different panels belonging to the same TRP. The same can be applied to
이하, 본 개시에서 설명/언급되는 CORESET 그룹 식별자(group ID)는 각 TRP/패널(panel)를 위한 CORESET을 구분하기 위한 인덱스(index)/식별 정보(예를 들어, ID) 등을 의미할 수 있다. 그리고 CORESET group은 각 TRP/panel을 위한 CORESET을 구분하기 위한 인덱스/식별정보(예를 들어, ID)/상기 CORESET group ID등에 의해 구분되는 CORESET의 그룹/합집합일 수 있다. 일례로, CORESET group ID는 CORSET 설정(configuration) 내에 정의되는 특정 index 정보일 수 있다. 이 경우, CORESET group은 각 CORESET에 대한 CORESET configuration 내에 정의된 인덱스에 의해 설정/지시/정의될 수 있다. 그리고/또는 CORESET group ID는 각 TRP/panel에 설정된/연관된 CORESET 간의 구분/식별을 위한 인덱스/식별 정보/지시자 등을 의미할 수 있다. 이하, 본 개시에서 설명/언급되는 CORESET group ID는 각 TRP/panel에 설정된/연관된 CORESET 간의 구분/식별을 위한 특정 인덱스/특정 식별 정보/특정 지시자로 대체되어 표현될 수도 있다. 상기 CORESET group ID, 즉, 각 TRP/panel에 설정된/연관된 CORESET 간의 구분/식별을 위한 특정 인덱스/특정 식별 정보/특정 지시자는 상위 계층 시그널링(higher layer signaling, 예를 들어, RRC 시그널링)/제2 계층 시그널링(L2 signaling, 예를 들어, MAC-CE)/제1 계층 시그널링(L1 signaling, 예를 들어, DCI) 등을 통해 단말에게 설정/지시될 수 있다. 일례로, 해당 CORESET group 단위로 각 TRP/panel 별 (즉, 동일 CORESET group에 속한 TRP/panel 별로) PDCCH 검출(detection)이 수행되도록 설정/지시될 수 있다. 그리고/또는 해당 CORESET group 단위로 각 TRP/panel 별로 (즉, 동일 CORESET group에 속한 TRP/panel 별로) 상향링크 제어 정보(예를 들어, CSI, HARQ-A/N(ACK/NACK), SR(scheduling request)) 및/또는 상향링크 물리 채널 자원들(예를 들어, PUCCH/PRACH/SRS 자원들)이 분리되어 관리/제어되도록 설정/지시될 수 있다. 그리고/또는 해당 CORESET group 별로 각 TRP/panel 별로 (즉, 동일 CORESET group에 속한 TRP/panel 별로) 스케줄링되는 PDSCH/PUSCH 등에 대한 HARQ A/N(처리(process)/재전송)이 관리될 수 있다.Hereinafter, the CORESET group identifier (group ID) described / mentioned in the present disclosure may mean an index / identification information (eg, ID) for distinguishing CORESET for each TRP / panel. have. In addition, the CORESET group may be a group/union of CORESETs classified by an index/identification information (eg, ID)/the CORESET group ID for discriminating a CORESET for each TRP/panel. For example, the CORESET group ID may be specific index information defined in CORSET configuration. In this case, the CORESET group may be set/indicated/defined by an index defined in the CORESET configuration for each CORESET. And/or the CORESET group ID may mean an index/identification information/indicator for classification/identification between CORESETs set/related to each TRP/panel. Hereinafter, the CORESET group ID described/mentioned in the present disclosure may be expressed by being replaced with a specific index/specific identification information/specific indicator for classification/identification between CORESETs set/related to each TRP/panel. The CORESET group ID, that is, a specific index/specific identification information/specific indicator for classification/identification between CORESETs set/associated in each TRP/panel is higher layer signaling (eg, RRC signaling)/second It may be configured/indicated to the UE through layer signaling (L2 signaling, eg, MAC-CE)/first layer signaling (L1 signaling, eg, DCI). For example, it may be set/instructed so that PDCCH detection is performed for each TRP/panel (ie, for each TRP/panel belonging to the same CORESET group) in a corresponding CORESET group unit. And/or uplink control information (eg, CSI, HARQ-A/N (ACK/NACK), SR ( scheduling request) and/or uplink physical channel resources (eg, PUCCH/PRACH/SRS resources) may be set/instructed to be managed/controlled separately. And/or HARQ A/N (process/retransmission) for PDSCH/PUSCH scheduled for each TRP/panel for each CORESET group (ie, for each TRP/panel belonging to the same CORESET group) may be managed.
예를 들어, 상위 계층 파라미터인 ControlResourceSet 정보 요소(IE: information element)는 시간/주파수 제어 자원 집합(CORESET: control resource set)을 설정하기 위해 사용된다. 일례로, 상기 제어 자원 집합(CORESET)은 하향링크 제어 정보의 검출, 수신과 관련될 수 있다. 상기 ControlResourceSet IE는 CORESET 관련 ID(예를 들어, controlResourceSetID)/ CORESET에 대한 CORESET 풀(pool)의 인덱스(index) (예를 들어, CORESETPoolIndex)/ CORESET의 시간/주파수 자원 설정/ CORESET과 관련된 TCI 정보 등을 포함할 수 있다. 일례로, CORESET pool의 인덱스 (예를 들어, CORESETPoolIndex)는 0 또는 1로 설정될 수 있다. 상기 설명에서 CORESET group은 CORESET pool에 대응될 수 있고, CORESET group ID는 CORESET pool index(예를 들어, CORESETPoolIndex)에 대응될 수 있다.For example, an upper layer parameter, a ControlResourceSet information element (IE), is used to set a time/frequency control resource set (CORESET). For example, the control resource set (CORESET) may be related to the detection and reception of downlink control information. The ControlResourceSet IE is a CORESET-related ID (eg, controlResourceSetID) / index of the CORESET pool for CORESET (eg, CORESETPoolIndex) / time / frequency resource setting of CORESET / TCI information related to CORESET, etc. may include As an example, the index of the CORESET pool (eg, CORESETPoolIndex) may be set to 0 or 1. In the above description, a CORESET group may correspond to a CORESET pool, and a CORESET group ID may correspond to a CORESET pool index (eg, CORESETPoolIndex).
이하, Multi-TRP에서의 신뢰도 향상을 위한 방식에 대하여 살펴본다.Hereinafter, a method for improving reliability in Multi-TRP will be described.
다수 TRP 에서의 전송을 이용한 신뢰도(reliability) 향상을 위한 송수신 방법으로 아래의 두 가지 방법을 고려해볼 수 있다.The following two methods can be considered as a transmission/reception method for improving reliability using transmission in multiple TRPs.
도 7은 본 개시가 적용될 수 있는 무선 통신 시스템에서 다중 TRP 전송 방식을 예시한다. 7 illustrates a multiple TRP transmission scheme in a wireless communication system to which the present disclosure can be applied.
도 7(a)를 참조하면, 동일한 코드워드(CW: codeword)/전송블록(TB: transport block)를 전송하는 레이어 그룹(layer group)이 서로 다른 TRP에 대응하는 경우를 보여준다. 이때, layer group은 하나 또는 하나 이상의 layer로 이루어진 소정의 layer 집합을 의미할 수 있다. 이러한 경우, 다수의 layer 수로 인해 전송 자원의 양이 증가하며, 이를 통해 TB에 대해 낮은 부호율의 강건한 채널 코딩을 사용할 수 있다는 장점이 있으며, 또한, 다수의 TRP로부터 채널이 다르기 때문에 다이버시티(diversity) 이득을 바탕으로 수신 신호의 신뢰도 향상을 기대할 수 있다. Referring to Figure 7 (a), it shows a case where the same codeword (CW: codeword) / transport block (TB: transport block) for transmitting the layer group (layer group) corresponding to different TRP. In this case, the layer group may mean a predetermined layer set consisting of one or more layers. In this case, the amount of transmission resources increases due to the number of layers, which has the advantage that robust channel coding with a low code rate can be used for TB. ) can be expected to improve the reliability of the received signal based on the gain.
도 7(b)를 참조하면, 서로 다른 CW를 서로 다른 TRP에 대응하는 layer group을 통해 전송하는 예를 보여준다. 이때, 그림의 CW #1과 CW #2에 대응하는 TB는 서로 동일함을 가정할 수 있다. 즉, CW #1과 CW #2는 각각 서로 다른 TRP에 의해 동일한 TB가 채널 코딩 등을 통해 서로 다른 CW로 변환된 것을 의미한다. 따라서, 동일 TB의 반복 전송의 예로 볼 수 있다. 도 7(b)의 경우, 앞서 도 7(a)와 대비하여 TB에 대응하는 부호율이 높다는 단점을 가질 수 있다. 하지만, 채널 환경에 따라 동일 TB로부터 생성된 인코딩된 비트들(encoding bits)에 대해서 서로 다른 RV(redundancy version) 값을 지시하여 부호율을 조정하거나, 각 CW의 변조 차수(modulation order)를 조절할 수 있다는 장점을 갖는다. Referring to FIG. 7(b), an example of transmitting different CWs through layer groups corresponding to different TRPs is shown. At this time, it can be assumed that the TBs corresponding to CW #1 and CW #2 in the figure are the same. That is, CW #1 and CW #2 mean that the same TB is converted into different CWs through channel coding or the like by different TRPs, respectively. Therefore, it can be seen as an example of repeated transmission of the same TB. In the case of FIG. 7(b), compared to FIG. 7(a), it may have a disadvantage that the code rate corresponding to the TB is high. However, depending on the channel environment, the code rate may be adjusted by indicating different redundancy version (RV) values for encoded bits generated from the same TB, or the modulation order of each CW may be adjusted. has the advantage of being
앞서 도 7(a) 및 도 7(b)에서 예시한 방식에 따르면, 동일 TB가 서로 다른 layer group을 통해 반복 전송되고, 각 layer group이 서로 다른 TRP/panel에 의해 전송됨에 따라 단말의 데이터 수신확률을 높일 수 있다. 이를 SDM(Spatial Division Multiplexing) 기반 M-TRP URLLC 전송 방식으로 지칭한다. 서로 다른 Layer group에 속한 layer들은 서로 다른 DMRS CDM 그룹에 속한 DMRS 포트들을 통해 각각 전송된다.According to the method illustrated in FIGS. 7(a) and 7(b) above, the same TB is repeatedly transmitted through different layer groups, and as each layer group is transmitted by different TRP/panel, data reception of the terminal can increase the probability. This is referred to as a Spatial Division Multiplexing (SDM)-based M-TRP URLLC transmission scheme. Layers belonging to different layer groups are transmitted through DMRS ports belonging to different DMRS CDM groups, respectively.
또한, 상술한 다수 TRP 관련된 내용은 서로 다른 레이어를 이용하는 SDM(spatial division multiplexing) 방식을 기준으로 설명되었지만, 이는 서로 다른 주파수 영역 자원(예를 들어, RB/PRB (세트) 등)에 기반하는 FDM(frequency division multiplexing) 방식 및/또는 서로 다른 시간 영역 자원(예를 들어, 슬롯, 심볼, 서브-심볼 등)에 기반하는 TDM(time division multiplexing) 방식에도 확장하여 적용될 수 있음은 물론이다.In addition, the above-described multiple TRP-related contents have been described based on a spatial division multiplexing (SDM) scheme using different layers, but this is based on different frequency domain resources (eg, RB/PRB (set), etc.) based on FDM Of course, it can also be extended and applied to a time division multiplexing (TDM) method based on a frequency division multiplexing method and/or different time domain resources (eg, slots, symbols, sub-symbols, etc.).
적어도 하나의 DCI에 의해 스케줄링되는, 다중 TRP(multi-TRP)는 다음과 같이 수행될 수 있다: Multi-TRP, scheduled by at least one DCI, may be performed as follows:
i) 기법 1 (SDM): 중첩된 시간 및 주파수 자원 할당에서 단일의 슬롯 내 n(n은 자연수)개의 TCI 상태들i) Scheme 1 (SDM): n (n is a natural number) TCI states in a single slot in overlapping time and frequency resource allocation
- 기법 1a: 각 전송 시점(transmission occasion)은 동일한 TB의 하나의 레이어 또는 레이어들의 세트이고, 각 레이어 또는 레이어 세트는 하나의 TCI 및 하나의 DMRS 포트(들)의 세트와 연관된다. 하나의 리던던시 버전(RV: redundancy version)을 가진 단일의 코드워드가 모든 레이어들 또는 레이어 세트들에 사용된다. UE 관점에서, 서로 다른 코딩된 비트들(coded bit)이 특정 매핑 규칙으로 서로 다른 레이어들 또는 레이어 세트들에 매핑된다. - Scheme 1a: Each transmission occasion is one layer or a set of layers of the same TB, and each layer or layer set is associated with one TCI and one set of DMRS port(s). A single codeword with one redundancy version (RV) is used for all layers or layer sets. From a UE perspective, different coded bits are mapped to different layers or layer sets with specific mapping rules.
- 기법 1b: 각 transmission occasion은 동일한 TB의 하나의 레이어 또는 레이어들의 세트이고, 각 레이어 또는 레이어 세트는 하나의 TCI 및 하나의 DMRS 포트(들)의 세트와 연관된다. 하나의 RV을 가진 단일의 코드워드가 각 공간적(spatial) 레이어 또는 레이어 세트를 위해 사용된다. 각 spatial 레이어 또는 레이어 세트에 대응되는 RV들은 동일하거나 다를 수 있다. - Technique 1b: Each transmission occasion is one layer or set of layers of the same TB, and each layer or layer set is associated with one TCI and one set of DMRS port(s). A single codeword with one RV is used for each spatial layer or set of layers. RVs corresponding to each spatial layer or layer set may be the same or different.
- 기법 1c: 각 transmission occasion은 다중의 TCI 상태 인덱스들과 연관된 하나의 DMRS 포트를 가지는 동일한 TB의 하나의 레이어, 또는 차례로(one by one) 다중의 TCI 인덱스들과 연관된 다중의 DMRS 포트들을 가진 동일한 TB의 하나의 레이어이다. - Technique 1c: Each transmission occasion is one layer of the same TB having one DMRS port associated with multiple TCI status indices, or the same with multiple DMRS ports associated with multiple TCI indices in turn (one by one) It is one layer of TB.
상술한 기법 1a 및 1c에 있어서, 동일한 MCS가 모든 레이어들 또는 레이어 세트들에 적용된다. In the aforementioned techniques 1a and 1c, the same MCS is applied to all layers or layer sets.
ii) 기법 2 (FDM): 중첩되지 않은 주파수 자원 할당에서 단일의 슬롯 내 n(n은 자연수)개의 TCI 상태들. 각 중첩되지 않은 주파수 자원 할당은 하나의 TCI 상태와 연관된다. 동일한 단일의/다중의 DMRS 포트(들)이 모든 중첩되지 않은 주파수 자원 할당에 연관된다. ii) Scheme 2 (FDM): n (n is a natural number) TCI states in a single slot in non-overlapping frequency resource allocation. Each non-overlapping frequency resource allocation is associated with one TCI state. The same single/multiple DMRS port(s) is associated with all non-overlapping frequency resource allocations.
- 기법 2a: 전체 자원 할당에 걸쳐 하나의 RV를 가진 단일의 코드워드가 사용된다. UE 관점에서, 공통의 RB 매핑(코드워드의 레이어 매핑)이 모든 자원 할당에 걸쳐 적용된다. - Scheme 2a: A single codeword with one RV is used over the entire resource allocation. From the UE point of view, a common RB mapping (layer mapping of codewords) is applied across all resource allocations.
- 기법 2b: 하나의 RV를 가진 단일의 코드워드가 각 중첩되지 않은 주파수 자원 할당을 위해 사용된다. 각 중첩되지 않는 주파수 자원 할당에 대응되는 RV들은 동일하거나 다를 수 있다. - Scheme 2b: A single codeword with one RV is used for each non-overlapping frequency resource allocation. RVs corresponding to each non-overlapping frequency resource allocation may be the same or different.
기법 2a에 있어서, 동일한 MCS가 모든 중첩되지 않은 주파수 자원 할당에 적용된다. In scheme 2a, the same MCS is applied to all non-overlapping frequency resource allocations.
iii) 기법 3 (TDM): 중첩되지 않은 시간 자원 할당에서 단일의 슬롯 내 n(n은 자연수)개의 TCI 상태들. TB의 각 transmission occasion은 미니-슬롯(mini-slot)의 시간 세분성(granularity)으로 하나의 TCI 및 하나의 RV를 가진다. 슬롯 내 모든 transmission occasion(들)은 동일한 단일의 또는 다중의 DMRS 포트(들)로 공통의 MCS를 사용한다. RV/TCI 상태는 transmission occasion들 중에서 동일하거나 다를 수 있다. iii) Technique 3 (TDM): n (n is a natural number) TCI states in a single slot in non-overlapping time resource allocation. Each transmission occasion of TB has one TCI and one RV with time granularity of a mini-slot. All transmission occasion(s) in the slot use a common MCS with the same single or multiple DMRS port(s). RV/TCI status may be the same or different among transmission occasions.
iv) 기법 4 (TDM): K(n<=K, K는 자연수)개의 서로 다른 슬롯 내 n(n은 자연수)개의 TCI 상태들. TB의 각 transmission occasion은 하나의 TCI 및 하나의 RV를 가진다. K개의 슬롯에 걸쳐 모든 transmission occasion(들)은 동일한 단일의 또는 다중의 DMRS 포트(들)로 공통의 MCS를 사용한다. RV/TCI 상태는 transmission occasion들 중에서 동일하거나 다를 수 있다.iv) Technique 4 (TDM): n (n is a natural number) TCI states in K (n<=K, K is a natural number) different slots. Each transmission occasion of TB has one TCI and one RV. All transmission occasion(s) across K slots use a common MCS with the same single or multiple DMRS port(s). RV/TCI status may be the same or different among transmission occasions.
채널 상태 정보 송수신 방법How to send/receive channel status information
현재 표준에서는 단말이 보고하는 채널 상태 정보(CSI: channel state information)는 채널 측정(CM: channel measurement) 용 단일 NZP CSI-RS resource에 대응하도록 정의되어 있다. 따라서, 다중 TRP(M-TRP: multi-TRP) 전송 상황을 고려한 조인트(joint) CSI(즉, TRP 간 상호 간섭을 고려한 CSI)를 계산할 수 없다는 단점이 있다. In the current standard, channel state information (CSI: channel state information) reported by the UE is defined to correspond to a single NZP CSI-RS resource for channel measurement (CM). Therefore, there is a disadvantage in that it is not possible to calculate joint CSI considering the multi-TRP (M-TRP) transmission situation (ie, CSI considering the mutual interference between TRPs).
도 8은 본 개시가 적용될 수 있는 무선 통신 시스템에서 CSI 보고를 예시한다. 8 illustrates CSI reporting in a wireless communication system to which the present disclosure may be applied.
도 8의 예시와 같이, 서로 다른 TRP에서 각각 CM을 위한 NZP CSI-RS resource가 설정되고, 단말은 각 NZP CSI-RS resource에 기반하여 CSI(예를 들어, CRI/RI/PMI/CQI/LI 등)를 계산 후, 각 TRP에 대응하는 CSI를 기지국으로(예를 들어, 어느 하나의 TRP 또는 모든 TRP 각각) 보고할 수 있다. 그리고 기지국은 단말이 보고한 CSI에 기반하여 M-TRP 전송을 수행할 수 있다. 하지만 도 8의 예시와 같이, 단말이 기지국으로 보고한 CSI에는 서로 다른 TRP 간의 상호 간섭이 반영되어 있지 않다. 즉, 각 TRP에 대한 CSI 계산/보고 동작은 각 TRP 별로 설정된 별개의 NZP CSI-RS resource에 기반하여 독립적으로 수행된다. 따라서, 단말이 보고한 CSI와 기지국이 M-TRP 전송을 수행하기 위해 단말에게 기대되는 실제 CSI의 값이 다를 수 있다. As in the example of Figure 8, NZP CSI-RS resource for each CM in different TRP is set, and the terminal is based on each NZP CSI-RS resource CSI (e.g., CRI / RI / PMI / CQI / LI After calculating, etc.), the CSI corresponding to each TRP may be reported to the base station (eg, either TRP or all TRPs, respectively). In addition, the base station may perform M-TRP transmission based on the CSI reported by the terminal. However, as in the example of FIG. 8 , mutual interference between different TRPs is not reflected in the CSI reported by the UE to the base station. That is, the CSI calculation / reporting operation for each TRP is independently performed based on a separate NZP CSI-RS resource set for each TRP. Therefore, the CSI reported by the UE and the actual CSI value expected from the UE for the eNB to perform M-TRP transmission may be different.
아래의 수학식 3, 4는 단말이 각 TRP에 대응하는 NZP CSI-RS resource를 이용해 CQI 계산에 활용될 수 있는 신호 대 간섭 잡음 비(SINR: signal to interference plus noise ratio) 값을 계산하는 예를 보여준다. Equations 3 and 4 below show an example of calculating a signal to interference plus noise ratio (SINR) value that can be utilized for CQI calculation by the UE using the NZP CSI-RS resource corresponding to each TRP. show
수학식 3은 TRP#1에 대한 SINR 값의 계산을 예시하고, 수학식 4는 TRP#2에 대한 SINR 값의 계산을 예시한다 Equation 3 illustrates the calculation of the SINR value for TRP#1, and Equation 4 illustrates the calculation of the SINR value for TRP#2
Figure PCTKR2021010338-appb-img-000003
Figure PCTKR2021010338-appb-img-000003
Figure PCTKR2021010338-appb-img-000004
Figure PCTKR2021010338-appb-img-000004
수학식 3, 4에서 SINR1, SINR2는 각각 TRP#1, TRP#2의 CM용 NZP CSI-RS resource에 기반하여 최적의 CQI 추정을 위한 SINR 계산 방법을 예시한다. In Equations 3 and 4, SINR 1 and SINR 2 illustrate an SINR calculation method for optimal CQI estimation based on the NZP CSI-RS resource for CM of TRP#1 and TRP#2, respectively.
수학식 3, 4에서 상기 h eff,1,i, h eff,2,i는 각각 TRP#1, TRP#2로부터 전송된 CM용 NZP CSI-RS resource에 기반하여 추정한 하향링크 채널에 특정 프리코딩 행렬(예를 들어, W 1, W 2)를 적용한 유효 채널 행렬 H eff,1=H 1 W 1, H eff,2=H 2 W 2의 i번째 레이어(layer)에 대응하는 유효 채널 벡터를 의미할 수 있다. σN는 단말의 잡음 변동(noise variance)을 의미할 수 있다. In Equations 3 and 4, the h eff,1,i and h eff,2,i are specific free in the downlink channel estimated based on the NZP CSI-RS resource for CM transmitted from TRP#1 and TRP#2, respectively. Effective channel vector corresponding to the i-th layer of the effective channel matrix H eff,1 = H 1 W 1 , H eff,2 = H 2 W 2 to which the coding matrix (eg, W 1 , W 2 ) is applied can mean σ N may mean noise variance of the terminal.
단말이 CQI를 기지국으로 보고할 때, CSI-RS를 이용하여 추정한 SINR에 기반하여 특정 CQI값을 선택할 수 있다. 그런데, 상기 수학식 3, 4의 예에서 확인할 수 있듯이 각 TRP에 대응하는 NZP CSI-RS resource에 기반하여 SINR 계산 시 서로 다른 TRP 간의 간섭이 반영될 수 없다. 따라서, 기지국이 M-TRP 전송 시 단말의 실제 SINR(즉, CQI)를 정확하게 알 수 없다. 이러한 경우, 기지국이 단말의 실제 CQI보다 변조 및 코딩 기법(MCS: modulation and coding scheme)를 높게 설정/지시하는 경우 재전송이 요구되어 지연(delay)을 발생시킬 수 있으며, 또한 수율(throughput)을 저하시킬 수 있다. 또는, 실제 CQI보다 MCS를 낮게 설정/지시하는 경우 수율(throughput)을 저하시킬 수 있다. 따라서, 서로 다른 TRP 사이에 간섭이 반영된 정확한 CQI 값을 기지국으로 보고할 수 있는 방법이 필요하다. 아래 수학식 5는 서로 다른 TRP 사이의 간섭이 반영된 SINR을 계산하는 예를 보여준다.When the UE reports the CQI to the base station, a specific CQI value may be selected based on the SINR estimated using the CSI-RS. However, as can be seen in the examples of Equations 3 and 4, interference between different TRPs cannot be reflected when calculating the SINR based on the NZP CSI-RS resource corresponding to each TRP. Therefore, the base station cannot accurately know the actual SINR (ie, CQI) of the terminal when transmitting the M-TRP. In this case, when the base station sets/indicates a modulation and coding scheme (MCS) higher than the actual CQI of the terminal, retransmission is required, which may cause a delay, and also lower the throughput. can do it Alternatively, if the MCS is set/indicated lower than the actual CQI, the throughput may be reduced. Therefore, there is a need for a method capable of reporting an accurate CQI value reflecting interference between different TRPs to the base station. Equation 5 below shows an example of calculating the SINR reflecting interference between different TRPs.
Figure PCTKR2021010338-appb-img-000005
Figure PCTKR2021010338-appb-img-000005
본 개시에서는 M-TRP 전송을 고려하여 서로 다른 TRP 사이의 간섭이 반영된 정확한 CSI(예를 들어, CQI 값)을 기지국으로 보고할 수 있는 방법을 제안한다.The present disclosure proposes a method for reporting accurate CSI (eg, CQI value) reflecting interference between different TRPs to the base station in consideration of M-TRP transmission.
본 개시에서는 설명의 편의를 위하여 2개의 TRP(예를 들어, TRP1/TRP2)가 동작하는 것으로 가정한다. 다만, 이러한 가정이 본 발명의 기술적 범위를 제한하는 것은 아니다.In the present disclosure, for convenience of description, it is assumed that two TRPs (eg, TRP1/TRP2) operate. However, this assumption does not limit the technical scope of the present invention.
본 개시에서 TRP로 기술한 것은 설명의 편의를 위한 것일 수 있고, TRP는 패널(panel)/빔(beam) 등의 용어로도 해석할 수 있음은 자명하다.It is apparent that the description of TRP in the present disclosure may be for convenience of description, and TRP may also be interpreted in terms such as panel/beam.
본 개시에서 제1 계층(L1: layer 1) 시그널링은 기지국과 단말 사이의 DCI 기반의 동적인 시그널링을 의미할 수 있고 제2 계층(L2: layer 2) 시그널링은 기지국과 단말 사이의 RRC/MAC 제어 요소(CE: control element) 기반의 상위 계층 시그널링을 의미할 수 있다.In the present disclosure, the first layer (L1: layer 1) signaling may mean DCI-based dynamic signaling between the base station and the terminal, and the second layer (L2: layer 2) signaling is RRC/MAC control between the base station and the terminal It may mean higher layer signaling based on element (CE: control element).
이하, 본 개시의 설명에 있어서, (NZP) CSI-RS 자원을 전송/수신한다는 것은 해당 (NZP) CSI-RS 자원 상에서 CSI-RS를 전송/수신한다는 의미로 해석될 수 있다. Hereinafter, in the description of the present disclosure, transmitting/receiving a (NZP) CSI-RS resource may be interpreted as meaning transmitting/receiving a CSI-RS on a corresponding (NZP) CSI-RS resource.
이하, 본 개시의 일 실시예에 따른 다중-TRP 전송을 고려한 CSI를 보고하는 방법에 대하여 기술한다. Hereinafter, a method of reporting CSI in consideration of multi-TRP transmission according to an embodiment of the present disclosure will be described.
실시예 #1: 기지국은 단말에게 단일 보고 셋팅(reporting setting)에 서로 다른 NZP CSI-RS resource를 설정할 수 있다. 그리고, 기지국은 단말이 CSI(예를 들어, RI/PMI/CQI 등) 계산 시 각 NZP CSI-RS resource에 대해서 랭크(rank) 수(즉, 전송 레이어(transmission layer) 및/또는 포트(port) 수) 및/또는 프리코딩 행렬(precoding matrix)에 대한 가정을 서로 다르게 적용하도록 단말에게 설정/지시/정의할 수 있다. Embodiment #1: The base station may configure different NZP CSI-RS resources in a single reporting setting to the terminal. In addition, the base station determines the number of ranks for each NZP CSI-RS resource when the UE calculates CSI (eg, RI/PMI/CQI, etc.) (ie, a transmission layer and/or a port). number) and/or the assumption for the precoding matrix may be set/instructed/defined to the terminal to be applied differently.
예를 들어, 단말에 의해 보고되는 CQI 값은 보고되는 PMI, RI, CRI에 따라 결정된다(conditioned). 이는 보고되는 CQI 값은 기지국이 단말에 의해 요청된 프리코딩, 랭크 및 CSI-RS 선택을 적용한다고 가정함으로써 계산된다. 따라서, 동일한 무선 채널 상황이라도 단말에 의해 가정되는 프리코딩의 옵션들(예를 들어, 랭크(rank) 수(즉, 전송 레이어(transmission layer) 및/또는 포트(port) 수) 및/또는 프리코딩 행렬(precoding matrix))이 변함에 따라 단말은 다른 CQI 값을 보고할 수 있다. For example, the CQI value reported by the UE is determined according to the reported PMI, RI, and CRI (conditioned). The reported CQI value is calculated by assuming that the base station applies the precoding, rank and CSI-RS selection requested by the terminal. Accordingly, even in the same radio channel situation, options of precoding assumed by the terminal (eg, the number of ranks (ie, the number of transmission layers and/or ports) and/or precoding As the matrix (precoding matrix) changes, the UE may report different CQI values.
현재 표준에 따르면, PMI 보고는 6개의 코드북 카테고리에 기반한다. 6개의 코드북 카테고리는 최대 랭크가 8인 타입 I 단일 패널 코드북과 최대 랭크가 4인 타입 I 다중 패널 코드북, 그리고 다중-사용자(multi-user) MIMO를 위해 최적화되지만 최대 랭크가 2로 제한되는 타입 II 코드북 및 타입 II 포트 선택 코드북, 그리고 다중-사용자(multi-user) MIMO를 위해 최적화되지만 최대 랭크가 4로 제한되는 향상된 타입 II 코드북 및 향상된 타입 II 포트 선택 코드북을 포함한다. 타입 I 코드북의 경우 기지국은 단말에게 상대적으로 대략적인(coarse) 정보를 제공하고, 타입 II의 코드북의 경우 기지국은 상대적으로 상세한 정보를 제공한다. According to the current standard, PMI reporting is based on six codebook categories. The six codebook categories include Type I single-panel codebooks with a maximum rank of 8, Type I multi-panel codebooks with a maximum rank of 4, and Type II optimized for multi-user MIMO but limited to a maximum rank of 2. codebooks and Type II port selection codebooks, and Enhanced Type II codebooks and Enhanced Type II port selection codebooks optimized for multi-user MIMO but limited to a maximum rank of 4 are included. In the case of the type I codebook, the base station provides relatively coarse information to the terminal, and in the case of the type II codebook, the base station provides relatively detailed information.
PMI 보고와 관련된 정보/파라미터는 CSI 보고(CSI-ReportConfig) 내 코드북 설정(CodebookConfig)을 통해 제공될 수 있다. 코드북 설정(CodebookConfig)에서는 코드북 타입(codebookType)과 서브타입(subtype)의 조합을 이용하여 관련된 PMI 보고에 대한 코드북 타입을 식별한다. Information/parameters related to the PMI report may be provided through the codebook configuration (CodebookConfig) in the CSI report (CSI-ReportConfig). In the codebook configuration (CodebookConfig), a codebook type for a related PMI report is identified using a combination of a codebookType and a subtype.
예를 들어, 구체적으로, 코드북 설정(CodebookConfig)는 다음과 같은 정보/파라미터를 포함할 수 있다. 코드북 설정(CodebookConfig)은 각각 코드북 타입(코드북 타입 I(type1) 및 코드북 타입 II(type2)) 및 서브타입(타입 I의 경우, 타입 I-단일 패널(typeI-SinglePanel)과 타입 I-다중 패널(typeI-MultiPanel) / 타입 II의 경우, 타입 II(typeII)과 타입 II 포트 선택(typeII-PortSelection))에 따라 해당되는 파라미터들을 포함할 수 있다. For example, specifically, the codebook configuration (CodebookConfig) may include the following information/parameters. Codebook configuration (CodebookConfig) is a codebook type (codebook type I (type1) and codebook type II (type2)) and subtype (in the case of type I, type I - single panel (typeI-SinglePanel) and type I - multiple panel ( typeI-MultiPanel) / In the case of type II, parameters corresponding to type II (typeII) and type II port selection (typeII-PortSelection) may be included.
타입 I 단일 패널 코드북은 최대 랭크 8까지를 지원한다. 또한, 타입 I 단일 패널 코드북의 경우, 2개의 안테나 포트들 또는 2개 이상의 안테나 포트들이 사용될 수 있다. 2개의 안테나 포트들만이 사용되면, 코드북은 MIMO를 위한 프리코딩을 제공한다. 2개 이상의 안테나 포트들이 사용되면, 코드북은 MIMO와 빔포밍(beamforming) 모두를 위한 프리코딩을 제공한다. 2개 이상의 안테나 포트들이 사용될 때, 기지국은 'n1-n2' 파라미터를 통해, 제1 차원(first dimension) 내 안테나 포트의 수(n1), 제2 차원(second deminsion) 내 안테나 포트의 수(n2)와 코드북 서브셋 제한(codebook subset restriction)을 설정할 수 있다. 또한, 기지국은 'typeI-SinglePanel-ri-Restriction' 파라미터를 통해 RI에 대한 제한을 설정할 수 있다. Type I single panel codebook supports up to rank 8. Also, in the case of a Type I single panel codebook, two antenna ports or two or more antenna ports may be used. If only two antenna ports are used, the codebook provides precoding for MIMO. If two or more antenna ports are used, the codebook provides precoding for both MIMO and beamforming. When two or more antenna ports are used, the base station through the 'n1-n2' parameter, the number of antenna ports in the first dimension (n1), the number of antenna ports in the second dimension (n2) ) and codebook subset restrictions can be set. In addition, the base station may set the restriction on the RI through the 'typeI-SinglePanel-ri-Restriction' parameter.
타입 I 다중 패널 코드북은 2 또는 4개의 안테나 패널들을 지원하며, 최대 랭크 4까지를 지원한다. 기지국은 'ng-n1-n2' 파라미터를 통해, 안테나 패널의 수(ng), 제1 차원(first dimension) 내 안테나 포트의 수(n1), 제2 차원(second deminsion) 내 안테나 포트의 수(n2)와 코드북 서브셋 제한(codebook subset restriction)을 설정할 수 있다. 기지국은 'ri-Restriction' 파라미터를 통해 RI에 대한 제한을 설정할 수 있다. Type I multi-panel codebook supports 2 or 4 antenna panels, and supports up to rank 4. The base station through the 'ng-n1-n2' parameter, the number of antenna panels (ng), the number of antenna ports in the first dimension (n1), the number of antenna ports in the second dimension (second deminsion) ( n2) and codebook subset restriction can be set. The base station may set restrictions on RI through the 'ri-Restriction' parameter.
타입 II 코드북은 최대 랭크 2를 지원한다. 기지국은 'n1-n2-codebookSubsetRestriction' 파라미터를 통해 제1 차원(first dimension) 내 안테나 포트의 수(n1), 제2 차원(second deminsion) 내 안테나 포트의 수(n2)와 코드북 서브셋 제한(codebook subset restriction)을 설정할 수 있다. 또한, 기지국은 'typeII-RI-Restriction' 파라미터를 통해 RI에 대한 제한을 설정할 수 있다.Type II codebook supports a maximum of rank 2. The base station through the 'n1-n2-codebookSubsetRestriction' parameter, the number of antenna ports in the first dimension (n1), the number of antenna ports in the second dimension (second deminsion) (n2) and codebook subset restriction (codebook subset) restriction) can be set. In addition, the base station may set the restriction on the RI through the 'typeII-RI-Restriction' parameter.
타입 II 포트 선택 코드북은 최대 랭크 2를 지원한다. CSI-RS 전송을 위해 사용되는 안테나 포트의 수는 CSI-RS 자원 매핑을 위한 설정(CSI-RS-ResourceMapping) 내 안테나 포트 수에 대한 파라미터/정보(nrofPorts)를 이용하여 설정된다. 기지국은 'portSelectionSamplingSize' 파라미터를 통해 포트 선택 코드북의 크기를 설정할 수 있다. 즉, 'portSelectionSamplingSize' 파라미터는 후보 빔(beam) 선택들 간의 간격(예를 들어, 1, 2, 3, 4)를 특정한다. 또한, 기지국은 'typeII-PortSelectionRI-Restriction' 파라미터를 통해 RI에 대한 제한을 설정할 수 있다.The Type II port selection codebook supports a maximum of rank 2. The number of antenna ports used for CSI-RS transmission is set using parameters/information (nrofPorts) for the number of antenna ports in the configuration for CSI-RS resource mapping (CSI-RS-ResourceMapping). The base station may set the size of the port selection codebook through the 'portSelectionSamplingSize' parameter. That is, the 'portSelectionSamplingSize' parameter specifies an interval (eg, 1, 2, 3, 4) between candidate beam selections. In addition, the base station may set the restriction on the RI through the 'typeII-PortSelectionRI-Restriction' parameter.
향상된 타입 II 코드북은 최대 랭크 4를 지원한다. 기지국은 'n1-n2-codebookSubsetRestriction-r16'파라미터를 통해 제1 차원(first dimension) 내 안테나 포트의 수(n1), 제2 차원(second deminsion) 내 안테나 포트의 수(n2)와 코드북 서브셋 제한(codebook subset restriction)을 설정할 수 있다. 또한, 기지국은 'typeII-RI-Restriction-r16'파라미터를 통해 RI에 대한 제한을 설정할 수 있다.Enhanced Type II codebook supports up to rank 4. The base station through the 'n1-n2-codebookSubsetRestriction-r16' parameter, the number of antenna ports in the first dimension (n1), the number of antenna ports in the second dimension (second deminsion) (n2) and the codebook subset restriction ( codebook subset restriction) can be set. In addition, the base station may set the restriction on RI through the 'typeII-RI-Restriction-r16' parameter.
향상된 타입 II 포트 선택 코드북은 최대 랭크 4를 지원한다. CSI-RS 전송을 위해 사용되는 안테나 포트의 수는 CSI-RS 자원 매핑을 위한 설정(CSI-RS-ResourceMapping) 내 안테나 포트 수에 대한 파라미터/정보(nrofPorts)를 이용하여 설정된다. 기지국은 'portSelectionSamplingSize-r16' 파라미터를 통해 포트 선택 코드북의 크기를 설정할 수 있다. 즉, 'portSelectionSamplingSize-r16' 파라미터는 후보 빔(beam) 선택들 간의 간격(예를 들어, 1, 2, 3, 4)를 특정한다. 또한, 기지국은 'typeII-PortSelectionRI-Restriction-r16' 파라미터를 통해 RI에 대한 제한을 설정할 수 있다.The enhanced Type II port selection codebook supports up to rank 4. The number of antenna ports used for CSI-RS transmission is set using parameters/information (nrofPorts) for the number of antenna ports in the configuration for CSI-RS resource mapping (CSI-RS-ResourceMapping). The base station may set the size of the port selection codebook through the 'portSelectionSamplingSize-r16' parameter. That is, the 'portSelectionSamplingSize-r16' parameter specifies an interval (eg, 1, 2, 3, 4) between candidate beam selections. In addition, the base station may set the restriction on the RI through the 'typeII-PortSelectionRI-Restriction-r16' parameter.
앞서 설명한 바와 같이, 단말은 코드북 설정(CodebookConfig)을 통해 PMI 보고에 대한 코드북 타입을 식별하고, CSI-RS 자원에 대하여 설정된 코드북 타입에 기반하여 계산된(도출된) PMI 및/또는 RI를 기지국에게 보고할 수 있다. 그리고, 단말은 기지국에게 보고한 PMI 및/또는 RI에 기반하여/조건하에 CQI를 계산할 수 있다. As described above, the terminal identifies the codebook type for PMI report through the codebook configuration (CodebookConfig), and provides (derived) PMI and/or RI calculated based on the codebook type set for the CSI-RS resource to the base station. can report And, the UE may calculate the CQI based on/under the PMI and/or RI reported to the base station.
즉, 예를 들어, 상술한 실시예에서 각 NZP CSI-RS resource에 대해서 랭크(rank) 수(즉, 전송 레이어(transmission layer) 및/또는 포트(port) 수) 및/또는 프리코딩 행렬(precoding matrix)에 대한 가정을 서로 다르게 적용한다는 것은, 각 NZP CSI-RS resource에 대해서 CSI 보고 설정 내 서로 다른 코드북(codebook) 설정(즉, codebookConfig 파라미터)을 설정될 수 있다는 것으로 해석될 수 있다. That is, for example, for each NZP CSI-RS resource in the above-described embodiment, the number of ranks (ie, the number of transport layers and/or ports) and/or the precoding matrix (precoding). matrix) differently, it can be interpreted that different codebook settings (that is, codebookConfig parameters) in the CSI reporting settings for each NZP CSI-RS resource can be set.
- 상기의 실시예에서 CSI에 대한 예로 RI/PMI/CQI를 서술하였지만, 이와 더불어 LI/CRI/참조 신호 수신 파워(RSRP: reference signal received power)/SINR 등도 역시 고려될 수 있다. - Although RI/PMI/CQI has been described as an example of CSI in the above embodiment, LI/CRI/reference signal received power (RSRP)/SINR may also be considered.
- 상기의 실시예에서, 기지국은 L1/L2 시그널링에 기반하여 상기 설정(즉, 단일 보고 셋팅 내 서로 다른 NZP CSI-RS resource 설정 및 서로 다른 NZP CSI-RS resource에 대한 CSI 계산 시 가정되는 랭크(rank) 수 및/또는 프리코딩 행렬)을 단말에게 설정/지시할 수 있다. 그리고/또는 상기 설정은 기지국과 단말 사이에 고정된 규칙으로 정의될 수 있다(즉, 이 경우 기지국에 의한 별도의 시그널링은 없을 수 있다).- In the above embodiment, the base station is based on the L1/L2 signaling in the setting (ie, different NZP CSI-RS resource settings in a single report setting and CSI calculation for different NZP CSI-RS resources in a rank assumed when calculating ( rank) number and/or precoding matrix) may be set/indicated to the UE. And/or the configuration may be defined as a fixed rule between the base station and the terminal (that is, in this case, there may be no separate signaling by the base station).
- 상기의 제안 방법에서 '보고 셋팅(reporting setting)'이라 함은 CSI 보고의 특성을 설정하기 위한 상위 계층 파라미터(즉, 정보 요소(IE: information element))인 'CSI-ReportConfig'를 의미할 수 있다. 앞서 표 7과 같이, CSI-ReportConfig는 채널 측정 자원(CMR: channel measurement resource)(즉, resourcesForChannelMeasurement 파라미터)를 포함할 수 있다. resourcesForChannelMeasurement 파라미터는 채널 측정을 위한 자원을 나타내며, CSI 자원 설정(CSI-ResourceConfig)의 CSI 자원 설정 식별자(ID: identity)(csi-ResourceConfigId)를 나타낸다. 또한, CSI-ReportConfig는 간섭 측정 자원(IMR: interference measurement resource)(즉, csi-IM-ResourcesForInterference 파라미터)를 포함할 수 있다. csi-IM-ResourcesForInterference 파라미터는 간섭 측정을 위한 CSI IM 자원을 나타내며, CSI 자원 설정(CSI-ResourceConfig)의 CSI 자원 설정 식별자(ID: identity)(csi-ResourceConfigId)를 나타낸다. CSI-ReportConfig는 보고량(즉, reportQuantity 파라미터)을 포함할 수 있다. reportQuantity 파라미터는 보고할 CSI 관련 양(quantities)을 나타낸다. 또한, CSI-ReportConfig는 코드북(codebook) 설정(즉, codebookConfig 파라미터)을 포함할 수 있다. 코드북(codebook) 설정은 코드 북 타입-1 또는 서브셋 제한을 포함하는 코드 북 타입-2의 코드북 설정을 나타내며, 코드북 타입(예를 들어, 타입(Type) I)/ 향상된(enhanced) 타입(Type) II 코드북 등)에 대한 설정 파라미터를 포함한다. 또한, 앞서 표 7의 예시와 같이 위에서 언급하지 않은 정보도 CSI-ReportConfig에 포함될 수 있다. - In the proposed method, 'reporting setting' refers to 'CSI-ReportConfig', which is a higher layer parameter (ie, information element (IE)) for setting the characteristics of CSI reporting. have. As shown in Table 7 above, CSI-ReportConfig may include a channel measurement resource (CMR) (ie, resourcesForChannelMeasurement parameter). The resourcesForChannelMeasurement parameter indicates a resource for channel measurement, and indicates a CSI resource configuration identifier (ID: identity) (csi-ResourceConfigId) of a CSI resource configuration (CSI-ResourceConfig). In addition, CSI-ReportConfig may include an interference measurement resource (IMR) (ie, csi-IM-ResourcesForInterference parameter). The csi-IM-ResourcesForInterference parameter indicates a CSI IM resource for interference measurement, and indicates a CSI resource configuration identifier (ID: identity) (csi-ResourceConfigId) of a CSI resource configuration (CSI-ResourceConfig). CSI-ReportConfig may include a report amount (ie, reportQuantity parameter). The reportQuantity parameter indicates CSI-related quantities to be reported. Also, the CSI-ReportConfig may include a codebook configuration (ie, a codebookConfig parameter). Codebook setting indicates codebook setting of codebook type-1 or codebook type-2 including subset restrictions, codebook type (eg, Type I) / enhanced type (Type) II codebook, etc.). In addition, as in the example of Table 7 above, information not mentioned above may also be included in the CSI-ReportConfig.
- 상기의 실시예에서 '서로 다른 NZP CSI-RS resource'는 모두 (원하는(desired)) 의도하는 전송 레이어(들)(intended transmission layer(s))에 대응한다고 단말은 가정할 수 있다. 현재 표준에서는 CSI를 계산할 때 (원하는(desired)) 의도하는 전송 레이어(들)(intended transmission layer(s))는 단일 NZP CSI-RS 자원에 포함되는 것으로 가정한다. 현재 표준에 따르면, 단말은 코드북 타입(예를 들어, 타입 II('typeII'), 타입 II 포트 선택('typeII-PortSelection'), 릴리즈-16 타입 II('typeII-r16') 또는 릴리즈-16 타입 II 포트 선택('typeII-PortSelection-r16')을 가지는, CSI 보고 설정(CSI-ReportConfig)에 대한 채널 측정을 위한 자원 세트 내에서 하나 이상의 CSI-RS 자원이 설정되는 것을 기대하지 않는다. - In the above embodiment, the UE may assume that all 'different NZP CSI-RS resources' correspond to (desired) intended transmission layer(s) (intended transmission layer(s)). In the current standard, when calculating CSI (desired), it is assumed that the intended transmission layer(s) (intended transmission layer(s)) is included in a single NZP CSI-RS resource. According to the current standard, the terminal is a codebook type (eg, type II ('typeII'), type II port selection ('typeII-PortSelection'), release-16 type II ('typeII-r16') or release-16 It is not expected that one or more CSI-RS resources are configured in a resource set for channel measurement for a CSI report configuration (CSI-ReportConfig) having a type II port selection ('typeII-PortSelection-r16').
예를 들어, CQI 값은 신호 대 간섭 및 잡음(signal to interference plus noise)에 대한 비율에 대한 값을 나타낸다. 이는 단말은 자신이 원하는 신호 파워 측정과 간섭 및 잡음(interference plus noise) 파워 측정을 모두 완료해야 하는 것을 의미할 수 있다. 여기서, 원하는 신호 측정은 NZP CSI-RS를 이용하여 측정될 수 있다. 관련된 NZP CSI-RS는 CSI 보고 설정(CSI-ReportConfig) 내 채널을 측정을 위한 자원(resourcesForChannelMeasurement)에 의해 식별된다. 간섭 및 잡음(interference plus noise) 측정은 CSI 간섭 측정(IM: interference measurement) 자원 및/또는 간섭 측정을 위한 NZP CSI-RS을 이용하여 측정될 수 있다. 이들 자원들은 CSI 보고 설정(CSI-ReportConfig) 내 간섭 측정을 위한 CSI-IM 자원(csi-IM-ResourcesForInterference)과 간섭을 위한 NZP CSI-RS 자원(nzp-CSI-RS-ResourcesForInterference)에 의해 식별될 수 있다. For example, the CQI value represents a value for a ratio to signal to interference plus noise. This may mean that the UE needs to complete both signal power measurement and interference plus noise power measurement desired by the UE. Here, the desired signal measurement may be measured using the NZP CSI-RS. The related NZP CSI-RS is identified by the resource (resourcesForChannelMeasurement) for measuring the channel in the CSI report configuration (CSI-ReportConfig). Interference and noise (interference plus noise) measurement may be measured using an interference measurement (IM) resource and/or NZP CSI-RS for interference measurement. These resources can be identified by the CSI-IM resource (csi-IM-ResourcesForInterference) and the NZP CSI-RS resource for interference (nzp-CSI-RS-ResourcesForInterference) in the CSI report configuration (CSI-ReportConfig). have.
반면, 본 실시예에 따르면, 다수의 resource를 고려한다는 점이 현재 표준과의 차이점으로 볼 수 있다. 즉, 예를 들어, '서로 다른 NZP CSI-RS resource'가 모두 (원하는(desired)) 의도하는 전송 레이어(들)(intended transmission layer(s))에 대응한다고 단말은 가정한다는 것은, CSI 보고 설정 내 서로 다른 코드북(codebook) 설정(즉, codebookConfig 파라미터)을 가지는 다수의 채널 측정을 위한 CSI 자원(resourcesForChannelMeasurement)이 설정될 수 있다는 것을 의미할 수 있다. On the other hand, according to this embodiment, it can be seen as a difference from the current standard that a plurality of resources are considered. That is, for example, the UE assumes that 'different NZP CSI-RS resources' correspond to all (desired) intended transmission layer(s) (intended transmission layer(s)), CSI report configuration It may mean that CSI resources (resourcesForChannelMeasurement) for measuring multiple channels having different codebook settings (ie, codebookConfig parameters) may be configured.
실시예 #1-1: 상기의 실시예에서 'precoding matrix에 대한 가정'으로 특정 NZP CSI-RS resource(이하, 제1 CSI resource로 지칭)에 대해서 (특정 스케일링(scaling) 값이 적용된) 단위 행렬(Identity matrix)을 가정하도록 설정/지시/정의될 수 있다. 즉, 단말이 특정 NZP CSI-RS resource에 대하여 CSI 계산 시, 프리코딩 행렬로 상기 단위 행렬(Identity matrix)을 가정하여 CSI 계산을 하도록 설정/지시/정의될 수 있다. Example #1-1: For a specific NZP CSI-RS resource (hereinafter, referred to as a first CSI resource) as 'assume for the precoding matrix' in the above embodiment (a specific scaling value is applied) unit matrix It can be set/directed/defined to assume (Identity matrix). That is, when the UE calculates CSI for a specific NZP CSI-RS resource, it may be configured/instructed/defined to perform CSI calculation assuming the identity matrix as a precoding matrix.
상기 특정 NZP CSI-RS resource(제1 CSI resource) 이외의 resource(이하, 제2 CSI resource)에 대해서는 특정 코드북(예를 들어, Type I/ (향상된) Type II 코드북 등)을 가정하도록 설정/지시/정의될 수 있다. 여기서, 상기 제2 CSI resource의 경우, 상기 특정 codebook에 대해서 단말이 특정 RI/PMI를 보고하도록 설정/지시/정의될 수 있다. 상기의 제안 방법을 가정하는 경우, 상기 특정 resource(즉, 제1 CSI resource)에 대해서는 단위 행렬(identity matrix)을 가정할 수 있으므로, 단말은 상기 특정 resource(즉, 제1 CSI resource)에 대해서는 프리코딩 행렬에 대한 별도의 보고를 기지국에게 수행하지 않을 수 있다. 즉, 단말은 제1 CSI resource에 대해서는 PMI(및/또는 RI)를 기지국에게 보고하지 않을 수 있다. 그리고, 단말은 상기 단위 행렬(identity matrix)에 대응하지 않는 resource(즉, 제2 CSI resource)에 대해서만 RI/PMI를 기지국에게 보고할 수 있다. 이에 따라, CSI 보고에 대한 시그널링 오버헤드를 감소시킬 수 있는 효과가 있다. For resources other than the specific NZP CSI-RS resource (the first CSI resource) (hereinafter, the second CSI resource), a specific codebook (eg, Type I/ (enhanced) Type II codebook, etc.) /can be defined Here, in the case of the second CSI resource, it may be configured/indicated/defined so that the UE reports a specific RI/PMI for the specific codebook. When the proposed method is assumed, since an identity matrix can be assumed for the specific resource (ie, the first CSI resource), the terminal is free for the specific resource (ie, the first CSI resource) A separate report on the coding matrix may not be performed to the base station. That is, the UE may not report the PMI (and/or RI) to the base station for the first CSI resource. In addition, the terminal may report the RI/PMI to the base station only for a resource (ie, the second CSI resource) that does not correspond to the identity matrix. Accordingly, there is an effect of reducing signaling overhead for CSI reporting.
단말이 특정 resource(즉, 제1 CSI resource)에 대해서 identity matrix를 가정할 수 있는 이유는, 기지국이 특정 TRP에 대해서 이미 적절한 프리코딩 행렬을 선택하였고(UL 신호를 통해 및/또는 별도의 CSI 피드백 등을 통해), 선택한 프리코딩 행렬이 상기 resource(즉, 제1 CSI resource)의 NZP CSI-RS 포트(들)에 이미 반영이 되었기 때문으로 볼 수 있다. 보다 상세한 설명은 후술한다. The reason why the UE can assume the identity matrix for a specific resource (ie, the first CSI resource) is that the base station has already selected an appropriate precoding matrix for a specific TRP (via UL signal and/or separate CSI feedback) etc.), the selected precoding matrix can be considered because it has already been reflected in the NZP CSI-RS port (s) of the resource (ie, the first CSI resource). A more detailed description will be given later.
실시예 #1-2: 상기의 제안 방법에서 'rank 수에 대한 가정'으로 특정 NZP CSI-RS resource에 설정된 안테나 포트 수를 랭크 수로 가정하도록 설정/지시/정의될 수 있다. 그리고, 상기의 rank 수는 단말이 CSI를 계산할 때 고정된 값으로 적용하도록 설정/지시/정의될 수 있다. 그리고/ 또는 rank 수를 바꾸어가며 단말이 CSI를 계산하고, 단말이 선호하는 (최적의) rank 수를 기지국으로 보고하도록 설정/지시/정의될 수 있다. 단말이 최적의 rank 수를 기지국으로 보고할 수 있는 경우, multi-TRP 전송 시에 TRP간 간섭을 반영하여 최적의 rank 수를 보고할 수 있다는 장점을 가질 수 있다. 또는, 단말이 최적의 rank 수를 기지국으로 보고할 때/보고하기 위하여, 단말이 선호하는 (최적의) 안테나 포트(s)(및/또는 레이어(수))에 대한 정보를 기지국으로 보고하도록 설정/지시/정의될 수 있다. 그리고, 상기 제안 방법이 적용되는 특정 NZP CSI-RS resource는 프리코딩 행렬을 단위 행렬(identity matrix)로 가정하는 resource에 대응할 수 있다. 보다 상세한 설명은 후술한다.Embodiment #1-2: In the above proposed method, it may be configured/indicated/defined to assume the number of antenna ports configured in a specific NZP CSI-RS resource as the number of ranks as 'assume for the number of ranks'. In addition, the number of ranks may be set/indicated/defined to be applied as a fixed value when the UE calculates CSI. And/or it may be configured/indicated/defined so that the UE calculates CSI while changing the number of ranks, and reports the number of (optimal) ranks preferred by the UE to the base station. When the UE can report the optimal rank number to the base station, it may have the advantage of being able to report the optimal rank number by reflecting inter-TRP interference during multi-TRP transmission. Or, when the UE reports/reports the optimal rank number to the base station, the UE is configured to report information on the preferred (optimal) antenna port (s) (and/or layer (number)) to the base station /directed/can be defined. And, the specific NZP CSI-RS resource to which the proposed method is applied may correspond to a resource assuming that the precoding matrix is an identity matrix. A more detailed description will be given later.
실시예 #1-3: 상기의 실시예에서 단말이 기지국으로 보고하는 값의 일 예로 다음을 들 수 있다. Embodiment #1-3: In the above embodiment, an example of a value reported by the terminal to the base station may be as follows.
예를 들어, 하나 이상의 CRI 값, 및/또는 특정 코드북 타입(codebook type)이 설정/지시/정의된 NZP CSI-RS resource에 대한 PMI(여기서, PMI는 상기의 CRI 값 중 하나에 대응할 수 있음), 및/또는 RI(상기 특정 코드북 타입(codebook type)이 설정/지시/정의된 resource에 대한 대응할 수 있음. 또는, CRI로 선택된 resource들에 대한 총 RI 값), 및/또는 CQI 등을 포함하는 CSI를 단말이 기지국에게 보고할 수 있다. For example, one or more CRI values, and / or a specific codebook type (codebook type) is set / indicated / PMI for the defined NZP CSI-RS resource (here, PMI may correspond to one of the CRI values above) , and / or RI (the specific codebook type (codebook type) may correspond to a set / indicated / defined resource. Or, the total RI value for resources selected as CRI), and / or CQI, etc. The UE may report CSI to the base station.
또한, 추가로 precoding matrix로 단위 행렬(identity matrix)을 가정하는 NZP CSI-RS resource에 대해서, 포트 선택(port selection) 정보가 보고될 수 있다. 예를 들어, 하나 이상의 CRI 값, 및/또는 특정 코드북 타입(codebook type)이 설정/지시/정의된 NZP CSI-RS resource에 대한 PMI(여기서, PMI는 상기의 CRI 값 중 하나에 대응할 수 있음), 및/또는 RI(상기 특정 코드북 타입(codebook type)이 설정/지시/정의된 resource에 대한 대응할 수 있음. 또는, CRI로 선택된 resource들에 대한 총 RI 값), 및/또는 CQI, 및/또는 특정 코드북 타입(codebook type)이 설정/지시/정의되지 않은 NZP CSI-RS resource(예를 들어, precoding matrix로 단위 행렬(identity matrix)을 가정하는 resource)에 대한 포트 인덱스(들) 등을 포함하는 CSI를 단말이 기지국에게 보고할 수 있다. In addition, for the NZP CSI-RS resource assuming an identity matrix as an additional precoding matrix, port selection (port selection) information may be reported. For example, one or more CRI values, and / or a specific codebook type (codebook type) is set / indicated / PMI for the defined NZP CSI-RS resource (here, PMI may correspond to one of the CRI values above) , and / or RI (the specific codebook type (codebook type) may correspond to a set / indicated / defined resource. Or, the total RI value for resources selected as CRI), and / or CQI, and / or A specific codebook type (codebook type) is not set / indicated / defined NZP CSI-RS resource (e.g., a resource that assumes an identity matrix as a precoding matrix) port index (s), etc. The UE may report CSI to the base station.
실시예 #1-4: 상기의 실시예에서 '서로 다른 NZP CSI-RS resource'를 단일 보고 셋팅(reporting setting)/CSI 보고 설정(예를 들어, CSI-ReportConfig)에서 설정할 수 있는 방법의 예는 다음과 같다.Embodiment #1-4: In the above embodiment, 'different NZP CSI-RS resources' in a single reporting setting / CSI reporting setting (eg, CSI-ReportConfig) An example of a method that can be set As follows.
예시 1: 서로 다른 자원 셋팅(resource setting)으로 설정되는 방법Example 1: How to set with different resource settings
여기서, 자원 셋팅('resource setting')이라 함은 CSI 자원 특성을 설정하기 위한 상위 계층 파라미터/IE인 CSI-ResourceConfig를 의미할 수 있다.Here, the resource setting ('resource setting') may mean CSI-ResourceConfig which is a higher layer parameter/IE for setting CSI resource characteristics.
여기서, 서로 다른 모든 resource는 채널 측정(CM: channel measurement) 용도로 설정될 수 있다. 또는, 서로 다른 resource들의 일부는 채널 측정 용도로 설정되고 나머지는 간섭 측정(IM: interference measurement) 용도로 설정될 수 있다. Here, all different resources may be set for channel measurement (CM: channel measurement) purpose. Alternatively, some of the different resources are set for channel measurement and the rest may be set for interference measurement (IM).
예를 들어, 2개의 resource가 설정되는 경우(즉, 2개의 자원 셋팅이 설정되는 경우), 각각의 resource는 채널 측정 용 자원 셋팅과 간섭 측정 용 resource setting으로 설정될 수 있다. For example, when two resources are configured (ie, when two resource settings are configured), each resource may be set as a resource setting for channel measurement and a resource setting for interference measurement.
또는, 2개의 resource가 설정되는 경우(즉, 2개의 자원 셋팅이 설정되는 경우), 각각의 resource는 CM 용 resource setting으로 설정될 수 있다. Or, when two resources are set (ie, when two resource settings are set), each resource may be set as a resource setting for CM.
여기서, 각각의 resource는 단일/복수의 resource setting에 기반하여 설정될 수 있다. Here, each resource may be set based on a single/plural resource setting.
예를 들어, 단일 보고 셋팅(reporting setting)/CSI 보고 설정(예를 들어, CSI-ReportConfig)에서 서로 다른 NZP CSI-RS resource를 설정한다는 것은, 채널 측정을 위한 자원(예를 들어, resourcesForChannelMeasurement)이 복수 개 설정되는 것을 의미할 수 있다. 즉, 복수의 CSI 자원 설정(e.g. CSI-ResourceConfig)이 상기 reporting setting에 포함되는 것을 의미할 수 있다. For example, setting a different NZP CSI-RS resource in a single reporting setting / CSI reporting setting (eg, CSI-ReportConfig) means that the resource for channel measurement (eg, resourcesForChannelMeasurement) is It may mean that a plurality of settings are made. That is, it may mean that a plurality of CSI resource configurations (e.g. CSI-ResourceConfig) are included in the reporting setting.
예를 들어, 각 CSI 자원 설정과 연관된 인덱스/식별자(ID: identity)(예를 들어, CSI-ResourceConfigID)에 기반하여 서로 다른 TRP에 대한 CSI 측정을 위한 NZP CSI-RS resource가 결정될 수 있다. 예를 들어, 서로 다른 CSI 자원 설정과 연관된 인덱스/ID(예를 들어, CSI-ResourceConfigID)와 다수의 TRP와 연관된 인덱스(예를 들어, TRP ID/ CORESET 풀 인덱스(CORESETPoolIndex))는 오름차순/내림차순으로 대응될 수 있다. 일례로, CSI-ResourceConfigID=1 은 TRP ID=1/CORESETPoolIndex=0에 대응되고, CSI-ResourceConfigID=2 은 TRP ID=2/CORESETPoolIndex=1에 대응될 수 있다. 그리고/또는, 서로 다른 CSI 자원 설정과 연관된 인덱스/ID(예를 들어, CSI-ResourceConfigID)는 기지국과 단말 사이의 고정된 규칙에 기반하여 서로 다른 TRP에 대응할 수 있다. 예를 들어, CSI 자원 설정과 연관된 인덱스가 reporting setting에 설정되는 순서에 기반하여 오름차순/내림차순으로 대응할 수 있다. 예를 들어, CSI 자원 설정과 연관된 첫 번째 인덱스, 두 번째 인덱스를 각각 첫 번째 TRP, 두 번째 TRP에 대응시킬 수 있다. 그리고/또는, 기지국은 상기 대응 관계를 단말에게 알려주기 위한 별도의 설정/지시를 단말에게 전달될 수 있다. UE는 각 TRP에 대응하는 CSI 자원 설정에 기반하여 CSI를 계산할 수 있다. For example, NZP CSI-RS resource for CSI measurement for different TRPs based on an index / identifier (ID: identity) (eg, CSI-ResourceConfigID) associated with each CSI resource configuration can be determined. For example, the index / ID associated with different CSI resource settings (eg, CSI-ResourceConfigID) and the index associated with multiple TRPs (eg, TRP ID / CORESET pool index (CORESETPoolIndex)) are in ascending / descending order can be matched. For example, CSI-ResourceConfigID=1 may correspond to TRP ID=1/CORESETPoolIndex=0, and CSI-ResourceConfigID=2 may correspond to TRP ID=2/CORESETPoolIndex=1. And/or, index/ID (eg, CSI-ResourceConfigID) associated with different CSI resource configurations may correspond to different TRPs based on a fixed rule between the base station and the terminal. For example, the index associated with the CSI resource setting may correspond in ascending/descending order based on the order in which the index is set in the reporting setting. For example, the first index and the second index associated with the CSI resource configuration may correspond to the first TRP and the second TRP, respectively. And/or, the base station may transmit a separate setting/instruction for informing the terminal of the correspondence relationship to the terminal. The UE may calculate CSI based on the CSI resource configuration corresponding to each TRP.
예시 2: 단일 보고 셋팅(reporting setting)/CSI 보고 설정(예를 들어, CSI-ReportConfig)에서 서로 다른 NZP CSI-RS resource를 설정한다는 것은, 단일 자원 셋팅(resource setting)/CSI 자원 설정(예를 들어, CSI-ResourceConfig) 내에서 서로 다른 자원 세트(resource set)에 속하는 NZP CSI-RS resource가 설정된다는 것을 의미할 수 있다. 즉, 단일 보고 셋팅/CSI 보고 설정에서는 단일의 자원 셋팅/CSI 자원 설정이 설정/연관되고, 해당 단일의 자원 셋팅/CSI 자원 설정 내에서 서로 다른 NZP-CSI-RS resource set들에 연관된 NZP CSI-RS resource가 설정될 수 있다. Example 2: Setting a different NZP CSI-RS resource in a single reporting setting / CSI reporting setting (eg, CSI-ReportConfig) is a single resource setting (resource setting) / CSI resource setting (eg For example, it may mean that NZP CSI-RS resources belonging to different resource sets are configured in CSI-ResourceConfig). That is, in a single reporting setting / CSI reporting setting, a single resource setting / CSI resource setting is configured / associated, and NZP CSI- associated with different NZP-CSI-RS resource sets within the single resource setting / CSI resource setting. RS resource may be configured.
예를 들어, 자원 셋팅/CSI 자원 설정(예를 들어, CSI-ResourceConfig)은 하나 이상의 NZP CSI-RS 자원 세트(NZP-CSI-RS-Resourceset)/ CSI-IM 자원 세트(CSI-IM-Resourceset)/ CSI-SSB 자원 세트(CSI-SSB-Resourceset)의 그룹에 대한 설정을 포함한다. 여기서, 서로 다른 NZP CSI-RS 자원 세트(NZP-CSI-RS-Resourceset) 내에서 각각 NZP-CSI-RS-Resource들이 설정됨으로써, 서로 다른 NZP-CSI-RS-Resource들이 단일 보고 셋팅(reporting setting)/CSI 보고 설정(예를 들어, CSI-ReportConfig)에서 설정될 수 있다. For example, resource setting / CSI resource configuration (eg, CSI-ResourceConfig) is one or more NZP CSI-RS resource set (NZP-CSI-RS-Resourceset) / CSI-IM resource set (CSI-IM-Resourceset) / Includes the setting for the group of CSI-SSB resource set (CSI-SSB-Resourceset). Here, by setting each NZP-CSI-RS-Resources in different NZP CSI-RS resource sets (NZP-CSI-RS-Resourceset), different NZP-CSI-RS-Resources are single reporting setting (reporting setting) It may be configured in /CSI reporting configuration (eg, CSI-ReportConfig).
예를 들어, 자원 셋팅/CSI 보고 설정(예를 들어, CSI-ResourceConfig) 내 복수의 NZP-CSI-RS resource set들이 설정될 수 있고, 각 resource set과 연관된 ID에 기반하여 서로 다른 TRP에 대한 CSI 측정을 위한 NZP CSI-RS resource(/resource set)가 결정될 수 있다. 예를 들어, resource set과 연관된 ID(예를 들어, NZP-CSI-RS-ResourceSetID)와 다수의 TRP와 연관된 인덱스(예를 들어, TRP ID/ CORESET 풀 인덱스(CORESETPoolIndex))가 오름차순/내림차순으로 대응될 수 있다. 일례로, NZP-CSI-RS-ResourceSetID=1 은 TRP ID=1/CORESETPoolIndex=0에 대응되고, NZP-CSI-RS-ResourceSetID=2 은 TRP ID=2/CORESETPoolIndex=1에 대응될 수 있다. 그리고/또는, resource set과 연관된 ID(예를 들어, NZP-CSI-RS-ResourceSetID)는 기지국과 단말 사이의 고정된 규칙에 기반하여 서로 다른 TRP에 대응할 수 있다. 예를 들어, resource set과 연관된 ID가 resource setting에 설정되는 순서에 기반하여 오름차순/내림차순으로 대응할 수 있다. 예를 들어, resource set 과 연관된 첫 번째 ID, 두 번째 ID를 각각 첫 번째 TRP, 두 번째 TRP에 대응시킬 수 있다. 그리고/또는, 기지국은 상기 대응 관계를 단말에게 알려주기 위한 별도의 설정/지시를 단말에게 전달할 수 있다. UE는 각 TRP에 대응하는 resource set에 기반하여 CSI를 계산할 수 있다. For example, a plurality of NZP-CSI-RS resource sets in the resource setting / CSI reporting configuration (eg, CSI-ResourceConfig) may be configured, and CSI for different TRPs based on the ID associated with each resource set NZP CSI-RS resource (/resource set) for measurement may be determined. For example, an ID associated with a resource set (eg, NZP-CSI-RS-ResourceSetID) and an index associated with multiple TRPs (eg, TRP ID/ CORESET pool index (CORESETPoolIndex)) correspond in ascending/descending order can be As an example, NZP-CSI-RS-ResourceSetID=1 may correspond to TRP ID=1/CORESETPoolIndex=0, and NZP-CSI-RS-ResourceSetID=2 may correspond to TRP ID=2/CORESETPoolIndex=1. And/or, ID associated with the resource set (eg, NZP-CSI-RS-ResourceSetID) may correspond to different TRPs based on a fixed rule between the base station and the terminal. For example, IDs associated with a resource set may respond in ascending/descending order based on the order in which they are set in the resource setting. For example, the first ID and the second ID associated with the resource set may correspond to the first TRP and the second TRP, respectively. And/or, the base station may transmit a separate setting/instruction for informing the terminal of the correspondence relationship to the terminal. The UE may calculate CSI based on the resource set corresponding to each TRP.
예시 3: 단일 보고 셋팅(reporting setting)/CSI 보고 설정(예를 들어, CSI-ReportConfig)에서 서로 다른 NZP CSI-RS resource를 설정한다는 것은, 단일 자원 셋팅(resource setting)/CSI 자원 설정(예를 들어, CSI-ResourceConfig) 내 단일 resource set 내에서 서로 다른 NZP CSI-RS resource 설정된다는 것을 의미할 수 있다. 예를 들어, 자원 셋팅/CSI 자원 설정(예를 들어, CSI-ResourceConfig) 내 단일 resource set(예를 들어, NZP-CSI-RS-ResourceSet)은 하나 이상의 NZP-CSI-RS-Resource들 및 관련 파라미터를 포함한다. 여기서, 단일 resource set(예를 들어, NZP-CSI-RS-ResourceSet) 내 서로 다른 NZP-CSI-RS-Resource들이 단일 보고 셋팅(reporting setting)/CSI 보고 설정(예를 들어, CSI-ReportConfig)에서 설정될 수 있다. Example 3: Setting a different NZP CSI-RS resource in a single reporting setting / CSI reporting setting (eg, CSI-ReportConfig) is a single resource setting (resource setting) / CSI resource setting (eg For example, it may mean that different NZP CSI-RS resources are set within a single resource set in CSI-ResourceConfig). For example, a single resource set (eg, NZP-CSI-RS-ResourceSet) in resource setting / CSI resource configuration (eg, CSI-ResourceConfig) is one or more NZP-CSI-RS-Resources and related parameters includes Here, different NZP-CSI-RS-Resources within a single resource set (eg, NZP-CSI-RS-ResourceSet) in a single reporting setting / CSI reporting setting (eg, CSI-ReportConfig) can be set.
예를 들어, 각 NZP-CSI-RS-Resource와 연관된 ID(예를 들어, NZP-CSI-RS-ResourceID)에 기반하여 서로 다른 TRP에 대한 CSI 측정을 위한 NZP CSI-RS resource가 결정될 수 있다. 예를 들어, resource와 연관된 ID(예를 들어, NZP-CSI-RS-ResourceID)와 다수의 TRP와 연관된 인덱스(예를 들어, TRP ID/ CORESET 풀 인덱스(CORESETPoolIndex)) 가 오름차순/내림차순으로 대응될 수 있다. 일례로, NZP-CSI-RS-ResourceID =1 은 TRP ID=1/CORESETPoolIndex=0에 대응되고, NZP-CSI-RS-ResourceID=2 은 TRP ID=2/CORESETPoolIndex=1에 대응될 수 있다. 그리고/또는, NZP-CSI-RS-Resource와 연관된 ID(예를 들어, NZP-CSI-RS-ResourceID)는 기지국과 단말 사이의 고정된 규칙에 기반하여 서로 다른 TRP에 대응할 수 있다. 예를 들어, NZP-CSI-RS-Resource와 연관된 ID가 resource set에 설정되는 순서에 기반하여 오름차순/내림차순으로 대응할 수 있다. 예를 들어, NZP-CSI-RS-Resource와 연관된 첫 번째 ID, 두 번째 ID를 각각 첫 번째 TRP, 두 번째 TRP에 대응시킬 수 있다. 그리고/또는, 기지국은 상기 대응 관계를 단말에게 알려주기 위한 별도의 설정/지시를 단말에게 전달할 수 있다. UE는 각 TRP에 대응하는 NZP-CSI-RS-Resource에 기반하여 CSI를 계산할 수 있다. For example, based on the ID associated with each NZP-CSI-RS-Resource (eg, NZP-CSI-RS-ResourceID), NZP CSI-RS resource for CSI measurement for different TRPs may be determined. For example, the ID associated with the resource (eg, NZP-CSI-RS-ResourceID) and the index associated with a number of TRPs (eg, TRP ID / CORESET pool index (CORESETPoolIndex)) will be mapped in ascending / descending order can As an example, NZP-CSI-RS-ResourceID=1 may correspond to TRP ID=1/CORESETPoolIndex=0, and NZP-CSI-RS-ResourceID=2 may correspond to TRP ID=2/CORESETPoolIndex=1. And/or, the ID associated with the NZP-CSI-RS-Resource (eg, NZP-CSI-RS-ResourceID) may correspond to different TRPs based on a fixed rule between the base station and the terminal. For example, the ID associated with the NZP-CSI-RS-Resource may respond in ascending/descending order based on the order in which the resource set is set. For example, the first ID and the second ID associated with the NZP-CSI-RS-Resource may correspond to the first TRP and the second TRP, respectively. And/or, the base station may transmit a separate setting/instruction for informing the terminal of the correspondence relationship to the terminal. The UE may calculate CSI based on the NZP-CSI-RS-Resource corresponding to each TRP.
도 9는 본 개시의 일 실시예에 따른 CSI 보고 절차를 예시한다. 9 illustrates a CSI reporting procedure according to an embodiment of the present disclosure.
도 9(a)를 참조하면, 기지국(예를 들어, TRP#1)은 TRP#1에 대한 NZP CSI-RS resource를 TRP#1에서 단말에게 전송할 수 있다. 그리고, 단말은 상기 NZP CSI-RS resource에 기반하여 TRP#1에 대한 CSI(예를 들어, RI/PMI/CQI 등)를 기지국(예를 들어, TRP#1)으로 보고할 수 있다.Referring to FIG. 9( a ), the base station (eg, TRP#1) may transmit the NZP CSI-RS resource for TRP#1 to the terminal in TRP#1. In addition, the UE may report CSI (eg, RI/PMI/CQI, etc.) for TRP#1 to the base station (eg, TRP#1) based on the NZP CSI-RS resource.
도 9(b)를 참조하면, 기지국(예를 들어, TRP#2)은 TRP#2에 대한 CSI 획득을 위해서 TRP#2에서 NZP CSI-RS resource를 단말에게 전송할 수 있다. 여기서, 기지국은 상기 TRP#1에 대한 CSI 보고 값에 기반하여 RI/PMI을 적용한 NZP CSI-RS resource를 추가적으로(또는 함께) TRP#1에서 단말에게 전송할 수 있다. 따라서, 단말은 TRP#2에 대한 NZP CSI-RS resource를 수신할 때, TRP#1에 대한 NZP CSI-RS resource 역시 수신할 수 있다. 여기서, TRP#1에 대응하는 NZP CSI-RS resource에는 M-TRP 전송 시에 적용할 RI/PMI 값이 적용되어 있으므로, 단말은 M-TRP 전송 시 발생할 TRP 간 간섭의 영향이 반영된 CSI(예를 들어, RI/PMI/CQI)를 계산할 수 있다. Referring to FIG. 9(b), the base station (eg, TRP#2) may transmit an NZP CSI-RS resource to the terminal in TRP#2 to obtain CSI for TRP#2. Here, the base station may additionally (or together) transmit an NZP CSI-RS resource to which RI/PMI is applied to the terminal in TRP#1 based on the CSI report value for the TRP#1. Therefore, when the terminal receives the NZP CSI-RS resource for TRP#2, the NZP CSI-RS resource for TRP#1 may also be received. Here, since the RI/PMI value to be applied at the time of M-TRP transmission is applied to the NZP CSI-RS resource corresponding to TRP#1, the UE reflects the influence of the interference between TRPs that will occur during M-TRP transmission. For example, RI/PMI/CQI) may be calculated.
아래의 수학식 6은 도 9(a)에서 TRP#1의 NZP CSI-RS resource를 기반으로 SINR을 계산하는 예시를 나타낸다. 또한, 수학식 7은 도 9(b)에서 TRP#1/#2의 NZP CSI-RS resource를 기반으로 SINR을 계산하는 예시를 나타낸다. Equation 6 below shows an example of calculating SINR based on the NZP CSI-RS resource of TRP#1 in FIG. 9(a). In addition, Equation 7 shows an example of calculating the SINR based on the NZP CSI-RS resource of TRP#1/#2 in FIG. 9(b).
Figure PCTKR2021010338-appb-img-000006
Figure PCTKR2021010338-appb-img-000006
Figure PCTKR2021010338-appb-img-000007
Figure PCTKR2021010338-appb-img-000007
수학식 6을 참조하면, 단말이 SINR1을 계산할 때에는, 단말은 TRP#1에 대한 NZP CSI-RS resource의 NZP CSI-RS 포트(들)에 기반하여(즉, NZP CSI-RS 포트(들) 상에서 전송된 CSI-RS에 기반하여) DL 채널을 추정하고(예를 들어, H 1), 설정된 코드북(codebook)에 기반하여 가장 좋은 SINR을 갖는 RI/PMI 조합을 찾을 수 있다(예를 들어, W 1). 그리고, 단말은 이때의 유효 채널(예를 들어, H eff,1=H 1 W 1)의 SINR 값에 기반하여 그에 대응하는 CQI 값을 (함께) 기지국으로 보고할 수 있다.Referring to Equation 6, when the UE calculates SINR 1 , the UE is based on the NZP CSI-RS port(s) of the NZP CSI-RS resource for TRP#1 (ie, NZP CSI-RS port(s)) Estimate the DL channel (eg, H 1 ) and find the RI/PMI combination with the best SINR based on the configured codebook (eg, based on the CSI-RS transmitted on W 1 ). And, based on the SINR value of the effective channel (eg, H eff,1 = H 1 W 1 ) at this time, the UE may report the corresponding CQI value to the base station (together).
수학식 7을 참조하면, 단말이 SINR2를 계산할 때에는, TRP#1에 대한 NZP CSI-RS resource의 NZP CSI-RS 포트(들)에 대해서는 기지국단에서 프리코딩 행렬이 적용된 유효 채널(예를 들어, H eff,1=H 1 W 1)임을 가정함으로써, 단말 관점에서 프리코딩 행렬은 단위 행렬(Identity matrix)을 가정(예를 들어, H eff,1 I=H eff,1)할 수 있다. 그리고, 단말은 TRP#2에 대한 NZP CSI-RS resource의 NZP CSI-RS 포트(들)에 기반하여(즉, NZP CSI-RS 포트(들) 상에서 전송된 CSI-RS에 기반하여) DL 채널을 추정하고(예를 들어, H 2), 설정된 codebook에 기반하여 가장 좋은 SINR을 갖는 RI/PMI 조합을 찾을 수 있다(예를 들어, W 2). 그리고 단말은 이를 위해 상기 수학식 7의 SINR2에 대한 수식과 같이 TRP#1으로부터의 신호를 함께 고려할 수 있다. 단말은 가장 좋은 SINR 값을 갖는 RI/PMI 조합(예를 들어, W 2에 대한 정보) 및 CQI에 대해서 기지국으로 보고할 수 있다. Referring to Equation 7, when the UE calculates SINR 2 , for the NZP CSI-RS port(s) of the NZP CSI-RS resource for TRP#1, the effective channel to which the precoding matrix is applied at the base station (for example, , H eff,1 = H 1 W 1 ), the precoding matrix from the viewpoint of the terminal may assume an identity matrix (eg, H eff,1 I = H eff,1 ). And, the terminal based on the NZP CSI-RS port(s) of the NZP CSI-RS resource for TRP #2 (that is, based on the CSI-RS transmitted on the NZP CSI-RS port(s)) DL channel Estimate (eg, H 2 ) and find the RI/PMI combination having the best SINR based on the set codebook (eg, W 2 ). And for this, the UE may consider the signal from TRP#1 together as in the equation for SINR 2 in Equation 7 above. The UE may report the RI/PMI combination (eg, information on W 2 ) and CQI having the best SINR value to the base station.
한편, 상기 수학식 7에서 SINR2의 방법은 일 예가 될 수 있고, 단말은 각 레이어(layer) 별로 SINR을 구한 후 평균 값 또는 최대 값 또는 최소 값 등에 기반하여 CQI를 계산할 수도 있다. Meanwhile, the method of SINR 2 in Equation 7 may be an example, and the UE may calculate the CQI based on the average value, the maximum value, or the minimum value after calculating the SINR for each layer.
한편, 상기의 예에서는 SINR2를 계산할 때, TRP#1에 대한 NZP CSI-RS resource의 NZP CSI-RS 포트(들)을 모두 그대로 가정하였는데, 가변적인 포트 수, 및/또는 가변적인 포트 조합이 함께 고려될 수 있다. 상기에서 '가변적인 포트 수 및/또는 가변적인 포트 조합'이라 함은 TRP#1에 대응하는 NZP CSI-RS 포트(들)에 대해서, 즉, 단위 행렬(identity matrix)을 precoding matrix로 가정하는 NZP CSI-RS resource의 포트(들)에 대해서, 이에 대응하는 유효 채널의 특정 열(column)을 기반으로 정의될 수 있다.On the other hand, in the above example, when calculating SINR 2 , it was assumed that all of the NZP CSI-RS port(s) of the NZP CSI-RS resource for TRP#1 were as it is, and a variable number of ports, and/or a variable port combination can be considered together. In the above, 'variable number of ports and/or variable port combination' refers to NZP CSI-RS port(s) corresponding to TRP#1, that is, NZP assuming that the identity matrix is the precoding matrix. For port(s) of the CSI-RS resource, it may be defined based on a specific column of an effective channel corresponding thereto.
또한, 상기 도 9(b)(및 수학식 7)의 예시에서는, 도 9(a)와 같이 선행되는 과정을 통해 기지국이 획득한 TRP#1에 대응하는 RI/PMI를 M-TRP 전송 시에도 그대로 적용하는 것을 가정하였지만, TRP#2에 대한 CSI 보고 값에 기반하여 M-TRP 전송 시 TRP#1에 대해서 보다 적합한 RI/PMI를 적용하는 것이 가능할 수 있다.In addition, in the example of FIG. 9(b) (and Equation 7), the RI/PMI corresponding to TRP#1 obtained by the base station through the preceding process as shown in FIG. 9(a) is transmitted even when M-TRP is transmitted. Although it is assumed that it is applied as it is, it may be possible to apply a more suitable RI/PMI to TRP#1 during M-TRP transmission based on the CSI report value for TRP#2.
상기의 제안 방법을 적용하는 경우, 기지국 관점에서 M-TRP 전송 시 보다 적합한 CSI를 획득할 수 있다는 장점을 얻을 수 있다. 즉, 단말이 CSI를 보고할 때 M-TRP 전송 시 서로 다른 TRP의 전송 상태(예를 들어, RI/PMI/ CQI 등)를 반영하여 CSI를 보고할 수 있다는 장점을 얻을 수 있다. 현재 표준을 따르는 방식과 비교해보면 TRP#1, TRP#2에 대한 CSI#1, CSI#2를 각각 보고할 때 각 CSI는 각 TRP에 대한 유효채널만 고려할 수 있다. 반면, 상기의 제안 방법을 이용하는 경우, 단말은 TRP#1에 대한 CSI#1 보고 이후에, TRP#2에 대한 CSI#2 보고 시 상기 CSI#1의 정보를 적용할 수 있다. 따라서, 단말은 CSI#2 보고 시에는 TRP#1, TRP#2에 대한 유효 채널을 모두 이용할 수 있다. 또는, 그 반대로, 단말은 TRP#2에 대한 CSI#2 보고 이후에, TRP#1에 대한 CSI#1 보고 시 상기 CSI#2의 정보를 적용할 수도 있다. 이처럼, 단말이 기지국으로 M-TRP 전송 시 서로 다른 TRP에 대응하는 유효 채널을 모두 고려하여 CSI를 보고할 수 있는 경우, 기지국은 단말에게 MTRP 전송에 기반한 PDSCH를 스케줄링 할 때 단말의 채널에 보다 적합한 스케줄링을 수행할 수 있다. 따라서, 단말의 수신 실패로 인한 불필요한 재전송을 방지하고, 단말 채널에 적합한 MCS를 설정하여 수율(throughput)을 향상시킬 수 있다. When the above proposed method is applied, it is possible to obtain an advantage that more suitable CSI can be obtained during M-TRP transmission from the viewpoint of the base station. That is, when the UE reports CSI, it is possible to obtain the advantage of being able to report CSI by reflecting different TRP transmission states (eg, RI/PMI/CQI, etc.) during M-TRP transmission. Compared with the method following the current standard, when CSI#1 and CSI#2 for TRP#1 and TRP#2 are reported, each CSI can only consider an effective channel for each TRP. On the other hand, when using the proposed method, the UE may apply the information of CSI#1 when reporting CSI#2 for TRP#2 after reporting CSI#1 for TRP#1. Accordingly, the UE may use all of the effective channels for TRP#1 and TRP#2 when reporting CSI#2. Or, conversely, the UE may apply the information of CSI#2 when reporting CSI#1 for TRP#1 after reporting CSI#2 for TRP#2. As such, when the terminal can report CSI by considering all effective channels corresponding to different TRPs when transmitting M-TRP to the base station, the base station is more suitable for the channel of the terminal when scheduling the PDSCH based on MTRP transmission to the terminal Scheduling can be performed. Accordingly, unnecessary retransmission due to reception failure of the terminal can be prevented, and throughput can be improved by setting an MCS suitable for the terminal channel.
한편, 상기의 제안에서는 TRP#2에 대응하는 NZP CSI-RS resource에 대해서는 특정 코드북 타입(codebook type)을 설정/지시/정의한 후, CSI 계산 시에 적합한 RI/PMI를 보고하는 것을 가정하였지만, TRP#2에 대응하는 resource에도 TRP#1에 적용한 가정/방법을 동일하게 적용하는 것도 가능하다. 예를 들어, 단말은 TRP#2에 대응하는 resource에 대해서도 precoding matrix로 단위 행렬(identity matrix)을 가정하고, resource에 대응하는 포트(들)의 수를 랭크(rank) 수로 가정함으로써 상기 제안 방법들을 적용할 수 있다. 이러한 경우, 단말이 기지국으로 보고하는 값의 일 예는 다음과 같을 수 있다. On the other hand, in the above proposal, after setting/indicating/defining a specific codebook type for the NZP CSI-RS resource corresponding to TRP#2, it was assumed that an RI/PMI suitable for CSI calculation was reported, but TRP It is also possible to apply the same assumption/method applied to TRP#1 to the resource corresponding to #2. For example, the UE assumes an identity matrix as a precoding matrix even for a resource corresponding to TRP #2, and assumes the number of port(s) corresponding to the resource as the number of ranks. can be applied In this case, an example of the value reported by the terminal to the base station may be as follows.
예시 1: 하나 이상의 CRI 값, 및/또는 하나 이상의 RI 값(각 NZP CSI-RS resource에 대응하는 RI 값, 혹은 모든 resource에 대응하는 총 RI 값), 및/또는 CQI 등을 포함하는 CSI를 단말이 기지국에게 보고할 수 있다. Example 1: One or more CRI values, and / or one or more RI values (RI values corresponding to each NZP CSI-RS resource, or total RI values corresponding to all resources), and / or CSI including CQI terminal It can report to this base station.
추가로 precoding matrix로 단위 행렬(identity matrix)을 가정하는 NZP CSI-RS resource에 대해서 포트 선택(port selection) 정보가 보고되는 경우, 예를 들어, 하나 이상의 CRI 값, 및/또는 하나 이상의 RI 값(각 NZP CSI-RS resource에 대응하는 RI 값, 혹은 모든 resource에 대응하는 총 RI 값), 및/또는 각 NZP CSI-RS resource에 대응하는 특정 포트 인덱스(port index) 조합, 및/또는 CQI 등을 포함하는 CSI를 단말이 기지국에게 보고할 수 있다.In addition, when port selection information is reported for NZP CSI-RS resource assuming an identity matrix as a precoding matrix, for example, one or more CRI values, and/or one or more RI values ( RI value corresponding to each NZP CSI-RS resource, or total RI value corresponding to all resources), and / or a specific port index (port index) combination corresponding to each NZP CSI-RS resource, and / or CQI, etc. The terminal may report the CSI included to the base station.
도 10은 본 개시의 일 실시예에 따른 네트워크와 단말 간의 시그널링 절차를 예시한다.10 illustrates a signaling procedure between a network and a terminal according to an embodiment of the present disclosure.
도 10은 본 개시에서 제안하는 방법들(예를 들어, 실시예 #1의 실시예 #1-1, #1-2, #1-3, #1-4 중 적어도 하나)이 적용될 수 있는 다중(Multiple) TRP(즉, M-TRP, 혹은 다중(multiple) 셀, 이하 모든 TRP는 셀로 대체될 수 있음)의 상황에서 네트워크(Network)(예를 들어, TRP 1, TRP 2)와 단말(즉, UE) 간의 시그널링(signaling)을 예시한다. 10 shows multiple methods to which the methods proposed in the present disclosure (eg, at least one of embodiments #1-1, #1-2, #1-3, and #1-4 of embodiment #1) can be applied. (Multiple) TRP (ie, M-TRP, or multiple (multiple) cell, hereinafter all TRP can be replaced by a cell) in the situation of a network (Network) (eg, TRP 1, TRP 2) and the terminal (ie , illustrates signaling between UEs.
여기서 UE/Network는 일례일 뿐, 후술하는 도 13에 기술된 것과 같이 다양한 장치로 대체 적용될 수 있다. 도 10은 단지 설명의 편의를 위한 것일 뿐, 본 개시의 범위를 제한하는 것이 아니다. 또한, 도 10에 나타난 일부 단계(들)은 상황 및/또는 설정 등에 따라 생략될 수도 있다.Here, the UE/Network is just an example, and may be substituted for various devices as described in FIG. 13 to be described later. 10 is only for convenience of description, and does not limit the scope of the present disclosure. Also, some step(s) shown in FIG. 10 may be omitted depending on circumstances and/or settings.
도 10을 참조하면 설명의 편의상 2개의 TRP들과 UE 간의 signaling이 고려되지만, 해당 signaling 방식이 다수의 TRP들 및 다수의 UE들 간의 signaling에도 확장되어 적용될 수 있음은 물론이다. 이하 설명에서 Network는 복수의 TRP를 포함하는 하나의 기지국일 수 있으며, 복수의 TRP를 포함하는 하나의 셀(Cell)일 수 있다. 일례로, Network를 구성하는 TRP 1과 TRP 2 간에는 이상적(ideal)/비이상적(non-ideal) 백홀(backhaul)이 설정될 수도 있다. 또한, 이하 설명은 다수의 TRP들을 기준으로 설명되나, 이는 다수의 패널(panel)들을 통한 전송에도 동일하게 확장하여 적용될 수 있다. 더하여, 본 개시에서 단말이 TRP1/TRP2로부터 신호를 수신하는 동작은 단말이 Network로부터 (TRP1/2를 통해/이용해) 신호를 수신하는 동작으로도 해석/설명될 수 있으며(혹은 동작일 수 있으며), 단말이 TRP1/TRP2로 신호를 전송하는 동작은 단말이 Network로 (TRP1/TRP2를 통해/이용해) 신호를 전송하는 동작으로 해석/설명될 수 있고(혹은 동작일 수 있고), 역으로도 해석/설명될 수 있다.Referring to FIG. 10 , signaling between two TRPs and a UE is considered for convenience of description, but it goes without saying that the corresponding signaling method can be extended and applied to signaling between multiple TRPs and multiple UEs. In the following description, a Network may be a single base station including a plurality of TRPs, and may be a single cell including a plurality of TRPs. For example, an ideal (ideal) / non-ideal (non-ideal) backhaul (backhaul) may be set between TRP 1 and TRP 2 constituting the network. In addition, the following description will be described based on a plurality of TRPs, which may be equally extended and applied to transmission through a plurality of panels. In addition, in the present disclosure, the operation of the terminal receiving a signal from TRP1/TRP2 can be interpreted/explained as an operation of the terminal receiving a signal from the Network (via/using TRP1/2) (or it may be an operation) , the operation in which the terminal transmits a signal to TRP1/TRP2 can be interpreted/explained as an operation in which the terminal transmits a signal to the network (via/using TRP1/TRP2) (or may be an operation), and vice versa /can be explained.
또한, 상술한 바와 같이, "TRP"는 패널(panel), 안테나 어레이(antenna array), 셀(cell)(예를 들어, 매크로 셀(macro cell) / 스몰 셀(small cell) / 피코 셀(pico cell) 등), TP(transmission point), 기지국(base station, gNB 등) 등의 표현으로 대체되어 적용될 수 있다. 상술한 바와 같이, TRP는 CORESET 그룹(또는 CORESET 풀)에 대한 정보(예를 들어, 인덱스, 식별자(ID))에 따라 구분될 수 있다. 일례로, 하나의 단말이 다수의 TRP(또는 셀)들과 송수신을 수행하도록 설정된 경우, 이는 하나의 단말에 대해 다수의 CORESET 그룹(또는 CORESET 풀)들이 설정된 것을 의미할 수 있다. 이와 같은 CORESET 그룹(또는 CORESET 풀)에 대한 설정은 상위 계층 시그널링(예를 들어, RRC 시그널링 등)을 통해 수행될 수 있다. 또한, 기지국은 단말과 데이터의 송수신을 수행하는 객체(object)를 총칭하는 의미일 수 있다. 예를 들어, 상기 기지국은 하나 이상의 TP(Transmission Point)들, 하나 이상의 TRP(Transmission and Reception Point)들 등을 포함하는 개념일 수 있다. 또한, TP 및/또는 TRP는 기지국의 패널, 송수신 유닛(transmission and reception unit) 등을 포함하는 것일 수 있다.In addition, as described above, "TRP" is a panel, an antenna array, a cell (eg, macro cell (macro cell) / small cell (small cell) / pico cell (pico)) cell), etc.), TP (transmission point), base station (base station, gNB, etc.) may be replaced and applied. As described above, the TRP may be classified according to information (eg, index, identifier (ID)) about the CORESET group (or CORESET pool). As an example, when one terminal is configured to perform transmission/reception with a plurality of TRPs (or cells), this may mean that a plurality of CORESET groups (or CORESET pools) are configured for one terminal. The configuration of such a CORESET group (or CORESET pool) may be performed through higher layer signaling (eg, RRC signaling, etc.). In addition, the base station may mean a generic term for an object that transmits and receives data with the terminal. For example, the base station may be a concept including one or more TPs (Transmission Points), one or more TRPs (Transmission and Reception Points), and the like. In addition, the TP and/or TRP may include a panel of a base station, a transmission and reception unit, and the like.
또한, 상술한 바와 같이, TRP는 CORESET 풀(또는 CORESET 그룹)에 대한 정보(예를 들어, 인덱스, ID)에 따라 구분될 수 있다. 일례로, TRP는 CORESETPoolIndex에 따라 구분될 수 있다. 일례로, 하나의 단말이 다수의 TRP(또는 셀)들과 송수신을 수행하도록 설정된 경우, 이는 하나의 단말에 대해 다수의 CORESET 풀(또는 CORESET 그룹)들이 설정된 것을 의미할 수 있다. CORESET에 대한 설정은 상위 계층 시그널링(예를 들어, RRC 시그널링 등)을 통해 수행될 수 있다.In addition, as described above, the TRP may be classified according to information (eg, index, ID) about the CORESET pool (or CORESET group). As an example, TRP may be classified according to CORESETPoolIndex. As an example, when one terminal is configured to perform transmission/reception with a plurality of TRPs (or cells), this may mean that a plurality of CORESET pools (or CORESET groups) are configured for one terminal. The setting for CORESET may be performed through higher layer signaling (eg, RRC signaling, etc.).
구체적으로, 도 10은 M-TRP(혹은 셀, 이하 모든 TRP는 셀/패널로 대체될 수 있음, 혹은 하나의 TRP로부터 복수의 CORESET(/CORESET 그룹)을 설정받은 경우도 M-TRP로 가정할 수 있음) 상황에서, 단말이 단일 DCI를 수신하는 경우(즉, 대표 TRP가 UE로 DCI를 전송하는 경우)의 시그널링을 나타낸다. 도 10에서 설명의 편의를 위해 단일 DCI 기반의 M-TRP 동작을 가정하였으나, 본 발명의 기술적 범위를 제한하는 것은 아니다. 따라서, 단일 DCI 기반의 M-TRP 동작(즉, 각 TRP가 UE로 DCI를 전송하는 경우)에도 적용 가능함은 물론이다. Specifically, Figure 10 shows M-TRP (or cell, hereinafter all TRPs can be replaced by cell/panel, or when a plurality of CORESETs (/CORESET group) are set from one TRP. In the case where the UE receives a single DCI (that is, when the representative TRP transmits DCI to the UE), signaling is indicated. In FIG. 10 , a single DCI-based M-TRP operation is assumed for convenience of description, but the technical scope of the present invention is not limited. Therefore, it is of course also applicable to a single DCI-based M-TRP operation (ie, when each TRP transmits DCI to the UE).
도 10에는 도시하지 않았으나, UE는 상술한 방법(예를 들어, 실시예 #1의 실시예 #1-1, #1-2, #1-3, #1-4 중 적어도 하나)에서 제안된 동작들의 수행과 관련된 능력 정보를 포함하는 UE 능력(UE capability)를 TRP 1(및/또는 TRP 2)을 통해/이용해 Network로 전송할 수 있다. Although not shown in FIG. 10, the UE uses the method proposed in the above-described method (eg, at least one of embodiments #1-1, #1-2, #1-3, and #1-4 of embodiment #1). UE capability including capability information related to the performance of operations may be transmitted to the Network through/using TRP 1 (and/or TRP 2).
UE는 Network로부터 TRP 1(및/또는 TRP 2)을 통해/이용해 다중(Multiple) TRP 기반의 송수신과 관련된 설정 정보(configuration information)를 수신할 수 있다(S1001). 상기 설정 정보는, network의 구성(즉, TRP 구성)과 관련된 정보, Multiple TRP 기반의 송수신과 관련된 자원 정보(resource allocation), 등을 포함할 수 있다. 이 때, 상기 설정 정보는 상위 계층 시그널링(예를 들어, RRC 시그널링, MAC-CE 등)을 통해 전달될 수 있다. 또한, 상기 설정 정보가 미리 정의 또는 설정되어 있는 경우, 해당 단계는 생략될 수도 있다. The UE may receive configuration information related to TRP-based transmission/reception through/using TRP 1 (and/or TRP 2) from the Network (S1001). The setting information may include information related to network configuration (ie, TRP configuration), resource allocation related to multiple TRP-based transmission and reception, and the like. In this case, the configuration information may be delivered through higher layer signaling (eg, RRC signaling, MAC-CE, etc.). In addition, when the setting information is predefined or set, the corresponding step may be omitted.
예를 들어, 상기 설정 정보는 상술한 방법(예를 들어, 실시예 #1의 실시예 #1-1, #1-2, #1-3, #1-4 중 적어도 하나)들에서 설명한 바와 같이, CORESET 관련 설정 정보(예를 들어, ControlResourceSet IE)를 포함할 수 있다. 상기 CORESET 관련 설정 정보는 CORESET 관련 ID(예를 들어, controlResourceSetID), CORESET에 대한 CORESET pool의 인덱스 (예를 들어, CORESETPoolIndex), CORESET의 시간/주파수 자원 설정, CORESET과 관련된 TCI 정보 등을 포함할 수 있다. 상기 CORESET pool의 인덱스 (예를 들어, CORESETPoolIndex)는 각 CORESET에 매핑되는/설정되는 특정 인덱스(예를 들어, CORESET 그룹 인덱스, HARQ 코드북 인덱스)를 의미할 수 있다.For example, the setting information is as described in the above-described methods (eg, at least one of embodiments #1-1, #1-2, #1-3, and #1-4 of embodiment #1). Likewise, CORESET-related setting information (eg, ControlResourceSet IE) may be included. The CORESET-related setting information may include a CORESET-related ID (eg, controlResourceSetID), an index of the CORESET pool for CORESET (eg, CORESETPoolIndex), time/frequency resource setting of CORESET, TCI information related to CORESET, etc. have. The index of the CORESET pool (eg, CORESETPoolIndex) may mean a specific index mapped/set to each CORESET (eg, CORESET group index, HARQ codebook index).
예를 들어, 상술한 방법(예를 들어, 실시예 #1의 실시예 #1-1, #1-2, #1-3, #1-4 중 적어도 하나)들에서 설명한 바와 같이, 상기 설정 정보는 CSI 보고와 관련된 설정 정보(예를 들어, CSI 보고 설정(CSI-ReportConfig)/ CSI 자원 설정(CSI-ResourceConfig)/ NZP CSI-RS 자원 세트 정보(NZP-CSI-RS-ResourceSet)/ NZP CSI-RS 자원 정보(NZP-CSI-RS-Resource) 등)/ 자원 설정 정보/ precoding matrix 관련 지시/ 코드북 관련 설정 등을 포함할 수 있다. For example, as described in the above-described methods (eg, at least one of embodiments #1-1, #1-2, #1-3, and #1-4 of embodiment #1), the setting Information related to CSI reporting configuration information (eg, CSI reporting configuration (CSI-ReportConfig) / CSI resource configuration (CSI-ResourceConfig) / NZP CSI-RS resource set information (NZP-CSI-RS-ResourceSet) / NZP CSI) -RS resource information (NZP-CSI-RS-Resource, etc.)/resource configuration information/precoding matrix related indication/codebook related configuration, etc. may be included.
예를 들어, 단일 보고 셋팅/단일의 CSI 보고 설정(예를 들어, CSI-ReportConfig)에서 서로 다른 복수의 NZP CSI-RS resource들이 설정될 수 있다. 여기서, 복수의 NZP CSI-RS resource들은 모두 채널 측정(channel measurement) 용의 resource들일 수 있다. 또는, 일부는 채널 측정(channel measurement) 용의 resource(들)이고, 나머지는 간섭 측정(interference measurement) 용의 resource(들)일 수 있다. For example, a plurality of different NZP CSI-RS resources may be configured in a single report setting/single CSI report setting (eg, CSI-ReportConfig). Here, the plurality of NZP CSI-RS resources may all be resources for channel measurement. Alternatively, some may be resource(s) for channel measurement, and the rest may be resource(s) for interference measurement.
또한, 상술한 방법(예를 들어, 실시예 #1의 실시예 #1-1, #1-2, #1-3, #1-4 중 적어도 하나)들에서 설명한 바와 같이, 복수의 CSI-RS 자원들 각각에 대하여 개별적인 랭크(rank) 수 및/또는 프리코딩 행렬(precoding matrix)에 기반하여 상기 CSI가 계산될 수 있다. 이를 위해, 상기 설정 정보는 복수의 CSI-RS 자원들 각각에 대한 독립적인/개별적인 설정 정보를 포함할 수 있다. 예를 들어, 복수의 CSI-RS 자원들 각각에 대하여 설정된 개별적인 랭크(rank) 수 및/또는 프리코딩 행렬(precoding matrix) 정보에 기반하여 상기 CSI가 계산되도록, 상기 설정 정보는 복수의 CSI-RS 자원들 각각에 대하여 개별적인 랭크(rank) 수 및/또는 프리코딩 행렬(precoding matrix) 정보를 포함할 수 있다. 예를 들어, 복수의 CSI-RS 자원들 각각에 대하여 개별적인 랭크(rank) 수 및/또는 프리코딩 행렬(precoding matrix)을 설정하기 위해, 설정 정보는 상기 복수의 CSI-RS 자원들 각각에 연관된 코드북 설정(예를 들어, CodebookConfig)들을 포함할 수 있다. In addition, as described in the above-described methods (eg, at least one of embodiments #1-1, #1-2, #1-3, and #1-4 of embodiment #1), a plurality of CSI- The CSI may be calculated based on an individual number of ranks and/or a precoding matrix for each of the RS resources. To this end, the configuration information may include independent/individual configuration information for each of a plurality of CSI-RS resources. For example, the configuration information is a plurality of CSI-RSs so that the CSI is calculated based on the number of individual ranks and/or precoding matrix information configured for each of the plurality of CSI-RS resources. It may include an individual rank number and/or precoding matrix information for each of the resources. For example, in order to set an individual rank number and/or a precoding matrix for each of the plurality of CSI-RS resources, the configuration information is a codebook associated with each of the plurality of CSI-RS resources settings (eg, CodebookConfig).
그리고, 예를 들어, 상기 설정 정보가 복수의 CSI 자원 설정(예를 들어, CSI-ResourceConfig)을 포함함으로써, 각각의 CSI 자원 설정에서 상기 복수의 CSI-RS 자원들이 설정될 수 있다. 또는, 상기 설정 정보는 하나의 CSI 자원 설정(예를 들어, CSI-ResourceConfig)을 포함하고, 상기 하나의 CSI 자원 설정 내 복수의 CSI-RS 자원 세트들 각각에서 하나씩 상기 복수의 CSI-RS 자원들이 설정될 수도 있다. 또는, 상기 CSI 보고와 관련된 설정 정보는 하나의 CSI 자원 설정(예를 들어, CSI-ResourceConfig)을 포함하고, 상기 하나의 CSI 자원 설정 내 하나의 CSI-RS 자원 세트 내에서 상기 복수의 CSI-RS 자원들이 설정될 수도 있다.And, for example, since the configuration information includes a plurality of CSI resource configurations (eg, CSI-ResourceConfig), the plurality of CSI-RS resources may be configured in each CSI resource configuration. Alternatively, the configuration information includes one CSI resource configuration (eg, CSI-ResourceConfig), and the plurality of CSI-RS resources are one in each of a plurality of CSI-RS resource sets in the one CSI resource configuration. may be set. Alternatively, the configuration information related to the CSI report includes one CSI resource configuration (eg, CSI-ResourceConfig), and the plurality of CSI-RSs in one CSI-RS resource set in the one CSI resource configuration Resources may be established.
UE는 Network로부터 TRP 1을 통해/이용해 DCI를 수신할 수 있다(S1002). 또한, DCI는 제어 채널(예를 들어, PDCCH 등)을 통해 전달될 수 있다. 도 10에서는 단일 DCI 기반의 MTRP 동작의 예를 중심으로 설명하나, 다중의 DCI 기반의 MTRP 동작에도 적용될 수 있음은 물론이다. 이 경우, UE는 Network로부터 TRP 1을 통해/이용해 DCI 1을 수신하고, TRP2를 통해/이용해 DCI 2를 수신할 수도 있다. The UE may receive DCI through/using TRP 1 from the Network (S1002). Also, DCI may be transmitted through a control channel (eg, PDCCH, etc.). Although an example of a single DCI-based MTRP operation is mainly described in FIG. 10, of course, it can also be applied to multiple DCI-based MTRP operations. In this case, the UE may receive DCI 1 through/using TRP 1 from the network, and receive DCI 2 through/using TRP2.
예를 들어, 상술한 방법(예를 들어, 실시예 #1의 실시예 #1-1, #1-2, #1-3, #1-4 중 적어도 하나)들에서 설명한 바와 같이, 상기 DCI는 상향링크 채널(예를 들어, PUCCH/PUSCH)의 스케줄링 정보/ CSI 보고의 트리거링 정보/ MCS/ 프리코딩 정보 및 레이어의 수(Precoding information and number of layers) 필드 등을 포함할 수 있다. 다중의 DCI 기반의 MTRP 동작의 경우, 각각의 DCI 1, DCI 2에서 각각의 TRP에 대한 상기 정보들이 전송될 수 있다. For example, as described in the above-described methods (eg, at least one of embodiments #1-1, #1-2, #1-3, and #1-4 of embodiment #1), the DCI may include scheduling information of an uplink channel (eg, PUCCH/PUSCH)/triggering information of CSI report/MCS/precoding information and a number of layers (Precoding information and number of layers) field. In the case of multiple DCI-based MTRP operations, the information for each TRP may be transmitted in each DCI 1 and DCI 2 .
UE는 TRP 2와 CSI 관련 절차를 수행할 수 있다(S1003). 예를 들어, 상기 CSI 관련 절차는 상술한 방법(예를 들어, 실시예 #1의 실시예 #1-1, #1-2, #1-3, #1-4 중 적어도 하나) 및/또는 상술한 'CSI 관련 동작'에 기반하여 수행될 수 있다. The UE may perform a procedure related to TRP 2 and CSI (S1003). For example, the CSI-related procedure may include the above-described method (eg, at least one of Examples #1-1, #1-2, #1-3, and #1-4 of Example #1) and/or It may be performed based on the above-described 'CSI-related operation'.
예를 들어, UE는 Network로부터 TRP 2를 통해 CSI 관련 참조 신호(예를 들어, CSI-RS)를 수신할 수 있다. 상기 CSI 관련 참조 신호는 주기적/비주기적/반지속적으로 전송될 수 있다. 예를 들어, 상기 CSI 관련 참조 신호는 상기 설정 정보에 기반하여 수신될 수 있다. 또한, 단말은 CSI 관련 참조 신호에 기반하여 CSI를 측정(또는 계산)하며, Network에게 TRP 2를 통해 상기 CSI를 보고/전송할 수 있다. 그리고, 예를 들어, 상술한 방법(예를 들어, 실시예 #1의 실시예 #1-1, #1-2, #1-3, #1-4 중 적어도 하나)들에서 설명한 바와 같이, TRP 1에 대한 CSI 관련 절차는 TRP 2를 통해 보고된 CSI에 기반하여 수행될 수 있다. For example, the UE may receive a CSI-related reference signal (eg, CSI-RS) through TRP 2 from the network. The CSI-related reference signal may be transmitted periodically/aperiodically/semi-continuously. For example, the CSI-related reference signal may be received based on the configuration information. In addition, the UE may measure (or calculate) CSI based on a CSI-related reference signal, and report/transmit the CSI to the network through TRP 2 . And, for example, as described in the above-described methods (eg, at least one of embodiments #1-1, #1-2, #1-3, and #1-4 of embodiment #1), The CSI-related procedure for TRP 1 may be performed based on the CSI reported through TRP 2.
또한, 도 10에서는 TRP 2에 대한 CSI 관련 절차가 수행되고, TRP 1에 대한 CSI 관련 절차가 수행되는 동작을 예시하고 있지만, 이에 한정되는 것은 아니다. 즉, TRP 1에 대한 CSI 관련 절차가 수행되고, TRP 1에 대한 CSI 관련 절차가 수행될 수도 있다. 또는, TRP 1 및 TRP 2에 대한 CSI 관련 절차는 함께(또는 동시에) 수행될 수도 있다. In addition, although FIG. 10 exemplifies an operation in which a CSI-related procedure for TRP 2 is performed and a CSI-related procedure for TRP 1 is performed, it is not limited thereto. That is, a CSI-related procedure for TRP 1 may be performed, and a CSI-related procedure for TRP 1 may be performed. Alternatively, CSI-related procedures for TRP 1 and TRP 2 may be performed together (or simultaneously).
UE는 Network로부터 TRP 1을 통해/이용해 CSI 관련 참조 신호(예를 들어, CSI-RS)를 수신할 수 있다(S1004). 예를 들어, 상술한 방법(예를 들어, 실시예 #1의 실시예 #1-1, #1-2, #1-3, #1-4 중 적어도 하나) 및/또는 상술한 'CSI 관련 동작'에 기반하여 상기 CSI 관련 참조 신호가 수신될 수 있다. 예를 들어, 상기 CSI 관련 참조 신호는 주기적/비주기적/반지속적으로 전송될 수 있다. 예를 들어, 상기 CSI 관련 참조 신호는 상기 설정 정보에 기반하여 수신될 수 있다. 또한, UE는 Network로부터 TRP 2을 통해/이용해 CSI 관련 참조 신호(예를 들어, CSI-RS)를 수신할 수도 있다(S1005). 예를 들어, S1005 단계에서 전송되는 참조 신호는 상기 S1003 단계에서 UE가 보고한 TRP 2에 대한 CSI에 기반하여 RI/PMI 등이 적용된 참조 신호일 수 있다. The UE may receive a CSI-related reference signal (eg, CSI-RS) through/using TRP 1 from the network (S1004). For example, the above-described method (eg, at least one of embodiments #1-1, #1-2, #1-3, and #1-4 of embodiment #1) and/or the above-described 'CSI-related Based on 'operation', the CSI-related reference signal may be received. For example, the CSI-related reference signal may be transmitted periodically/aperiodically/semi-continuously. For example, the CSI-related reference signal may be received based on the configuration information. In addition, the UE may receive a CSI-related reference signal (eg, CSI-RS) through/using TRP 2 from the network (S1005). For example, the reference signal transmitted in step S1005 may be a reference signal to which RI/PMI or the like is applied based on the CSI for TRP 2 reported by the UE in step S1003.
예를 들어, 상술한 방법(예를 들어, 실시예 #1의 실시예 #1-1, #1-2, #1-3, #1-4 중 적어도 하나)에 따라, 상기 복수의 CSI-RS 자원들은 상기 CSI 계산을 위한 프리코딩 행렬로서 단위 행렬(identity matrix)이 가정되는 제1 CSI-RS 자원(즉, TRP 2에 대한 CSI 관련 신호)과 상기 CSI 계산을 위해 특정 코드북(codebook)이 가정되는 제2 CSI-RS 자원(즉, TRP 1에 대한 CSI 관련 신호)을 포함할 수 있다. 여기서, TRP 2에 대한 CSI 관련 신호(즉, 제1 CSI-RS 자원)는 상기 S1003 단계에서 UE가 보고한 TRP 2에 대한 CSI에 기반한 RI/PMI 등이 적용(즉, 프리코딩 적용)될 수 있다. For example, according to the above-described method (eg, at least one of embodiments #1-1, #1-2, #1-3, and #1-4 of embodiment #1), the plurality of CSI- RS resources are the first CSI-RS resource (ie, CSI-related signal for TRP 2) in which an identity matrix is assumed as a precoding matrix for the CSI calculation and a specific codebook for the CSI calculation. It may include an assumed second CSI-RS resource (ie, a CSI-related signal for TRP 1). Here, as for the CSI-related signal for TRP 2 (ie, the first CSI-RS resource), RI/PMI based on the CSI for TRP 2 reported by the UE in step S1003 may be applied (ie, precoding applied). have.
UE는 CSI 측정/계산을 수행할 수 있다(S1006). 예를 들어, 상기 CSI 측정/계산은 상술한 방법(예를 들어, 실시예 #1의 실시예 #1-1, #1-2, #1-3, #1-4 중 적어도 하나) 및/또는 상술한 'CSI 관련 동작'에 기반하여 수행될 수 있다. 예를 들어, CSI는 상술한 설정 정보 및/또는 DCI 및/또는 CSI 관련 참조 신호에 기반하여 측정될 수 있다. 예를 들어, 상기 복수의 CSI-RS 자원들(예를 들어, 각 TRP에 대한 CSI-RS resource)에 대해서 설정된 랭크 수(즉, 전송 레이어(transmission layer)/포트(port) 수) 및/또는 프리코딩 행렬(precoding matrix) 정보에 기반하여(즉, 설정 정보에 기반하여), 랭크 수(즉, 전송 레이어(transmission layer)/포트(port) 수) 및/또는 프리코딩 행렬에 대한 가정 등이 다르게 적용되어/가정되어 CSI가 측정될 수 있다. 예를 들어, UE는 TRP 1을 통해/이용해 수신된 CSI 관련 참조 신호 및 TRP 2를 통해/이용해 수신된 CSI 관련 참조 신호(즉, S1005 단계)에 기반하여 TRP 1에 대한 CSI를 측정할 수 있다. 예를 들어, 상기 TRP 2를 통해/이용해 수신된 CSI 관련 참조 신호(즉, S1005 단계)는 TRP 1에 대한 CSI 측정 시 간섭으로 인식될 수 있다. 또는, TRP 1을 통해/이용해 수신된 CSI 관련 참조 신호 및 TRP 2를 통해/이용해 수신된 CSI 관련 참조 신호(즉, S1005 단계)에 기반하여 각각의 CSI를 측정/계산할 수도 있다. The UE may perform CSI measurement/calculation (S1006). For example, the CSI measurement/calculation is performed by the above-described method (eg, at least one of Examples #1-1, #1-2, #1-3, and #1-4 of Example #1) and/ Alternatively, it may be performed based on the 'CSI-related operation' described above. For example, CSI may be measured based on the above-described configuration information and/or DCI and/or CSI-related reference signals. For example, the number of ranks configured for the plurality of CSI-RS resources (eg, CSI-RS resource for each TRP) (ie, the number of transmission layers/ports) and/or Based on the precoding matrix information (ie, based on the configuration information), the number of ranks (ie, the number of transmission layers / ports) and / or assumptions about the precoding matrix, etc. CSI may be measured differently applied/assumed. For example, the UE may measure the CSI for TRP 1 based on a CSI-related reference signal received through/using TRP 1 and a CSI-related reference signal received through/using TRP 2 (ie, step S1005). . For example, the CSI-related reference signal received through / using the TRP 2 (ie, step S1005) may be recognized as interference during CSI measurement for TRP 1. Alternatively, each CSI may be measured/calculated based on a CSI-related reference signal received through/using TRP 1 and a CSI-related reference signal received through/using TRP 2 (ie, step S1005).
상술한 바와 같이, 여기서, TRP 2에 대한 CSI 관련 신호(즉, 제1 CSI-RS 자원)는 상기 S1003 단계에서 UE가 보고한 TRP 2에 대한 CSI에 기반한 RI/PMI 등이 적용될 수 있다. 따라서, 단말은 TRP 2에 대한 CSI 관련 신호(즉, 제1 CSI-RS 자원)에 대한 CSI 계산 시, 상기 CSI 계산을 위한 프리코딩 행렬로서 단위 행렬(identity matrix)을 가정할 수 있다. 반면, TRP 2에 대한 CSI 관련 신호(즉, 제2 CSI-RS 자원)에 대해서는 CSI 계산을 위해 특정 코드북이 가정될 수 있다. 이를 위해, 설정 정보에서는 제2 CSI-RS 자원(즉, TRP 2에 대한 CSI 관련 신호)에 대한 코드북 설정을 포함할 수 있다.As described above, here, as for the CSI-related signal for TRP 2 (ie, the first CSI-RS resource), RI/PMI based on the CSI for TRP 2 reported by the UE in step S1003, etc. may be applied. Accordingly, the UE may assume an identity matrix as a precoding matrix for the CSI calculation when calculating CSI for a CSI-related signal (ie, the first CSI-RS resource) for TRP 2 . On the other hand, for the CSI-related signal for TRP 2 (ie, the second CSI-RS resource), a specific codebook may be assumed for CSI calculation. To this end, the configuration information may include a codebook configuration for the second CSI-RS resource (ie, a CSI-related signal for TRP 2).
또한, 제1 CSI-RS 자원(즉, TRP 2에 대한 CSI 관련 신호)에 대해서 상기 CSI 계산을 위한 랭크(rank) 수로서 상기 제1 CSI-RS 자원의 안테나 포트 수가 가정될 수 있다. 또는, 제1 CSI-RS 자원(즉, TRP 2에 대한 CSI 관련 신호)에 대해서 상기 CSI 계산을 위한 랭크(rank) 수로서 미리 정해진 값이 가정될 수도 있다. In addition, the number of antenna ports of the first CSI-RS resource may be assumed as the number of ranks for the CSI calculation for the first CSI-RS resource (ie, the CSI-related signal for TRP 2). Alternatively, a predetermined value may be assumed as the number of ranks for the CSI calculation for the first CSI-RS resource (ie, a CSI-related signal for TRP 2).
UE는 Network에게 TRP 1을 통해/이용해(및/또는 TRP2를 통해/이용해) CSI 보고를 전송할 수 있다(S1007). 상기 CSI 보고는 상향링크 채널(예를 들어, PUCCH/ PUSCH)을 통해 전송될 수 있다. 상기 CSI 보고는 주기적/반-지속적/비주기적으로 전송될 수 있다. 예를 들어, 상기 CSI는 상술한 방법(예를 들어, 실시예 #1의 실시예 #1-1, #1-2, #1-3, #1-4 중 적어도 하나)에 기반하여 계산된 CSI 파라미터를 포함할 수 있다. 예를 들어, 상기 CSI는 RI/PMI/CQI/LI/CRI/RSRP/SINR 등을 포함할 수 있다. 예를 들어, 특정 CSI-RS resource에 대한 포트 선택(port selection) 정보가 더 보고될 수도 있다. 여기서, 특정 CSI-RS resource는 상기 제1 CSI-RS 자원(즉, TRP 2에 대한 CSI 관련 신호)에 해당할 수 있다. The UE may transmit a CSI report to the Network via/using TRP 1 (and/or via/using TRP2) (S1007). The CSI report may be transmitted through an uplink channel (eg, PUCCH/PUSCH). The CSI report may be transmitted periodically/semi-continuously/aperiodically. For example, the CSI is calculated based on the above-described method (eg, at least one of Examples #1-1, #1-2, #1-3, and #1-4 of Example #1). CSI parameters may be included. For example, the CSI may include RI/PMI/CQI/LI/CRI/RSRP/SINR. For example, port selection (port selection) information for a specific CSI-RS resource may be reported more. Here, the specific CSI-RS resource may correspond to the first CSI-RS resource (ie, a CSI-related signal for TRP 2).
앞서 언급한 바와 같이, 상술한 Network/UE 시그널링 및 동작(예를 들어, 실시예 #1의 실시예 #1-1, #1-2, #1-3, #1-4 중 적어도 하나)은 이하 도 13에서 설명될 장치에 의해 구현될 수 있다. 예를 들어, Network(예를 들어, TRP 1/TRP 2)는 제1 무선장치, UE는 제2 무선장치 해당할 수 있고, 경우에 따라 그 반대의 경우도 고려될 수 있다. As mentioned above, the above-described Network/UE signaling and operation (eg, at least one of embodiments #1-1, #1-2, #1-3, and #1-4 of embodiment #1) is It may be implemented by an apparatus to be described with reference to FIG. 13 below. For example, the network (eg, TRP 1/TRP 2) may correspond to the first wireless device, and the UE may correspond to the second wireless device, and vice versa may be considered in some cases.
예를 들어, 상술한 Network/UE 시그널링 및 동작(예를 들어, 실시예 #1의 실시예 #1-1, #1-2, #1-3, #1-4 중 적어도 하나)은 도 13의 하나 이상의 프로세서(예를 들어, 102, 202)에 의해 처리될 수 있으며, 상술한 Network/UE 시그널링 및 동작(예를 들어, 실시예 #1의 실시예 #1-1, #1-2, #1-3, #1-4 중 적어도 하나)은 도 13의 적어도 하나의 프로세서(예를 들어, 102, 202)를 구동하기 위한 명령어/프로그램(예를 들어, 명령어(instruction), 실행 코드(executable code)) 형태로 메모리(예를 들어, 도 13의 하나 이상의 메모리(예를 들어, 104, 204)에 저장될 수도 있다.For example, the above-described Network/UE signaling and operation (eg, at least one of embodiments #1-1, #1-2, #1-3, and #1-4 of embodiment #1) is shown in FIG. 13 . may be processed by one or more processors (eg, 102, 202) of At least one of #1-3 and #1-4) is an instruction/program (eg, instruction, executable code (eg, instruction) for driving at least one processor (eg, 102, 202) of FIG. executable code) in the form of a memory (eg, one or more memories (eg, 104 , 204 ) of FIG. 13 .
도 11은 본 개시의 일 실시예에 따른 채널 상태 정보 전송을 위한 단말의 동작을 예시한다. 11 illustrates an operation of a terminal for transmitting channel state information according to an embodiment of the present disclosure.
도 11에서는 앞서 제안한 방법들(예를 들어, 실시예 #1의 실시예 #1-1, #1-2, #1-3, #1-4 중 적어도 하나)에 기반한 단말의 동작을 예시한다. 도 11의 예시는 설명의 편의를 위한 것이며, 본 개시의 범위를 제한하는 것은 아니다. 도 11에서 예시된 일부 단계(들)은 상황 및/또는 설정에 따라 생략될 수 있다. 또한, 도 11에서 단말은 하나의 예시일 뿐, 아래 도 13에서 예시된 장치로 구현될 수 있다. 예를 들어, 도 13의 프로세서(processor)(102/202)는 트랜시버(106/206)을 이용하여 채널/신호/데이터/정보 등을 송수신하도록 제어할 수 있으며, 전송할 또는 수신한 채널/신호/데이터/정보 등을 메모리(104/204)에 저장하도록 제어할 수도 있다. 11 illustrates an operation of a terminal based on the previously proposed methods (eg, at least one of embodiments #1-1, #1-2, #1-3, and #1-4 of embodiment #1) . The example of FIG. 11 is for convenience of description, and does not limit the scope of the present disclosure. Some step(s) illustrated in FIG. 11 may be omitted depending on circumstances and/or settings. In addition, the terminal in FIG. 11 is only an example, and may be implemented as the device illustrated in FIG. 13 below. For example, the processor 102/202 of FIG. 13 may control to transmit/receive a channel/signal/data/information using the transceiver 106/206, and transmit or receive a channel/signal/ Data/information may be controlled to be stored in the memory 104/204.
또한, 도 11의 동작은 도 13의 하나 이상의 프로세서(102, 202)에 의해 처리될 수 있다. 또한, 도 11의 동작은 도 13의 적어도 하나의 프로세서(예를 들어, 102, 202)를 구동하기 위한 명령어/프로그램(예를 들어, 명령(instruction), 실행 코드(executable code))형태로 메모리(예를 들어, 도 13의 하나 이상의 메모리(104, 204))에 저장될 수도 있다.Further, the operation of FIG. 11 may be processed by one or more processors 102 and 202 of FIG. 13 . In addition, the operation of FIG. 11 is a memory in the form of an instruction/program (eg, instruction, executable code) for driving at least one processor (eg, 102 , 202 ) of FIG. 13 . (eg, one or more memories 104 , 204 of FIG. 13 ).
단말은 기지국(또는 네트워크)로부터 CSI 보고와 관련된 설정 정보를 수신할 수 있다(S1101). The terminal may receive configuration information related to the CSI report from the base station (or network) (S1101).
여기서, 상술한 방법(예를 들어, 실시예 #1의 실시예 #1-1, #1-2, #1-3, #1-4 중 적어도 하나)들에서 설명한 바와 같이, 상기 설정 정보는 CSI 보고와 관련된 설정 정보(예를 들어, CSI 보고 설정(CSI-ReportConfig)/ CSI 자원 설정(CSI-ResourceConfig)/ NZP CSI-RS 자원 세트 정보(NZP-CSI-RS-ResourceSet)/ NZP CSI-RS 자원 정보(NZP-CSI-RS-Resource) 등)/ 자원 설정 정보/ precoding matrix 관련 지시/ 코드북 관련 설정 등을 포함할 수 있다. Here, as described in the above-described methods (eg, at least one of embodiments #1-1, #1-2, #1-3, and #1-4 of embodiment #1), the setting information is Configuration information related to CSI reporting (eg, CSI reporting configuration (CSI-ReportConfig)/ CSI resource configuration (CSI-ResourceConfig)/ NZP CSI-RS resource set information (NZP-CSI-RS-ResourceSet)/ NZP CSI-RS) It may include resource information (NZP-CSI-RS-Resource, etc.)/resource configuration information/precoding matrix related indication/codebook related configuration.
예를 들어, 단일 보고 셋팅/단일의 CSI 보고 설정(예를 들어, CSI-ReportConfig)에서 서로 다른 복수의 NZP CSI-RS resource들이 설정될 수 있다. 여기서, 복수의 NZP CSI-RS resource들은 모두 채널 측정(channel measurement) 용의 resource들일 수 있다. 또는, 일부는 채널 측정(channel measurement) 용의 resource(들)이고, 나머지는 간섭 측정(interference measurement) 용의 resource(들)일 수 있다. For example, a plurality of different NZP CSI-RS resources may be configured in a single report setting/single CSI report setting (eg, CSI-ReportConfig). Here, the plurality of NZP CSI-RS resources may all be resources for channel measurement. Alternatively, some may be resource(s) for channel measurement, and the rest may be resource(s) for interference measurement.
또한, 상술한 방법(예를 들어, 실시예 #1의 실시예 #1-1, #1-2, #1-3, #1-4 중 적어도 하나)들에서 설명한 바와 같이, 복수의 CSI-RS 자원들 각각에 대하여 개별적인 랭크(rank) 수 및/또는 프리코딩 행렬(precoding matrix)에 기반하여 상기 CSI가 계산될 수 있다. 이를 위해, 상기 설정 정보는 복수의 CSI-RS 자원들 각각에 대한 독립적인/개별적인 설정 정보를 포함할 수 있다. 예를 들어, 복수의 CSI-RS 자원들 각각에 대하여 설정된 개별적인 랭크(rank) 수 및/또는 프리코딩 행렬(precoding matrix) 정보에 기반하여 상기 CSI가 계산되도록, 상기 설정 정보는 복수의 CSI-RS 자원들 각각에 대하여 개별적인 랭크(rank) 수 및/또는 프리코딩 행렬(precoding matrix) 정보를 포함할 수 있다. 예를 들어, 복수의 CSI-RS 자원들 각각에 대하여 개별적인 랭크(rank) 수 및/또는 프리코딩 행렬(precoding matrix)을 설정하기 위해, 설정 정보는 상기 복수의 CSI-RS 자원들 각각에 연관된 코드북 설정(예를 들어, CodebookConfig)들을 포함할 수 있다. In addition, as described in the above-described methods (eg, at least one of embodiments #1-1, #1-2, #1-3, and #1-4 of embodiment #1), a plurality of CSI- The CSI may be calculated based on an individual number of ranks and/or a precoding matrix for each of the RS resources. To this end, the configuration information may include independent/individual configuration information for each of a plurality of CSI-RS resources. For example, the configuration information is a plurality of CSI-RSs so that the CSI is calculated based on the number of individual ranks and/or precoding matrix information configured for each of the plurality of CSI-RS resources. It may include an individual rank number and/or precoding matrix information for each of the resources. For example, in order to set an individual rank number and/or a precoding matrix for each of the plurality of CSI-RS resources, the configuration information is a codebook associated with each of the plurality of CSI-RS resources settings (eg, CodebookConfig).
그리고, 예를 들어, 상기 설정 정보가 복수의 CSI 자원 설정(예를 들어, CSI-ResourceConfig)을 포함함으로써, 각각의 CSI 자원 설정에서 상기 복수의 CSI-RS 자원들이 설정될 수 있다. 또는, 상기 설정 정보는 하나의 CSI 자원 설정(예를 들어, CSI-ResourceConfig)을 포함하고, 상기 하나의 CSI 자원 설정 내 복수의 CSI-RS 자원 세트들 각각에서 하나씩 상기 복수의 CSI-RS 자원들이 설정될 수도 있다. 또는, 상기 CSI 보고와 관련된 설정 정보는 하나의 CSI 자원 설정(예를 들어, CSI-ResourceConfig)을 포함하고, 상기 하나의 CSI 자원 설정 내 하나의 CSI-RS 자원 세트 내에서 상기 복수의 CSI-RS 자원들이 설정될 수도 있다.And, for example, since the configuration information includes a plurality of CSI resource configurations (eg, CSI-ResourceConfig), the plurality of CSI-RS resources may be configured in each CSI resource configuration. Alternatively, the configuration information includes one CSI resource configuration (eg, CSI-ResourceConfig), and the plurality of CSI-RS resources are one in each of a plurality of CSI-RS resource sets in the one CSI resource configuration. may be set. Alternatively, the configuration information related to the CSI report includes one CSI resource configuration (eg, CSI-ResourceConfig), and the plurality of CSI-RSs in one CSI-RS resource set in the one CSI resource configuration Resources may be established.
단말은 기지국(또는 네트워크)으로부터 복수의 CSI-RS 자원들 상에서 CSI 관련 신호를 수신한다(S1102). The terminal receives a CSI-related signal on a plurality of CSI-RS resources from the base station (or network) (S1102).
여기서, 상술한 방법(예를 들어, 실시예 #1의 실시예 #1-1, #1-2, #1-3, #1-4 중 적어도 하나) 및/또는 상술한 'CSI 관련 동작'에 기반하여 상기 CSI 관련 참조 신호가 수신될 수 있다. 예를 들어, 단말은 TRP 1 및/또는 TRP 2를 통해 CSI 관련 참조 신호(예를 들어, CSI-RS)를 수신할 수 있다. 상기 CSI 관련 참조 신호는 주기적/비주기적/반지속적으로 전송될 수 있다. 예를 들어, 상기 CSI 관련 참조 신호는 상기 설정 정보에 기반하여 수신될 수 있다.Here, the above-described method (eg, at least one of embodiments #1-1, #1-2, #1-3, and #1-4 of embodiment #1) and/or the above-described 'CSI-related operation' Based on the CSI-related reference signal may be received. For example, the UE may receive a CSI-related reference signal (eg, CSI-RS) through TRP 1 and/or TRP 2. The CSI-related reference signal may be transmitted periodically/aperiodically/semi-continuously. For example, the CSI-related reference signal may be received based on the configuration information.
상기 복수의 CSI-RS 자원들은 상기 CSI 계산을 위한 프리코딩 행렬로서 단위 행렬(identity matrix)이 가정되는 제1 CSI-RS 자원과 상기 CSI 계산을 위해 특정 코드북(codebook)이 가정되는 제2 CSI-RS 자원을 포함할 수 있다. 즉, 제1 CSI-RS 자원의 경우, 이전의 단말의 CSI에 기반한 RI/PMI 등이 적용(즉, 프리코딩 적용)될 수 있으며, 이에 따라 단말은 제1 CSI-RS 자원에 대한 CSI 계산 시 프리코딩 행렬로서 단위 행렬(identity matrix)을 가정할 수 있다. 이 경우, 단말은 기지국으로부터 상기 제3 CSI-RS 자원 상에서 CSI-RS를 수신하고, 제3 CSI-RS 자원 상에서 수신된 CSI-RS에 기반하여 제1 CSI를 상기 기지국에게 전송할 수 있으며, 상기 제1 CSI-RS 자원은 상기 제1 CSI 내 PMI에 기반하는(또는 대응되는) 프리코딩 행렬(precoding matrix)이 적용되어 전송될 수 있다.The plurality of CSI-RS resources are a first CSI-RS resource in which an identity matrix is assumed as a precoding matrix for the CSI calculation and a second CSI-RS resource in which a specific codebook is assumed for the CSI calculation- RS resources may be included. That is, in the case of the first CSI-RS resource, RI/PMI based on the CSI of the previous UE may be applied (ie, precoding application), and accordingly, the UE calculates CSI for the first CSI-RS resource. An identity matrix may be assumed as the precoding matrix. In this case, the terminal may receive the CSI-RS on the third CSI-RS resource from the base station, and transmit the first CSI to the base station based on the CSI-RS received on the third CSI-RS resource, One CSI-RS resource may be transmitted by applying a precoding matrix based on (or corresponding to) PMI in the first CSI.
단말은 CSI-RS에 기반하여 CSI 측정/계산하고, CSI-RS에 기반하여 측정/계산된 CSI를 기지국에게 전송한다(S1103).The UE measures/calculates CSI based on the CSI-RS, and transmits the measured/calculated CSI based on the CSI-RS to the base station (S1103).
예를 들어, 상기 CSI 측정/계산 및 CSI 보고는 상술한 방법(예를 들어, 실시예 #1의 실시예 #1-1, #1-2, #1-3, #1-4 중 적어도 하나) 및/또는 상술한 'CSI 관련 동작'에 기반하여 수행될 수 있다.For example, the CSI measurement/calculation and CSI reporting are performed by the above-described method (eg, at least one of embodiments #1-1, #1-2, #1-3, and #1-4 of embodiment #1). ) and/or the 'CSI-related operation' described above.
예를 들어, CSI는 상술한 설정 정보 및/또는 DCI 및/또는 CSI 관련 참조 신호에 기반하여 측정될 수 있다. 예를 들어, 상기 복수의 CSI-RS 자원들(예를 들어, 각 TRP에 대한 CSI-RS resource)에 대해서 설정된 랭크 수(즉, 전송 레이어(transmission layer)/포트(port) 수) 및/또는 프리코딩 행렬(precoding matrix) 정보에 기반하여(즉, 설정 정보에 기반하여), 랭크 수(즉, 전송 레이어(transmission layer)/포트(port) 수) 및/또는 프리코딩 행렬에 대한 가정 등이 다르게 적용되어/가정되어 CSI가 측정될 수 있다.For example, CSI may be measured based on the above-described configuration information and/or DCI and/or CSI-related reference signals. For example, the number of ranks configured for the plurality of CSI-RS resources (eg, CSI-RS resource for each TRP) (ie, the number of transmission layers/ports) and/or Based on the precoding matrix information (ie, based on the configuration information), the number of ranks (ie, the number of transmission layers / ports) and / or assumptions about the precoding matrix, etc. CSI may be measured differently applied/assumed.
예를 들어, 상기 복수의 CSI-RS 자원들 중 제1 CSI-RS 자원은 이전의 단말이 보고한 CSI에 기반한 RI/PMI 등이 적용될 수 있다. 따라서, 단말은 제1 CSI-RS 자원에 대한 CSI 계산 시, 상기 CSI 계산을 위한 프리코딩 행렬로서 단위 행렬(identity matrix)을 가정할 수 있다. 이 경우, 단말은 기지국으로부터 상기 제3 CSI-RS 자원 상에서 CSI-RS를 수신하고, 제3 CSI-RS 자원 상에서 수신된 CSI-RS에 기반하여 제1 CSI를 상기 기지국에게 전송할 수 있으며, 상기 제1 CSI-RS 자원은 상기 제1 CSI 내 PMI에 기반하는(또는 대응되는) 프리코딩 행렬(precoding matrix)이 적용되어 전송될 수 있다. For example, as the first CSI-RS resource among the plurality of CSI-RS resources, RI/PMI based on CSI reported by a previous UE may be applied. Accordingly, when calculating CSI for the first CSI-RS resource, the UE may assume an identity matrix as a precoding matrix for the CSI calculation. In this case, the terminal may receive the CSI-RS on the third CSI-RS resource from the base station, and transmit the first CSI to the base station based on the CSI-RS received on the third CSI-RS resource, One CSI-RS resource may be transmitted by applying a precoding matrix based on (or corresponding to) PMI in the first CSI.
반면, 제2 CSI-RS 자원에 대해서는 CSI 계산을 위해 특정 코드북이 가정될 수 있다. 이를 위해, 설정 정보에서는 제2 CSI-RS 자원에 대한 코드북 설정을 포함할 수 있다.On the other hand, for the second CSI-RS resource, a specific codebook may be assumed for CSI calculation. To this end, the configuration information may include a codebook configuration for the second CSI-RS resource.
또한, 제1 CSI-RS 자원에 대해서 상기 CSI 계산을 위한 랭크(rank) 수로서 상기 제1 CSI-RS 자원의 안테나 포트 수가 가정될 수 있다. 또는, 제1 CSI-RS 자원에 대해서 상기 CSI 계산을 위한 랭크(rank) 수로서 미리 정해진 값이 가정될 수도 있다. In addition, the number of antenna ports of the first CSI-RS resource may be assumed as the number of ranks for the CSI calculation for the first CSI-RS resource. Alternatively, a predetermined value may be assumed as the number of ranks for the CSI calculation for the first CSI-RS resource.
상기 CSI는 i) 하나 이상의 CSI-RS 자원 지시자(CRI: CSI-RS resource indicator), ii) 상기 제2 CSI-RS 자원에 대한 PMI, iii) RI(여기서, RI는 상기 제2 CSI-RS 자원에 대한 RI 또는 상기 CRI에 의해 선택되는 자원들에 대한 전체 RI일 수 있다) 및/또는 iv) CQI 중 적어도 하나를 포함할 수 있다. 또한, CSI 내 제1 CSI-RS 자원에 대한 PMI 및/또는 RI가 포함되지 않을 수 있다. 또한, CSI 내 제1 CSI-RS 자원에 대한 포트 선택 정보(예를 들어, 포트 인덱스)를 포함할 수 있다. The CSI is i) one or more CSI-RS resource indicators (CRI: CSI-RS resource indicator), ii) PMI for the second CSI-RS resource, iii) RI (where RI is the second CSI-RS resource) It may be an RI for RI or a full RI for resources selected by the CRI) and/or iv) may include at least one of CQI. In addition, the PMI and/or RI for the first CSI-RS resource in the CSI may not be included. In addition, it may include port selection information (eg, a port index) for the first CSI-RS resource in the CSI.
도 12는 본 개시의 일 실시예에 따른 채널 상태 정보 전송을 위한 기지국의 동작을 예시한다.12 illustrates an operation of a base station for transmitting channel state information according to an embodiment of the present disclosure.
도 12에서는 앞서 제안한 방법들(예를 들어, 실시예 #1의 실시예 #1-1, #1-2, #1-3, #1-4 중 적어도 하나)에 기반한 기지국의 동작을 예시한다. 도 12의 예시는 설명의 편의를 위한 것이며, 본 개시의 범위를 제한하는 것은 아니다. 도 12에서 예시된 일부 단계(들)은 상황 및/또는 설정에 따라 생략될 수 있다. 또한, 도 12에서 기지국은 하나의 예시일 뿐, 아래 도 13에서 예시된 장치로 구현될 수 있다. 예를 들어, 도 13의 프로세서(processor)(102/202)는 트랜시버(106/206)을 이용하여 채널/신호/데이터/정보 등을 송수신하도록 제어할 수 있으며, 전송할 또는 수신한 채널/신호/데이터/정보 등을 메모리(104/204)에 저장하도록 제어할 수도 있다. 12 illustrates an operation of a base station based on the previously proposed methods (eg, at least one of embodiments #1-1, #1-2, #1-3, and #1-4 of embodiment #1) . The example of FIG. 12 is for convenience of description, and does not limit the scope of the present disclosure. Some step(s) illustrated in FIG. 12 may be omitted depending on circumstances and/or settings. In addition, the base station in FIG. 12 is only one example, and may be implemented with the apparatus illustrated in FIG. 13 below. For example, the processor 102/202 of FIG. 13 may control to transmit/receive a channel/signal/data/information using the transceiver 106/206, and transmit or receive a channel/signal/ Data/information may be controlled to be stored in the memory 104/204.
또한, 도 12의 동작은 도 13의 하나 이상의 프로세서(102, 202)에 의해 처리될 수 있다. 또한, 도 12의 동작은 도 13의 적어도 하나의 프로세서(예를 들어, 102, 202)를 구동하기 위한 명령어/프로그램(예를 들어, 명령(instruction), 실행 코드(executable code))형태로 메모리(예를 들어, 도 13의 하나 이상의 메모리(104, 204))에 저장될 수도 있다.Also, the operation of FIG. 12 may be processed by one or more processors 102 and 202 of FIG. 13 . In addition, the operation of FIG. 12 is a memory in the form of an instruction/program (eg, instruction, executable code) for driving at least one processor (eg, 102 and 202 ) of FIG. 13 . (eg, one or more memories 104 , 204 of FIG. 13 ).
기지국(또는 네트워크)은 단말에게 CSI 보고와 관련된 설정 정보를 전송할 수 있다(S1201). The base station (or network) may transmit configuration information related to the CSI report to the terminal (S1201).
여기서, 상술한 방법(예를 들어, 실시예 #1의 실시예 #1-1, #1-2, #1-3, #1-4 중 적어도 하나)들에서 설명한 바와 같이, 상기 설정 정보는 CSI 보고와 관련된 설정 정보(예를 들어, CSI 보고 설정(CSI-ReportConfig)/ CSI 자원 설정(CSI-ResourceConfig)/ NZP CSI-RS 자원 세트 정보(NZP-CSI-RS-ResourceSet)/ NZP CSI-RS 자원 정보(NZP-CSI-RS-Resource) 등)/ 자원 설정 정보/ precoding matrix 관련 지시/ 코드북 관련 설정 등을 포함할 수 있다. Here, as described in the above-described methods (eg, at least one of embodiments #1-1, #1-2, #1-3, and #1-4 of embodiment #1), the setting information is Configuration information related to CSI reporting (eg, CSI reporting configuration (CSI-ReportConfig)/ CSI resource configuration (CSI-ResourceConfig)/ NZP CSI-RS resource set information (NZP-CSI-RS-ResourceSet)/ NZP CSI-RS) It may include resource information (NZP-CSI-RS-Resource, etc.)/resource configuration information/precoding matrix related indication/codebook related configuration.
예를 들어, 단일 보고 셋팅/단일의 CSI 보고 설정(예를 들어, CSI-ReportConfig)에서 서로 다른 복수의 NZP CSI-RS resource들이 설정될 수 있다. 여기서, 복수의 NZP CSI-RS resource들은 모두 채널 측정(channel measurement) 용의 resource들일 수 있다. 또는, 일부는 채널 측정(channel measurement) 용의 resource(들)이고, 나머지는 간섭 측정(interference measurement) 용의 resource(들)일 수 있다. For example, a plurality of different NZP CSI-RS resources may be configured in a single report setting/single CSI report setting (eg, CSI-ReportConfig). Here, the plurality of NZP CSI-RS resources may all be resources for channel measurement. Alternatively, some may be resource(s) for channel measurement, and the rest may be resource(s) for interference measurement.
또한, 상술한 방법(예를 들어, 실시예 #1의 실시예 #1-1, #1-2, #1-3, #1-4 중 적어도 하나)들에서 설명한 바와 같이, 복수의 CSI-RS 자원들 각각에 대하여 개별적인 랭크(rank) 수 및/또는 프리코딩 행렬(precoding matrix)에 기반하여 상기 CSI가 계산될 수 있다. 이를 위해, 상기 설정 정보는 복수의 CSI-RS 자원들 각각에 대한 독립적인/개별적인 설정 정보를 포함할 수 있다. 예를 들어, 복수의 CSI-RS 자원들 각각에 대하여 설정된 개별적인 랭크(rank) 수 및/또는 프리코딩 행렬(precoding matrix) 정보에 기반하여 상기 CSI가 계산되도록, 상기 설정 정보는 복수의 CSI-RS 자원들 각각에 대하여 개별적인 랭크(rank) 수 및/또는 프리코딩 행렬(precoding matrix) 정보를 포함할 수 있다. 예를 들어, 복수의 CSI-RS 자원들 각각에 대하여 개별적인 랭크(rank) 수 및/또는 프리코딩 행렬(precoding matrix)을 설정하기 위해, 설정 정보는 상기 복수의 CSI-RS 자원들 각각에 연관된 코드북 설정(예를 들어, CodebookConfig)들을 포함할 수 있다. In addition, as described in the above-described methods (eg, at least one of embodiments #1-1, #1-2, #1-3, and #1-4 of embodiment #1), a plurality of CSI- The CSI may be calculated based on an individual number of ranks and/or a precoding matrix for each of the RS resources. To this end, the configuration information may include independent/individual configuration information for each of a plurality of CSI-RS resources. For example, the configuration information is a plurality of CSI-RSs so that the CSI is calculated based on the number of individual ranks and/or precoding matrix information configured for each of the plurality of CSI-RS resources. It may include an individual rank number and/or precoding matrix information for each of the resources. For example, in order to set an individual rank number and/or a precoding matrix for each of the plurality of CSI-RS resources, the configuration information is a codebook associated with each of the plurality of CSI-RS resources settings (eg, CodebookConfig).
그리고, 예를 들어, 상기 설정 정보가 복수의 CSI 자원 설정(예를 들어, CSI-ResourceConfig)을 포함함으로써, 각각의 CSI 자원 설정에서 상기 복수의 CSI-RS 자원들이 설정될 수 있다. 또는, 상기 설정 정보는 하나의 CSI 자원 설정(예를 들어, CSI-ResourceConfig)을 포함하고, 상기 하나의 CSI 자원 설정 내 복수의 CSI-RS 자원 세트들 각각에서 하나씩 상기 복수의 CSI-RS 자원들이 설정될 수도 있다. 또는, 상기 CSI 보고와 관련된 설정 정보는 하나의 CSI 자원 설정(예를 들어, CSI-ResourceConfig)을 포함하고, 상기 하나의 CSI 자원 설정 내 하나의 CSI-RS 자원 세트 내에서 상기 복수의 CSI-RS 자원들이 설정될 수도 있다.And, for example, since the configuration information includes a plurality of CSI resource configurations (eg, CSI-ResourceConfig), the plurality of CSI-RS resources may be configured in each CSI resource configuration. Alternatively, the configuration information includes one CSI resource configuration (eg, CSI-ResourceConfig), and the plurality of CSI-RS resources are one in each of a plurality of CSI-RS resource sets in the one CSI resource configuration. may be set. Alternatively, the configuration information related to the CSI report includes one CSI resource configuration (eg, CSI-ResourceConfig), and the plurality of CSI-RSs in one CSI-RS resource set in the one CSI resource configuration Resources may be established.
기지국(또는 네트워크)은 단말에게 복수의 CSI-RS 자원들 상에서 CSI 관련 신호를 전송한다(S1202). The base station (or network) transmits a CSI-related signal to the terminal on a plurality of CSI-RS resources (S1202).
여기서, 상술한 방법(예를 들어, 실시예 #1의 실시예 #1-1, #1-2, #1-3, #1-4 중 적어도 하나) 및/또는 상술한 'CSI 관련 동작'에 기반하여 상기 CSI 관련 참조 신호가 수신될 수 있다. 예를 들어, 단말은 TRP 1 및/또는 TRP 2를 통해 CSI 관련 참조 신호(예를 들어, CSI-RS)를 수신할 수 있다. 상기 CSI 관련 참조 신호는 주기적/비주기적/반지속적으로 전송될 수 있다. 예를 들어, 상기 CSI 관련 참조 신호는 상기 설정 정보에 기반하여 수신될 수 있다.Here, the above-described method (eg, at least one of embodiments #1-1, #1-2, #1-3, and #1-4 of embodiment #1) and/or the above-described 'CSI-related operation' Based on the CSI-related reference signal may be received. For example, the UE may receive a CSI-related reference signal (eg, CSI-RS) through TRP 1 and/or TRP 2. The CSI-related reference signal may be transmitted periodically/aperiodically/semi-continuously. For example, the CSI-related reference signal may be received based on the configuration information.
상기 복수의 CSI-RS 자원들은 상기 CSI 계산을 위한 프리코딩 행렬로서 단위 행렬(identity matrix)이 가정되는 제1 CSI-RS 자원과 상기 CSI 계산을 위해 특정 코드북(codebook)이 가정되는 제2 CSI-RS 자원을 포함할 수 있다. 즉, 제1 CSI-RS 자원의 경우, 이전의 단말의 CSI에 기반한 RI/PMI 등이 적용(즉, 프리코딩 적용)될 수 있으며, 이에 따라 단말은 제1 CSI-RS 자원에 대한 CSI 계산 시 프리코딩 행렬로서 단위 행렬(identity matrix)을 가정할 수 있다. 이 경우, 단말은 기지국으로부터 상기 제3 CSI-RS 자원 상에서 CSI-RS를 수신하고, 제3 CSI-RS 자원 상에서 수신된 CSI-RS에 기반하여 제1 CSI를 상기 기지국에게 전송할 수 있으며, 상기 제1 CSI-RS 자원은 상기 제1 CSI 내 PMI에 기반하는(또는 대응되는) 프리코딩 행렬(precoding matrix)이 적용되어 전송될 수 있다.The plurality of CSI-RS resources are a first CSI-RS resource in which an identity matrix is assumed as a precoding matrix for the CSI calculation and a second CSI-RS resource in which a specific codebook is assumed for the CSI calculation- RS resources may be included. That is, in the case of the first CSI-RS resource, RI/PMI based on the CSI of the previous UE may be applied (ie, precoding application), and accordingly, the UE calculates CSI for the first CSI-RS resource. An identity matrix may be assumed as the precoding matrix. In this case, the terminal may receive the CSI-RS on the third CSI-RS resource from the base station, and transmit the first CSI to the base station based on the CSI-RS received on the third CSI-RS resource, One CSI-RS resource may be transmitted by applying a precoding matrix based on (or corresponding to) PMI in the first CSI.
기지국은 단말로부터 단말에 의해 CSI-RS에 기반하여 측정/계산된 CSI를 수신한다(S1203).The base station receives the CSI measured/calculated based on the CSI-RS by the terminal from the terminal (S1203).
예를 들어, 상기 CSI 측정/계산 및 CSI 보고는 상술한 방법(예를 들어, 실시예 #1의 실시예 #1-1, #1-2, #1-3, #1-4 중 적어도 하나) 및/또는 상술한 'CSI 관련 동작'에 기반하여 수행될 수 있다.For example, the CSI measurement/calculation and CSI reporting are performed by the above-described method (eg, at least one of embodiments #1-1, #1-2, #1-3, and #1-4 of embodiment #1). ) and/or the 'CSI-related operation' described above.
예를 들어, CSI는 상술한 설정 정보 및/또는 DCI 및/또는 CSI 관련 참조 신호에 기반하여 측정될 수 있다. 예를 들어, 상기 복수의 CSI-RS 자원들(예를 들어, 각 TRP에 대한 CSI-RS resource)에 대해서 설정된 랭크 수(즉, 전송 레이어(transmission layer)/포트(port) 수) 및/또는 프리코딩 행렬(precoding matrix) 정보에 기반하여(즉, 설정 정보에 기반하여), 랭크 수(즉, 전송 레이어(transmission layer)/포트(port) 수) 및/또는 프리코딩 행렬에 대한 가정 등이 다르게 적용되어/가정되어 CSI가 측정될 수 있다.For example, CSI may be measured based on the above-described configuration information and/or DCI and/or CSI-related reference signals. For example, the number of ranks configured for the plurality of CSI-RS resources (eg, CSI-RS resource for each TRP) (ie, the number of transmission layers/ports) and/or Based on the precoding matrix information (ie, based on the configuration information), the number of ranks (ie, the number of transmission layers / ports) and / or assumptions about the precoding matrix, etc. CSI may be measured differently applied/assumed.
예를 들어, 상기 복수의 CSI-RS 자원들 중 제1 CSI-RS 자원은 이전의 단말이 보고한 CSI에 기반한 RI/PMI 등이 적용될 수 있다. 따라서, 단말은 제1 CSI-RS 자원에 대한 CSI 계산 시, 상기 CSI 계산을 위한 프리코딩 행렬로서 단위 행렬(identity matrix)을 가정할 수 있다. 이 경우, 단말은 기지국으로부터 상기 제3 CSI-RS 자원 상에서 CSI-RS를 수신하고, 제3 CSI-RS 자원 상에서 수신된 CSI-RS에 기반하여 제1 CSI를 상기 기지국에게 전송할 수 있으며, 상기 제1 CSI-RS 자원은 상기 제1 CSI 내 PMI에 기반하는(또는 대응되는) 프리코딩 행렬(precoding matrix)이 적용되어 전송될 수 있다. For example, as the first CSI-RS resource among the plurality of CSI-RS resources, RI/PMI based on CSI reported by a previous UE may be applied. Accordingly, when calculating CSI for the first CSI-RS resource, the UE may assume an identity matrix as a precoding matrix for the CSI calculation. In this case, the terminal may receive the CSI-RS on the third CSI-RS resource from the base station, and transmit the first CSI to the base station based on the CSI-RS received on the third CSI-RS resource, One CSI-RS resource may be transmitted by applying a precoding matrix based on (or corresponding to) PMI in the first CSI.
반면, 제2 CSI-RS 자원에 대해서는 CSI 계산을 위해 특정 코드북이 가정될 수 있다. 이를 위해, 설정 정보에서는 제2 CSI-RS 자원에 대한 코드북 설정을 포함할 수 있다.On the other hand, for the second CSI-RS resource, a specific codebook may be assumed for CSI calculation. To this end, the configuration information may include a codebook configuration for the second CSI-RS resource.
또한, 제1 CSI-RS 자원에 대해서 상기 CSI 계산을 위한 랭크(rank) 수로서 상기 제1 CSI-RS 자원의 안테나 포트 수가 가정될 수 있다. 또는, 제1 CSI-RS 자원에 대해서 상기 CSI 계산을 위한 랭크(rank) 수로서 미리 정해진 값이 가정될 수도 있다. In addition, the number of antenna ports of the first CSI-RS resource may be assumed as the number of ranks for the CSI calculation for the first CSI-RS resource. Alternatively, a predetermined value may be assumed as the number of ranks for the CSI calculation for the first CSI-RS resource.
상기 CSI는 i) 하나 이상의 CSI-RS 자원 지시자(CRI: CSI-RS resource indicator), ii) 상기 제2 CSI-RS 자원에 대한 PMI, iii) RI(여기서, RI는 상기 제2 CSI-RS 자원에 대한 RI 또는 상기 CRI에 의해 선택되는 자원들에 대한 전체 RI일 수 있다) 및/또는 iv) CQI 중 적어도 하나를 포함할 수 있다. 또한, CSI 내 제1 CSI-RS 자원에 대한 PMI 및/또는 RI가 포함되지 않을 수 있다. 또한, CSI 내 제1 CSI-RS 자원에 대한 포트 선택 정보(예를 들어, 포트 인덱스)를 포함할 수 있다. The CSI is i) one or more CSI-RS resource indicators (CRI: CSI-RS resource indicator), ii) PMI for the second CSI-RS resource, iii) RI (where RI is the second CSI-RS resource) It may be an RI for RI or a full RI for resources selected by the CRI) and/or iv) may include at least one of CQI. In addition, the PMI and/or RI for the first CSI-RS resource in the CSI may not be included. In addition, it may include port selection information (eg, a port index) for the first CSI-RS resource in the CSI.
본 개시가 적용될 수 있는 장치 일반General device to which the present disclosure can be applied
도 13은 본 개시의 일 실시예에 따른 무선 통신 장치의 블록 구성도를 예시한다.13 illustrates a block diagram of a wireless communication apparatus according to an embodiment of the present disclosure.
도 13을 참조하면, 제1 무선 기기(100)와 제2 무선 기기(200)는 다양한 무선 접속 기술(예를 들어, LTE, NR)을 통해 무선 신호를 송수신할 수 있다. Referring to FIG. 13 , the first wireless device 100 and the second wireless device 200 may transmit and receive wireless signals through various wireless access technologies (eg, LTE, NR).
제1 무선 기기(100)는 하나 이상의 프로세서(102) 및 하나 이상의 메모리(104)를 포함하며, 추가적으로 하나 이상의 송수신기(106) 및/또는 하나 이상의 안테나(108)을 더 포함할 수 있다. 프로세서(102)는 메모리(104) 및/또는 송수신기(106)를 제어하며, 본 개시에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들을 구현하도록 구성될 수 있다. 예를 들어, 프로세서(102)는 메모리(104) 내의 정보를 처리하여 제1 정보/신호를 생성한 뒤, 송수신기(106)을 통해 제1 정보/신호를 포함하는 무선 신호를 전송할 수 있다. 또한, 프로세서(102)는 송수신기(106)를 통해 제2 정보/신호를 포함하는 무선 신호를 수신한 뒤, 제2 정보/신호의 신호 처리로부터 얻은 정보를 메모리(104)에 저장할 수 있다. 메모리(104)는 프로세서(102)와 연결될 수 있고, 프로세서(102)의 동작과 관련한 다양한 정보를 저장할 수 있다. 예를 들어, 메모리(104)는 프로세서(102)에 의해 제어되는 프로세스들 중 일부 또는 전부를 수행하거나, 본 개시에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들을 수행하기 위한 명령들을 포함하는 소프트웨어 코드를 저장할 수 있다. 여기서, 프로세서(102)와 메모리(104)는 무선 통신 기술(예를 들어, LTE, NR)을 구현하도록 설계된 통신 모뎀/회로/칩의 일부일 수 있다. 송수신기(106)는 프로세서(102)와 연결될 수 있고, 하나 이상의 안테나(108)를 통해 무선 신호를 송신 및/또는 수신할 수 있다. 송수신기(106)는 송신기 및/또는 수신기를 포함할 수 있다. 송수신기(106)는 RF(Radio Frequency) 유닛과 혼용될 수 있다. 본 개시에서 무선 기기는 통신 모뎀/회로/칩을 의미할 수도 있다.The first wireless device 100 includes one or more processors 102 and one or more memories 104 , and may further include one or more transceivers 106 and/or one or more antennas 108 . The processor 102 controls the memory 104 and/or the transceiver 106 and may be configured to implement the descriptions, functions, procedures, suggestions, methods, and/or operational flowcharts disclosed in this disclosure. For example, the processor 102 may process information in the memory 104 to generate first information/signal, and then transmit a wireless signal including the first information/signal through the transceiver 106 . In addition, the processor 102 may receive the radio signal including the second information/signal through the transceiver 106 , and then store information obtained from signal processing of the second information/signal in the memory 104 . The memory 104 may be connected to the processor 102 and may store various information related to the operation of the processor 102 . For example, memory 104 may provide instructions for performing some or all of the processes controlled by processor 102 , or for performing descriptions, functions, procedures, suggestions, methods, and/or operational flowcharts disclosed herein. may store software code including Here, the processor 102 and the memory 104 may be part of a communication modem/circuit/chip designed to implement a wireless communication technology (eg, LTE, NR). The transceiver 106 may be coupled to the processor 102 , and may transmit and/or receive wireless signals via one or more antennas 108 . The transceiver 106 may include a transmitter and/or a receiver. The transceiver 106 may be used interchangeably with a radio frequency (RF) unit. In the present disclosure, a wireless device may refer to a communication modem/circuit/chip.
제2 무선 기기(200)는 하나 이상의 프로세서(202), 하나 이상의 메모리(204)를 포함하며, 추가적으로 하나 이상의 송수신기(206) 및/또는 하나 이상의 안테나(208)를 더 포함할 수 있다. 프로세서(202)는 메모리(204) 및/또는 송수신기(206)를 제어하며, 본 개시에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들을 구현하도록 구성될 수 있다. 예를 들어, 프로세서(202)는 메모리(204) 내의 정보를 처리하여 제3 정보/신호를 생성한 뒤, 송수신기(206)를 통해 제3 정보/신호를 포함하는 무선 신호를 전송할 수 있다. 또한, 프로세서(202)는 송수신기(206)를 통해 제4 정보/신호를 포함하는 무선 신호를 수신한 뒤, 제4 정보/신호의 신호 처리로부터 얻은 정보를 메모리(204)에 저장할 수 있다. 메모리(204)는 프로세서(202)와 연결될 수 있고, 프로세서(202)의 동작과 관련한 다양한 정보를 저장할 수 있다. 예를 들어, 메모리(204)는 프로세서(202)에 의해 제어되는 프로세스들 중 일부 또는 전부를 수행하거나, 본 개시에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들을 수행하기 위한 명령들을 포함하는 소프트웨어 코드를 저장할 수 있다. 여기서, 프로세서(202)와 메모리(204)는 무선 통신 기술(예를 들어, LTE, NR)을 구현하도록 설계된 통신 모뎀/회로/칩의 일부일 수 있다. 송수신기(206)는 프로세서(202)와 연결될 수 있고, 하나 이상의 안테나(208)를 통해 무선 신호를 송신 및/또는 수신할 수 있다. 송수신기(206)는 송신기 및/또는 수신기를 포함할 수 있다 송수신기(206)는 RF 유닛과 혼용될 수 있다. 본 개시에서 무선 기기는 통신 모뎀/회로/칩을 의미할 수도 있다.The second wireless device 200 includes one or more processors 202 , one or more memories 204 , and may further include one or more transceivers 206 and/or one or more antennas 208 . The processor 202 controls the memory 204 and/or the transceiver 206 , and may be configured to implement the descriptions, functions, procedures, proposals, methods, and/or operational flowcharts disclosed in this disclosure. For example, the processor 202 may process the information in the memory 204 to generate third information/signal, and then transmit a wireless signal including the third information/signal through the transceiver 206 . In addition, the processor 202 may receive the radio signal including the fourth information/signal through the transceiver 206 , and then store information obtained from signal processing of the fourth information/signal in the memory 204 . The memory 204 may be connected to the processor 202 and may store various information related to the operation of the processor 202 . For example, the memory 204 may provide instructions for performing some or all of the processes controlled by the processor 202 , or for performing the descriptions, functions, procedures, suggestions, methods, and/or operational flowcharts disclosed in this disclosure. may store software code including Here, the processor 202 and the memory 204 may be part of a communication modem/circuit/chip designed to implement a wireless communication technology (eg, LTE, NR). The transceiver 206 may be coupled to the processor 202 and may transmit and/or receive wireless signals via one or more antennas 208 . The transceiver 206 may include a transmitter and/or a receiver. The transceiver 206 may be used interchangeably with an RF unit. In the present disclosure, a wireless device may refer to a communication modem/circuit/chip.
이하, 무선 기기(100, 200)의 하드웨어 요소에 대해 보다 구체적으로 설명한다. 이로 제한되는 것은 아니지만, 하나 이상의 프로토콜 계층이 하나 이상의 프로세서(102, 202)에 의해 구현될 수 있다. 예를 들어, 하나 이상의 프로세서(102, 202)는 하나 이상의 계층(예를 들어, PHY, MAC, RLC, PDCP, RRC, SDAP와 같은 기능적 계층)을 구현할 수 있다. 하나 이상의 프로세서(102, 202)는 본 개시에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들에 따라 하나 이상의 PDU(Protocol Data Unit) 및/또는 하나 이상의 SDU(Service Data Unit)를 생성할 수 있다. 하나 이상의 프로세서(102, 202)는 본 개시에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들에 따라 메시지, 제어정보, 데이터 또는 정보를 생성할 수 있다. 하나 이상의 프로세서(102, 202)는 본 개시에 개시된 기능, 절차, 제안 및/또는 방법에 따라 PDU, SDU, 메시지, 제어정보, 데이터 또는 정보를 포함하는 신호(예를 들어, 베이스밴드 신호)를 생성하여, 하나 이상의 송수신기(106, 206)에게 제공할 수 있다. 하나 이상의 프로세서(102, 202)는 하나 이상의 송수신기(106, 206)로부터 신호(예를 들어, 베이스밴드 신호)를 수신할 수 있고, 본 개시에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들에 따라 PDU, SDU, 메시지, 제어정보, 데이터 또는 정보를 획득할 수 있다.Hereinafter, hardware elements of the wireless devices 100 and 200 will be described in more detail. Although not limited thereto, one or more protocol layers may be implemented by one or more processors 102 , 202 . For example, one or more processors 102 , 202 may implement one or more layers (eg, functional layers such as PHY, MAC, RLC, PDCP, RRC, SDAP). The one or more processors 102 and 202 are configured to process one or more Protocol Data Units (PDUs) and/or one or more Service Data Units (SDUs) according to the description, function, procedure, proposal, method, and/or operational flowcharts disclosed in the present disclosure. can create One or more processors 102 , 202 may generate messages, control information, data, or information according to the description, function, procedure, proposal, method, and/or flow charts disclosed in this disclosure. The one or more processors 102, 202 may transmit a signal (eg, a baseband signal) including a PDU, SDU, message, control information, data or information according to a function, procedure, proposal and/or method disclosed in the present disclosure. generated and provided to one or more transceivers (106, 206). The one or more processors 102 , 202 may receive signals (eg, baseband signals) from one or more transceivers 106 , 206 , the descriptions, functions, procedures, proposals, methods and/or methods disclosed in this disclosure. PDU, SDU, message, control information, data or information may be obtained according to the operation flowcharts.
하나 이상의 프로세서(102, 202)는 컨트롤러, 마이크로 컨트롤러, 마이크로 프로세서 또는 마이크로 컴퓨터로 지칭될 수 있다. 하나 이상의 프로세서(102, 202)는 하드웨어, 펌웨어, 소프트웨어, 또는 이들의 조합에 의해 구현될 수 있다. 일 예로, 하나 이상의 ASIC(Application Specific Integrated Circuit), 하나 이상의 DSP(Digital Signal Processor), 하나 이상의 DSPD(Digital Signal Processing Device), 하나 이상의 PLD(Programmable Logic Device) 또는 하나 이상의 FPGA(Field Programmable Gate Arrays)가 하나 이상의 프로세서(102, 202)에 포함될 수 있다. 본 개시에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들은 펌웨어 또는 소프트웨어를 사용하여 구현될 수 있고, 펌웨어 또는 소프트웨어는 모듈, 절차, 기능 등을 포함하도록 구현될 수 있다. 본 개시에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들은 수행하도록 설정된 펌웨어 또는 소프트웨어는 하나 이상의 프로세서(102, 202)에 포함되거나, 하나 이상의 메모리(104, 204)에 저장되어 하나 이상의 프로세서(102, 202)에 의해 구동될 수 있다. 본 개시에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들은 코드, 명령어 및/또는 명령어의 집합 형태로 펌웨어 또는 소프트웨어를 사용하여 구현될 수 있다. One or more processors 102, 202 may be referred to as a controller, microcontroller, microprocessor, or microcomputer. One or more processors 102 , 202 may be implemented by hardware, firmware, software, or a combination thereof. For example, one or more Application Specific Integrated Circuits (ASICs), one or more Digital Signal Processors (DSPs), one or more Digital Signal Processing Devices (DSPDs), one or more Programmable Logic Devices (PLDs), or one or more Field Programmable Gate Arrays (FPGAs) may be included in one or more processors 102 , 202 . The descriptions, functions, procedures, proposals, methods, and/or flowcharts of operations disclosed in this disclosure may be implemented using firmware or software, and the firmware or software may be implemented to include modules, procedures, functions, and the like. The descriptions, functions, procedures, proposals, methods, and/or flowcharts of operations disclosed in the present disclosure may include firmware or software configured to perform one or more processors 102 , 202 , or stored in one or more memories 104 , 204 . It may be driven by the above processors 102 and 202 . The descriptions, functions, procedures, suggestions, methods, and/or flowcharts of operations disclosed in this disclosure may be implemented using firmware or software in the form of code, instructions, and/or a set of instructions.
하나 이상의 메모리(104, 204)는 하나 이상의 프로세서(102, 202)와 연결될 수 있고, 다양한 형태의 데이터, 신호, 메시지, 정보, 프로그램, 코드, 지시 및/또는 명령을 저장할 수 있다. 하나 이상의 메모리(104, 204)는 ROM, RAM, EPROM, 플래시 메모리, 하드 드라이브, 레지스터, 캐쉬 메모리, 컴퓨터 판독 저장 매체 및/또는 이들의 조합으로 구성될 수 있다. 하나 이상의 메모리(104, 204)는 하나 이상의 프로세서(102, 202)의 내부 및/또는 외부에 위치할 수 있다. 또한, 하나 이상의 메모리(104, 204)는 유선 또는 무선 연결과 같은 다양한 기술을 통해 하나 이상의 프로세서(102, 202)와 연결될 수 있다.One or more memories 104 , 204 may be coupled with one or more processors 102 , 202 , and may store various forms of data, signals, messages, information, programs, code, instructions, and/or instructions. The one or more memories 104 and 204 may be comprised of ROM, RAM, EPROM, flash memory, hard drives, registers, cache memory, computer readable storage media, and/or combinations thereof. One or more memories 104 , 204 may be located inside and/or external to one or more processors 102 , 202 . Additionally, one or more memories 104 , 204 may be coupled to one or more processors 102 , 202 through various technologies, such as wired or wireless connections.
하나 이상의 송수신기(106, 206)는 하나 이상의 다른 장치에게 본 개시의 방법들 및/또는 동작 순서도 등에서 언급되는 사용자 데이터, 제어 정보, 무선 신호/채널 등을 전송할 수 있다. 하나 이상의 송수신기(106, 206)는 하나 이상의 다른 장치로부터 본 개시에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도 등에서 언급되는 사용자 데이터, 제어 정보, 무선 신호/채널 등을 수신할 수 있다. 예를 들어, 하나 이상의 송수신기(106, 206)는 하나 이상의 프로세서(102, 202)와 연결될 수 있고, 무선 신호를 송수신할 수 있다. 예를 들어, 하나 이상의 프로세서(102, 202)는 하나 이상의 송수신기(106, 206)가 하나 이상의 다른 장치에게 사용자 데이터, 제어 정보 또는 무선 신호를 전송하도록 제어할 수 있다. 또한, 하나 이상의 프로세서(102, 202)는 하나 이상의 송수신기(106, 206)가 하나 이상의 다른 장치로부터 사용자 데이터, 제어 정보 또는 무선 신호를 수신하도록 제어할 수 있다. 또한, 하나 이상의 송수신기(106, 206)는 하나 이상의 안테나(108, 208)와 연결될 수 있고, 하나 이상의 송수신기(106, 206)는 하나 이상의 안테나(108, 208)를 통해 본 개시에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도 등에서 언급되는 사용자 데이터, 제어 정보, 무선 신호/채널 등을 송수신하도록 설정될 수 있다. 본 개시에서, 하나 이상의 안테나는 복수의 물리 안테나이거나, 복수의 논리 안테나(예를 들어, 안테나 포트)일 수 있다. 하나 이상의 송수신기(106, 206)는 수신된 사용자 데이터, 제어 정보, 무선 신호/채널 등을 하나 이상의 프로세서(102, 202)를 이용하여 처리하기 위해, 수신된 무선 신호/채널 등을 RF 밴드 신호에서 베이스밴드 신호로 변환(Convert)할 수 있다. 하나 이상의 송수신기(106, 206)는 하나 이상의 프로세서(102, 202)를 이용하여 처리된 사용자 데이터, 제어 정보, 무선 신호/채널 등을 베이스밴드 신호에서 RF 밴드 신호로 변환할 수 있다. 이를 위하여, 하나 이상의 송수신기(106, 206)는 (아날로그) 오실레이터 및/또는 필터를 포함할 수 있다.One or more transceivers 106 , 206 may transmit user data, control information, radio signals/channels, etc. referred to in the methods and/or operational flowcharts of the present disclosure, to one or more other devices. The one or more transceivers 106, 206 may receive user data, control information, radio signals/channels, etc. referred to in the descriptions, functions, procedures, suggestions, methods, and/or flowcharts of operations disclosed in this disclosure, etc., from one or more other devices. have. For example, one or more transceivers 106 , 206 may be coupled to one or more processors 102 , 202 and may transmit and receive wireless signals. For example, one or more processors 102 , 202 may control one or more transceivers 106 , 206 to transmit user data, control information, or wireless signals to one or more other devices. In addition, one or more processors 102 , 202 may control one or more transceivers 106 , 206 to receive user data, control information, or wireless signals from one or more other devices. In addition, one or more transceivers 106 , 206 may be coupled with one or more antennas 108 , 208 , and the one or more transceivers 106 , 206 may be coupled via one or more antennas 108 , 208 to the descriptions, functions, and functions disclosed in this disclosure. , may be set to transmit and receive user data, control information, radio signals/channels, etc. mentioned in procedures, proposals, methods and/or operation flowcharts. In the present disclosure, one or more antennas may be a plurality of physical antennas or a plurality of logical antennas (eg, antenna ports). The one or more transceivers 106, 206 convert the received radio signal/channel, etc. from the RF band signal to process the received user data, control information, radio signal/channel, etc. using the one or more processors 102, 202. It can be converted into a baseband signal. One or more transceivers 106 , 206 may convert user data, control information, radio signals/channels, etc. processed using one or more processors 102 , 202 from baseband signals to RF band signals. To this end, one or more transceivers 106 , 206 may include (analog) oscillators and/or filters.
이상에서 설명된 실시예들은 본 개시의 구성요소들과 특징들이 소정 형태로 결합된 것들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으로 고려되어야 한다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결합되지 않은 형태로 실시될 수 있다. 또한, 일부 구성요소들 및/또는 특징들을 결합하여 본 개시의 실시예를 구성하는 것도 가능하다. 본 개시의 실시예들에서 설명되는 동작들의 순서는 변경될 수 있다. 어느 실시예의 일부 구성이나 특징은 다른 실시예에 포함될 수 있고, 또는 다른 실시예의 대응하는 구성 또는 특징과 교체될 수 있다. 특허청구범위에서 명시적인 인용 관계가 있지 않은 청구항들을 결합하여 실시예를 구성하거나 출원 후의 보정에 의해 새로운 청구항으로 포함시킬 수 있음은 자명하다.The embodiments described above are those in which elements and features of the present disclosure are combined in a predetermined form. Each component or feature should be considered optional unless explicitly stated otherwise. Each component or feature may be implemented in a form that is not combined with other components or features. It is also possible to configure embodiments of the present disclosure by combining some components and/or features. The order of operations described in embodiments of the present disclosure may be changed. Some features or features of one embodiment may be included in another embodiment, or may be replaced with corresponding features or features of another embodiment. It is apparent that claims that are not explicitly cited in the claims can be combined to form an embodiment or included as a new claim by amendment after filing.
본 개시는 본 개시의 필수적 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구체화될 수 있음은 당업자에게 자명하다. 따라서, 상술한 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니 되고 예시적인 것으로 고려되어야 한다. 본 개시의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 개시의 등가적 범위 내에서의 모든 변경은 본 개시의 범위에 포함된다. It is apparent to those skilled in the art that the present disclosure may be embodied in other specific forms without departing from the essential characteristics of the present disclosure. Accordingly, the above detailed description should not be construed as restrictive in all respects but as exemplary. The scope of the present disclosure should be determined by a reasonable interpretation of the appended claims, and all modifications within the equivalent scope of the present disclosure are included in the scope of the present disclosure.
본 개시의 범위는 다양한 실시예의 방법에 따른 동작이 장치 또는 컴퓨터 상에서 실행되도록 하는 소프트웨어 또는 머신-실행가능한 명령들(예를 들어, 운영체제, 애플리케이션, 펌웨어(firmware), 프로그램 등), 및 이러한 소프트웨어 또는 명령 등이 저장되어 장치 또는 컴퓨터 상에서 실행 가능한 비-일시적 컴퓨터-판독가능 매체(non-transitory computer-readable medium)를 포함한다. 본 개시에서 설명하는 특징을 수행하는 프로세싱 시스템을 프로그래밍하기 위해 사용될 수 있는 명령은 저장 매체 또는 컴퓨터 판독가능 저장 매체 상에/내에 저장될 수 있고, 이러한 저장 매체를 포함하는 컴퓨터 프로그램 제품을 이용하여 본 개시에서 설명하는 특징이 구현될 수 있다. 저장 매체는 DRAM, SRAM, DDR RAM 또는 다른 랜덤 액세스 솔리드 스테이트 메모리 디바이스와 같은 고속 랜덤 액세스 메모리를 포함할 수 있지만, 이에 제한되지 않으며, 하나 이상의 자기 디스크 저장 디바이스, 광 디스크 저장 장치, 플래시 메모리 디바이스 또는 다른 비-휘발성 솔리드 스테이트 저장 디바이스와 같은 비-휘발성 메모리를 포함할 수 있다. 메모리는 선택적으로 프로세서(들)로부터 원격에 위치한 하나 이상의 저장 디바이스를 포함한다. 메모리 또는 대안적으로 메모리 내의 비-휘발성 메모리 디바이스(들)는 비-일시적 컴퓨터 판독가능 저장 매체를 포함한다. 본 개시에서 설명하는 특징은, 머신 판독가능 매체 중 임의의 하나에 저장되어 프로세싱 시스템의 하드웨어를 제어할 수 있고, 프로세싱 시스템이 본 개시의 실시예에 따른 결과를 활용하는 다른 메커니즘과 상호작용하도록 하는 소프트웨어 및/또는 펌웨어에 통합될 수 있다. 이러한 소프트웨어 또는 펌웨어는 애플리케이션 코드, 디바이스 드라이버, 운영 체제 및 실행 환경/컨테이너를 포함할 수 있지만 이에 제한되지 않는다.The scope of the present disclosure includes software or machine-executable instructions (eg, operating system, application, firmware, program, etc.) that cause operation according to the method of various embodiments to be executed on a device or computer, and such software or and non-transitory computer-readable media in which instructions and the like are stored and executable on a device or computer. Instructions that can be used to program a processing system to perform the features described in this disclosure may be stored on/in a storage medium or computer-readable storage medium, and can be viewed using a computer program product including such storage medium. Features described in the disclosure may be implemented. Storage media may include, but are not limited to, high-speed random access memory such as DRAM, SRAM, DDR RAM or other random access solid state memory device, one or more magnetic disk storage devices, optical disk storage devices, flash memory devices, or may include non-volatile memory, such as other non-volatile solid state storage devices. The memory optionally includes one or more storage devices located remotely from the processor(s). The memory or alternatively the non-volatile memory device(s) within the memory includes a non-transitory computer-readable storage medium. Features described in this disclosure may be stored on any one of the machine readable media to control hardware of a processing system and cause the processing system to interact with other mechanisms that utilize results in accordance with embodiments of the present disclosure. It may be incorporated into software and/or firmware. Such software or firmware may include, but is not limited to, application code, device drivers, operating systems, and execution environments/containers.
여기서, 본 개시의 무선 기기(100, 200)에서 구현되는 무선 통신 기술은 LTE, NR 및 6G뿐만 아니라 저전력 통신을 위한 Narrowband Internet of Things를 포함할 수 있다. 이때, 예를 들어 NB-IoT 기술은 LPWAN(Low Power Wide Area Network) 기술의 일례일 수 있고, LTE Cat NB1 및/또는 LTE Cat NB2 등의 규격으로 구현될 수 있으며, 상술한 명칭에 한정되는 것은 아니다. 추가적으로 또는 대체적으로, 본 개시의 무선 기기(XXX, YYY)에서 구현되는 무선 통신 기술은 LTE-M 기술을 기반으로 통신을 수행할 수 있다. 이때, 일 예로, LTE-M 기술은 LPWAN 기술의 일례일 수 있고, eMTC(enhanced Machine Type Communication) 등의 다양한 명칭으로 불릴 수 있다. 예를 들어, LTE-M 기술은 1) LTE CAT 0, 2) LTE Cat M1, 3) LTE Cat M2, 4) LTE non-BL(non-Bandwidth Limited), 5) LTE-MTC, 6) LTE Machine Type Communication, 및/또는 7) LTE M 등의 다양한 규격 중 적어도 어느 하나로 구현될 수 있으며 상술한 명칭에 한정되는 것은 아니다. 추가적으로 또는 대체적으로, 본 개시의 무선 기기(XXX, YYY)에서 구현되는 무선 통신 기술은 저전력 통신을 고려한 지그비(ZigBee), 블루투스(Bluetooth) 및 저전력 광역 통신망(Low Power Wide Area Network, LPWAN) 중 적어도 어느 하나를 포함할 수 있으며, 상술한 명칭에 한정되는 것은 아니다. 일 예로 ZigBee 기술은 IEEE 802.15.4 등의 다양한 규격을 기반으로 소형/저-파워 디지털 통신에 관련된 PAN(personal area networks)을 생성할 수 있으며, 다양한 명칭으로 불릴 수 있다.Here, the wireless communication technology implemented in the wireless devices 100 and 200 of the present disclosure may include a narrowband Internet of Things for low-power communication as well as LTE, NR, and 6G. At this time, for example, NB-IoT technology may be an example of LPWAN (Low Power Wide Area Network) technology, and may be implemented in standards such as LTE Cat NB1 and/or LTE Cat NB2, and is limited to the above-mentioned names. no. Additionally or alternatively, the wireless communication technology implemented in the wireless devices (XXX, YYY) of the present disclosure may perform communication based on LTE-M technology. In this case, as an example, the LTE-M technology may be an example of an LPWAN technology, and may be called various names such as enhanced machine type communication (eMTC). For example, LTE-M technology is 1) LTE CAT 0, 2) LTE Cat M1, 3) LTE Cat M2, 4) LTE non-BL (non-Bandwidth Limited), 5) LTE-MTC, 6) LTE Machine Type Communication, and/or 7) may be implemented in at least one of various standards such as LTE M, and is not limited to the above-described name. Additionally or alternatively, the wireless communication technology implemented in the wireless device (XXX, YYY) of the present disclosure is at least one of ZigBee, Bluetooth, and Low Power Wide Area Network (LPWAN) in consideration of low power communication. It may include any one, and is not limited to the above-mentioned names. For example, the ZigBee technology can create PAN (personal area networks) related to small/low-power digital communication based on various standards such as IEEE 802.15.4, and can be called by various names.
본 개시에서 제안하는 방법은 3GPP LTE/LTE-A, 5G 시스템에 적용되는 예를 중심으로 설명하였으나, 3GPP LTE/LTE-A, 5G 시스템 이외에도 다양한 무선 통신 시스템에 적용하는 것이 가능하다.Although the method proposed in the present disclosure has been described focusing on examples applied to 3GPP LTE/LTE-A and 5G systems, it is possible to apply to various wireless communication systems in addition to 3GPP LTE/LTE-A and 5G systems.

Claims (18)

  1. 무선 통신 시스템에서 채널 상태 정보(CSI: channel state information)를 전송하는 방법에 있어서, 단말에 의해 수행되는 상기 방법은:In a method for transmitting channel state information (CSI) in a wireless communication system, the method performed by a terminal comprises:
    기지국으로부터 CSI 보고와 관련된 설정 정보를 수신하는 단계;Receiving configuration information related to the CSI report from the base station;
    상기 기지국으로부터 복수의 CSI-RS(channel state information-reference signal) 자원들 상에서 CSI-RS를 수신하는 단계; 및receiving a CSI-RS on a plurality of channel state information-reference signal (CSI-RS) resources from the base station; and
    상기 CSI-RS에 기반하여 계산된 CSI를 상기 기지국에게 전송하는 단계를 포함하고, Transmitting the CSI calculated based on the CSI-RS to the base station,
    상기 CSI 보고와 관련된 설정 정보에 의해 채널 측정을 위한 상기 복수의 CSI-RS 자원들이 설정되고, The plurality of CSI-RS resources for channel measurement are configured by the configuration information related to the CSI report,
    상기 CSI 보고와 관련된 설정 정보에 기반하여, 상기 복수의 CSI-RS 자원들 각각에 대하여 설정된 개별적인 랭크(rank) 수 및/또는 프리코딩 행렬(precoding matrix) 정보에 기반하여 상기 CSI가 계산되는, 방법. Based on the configuration information related to the CSI report, the CSI is calculated based on the number of individual ranks and/or precoding matrix information configured for each of the plurality of CSI-RS resources. Method .
  2. 제1항에 있어서, According to claim 1,
    상기 복수의 CSI-RS 자원들 각각에 대하여 설정된 개별적인 랭크(rank) 수 및/또는 프리코딩 행렬(precoding matrix) 정보에 기반하여 상기 CSI가 계산되도록, 상기 CSI 보고와 관련된 설정 정보는 상기 복수의 CSI-RS 자원들 각각에 연관된 코드북 설정들을 포함하는, 방법. The configuration information related to the CSI report is configured such that the CSI is calculated based on the number of individual ranks and/or precoding matrix information configured for each of the plurality of CSI-RS resources. - A method comprising codebook settings associated with each of the RS resources.
  3. 제1항에 있어서, According to claim 1,
    상기 복수의 CSI-RS 자원들은 상기 CSI 계산을 위한 프리코딩 행렬로서 단위 행렬(identity matrix)이 가정되는 제1 CSI-RS 자원과 상기 CSI 계산을 위해 특정 코드북(codebook)이 가정되는 제2 CSI-RS 자원을 포함하는, 방법. The plurality of CSI-RS resources are a first CSI-RS resource in which an identity matrix is assumed as a precoding matrix for the CSI calculation and a second CSI-RS resource in which a specific codebook is assumed for the CSI calculation- A method comprising an RS resource.
  4. 제3항에 있어서, 4. The method of claim 3,
    상기 CSI는 상기 제1 CSI-RS 자원에 대한 프리코딩 행렬 지시자(PMI: precoding matrix indicator)를 포함하지 않는, 방법. The CSI does not include a precoding matrix indicator (PMI) for the first CSI-RS resource, the method.
  5. 제3항에 있어서, 4. The method of claim 3,
    상기 제1 CSI-RS 자원에 대해서 상기 CSI 계산을 위한 랭크(rank) 수로서 상기 제1 CSI-RS 자원의 안테나 포트 수가 가정되는, 방법. For the first CSI-RS resource, the number of antenna ports of the first CSI-RS resource is assumed as the number of ranks for the CSI calculation.
  6. 제3항에 있어서, 4. The method of claim 3,
    상기 제1 CSI-RS 자원에 대해서 상기 CSI 계산을 위한 랭크(rank) 수로서 미리 정해진 값이 가정되는, 방법. A predetermined value is assumed as the number of ranks for the CSI calculation for the first CSI-RS resource.
  7. 제3항에 있어서, 4. The method of claim 3,
    상기 CSI는 i) 하나 이상의 CSI-RS 자원 지시자(CRI: CSI-RS resource indicator), ii) 상기 제2 CSI-RS 자원에 대한 PMI, iii) 랭크 지시자(RI: rank indicator) 및/또는 iv) 채널 품질 지시자(CQI: channel quality indicator) 중 적어도 하나를 포함하는, 방법. The CSI is i) one or more CSI-RS resource indicators (CRI: CSI-RS resource indicator), ii) PMI for the second CSI-RS resource, iii) rank indicator (RI: rank indicator) and / or iv) A method comprising at least one of a channel quality indicator (CQI).
  8. 제7항에 있어서,8. The method of claim 7,
    상기 RI는 상기 제2 CSI-RS 자원에 대한 RI 또는 상기 CRI에 의해 선택되는 자원들에 대한 전체 RI인, 방법.The RI is the RI for the second CSI-RS resource or the entire RI for the resources selected by the CRI.
  9. 제7항에 있어서,8. The method of claim 7,
    상기 CSI는 상기 제1 CSI-RS 자원에 대한 포트 선택 정보를 포함하는, 방법.The CSI includes port selection information for the first CSI-RS resource.
  10. 제1항에 있어서,According to claim 1,
    상기 CSI 보고와 관련된 설정 정보가 복수의 CSI 자원 설정을 포함함으로써, 상기 복수의 CSI-RS 자원들이 설정되는, 방법. The plurality of CSI-RS resources are configured by the configuration information related to the CSI report including configuration of a plurality of CSI resources.
  11. 제1항에 있어서,According to claim 1,
    상기 CSI 보고와 관련된 설정 정보는 하나의 CSI 자원 설정을 포함하고, 상기 하나의 CSI 자원 설정 내 복수의 CSI-RS 자원 세트들 각각에서 하나씩 상기 복수의 CSI-RS 자원들이 설정되는, 방법. The configuration information related to the CSI report includes one CSI resource configuration, and the plurality of CSI-RS resources are configured one by one in each of a plurality of CSI-RS resource sets in the one CSI resource configuration.
  12. 제1항에 있어서,According to claim 1,
    상기 CSI 보고와 관련된 설정 정보는 하나의 CSI 자원 설정을 포함하고, 상기 하나의 CSI 자원 설정 내 하나의 CSI-RS 자원 세트 내에서 상기 복수의 CSI-RS 자원들이 설정되는, 방법. The configuration information related to the CSI report includes one CSI resource configuration, and the plurality of CSI-RS resources are configured in one CSI-RS resource set in the one CSI resource configuration.
  13. 제3항에 있어서,4. The method of claim 3,
    상기 기지국으로부터 상기 제3 CSI-RS 자원 상에서 CSI-RS를 수신하는 단계; 및receiving a CSI-RS on the third CSI-RS resource from the base station; and
    상기 제3 CSI-RS 자원 상에서 수신된 CSI-RS에 기반하여 제1 CSI를 상기 기지국에게 전송하는 단계를 더 포함하고, Further comprising the step of transmitting the first CSI to the base station based on the CSI-RS received on the third CSI-RS resource,
    상기 제1 CSI-RS 자원은 상기 제1 CSI 내 PMI에 대응되는 프리코딩 행렬(precoding matrix)이 적용되어 전송되는, 방법. The first CSI-RS resource is transmitted by applying a precoding matrix corresponding to the PMI in the first CSI.
  14. 무선 통신 시스템에서 채널 상태 정보(CSI: channel state information)를 전송하는 단말에 있어서, 상기 단말은:A terminal for transmitting channel state information (CSI) in a wireless communication system, the terminal comprising:
    무선 신호를 송수신하기 위한 하나 이상의 송수신부(transceiver); 및one or more transceivers for transmitting and receiving radio signals; and
    상기 하나 이상의 송수신부를 제어하는 하나 이상의 프로세서를 포함하고, One or more processors for controlling the one or more transceivers,
    상기 하나 이상의 프로세서는:The one or more processors include:
    기지국으로부터 CSI 보고와 관련된 설정 정보를 수신하고;receiving configuration information related to CSI reporting from the base station;
    상기 기지국으로부터 복수의 CSI-RS(channel state information-reference signal) 자원들 상에서 CSI-RS를 수신하고; 및receive a CSI-RS on a plurality of channel state information-reference signal (CSI-RS) resources from the base station; and
    상기 CSI-RS에 기반하여 계산된 CSI를 상기 기지국에게 전송하도록 설정되고, It is configured to transmit CSI calculated based on the CSI-RS to the base station,
    상기 CSI 보고와 관련된 설정 정보에 의해 채널 측정을 위한 상기 복수의 CSI-RS 자원들이 설정되고, The plurality of CSI-RS resources for channel measurement are configured by the configuration information related to the CSI report,
    상기 CSI 보고와 관련된 설정 정보에 기반하여, 상기 복수의 CSI-RS 자원들 각각에 대하여 설정된 개별적인 랭크(rank) 수 및/또는 프리코딩 행렬(precoding matrix) 정보에 기반하여 상기 CSI가 계산되는, 단말. Based on the configuration information related to the CSI report, the CSI is calculated based on the number of individual ranks and/or precoding matrix information configured for each of the plurality of CSI-RS resources, the terminal .
  15. 하나 이상의 명령을 저장하는 하나 이상의 비-일시적(non-transitory) 컴퓨터 판독가능 매체에 있어서,One or more non-transitory computer readable media storing one or more instructions, the computer readable medium comprising:
    하나 이상의 프로세서에 의해서 실행되는 상기 하나 이상의 명령은, 채널 상태 정보(CSI: channel state information)를 전송하는 장치가: The one or more instructions executed by one or more processors may include: an apparatus for transmitting channel state information (CSI):
    기지국으로부터 CSI 보고와 관련된 설정 정보를 수신하고;receiving configuration information related to CSI reporting from the base station;
    상기 기지국으로부터 복수의 CSI-RS(channel state information-reference signal) 자원들 상에서 CSI-RS를 수신하고; 및receive a CSI-RS on a plurality of channel state information-reference signal (CSI-RS) resources from the base station; and
    상기 CSI-RS에 기반하여 계산된 CSI를 상기 기지국에게 전송하도록 제어하고, Controlling the CSI calculated based on the CSI-RS to be transmitted to the base station,
    상기 CSI 보고와 관련된 설정 정보에 의해 채널 측정을 위한 상기 복수의 CSI-RS 자원들이 설정되고, The plurality of CSI-RS resources for channel measurement are configured by the configuration information related to the CSI report,
    상기 CSI 보고와 관련된 설정 정보에 기반하여, 상기 복수의 CSI-RS 자원들 각각에 대하여 설정된 개별적인 랭크(rank) 수 및/또는 프리코딩 행렬(precoding matrix) 정보에 기반하여 상기 CSI가 계산되는, 컴퓨터 판독가능 매체.Based on the configuration information related to the CSI report, the CSI is calculated based on the number of individual ranks and/or precoding matrix information configured for each of the plurality of CSI-RS resources, a computer readable medium.
  16. 무선 통신 시스템에서 채널 상태 정보(CSI: channel state information)을 전송하기 위해 단말을 제어하도록 설정되는 프로세싱 장치에 있어서, 상기 프로세싱 장치는:A processing apparatus configured to control a terminal to transmit channel state information (CSI) in a wireless communication system, the processing apparatus comprising:
    하나 이상의 프로세서; 및one or more processors; and
    상기 하나 이상의 프로세서에 동작 가능하게 연결되고, 상기 하나 이상의 프로세서에 의해 실행됨에 기반하여, 동작들을 수행하는 지시(instruction)들을 저장하는 하나 이상의 컴퓨터 메모리를 포함하며,one or more computer memories operatively coupled to the one or more processors and storing instructions for performing operations upon being executed by the one or more processors;
    상기 동작들은:The actions are:
    기지국으로부터 CSI 보고와 관련된 설정 정보를 수신하는 단계;Receiving configuration information related to the CSI report from the base station;
    상기 기지국으로부터 복수의 CSI-RS(channel state information-reference signal) 자원들 상에서 CSI-RS를 수신하는 단계; 및receiving a CSI-RS on a plurality of channel state information-reference signal (CSI-RS) resources from the base station; and
    상기 CSI-RS에 기반하여 계산된 CSI를 상기 기지국에게 전송하는 단계를 포함하고, Transmitting the CSI calculated based on the CSI-RS to the base station,
    상기 CSI 보고와 관련된 설정 정보에 의해 채널 측정을 위한 상기 복수의 CSI-RS 자원들이 설정되고, The plurality of CSI-RS resources for channel measurement are configured by the configuration information related to the CSI report,
    상기 CSI 보고와 관련된 설정 정보에 기반하여, 상기 복수의 CSI-RS 자원들 각각에 대하여 설정된 개별적인 랭크(rank) 수 및/또는 프리코딩 행렬(precoding matrix) 정보에 기반하여 상기 CSI가 계산되는, 프로세싱 장치. Based on the configuration information related to the CSI report, the CSI is calculated based on the number of individual ranks and/or precoding matrix information configured for each of the plurality of CSI-RS resources, processing Device.
  17. 무선 통신 시스템에서 채널 상태 정보(CSI: channel state information)를 수신하는 방법에 있어서, 기지국에 의해 수행되는 상기 방법은:A method for receiving channel state information (CSI) in a wireless communication system, the method performed by a base station comprising:
    CSI 보고와 관련된 설정 정보를 단말에게 전송하는 단계;transmitting configuration information related to CSI reporting to the terminal;
    복수의 CSI-RS(channel state information-reference signal) 자원들 상에서 CSI-RS를 상기 단말에게 전송하는 단계; 및transmitting a CSI-RS to the terminal on a plurality of channel state information-reference signal (CSI-RS) resources; and
    상기 단말로부터 상기 CSI-RS에 기반하여 계산된 CSI를 수신하는 단계를 포함하고, Receiving the CSI calculated based on the CSI-RS from the terminal,
    상기 CSI 보고와 관련된 설정 정보에 의해 채널 측정을 위한 상기 복수의 CSI-RS 자원들이 설정되고, The plurality of CSI-RS resources for channel measurement are configured by the configuration information related to the CSI report,
    상기 CSI 보고와 관련된 설정 정보에 기반하여, 상기 복수의 CSI-RS 자원들 각각에 대하여 설정된 개별적인 랭크(rank) 수 및/또는 프리코딩 행렬(precoding matrix) 정보에 기반하여 상기 CSI가 계산되는, 방법. Based on the configuration information related to the CSI report, the CSI is calculated based on the number of individual ranks and/or precoding matrix information configured for each of the plurality of CSI-RS resources. Method .
  18. 무선 통신 시스템에서 채널 상태 정보(CSI: channel state information)를 수신하는 기지구에 있어서, 상기 기지국은:A base station for receiving channel state information (CSI) in a wireless communication system, the base station comprising:
    무선 신호를 송수신하기 위한 하나 이상의 송수신부(transceiver); 및one or more transceivers for transmitting and receiving radio signals; and
    상기 하나 이상의 송수신부를 제어하는 하나 이상의 프로세서를 포함하고, One or more processors for controlling the one or more transceivers,
    상기 하나 이상의 프로세서는:The one or more processors include:
    CSI 보고와 관련된 설정 정보를 단말에게 전송하고;transmit configuration information related to CSI reporting to the terminal;
    복수의 CSI-RS(channel state information-reference signal) 자원들 상에서 CSI-RS를 상기 단말에게 전송하고; 및transmitting a CSI-RS to the terminal on a plurality of channel state information-reference signal (CSI-RS) resources; and
    상기 단말로부터 상기 CSI-RS에 기반하여 계산된 CSI를 수신하도록 설정되고, It is configured to receive CSI calculated based on the CSI-RS from the terminal,
    상기 CSI 보고와 관련된 설정 정보에 의해 채널 측정을 위한 상기 복수의 CSI-RS 자원들이 설정되고, The plurality of CSI-RS resources for channel measurement are configured by the configuration information related to the CSI report,
    상기 CSI 보고와 관련된 설정 정보에 기반하여, 상기 복수의 CSI-RS 자원들 각각에 대하여 설정된 개별적인 랭크(rank) 수 및/또는 프리코딩 행렬(precoding matrix) 정보에 기반하여 상기 CSI가 계산되는, 기지국.Based on the configuration information related to the CSI report, the CSI is calculated based on the number of individual ranks and/or precoding matrix information configured for each of the plurality of CSI-RS resources. Base station .
PCT/KR2021/010338 2020-08-06 2021-08-05 Method and device for transmitting and receiving channel state information in wireless communication system WO2022031077A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20200098870 2020-08-06
KR10-2020-0098870 2020-08-06

Publications (1)

Publication Number Publication Date
WO2022031077A1 true WO2022031077A1 (en) 2022-02-10

Family

ID=80118329

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/010338 WO2022031077A1 (en) 2020-08-06 2021-08-05 Method and device for transmitting and receiving channel state information in wireless communication system

Country Status (1)

Country Link
WO (1) WO2022031077A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024065275A1 (en) * 2022-09-28 2024-04-04 Lenovo (Beijing) Limited Methods and apparatuses for csi reporting

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190335475A1 (en) * 2017-01-06 2019-10-31 Huawei Technologies Co., Ltd Channel state information processing method and apparatus, and system
WO2020056708A1 (en) * 2018-09-21 2020-03-26 Qualcomm Incorporated Csi report configuration for multi-trp transmission
WO2020087451A1 (en) * 2018-11-01 2020-05-07 Lenovo (Beijing) Limited Channel state information calculation
WO2020092468A1 (en) * 2018-11-02 2020-05-07 Intel Corporation Csi measurement and report quality definition for 5g nr multi-trp
WO2020144602A1 (en) * 2019-01-11 2020-07-16 Telefonaktiebolaget Lm Ericsson (Publ) Low overhead channel state information (csi) feedback for multi-transmission point (trp) transmission

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190335475A1 (en) * 2017-01-06 2019-10-31 Huawei Technologies Co., Ltd Channel state information processing method and apparatus, and system
WO2020056708A1 (en) * 2018-09-21 2020-03-26 Qualcomm Incorporated Csi report configuration for multi-trp transmission
WO2020087451A1 (en) * 2018-11-01 2020-05-07 Lenovo (Beijing) Limited Channel state information calculation
WO2020092468A1 (en) * 2018-11-02 2020-05-07 Intel Corporation Csi measurement and report quality definition for 5g nr multi-trp
WO2020144602A1 (en) * 2019-01-11 2020-07-16 Telefonaktiebolaget Lm Ericsson (Publ) Low overhead channel state information (csi) feedback for multi-transmission point (trp) transmission

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024065275A1 (en) * 2022-09-28 2024-04-04 Lenovo (Beijing) Limited Methods and apparatuses for csi reporting

Similar Documents

Publication Publication Date Title
WO2021194218A1 (en) Method and apparatus for transmitting/receiving pusch in wireless communication system
WO2021187966A1 (en) Method and device for uplink or downlink transmission/reception supporting multi-cell scheduling in wireless communication system
WO2022025590A1 (en) Method and apparatus for uplink transmission and reception in wireless communication system
WO2022025519A1 (en) Method and apparatus for transmitting or receiving channel state information in wireless communication system
WO2022030819A1 (en) Method and device for transmitting and receiving uplink in wireless communication system
WO2021187967A1 (en) Method and device for transmitting and receiving sounding reference signal in wireless communication system
WO2022005109A1 (en) Uplink transmission and reception method and device in wireless communication system
WO2021210881A1 (en) Method and device for transmitting and receiving uplink in wireless communication system
WO2021162423A1 (en) Method and device for transmitting/receiving downlink channel from multiple transmission/reception points in wireless communication system
WO2021187823A1 (en) Method and device for transmitting or receiving pusch in wireless communication system
WO2021177782A1 (en) Method and device for transmitting or receiving signal on basis of space parameter in wireless communication system
WO2022030849A1 (en) Method and apparatus for uplink transmission and reception in wireless communication system
WO2021172903A1 (en) Method and apparatus for transmitting and receiving channel state information in wireless communication system
WO2021261877A1 (en) Method and device for transmitting and receiving signal in wireless communication system
WO2021261853A1 (en) Method and apparatus for transmitting and receiving signal in wireless communication system
WO2022031117A1 (en) Method and apparatus for transmitting and receiving uplink signal in wireless communication system
WO2022169181A1 (en) Methods and devices for transmitting or receiving channel state information in wireless communication system
WO2022005114A1 (en) Method and apparatus for transmitting and receiving uplink channel in wireless communication system
WO2021206389A1 (en) Method and apparatus for uplink/downlink transmission/reception on basis of beam linkage state in wireless communication system
WO2021187862A1 (en) Method and device for transmitting/receiving signal on basis of spatial parameters in wireless communication system
WO2021154020A1 (en) Method and apparatus for transmitting and receiving channel state information in wireless communication system
WO2022031077A1 (en) Method and device for transmitting and receiving channel state information in wireless communication system
WO2023003295A1 (en) Method and device for transmitting/receiving channel state information in wireless communication system
WO2022197081A1 (en) Method and device for transmitting and receiving uplink in wireless communication system
WO2022131872A1 (en) Method and device for transmitting/receiving pdcch in wireless communication system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21852708

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21852708

Country of ref document: EP

Kind code of ref document: A1