WO2022030815A1 - Heat pump and control method therefor - Google Patents

Heat pump and control method therefor Download PDF

Info

Publication number
WO2022030815A1
WO2022030815A1 PCT/KR2021/009308 KR2021009308W WO2022030815A1 WO 2022030815 A1 WO2022030815 A1 WO 2022030815A1 KR 2021009308 W KR2021009308 W KR 2021009308W WO 2022030815 A1 WO2022030815 A1 WO 2022030815A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
heat exchanger
heat
compressor
refrigerant circulation
Prior art date
Application number
PCT/KR2021/009308
Other languages
French (fr)
Korean (ko)
Inventor
변영민
정성찬
김대현
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Publication of WO2022030815A1 publication Critical patent/WO2022030815A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • F25B30/02Heat pumps of the compression type
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F58/00Domestic laundry dryers
    • D06F58/20General details of domestic laundry dryers 
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F58/00Domestic laundry dryers
    • D06F58/20General details of domestic laundry dryers 
    • D06F58/206Heat pump arrangements
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F58/00Domestic laundry dryers
    • D06F58/32Control of operations performed in domestic laundry dryers 
    • D06F58/34Control of operations performed in domestic laundry dryers  characterised by the purpose or target of the control
    • D06F58/36Control of operational steps, e.g. for optimisation or improvement of operational steps depending on the condition of the laundry
    • D06F58/38Control of operational steps, e.g. for optimisation or improvement of operational steps depending on the condition of the laundry of drying, e.g. to achieve the target humidity
    • D06F58/40Control of the initial heating of the drying chamber to its operating temperature
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F58/00Domestic laundry dryers
    • D06F58/32Control of operations performed in domestic laundry dryers 
    • D06F58/34Control of operations performed in domestic laundry dryers  characterised by the purpose or target of the control
    • D06F58/48Control of the energy consumption
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/01Heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/26Problems to be solved characterised by the startup of the refrigeration cycle
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B40/00Technologies aiming at improving the efficiency of home appliances, e.g. induction cooking or efficient technologies for refrigerators, freezers or dish washers

Definitions

  • the present disclosure relates to a heat pump, a method for controlling the heat pump, and home appliances including the same. More particularly, it relates to heating a portion of the refrigerant circulation path between the compressor and the condenser.
  • a heat pump refers to a device that absorbs heat from a low-temperature heat source and produces high-temperature heat.
  • clothes treatment apparatus that requires drying clothes such as washing machines, dryers, and refreshers, and air conditioning apparatus such as dehumidifiers, heaters, and air conditioners. have.
  • the compressor in the initial state of the heat pump, the compressor is not driven in the steady state, so there is a problem that may show lower performance than expected in the steady state. have. It can be said that the cycle of the heat pump is not stabilized. This is because the initial heat pump cycle may have different values from the temperature and pressure predicted in the four basic processes (compression process, evaporation process, expansion process, and condensation process) required for the heat pump cycle in a steady state.
  • Korean Patent Application Laid-Open No. 10-2017-0024265 discloses a heater that re-heats the heated air through the condenser in the duct that circulates the drum air. ) discloses a dryer comprising a.
  • this is not a method of directly heating the refrigerant, but a method of heating the air indirectly. Therefore, the energy required to heat the air to a desired temperature must be supplied as thermal energy of the heater. This has a problem in that a lot of energy is consumed in the heater in order to dry clothes of the same mass to a predetermined drying level or more within a desired time.
  • the present disclosure provides a solution to temporarily increase the compression capacity of a refrigerant when the heat pump is initially started.
  • An object of the present disclosure is to enable rapid stabilization at the time of initial start-up of a heat pump even when the temperature of external air is low.
  • the present disclosure aims to improve the heat dissipation capability compared to the energy input during the initial start-up of the heat pump.
  • the present disclosure provides a heat pump having a heater in a refrigerant circulation passage in the form of a pipe connecting between a compressor and a second heat exchanger (condenser).
  • the heater may be provided in the form of enclosing a part of the outer circumferential surface of the refrigerant transfer pipe.
  • the heater may be of a type attached by printing a sheet heating element) on a flexible film.
  • a refrigerant circulation passage forming a passage in which the refrigerant circulates, a first heat exchanger that is located in the refrigerant circulation passage and cools air through heat exchange with the refrigerant, is located in the refrigerant circulation passage, and exchanges heat with the refrigerant a second heat exchanger that heats the air that has passed through the first heat exchanger, a compressor that is located in the refrigerant circulation path and compresses and circulates the refrigerant that has passed through the first heat exchanger, and the first heat exchange in the refrigerant circulation path
  • Heat pump comprising a; an expansion part positioned between the group and the second heat exchanger to expand the refrigerant, and a heating part positioned between the compressor and the second heat exchanger in the refrigerant circulation path to heat the refrigerant.
  • the heating unit may be located closer to the compressor than the second heat exchanger.
  • the refrigerant circulation passage may include a discharge pipe connecting the compressor and the second heat exchanger, and the heating unit may heat an outer circumferential surface of the discharge pipe.
  • the compressor may include an inlet through which the refrigerant passing through the first heat exchanger flows, and an outlet through which the refrigerant is compressed and discharged to the second heat exchanger, and the heating unit may be adjacent to the outlet.
  • the heating unit may be provided in the form of a film on which a heating element that converts electricity into heat is printed, and may be attached to the discharge pipe.
  • the heating unit may be provided in the form of a heating element that converts electricity into heat in the form of a coil surrounding the outer circumferential surface of the discharge pipe.
  • a refrigerant circulation passage forming a passage in which the refrigerant circulates, a first heat exchanger which is located in the refrigerant circulation passage and cools air through heat exchange with the refrigerant, is located in the refrigerant circulation passage, and exchanges heat with the refrigerant a second heat exchanger for heating the air that has passed through the first heat exchanger; a compressor positioned in the refrigerant circulation path to compress and circulate the refrigerant passing through the first heat exchanger; a discharge port through which the refrigerant is discharged from the compressor; an expansion unit positioned between the first heat exchanger and the second heat exchanger in the refrigerant circulation path to expand the refrigerant; and a discharge pipe connecting between the compressor and the second heat exchanger in the refrigerant circulation path, and a heating unit positioned in the discharge pipe to heat the refrigerant.
  • the method may further include stopping the operation of the heating unit.
  • a cabinet forming an exterior, a drum rotatably provided inside the cabinet to accommodate clothes, a duct forming a passage for circulating air in the drum, and a flow path through which the refrigerant circulates
  • a refrigerant circulation passage forming a first heat exchanger, which is located in the refrigerant circulation passage inside the duct and cools air through heat exchange with the refrigerant.
  • a second heat exchanger that is located in the refrigerant circulation path inside the duct and heats the air that has passed through the first heat exchanger through heat exchange with the refrigerant, located in the refrigerant circulation path outside the duct,
  • a compressor that compresses and circulates the refrigerant that has passed through the first heat exchanger, an expansion unit positioned outside the duct and positioned between the first heat exchanger and the second heat exchanger in the refrigerant circulation path to expand the refrigerant, and the An object of the present invention is to provide a laundry treatment apparatus comprising: a heating unit positioned between the compressor and the second heat exchanger in a refrigerant circulation path to heat the refrigerant.
  • the heating unit may be located closer to the compressor than the second heat exchanger.
  • the refrigerant circulation passage may include a discharge pipe connecting the compressor and the second heat exchanger, and the heating unit may heat an outer circumferential surface of the discharge pipe.
  • the compressor may include an inlet through which the refrigerant passing through the first heat exchanger flows, and an outlet through which the refrigerant is compressed and discharged to the second heat exchanger, and the heating unit may be adjacent to the outlet.
  • the heating unit may be provided in the form of a film on which a heating element that converts electricity into heat is printed, and may be attached to the discharge pipe.
  • the heating unit may be provided in a coil form in which a heating element that converts electricity into heat surrounds an outer circumferential surface of the discharge pipe.
  • a cabinet including an inlet on one surface, a first chamber positioned inside the cabinet to receive clothes through the inlet, and a first chamber positioned under the first chamber and A second chamber forming a separate space, a steam unit provided inside the second chamber to generate and supply steam to the first chamber, and a steam unit provided inside the second chamber to provide air in the first chamber a duct forming a passage for circulating A first heat exchanger that cools air through the duct, a second heat exchanger that is located in the refrigerant circulation passage inside the duct and heats the air that has passed through the first heat exchanger through heat exchange with the refrigerant, from the outside of the duct A compressor that is located in the refrigerant circulation passage, compresses and circulates the refrigerant passing through the first heat exchanger, is located outside the duct, and is located between the first heat exchanger and the second heat exchanger in the refrigerant circulation passage
  • An object of the present invention is to provide a laundry treatment apparatus comprising: an
  • the compressor may include an inlet through which the refrigerant passing through the first heat exchanger flows, and a discharge port through which the refrigerant is compressed and discharged to the second heat exchanger, and the heating unit may be adjacent to the outlet.
  • the refrigerant circulation passage may include a discharge pipe connecting the compressor and the second heat exchanger, and the heating unit may heat an outer circumferential surface of the discharge pipe.
  • the heating unit may be provided in the form of a film on which a heating element that converts electricity into heat is printed, and may be attached to the discharge pipe.
  • a refrigerant circulation passage forming a passage in which the refrigerant circulates, a first heat exchanger that is located in the refrigerant circulation passage and cools air through heat exchange with the refrigerant, the refrigerant circulation a second heat exchanger positioned in the flow path to heat the air that has passed through the first heat exchanger through heat exchange with the refrigerant, a compressor positioned in the refrigerant circulation flow path to compress and circulate the refrigerant passing through the first heat exchanger; An expansion unit positioned between the first heat exchanger and the second heat exchanger in the refrigerant circulation path to expand the refrigerant, and between the compressor and the second heat exchanger in the refrigerant circulation path to heat the refrigerant It is to provide a home appliance including a heating unit.
  • the present disclosure may temporarily increase the compression capacity of the refrigerant when the heat pump is initially started.
  • the heat dissipation ability may be better compared to the energy input during the initial start-up of the heat pump.
  • Figure 1 (a) schematically shows an example of a conventional heat pump.
  • Figure 1 (b) schematically shows an example of a heat pump that heats the air heated through the second heat exchanger again through the heater.
  • Figure 1 (c) schematically shows a heat pump including a heating unit for heating the compressed refrigerant as an example of the present disclosure.
  • FIG. 3 is a flowchart illustrating an example of a control method of the heat pump.
  • 4A illustrates an example of a laundry treatment apparatus including the heat pump.
  • 4(b) shows an example of a mechanical device inside the laundry treatment apparatus.
  • FIG. 5( a ) illustrates components constituting a heat pump among mechanical equipment inside the laundry treatment apparatus.
  • FIG. 5(b) is an enlarged view of region P in FIG. 5(a).
  • FIG. 6A illustrates another example of the laundry treatment apparatus including the heat pump.
  • FIG. 6(b) illustrates an example of a mechanical device provided in the second chamber inside the laundry treatment apparatus.
  • 7A is a view of a mechanical device provided inside a second chamber of the laundry treatment apparatus; 7(b) is an enlarged view of the Q region in FIG. 7(a).
  • a refrigeration cycle is used to receive heat from a low temperature reservoir and transfer heat to a high temperature reservoir.
  • the purpose of the refrigeration cycle is to receive heat from a low-temperature heat source, it is used as a refrigeration system, and if the purpose is to transfer heat to a high-temperature heat source, it is used as a heat pump.
  • a refrigeration device is used for a refrigerator or an air conditioner
  • a heat pump can be used for a dryer, a washing machine with a drying function, a refresher such as a clothes manager, a heater, and a dehumidifier.
  • a refrigerant is used for heat transfer between the low-temperature heat source and the high-temperature heat source.
  • Refrigerant is a working fluid that is easy to evaporate in the refrigeration cycle and refers to a substance that takes heat from a low-temperature part and transfers it to a high-temperature part.
  • a typical example of the refrigerant is CFC-11 (aka Freon gas).
  • refrigerants such as R-22 and R-134a are used.
  • new refrigerants such as R-290 are in use or planned to be used.
  • FIG. 1 schematically shows an example of various heat pumps 100 , 200 , and 300 .
  • Figure 1 (a) shows an example of a conventional heat pump (200).
  • the heat pump 200 is a refrigerant circulation passage, which is a passage in which the refrigerant circulates, and a first heat exchanger (evaporator, 110) for exchanging heat between the refrigerant in the refrigerant circulation passage 130 and an external low-temperature heat source and an external high-temperature heat source.
  • a first heat exchanger evaporator, 110
  • a compressor that compresses the refrigerant and circulates the refrigerant through the refrigerant circulation passage, and the refrigerant located between the first heat exchanger and the second heat exchanger, and passing through the second heat exchanger It includes an expander 160 to inflate.
  • the first heat exchanger 110 lowers the temperature of the air through heat exchange between the refrigerant and the air at a relatively low temperature, and is included in the air through this Condensed moisture can be condensed.
  • the second heat exchanger 120 may increase the temperature of the air passing through the first heat exchanger 110 through heat exchange between the refrigerant having a relatively high temperature and the air passing through the first heat exchanger 110 . Through this, the thermodynamic properties of the air passing through the first heat exchanger 110 and the second heat exchanger 120 may be changed into dehumidified and heated high-temperature dry air.
  • the refrigerant may be circulated through the sealed refrigerant circulation path 130 .
  • the sealing refers to the degree to which the refrigerant does not leak out of the refrigerant circulation path.
  • the refrigerant is compressed by the compressor 150 to become a refrigerant of high temperature and high pressure, and may be introduced into the second heat exchanger 120 .
  • the refrigerant introduced into the second heat exchanger 120 will pass through the first heat exchanger 110 to heat the cooled air again.
  • the refrigerant that has passed through the second heat exchanger 120 expands through the expansion unit 160 .
  • isenthalpic expansion (or a throttling process or an orifice phenomenon) occurs through the expansion unit 160 , thereby lowering the pressure of the refrigerant and lowering the temperature of the refrigerant.
  • the expansion unit 160 may be provided in the form of a capillary tube, or may be provided in the form of an electronic expansion valve (EEV).
  • EEV electronic expansion valve
  • the refrigerant whose temperature and pressure have been lowered by passing through the expansion unit 160 may flow back into the first heat exchanger 110 to exchange heat with relatively high temperature air. At this time, the temperature of the relatively high temperature air is lowered, and accordingly, the amount of saturated water vapor that can be included in the air is also reduced. Therefore, when the humid high temperature air and the refrigerant exchange heat, as the temperature of the air decreases, condensate will be generated.
  • the compressor 150 is provided to re-inflow and compress the refrigerant that has passed through the first heat exchanger 110 to change the refrigerant into a high-temperature, high-pressure refrigerant. Through this, the refrigeration cycle is completed, and the refrigerant can circulate while continuously changing the state through the refrigerant circulation passage.
  • Compressor 150 may include an accumulator (accumulator, 159) through which the gas phase and liquid phase of the refrigerant are separated, so that only the refrigerant in the gaseous phase is compressed.
  • accumulator accumulator
  • the compressor 150 and the second heat exchanger 120 are connected through a discharge pipe 131 , and the first heat exchanger 110 .
  • the compressor 150 may be connected through an inlet pipe 132 .
  • the second heat exchanger 120 and the expansion part 160 may be connected through a first expansion connection pipe 133 .
  • the expansion part 160 and the first heat exchanger 110 may be connected through a second expansion connection pipe 134 .
  • the refrigerant compressed in the compressor 150 becomes a high-temperature and high-pressure refrigerant (compression process), and heat exchanges with air at a relatively low temperature through the second heat exchanger 120 (evaporation process) and it expands in the expansion unit 160 to become a refrigerant in a mixed state of low-temperature and low-pressure saturated steam-saturated liquid (expansion process). Thereafter, it will be compressed in the compressor 150 again after heat exchange with air at a relatively high temperature to become a low-temperature and low-pressure gaseous refrigerant (condensation process). That is, the refrigerant is circulated through the compression process-evaporation process-expansion process-condensation process, and this may be referred to as a heat pump cycle.
  • Air is generally introduced into the duct inlet 141 and may flow out to the duct outlet 142 .
  • the first heat exchanger 110 and the second heat exchanger 120 are located inside the duct 140, and heat transfer with air is made through this.
  • a compressor 150 and an expansion unit 160 are positioned outside the duct 140 , and the first heat exchanger 110 , the second heat exchanger 120 , the compressor 150 , and the expansion unit 160 . ) is connected by the refrigerant circulation passage 130 , and has a structure in which the refrigerant is circulated along the refrigerant circulation passage 130 .
  • the movement direction of the refrigerant indicated by the thin arrow and the movement direction of the air indicated by the thick arrow are independent of each other, and only heat exchange can be achieved through the first heat exchanger 110 and the second heat exchanger 120 . have.
  • FIG. 1 (b) is a duct 140 of the heating unit 170 that heats the air that has passed through the second heat exchanger 120, not the refrigerant, as a way to solve the problem during the initial operation before reaching a steady state.
  • An example of the heat pump 300 provided therein is shown. However, this is not a method of directly heating the refrigerant to affect the heat pump cycle, but an indirect method of heating the air. Thinking of it as a heat pump cycle, the cooling capacity will increase during the evaporation process. The refrigerant that has passed through this evaporation process will become more supersaturated than a typical heat pump cycle, and when compressed, it will become a refrigerant having a higher temperature than a typical heat pump.
  • the heating capacity will also increase during the condensation process.
  • the method of heating the air as shown in FIG. 1(b) has a problem in that the heating or heat dissipation capability in the condensation process is relatively low compared to the input energy. This is because the refrigerant is not directly heated.
  • FIG. 1(c) shows a heat pump 100 for directly heating a refrigerant as an example of the present disclosure. That is, the present disclosure is not a method of indirectly heating air, but a method of directly heating the refrigerant by placing the heating unit 170 between the compressor 150 and the second heat ventilator.
  • the heat pump 100 is located in the refrigerant circulation path 130 forming a flow path through which the refrigerant circulates, and the refrigerant circulation path 130, and a first heat exchanger that cools air through heat exchange with the refrigerant.
  • the second heat exchanger 120 for heating the air that has passed through the first heat exchanger 110 through heat exchange with the refrigerant, the refrigerant circulation passage 130 ), a compressor 150 that compresses and circulates the refrigerant that has passed through the first heat exchanger 110, the first heat exchanger 110 and the second heat exchanger among the refrigerant circulation path 130 ( 120), an expansion unit 160 for expanding the refrigerant, and a heating unit located between the compressor 150 and the second heat exchanger 120 among the refrigerant circulation path 130 to heat the refrigerant (170).
  • the heat pump 100 is located in the control unit (not shown) for controlling the heating unit 170 and the discharge port 151 or is located adjacent to the discharge port 151 of the discharge pipe 131, the compressor A temperature sensor 190 for measuring the temperature of the refrigerant discharged from 150 may be further included. Accordingly, the temperature sensor 190 may be positioned between the heating unit 170 and the compressor 150 .
  • the temperature sensor 190 is inserted into the interior of the discharge port 151 or the discharge pipe 131 from the outside, measures the temperature of the refrigerant discharged from the compressor 150, and measures the temperature of the refrigerant discharged from the compressor 150 and the control unit (not shown) can be forwarded to The control unit may receive a control signal from the temperature sensor 190 to control whether the heating unit 170 operates.
  • the temperature of the compressor 150 may be used by directly measuring the internal temperature of the compressor 1120 , or may be used by measuring and estimating the temperature of the refrigerant immediately after being compressed and discharged. Preferably, when the refrigerant compressed and discharged by the compressor 1120 flows along the discharge pipe 131, the temperature of the refrigerant is measured and the internal temperature of the compressor 150 is estimated and used.
  • a thermistor is installed in the discharge pipe 131 to measure the temperature of the discharged refrigerant. .
  • the heating unit 170 may be installed in the discharge pipe 131 connecting the compressor 150 and the second heat exchanger 120 .
  • the compressor 150 includes a discharge port 151 for discharging the compressed refrigerant, and a discharge pipe connecting the discharge port 151 and the refrigerant inlet (not shown) of the second heat exchanger 120 . (131) may be provided.
  • the heating unit 170 may be located closer to the compressor 150 than to the second heat exchanger 120 . In other words, the heating unit 170 may be located adjacent to the discharge port 151 .
  • the heating unit 170 may be located inside the refrigerant circulation path 130 to heat the refrigerant. However, since this is not possible when a flammable refrigerant such as R-290 is used depending on the type of refrigerant, preferably, the heating unit 170 may heat the outer peripheral surface of the discharge pipe.
  • a conventional coil-type electric heater or a wire-type heater such as a silicon carbide heater (SiC heater) may be used.
  • a rubber heater in which a nichrome heating wire is wired between silicon pads may be used.
  • a heater in the form of a film used by attaching it it is also possible to use.
  • the heating unit 170 may include a heating element 171 that converts electricity into heat and a film 172 to which the heating element is attached.
  • the heating element 171 may be in the form of a planar heating element.
  • the heating element used in the film-type heating unit 170 may be of a planar shape, which is also called a planar heating element.
  • the planar heating element there is a heating element that generates heat by printing black carbon ink on a vinyl-based film and bonding to a power source using a copper sheet as an electrode.
  • Another example may be a heating element coated with carbon ink on glass fiber and woven using a copper wire as an electrode wire, or a heating element using a thin copper plate as an electrode wire after carbon ink is sprayed on a nonwoven fabric or film.
  • the heating element 171 on the film 172 After printing the heating element 171 on the film 172, it may be used by attaching it to the discharge pipe 131. After the heating element 171 is printed on the discharge tube 131, the film 172 can also be attached.
  • the heating unit 170 may have a coil shape in which a heating element 171 that converts electricity into heat surrounds the outer circumferential surface of the discharge pipe 131 .
  • the heating element 171 may have a form in which PTC (Positive Temperature Coefficient) ink is printed on the film 172 by a screening method.
  • the film 172 may be made of a transparent material so that the heating element 171 can be seen, but is not limited thereto.
  • the film 172 may generally be manufactured using polyimide (PI), acrylic, thermosetting polyurethane (TPU), or polyethylene terephthalate (PET).
  • PI polyimide
  • TPU thermosetting polyurethane
  • PET polyethylene terephthalate
  • the present invention is not limited thereto.
  • the present disclosure is characterized in that the discharge pipe 131 through which the refrigerant discharged from the discharge port 151 moves is heated. Heating the body of the compressor 150 is intended to preheat the compressor.
  • Heating the body of the compressor 150 is intended to preheat the compressor.
  • this is not the purpose of increasing the cooling capacity and heating capacity of the heat pump 100 at the initial stage of operation. That is, to ensure the reliability of the compressor, the difference between the temperature after compression at the initial stage of operation and the temperature after compression of the compressor in the normal state is maintained below 5 degrees (°C). Therefore, the The power consumption of the heater is on the order of several tens of Watts.
  • the purpose is to increase the cooling capacity and heating capacity of the heat pump 100 in the initial driving period by heating the refrigerant. , power consumption of several hundred Watts can be used.
  • FIG. 2 simply shows the thermodynamic cycle of the heat pumps 100 , 200 , and 300 shown in FIGS. 1 ( a ) to 1 ( c ).
  • FIG. 2 shows a Mollier diagram or a portion of a P-h diagram showing the relationship between specific enthalpy (kJ/kg) and absolute pressure (kPa).
  • R-134a is used as an example of the refrigerant.
  • the refrigerant is not limited thereto, and values displayed on the Moliere diagram may vary depending on the refrigerant.
  • the thermodynamic cycle of the heat pump 100 including the heating unit 170 positioned between the compressor 150 and the second heat exchanger 120 will be briefly described. can do.
  • a typical heat pump is illustrated as a refrigeration cycle indicated by 1-2b-3b-4b.
  • This is a thermodynamic cycle at steady state. That is, it means that the heating unit 170 is stopped because power is not supplied.
  • 1-2a in the case of using the heating unit 170 at the initial stage of driving the heat pump It is shown as -3a-4a.
  • the case of heating the air is shown as 1c-2c-3a-4a. This is a very simplified representation of the thermodynamic cycle for comparison.
  • the steady state case in which the heating unit 170 is not used may be represented by the same thermodynamic cycle as a conventional heat pump. That is, 1-2b represents a compression process in which the refrigerant is compressed along the dotted line to become a high-temperature and high-pressure gas. 2b-3b shows a condensation process in which air is heated through heat exchange in the second heat exchanger 120 and the refrigerant is condensed. 3b-4b represents an expansion process in which the refrigerant is expanded through the expansion unit 160 to make a low-temperature, low-pressure saturated liquid-saturated steam mixed state. Finally, 4b-1 shows an evaporation process of cooling the air through heat exchange in the first heat exchanger 110 and evaporating the refrigerant. This will allow the refrigerant to cycle through the heat pump cycle.
  • the heating unit 170 The heating of the air by the circulating refrigerant can be represented by replacing the process 1-1c during the circulation of the refrigerant. That is, since the temperature of the air exiting the duct 140 is higher than the air temperature in the normal heat pump, the temperature of the air entering the heat pump again is also high, so that the heat exchange in the first heat exchanger 110 becomes larger. Therefore, the temperature of the refrigerant may increase as a result. Therefore, it will reach state 1c instead of state 1.
  • the 1c state will reach the 2c state through the compression process. Thereafter, the refrigerant may reach the 3a state from the 2c state through a condensation process.
  • the 2c state is higher temperature and higher pressure than the 2b state
  • the 2c state and the 2b state are not located on the same pressure line, but are indicated here on the same pressure line for convenience. Therefore, the evaporation process and the condensation process are simply indicated as having a pressure difference of H. Instead, as the pressure increases, more heat exchange occurs in the condensation process to reach the 3a state. Therefore, it can be simply said that the condensation process takes place through 2c-3a.
  • the refrigerant will go through the expansion process of 3a-4a and then circulate through the evaporation process of 4a-1c.
  • the cooling capacity in the evaporation process is shown as an enthalpy difference of 4a-1c and the heating capacity in the condensation process is shown as 2c-3a, so they all increase. can This will eventually increase the initial cooling capacity and heating capacity of the heat pump, thereby stabilizing the heat pump at the initial stage of operation.
  • the refrigerant compression process is performed in 1-2a. After compression in the compressor 150, the high-temperature and high-pressure state through heating in the heating unit 170 may display the refrigerant as state 2a. This is because the heating unit 170 also makes the refrigerant in a high-temperature and high-pressure state, so it can be viewed as a compression process including all of them.
  • the refrigerant may reach the 3a state from the 2a state through a condensation process.
  • the state 2a is higher temperature and higher pressure than the state 2b
  • the state 2a and the state 2b are not located on the same pressure line, but are shown here on the same pressure line for convenience. Therefore, the evaporation process and the condensation process are simply indicated as having a pressure difference of H. Instead, as the pressure increases, more heat exchange occurs in the condensation process to reach the 3a state. Therefore, it can be simply said that the condensation process takes place through 2a-3a.
  • the refrigerant will go through the expansion process of 3a-4a and then circulate through the evaporation process of 4a-1.
  • the cooling capacity in the evaporation process is shown as an enthalpy difference of 4a-1
  • the heating capacity in the condensation process is shown as 2a-3a, so they all increase. can This will eventually increase the initial cooling capacity and heating capacity of the heat pump, thereby stabilizing the heat pump at the initial stage of operation.
  • the heating capacity of the heat pump of the present disclosure (enthalpy difference of 2a-3a) ) is larger. That is, the heat dissipation ability or the heating ability can be improved compared to the input energy.
  • this is to quickly operate the heat pump in a normal state at the initial stage of driving the heat pump, and the difference may be greater when the driving environment of the heat pump is low. For example, when the heat pump is driven at a sub-zero temperature instead of room temperature, more heating capacity is required at the initial driving time of the heat pump. As in the present disclosure, when the heating unit 170 is disposed between the compressor 150 and the second heat exchanger 120, the heating capacity in the initial condensation process of driving is increased to enable rapid stabilization of the heat pump. will be.
  • the drying time may be shortened through rapid stabilization at the initial stage of operation.
  • the drying time can be shortened more than when using another heat pump (when a heating unit is not used or when a heating unit that heats air is included). This may be more effective in environments where home appliances are used in winter or in harsh environments such as high latitudes.
  • FIG. 3 shows an example of a flowchart related to a control method of a heat pump according to an embodiment of the present disclosure. That is, the control method shown in FIG. 3 shows an example of a control method of the initial driving of the heat pump.
  • the heat pump 100 is located at a control unit (not shown) for controlling the heating unit 170 and the discharge port 151 or is located adjacent to the discharge port 151 of the discharge pipe 131 to the compressor ( 150) may further include a temperature sensor 190 for measuring the temperature of the refrigerant discharged. Accordingly, the temperature sensor 190 may be positioned between the heating unit 170 and the compressor 150 .
  • the temperature sensor 190 is inserted into the interior of the discharge port 151 or the discharge pipe 131 from the outside, measures the temperature of the refrigerant discharged from the compressor 150, and measures the temperature of the refrigerant discharged from the compressor 150 and the control unit (not shown) can be forwarded to The control unit may receive a control signal from the temperature sensor 190 to control whether the heating unit 170 operates.
  • the temperature of the refrigerant may also be the temperature of room temperature.
  • the temperature of the refrigerant discharged from the compressor 150 is heated at the initial stage of operation in order to operate it above the preset first reference temperature and below the preset second reference temperature, which is an appropriate temperature range in which the compressor 150 operates in a normal state. can
  • the heating unit 170 since it is not necessary to operate the heating unit 170 when a steady state is reached, the heating unit 170 may be stopped after a preset operation time elapses.
  • the control method of the present disclosure after starting the operation of the compressor 150 ( S100 ), power is supplied to the heating unit 170 to operate ( S200 ).
  • the temperature sensor 190 may measure the temperature of the refrigerant discharged from the compressor 150 ( S510 ). Thereafter, the manufacturing method of the present disclosure may proceed with a temperature maintenance step (S500) for maintaining the measured temperature above the first reference temperature and below the second reference temperature.
  • the first reference temperature may be set to 60 degrees (°C) and the second reference temperature may be set to 80 degrees (°C).
  • the control method of the present disclosure can determine whether the heating unit operates (S535) if the measured temperature measured in the temperature measuring step (S510) is less than the first reference temperature (S530) have. If the heating unit 170 is not operating, the control method of the present disclosure may operate the heating unit 170 ( S300 ). If the heating unit 170 is in operation, the control method of the present disclosure may proceed to the temperature measurement step (S510) since it is not necessary to operate the heating unit 170 that is already in operation again.
  • the control method of the present disclosure when the measured temperature measured in the temperature measuring step (S510) is equal to or higher than the first reference temperature, the measured temperature measured in the temperature measuring step (S510) is the If the second reference temperature is exceeded (S550), it is determined whether the heating unit 170 operates (S575). If the heating unit 170 is operating, the The control method may stop (S577, first stopping step) the operation of the heating unit 170. If the heating unit 170 is already stopped, the control method of the present disclosure is the already stopped heating Since there is no need to stop the unit 170 again, it can proceed to the temperature measurement step (S510).
  • the control method of the present disclosure includes the temperature measuring step (S510) and the temperature maintaining step until a preset operating time elapses (S570) after the start of operation of the compressor 150 (S500) may be repeatedly performed. Accordingly, in the control method of the present disclosure, the driving temperature of the compressor may be maintained above the first reference temperature and below the second reference temperature through operation/stop of the heating unit 170 according to the repeatedly measured temperature.
  • the control method of the present disclosure no longer needs to operate the heating unit 170, so it can proceed to a second stopping step (S700) of stopping the heating unit. .
  • 4 (a) shows an example of a clothes treatment apparatus 1000 including a heat pump 100 provided with a heating unit 170 between the compressor 150 and the second heat exchanger (or condenser 120), have.
  • 4( b ) shows a driving unit 1500 , a duct 140 , and a first heat exchanger 110 installed on a base forming the bottom surface of the laundry treatment apparatus 1000 to drive the laundry treatment apparatus 1000 .
  • a second heat exchanger, and a compressor 150 are shown.
  • the clothes treatment apparatus 1000 includes a cabinet 1100 forming an exterior, a drum 1300 rotatably provided inside the cabinet 1100 to accommodate clothes, and the drum A duct 140 forming a passage for circulating air, a refrigerant circulation passage 130 (refer to FIG. 4A ).
  • a second heat exchanger 120 that heats the air passing through 110 is located in the refrigerant circulation path 130 outside the duct 140, and compresses the refrigerant that has passed through the first heat exchanger 110 to circulate the compressor 150, located outside the duct 140, and located between the first heat exchanger 110 and the second heat exchanger 120 in the refrigerant circulation path 130 to expand the refrigerant and a heating unit 170 positioned between the compressor 150 and the second heat exchanger 120 among the expansion unit 160 and the refrigerant circulation path 130 to heat the refrigerant.
  • a circular inlet 1110 is provided on the front side of the cabinet 1100 .
  • a control panel 1140 for controlling various functions of the laundry treatment apparatus 1000 and displaying an operating state may be provided on the cabinet 1100 .
  • the door 1150 for opening and closing the inlet 1110 may include a light-transmitting part. Accordingly, even when the door 1150 is closed, the inside of the drum 1300 may be visually exposed through the light transmitting part.
  • the interior of the cabinet 1100 includes a cylindrical drum 1300 communicating with the inlet 1110 to accommodate laundry. 4 (b), the lower portion of the drum 1300, the duct 140 for circulating the air of the drum 1300 and the air sucked into the duct 140 can be heated again after dehumidification cooling
  • the first heat exchanger 110 , the second heat exchanger 120 , and a base on which a compressor positioned outside the duct 140 to compress and circulate a refrigerant required for heat exchange is mounted may be provided.
  • the base not only forms the bottom surface of the cabinet 1100 , but may also provide a space in which mechanical devices to perform various functions of the laundry treatment apparatus 1000 may be installed.
  • 4 (b) shows an example of the heat pump 100 including the duct 140, the compressor 150, and the driving unit 1500 located at the base. 4 (b) is for explanation, the cover plate (not shown) forming the upper surface of the duct 140 in the duct 140 is removed, the first heat exchanger 110 and the second heat exchanger 120 ) is shown.
  • a duct 140 serving to circulate air may be located in the base.
  • a first heat exchanger 110 and a second heat exchanger 120 are disposed to exchange heat with the air sucked in the drum 1300 , and then, the high-temperature dried air is returned to the drum 1300 .
  • an intake duct (not shown) connecting the drum 1300 and the duct inlet 141 and an exhaust duct (not shown) connecting the duct outlet 142 and the drum 1300 may be further included. have.
  • a blowing fan 147 may be provided between the exhaust duct and the second heat exchanger 120 to generate a suction force for sucking air inside the drum 1300 . Accordingly, the air inside the drum 1300 is circulated by the blowing fan 147 and at the same time dehumidified through the first heat exchanger 110 and the second heat exchanger 120 provided in the duct 140 . can be changed to the
  • the first heat exchanger 110 and the second heat exchanger 120 may be located in the duct 140 .
  • the expansion unit 160 and the compressor 150 may be located outside the duct 140 .
  • the compressor 150 , the expansion unit 160 , the first heat exchanger 110 , and the second heat exchanger 120 may be connected by a refrigerant circulation passage 130 .
  • the refrigerant circulation path 130 may be in the form of a pipe.
  • the refrigerant circulating in the heat pump 100 is evaporated by absorbing heat from the air sucked in from the drum 1300 through the first heat exchanger 110 . Accordingly, the air will be cooled, and the water contained in the air may be condensed upon cooling. This is because the amount of saturated water vapor decreases as the temperature decreases.
  • the refrigerant circulating in the refrigerant circulation path 130 is evaporated in the first heat exchanger 110 , it is compressed to a high temperature and high pressure in the compressor 150 and then condensed again through the second heat exchanger 120 . Accordingly, after the air that has passed through the first heat exchanger is heated in the second heat exchanger 120 , it may move back to the drum 1300 .
  • the expansion unit 160 may be provided as an expansion valve, or may be provided as a capillary tube using an orifice effect. In addition, it may include a filter dryer 165 to filter out foreign substances in the refrigerant.
  • a driving unit 1500 for driving the drum 1300 may also be mounted on the base.
  • 4B shows a motor and a driving pulley 1550 connected to the motor as an example of the driving unit 1500 .
  • the driving unit 1500 will transmit the rotational force generated by the motor to the drum 1300 through a drum belt (not shown) that connects the driving pulley 1550 and the drum 1300 .
  • the drum belt may have a shape surrounding the outer circumferential surface of the drum 1300 .
  • the clothes treatment apparatus 1000 may include a cooling fan 1900 for cooling the compressor 150 .
  • the cooling fan 1900 is located at the rear of the base, adjacent to the compressor 150, and sucks outside air to cool the compressor 150.
  • the heat pump 100 may include a temperature sensor 190 for measuring the temperature of the compressed and discharged refrigerant.
  • the heat pump 100 may include a heating unit 170 provided in the discharge pipe 131 to heat the refrigerant discharged from the compressor 150 .
  • the heating unit 170 may be provided in a shape surrounding the outer circumferential surface of the discharge pipe 131 .
  • the position of the temperature sensor 190 and the heating unit 170 may be installed adjacent to the compressor 150, which may vary depending on the design.
  • FIG. 5A illustrates an example of the heat pump 100 included in the laundry treatment apparatus 1000 .
  • the compressor 150 may be connected to the second heat exchanger 120 through the discharge pipe 131 of the refrigerant circulation path 130 to move the compressed refrigerant to the second heat exchanger 120 . Also, the compressor 150 circulates the entire refrigerant through the refrigerant circulation passage 130 .
  • the high-temperature and high-pressure refrigerant that has moved to the second heat exchanger 120 is sucked from the drum through the second heat exchanger 120 to heat the cooled air again through the first heat exchanger 110 .
  • the first heat exchanger 110 and the second heat exchanger 120 are fin-tube formed by reciprocating a tube through which a refrigerant circulates through a plurality of heat transfer fins provided at regular intervals several times. It may be a shaped heat exchanger.
  • the first heat exchanger 110 cools the humid air sucked in from the drum 1300 through heat exchange, and the refrigerant receives heat from the air and evaporates. Thereafter, the refrigerant is connected to the accumulator 159 through the inlet pipe 132 of the refrigerant circulation path 130 to move to the compressor 150 .
  • Fig. 5(b) is an enlarged view of region P of Fig. 5(a).
  • a conventional coil-type electric heater or a wire-type heater such as a silicon carbide heater (SiC heater) may be used.
  • a rubber heater in which a nichrome heating wire is wired between silicon pads may be used.
  • a heater in the form of a film used by attaching it it is also possible to use.
  • the heating unit 170 may include a heating element 171 that converts electricity into heat and a film 172 to which the heating element is attached.
  • the heating element 171 may be in the form of a planar heating element.
  • the heating element used in the film-type heating unit 170 may be of a planar shape, which is also called a planar heating element.
  • the planar heating element there is a heating element that generates heat by printing black carbon ink on a vinyl-based film and bonding to a power source using a copper sheet as an electrode.
  • Another example may be a heating element coated with carbon ink on glass fiber and woven using a copper wire as an electrode wire, or a heating element using a copper thin plate as an electrode wire after spraying carbon ink on a nonwoven fabric or film.
  • the heating element 171 on the film 172 After printing the heating element 171 on the film 172, it may be used by attaching it to the discharge pipe 131. After the heating element 171 is printed on the discharge tube 131, the film 172 can also be attached.
  • the heating element 171 may have a form in which PTC (Positive Temperature Coefficient) ink is printed on the film 172 by a screening method.
  • the film 172 may be made of a transparent material so that the heating element 171 can be seen, but is not limited thereto.
  • the film 172 may generally be manufactured using polyimide (PI), acrylic, thermosetting polyurethane (TPU), or polyethylene terephthalate (PET).
  • FIG. 5(b) shows an example of a pattern that the heating element 171 can have.
  • the interval between the heating element patterns, the size of the heating element, etc. may be variously changed as needed.
  • FIG. 6( a ) shows another example of the laundry treatment apparatus 2000 including the heat pump 100 including the heating unit 170 between the compressor 150 and the second heat exchanger (or condenser 120 ). are doing FIG. 6(b) illustrates a mechanical device installed on the base forming the bottom surface of the laundry treatment apparatus 2000 to drive the laundry treatment apparatus 2000.
  • FIG. 6(b) illustrates a mechanical device installed on the base forming the bottom surface of the laundry treatment apparatus 2000 to drive the laundry treatment apparatus 2000.
  • the clothes treatment apparatus 2000 includes a cabinet 2010 including an inlet 2030 on one surface, a first chamber 2100 positioned inside the cabinet 2010 and accommodating clothes through the inlet 2030, and the A second chamber 2200 positioned below the first chamber 2100 to form a space separated from the first chamber 2100, is provided inside the second chamber 2200 to generate steam and the A steam unit 2210 for supplying the first chamber 2100, a duct 140 provided in the second chamber 2200 to form a passage for circulating air in the first chamber 2100;
  • the refrigerant circulation path 130 provided inside the second chamber 2200 and forming a flow path through which the refrigerant circulates, is located in the refrigerant circulation path 130 inside the duct 140, and the refrigerant and
  • the first heat exchanger 110 for cooling air through heat exchange is located in the refrigerant circulation path 130 inside the duct 140, and passes through the first heat exchanger 110 through heat exchange with the refrigerant A second heat exchanger 120 that heats one air, a compressor that is located in the refrigerant
  • the clothes treatment apparatus 2000 includes a cabinet 2010 including an inlet 2030 on one surface, and is located inside the cabinet 2010 to transport clothes through the inlet 2030 .
  • a steam unit 2210 (refer to FIG. 6(b)) that is provided inside, generates steam and supplies it to the first chamber 2100, is rotatably coupled to the cabinet 2010 to open and close the inlet 2030 and a door 2020.
  • the inlet 2030 will be provided on the front side of the cabinet 2010 .
  • the clothes treatment apparatus 2000 is located inside the second chamber 2200 and includes a blowing unit 2260 (refer to FIG. 6(b)) that sucks air from the first chamber 2100, and the A heat pump 100 for dehumidifying and heating the sucked air and then discharging it to the first chamber 2100 may be further included.
  • a blowing unit 2260 (refer to FIG. 6(b)) that sucks air from the first chamber 2100
  • the A heat pump 100 for dehumidifying and heating the sucked air and then discharging it to the first chamber 2100 may be further included.
  • the cabinet 2010 may be made of a metal material, and may be made of a plastic material if strength can be maintained. Also, the first chamber 2100 may be formed by plastic injection molding. The first chamber 2100 may be coupled to the cabinet 2010 by a frame (not shown), but, unlike this, a foamed plastic such as polyurethane is disposed between the cabinet 2010 and the first chamber 2100 . It is also free to use and fill.
  • a foamed plastic such as polyurethane is disposed between the cabinet 2010 and the first chamber 2100 . It is also free to use and fill.
  • the clothes including the top and bottom may be mounted in the first chamber 2100 , and a blower unit 2260 (refer to FIG. 6(b) ) positioned inside the second chamber 2200, a heat pump 100 ) and the steam unit 2210 (refer to FIG. 6(b)) to refresh the clothes. That is, the blowing unit 220 (refer to FIG. 6(b)), the heat pump 100 (refer to FIG. 6(b)) and the steam unit 2210 (see FIG. 6(b)) positioned inside the second chamber 2200 ) through steam and/or heated air to sterilize and deodorize clothes, and to remove wrinkles formed by use.
  • the first chamber 2100 may include a clothing support unit 2130 for holding clothing on an upper portion inside the first chamber 2100 .
  • the clothes support unit 2130 may accommodate a hanger on which clothes are hung, and may be connected to a driving unit (not shown) capable of reciprocating the clothes support unit 2130 from side to side.
  • the movement of the clothing support unit 2130 shakes the clothing, and eventually foreign substances including fine dust adhering to the clothes can be separated. Also, by exposing to steam or moisture supplied from the second chamber 2200 while shaking the clothes mounted on the clothes support unit 2130 , wrinkles on the clothes can be removed to some extent.
  • the clothes support part 2130 allows the clothes to be held in an unfolded state by their own weight inside the first chamber 2100, so that the dehumidified and heated air supplied from the second chamber 2200 and/ Alternatively, it can be made to be evenly exposed to steam.
  • Moisture refers to a form in which water droplets of 1 mm or less are suspended in the air at room temperature. It's like fog, for example.
  • the sterilization power is superior to that of water due to the higher temperature than water, and since water molecules move more actively at high temperature, the permeability of clothes is excellent, so steam can be used more than water to refresh clothes.
  • the bottom surface of the first chamber 2100 provides steam generated by the steam unit 2210 inside the second chamber 2200 and air dehumidified and heated by the heat pump 100 to the first chamber 2100. ), the air supply port 2151 and the steam supply port 2152 for supplying, and the suction port 2153 for sucking the air of the first chamber 2100 by the blowing unit 2260 can be located have.
  • the inlet 2030 will be provided on one surface of the cabinet facing the front, and in the case of the mechanical device shown in FIG. 6(b), the air supply duct 2250 is located in front of the inlet, that is, The door will be positioned in the direction it is positioned. Accordingly, the suction port 2153 and the air supply duct inlet 2551 are connected to each other to serve as a passage for sucking the air of the first chamber 2100 .
  • the air supply port 2151 and the steam supply port 2152 are located in a region where the bottom surface of the first chamber 2100 and the rear surface of the first chamber 2100 meet. can be provided.
  • a region where the bottom surface of the first chamber 2100 and the rear surface of the first chamber 2100 meet may have a smoothly inclined shape.
  • the suction port 2153 may be located close to the inlet 2030 on the bottom surface of the first chamber 2100 . Accordingly, the air inside the first chamber 2100 is discharged through the air supply port 2151 and is sucked through the suction port 2153 to be circulated. After steam is also discharged through the steam supply port 2152, it is condensed and sucked through the suction port 2153, and then collected in a sump (not shown) that stores condensed water.
  • the bottom surface of the first chamber 2100 is the first It may be inclined downward in the direction of the inlet 2030 from the rear surface of the chamber 2100.
  • the laundry treatment apparatus 2000 discharges and stores the water supply tank 2410 for supplying water to the steam unit 2210 and the condensed water collected in the sump (not shown).
  • a drain tank 2420 for this purpose may be provided in the front portion of the second chamber 2200 .
  • a tank module frame (not shown) for forming a tank installation space (not shown) in which the water supply tank 2410 and the drain tank 2420 are installed is provided, and the tank installation space (not shown) and the first The second chamber 2200 may be separated. That is, the tank installation space and the second chamber 2200 are located under the first chamber 2100, the tank installation space is located close to the door 2020, and the second chamber 2200 is located behind the tank installation space. can be located
  • the water supply tank 2410 and the drain tank 2420 may be respectively detachably provided in the tank module frame (not shown). However, unlike this, the water supply tank 2410 and the drain tank 2420 may be combined into one and may be provided to be detachably attached at the same time.
  • the door 2020 When the door 2020 is closed, the door 2020 may include a rear surface of the door 2020 or an inner surface of the door located in a direction from the door 2020 to the first chamber 2100 .
  • the door 2020 is rotatably connected to the cabinet 2010 in a hinge manner to open and close the inlet 2030 .
  • the front of the water supply tank 2410 and the front of the drain tank 2420 face the inner surface of the door, and when the user opens the door 2020, the water supply tank 2410 The front surface of and the front surface of the drain tank 2420 may be exposed to the outside.
  • the water supply tank 2410 and the drain tank 2420 include a water supply tank window 2411 and a drain tank window 2421 on their front surfaces, respectively, the water supply tank 2410 and the drain tank 2420 are stored inside You can check the water level right away.
  • the front surface of the water supply tank 2410 and the front surface of the drain tank 2420 may include a water supply tank handle (not shown) and a drain tank handle (not shown), respectively.
  • a water supply tank handle (not shown)
  • a drain tank handle (not shown)
  • the water supply tank 2410 and the drain tank 2420 rotate around the front end of the water supply tank and the front end of the drain tank, respectively. It may be separated from the tank module frame (not shown). Also, when mounted on the tank module frame (not shown), the water supply tank 2410 and the drain tank 2420 will be seated on the tank module frame (not shown) through rotation as well.
  • the clothes treatment apparatus 2000 includes a clothes fixing unit for hanging the trouser hangers after mounting the pants P upside down on the pants hangers on the inner surface of the door 2020 or the inside of the first chamber 2100 and the clothes A fixing part and a pressing part 2070 for pressing the pants fixed by the trouser hanger may be located.
  • the inner surface of the door 2020 refers to a surface that is positioned toward the inlet 2030 among both surfaces of the door and forms the clothing accommodation space together with the first chamber 2100 when the door 2020 is closed.
  • the reason that the pants P is hung upside down, that is, with the bottom hem upward, is that the weight of the waist of the pants P, that is, the top of the pants P, is the bottom of the pants P, that is, Because it is heavier than the pants (pant leg) portion, a tensile force is applied to the pants (P) through the weight of the pants (P) to evenly spread the pants (P).
  • the pressing unit 2070 may include a support plate coupled to the inner surface of the door 2000 to support the clothes, and a rotating plate rotating toward the support plate to press the pants P.
  • the rotating plate When the rotating plate is coupled to rotate toward the support plate, it is possible to press the pants (P).
  • the door 2020 is closed, and the wrinkle can be removed by exposing it to steam and dehumidified and heated air inside the first chamber 2100 .
  • it may include a rotation plate through-hole penetrating the rotation plate to facilitate the steam penetration into the pants (P), and the seam (seam) provided along the longitudinal direction of the pants box of the pants (P) is pressed.
  • it may further include a depression in the surface in contact with the pants (P) of both sides of the rotating plate.
  • the inside of the second chamber 2200, the blowing unit 2260 for sucking the air of the first chamber 2100, the water from the water supply tank 2410 is supplied to steam
  • a heat pump that dehumidifies and heats the air sucked in by the steam unit 2210 and the blowing unit 2260 for supplying steam to the first chamber 2100, and then discharges it to the first chamber 2100. (100) may be included.
  • a control unit (not shown) for controlling the blowing unit 2260 , the steam unit 2210 , and the heat pump 100 may be located.
  • the air inside the first chamber 2100 is sucked through the air supply duct 2250 using the blowing unit 2260 . Then, it is moved to the heat pump 100 , and after heat exchange, it is supplied to the first chamber 2100 again.
  • the blowing unit 2260 may include a blowing fan 147 and an air supply duct 2250 .
  • the air supply duct 2250 is provided in front of the blowing fan 147, and the air supply duct 2250 In front of the tank module frame (not shown) may be provided. Accordingly, the tank module frame may separate the tank installation space and the second chamber 2200 .
  • the water supply tank 2410 and the drain tank 2420 seated on the tank module frame may be located close to one side of both sides of the cabinet 2010 .
  • the right side of the cabinet 2010 may be located closer than the left side of the cabinet 2010 in the tank installation space (not shown), and the drain tank 2420, on the contrary, is the cabinet 2010.
  • the left side of the cabinet 2010 may be located closer than the right side of the cabinet 2010 .
  • the right side of the cabinet 2010 may be located closer than the left side of the cabinet 2010 inside the second chamber 2200 . This is to simplify the connection passage through which water moves from the water supply tank 2410 to the steam unit 2210 by disposing the steam unit 2210 at the rear of the water supply tank 2410 .
  • the steam unit 2210 may heat the water located inside the steam unit 2210 by using a heater, and the generated steam is generated along the steam passage (not shown) along the bottom surface of the first chamber 2100. It may communicate with the steam supply port 2152 provided in the.
  • the position of the steam unit is also closer to the left side of the cabinet 2010 than the right side of the cabinet 2010.
  • the air supply duct 2250 communicates with the suction port 2153 provided on the bottom surface of the first chamber 2100 to suck the air of the first chamber 2100.
  • the air supply duct inlet 2551 may form an inclined flow path. The condensed water generated in the first chamber 2100 and the door 2020 passes through the supply air duct inlet 2551 communicating with the bottom surface of the first chamber 2100 and rides the inclined flow path, and the inner lower part of the air supply duct 2250 This is for easy movement to a sump (not shown) provided in the .
  • the air supply duct 2250 is positioned in front of the blowing fan 147 , and the steam unit 2210 and the heat pump 100 may be disposed in the rear of the blowing fan 147 .
  • the heat pump 100 may be supported by a supporter 2220 .
  • the supporter 2220 may be provided on the base 2050 forming the bottom of the second chamber 2200 . Accordingly, the supporter 2220 forms a predetermined separation distance between the base 2050 and the heat pump 100 , and forms a predetermined installation space between the supporter 2220 and the base 2050 . can do.
  • a steam unit 2210 may be located in the installation space, and may be coupled to the supporter 2220 in the installation space. 6(b) shows an example in which the control unit is located below the steam unit 2210 in the installation space of the supporter 2220, but unlike the second chamber 2200, the rear light of the steam unit 2210 It is free to be installed anywhere inside the
  • the heat pump 100 is a duct 140 including the first heat exchanger (or evaporator) and the second heat exchanger (or condenser) therein, and the air dehumidified and heated in the duct 140 is supplied to the A discharge port 151 communicating with an air supply port 2151 provided in the first chamber 2100 may be further included to discharge to the first chamber 2100 .
  • a compressor (not shown) and an expansion valve (not shown) for circulating the refrigerant may be located outside the supporter 2220 .
  • the blowing unit 2260 circulates the air in the first chamber 2100 , and the first heat exchanger 110 and the second heat exchanger 120 operate the blowing unit 2260 .
  • ) may be provided inside the duct 140 for moving the air circulated by.
  • the duct 140 may be connected to the blowing unit 2260 through a blowing channel 2261 .
  • the blowing channel 2261 may connect the outlet of the blowing unit 2260 and the inlet of the duct 140 .
  • FIG. 7( a ) shows a duct 140 provided inside the second chamber 2200 to circulate air inside the first chamber 2100 , and a base 2050 provided outside the duct 140 .
  • the compressor 150 and the expansion unit 160 installed in the , and the refrigerant circulation path 130 through which the refrigerant circulates are shown.
  • a first heat exchanger 110 and a second heat exchanger 120 are positioned inside the duct 140 to exchange heat with the air sucked in from the first chamber 2100 .
  • the refrigerant passing through the discharge pipe 131 is wrapped around the outer circumferential surface of the discharge pipe 131 .
  • It may include a heating unit 170 for heating.
  • a temperature sensor 190 for measuring the temperature of the compressed and discharged refrigerant may be provided between the heating unit 170 and the compressor 150 .
  • the heat pump 100 may include a temperature sensor 190 for measuring the temperature of the compressed and discharged refrigerant.
  • the heat pump 100 may include a heating unit 170 provided in the discharge pipe 131 to heat the refrigerant discharged from the compressor 150 .
  • the heating unit 170 may be provided in a shape surrounding the outer circumferential surface of the discharge pipe 131 .
  • the position of the temperature sensor 190 and the heating unit 170 may be installed adjacent to the compressor 150, which may vary depending on the design.
  • the high-temperature and high-pressure refrigerant that has moved to the second heat exchanger 120 is sucked from the drum through the second heat exchanger 120 and cooled through the first heat exchanger 110 .
  • the air will be heated again.
  • the first heat exchanger 110 and the second heat exchanger 120 are fin-tube formed by reciprocating a tube through which a refrigerant circulates through a plurality of heat transfer fins provided at regular intervals several times. It may be a shaped heat exchanger.
  • the first heat exchanger 110 cools the humid air sucked in from the drum 1300 through heat exchange, and the refrigerant receives heat from the air and evaporates. Thereafter, the refrigerant is connected to the compressor 150 through the inlet pipe 132 of the refrigerant circulation path 130 to move to the compressor 150 .
  • a conventional coil-type electric heater or a wire-type heater such as a silicon carbide heater (SiC heater) may be used.
  • a rubber heater in which a nichrome heating wire is wired between silicon pads may be used.
  • a heater in the form of a film used by attaching it it is also possible to use.
  • the heating unit 170 may include a heating element 171 that converts electricity into heat and a film 172 to which the heating element is attached.
  • the heating element 171 may be in the form of a planar heating element.
  • the heating element used in the film-type heating unit 170 may be of a planar shape, which is also called a planar heating element.
  • the planar heating element there is a heating element that generates heat by printing black carbon ink on a vinyl-based film and bonding to a power source using a copper sheet as an electrode.
  • Another example may be a heating element coated with carbon ink on glass fiber and woven using a copper wire as an electrode wire, or a heating element using a thin copper plate as an electrode wire after carbon ink is sprayed on a nonwoven fabric or film.
  • the heating unit 170 may be implemented in a film form in a different way.
  • the heating element 171 on the film 172 After printing the heating element 171 on the film 172, it may be used by attaching it to the discharge pipe 131. After the heating element 171 is printed on the discharge tube 131, the film 172 can also be attached.
  • the heating element 171 may have a form in which PTC (Positive Temperature Coefficient) ink is printed on the film 172 by a screening method.
  • the film 172 may be made of a transparent material so that the heating element 171 can be seen, but is not limited thereto.
  • the film 172 may generally be manufactured using polyimide (PI), acrylic, thermosetting polyurethane (TPU), or polyethylene terephthalate (PET).
  • the heat pump 100 as an example of the present disclosure includes a dehumidifier using the heat pump 100 , a heater using the heat pump, or a cooling/heating machine, etc. It can also be used for home appliances.
  • the home appliance includes a refrigerant circulation passage 130 that forms a passage through which the refrigerant circulates, a first heat exchanger 110 that is located in the refrigerant circulation passage 130 and cools air through heat exchange with the refrigerant, the Located in the refrigerant circulation path 130, the second heat exchanger 120 for heating the air that has passed through the first heat exchanger 110 through heat exchange with the refrigerant, located in the refrigerant circulation path 130, A compressor 150 that compresses and circulates the refrigerant that has passed through the first heat exchanger 110, and the first heat exchanger 110 and the second heat exchanger 120 in the refrigerant circulation path 130 are interposed therebetween.
  • an expansion unit 160 for expanding the refrigerant and a heating unit 170 for heating the refrigerant located between the compressor 150 and the second heat exchanger 120 among the refrigerant circulation passage 130 may include

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Detail Structures Of Washing Machines And Dryers (AREA)

Abstract

The present disclosure relates to a heat pump, a control method of the heat pump, and a home appliance including the heat pump, the heat pump comprising: a refrigerant circulation flow path for forming a flow path through which a refrigerant circulates; a first heat exchanger positioned in the refrigerant circulation flow path to cool air through heat exchange with the refrigerant; a second heat exchanger positioned in the refrigerant circulation flow path to heat air having passed through the first heat exchanger through heat exchange with the refrigerant; a compressor positioned in the refrigerant circulation flow path to compress and circulate the refrigerant passed through the first heat exchanger; an expansion unit positioned between the first heat exchanger and the second exchanger in the refrigerant circulation flow path to expand the refrigerant; and a heating unit positioned between the compressor and the second heat exchanger in the refrigerant circulation flow path to heat the refrigerant.

Description

히트펌프 및 그 제어방법Heat pump and its control method
본 개시(disclosure)는 히트펌프, 상기 히트펌프의 제어방법, 그리고 이를 포함하는 가전제품에 관한 것이다. 더욱 상세하게는 냉매순환유로 중 압축기와 응축기 사이에 위치하는 일부분을 가열하는 것에 관한 것이다.The present disclosure relates to a heat pump, a method for controlling the heat pump, and home appliances including the same. More particularly, it relates to heating a portion of the refrigerant circulation path between the compressor and the condenser.
히트펌프(Heat pump)는 저온의 열원으로부터 열을 흡수하여 고온의 열을 생산하는 장치를 말한다. 특히 가전제품의 경우, 세탁기, 건조기, 의류관리기(refresher)등과 같은 의류의 건조가 필요한 의류처리장치(Clothes treatment apparatus)나, 제습기, 난방기, 냉난방기와 같은 공기조화장치(Air conditioning apparatus) 등에 널리 사용되고 있다.A heat pump refers to a device that absorbs heat from a low-temperature heat source and produces high-temperature heat. In particular, in the case of home appliances, it is widely used in the clothes treatment apparatus that requires drying clothes such as washing machines, dryers, and refreshers, and air conditioning apparatus such as dehumidifiers, heaters, and air conditioners. have.
정상상태(Steady state)에서의 히트펌프와 달리, 히트펌프의 기동초기 상태에서는 압축기가 아직 정상상태(steady state)로 구동되는 것이 아니므로 정상상태에서 예상되는 성능보다 낮은 성능을 보일 수 있는 문제점이 있다. 이를 히트펌프의 사이클(cycle)이 안정화되지 않았다고 말할 수 있다. 기동초기의 히트펌프사이클은 정상상태에서 히트펌프사이클에 필요한 4가지 기본적인 과정(압축과정, 증발과정, 팽창과정 및 응축과정)에서 예측되는 온도 및 압력과 다른 값을 가질 수 있기 때문이다.Unlike the heat pump in the steady state, in the initial state of the heat pump, the compressor is not driven in the steady state, so there is a problem that may show lower performance than expected in the steady state. have. It can be said that the cycle of the heat pump is not stabilized. This is because the initial heat pump cycle may have different values from the temperature and pressure predicted in the four basic processes (compression process, evaporation process, expansion process, and condensation process) required for the heat pump cycle in a steady state.
이러한 기동초기 상태의 히트펌프를 빠른시간내에 안정화시키기 위해, 대한민국 공개특허공보 제 10-2017-0024265호에는 드럼의 공기를 순환시키는 덕트내부에서, 응축기를 지나 가열된 공기를 다시 가열하는 히터(Heater)를 포함하는 건조기를 개시하고 있다. 그러나, 이는 냉매를 직접 가열하는 방식이 아니라, 간접적으로 공기를 가열하는 방식이다. 따라서, 공기를 원하는 온도로 가열하기 위해 필요한 에너지를 히터의 열에너지로 공급해야 한다. 이는 곧 동일한 질량의 의류를 원하는 시간 내에 일정 건조도 이상으로 의류를 건조시키기 위해, 히터에서 많은 에너지가 소비되는 문제점이 있다.In order to quickly stabilize the heat pump in the initial state of startup, Korean Patent Application Laid-Open No. 10-2017-0024265 discloses a heater that re-heats the heated air through the condenser in the duct that circulates the drum air. ) discloses a dryer comprising a. However, this is not a method of directly heating the refrigerant, but a method of heating the air indirectly. Therefore, the energy required to heat the air to a desired temperature must be supplied as thermal energy of the heater. This has a problem in that a lot of energy is consumed in the heater in order to dry clothes of the same mass to a predetermined drying level or more within a desired time.
본 개시는 히트펌프의 초기 기동시 냉매의 압축용량을 일시적으로 증가시키는 것을 해결과제로 한다. The present disclosure provides a solution to temporarily increase the compression capacity of a refrigerant when the heat pump is initially started.
본 개시는 외부 공기의 온도가 저온인 경우에도, 히트펌프의 초기 기동시 빠른 안정화를 가능하게 하는 것을 해결과제로 한다. An object of the present disclosure is to enable rapid stabilization at the time of initial start-up of a heat pump even when the temperature of external air is low.
본 개시는 히트펌프의 초기 기동시 투입되는 에너지 대비 방열능력을 더 좋게 하는 것을 해결과제로 한다.The present disclosure aims to improve the heat dissipation capability compared to the energy input during the initial start-up of the heat pump.
상술한 과제를 해결하기 위해, 본 개시는 압축기와 제2열교환기(응축기)사이를 연결하는 파이프 형태의 냉매순환유로에에 히터(Heater)를 구비한 히트펌프를 제공하는 것이다. 상기 히터는 상기 냉매이동파이프의 외주면에 일부를 감싸는 형태로 구비될 수 있다. 특히 상기 히터는 면상발열체sheet heating element)를 유연한 필름에 인쇄하여 부착되는 형태일수 있다. In order to solve the above problems, the present disclosure provides a heat pump having a heater in a refrigerant circulation passage in the form of a pipe connecting between a compressor and a second heat exchanger (condenser). The heater may be provided in the form of enclosing a part of the outer circumferential surface of the refrigerant transfer pipe. In particular, the heater may be of a type attached by printing a sheet heating element) on a flexible film.
구체적으로, 냉매가 순환하는 유로를 형성하는 냉매순환유로, 상기 냉매순환유로에 위치하여, 상기 냉매와 열교환을 통해 공기를 냉각시키는 제1열교환기, 상기 냉매순환유로에 위치하여, 상기 냉매와 열교환을 통해 상기 제1열교환기를 통과한 공기를 가열하는 제2열교환기, 상기 냉매순환유로에 위치하여, 상기 제1열교환기를 지난 상기 냉매를 압축하여 순환시키는 압축기, 상기 냉매순환유로 중 상기 제1열교환기 및 상기 제2열교환기 사이에 위치하여 상기 냉매를 팽창시키는 팽창부, 및 상기 냉매순환유로 중 상기 압축기 및 상기 제2열교환기 사이에 위치하여 상기 냉매를 가열하는 가열부;를 포함하는 히트펌프를 제공하는 것이다. Specifically, a refrigerant circulation passage forming a passage in which the refrigerant circulates, a first heat exchanger that is located in the refrigerant circulation passage and cools air through heat exchange with the refrigerant, is located in the refrigerant circulation passage, and exchanges heat with the refrigerant a second heat exchanger that heats the air that has passed through the first heat exchanger, a compressor that is located in the refrigerant circulation path and compresses and circulates the refrigerant that has passed through the first heat exchanger, and the first heat exchange in the refrigerant circulation path Heat pump comprising a; an expansion part positioned between the group and the second heat exchanger to expand the refrigerant, and a heating part positioned between the compressor and the second heat exchanger in the refrigerant circulation path to heat the refrigerant. is to provide
상기 가열부는 상기 제2열교환기보다 상기 압축기에 가깝게 위치할 수 있다. The heating unit may be located closer to the compressor than the second heat exchanger.
상기 냉매순환유로는 상기 압축기와 상기 제2열교환기를 연결하는 토출관을 포함하고, 상기 가열부는 상기 토출관의 외주면을 가열할 수 있다. The refrigerant circulation passage may include a discharge pipe connecting the compressor and the second heat exchanger, and the heating unit may heat an outer circumferential surface of the discharge pipe.
상기 압축기는 상기 제1열교환기를 지난 냉매가 유입되는 유입구, 상기 냉매를 압축 후 상기 제2열교환기로 토출하는 토출구;를 포함하고, 상기 가열부는 상기 토출구에 인접할 수 있다.The compressor may include an inlet through which the refrigerant passing through the first heat exchanger flows, and an outlet through which the refrigerant is compressed and discharged to the second heat exchanger, and the heating unit may be adjacent to the outlet.
상기 가열부는 전기를 열로 변환하는 발열체가 인쇄된 필름의 형태로 구비되어, 상기 토출관에 부착될 수 있다.The heating unit may be provided in the form of a film on which a heating element that converts electricity into heat is printed, and may be attached to the discharge pipe.
또한, 상기 가열부는 전기를 열로 변환하는 발열체가 상기 토출관의 외주면을 감싸는 코일형태로 구비될 수 있다.In addition, the heating unit may be provided in the form of a heating element that converts electricity into heat in the form of a coil surrounding the outer circumferential surface of the discharge pipe.
한편, 냉매가 순환하는 유로를 형성하는 냉매순환유로, 상기 냉매순환유로에 위치하여, 상기 냉매와 열교환을 통해 공기를 냉각시키는 제1열교환기, 상기 냉매순환유로에 위치하여, 상기 냉매와 열교환을 통해 상기 제1열교환기를 통과한 공기를 가열하는 제2열교환기; 상기 냉매순환유로에 위치하여, 상기 제1열교환기를 지난 상기 냉매를 압축하여 순환시키는 압축기; 상기 압축기에서 냉매가 토출되는 토출구; 상기 냉매순환유로 중 상기 제1열교환기 및 상기 제2열교환기를 사이에 위치하여 상기 냉매를 팽창시키는 팽창부; 및 상기 냉매순환유로 중 상기 압축기 및 상기 제2열교환기 사이를 연결하는 토출관, 상기 토출관에 위치하여 상기 냉매를 가열하는 가열부;를 포함하는 히트펌프(Heat Pump)의 제어방법에 있어서, 상기 압축기의 운전을 개시하는 단계; 상기 가열부를 동작시키는 단계; 상기 토출구에 위치하거나 상기 토출관에서 상기 토출구에 인접하게 위치하여 상기 압축기에서 토출되는 냉매의 온도를 측정하는 온도센서가 온도를 측정하는 온도측정단계; 및 상기 측정온도가 기 설정된 제1기준온도 미만이면 상기 가열부를 동작시키고, 기 설정된 제2기준온도를 초과하면, 상기 가열부의 동작을 중단하는 온도유지단계;를 포함하고, 상기 압축기의 운전 개시후 기 설정된 동작시간이 경과할 때까지, 상기 온도측정단계 및 상기 온도유지단계를 반복하는 것을 특징으로 하는 히트펌프의 제어방법을 제공하는 것이다. On the other hand, a refrigerant circulation passage forming a passage in which the refrigerant circulates, a first heat exchanger which is located in the refrigerant circulation passage and cools air through heat exchange with the refrigerant, is located in the refrigerant circulation passage, and exchanges heat with the refrigerant a second heat exchanger for heating the air that has passed through the first heat exchanger; a compressor positioned in the refrigerant circulation path to compress and circulate the refrigerant passing through the first heat exchanger; a discharge port through which the refrigerant is discharged from the compressor; an expansion unit positioned between the first heat exchanger and the second heat exchanger in the refrigerant circulation path to expand the refrigerant; and a discharge pipe connecting between the compressor and the second heat exchanger in the refrigerant circulation path, and a heating unit positioned in the discharge pipe to heat the refrigerant. starting operation of the compressor; operating the heating unit; a temperature measuring step of measuring a temperature by a temperature sensor located at the discharge port or located adjacent to the discharge port in the discharge pipe to measure the temperature of the refrigerant discharged from the compressor; and a temperature maintaining step of operating the heating unit when the measured temperature is less than a preset first reference temperature, and stopping the operation of the heating unit when the measured temperature exceeds a preset second reference temperature. It is to provide a control method of a heat pump, characterized in that by repeating the temperature measuring step and the temperature maintaining step until a preset operating time elapses.
상기 동작시간을 경과시, 상기 가열부의 동작을 중단하는 단계를 더 포함할 수 있다.When the operation time elapses, the method may further include stopping the operation of the heating unit.
한편, 상술한 과제를 해결하기 위해, 외관을 형성하는 캐비닛, 상기 캐비닛 내부에 회전가능하게 구비되어 의류를 수용하는 드럼, 상기 드럼의 공기를 순환시키기 위한 통로를 형성하는 덕트, 냉매가 순환하는 유로를 형성하는 냉매순환유로, 상기 덕트의 내부에서 상기 냉매순환유로에 위치하여, 상기 냉매와 열교환을 통해 공기를 냉각시키는 제1열교환기. 상기 덕트의 내부에서 상기 냉매순환유로에 위치하여, 상기 냉매와 열교환을 통해 상기 제1열교환기를 통과한 공기를 가열하는 제2열교환기, 상기 덕트의 외부에서 상기 냉매순환유로에 위치하여, 상기 제1열교환기를 지난 상기 냉매를 압축하여 순환시키는 압축기, 상기 덕트의 외부에 위치하고, 상기 냉매순환유로 중 상기 제1열교환기 및 상기 제2열교환기를 사이에 위치하여 상기 냉매를 팽창시키는 팽창부, 및 상기 냉매순환유로 중 상기 압축기 및 상기 제2열교환기 사이에 위치하여 상기 냉매를 가열하는 가열부,를 포함하는 의류처리장치를 제공하는 것이다. Meanwhile, in order to solve the above problems, a cabinet forming an exterior, a drum rotatably provided inside the cabinet to accommodate clothes, a duct forming a passage for circulating air in the drum, and a flow path through which the refrigerant circulates A refrigerant circulation passage forming a first heat exchanger, which is located in the refrigerant circulation passage inside the duct and cools air through heat exchange with the refrigerant. A second heat exchanger that is located in the refrigerant circulation path inside the duct and heats the air that has passed through the first heat exchanger through heat exchange with the refrigerant, located in the refrigerant circulation path outside the duct, A compressor that compresses and circulates the refrigerant that has passed through the first heat exchanger, an expansion unit positioned outside the duct and positioned between the first heat exchanger and the second heat exchanger in the refrigerant circulation path to expand the refrigerant, and the An object of the present invention is to provide a laundry treatment apparatus comprising: a heating unit positioned between the compressor and the second heat exchanger in a refrigerant circulation path to heat the refrigerant.
상기 가열부는 상기 제2열교환기보다 상기 압축기에 가깝게 위치할 수 있다. 상기 냉매순환유로는 상기 압축기와 상기 제2열교환기를 연결하는 토출관을 포함하고, 상기 가열부는 상기 토출관의 외주면을 가열할 수 있다. The heating unit may be located closer to the compressor than the second heat exchanger. The refrigerant circulation passage may include a discharge pipe connecting the compressor and the second heat exchanger, and the heating unit may heat an outer circumferential surface of the discharge pipe.
상기 압축기는 상기 제1열교환기를 지난 냉매가 유입되는 유입구, 및 상기 냉매를 압축 후 상기 제2열교환기로 토출하는 토출구를 포함하고, 상기 가열부는 상기 토출구에 인접할 수 있다.The compressor may include an inlet through which the refrigerant passing through the first heat exchanger flows, and an outlet through which the refrigerant is compressed and discharged to the second heat exchanger, and the heating unit may be adjacent to the outlet.
상기 가열부는 전기를 열로 변환하는 발열체가 인쇄된 필름의 형태로 구비되어, 상기 토출관에 부착될 수 있다. The heating unit may be provided in the form of a film on which a heating element that converts electricity into heat is printed, and may be attached to the discharge pipe.
상기 가열부는 전기를 열로 변환하는 발열체가 상기 토출관의 외주면을 감싸는 코일형태로 구비될 수 있다.The heating unit may be provided in a coil form in which a heating element that converts electricity into heat surrounds an outer circumferential surface of the discharge pipe.
한편, 상술한 과제를 해결하기 위해, 일면에 투입구를 포함하는 캐비닛, 상기 캐비닛 내부에 위치하여 상기 투입구를 통해 의류를 수용하는 제1챔버, 상기 제1챔버의 하부에 위치하여 상기 제1챔버와 분리된 공간을 형성하는 제2챔버, 상기 제2챔버의 내부에 구비되어, 스팀을 생성하고 상기 제1챔버에 공급하는 스팀유닛, 상기 제2챔버의 내부에 구비되어, 상기 제1챔버의 공기를 순환시키기 위한 통로를 형성하는 덕트, 상기 제2챔버의 내부에 구비되어, 냉매가 순환하는 유로를 형성하는 냉매순환유로, 상기 덕트의 내부에서 상기 냉매순환유로에 위치하여, 상기 냉매와 열교환을 통해 공기를 냉각시키는 제1열교환기, 상기 덕트의 내부에서 상기 냉매순환유로에 위치하여, 상기 냉매와 열교환을 통해 상기 제1열교환기를 통과한 공기를 가열하는 제2열교환기, 상기 덕트의 외부에서 상기 냉매순환유로에 위치하여, 상기 제1열교환기를 지난 상기 냉매를 압축하여 순환시키는 압축기, 상기 덕트의 외부에 위치하고, 상기 냉매순환유로 중 상기 제1열교환기 및 상기 제2열교환기를 사이에 위치하여 상기 냉매를 팽창시키는 팽창부, 및 상기 냉매순환유로 중 상기 압축기 및 상기 제2열교환기 사이에 위치하여 상기 냉매를 가열하는 가열부를 포함하는 의류처리장치를 제공하는 것이다. Meanwhile, in order to solve the above problems, a cabinet including an inlet on one surface, a first chamber positioned inside the cabinet to receive clothes through the inlet, and a first chamber positioned under the first chamber and A second chamber forming a separate space, a steam unit provided inside the second chamber to generate and supply steam to the first chamber, and a steam unit provided inside the second chamber to provide air in the first chamber a duct forming a passage for circulating A first heat exchanger that cools air through the duct, a second heat exchanger that is located in the refrigerant circulation passage inside the duct and heats the air that has passed through the first heat exchanger through heat exchange with the refrigerant, from the outside of the duct A compressor that is located in the refrigerant circulation passage, compresses and circulates the refrigerant passing through the first heat exchanger, is located outside the duct, and is located between the first heat exchanger and the second heat exchanger in the refrigerant circulation passage An object of the present invention is to provide a laundry treatment apparatus comprising: an expansion unit for expanding the refrigerant; and a heating unit located between the compressor and the second heat exchanger in the refrigerant circulation path to heat the refrigerant.
상기 압축기는 상기 제1열교환기를 지난 냉매가 유입되는 유입구, 및 상기 냉매를 압축 후 상기 제2열교환기로 토출하는 토출구;를 포함하고, 상기 가열부는 상기 토출구에 인접할 수 있다. The compressor may include an inlet through which the refrigerant passing through the first heat exchanger flows, and a discharge port through which the refrigerant is compressed and discharged to the second heat exchanger, and the heating unit may be adjacent to the outlet.
상기 냉매순환유로는 상기 압축기와 상기 제2열교환기를 연결하는 토출관을 포함하고, 상기 가열부는 상기 토출관의 외주면을 가열할 수 있다.The refrigerant circulation passage may include a discharge pipe connecting the compressor and the second heat exchanger, and the heating unit may heat an outer circumferential surface of the discharge pipe.
상기 가열부는 전기를 열로 변환하는 발열체가 인쇄된 필름의 형태로 구비되어, 상기 토출관에 부착될 수 있다. The heating unit may be provided in the form of a film on which a heating element that converts electricity into heat is printed, and may be attached to the discharge pipe.
또한, 한편, 상술한 과제를 해결하기 위해, 냉매가 순환하는 유로를 형성하는 냉매순환유로, 상기 냉매순환유로에 위치하여, 공기를 상기 냉매와 열교환을 통해 냉각시키는 제1열교환기, 상기 냉매순환유로에 위치하여, 상기 냉매와 열교환을 통해 상기 제1열교환기를 통과한 공기를 가열하는 제2열교환기, 상기 냉매순환유로에 위치하여, 상기 제1열교환기를 지난 상기 냉매를 압축하여 순환시키는 압축기, 상기 냉매순환유로 중 상기 제1열교환기 및 상기 제2열교환기를 사이에 위치하여 상기 냉매를 팽창시키는 팽창부, 및 상기 냉매순환유로 중 상기 압축기 및 상기 제2열교환기 사이에 위치하여 상기 냉매를 가열하는 가열부를 포함하는 가전제품를 제공하는 것이다. On the other hand, in order to solve the above problems, a refrigerant circulation passage forming a passage in which the refrigerant circulates, a first heat exchanger that is located in the refrigerant circulation passage and cools air through heat exchange with the refrigerant, the refrigerant circulation a second heat exchanger positioned in the flow path to heat the air that has passed through the first heat exchanger through heat exchange with the refrigerant, a compressor positioned in the refrigerant circulation flow path to compress and circulate the refrigerant passing through the first heat exchanger; An expansion unit positioned between the first heat exchanger and the second heat exchanger in the refrigerant circulation path to expand the refrigerant, and between the compressor and the second heat exchanger in the refrigerant circulation path to heat the refrigerant It is to provide a home appliance including a heating unit.
본 개시는 히트펌프의 초기 기동시 냉매의 압축용량을 일시적으로 증가시킬 수 있다.The present disclosure may temporarily increase the compression capacity of the refrigerant when the heat pump is initially started.
본 개시는 외부 공기의 온도가 저온인 경우에도, 히트펌프의 초기 기동시 빠른 안정화가 가능할 수 있다.According to the present disclosure, even when the temperature of the outside air is low, rapid stabilization may be possible during the initial start-up of the heat pump.
본 개시는 히트펌프의 초기 기동시 투입되는 에너지 대비 방열능력이 더 좋을 수 있다.In the present disclosure, the heat dissipation ability may be better compared to the energy input during the initial start-up of the heat pump.
도 1(a)는 통상적인 히트펌프의 일례를 개략적으로 나타내었다. 도 1(b)는 제2열교환기를 지나 가열된 공기를 히터를 통해 다시 가열하는 히트펌프의 일례를 개략적으로 나타내었다. 도 1(c)는 본 개시의 일례인 압축된 냉매를 가열하는 가열부를 포함하는 히트펌프를 개략적으로 나타내었다.Figure 1 (a) schematically shows an example of a conventional heat pump. Figure 1 (b) schematically shows an example of a heat pump that heats the air heated through the second heat exchanger again through the heater. Figure 1 (c) schematically shows a heat pump including a heating unit for heating the compressed refrigerant as an example of the present disclosure.
도 2는 상기 히트펌프의 사이클(Cycle)을 설명하기 위한 몰리에르 선도(Mollier Diagram or Pressure-enthalpy diagram )를 나타낸 것이다.2 is a Mollier diagram or pressure-enthalpy diagram for explaining a cycle of the heat pump.
도 3은 상기 히트펌프의 제어방법에 대한 일례를 플로우차트로 나타낸 것이다.3 is a flowchart illustrating an example of a control method of the heat pump.
도 4(a)는 상기 히트펌프를 포함하는 의류처리장치의 일례를 도시한 것이다. 도 4(b)는 상기 의류처리장치 내부의 기계장치의 일례를 도시한 것이다.4A illustrates an example of a laundry treatment apparatus including the heat pump. 4(b) shows an example of a mechanical device inside the laundry treatment apparatus.
도 5(a)는 상기 의류처리장치 내부의 기계장치(Mechanical equipment) 중 히트펌프를 구성하는 구성요소를 도시한 것이다. 도 5(b)는 도 5(a)에서 P영역을 확대한 것이다.FIG. 5( a ) illustrates components constituting a heat pump among mechanical equipment inside the laundry treatment apparatus. FIG. 5(b) is an enlarged view of region P in FIG. 5(a).
도 6(a)는 상기 히트펌프를 포함하는 의류처리장치의 다른 일례를 도시한 것이다. 도 6(b)는 상기 의류처리장치 내부의 제2챔버에 구비되는 기계장치의 일례를 도시한 것이다. 6A illustrates another example of the laundry treatment apparatus including the heat pump. FIG. 6(b) illustrates an example of a mechanical device provided in the second chamber inside the laundry treatment apparatus.
도 7(a)는 상기 의류처리장치의 제2챔버내부에 구비되는 기계장치 중. 도 7(b)는 도 7(a)에서 Q영역을 확대한 것이다.7A is a view of a mechanical device provided inside a second chamber of the laundry treatment apparatus; 7(b) is an enlarged view of the Q region in FIG. 7(a).
이하에서는 첨부된 도면을 참고하여 본 개시의 바람직한 실시예를 상세하게 설명한다. 이하에 기술될 장치의 구성이나 제어방법은 본 개시의 실시예를 설명하기 위한 것일 뿐 본 개시의 권리범위를 한정하기 위함은 아니며, 명세서 전반에 걸쳐서 동일하게 사용된 참조번호들은 동일한 구성요소들을 나타낸다.Hereinafter, preferred embodiments of the present disclosure will be described in detail with reference to the accompanying drawings. The configuration or control method of the device to be described below is only for explaining the embodiment of the present disclosure and not for limiting the scope of the present disclosure, and the same reference numbers used throughout the specification indicate the same components .
본 명세서 중에서 사용되고 있는 특정한 용어는 단지 설명의 편의를 위한 것일 뿐으로 예시된 실시예의 한정으로 사용되고 있는 것은 아니다. 예를 들어, 「동일」 및 「동일하다」 등 표현은, 엄밀하게 동일한 상태를 나타낼 뿐만 아니라, 공차, 혹은, 같은 기능이 얻어지는 정도의 차가 존재하고 있는 상태도 나타낸다. Specific terminology used in the present specification is only for convenience of description and is not used as a limitation of the illustrated embodiment. For example, expressions such as "same" and "same as" not only indicate the strictly identical state, but also indicate a state in which a tolerance or a difference in the degree to which the same function is obtained exists.
일반적으로 냉동사이클은 저온 열원(low temperature reservoir)에서 열을 전달받아 고온열원(high temperature reservoir)으로 열을 전달하기 위해 사용된다. 이중에서 냉동사이클의 구성 목적이 저온열원으로부터 열을 전달받는 것이면, 냉동장치(Refrigeration system)로 사용되고, 그 목적이 고온열원으로 열을 전달하는 것이면 히트펌프(Heat pump)로 사용된다. In general, a refrigeration cycle is used to receive heat from a low temperature reservoir and transfer heat to a high temperature reservoir. Among them, if the purpose of the refrigeration cycle is to receive heat from a low-temperature heat source, it is used as a refrigeration system, and if the purpose is to transfer heat to a high-temperature heat source, it is used as a heat pump.
일반적으로 가전제품의 경우, 냉동장치는 냉장고나 에어컨등에 사용되며, 히트펌프는 건조기, 건조기능을 겸하는 세탁기, 의류관리기와 같은 리프레셔, 난방기, 제습기 등에 사용될 수 있다. 그리고, 저온열원 및 고온열원과의 열전달을 위해 냉매를 사용한다. In general, in the case of home appliances, a refrigeration device is used for a refrigerator or an air conditioner, and a heat pump can be used for a dryer, a washing machine with a drying function, a refresher such as a clothes manager, a heater, and a dehumidifier. And, a refrigerant is used for heat transfer between the low-temperature heat source and the high-temperature heat source.
냉매란, 냉동사이클에서 증발하기 쉬운 작동유체로 저온부의 열을 빼앗아 고온부로 운반해주는 역할을 담당하는 물질을 뜻한다. 냉매의 대표적인 예로는 CFC-11(일명 프레온가스)가 있다. 그러나, 오존층 파괴 등의 심각성으로 인해, R-22, R-134a와 같은 냉매가 사용되고 있다. 그리고, 더욱 나아가 R-290과 같은 새로운 냉매도 사용중이거나 사용예정에 있다. Refrigerant is a working fluid that is easy to evaporate in the refrigeration cycle and refers to a substance that takes heat from a low-temperature part and transfers it to a high-temperature part. A typical example of the refrigerant is CFC-11 (aka Freon gas). However, due to the severity of ozone layer depletion and the like, refrigerants such as R-22 and R-134a are used. And, furthermore, new refrigerants such as R-290 are in use or planned to be used.
도 1에는 여러가지 히트펌프(100, 200, 300)의 일례를 개략적으로 도시하였다. 도 1(a)는 통상적인 히트펌프(200)의 일례를 도시하고 있다. 일반적으로 히트펌프(200)는 냉매가 순환하는 유로인 냉매순환유로, 상기 냉매순환유로(130)에서 냉매와 외부 저온열원 및 외부 고온열원 사이에서 열을 교환하는 제1열교환기(증발기, 110) 및 제2열교환기(응축기, 120), 냉매를 압축하여 상기 냉매순환유로를 통해 냉매를 순환시키는 압축기 및 상기 제1열교환기 및 상기 제2열교환기 사이에 위치하여, 상기 제2열교환기를 지난 냉매를 팽창시키는 팽창부(160)를 포함한다. 1 schematically shows an example of various heat pumps 100 , 200 , and 300 . Figure 1 (a) shows an example of a conventional heat pump (200). In general, the heat pump 200 is a refrigerant circulation passage, which is a passage in which the refrigerant circulates, and a first heat exchanger (evaporator, 110) for exchanging heat between the refrigerant in the refrigerant circulation passage 130 and an external low-temperature heat source and an external high-temperature heat source. and a second heat exchanger (condenser, 120), a compressor that compresses the refrigerant and circulates the refrigerant through the refrigerant circulation passage, and the refrigerant located between the first heat exchanger and the second heat exchanger, and passing through the second heat exchanger It includes an expander 160 to inflate.
공기를 순화시키는 가전제품에 히트펌프(200)가 이용되는 경우, 상기 제1열교환기(110)는 상대적으로 낮은 온도의 냉매와 공기 사이의 열교환을 통해 공기의 온도를 낮추고, 이를 통해 공기에 포함된 수분을 응축시킬 수 있다. 상기 제2열교환기(120)는 상대적으로 높은 온도의 냉매와 상기 제1열교환기(110)를 지나온 공기와의 열교환을 통해 상기 제1열교환기(110)를 지나온 공기의 온도를 높일 수 있다. 이를 통해, 상기 제1열교환기(110) 및 상기 제2열교환기(120)를 지난 공기는 제습(dehumidified)되고 가열(heated)된 고온 건조 공기로 그 열역학적 특성이 변할 수 있다. When the heat pump 200 is used for a home appliance that purifies the air, the first heat exchanger 110 lowers the temperature of the air through heat exchange between the refrigerant and the air at a relatively low temperature, and is included in the air through this Condensed moisture can be condensed. The second heat exchanger 120 may increase the temperature of the air passing through the first heat exchanger 110 through heat exchange between the refrigerant having a relatively high temperature and the air passing through the first heat exchanger 110 . Through this, the thermodynamic properties of the air passing through the first heat exchanger 110 and the second heat exchanger 120 may be changed into dehumidified and heated high-temperature dry air.
냉매는 밀폐된 냉매순환유로(130)를 통해 순환될 수 있다. 여기서, 밀폐란 냉매가 냉매순환유로 바깥으로 새어나오지 못하는 정도를 뜻한다. 상기 냉매는 압축기(150)에 의해 압축되어 고온, 고압의 냉매가 되고, 상기 제2열교환기(120)로 유입될 수 있다. 상기 제2열교환기(120)로 유입된 냉매는 상기 제1열교환기(110)를 지나 냉각된 공기를 다시 가열하게 될 것이다. 상기 제2열교환기(120)를 지난 냉매는 팽창부(160)를 통해 팽창하게 된다. The refrigerant may be circulated through the sealed refrigerant circulation path 130 . Here, the sealing refers to the degree to which the refrigerant does not leak out of the refrigerant circulation path. The refrigerant is compressed by the compressor 150 to become a refrigerant of high temperature and high pressure, and may be introduced into the second heat exchanger 120 . The refrigerant introduced into the second heat exchanger 120 will pass through the first heat exchanger 110 to heat the cooled air again. The refrigerant that has passed through the second heat exchanger 120 expands through the expansion unit 160 .
이론적으로는 상기 팽창부(160)를 통해 등엔탈피(isenthalpic) 팽창(또는 교축과정이나 오리피스 현상)이 이루어지며, 이를 통해 냉매의 압력이 낮아지고, 냉매의 온도가 떨어지게 된다. 상기 팽창부(160)는 모세관과 같은 형태로 구비될 수도 있고, 전자팽창밸브(electronic expansion valve, EEV)와 같은 형태로 구비될 수도 있다. 전자팽창밸브의 경우 제1열교환기(110)로 유입되는 냉매의 유량을 밸브로 조절할 수 있는 장점이 있다. Theoretically, isenthalpic expansion (or a throttling process or an orifice phenomenon) occurs through the expansion unit 160 , thereby lowering the pressure of the refrigerant and lowering the temperature of the refrigerant. The expansion unit 160 may be provided in the form of a capillary tube, or may be provided in the form of an electronic expansion valve (EEV). In the case of the electronic expansion valve, there is an advantage in that the flow rate of the refrigerant flowing into the first heat exchanger 110 can be controlled by the valve.
팽창부(160)를 지나 온도 및 압력이 낮아진 냉매는 다시 제1열교환기(110)로 유입되어, 상대적으로 고온의 공기와 열교환을 할 수 있다. 이때, 상대적 고온의 공기는 온도가 낮아지게 되는데, 이에 따라 공기에 포함될 수 있는 포화수증기량도 줄어들게 된다. 따라서, 습한 고온의 공기와 냉매가 열교환하는 경우, 공기의 온도가 낮아짐에 따라, 응축수가 발생하게 될 것이다.The refrigerant whose temperature and pressure have been lowered by passing through the expansion unit 160 may flow back into the first heat exchanger 110 to exchange heat with relatively high temperature air. At this time, the temperature of the relatively high temperature air is lowered, and accordingly, the amount of saturated water vapor that can be included in the air is also reduced. Therefore, when the humid high temperature air and the refrigerant exchange heat, as the temperature of the air decreases, condensate will be generated.
압축기(150)는 제1열교환기(110)를 지난 냉매를 다시 유입하고 압축하여 고온, 고압의 냉매로 변화시키기 위해 구비된다. 이를 통해 냉동사이클이 완성되어, 냉매는 계속 냉매순환유로를 통해 상태를 변화시키면서 순환할 수 있다.The compressor 150 is provided to re-inflow and compress the refrigerant that has passed through the first heat exchanger 110 to change the refrigerant into a high-temperature, high-pressure refrigerant. Through this, the refrigeration cycle is completed, and the refrigerant can circulate while continuously changing the state through the refrigerant circulation passage.
압축기(150)는 어큐큘레이터(Accumulator, 159)를 포함할 수 있는데 이를 통해 냉매의 기상과 액상을 분리하여, 기상의 냉매만이 압축되도록 할 수 있다. Compressor 150 may include an accumulator (accumulator, 159) through which the gas phase and liquid phase of the refrigerant are separated, so that only the refrigerant in the gaseous phase is compressed.
압축기(150)를 중심으로 냉매순환유로(130)를 설명하면, 상기 압축기(150)와 상기 제2열교환기(120)는 토출관(131)을 통해 연결되며, 상기 제1열교환기(110)와 상기 압축기(150)는 유입관(132)을 통해 연결될 수 있다. 상기 제2열교환기(120)와 상기 팽창부(160)사이는 제1팽창연결관(133)을 통해 연결될 수 있다. 또한, 상기 팽창부(160)및 상기 제1열교환기(110)는 제2팽창연결관(134)을 통해 연결될 수 있다.When the refrigerant circulation path 130 is described with the compressor 150 as the center, the compressor 150 and the second heat exchanger 120 are connected through a discharge pipe 131 , and the first heat exchanger 110 . and the compressor 150 may be connected through an inlet pipe 132 . The second heat exchanger 120 and the expansion part 160 may be connected through a first expansion connection pipe 133 . In addition, the expansion part 160 and the first heat exchanger 110 may be connected through a second expansion connection pipe 134 .
정리하면, 압축기(150)에서 압축된 냉매는 고온 고압의 냉매가 되고(압축과정, compression process), 제2열교환기(120)를 통해 상대적으로 낮은 온도의 공기와 열교환(증발과정, evaporation process )하게 되고, 팽창부(160)에서 팽창하여 저온 저압의 포화증기-포화액이 혼합된 상태의 냉매가 될 것(팽창과정, expansion process)이다. 이후 상대적으로 높은 온도의 공기와 열교환하여 저온 저압의 기체상태의 냉매가 된(응축과정, condensation process) 후 다시 압축기(150)에서 압축되게 될 것이다. 즉, 압축과정-증발과정-팽창과정-응축과정을 통해 냉매가 순환되며, 이를 히트펌프 사이클이라 칭할 수 있다.In summary, the refrigerant compressed in the compressor 150 becomes a high-temperature and high-pressure refrigerant (compression process), and heat exchanges with air at a relatively low temperature through the second heat exchanger 120 (evaporation process) and it expands in the expansion unit 160 to become a refrigerant in a mixed state of low-temperature and low-pressure saturated steam-saturated liquid (expansion process). Thereafter, it will be compressed in the compressor 150 again after heat exchange with air at a relatively high temperature to become a low-temperature and low-pressure gaseous refrigerant (condensation process). That is, the refrigerant is circulated through the compression process-evaporation process-expansion process-condensation process, and this may be referred to as a heat pump cycle.
공기는 일반적으로 덕트입구(141)로 유입되어, 덕트출구(142)로 유출될 수 있다. 덕트(140)의 내부에는 제1열교환기(110) 및 제2열교환기(120)가 위치하고 있어, 이를 통해 공기와의 열전달이 이루어지게 된다. 상기 덕트(140)의 외부에는 압축기(150)및 팽창부(160)가 위치하고, 상기 제1열교환기(110), 상기 제2열교환기(120), 상기 압축기(150) 및 상기 팽창부(160)는 냉매순환유로(130)에 의해 연결되어, 냉매가 상기 냉매순환유로(130)를 따라 순환되는 구조를 가지게 된다.Air is generally introduced into the duct inlet 141 and may flow out to the duct outlet 142 . The first heat exchanger 110 and the second heat exchanger 120 are located inside the duct 140, and heat transfer with air is made through this. A compressor 150 and an expansion unit 160 are positioned outside the duct 140 , and the first heat exchanger 110 , the second heat exchanger 120 , the compressor 150 , and the expansion unit 160 . ) is connected by the refrigerant circulation passage 130 , and has a structure in which the refrigerant is circulated along the refrigerant circulation passage 130 .
따라서, 가는 화살표로 표시되는 냉매의 이동방향과, 두꺼운 화살표로 표시되는 공기의 이동방향은 서로 독립적이며, 제1열교환기(110) 및 제2열교환기(120)를 통해서 오직 열교환만이 이루어질 수 있다.Therefore, the movement direction of the refrigerant indicated by the thin arrow and the movement direction of the air indicated by the thick arrow are independent of each other, and only heat exchange can be achieved through the first heat exchanger 110 and the second heat exchanger 120 . have.
도 1(a)에 도시된 통상적인 히트펌프의 경우는, 히트펌프(200)가 구동 된 후, 정상상태(Steady state)에서는 문제없이 동작할 수 있으나, 히트펌프(200)가 구동 초기에는 히트펌프(200)를 구성하는 구성요소들이 정상상태로 동작하지 않을 수 있다. 따라서, 히트펌프 사이클이 정상적으로 동작하지 않을 수 있다. 이러한 구동 초기에는 히트펌프 사이클을 효율적으로 안정화시킬 필요가 있다. 특히, 공기온도가 낮은 지역에서는 히트 펌프 구동 초기 상태에서 정상상태에 도달할 때까지 많은 시간이 필요할 수 있다. In the case of a typical heat pump shown in FIG. 1( a ), after the heat pump 200 is driven, it can operate without a problem in a steady state, but when the heat pump 200 is initially driven, the heat Components constituting the pump 200 may not operate in a normal state. Accordingly, the heat pump cycle may not operate normally. In the initial stage of such driving, it is necessary to efficiently stabilize the heat pump cycle. In particular, in an area where the air temperature is low, it may take a long time from the initial state of the heat pump operation to the steady state.
도 1(b)는 정상상태에 도달하기 전 초기 구동시 문제를 해결하기 위한 하나의 방안으로 냉매가 아닌 제2열교환기(120)를 지난 공기를 가열하는 가열부(170)를 덕트(140) 내부에 구비하는 히트펌프(300)의 일례를 도시하고 있다. 그러나, 이는 냉매를 직접 가열하여 히트펌프 사이클에 영향을 주는 방법이 아니라, 공기를 가열하는 간접적인 방법이다. 히트펌프 사이클로 생각하면, 증발과정에서 냉방능력(cooling capacity)이 증가하게 될 것이다. 이러한 증발과정을 지난 냉매는 통상적인 히트펌프 사이클보다 더욱 과포화 상태가 될 것이고, 이를 압축하게 되면 통상적인 히트펌프보다 고온의 냉매가 될 것이다. 따라서, 응축과정에서 가열능력(heating capacity) 또한 증가하게 될 것이다. 그러나, 후술할 도 1(c)의 경우와 비교하면, 도 1(b)와 같은 공기를 가열하는 방식은 투입되는 에너지에 비해 응축과정에서의 가열 또는 방열능력이 상대적으로 낮은 문제점이 있다. 이는 냉매를 직접 가열하는 방식이 아니기 때문이다. 1 (b) is a duct 140 of the heating unit 170 that heats the air that has passed through the second heat exchanger 120, not the refrigerant, as a way to solve the problem during the initial operation before reaching a steady state. An example of the heat pump 300 provided therein is shown. However, this is not a method of directly heating the refrigerant to affect the heat pump cycle, but an indirect method of heating the air. Thinking of it as a heat pump cycle, the cooling capacity will increase during the evaporation process. The refrigerant that has passed through this evaporation process will become more supersaturated than a typical heat pump cycle, and when compressed, it will become a refrigerant having a higher temperature than a typical heat pump. Accordingly, the heating capacity will also increase during the condensation process. However, compared with the case of FIG. 1(c), which will be described later, the method of heating the air as shown in FIG. 1(b) has a problem in that the heating or heat dissipation capability in the condensation process is relatively low compared to the input energy. This is because the refrigerant is not directly heated.
도 1(c)는 본 개시의 일례로 냉매를 직접 가열하는 히트펌프(100)를 도시하고 있다. 즉, 본 개시는 간접적인 공기를 가열하는 방식이 아니라, 압축기(150) 및 제2열환기 사이에 가열부(170)를 두어 냉매를 직접 가열하는 방식에 대한 것이다. 이를 위해, 상기 히트펌프(100)는 냉매가 순환하는 유로를 형성하는 냉매순환유로(130), 상기 냉매순환유로(130)에 위치하여, 상기 냉매와 열교환을 통해 공기를 냉각시키는 제1열교환기(110), 상기 냉매순환유로(130)에 위치하여, 상기 냉매와 열교환을 통해 상기 제1열교환기(110)를 통과한 공기를 가열하는 제2열교환기(120), 상기 냉매순환유로(130)에 위치하여, 상기 제1열교환기(110)를 지난 상기 냉매를 압축하여 순환시키는 압축기(150), 상기 냉매순환유로(130) 중 상기 제1열교환기(110) 및 상기 제2열교환기(120) 사이에 위치하여 상기 냉매를 팽창시키는 팽창부(160) 및 상기 냉매순환유로(130) 중 상기 압축기(150) 및 상기 제2열교환기(120) 사이에 위치하여 상기 냉매를 가열하는 가열부(170)를 포함한다. 1(c) shows a heat pump 100 for directly heating a refrigerant as an example of the present disclosure. That is, the present disclosure is not a method of indirectly heating air, but a method of directly heating the refrigerant by placing the heating unit 170 between the compressor 150 and the second heat ventilator. To this end, the heat pump 100 is located in the refrigerant circulation path 130 forming a flow path through which the refrigerant circulates, and the refrigerant circulation path 130, and a first heat exchanger that cools air through heat exchange with the refrigerant. (110), located in the refrigerant circulation passage 130, the second heat exchanger 120 for heating the air that has passed through the first heat exchanger 110 through heat exchange with the refrigerant, the refrigerant circulation passage 130 ), a compressor 150 that compresses and circulates the refrigerant that has passed through the first heat exchanger 110, the first heat exchanger 110 and the second heat exchanger among the refrigerant circulation path 130 ( 120), an expansion unit 160 for expanding the refrigerant, and a heating unit located between the compressor 150 and the second heat exchanger 120 among the refrigerant circulation path 130 to heat the refrigerant (170).
한편 상기 히트펌프(100)는 상기 가열부(170)를 제어하는 제어부(미도시) 및 상기 토출구(151)에 위치하거나 상기 토출관(131) 중 상기 토출구(151)에 인접하게 위치하여 상기 압축기(150)에서 토출되는 냉매의 온도를 측정하는 온도센서(190)를 더 포함할 수 있다. 따라서, 상기 온도센서(190)는 상기 가열부(170) 및 상기 압축기(150) 사이에 위치할 수 있다. On the other hand, the heat pump 100 is located in the control unit (not shown) for controlling the heating unit 170 and the discharge port 151 or is located adjacent to the discharge port 151 of the discharge pipe 131, the compressor A temperature sensor 190 for measuring the temperature of the refrigerant discharged from 150 may be further included. Accordingly, the temperature sensor 190 may be positioned between the heating unit 170 and the compressor 150 .
상기 온도센서(190)는 외부에서 상기 토출구(151)의 내부나 상기 토출관(131)의 내부로 삽입되어, 상기 압축기(150)에서 토출되는 냉매의 온도를 측정하고 이를 상기 제어부(미도시)에 전달할 수 있다. 상기 제어부는 상기 온도센서(190)의 제어신호를 수신하여, 상기 가열부(170)의 동작여부를 제어할 수 있다. The temperature sensor 190 is inserted into the interior of the discharge port 151 or the discharge pipe 131 from the outside, measures the temperature of the refrigerant discharged from the compressor 150, and measures the temperature of the refrigerant discharged from the compressor 150 and the control unit (not shown) can be forwarded to The control unit may receive a control signal from the temperature sensor 190 to control whether the heating unit 170 operates.
상기 압축기(150) 온도는 상기 압축기(1120)의 내부온도를 직접적으로 측정하여 사용할 수도 있으나, 압축되어 토출 직후의 냉매의 온도를 측정하여 추정하여 사용할 수도 있다. 바람직하게는 상기 압축기(1120)에서 압축되어 토출된 냉매가 상기 토출관(131)을 따라 흐를 때, 상기 냉매의 온도를 측정하여 상기 압축기(150)의 내부 온도를 추정하여 사용하는 것이다. The temperature of the compressor 150 may be used by directly measuring the internal temperature of the compressor 1120 , or may be used by measuring and estimating the temperature of the refrigerant immediately after being compressed and discharged. Preferably, when the refrigerant compressed and discharged by the compressor 1120 flows along the discharge pipe 131, the temperature of the refrigerant is measured and the internal temperature of the compressor 150 is estimated and used.
상기 온도센서로는 적외선 온도 센서, 레이저 온도 센서 등 여러 가지 다양한 방법이 이용될 수 있으나, 바람직하게는 써미스터(Thermistor)를 토출관(131)에 설치하여 토출되어 나온 냉매의 온도를 측정할 수 있다.As the temperature sensor, various methods such as an infrared temperature sensor and a laser temperature sensor may be used. Preferably, a thermistor is installed in the discharge pipe 131 to measure the temperature of the discharged refrigerant. .
도 2를 참조하면, 압축되어 토출되는 냉매를 상기 가열부(170)에 의해 가열함으로써, 히트펌프(100)의 구동 초기에 압축기(150)의 압축용량을 증가시키는 효과가 있다. 이는 히트펌프(100)의 구동 초기에 응축과정에서의 가열능력을 통상적인 히트펌프(200)의 정상상태보다 더 크게 향상시키는 효과를 가질 수 있다. Referring to FIG. 2 , by heating the compressed and discharged refrigerant by the heating unit 170 , there is an effect of increasing the compression capacity of the compressor 150 at the initial stage of driving the heat pump 100 . This may have the effect of significantly improving the heating ability in the condensation process at the initial stage of driving the heat pump 100 than the normal state of the heat pump 200 .
특히, 상기 가열부(170)는 상기 압축기(150)와 상기 제2열교환기(120)를 연결하는 토출관(131)에 설치될 수 있다. 구체적으로는 상기 압축기(150)는 압축된 냉매를 토출하는 토출구(151)를 포함하고, 상기 토출구(151)와 상기 제2열교환기(120)의 냉매유입구(미도시)사이를 연결하는 토출관(131)에 구비될 수 있다. 바람직하게, 상기 가열부(170)는 상기 제2열교환기(120)보다는 상기 압축기(150)에 가깝게 위치할 수 있다. 다시 말해, 상기 가열부(170)는 상기 토출구(151)에 인접하게 위치할 수 있다. In particular, the heating unit 170 may be installed in the discharge pipe 131 connecting the compressor 150 and the second heat exchanger 120 . Specifically, the compressor 150 includes a discharge port 151 for discharging the compressed refrigerant, and a discharge pipe connecting the discharge port 151 and the refrigerant inlet (not shown) of the second heat exchanger 120 . (131) may be provided. Preferably, the heating unit 170 may be located closer to the compressor 150 than to the second heat exchanger 120 . In other words, the heating unit 170 may be located adjacent to the discharge port 151 .
일례로, 상기 가열부(170)는 상기 냉매순환유로(130)의 내부에 위치하여 냉매를 가열할 수도 있다. 그러나, 이는 냉매의 종류에 따라 R-290과 같이 인화성 냉매를 사용하는 경우에는 불가능하므로, 바람직하게는 상기 가열부(170)는 상기 토출관의 외주면을 가열할 수 있다. For example, the heating unit 170 may be located inside the refrigerant circulation path 130 to heat the refrigerant. However, since this is not possible when a flammable refrigerant such as R-290 is used depending on the type of refrigerant, preferably, the heating unit 170 may heat the outer peripheral surface of the discharge pipe.
상기 가열부(170)는 통상적인 코일형태의 전기 히터나, 실리콘카바이드 히터(SiC heater) 등 와이어 형태의 히터가 사용될 수 있다. 이와 달리, 실리콘패드 사이에 니크롬 열선을 배선한 고무히터(rubber heater)등이 사용될 수 있다. 또한, 필름에 면상 발열체를 인쇄한 후, 이를 부착하여 사용하는 필름 형태의 히터를 사용할 수도 있다. As the heating unit 170, a conventional coil-type electric heater or a wire-type heater such as a silicon carbide heater (SiC heater) may be used. Alternatively, a rubber heater in which a nichrome heating wire is wired between silicon pads may be used. In addition, after printing the planar heating element on the film, it is also possible to use a heater in the form of a film used by attaching it.
즉, 상기 가열부(170)는 전기를 열로 변환시키는 발열체(171) 및 상기 발열체가 부착된 필름(172)을 포함할 수 있다. That is, the heating unit 170 may include a heating element 171 that converts electricity into heat and a film 172 to which the heating element is attached.
상기 발열체(171)는 면상발열체의 형태일 수 있다. 상기 필름형태의 가열부(170)에 사용되는 발열체는 면상형태일 수 있는데, 이를 면상발열체라고도 부른다. 상기 면상발열체의 일례로는 비닐계 필름에 탄소잉크(black carbon ink)를 인쇄하고 구리 박판(copper sheet)을 전극으로 하여 전원과 접합하여 발열하는 발열체가 있다. 다른 일례로는 유리섬유에 탄소잉크를 코팅하고 구리선을 전극선으로 하여 직조한 발열체일 수도 있고, 부직포 또는 필름에 탄소잉크를 분사한 후 구리박판을 전극선으로 한 발열체일 수도 있다. The heating element 171 may be in the form of a planar heating element. The heating element used in the film-type heating unit 170 may be of a planar shape, which is also called a planar heating element. As an example of the planar heating element, there is a heating element that generates heat by printing black carbon ink on a vinyl-based film and bonding to a power source using a copper sheet as an electrode. Another example may be a heating element coated with carbon ink on glass fiber and woven using a copper wire as an electrode wire, or a heating element using a thin copper plate as an electrode wire after carbon ink is sprayed on a nonwoven fabric or film.
상기 발열체(171)를 상기 필름(172)에 인쇄한 후 상기 토출관(131)에 부착하여 사용할 수도 있고, 상기 발열체(171)를 상기 토출관(131)에 인쇄한 후, 상기 필름(172)을 부착할 수도 있다. After printing the heating element 171 on the film 172, it may be used by attaching it to the discharge pipe 131. After the heating element 171 is printed on the discharge tube 131, the film 172 can also be attached.
이와 달리, 상기 가열부(170)는 전기를 열로 변환하는 발열체(171)가 상기 토출관(131)의 외주면을 감싸는 코일형태일 수 있다. Alternatively, the heating unit 170 may have a coil shape in which a heating element 171 that converts electricity into heat surrounds the outer circumferential surface of the discharge pipe 131 .
일례로, 상기 발열체(171)는 상기 필름(172)에 스크리닝(screening) 방법으로 PTC(Positive Temperature Coefficient) 잉크를 인쇄한 형태일 수 있다. 상기 필름(172)의 재질은 투명재질로 하여 상기 발열체(171)가 보이도록 할 수 있으나, 이에 국한되지 않는다. 상기 필름(172)은 일반적으로 폴리이미드(Polyimide, PI), 아크릴(Acrylic), 열경화성 폴리우레탄(Thermoplastic Polyurethane, TPU), 또는 폴리에틸렌 테레프탈레이트(Polyethylene Terephthalate, PET)을 이용하여 제조될 수 있다. 그러나 이에 국한되지는 않는다. For example, the heating element 171 may have a form in which PTC (Positive Temperature Coefficient) ink is printed on the film 172 by a screening method. The film 172 may be made of a transparent material so that the heating element 171 can be seen, but is not limited thereto. The film 172 may generally be manufactured using polyimide (PI), acrylic, thermosetting polyurethane (TPU), or polyethylene terephthalate (PET). However, the present invention is not limited thereto.
본 개시는 압축기의 몸체를 예열하기 위해 보조히터를 사용하는 경우와는 달리, 토출구(151)에서 토출되는 냉매가 이동하는 토출관(131)을 가열하는 것을 특징으로 한다. 압축기(150)의 몸체를 가열하는 것은 압축기를 예열하고자 하는 것이다. 그러나, 이는 구동 초기 히트펌프(100)의 냉방능력(cooling capacity)과 가열능력(heating capacity)을 크게 하고자 하는 목적이 아니다. 즉, 압축기의 신뢰성 보장을 위해 구동 초기 압축기의 압축 후 온도와 정상상태에서의 압축기의 압축 후 온도와의 차이를 5 도(℃이하로 유지하기 위한 것이다. 그러므로 압축기의 부착된 보조히터에 사용하는 히터의 소비전력은 몇 십 와트(Watt) 정도이다. Unlike the case of using an auxiliary heater to preheat the body of the compressor, the present disclosure is characterized in that the discharge pipe 131 through which the refrigerant discharged from the discharge port 151 moves is heated. Heating the body of the compressor 150 is intended to preheat the compressor. However, this is not the purpose of increasing the cooling capacity and heating capacity of the heat pump 100 at the initial stage of operation. That is, to ensure the reliability of the compressor, the difference between the temperature after compression at the initial stage of operation and the temperature after compression of the compressor in the normal state is maintained below 5 degrees (℃). Therefore, the The power consumption of the heater is on the order of several tens of Watts.
이와 달리 본 개시의 가열부(170)에서 사용되는 히터의 경우, 냉매를 가열하여 구동 초기 히트펌프(100)의 냉방능력(cooling capacity)과 가열능력(heating capacity)을 증가시키고자 하는데 목적이 있으므로, 몇 백 와트(Watt)의 소비전력을 사용할 수 있다. Contrary to this, in the case of the heater used in the heating unit 170 of the present disclosure, the purpose is to increase the cooling capacity and heating capacity of the heat pump 100 in the initial driving period by heating the refrigerant. , power consumption of several hundred Watts can be used.
도 2는 도 1(a) 내지 도 1(c)에 도시된 히트펌프(100, 200, 300)의 열역학적 사이클을 간단하게 나타내고 있다. 도 2는 비엔탈피(specific enthalpy, kJ/kg)와 절대압력(absolute pressure, kPa)의 관계를 나타낸 몰리에르 선도(Mollier diagram) 또는 P-h 선도의 일부분을 도시하고 있다. 또한, 냉매의 일례로 R-134a를 사용한 경우를 도시하고 있다. 냉매는 이에 국한되는 것이 아니고, 냉매에 따라 몰리에르 선도에서 표시되는 값들도 달라질 수 있다. 그러나, 도 2에 도시된 그래프의 개형을 이용하면, 압축기(150)와 제2열교환기(120)사이에 위치하는 가열부(170)를 포함하는 히트펌프(100)의 열역학적 사이클을 간략하게 설명할 수 있다. FIG. 2 simply shows the thermodynamic cycle of the heat pumps 100 , 200 , and 300 shown in FIGS. 1 ( a ) to 1 ( c ). FIG. 2 shows a Mollier diagram or a portion of a P-h diagram showing the relationship between specific enthalpy (kJ/kg) and absolute pressure (kPa). In addition, the case where R-134a is used as an example of the refrigerant is shown. The refrigerant is not limited thereto, and values displayed on the Moliere diagram may vary depending on the refrigerant. However, using the modified form of the graph shown in FIG. 2 , the thermodynamic cycle of the heat pump 100 including the heating unit 170 positioned between the compressor 150 and the second heat exchanger 120 will be briefly described. can do.
도 2에서, 통상의 히트펌프의 경우는 1-2b-3b-4b로 표시되는 냉동사이클로 도시하고 있다. 이는 정상상태에서의 열역학적 사이클이다. 즉, 가열부(170)에 전원이 들어오지 않아 정지된 경우를 뜻한다. 본 개시의 일례로, 압축기(150)와 제2열교환기(120)사이에 위치하는 가열부(170)를 포함하여, 히트펌프의 구동초기에 가열부(170)를 사용하는 경우는 1-2a-3a-4a로 도시하였다. 또한, 본 개시와 달리, 공기를 가열하는 방식의 경우는 1c-2c-3a-4a로 도시하였다. 이는 비교를 위해 열역학적 사이클을 매우 단순화 하여 나타낸 것이다.In FIG. 2 , a typical heat pump is illustrated as a refrigeration cycle indicated by 1-2b-3b-4b. This is a thermodynamic cycle at steady state. That is, it means that the heating unit 170 is stopped because power is not supplied. As an example of the present disclosure, including the heating unit 170 positioned between the compressor 150 and the second heat exchanger 120, 1-2a in the case of using the heating unit 170 at the initial stage of driving the heat pump It is shown as -3a-4a. In addition, unlike the present disclosure, the case of heating the air is shown as 1c-2c-3a-4a. This is a very simplified representation of the thermodynamic cycle for comparison.
가열부(170)를 사용하지 않는 정상상태의 경우는 통상의 히트펌프와 동일한 열역학적 사이클로 나타낼 수 있다. 즉, 1-2b는 점선을 따라 냉매가 압축되어 고온 고압의 기체가 되는 압축과정을 나타낸다. 2b-3b는 제2열교환기(120)에서 열교환을 통해 공기를 가열하고, 냉매를 응축시키는 응축과정을 나타낸다. 3b-4b는 팽창부(160)를 통해 냉매를 팽창시켜 저온 저압의 포화액-포화증기가 혼합된 상태로 만드는 팽창과정을 타낸다. 마지막으로, 4b-1은 제1열교환기(110)에서 열교환을 통해 공기를 냉각시키고, 냉매를 증발시키는 증발과정을 나타내고 있다. 이를 통해 냉매는 히트펌프 사이클을 순환하게 될 것이다. The steady state case in which the heating unit 170 is not used may be represented by the same thermodynamic cycle as a conventional heat pump. That is, 1-2b represents a compression process in which the refrigerant is compressed along the dotted line to become a high-temperature and high-pressure gas. 2b-3b shows a condensation process in which air is heated through heat exchange in the second heat exchanger 120 and the refrigerant is condensed. 3b-4b represents an expansion process in which the refrigerant is expanded through the expansion unit 160 to make a low-temperature, low-pressure saturated liquid-saturated steam mixed state. Finally, 4b-1 shows an evaporation process of cooling the air through heat exchange in the first heat exchanger 110 and evaporating the refrigerant. This will allow the refrigerant to cycle through the heat pump cycle.
도 1(b)와 같이 제2열교환기(120)를 지난 공기가 덕트(140)를 빠져나가기 전에 가열부(170)를 통해 가열되는 히트펌프(300)의 경우에는, 가열부(170)에 의한 공기의 가열을, 냉매의 순환 중 1-1c과정으로 대체하여 나타낼 수 있다. 즉, 덕트(140)를 빠져나가는 공기의 온도가 통상의 히트펌프에서의 공기온도보다 높으므로, 다시 히트펌프로 들어오는 공기의 온도도 높아, 제1열교환기(110)에서의 열교환이 더 커지게 되므로 냉매의 온도는 결과적으로 증가될 수 있기 때문이다. 따라서, 1상태가 아닌 1c상태까지 도달하게 될 것이다. In the case of the heat pump 300 in which the air passing through the second heat exchanger 120 is heated through the heating unit 170 before exiting the duct 140 as shown in FIG. 1(b), the heating unit 170 The heating of the air by the circulating refrigerant can be represented by replacing the process 1-1c during the circulation of the refrigerant. That is, since the temperature of the air exiting the duct 140 is higher than the air temperature in the normal heat pump, the temperature of the air entering the heat pump again is also high, so that the heat exchange in the first heat exchanger 110 becomes larger. Therefore, the temperature of the refrigerant may increase as a result. Therefore, it will reach state 1c instead of state 1.
따라서, 1c상태에서 압축과정을 통해 2c상태에 도달하게 될 것이다. 이후, 냉매는 응축과정을 통해 2c상태에서 3a상태에 도달할 수 있다. 실제로 2c상태는 2b상태보다 고온 고압이므로 2c상태와 2b상태가 동일한 압력선상에 위치하지 않지만, 여기서는 편의상 동일한 압력선에 표시하였다. 따라서, 증발과정과 응축과정은 H만큼의 압력차이가 나는 것으로 단순히 표시하였다. 대신 압력이 높아짐에 따라 응축과정에서 더 많은 열교환이 이루어져 3a상태에 도달할 수 있다. 따라서 응축과정은 2c-3a를 통해 이루어진다고 간단히 말할 수 있다. Therefore, the 1c state will reach the 2c state through the compression process. Thereafter, the refrigerant may reach the 3a state from the 2c state through a condensation process. In fact, since the 2c state is higher temperature and higher pressure than the 2b state, the 2c state and the 2b state are not located on the same pressure line, but are indicated here on the same pressure line for convenience. Therefore, the evaporation process and the condensation process are simply indicated as having a pressure difference of H. Instead, as the pressure increases, more heat exchange occurs in the condensation process to reach the 3a state. Therefore, it can be simply said that the condensation process takes place through 2c-3a.
이후 냉매는 3a-4a의 팽창과정을 거친 후, 4a-1c의 증발과정을 거쳐 순환하게 될 것이다. 통상의 히트펌프 사이클 1-2b-3b-4b와 비교하면, 증발과정에서의 냉방능력이 4a-1c의 엔탈피차이로 나타나고, 응축과정에서의 가열능력이 2c-3a로 나타나게 되므로 모두 증가함을 알 수 있다. 이는 결국 히트펌프의 구동초기 냉방능력 및 가열능력을 증가시켜, 구동초기의 히트펌프를 안정화시킬 수 있을 것이다.After that, the refrigerant will go through the expansion process of 3a-4a and then circulate through the evaporation process of 4a-1c. Compared with the normal heat pump cycle 1-2b-3b-4b, it can be seen that the cooling capacity in the evaporation process is shown as an enthalpy difference of 4a-1c and the heating capacity in the condensation process is shown as 2c-3a, so they all increase. can This will eventually increase the initial cooling capacity and heating capacity of the heat pump, thereby stabilizing the heat pump at the initial stage of operation.
도 1(c)와 같이 압축기(150)에서 토출된 냉매를 가열부(170)를 통해 가열하는 방식의 히트펌프(100)의 경우를 살펴보면 아래와 같다. 냉매의 압축과정은 1-2a에서 이루어진다. 이는 압축기(150)에서 압축 후, 가열부(170)에서의 가열을 통해 고온 고압 상태가 냉매를 2a상태로 표시할 수 있다. 가열부(170)도 냉매를 고온, 고압의 상태로 만들게 되므로 이를 모두 포함하여 압축과정으로 볼 수 있기 때문이다.The case of the heat pump 100 in which the refrigerant discharged from the compressor 150 is heated through the heating unit 170 as shown in FIG. 1(c) will be described below. The refrigerant compression process is performed in 1-2a. After compression in the compressor 150, the high-temperature and high-pressure state through heating in the heating unit 170 may display the refrigerant as state 2a. This is because the heating unit 170 also makes the refrigerant in a high-temperature and high-pressure state, so it can be viewed as a compression process including all of them.
이후, 냉매는 응축과정을 통해 2a상태에서 3a상태에 도달할 수 있다. 실제로 2a상태는 2b상태보다 고온 고압이므로 2a상태와 2b상태가 동일한 압력선상에 위치하지 않지만, 여기서는 편의상 동일한 압력선에 표시하였다. 따라서, 증발과정과 응축과정은 H만큼의 압력차이가 나는 것으로 단순히 표시하였다. 대신 압력이 높아짐에 따라 응축과정에서 더 많은 열교환이 이루어져 3a상태에 도달할 수 있다. 따라서 응축과정은 2a-3a를 통해 이루어진다고 간단히 말할 수 있다. Thereafter, the refrigerant may reach the 3a state from the 2a state through a condensation process. In fact, since the state 2a is higher temperature and higher pressure than the state 2b, the state 2a and the state 2b are not located on the same pressure line, but are shown here on the same pressure line for convenience. Therefore, the evaporation process and the condensation process are simply indicated as having a pressure difference of H. Instead, as the pressure increases, more heat exchange occurs in the condensation process to reach the 3a state. Therefore, it can be simply said that the condensation process takes place through 2a-3a.
이후 냉매는 3a-4a의 팽창과정을 거친 후, 4a-1의 증발과정을 거쳐 순환하게 될 것이다. 통상의 히트펌프 사이클 1-2b-3b-4b와 비교하면, 증발과정에서의 냉방능력이 4a-1의 엔탈피차이로 나타나고, 응축과정에서의 가열능력이 2a-3a로 나타나게 되므로 모두 증가함을 알 수 있다. 이는 결국 히트펌프의 구동초기 냉방능력 및 가열능력을 증가시켜, 구동초기의 히트펌프를 안정화시킬 수 있을 것이다.Thereafter, the refrigerant will go through the expansion process of 3a-4a and then circulate through the evaporation process of 4a-1. Compared with the normal heat pump cycle 1-2b-3b-4b, it can be seen that the cooling capacity in the evaporation process is shown as an enthalpy difference of 4a-1, and the heating capacity in the condensation process is shown as 2a-3a, so they all increase. can This will eventually increase the initial cooling capacity and heating capacity of the heat pump, thereby stabilizing the heat pump at the initial stage of operation.
덕트(140)내부에 가열부(170)를 구비하고 빠져나가는 공기를 가열하는 방식의 가열능력(2c-3a의 엔탈피차이) 비교하면, 본 개시의 히트펌프의 가열능력(2a-3a의 엔탈피 차이)이 더 큼을 알 수 있다. 즉, 투입하는 에너지 대비 방열능력 또는 가열능력이 향상될 수 있다. Comparing the heating capacity (enthalpy difference of 2c-3a) of a method of heating the air that is provided with a heating unit 170 inside the duct 140, the heating capacity of the heat pump of the present disclosure (enthalpy difference of 2a-3a) ) is larger. That is, the heat dissipation ability or the heating ability can be improved compared to the input energy.
전술한 바와 같이 이는 히트펌프의 구동초기 히트펌프를 빨리 정상상태로 동작시키기 위한 것으로, 히트펌프의 구동환경이 저온인 경우에 그 차이가 더 크게 나타날 수 있다. 예컨대, 상기 히트펌프가 상온이 아닌 영하의 온도에서 구동되는 경우, 히트펌프의 구동초기시, 더 많은 가열능력을 필요로 하게 된다. 본 개시와 같이 상기 압축기(150)와 제2열교환기(120)사이에 가열부(170)를 두는 경우, 구동 초기 응축과정에서의 가열능력을 더 크게 하여, 히트펌프의 빠른 안정화가 가능하게 될 것이다. As described above, this is to quickly operate the heat pump in a normal state at the initial stage of driving the heat pump, and the difference may be greater when the driving environment of the heat pump is low. For example, when the heat pump is driven at a sub-zero temperature instead of room temperature, more heating capacity is required at the initial driving time of the heat pump. As in the present disclosure, when the heating unit 170 is disposed between the compressor 150 and the second heat exchanger 120, the heating capacity in the initial condensation process of driving is increased to enable rapid stabilization of the heat pump. will be.
따라서, 본 개시의 일 실시예인 히트펌프(100)를 의류처리장치에 사용하는 경우, 구동 초기의 빠른 안정화를 통해, 건조시간을 단축시킬 수 있게 될 것이다. 또한, 상온의 환경보다, 영하의 환경에서 사용하는 경우, 다른 히트펌프(가열부를 사용하지 않거나, 공기를 가열하는 가열부를 포함하는 경우)를 사용하는 경우보다 건조시간을 더 많이 단축할 수 있게 될 것이다. 이는 가전제품을 사용하는 환경이 겨울이거나 고위도 지방과 같이 혹한의 환경에서 더욱 효과적일 수 있다. Accordingly, when the heat pump 100 according to an embodiment of the present disclosure is used in a clothes treatment apparatus, the drying time may be shortened through rapid stabilization at the initial stage of operation. In addition, when used in a sub-zero environment rather than a room temperature environment, the drying time can be shortened more than when using another heat pump (when a heating unit is not used or when a heating unit that heats air is included). will be. This may be more effective in environments where home appliances are used in winter or in harsh environments such as high latitudes.
도 3은 본 개시의 일 실시예인 히트펌프의 제어방법에 관한 플로우차트(flow chart)의 일례를 도시하고 있다. 즉, 도 3에 도시된 제어방법은 상기 히트펌프의 구동 초기의 제어방법에 관한 일례를 도시하고 있다. 3 shows an example of a flowchart related to a control method of a heat pump according to an embodiment of the present disclosure. That is, the control method shown in FIG. 3 shows an example of a control method of the initial driving of the heat pump.
상기 히트펌프(100)는 상기 가열부(170)를 제어하는 제어부(미도시) 및 상기 토출구(151)에 위치하거나 상기 토출관(131) 중 상기 토출구(151)에 인접하게 위치하여 상기 압축기(150)에서 토출되는 냉매의 온도를 측정하는 온도센서(190)를 더 포함할 수 있다. 따라서, 상기 온도센서(190)는 상기 가열부(170) 및 상기 압축기(150) 사이에 위치할 수 있다. The heat pump 100 is located at a control unit (not shown) for controlling the heating unit 170 and the discharge port 151 or is located adjacent to the discharge port 151 of the discharge pipe 131 to the compressor ( 150) may further include a temperature sensor 190 for measuring the temperature of the refrigerant discharged. Accordingly, the temperature sensor 190 may be positioned between the heating unit 170 and the compressor 150 .
상기 온도센서(190)는 외부에서 상기 토출구(151)의 내부나 상기 토출관(131)의 내부로 삽입되어, 상기 압축기(150)에서 토출되는 냉매의 온도를 측정하고 이를 상기 제어부(미도시)에 전달할 수 있다. 상기 제어부는 상기 온도센서(190)의 제어신호를 수신하여, 상기 가열부(170)의 동작여부를 제어할 수 있다. The temperature sensor 190 is inserted into the interior of the discharge port 151 or the discharge pipe 131 from the outside, measures the temperature of the refrigerant discharged from the compressor 150, and measures the temperature of the refrigerant discharged from the compressor 150 and the control unit (not shown) can be forwarded to The control unit may receive a control signal from the temperature sensor 190 to control whether the heating unit 170 operates.
만약, 초기 구동시 상온의 환경에 놓여 있던 히트펌프(100)의 경우라면, 냉매의 온도도 상온의 온도일 수 있다. 이를 정상상태에서 압축기(150)가 동작하는 적정온도범위인 기 설정된 제1기준온도 이상 기 설정된 제2기준온도 이하로 동작시키기 위해, 구동 초기 상기 압축기(150)에서 토출되는 냉매의 온도를 가열할 수 있다. 또한 정상상태에 도달하는 경우에는 가열부(170)를 동작시킬 필요가 없으므로, 상기 가열부(170)는 기설정된 동작시간이 경과 후 중단될 수 있다.If, in the case of the heat pump 100 placed in an environment of room temperature at the time of initial operation, the temperature of the refrigerant may also be the temperature of room temperature. The temperature of the refrigerant discharged from the compressor 150 is heated at the initial stage of operation in order to operate it above the preset first reference temperature and below the preset second reference temperature, which is an appropriate temperature range in which the compressor 150 operates in a normal state. can In addition, since it is not necessary to operate the heating unit 170 when a steady state is reached, the heating unit 170 may be stopped after a preset operation time elapses.
이를 위해, 본 개시의 제어방법은 상기 압축기(150)의 운전을 개시(S100)한 후, 상기 가열부(170)에 전원을 공급하여 동작(S200)시키게 된다. 상기 압축기(150)가 운전을 개시하면, 상기 온도센서(190)는 상기 압축기(150)에서 토출되는 냉매의 온도를 측정(S510)할 수 있다. 이후, 본 개시의 제업아법은 상기 측정온도를 상기 제1기준온도 이상 상기 제2기준온도 이하로 유지하기 위한 온도유지단계(S500)을 진행할 수 있다. 예를 들어, 상기 제1기준온도는 60 도(℃이고 상기 제2기준온도는 80 도(℃로 설정될 수 있다.To this end, in the control method of the present disclosure, after starting the operation of the compressor 150 ( S100 ), power is supplied to the heating unit 170 to operate ( S200 ). When the compressor 150 starts to operate, the temperature sensor 190 may measure the temperature of the refrigerant discharged from the compressor 150 ( S510 ). Thereafter, the manufacturing method of the present disclosure may proceed with a temperature maintenance step (S500) for maintaining the measured temperature above the first reference temperature and below the second reference temperature. For example, the first reference temperature may be set to 60 degrees (°C) and the second reference temperature may be set to 80 degrees (°C).
상기 온도유지단계(S500)에서, 본 개시의 제어방법은 상기 온도측정단계(S510)에서 측정한 측정온도가 상기 제1기준온도 미만(S530)이면 상기 가열부의 동작여부를 판단(S535)할 수 있다. 만약, 상기 가열부(170)가 동작하지 않고 있다면, 본 개시의 제어방법은 상기 가열부(170)를 동작(S300)시킬 수 있다. 만약, 상기 가열부(170)가 동작중이라면, 본 개시의 제어방법은 이미 동작중인 가열부(170)를 재차 동작시킬 필요가 없으므로 온도측정단계(S510)로 진행할 수 있다.In the temperature maintaining step (S500), the control method of the present disclosure can determine whether the heating unit operates (S535) if the measured temperature measured in the temperature measuring step (S510) is less than the first reference temperature (S530) have. If the heating unit 170 is not operating, the control method of the present disclosure may operate the heating unit 170 ( S300 ). If the heating unit 170 is in operation, the control method of the present disclosure may proceed to the temperature measurement step (S510) since it is not necessary to operate the heating unit 170 that is already in operation again.
상기 온도유지단계(S500)에서, 본 개시의 제어방법은 상기 온도측정단계(S510)에서 측정한 측정온도가 상기 제1기준온도 이상인 경우에는 상기 온도측정단계(S510)에서 측정한 측정온도가 상기 제2기준온도를 초과(S550)하면, 상기 가열부(170)가 동작하는지 판단(S575하는 제1동작확인단계로 진행할 수 있다. 만약, 상기 가열부(170)가 동작중이라면, 본 개시의 제어방법은 상기 가열부(170)의 동작을 중단(S577, 제1중단단계)시킬 수 있다. 만약, 상기 가열부(170)가 이미 중단된 경우라면, 본 개시의 제어방법은 이미 중지된 가열부(170)를 재차 중지시킬 필요가 없으므로 온도측정단계(S510)로 진행할 수 있다.In the temperature maintaining step (S500), in the control method of the present disclosure, when the measured temperature measured in the temperature measuring step (S510) is equal to or higher than the first reference temperature, the measured temperature measured in the temperature measuring step (S510) is the If the second reference temperature is exceeded (S550), it is determined whether the heating unit 170 operates (S575). If the heating unit 170 is operating, the The control method may stop (S577, first stopping step) the operation of the heating unit 170. If the heating unit 170 is already stopped, the control method of the present disclosure is the already stopped heating Since there is no need to stop the unit 170 again, it can proceed to the temperature measurement step (S510).
또한, 상기 온도유지단계(S500)에서는 상기 압축기(150)의 운전 개시후 기 설정된 동작시간이 경과(S570)할 때까지, 본 개시의 제어방법은 상기 온도측정단계(S510) 및 상기 온도유지단계(S500)를 반복하여 수행할 수 있다. 따라서, 본 개시의 제어방법은 반복 측정되는 온도에 따라, 상기 가열부(170)의 동작/중단을 통해 상기 압축기의 구동온도를 상기 제1기준온도 이상 상기 제2기준온도 이하로 유지할 수 있다. In addition, in the temperature maintaining step (S500), the control method of the present disclosure includes the temperature measuring step (S510) and the temperature maintaining step until a preset operating time elapses (S570) after the start of operation of the compressor 150 (S500) may be repeatedly performed. Accordingly, in the control method of the present disclosure, the driving temperature of the compressor may be maintained above the first reference temperature and below the second reference temperature through operation/stop of the heating unit 170 according to the repeatedly measured temperature.
상기 동작시간을 경과(S570)된 것으로 판단되면, 본 개시의 제어방법은 더 이상 상기 가열부(170)를 동작시킬 필요가 없으므로, 상기 가열부를 중단하는 제2중단단계(S700)로 진행할 수 있다.If it is determined that the operation time has elapsed (S570), the control method of the present disclosure no longer needs to operate the heating unit 170, so it can proceed to a second stopping step (S700) of stopping the heating unit. .
도 4(a)는 압축기(150)와 제2열교환기(또는 응축기, 120) 사이에 가열부(170)가 구비된 히트펌프(100)가 포함하는 의류처리장치(1000)의 일례를 도시하고 있다. 도 4(b)는 상기 의류처리장치(1000)의 바닥면을 형성하는 베이스에 설치되어 상기 의류처리장치(1000)를 구동하는 구동부(1500), 덕트(140), 제1열교환기(110), 제2열교환기, 및 압축기(150)를 도시하고 있다. 4 (a) shows an example of a clothes treatment apparatus 1000 including a heat pump 100 provided with a heating unit 170 between the compressor 150 and the second heat exchanger (or condenser 120), have. 4( b ) shows a driving unit 1500 , a duct 140 , and a first heat exchanger 110 installed on a base forming the bottom surface of the laundry treatment apparatus 1000 to drive the laundry treatment apparatus 1000 . , a second heat exchanger, and a compressor 150 are shown.
도 4(a)를 참조하면, 상기 의류처리장치(1000)는 외관을 형성하는 캐비닛(1100), 상기 캐비닛(1100) 내부에 회전가능하게 구비되어 의류를 수용하는 드럼(1300), 상기 드럼의 공기를 순환시키기 위한 통로를 형성하는 덕트(140), 냉매가 순환하는 유로를 형성하는 냉매순환유로(130, 도 5참조), 상기 덕트(140)의 내부에서 상기 냉매순환유로(130)에 위치하여, 상기 냉매와 열교환을 통해 공기를 냉각시키는 제1열교환기(110), 상기 덕트(140)의 내부에서 상기 냉매순환유로(130)에 위치하여, 상기 냉매와 열교환을 통해 상기 제1열교환기(110)를 통과한 공기를 가열하는 제2열교환기(120), 상기 덕트(140)의 외부에서 상기 냉매순환유로(130)에 위치하여, 상기 제1열교환기(110)를 지난 냉매를 압축하여 순환시키는 압축기(150), 상기 덕트(140)의 외부에 위치하고, 상기 냉매순환유로(130) 중 상기 제1열교환기(110) 및 상기 제2열교환기(120) 사이에 위치하여 냉매를 팽창시키는 팽창부(160) 및 상기 냉매순환유로(130) 중 상기 압축기(150) 및 상기 제2열교환기(120) 사이에 위치하여 냉매를 가열하는 가열부(170)를 포함한다. Referring to FIG. 4A , the clothes treatment apparatus 1000 includes a cabinet 1100 forming an exterior, a drum 1300 rotatably provided inside the cabinet 1100 to accommodate clothes, and the drum A duct 140 forming a passage for circulating air, a refrigerant circulation passage 130 (refer to FIG. 5) forming a passage through which the refrigerant circulates, and located in the refrigerant circulation passage 130 inside the duct 140 Thus, the first heat exchanger 110 for cooling air through heat exchange with the refrigerant, located in the refrigerant circulation path 130 inside the duct 140, the first heat exchanger through heat exchange with the refrigerant A second heat exchanger 120 that heats the air passing through 110 is located in the refrigerant circulation path 130 outside the duct 140, and compresses the refrigerant that has passed through the first heat exchanger 110 to circulate the compressor 150, located outside the duct 140, and located between the first heat exchanger 110 and the second heat exchanger 120 in the refrigerant circulation path 130 to expand the refrigerant and a heating unit 170 positioned between the compressor 150 and the second heat exchanger 120 among the expansion unit 160 and the refrigerant circulation path 130 to heat the refrigerant.
상기 캐비닛(1100)의 전면에는 원형의 투입구(1110)가 구비되어 있다. 상기 캐비닛(1100)의 상부에는 상기 의류처리장치(1000)의 각종 기능을 제어하고 작동 상태를 표시하는 컨트롤패널(1140)이 구비될 수 있다. A circular inlet 1110 is provided on the front side of the cabinet 1100 . A control panel 1140 for controlling various functions of the laundry treatment apparatus 1000 and displaying an operating state may be provided on the cabinet 1100 .
상기 투입구(1110)를 개폐하기 위한 도어(1150)는 투광부를 포함할 수 있다. 따라서, 도어(1150)가 닫힌 상태에서도, 투광부를 통해 드럼(1300)의 내부가 시각적으로 노출될 수 있다.The door 1150 for opening and closing the inlet 1110 may include a light-transmitting part. Accordingly, even when the door 1150 is closed, the inside of the drum 1300 may be visually exposed through the light transmitting part.
캐비닛(1100)의 내부에는 투입구(1110)과 연통하여 세탁물을 수용하는 원통형상의 드럼(1300)을 포함한다. 도 4(b)를 참조하면, 상기 드럼(1300)의 하부에는 드럼(1300)의 공기를 순환시키는 덕트(140) 및 상기 덕트(140) 내부로 흡입된 공기를 제습냉각후 다시 가열할 수 있는 제1열교환기(110) 및 제2열교환기(120), 그리고, 상기 덕트(140) 외부에 위치하여 열교환에 필요한 냉매를 압축시키고 순환시키는 압축기가 장착되는 베이스가 구비될 수 있다. 베이스는 캐비닛(1100)의 바닥면을 형성할 뿐만 아니라, 의류처리장치(1000)의 각종 기능을 수행할 기계장치들이 설치될 수 있는 공간을 제공할 수 있다.The interior of the cabinet 1100 includes a cylindrical drum 1300 communicating with the inlet 1110 to accommodate laundry. 4 (b), the lower portion of the drum 1300, the duct 140 for circulating the air of the drum 1300 and the air sucked into the duct 140 can be heated again after dehumidification cooling The first heat exchanger 110 , the second heat exchanger 120 , and a base on which a compressor positioned outside the duct 140 to compress and circulate a refrigerant required for heat exchange is mounted may be provided. The base not only forms the bottom surface of the cabinet 1100 , but may also provide a space in which mechanical devices to perform various functions of the laundry treatment apparatus 1000 may be installed.
도 4(b)는 베이스에 위치한 덕트(140), 압축기(150)를 포함한 히트펌프(100), 구동부(1500)의 일례를 도시하고 있다. 도 4(b)는 설명을 위해, 상기 덕트(140)에서 상기 덕트(140)의 상부면을 형성하는 커버플레이트(미도시)를 없애고, 제1열교환기(110) 및 제2열교환기(120) 나타낸 것이다. 4 (b) shows an example of the heat pump 100 including the duct 140, the compressor 150, and the driving unit 1500 located at the base. 4 (b) is for explanation, the cover plate (not shown) forming the upper surface of the duct 140 in the duct 140 is removed, the first heat exchanger 110 and the second heat exchanger 120 ) is shown.
상기 베이스에는 공기를 순환시키는 역할을 하는 덕트(140)가 위치할 수 있다. 상기 덕트(140)는 제1열교환기(110) 및 제2열교환기(120)가 배치되어 상기 드럼(1300)에서 흡입한 공기와 열교환시킨 후, 고온 건조된 공기를 다시 상기 드럼(1300)으로 배출할 수 있다. 이를 위해 상기 드럼(1300)과 상기 덕트입구(141)를 연결하는 흡기덕트(미도시) 및 상기 덕트출구(142)와 상기 드럼(1300)을 연결하는 배기덕트(미도시)를 더 포함할 수 있다. A duct 140 serving to circulate air may be located in the base. In the duct 140 , a first heat exchanger 110 and a second heat exchanger 120 are disposed to exchange heat with the air sucked in the drum 1300 , and then, the high-temperature dried air is returned to the drum 1300 . can be discharged To this end, an intake duct (not shown) connecting the drum 1300 and the duct inlet 141 and an exhaust duct (not shown) connecting the duct outlet 142 and the drum 1300 may be further included. have.
또한, 상기 배기덕트와 상기 제2열교환기(120) 사이에는 송풍팬(147)이 구비되어 상기 드럼(1300) 내부의 공기를 흡입하는 흡입력을 발생시킬 수 있다. 따라서, 상기 송풍팬(147)에 의해 상기 드럼(1300) 내부의 공기는 순환됨과 동시에, 상기 덕트(140) 내부에 구비되는 제1열교환기(110) 및 제2열교환기(120)를 통해 제습된 상태로 변할 수 있다. In addition, a blowing fan 147 may be provided between the exhaust duct and the second heat exchanger 120 to generate a suction force for sucking air inside the drum 1300 . Accordingly, the air inside the drum 1300 is circulated by the blowing fan 147 and at the same time dehumidified through the first heat exchanger 110 and the second heat exchanger 120 provided in the duct 140 . can be changed to the
상기 베이스에 설치되는 히트펌프(100)에 대해 다시 설명하면, 상기 덕트(140)에는 제1열교환기(110) 및 제2열교환기(120)가 위치할 수 있다. 상기 팽창부(160) 및 상기 압축기(150)는 상기 덕트(140)의 외부에 위치할 수 있다. 그리고, 압축기(150), 팽창부(160), 제1열교환기(110) 및 제2열교환기(120)는 냉매순환유로(130)에 의해 연결될 수 있다. 상기 냉매순환유로(130)는 파이프 형태일 수 있다. Referring again to the heat pump 100 installed on the base, the first heat exchanger 110 and the second heat exchanger 120 may be located in the duct 140 . The expansion unit 160 and the compressor 150 may be located outside the duct 140 . In addition, the compressor 150 , the expansion unit 160 , the first heat exchanger 110 , and the second heat exchanger 120 may be connected by a refrigerant circulation passage 130 . The refrigerant circulation path 130 may be in the form of a pipe.
상기 히트펌프(100)를 순환하는 냉매는 제1열교환기(110)를 통해 상기 드럼(1300)에서 흡입된 공기로부터 열을 흡수하여 증발된다. 이에 따라 공기는 냉각될 것이고, 냉각에 따라 공기에 함유된 수분이 응축될 수 있다. 온도가 낮아질수록 포화수증기량이 작아지기 때문이다. The refrigerant circulating in the heat pump 100 is evaporated by absorbing heat from the air sucked in from the drum 1300 through the first heat exchanger 110 . Accordingly, the air will be cooled, and the water contained in the air may be condensed upon cooling. This is because the amount of saturated water vapor decreases as the temperature decreases.
상기 냉매순환유로(130)를 순환하는 냉매는 제1열교환기(110)에서 증발된 후, 상기 압축기(150)에서 고온고압으로 압축된 후 제2열교환기(120)를 통해 다시 응축될 것이다. 이에 따라, 상기 제2열교환기(120)에서는 상기 제1열교환기를 지나온 공기가 가열된 후, 다시 상기 드럼(1300)으로 이동할 수 있다.After the refrigerant circulating in the refrigerant circulation path 130 is evaporated in the first heat exchanger 110 , it is compressed to a high temperature and high pressure in the compressor 150 and then condensed again through the second heat exchanger 120 . Accordingly, after the air that has passed through the first heat exchanger is heated in the second heat exchanger 120 , it may move back to the drum 1300 .
상기 팽창부(160)는 팽창밸브로 구비될 수도 있고, 오리피스 현상(Orifice effect)을 이용하는 모세관튜브로 구비될수 있다. 또한 냉매내 이물질를 걸러내기 위해 필터드라이어(165)를 포함할 수 있다.The expansion unit 160 may be provided as an expansion valve, or may be provided as a capillary tube using an orifice effect. In addition, it may include a filter dryer 165 to filter out foreign substances in the refrigerant.
드럼(1300)을 구동시키기 위한 구동부(1500)도 베이스에 장착될 수 있다. 도 4(b)에서는 상기 구동부(1500)의 일례로 모터 및 모터에 연결된 구동풀리(1550)를 도시하고 있다. 상기 구동부(1500)는 모터에서 발생한 회전력을 상기 구동풀리(1550)와 상기 드럼(1300)사이를 연결하는 드럼벨트(미도시)를 통해 상기 드럼(1300)에 회전력을 전달하게 될 것이다. 상기 드럼벨트는 상기 드럼(1300)의 외주면을 감싸는 형태일 수 있다. A driving unit 1500 for driving the drum 1300 may also be mounted on the base. 4B shows a motor and a driving pulley 1550 connected to the motor as an example of the driving unit 1500 . The driving unit 1500 will transmit the rotational force generated by the motor to the drum 1300 through a drum belt (not shown) that connects the driving pulley 1550 and the drum 1300 . The drum belt may have a shape surrounding the outer circumferential surface of the drum 1300 .
또한, 상기 의류처리장치(1000)는 상기 압축기(150)를 냉각시키기위한 냉각팬(1900)을 포함할 수 있다. 도 4(b)에 도시된 일례를 참조하면, 상기 냉각팬(1900)은 상기 베이스의 후방에서, 상기 압축기(150)에 인접하게 위치하여, 외부공기를 흡입하여 상기 압축기(150)를 냉각시킬 수 있다. Also, the clothes treatment apparatus 1000 may include a cooling fan 1900 for cooling the compressor 150 . Referring to the example shown in FIG. 4(b), the cooling fan 1900 is located at the rear of the base, adjacent to the compressor 150, and sucks outside air to cool the compressor 150. can
또한, 상기 히트펌프(100)는 압축되어 토출되는 냉매의 온도를 측정하기 위한 온도센서(190)를 포함할 수 있다. 또한, 상기 히트펌프(100)는 토출관(131)에 구비되어 압축기(150)에서 토출되는 냉매를 가열하는 가열부(170)를 포함할 수 있다. 상기 가열부(170)는 상기 토출관(131)의 외주면을 감싸는 형태로 구비될 수 있다. 상기 온도센서(190) 및 상기 가열부(170)의 위치는 상기 압축기(150)에 인접하여 설치될 수 있는데 이는 설계에 따라 달라질 수 도 있다.In addition, the heat pump 100 may include a temperature sensor 190 for measuring the temperature of the compressed and discharged refrigerant. In addition, the heat pump 100 may include a heating unit 170 provided in the discharge pipe 131 to heat the refrigerant discharged from the compressor 150 . The heating unit 170 may be provided in a shape surrounding the outer circumferential surface of the discharge pipe 131 . The position of the temperature sensor 190 and the heating unit 170 may be installed adjacent to the compressor 150, which may vary depending on the design.
도 5(a)는 상기 의류처리장치(1000)에 포함되는 히트펌프(100)의 일례를 도시하고 있다. 압축기(150)는 냉매순환유로(130) 중 토출관(131)을 통해 제2열교환기(120)와 연결되어, 압축된 냉매를 제2열교환기(120)로 이동시킬 수 있다. 그리고 상기 압축기(150)는 상기 냉매순환유로(130)를 통해 전체 냉매를 순환시키는 역할도 담당한다. FIG. 5A illustrates an example of the heat pump 100 included in the laundry treatment apparatus 1000 . The compressor 150 may be connected to the second heat exchanger 120 through the discharge pipe 131 of the refrigerant circulation path 130 to move the compressed refrigerant to the second heat exchanger 120 . Also, the compressor 150 circulates the entire refrigerant through the refrigerant circulation passage 130 .
상기 제2열교환기(120)로 이동한 고온고압의 냉매는 상기 제2열교환기(120)를 통해 상기 드럼에서 흡입되어 제1열교환기(110)를 통해 냉각된 공기를 다시 가열하게 될 것이다. 상기 제1열교환기(110) 및 제2열교환기(120)는 일정간격으로 구비되는 복수 개의 열전달 핀(fin)을 냉매가 순환하는 튜브가 여러 번 왕복하면서 형성되는 핀-튜브(fin-tube)형상의 열교환기일 수 있다. The high-temperature and high-pressure refrigerant that has moved to the second heat exchanger 120 is sucked from the drum through the second heat exchanger 120 to heat the cooled air again through the first heat exchanger 110 . The first heat exchanger 110 and the second heat exchanger 120 are fin-tube formed by reciprocating a tube through which a refrigerant circulates through a plurality of heat transfer fins provided at regular intervals several times. It may be a shaped heat exchanger.
또한, 상기 제1열교환기(110)에서는 열교환을 통해 드럼(1300)에서 흡입된 습한 공기를 냉각시키고, 냉매는 공기의 열을 전달받아 증발하게 될 것이다. 그 뒤, 냉매는 상기 냉매순환유로(130) 중 유입관(132)을 통해 어큐뮬레이터(159)와 연결되어 상기 압축기(150)로 이동하게 될 것이다.In addition, the first heat exchanger 110 cools the humid air sucked in from the drum 1300 through heat exchange, and the refrigerant receives heat from the air and evaporates. Thereafter, the refrigerant is connected to the accumulator 159 through the inlet pipe 132 of the refrigerant circulation path 130 to move to the compressor 150 .
도 5(b)는 도 5(a)의 P영역을 확대해서 나타낸 것이다. 상기 가열부(170)는 통상적인 코일형태의 전기 히터나, 실리콘카바이드 히터(SiC heater) 등 와이어 형태의 히터가 사용될 수 있다. 이와 달리, 실리콘패드 사이에 니크롬 열선을 배선한 고무히터(rubber heater)등이 사용될 수 있다. 또한, 필름에 면상 발열체를 인쇄한 후, 이를 부착하여 사용하는 필름 형태의 히터를 사용할 수도 있다. Fig. 5(b) is an enlarged view of region P of Fig. 5(a). As the heating unit 170, a conventional coil-type electric heater or a wire-type heater such as a silicon carbide heater (SiC heater) may be used. Alternatively, a rubber heater in which a nichrome heating wire is wired between silicon pads may be used. In addition, after printing the planar heating element on the film, it is also possible to use a heater in the form of a film used by attaching it.
즉, 상기 가열부(170)는 전기를 열로 변환시키는 발열체(171) 및 상기 발열체가 부착된 필름(172)을 포함할 수 있다.That is, the heating unit 170 may include a heating element 171 that converts electricity into heat and a film 172 to which the heating element is attached.
상기 발열체(171)는 면상발열체의 형태일 수 있다. 상기 필름형태의 가열부(170)에 사용되는 발열체는 면상형태일 수 있는데, 이를 면상발열체라고도 부른다. 상기 면상발열체의 일례로는 비닐계 필름에 탄소잉크(black carbon ink)를 인쇄하고 구리 박판(copper sheet)을 전극으로 하여 전원과 접합하여 발열하는 발열체가 있다. 다른 일례로는 유리섬유에 탄소잉크를 코팅하고 구리선을 전극선으로 하여 직조한 발열체일 수도 있고, 부직포 또는 필름에 탄소잉크를 분사한 후 구리박판을 전극선으로 한 발열체일 수도 있다. The heating element 171 may be in the form of a planar heating element. The heating element used in the film-type heating unit 170 may be of a planar shape, which is also called a planar heating element. As an example of the planar heating element, there is a heating element that generates heat by printing black carbon ink on a vinyl-based film and bonding to a power source using a copper sheet as an electrode. Another example may be a heating element coated with carbon ink on glass fiber and woven using a copper wire as an electrode wire, or a heating element using a copper thin plate as an electrode wire after spraying carbon ink on a nonwoven fabric or film.
상기 발열체(171)를 상기 필름(172)에 인쇄한 후 상기 토출관(131)에 부착하여 사용할 수도 있고, 상기 발열체(171)를 상기 토출관(131)에 인쇄한 후, 상기 필름(172)을 부착할 수도 있다. After printing the heating element 171 on the film 172, it may be used by attaching it to the discharge pipe 131. After the heating element 171 is printed on the discharge tube 131, the film 172 can also be attached.
일례로, 상기 발열체(171)는 상기 필름(172)에 스크리닝(screening) 방법으로 PTC(Positive Temperature Coefficient) 잉크를 인쇄한 형태일 수 있다. 상기 필름(172)의 재질은 투명재질로 하여 상기 발열체(171)가 보이도록 할 수 있으나, 이에 국한되지 않는다. 상기 필름(172)은 일반적으로 폴리이미드(Polyimide, PI), 아크릴(Acrylic), 열경화성 폴리우레탄(Thermoplastic Polyurethane, TPU), 또는 폴리에틸렌 테레프탈레이트(Polyethylene Terephthalate, PET)을 이용하여 제조될 수 있다. For example, the heating element 171 may have a form in which PTC (Positive Temperature Coefficient) ink is printed on the film 172 by a screening method. The film 172 may be made of a transparent material so that the heating element 171 can be seen, but is not limited thereto. The film 172 may generally be manufactured using polyimide (PI), acrylic, thermosetting polyurethane (TPU), or polyethylene terephthalate (PET).
도 5(b)에서는 상기 발열체(171)가 구비할 수 있는 패턴의 일례를 도시하고 있다. 이러한 발열체 패턴의 간격, 발열체의 크기 등은 필요에 따라 다양하게 변할 수 있다. 5(b) shows an example of a pattern that the heating element 171 can have. The interval between the heating element patterns, the size of the heating element, etc. may be variously changed as needed.
도 6(a)는 압축기(150)와 제2열교환기(또는 응축기, 120) 사이에 가열부(170)가 구비된 히트펌프(100)가 포함하는 의류처리장치(2000)의 다른 일례를 도시하고 있다. 도 6(b)는 상기 의류처리장치(2000)의 바닥면을 형성하는 베이스에 설치되어 상기 의류처리장치(2000)를 구동하는 기계장치를 도시하고 있다. FIG. 6( a ) shows another example of the laundry treatment apparatus 2000 including the heat pump 100 including the heating unit 170 between the compressor 150 and the second heat exchanger (or condenser 120 ). are doing FIG. 6(b) illustrates a mechanical device installed on the base forming the bottom surface of the laundry treatment apparatus 2000 to drive the laundry treatment apparatus 2000. Referring to FIG.
상기 의류처리장치(2000)는 일면에 투입구(2030)를 포함하는 캐비닛(2010), 상기 캐비닛(2010) 내부에 위치하여 상기 투입구(2030)를 통해 의류를 수용하는 제1챔버(2100), 상기 제1챔버(2100)의 하부에 위치하여 상기 제1챔버(2100)와 분리된 공간을 형성하는 제2챔버(2200), 상기 제2챔버(2200)의 내부에 구비되어, 스팀을 생성하고 상기 제1챔버(2100)에 공급하는 스팀유닛(2210), 상기 제2챔버(2200)의 내부에 구비되어, 상기 제1챔버(2100)의 공기를 순환시키기 위한 통로를 형성하는 덕트(140), 상기 제2챔버(2200)의 내부에 구비되어, 냉매가 순환하는 유로를 형성하는 냉매순환유로(130), 상기 덕트(140)의 내부에서 상기 냉매순환유로(130)에 위치하여, 상기 냉매와 열교환을 통해 공기를 냉각시키는 제1열교환기(110), 상기 덕트(140)의 내부에서 상기 냉매순환유로(130)에 위치하여, 상기 냉매와 열교환을 통해 상기 제1열교환기(110)를 통과한 공기를 가열하는 제2열교환기(120), 상기 덕트(140)의 외부에서 상기 냉매순환유로(130)에 위치하여, 상기 제1열교환기(110)를 지난 상기 냉매를 압축하여 순환시키는 압축기(150) 및 상기 덕트(140)의 외부에 위치하고, 상기 냉매순환유로(130) 중 상기 제1열교환기(110) 및 상기 제2열교환기(120)사이에 위치하여 상기 냉매를 팽창시키는 팽창부(160) 및 상기 냉매순환유로(130) 중 상기 압축기(150) 및 상기 제2열교환기(120) 사이에 위치하여 상기 냉매를 가열하는 가열부(170)를 포함한다. The clothes treatment apparatus 2000 includes a cabinet 2010 including an inlet 2030 on one surface, a first chamber 2100 positioned inside the cabinet 2010 and accommodating clothes through the inlet 2030, and the A second chamber 2200 positioned below the first chamber 2100 to form a space separated from the first chamber 2100, is provided inside the second chamber 2200 to generate steam and the A steam unit 2210 for supplying the first chamber 2100, a duct 140 provided in the second chamber 2200 to form a passage for circulating air in the first chamber 2100; The refrigerant circulation path 130 provided inside the second chamber 2200 and forming a flow path through which the refrigerant circulates, is located in the refrigerant circulation path 130 inside the duct 140, and the refrigerant and The first heat exchanger 110 for cooling air through heat exchange, is located in the refrigerant circulation path 130 inside the duct 140, and passes through the first heat exchanger 110 through heat exchange with the refrigerant A second heat exchanger 120 that heats one air, a compressor that is located in the refrigerant circulation path 130 outside the duct 140, compresses and circulates the refrigerant that has passed through the first heat exchanger 110 (150) and located outside the duct (140), and located between the first heat exchanger (110) and the second heat exchanger (120) in the refrigerant circulation flow path (130) to expand the refrigerant to expand the refrigerant and a heating unit 170 positioned between the compressor 150 and the second heat exchanger 120 of the refrigerant circulation passage 130 and 160 and heating the refrigerant.
도 6(a)를 참조하면, 상기 의류처리장치(2000)는 일면에 투입구(2030)를 포함하는 캐비닛(2010), 상기 캐비닛(2010)의 내부에 위치하여 상기 투입구(2030)를 통해 의류를 수용하는 제1챔버(2100), 상기 제1챔버(2100)의 하부에 위치하여 상기 제1챔버(2100)와 분리된 공간을 형성하는 제2챔버(2200), 상기 제2챔버(2200)의 내부에 구비되어, 스팀을 생성하고 상기 제1챔버(2100)에 공급하는 스팀유닛(2210, 도 6(b) 참조), 상기 캐비닛(2010)에 회전가능하게 결합하여 상기 투입구(2030)를 개폐하는 도어(2020)를 포함하고 있다. 일반적인 사용자들의 사용방법을 고려하면, 바람직하게는 상기 투입구(2030)는 상기 캐비닛(2010)의 전면에 구비될 것이다. Referring to FIG. 6( a ), the clothes treatment apparatus 2000 includes a cabinet 2010 including an inlet 2030 on one surface, and is located inside the cabinet 2010 to transport clothes through the inlet 2030 . A first chamber 2100 for accommodating, a second chamber 2200 positioned below the first chamber 2100 to form a space separated from the first chamber 2100, and the second chamber 2200 A steam unit 2210 (refer to FIG. 6(b)) that is provided inside, generates steam and supplies it to the first chamber 2100, is rotatably coupled to the cabinet 2010 to open and close the inlet 2030 and a door 2020. Considering the usage method of general users, preferably, the inlet 2030 will be provided on the front side of the cabinet 2010 .
또한, 상기 의류처리장치(2000)는 상기 제2챔버(2200)의 내부에 위치하여, 상기 제1챔버(2100)의 공기를 흡입하는 송풍유닛(2260, 도 도 6(b) 참조) 및 상기 흡입된 공기를 제습하고 가열한 후 상기 제1챔버(2100)로 내보내는 히트펌프(100)을 더 포함할 수 있다. In addition, the clothes treatment apparatus 2000 is located inside the second chamber 2200 and includes a blowing unit 2260 (refer to FIG. 6(b)) that sucks air from the first chamber 2100, and the A heat pump 100 for dehumidifying and heating the sucked air and then discharging it to the first chamber 2100 may be further included.
상기 캐비닛(2010)은 금속재질로 구비될 수 있으며, 강도를 유지할 수 있다면 플라스틱 재질로 구비되어도 무방하다. 또한, 상기 제1챔버(2100)는 플라스틱 사출성형에 의해 형성될 수 있다. 상기 제1챔버(2100)는 프레임(미도시)에 의해 상기 캐비닛(2010)에 결합될 수 있으나, 이와 달리, 캐비닛(2010)과 제1챔버(2100)의 사이를 폴리우레탄과 같은 발포플라스틱을 이용하여 충진하여도 무방하다. The cabinet 2010 may be made of a metal material, and may be made of a plastic material if strength can be maintained. Also, the first chamber 2100 may be formed by plastic injection molding. The first chamber 2100 may be coupled to the cabinet 2010 by a frame (not shown), but, unlike this, a foamed plastic such as polyurethane is disposed between the cabinet 2010 and the first chamber 2100 . It is also free to use and fill.
상의와 하의를 포함하는 의류는 상기 제1챔버(2100)에 거치될 수 있으며, 상기 제2챔버(2200)의 내부에 위치하는 송풍유닛(2260, 도 6(b) 참조), 히트펌프(100) 및 스팀유닛(2210, 도 6(b) 참조)을 통해 의류를 리프레쉬하게 관리할 수 있다. 즉, 상기 제2챔버(2200)의 내부에 위치하는 송풍유닛(220, 도 6(b) 참조), 히트펌프(100, 도 6(b) 참조) 및 스팀유닛(2210, 도 6(b) 참조)을 통해 스팀 및/또는 가열공기를 이용하여 의류를 살균하고 탈취하며, 사용에 의해 형성된 구김을 제거하는 기능 등을 수행할 수 있다. The clothes including the top and bottom may be mounted in the first chamber 2100 , and a blower unit 2260 (refer to FIG. 6(b) ) positioned inside the second chamber 2200, a heat pump 100 ) and the steam unit 2210 (refer to FIG. 6(b)) to refresh the clothes. That is, the blowing unit 220 (refer to FIG. 6(b)), the heat pump 100 (refer to FIG. 6(b)) and the steam unit 2210 (see FIG. 6(b)) positioned inside the second chamber 2200 ) through steam and/or heated air to sterilize and deodorize clothes, and to remove wrinkles formed by use.
상기 제1챔버(2100)는 상기 제1챔버(2100) 내부의 상부에 의류를 거치하기 위한 의류지지부(2130)를 포함할 수 있다. 상기 의류지지부(2130)는 의류가 걸린 옷걸이를 수용할 수 있으며, 상기 의류지지부(2130)를 좌우로 왕복운동시킬 수 있는 구동부(미도시)와 연결될 수 있다. 상기 의류지지부(2130)의 운동은 의류를 흔들게 되고, 결국 의류에 부착된 미세먼지를 포함한 이물질을 분리할 수 있다. 또한, 상기 의류지지부(2130)에 거치되는 의류를 흔드는 동안 제2챔버(2200)에서 공급되는 스팀 혹은 수분(moisture)에 노출시켜 의류의 주름을 어느 정도 제거할 수 있다.The first chamber 2100 may include a clothing support unit 2130 for holding clothing on an upper portion inside the first chamber 2100 . The clothes support unit 2130 may accommodate a hanger on which clothes are hung, and may be connected to a driving unit (not shown) capable of reciprocating the clothes support unit 2130 from side to side. The movement of the clothing support unit 2130 shakes the clothing, and eventually foreign substances including fine dust adhering to the clothes can be separated. Also, by exposing to steam or moisture supplied from the second chamber 2200 while shaking the clothes mounted on the clothes support unit 2130 , wrinkles on the clothes can be removed to some extent.
즉, 상기 의류지지부(2130)는 의류가 상기 제1챔버(2100)의 내부에서 자중에 의해 펼쳐진 상태로 거치도리 수 있도록 하여, 상기 제2챔버(2200)에서 공급되는 제습되고 가열된 공기 및/또는 스팀에 고르게 노출될 수 있도록 할 수 있다.That is, the clothes support part 2130 allows the clothes to be held in an unfolded state by their own weight inside the first chamber 2100, so that the dehumidified and heated air supplied from the second chamber 2200 and/ Alternatively, it can be made to be evenly exposed to steam.
일반적으로 물은 대기압하에서 100 ℃에서 끓게 되는데 이때, 발생한 수증기를 스팀이라 할 수 있다. 수분은 이와 달리 상온에서 물을 1 mm 이하의 작은 물방울이 공기중에 부유한 형태를 말한다. 예를 들어, 안개와 비슷하다. 일반적으로 물을 가열하여 끓여서 발생한 스팀의 경우 수분보다 높은 온도로 인해 살균력이 수분보다 뛰어나고, 높은 온도에서 물분자가 더 활발히 움직이므로 의류의 침투성이 뛰어나 의류를 리프레쉬하는데 있어서 수분보다 스팀이 더 활용될 수 있다. In general, water boils at 100 °C under atmospheric pressure. At this time, the generated water vapor can be called steam. Moisture, on the other hand, refers to a form in which water droplets of 1 mm or less are suspended in the air at room temperature. It's like fog, for example. In general, in the case of steam generated by heating water and boiling it, the sterilization power is superior to that of water due to the higher temperature than water, and since water molecules move more actively at high temperature, the permeability of clothes is excellent, so steam can be used more than water to refresh clothes. can
상기 제1챔버(2100)의 바닥면은 상기 제2챔버(2200)의 내부에서 스팀유닛(2210)에 의해 생성된 스팀과 히트펌프(100)에 의해 제습되고 가열된 공기를 제1챔버(2100)로 공급하기 위한 공기공급포트(2151)와 스팀공급포트(2152), 그리고, 송풍유닛(2260)에 의해 상기 제1챔버(2100)의 공기를 흡입하기 위한 흡입포트(2153)가 위치할 수 있다. The bottom surface of the first chamber 2100 provides steam generated by the steam unit 2210 inside the second chamber 2200 and air dehumidified and heated by the heat pump 100 to the first chamber 2100. ), the air supply port 2151 and the steam supply port 2152 for supplying, and the suction port 2153 for sucking the air of the first chamber 2100 by the blowing unit 2260 can be located have.
일례로, 상기 투입구(2030)는 상기 캐비닛의 일면 중 전방을 향하는 면에 구비될 것이고, 도 6(b)에 도시된 기계장치의 경우도 상기 급기덕트(2250)이 상기 투입구가 위치한 전방, 즉 상기 도어가 위치한 방향으로 위치하게 될 것이다. 따라서, 상기 흡입포트(2153)와 상기 급기덕트 입구(2551)가 연결되어 상기 제1챔버(2100)의 공기를 흡입하는 통로역할을 할 수 있다. As an example, the inlet 2030 will be provided on one surface of the cabinet facing the front, and in the case of the mechanical device shown in FIG. 6(b), the air supply duct 2250 is located in front of the inlet, that is, The door will be positioned in the direction it is positioned. Accordingly, the suction port 2153 and the air supply duct inlet 2551 are connected to each other to serve as a passage for sucking the air of the first chamber 2100 .
도 6(a)에 도시된 바와 같이, 상기 공기공급포트(2151)와 스팀공급포트(2152)는 상기 제1챔버(2100)의 바닥면과 상기 제1챔버(2100)의 후면이 만나는 영역에 구비될 수 있다. 또한, 상기 제1챔버(2100)의 바닥면과 상기 제1챔버(2100)의 후면이 만나는 영역은 매끄럽게 경사진 형태일 수 있다. 상기 흡입포트(2153)는 상기 제1챔버(2100)의 바닥면에서 투입구(2030)에 가깝게 위치할 수 있다. 따라서, 상기 제1챔버(2100) 내부의 공기는 상기 공기공급포트(2151)를 통해 토출되어 상기 흡입포트(2153)를 통해 흡입되어 순환하게 될 것이다. 스팀도 상기 스팀공급포트(2152)를 통해 배출된 뒤, 응축되어 상기 흡입포트(2153)를 통해 흡입된 후, 응축수를 저장하는 섬프(미도시)에 모이게 될 것이다.As shown in FIG. 6( a ), the air supply port 2151 and the steam supply port 2152 are located in a region where the bottom surface of the first chamber 2100 and the rear surface of the first chamber 2100 meet. can be provided. In addition, a region where the bottom surface of the first chamber 2100 and the rear surface of the first chamber 2100 meet may have a smoothly inclined shape. The suction port 2153 may be located close to the inlet 2030 on the bottom surface of the first chamber 2100 . Accordingly, the air inside the first chamber 2100 is discharged through the air supply port 2151 and is sucked through the suction port 2153 to be circulated. After steam is also discharged through the steam supply port 2152, it is condensed and sucked through the suction port 2153, and then collected in a sump (not shown) that stores condensed water.
상기 제1챔버(2100)의 내부에서 응축되는 응축수를 보다 원활히 상기 흡입포트(2153)를 통해 상기 제2챔버(2200)로 내부내기 위해 상기 상기 제1챔버(2100)의 바닥면은 상기 제1챔버(2100)의 후면에서 투입구(2030) 방향으로 하향경사질 수 있다In order to more smoothly introduce the condensed water condensed inside the first chamber 2100 into the second chamber 2200 through the suction port 2153, the bottom surface of the first chamber 2100 is the first It may be inclined downward in the direction of the inlet 2030 from the rear surface of the chamber 2100.
도 6(a)에 도시된 바와 같이 상기 의류처리장치(2000)는 스팀유닛(2210)에 물을 공급하기 위한 급수탱크(2410) 그리고, 섬프(미도시)에 집수된 응축수를 배출하여 저장하기 위한 배수탱크(2420)가 상기 제2챔버(2200)의 전방부에 구비될 수 있다. 또한, 상기 급수탱크(2410) 및 상기 배수탱크(2420)가 설치되는 탱크설치공간(미도시)을 형성하기 위한 탱크모듈프레임(미도시)이 구비되어, 상기 탱크설치공간(미도시)과 제2챔버(2200)를 분리할 수 있다. 즉, 제1챔버(2100)의 하부에는 탱크설치공간과 제2챔버(2200)가 위치하고, 상기 탱크설치공간은 상기 도어(2020)에 가깝게 위치하고 상기 탱크설치공간의 뒤에 제2챔버(2200)가 위치할 수 있다. As shown in FIG. 6( a ), the laundry treatment apparatus 2000 discharges and stores the water supply tank 2410 for supplying water to the steam unit 2210 and the condensed water collected in the sump (not shown). A drain tank 2420 for this purpose may be provided in the front portion of the second chamber 2200 . In addition, a tank module frame (not shown) for forming a tank installation space (not shown) in which the water supply tank 2410 and the drain tank 2420 are installed is provided, and the tank installation space (not shown) and the first The second chamber 2200 may be separated. That is, the tank installation space and the second chamber 2200 are located under the first chamber 2100, the tank installation space is located close to the door 2020, and the second chamber 2200 is located behind the tank installation space. can be located
상기 급수탱크(2410)와 배수탱크(2420)는 탱크모듈프레임(미도시)에서 각각 탈부착가능하도록 구비될 수 있다. 그러나, 이와 달리, 급수탱크(2410)와 배수탱크(2420)가 하나로 결합되어 동시에 탈부착하게 구비되어도 무방하다. The water supply tank 2410 and the drain tank 2420 may be respectively detachably provided in the tank module frame (not shown). However, unlike this, the water supply tank 2410 and the drain tank 2420 may be combined into one and may be provided to be detachably attached at the same time.
도어(2020)는 상기 도어(2020)를 닫는 경우, 상기 도어(2020)의 후면 또는 상기 도어(2020)에서 상기 제1챔버(2100)를 향하는 방향으로 위치한 도어내면을 포함할 수 있다. 상기 도어(2020)는 힌지방식으로 캐비닛(2010)에 회전가능하게 연결되어 투입구(2030)를 개폐하게 될 것이다. When the door 2020 is closed, the door 2020 may include a rear surface of the door 2020 or an inner surface of the door located in a direction from the door 2020 to the first chamber 2100 . The door 2020 is rotatably connected to the cabinet 2010 in a hinge manner to open and close the inlet 2030 .
사용자가 도어(2020)를 닫는 경우, 상기 급수탱크(2410)의 전면과 상기 배수탱크(2420)의 전면이 도어내면을 마주보게 되고, 사용자가 도어(2020)를 개방시에는 급수탱크(2410)의 전면과 배수탱크(2420)의 전면이 외부에 노출될 수 있다. 또한, 급수탱크(2410)및 배수탱크(2420)가 각각의 전면에 급수탱크윈도우(2411) 및 배수탱크윈도우(2421)를 포함하고 있어, 급수탱크(2410) 및 배수탱크(2420) 내부에 저장된 물의 수위를 바로 확인할 수 있다.When the user closes the door 2020, the front of the water supply tank 2410 and the front of the drain tank 2420 face the inner surface of the door, and when the user opens the door 2020, the water supply tank 2410 The front surface of and the front surface of the drain tank 2420 may be exposed to the outside. In addition, since the water supply tank 2410 and the drain tank 2420 include a water supply tank window 2411 and a drain tank window 2421 on their front surfaces, respectively, the water supply tank 2410 and the drain tank 2420 are stored inside You can check the water level right away.
상기 급수탱크(2410)의 전면과 상기 배수탱크(2420)의 전면에서는 각각 급수탱크손잡이(미도시)와 배수탱크손잡이(미도시)를 포함할 수 있다. 사용자가 각각 상기 급수탱크손잡이와 상기 배수탱크손잡이를 잡아당기는 경우, 상기 급수탱크(2410)와 상기 배수탱크(2420)는 각각 상기 급수탱크의 전면말단과 상기 배수탱크의 전면말단을 중심으로 회전하여 상기 탱크모듈프레임(미도시)에서 분리될 수 있다. 또한, 상기 탱크모듈프레임(미도시)에 장착할 때도 마찬가지로 회전을 통해 상기 탱크모듈프레임(미도시)에 상기 급수탱크(2410)와 상기 배수탱크(2420)가 안착될 것이다. The front surface of the water supply tank 2410 and the front surface of the drain tank 2420 may include a water supply tank handle (not shown) and a drain tank handle (not shown), respectively. When the user pulls the water supply tank handle and the drain tank handle, respectively, the water supply tank 2410 and the drain tank 2420 rotate around the front end of the water supply tank and the front end of the drain tank, respectively. It may be separated from the tank module frame (not shown). Also, when mounted on the tank module frame (not shown), the water supply tank 2410 and the drain tank 2420 will be seated on the tank module frame (not shown) through rotation as well.
상기 의류처리장치(2000)는 상기 도어(2020)의 내면 또는 상기 제1챔버(2100)의 내부에 바지(P)를 거꾸로 바지걸이에 거치시킨 후, 상기 바지걸이를 매다는 의류고정부 및 상기 의류고정부및 상기 바지걸이에 의해 고정된 바지를 가압하는 가압부(2070)가 위치할 수 있다. 상기 도어(2020)의 내면이란, 상기 도어의 양면 중 상기 투입구(2030)를 향해 위치하여, 상기 도어(2020)를 폐쇄시 상기 제1챔버(2100)와 더불어 상기 의류수용공간을 형성하는 면을 말한다. The clothes treatment apparatus 2000 includes a clothes fixing unit for hanging the trouser hangers after mounting the pants P upside down on the pants hangers on the inner surface of the door 2020 or the inside of the first chamber 2100 and the clothes A fixing part and a pressing part 2070 for pressing the pants fixed by the trouser hanger may be located. The inner surface of the door 2020 refers to a surface that is positioned toward the inlet 2030 among both surfaces of the door and forms the clothing accommodation space together with the first chamber 2100 when the door 2020 is closed. say
상기 바지(P)를 거꾸로 즉 밑단(bottom hem)을 위로하여 매다는 이유는 상기 바지(P)의 허리부분 즉 바지(P)의 상단(pant waist)의 무게가, 바지(P)의 하단 즉, 바지통(pant leg) 부분보다 무거우므로 상기 바지(P)의 자중을 통해 상기 바지(P)에 인장력이 가해져 바지(P)를 골고루 펴지게 하기 위함이다.The reason that the pants P is hung upside down, that is, with the bottom hem upward, is that the weight of the waist of the pants P, that is, the top of the pants P, is the bottom of the pants P, that is, Because it is heavier than the pants (pant leg) portion, a tensile force is applied to the pants (P) through the weight of the pants (P) to evenly spread the pants (P).
상기 가압부(2070)는 상기 도어(2000)의 내면에 결합하여 상기 의류를 지지하는 지지판과 상기 지지판을 향해 회전하여 바지(P)를 가압하는 회전판을 포함할 수 있다. 상기 회전판이 상기 지지판을 향해 회전하여 결합하게 되면 바지(P)를 가압할 수 있게 된다. 이 후 도어(2020)을 닫아, 제1챔버(2100)의 내부에서 스팀 및 제습되고 가열된 공기에 노출시켜 구김을 제거할 수 있다. 이때, 스팀이 바지(P)에 침투하는 것을 용이하게 하기 위해 상기 회전판을 관통하는 회전판 관통홀을 포함할 수 있으며, 바지(P)의 바지통의 길이방향을 따라 구비되는 솔기(seam)가 눌리는 것을 막기 위해 상기 회전판의 양면 중 바지(P)와 접촉하는 면에 함몰부를 더 포함할 수 있다. The pressing unit 2070 may include a support plate coupled to the inner surface of the door 2000 to support the clothes, and a rotating plate rotating toward the support plate to press the pants P. When the rotating plate is coupled to rotate toward the support plate, it is possible to press the pants (P). After that, the door 2020 is closed, and the wrinkle can be removed by exposing it to steam and dehumidified and heated air inside the first chamber 2100 . At this time, it may include a rotation plate through-hole penetrating the rotation plate to facilitate the steam penetration into the pants (P), and the seam (seam) provided along the longitudinal direction of the pants box of the pants (P) is pressed. In order to prevent it, it may further include a depression in the surface in contact with the pants (P) of both sides of the rotating plate.
도 6(b)를 참조하면, 제2챔버(2200)의 내부에는 상기 제1챔버(2100)의 공기를 흡입하기 위한 송풍유닛(2260), 상기 급수탱크(2410)의 물을 공급받아 스팀을 발생시킨 후 상기 제1챔버(2100)로 스팀을 공급하는 스팀유닛(2210), 상기 송풍유닛(2260)에 의해 흡입된 공기를 제습하고 가열한 후 상기 제1챔버(2100)로 배출하는 히트펌프(100)이 포함될 수 있다. 그리고, 상기 송풍유닛(2260), 상기 스팀유닛(2210), 및 상기 히트펌프(100)을 제어하기 위한 제어부(미도시)가 위치할 수 있다. Referring to Figure 6 (b), the inside of the second chamber 2200, the blowing unit 2260 for sucking the air of the first chamber 2100, the water from the water supply tank 2410 is supplied to steam A heat pump that dehumidifies and heats the air sucked in by the steam unit 2210 and the blowing unit 2260 for supplying steam to the first chamber 2100, and then discharges it to the first chamber 2100. (100) may be included. In addition, a control unit (not shown) for controlling the blowing unit 2260 , the steam unit 2210 , and the heat pump 100 may be located.
따라서, 제습되고 가열된 공기를 제1챔버(2100)로 공급하기 위해서는 상기 제1챔버(2100) 내부의 공기를 송풍유닛(2260)을 이용하여 급기덕트(2250)를 통해 흡입한다. 그리고, 히트펌프(100)으로 이동시켜, 열교환시킨 후 다시 제1챔버(2100)로 공급하게 된다.Accordingly, in order to supply the dehumidified and heated air to the first chamber 2100 , the air inside the first chamber 2100 is sucked through the air supply duct 2250 using the blowing unit 2260 . Then, it is moved to the heat pump 100 , and after heat exchange, it is supplied to the first chamber 2100 again.
도 6(b)를 참조하면, 상기 송풍유닛(2260)은 송풍팬(147) 및 급기덕트(2250)를 포함할 수 있다. 투입구(2030)가 위치하는 방향을 전방, 제1챔버의 후면이 위치하는 방향을 후방으로 칭하는 경우, 상기 급기덕트(2250)는 송풍팬(147)의 전방에 구비되고, 상기 급기덕트(2250)의 전방에는 탱크모듈프레임(미도시)이 구비될 수 있다. 따라서, 상기 탱크모듈프레임은 탱크설치공간과 제2챔버(2200)를 분리시킬 수 있다. Referring to FIG. 6B , the blowing unit 2260 may include a blowing fan 147 and an air supply duct 2250 . When the direction in which the inlet 2030 is located is referred to as the front and the direction in which the rear surface of the first chamber is located is referred to as the rear, the air supply duct 2250 is provided in front of the blowing fan 147, and the air supply duct 2250 In front of the tank module frame (not shown) may be provided. Accordingly, the tank module frame may separate the tank installation space and the second chamber 2200 .
상기 탱크모듈프레임에 안착되는 급수탱크(2410)와 배수탱크(2420)는 캐비닛(2010)의 양측면중 일측면에 가깝게 위치할 수 있다. 예컨대, 상기 급수탱크(2410)는 탱크설치공간(미도시)에서 캐비닛(2010)의 우측면이 캐비닛(2010)의 좌측면보다 가깝게 위치할 수 있고, 배수탱크(2420)는 이와 반대로 상기 캐비닛(2010)의 좌측면이 상기 캐비닛(2010)의 우측면보다 가깝게 위치할 수 있다.The water supply tank 2410 and the drain tank 2420 seated on the tank module frame may be located close to one side of both sides of the cabinet 2010 . For example, in the water supply tank 2410, the right side of the cabinet 2010 may be located closer than the left side of the cabinet 2010 in the tank installation space (not shown), and the drain tank 2420, on the contrary, is the cabinet 2010. The left side of the cabinet 2010 may be located closer than the right side of the cabinet 2010 .
상기 스팀유닛(2210)도 상기 급수탱크(2410)의 위치와 마찬가지로 상기 제2챔버(2200)의 내부에서 상기 캐비닛(2010)의 우측면이 상기 캐비닛(2010)의 좌측면보다 가깝게 위치할 수 있다. 이는 상기 급수탱크(2410)의 후방에 스팀유닛(2210)을 배치하여, 급수탱크(2410)에서 스팀유닛(2210)으로 물이 이동하는 연결유로를 단순화시키기 위함이다.Similarly to the position of the water supply tank 2410 , in the steam unit 2210 , the right side of the cabinet 2010 may be located closer than the left side of the cabinet 2010 inside the second chamber 2200 . This is to simplify the connection passage through which water moves from the water supply tank 2410 to the steam unit 2210 by disposing the steam unit 2210 at the rear of the water supply tank 2410 .
상기 스팀유닛(2210)은 히터를 이용하여 상기 스팀유닛(2210) 내부에 위치하는 물을 가열할 수 있으며, 발생된 스팀은 스팀유로(미도시)를 따라 상기 제1챔버(2100)의 바닥면에 구비되는 스팀공급포트(2152)와 연통될 수 있다. The steam unit 2210 may heat the water located inside the steam unit 2210 by using a heater, and the generated steam is generated along the steam passage (not shown) along the bottom surface of the first chamber 2100. It may communicate with the steam supply port 2152 provided in the.
만약 급수탱크(2410)가 캐비닛(2010)의 우측면보다 캐비닛(2010)의 좌측면에 가깝게 위치한다면, 이에 대응하여 스팀유닛의 위치도 캐비닛(2010)의 우측면보다 캐비닛(2010)의 좌측면에 가깝게 위치할 수 있다.If the water supply tank 2410 is located closer to the left side of the cabinet 2010 than to the right side of the cabinet 2010, correspondingly, the position of the steam unit is also closer to the left side of the cabinet 2010 than the right side of the cabinet 2010. can be located
또한, 상기 급기덕트(2250)는 상기 제1챔버(2100)의 바닥면에 구비되는 상기 흡입포트(2153)와 연통하여 상기 제1챔버(2100)의 공기를 흡입하는 급기덕트 입구(2551)를 포함할 수 있다. 또한, 상기 급기덕트 입구(2551)는 경사진 유로를 형성할 수 있다. 제1챔버(2100) 및 도어(2020)에서 발생한 응축수가 상기 제1챔버(2100)의 바닥면과 연통하는 급기덕트 입구(2551)를 지나 경사진 유로를 타고 상기 급기덕트(2250)의 내측 하부에 구비되는 섬프(미도시)로 용이하게 이동시키기 위함이다. In addition, the air supply duct 2250 communicates with the suction port 2153 provided on the bottom surface of the first chamber 2100 to suck the air of the first chamber 2100. may include In addition, the air supply duct inlet 2551 may form an inclined flow path. The condensed water generated in the first chamber 2100 and the door 2020 passes through the supply air duct inlet 2551 communicating with the bottom surface of the first chamber 2100 and rides the inclined flow path, and the inner lower part of the air supply duct 2250 This is for easy movement to a sump (not shown) provided in the .
상기 송풍팬(147)의 전방에는 급기덕트(2250)가 위치하고, 상기 송풍팬(147)의 후방에는 스팀유닛(2210) 및 히트펌프(100) 이 배치될 수 있다. 또한, 상기 히트펌프(100)은 서포터(2220, supporter)에 의해 지지될 수 있다. 상기 서포터(2220)는 상기 제2챔버(2200)의 바닥을 형성하는 베이스(2050)에 구비될 수 있다. 따라서, 상기 서포터(2220)는 상기 베이스(2050)와 상기 히트펌프(100)사이에 소정의 이격거리를 형성하고, 상기 서포터(2220)와 상기 베이스(2050)의 사이에 소정의 설치공간을 형성할 수 있다. 상기 설치공간에는 스팀유닛(2210)이 위치하고, 상기 설치공간에서 상기 서포터(2220)와 결합될 수 있다. 도 6(b)에는 제어부가 상기 서포터(2220)의 설치공간에서 스팀유닛(2210) 아래에 위치하는 일례를 도시하고 있으나, 이와 달리 상기 스팀유닛(2210)의 후방등 상기 제2챔버(2200)의 내부 어디에 설치되어도 무방하다. The air supply duct 2250 is positioned in front of the blowing fan 147 , and the steam unit 2210 and the heat pump 100 may be disposed in the rear of the blowing fan 147 . Also, the heat pump 100 may be supported by a supporter 2220 . The supporter 2220 may be provided on the base 2050 forming the bottom of the second chamber 2200 . Accordingly, the supporter 2220 forms a predetermined separation distance between the base 2050 and the heat pump 100 , and forms a predetermined installation space between the supporter 2220 and the base 2050 . can do. A steam unit 2210 may be located in the installation space, and may be coupled to the supporter 2220 in the installation space. 6(b) shows an example in which the control unit is located below the steam unit 2210 in the installation space of the supporter 2220, but unlike the second chamber 2200, the rear light of the steam unit 2210 It is free to be installed anywhere inside the
상기 히트펌프(100)은 상기 제1열교환기(또는 증발기) 및 상기 제2열교환기(또는 응축기)를 내부에 포함하고 있는 덕트(140), 상기 덕트(140)에서 제습되고 가열되는 공기를 상기 제1챔버(2100)로 배출시키기 위해 상기 제1챔버(2100)에 구비되는 공기공급포트(2151)와 연통하는 토출구(151)를 더 포함할 수 있다. 상기 서포터(2220)의 외측에는 냉매를 순환시키기 위한 압축기(미도시) 및 팽창밸브(미도시)가 위치할 수 있다.The heat pump 100 is a duct 140 including the first heat exchanger (or evaporator) and the second heat exchanger (or condenser) therein, and the air dehumidified and heated in the duct 140 is supplied to the A discharge port 151 communicating with an air supply port 2151 provided in the first chamber 2100 may be further included to discharge to the first chamber 2100 . A compressor (not shown) and an expansion valve (not shown) for circulating the refrigerant may be located outside the supporter 2220 .
도 6(b)에 도시된 것과 달리 송풍유닛(2260)이 상기 제1챔버(2100)의 공기를 순환시키고, 제1열교환기(110), 제2열교환기(120)가 상기 송풍유닛(2260)에 의해 순환되는 공기를 이동시키는 덕트(140) 내부에 구비될 수도 있다.Unlike that shown in FIG. 6( b ), the blowing unit 2260 circulates the air in the first chamber 2100 , and the first heat exchanger 110 and the second heat exchanger 120 operate the blowing unit 2260 . ) may be provided inside the duct 140 for moving the air circulated by.
상기 덕트(140)는 상기 송풍유닛(2260)은 송풍채널(2261)을 통해 연결될 수 있다. 구체적으로, 상기 송풍채널(2261)은 상기 송풍유닛(2260)의 배출구와 상기 덕트(140)의 입구를 연결할 수 있다.The duct 140 may be connected to the blowing unit 2260 through a blowing channel 2261 . Specifically, the blowing channel 2261 may connect the outlet of the blowing unit 2260 and the inlet of the duct 140 .
도 7(a)는 제2챔버(2200)의 내부에 구비되어 상기 제1챔버(2100) 내부의 공기를 순환시키는 덕트(140), 상기 덕트(140)의 외부에 구비되어 상기 베이스(2050)에 설치되는 압축기(150) 및 팽창부(160), 그리고, 냉매가 순환하는 냉매순환유로(130)를 도시하고 있다. 상기 덕트(140)의 내부에는 제1열교환기(110) 및 제2열교환기(120)가 위치하여, 상기 제1챔버(2100)에서 흡입된 공기와 열교환할 수 있다. 7( a ) shows a duct 140 provided inside the second chamber 2200 to circulate air inside the first chamber 2100 , and a base 2050 provided outside the duct 140 . The compressor 150 and the expansion unit 160 installed in the , and the refrigerant circulation path 130 through which the refrigerant circulates are shown. A first heat exchanger 110 and a second heat exchanger 120 are positioned inside the duct 140 to exchange heat with the air sucked in from the first chamber 2100 .
또한, 상기 압축기(150)와 상기 제2열교환기(120)를 연결하는 냉매순환유로의 일부인 토출관(131)에는 상기 토출관(131)의 외주면을 감싸 상기 토출관(131)을 지나는 냉매를 가열하는 가열부(170)를 포함할 수 있다. 그리고 상기 가열부(170)와 상기 압축기(150) 사이에는 압축되어 토출되는 냉매의 온도를 측정하기 위한 온도센서(190)를 구비할 수 있다. In addition, in the discharge pipe 131 , which is a part of the refrigerant circulation path connecting the compressor 150 and the second heat exchanger 120 , the refrigerant passing through the discharge pipe 131 is wrapped around the outer circumferential surface of the discharge pipe 131 . It may include a heating unit 170 for heating. A temperature sensor 190 for measuring the temperature of the compressed and discharged refrigerant may be provided between the heating unit 170 and the compressor 150 .
이를 통해 히트펌프(100)의 구동 초기시 가열능력을 증가시켜 상기 히트펌프(100)의 정상상태로의 빠른 안정화가 가능하다. 이는 이미 전술한 바와 동일하다. Through this, it is possible to quickly stabilize the heat pump 100 to a normal state by increasing the heating ability at the initial driving time of the heat pump 100 . This is the same as already described above.
또한, 상기 히트펌프(100)는 압축되어 토출되는 냉매의 온도를 측정하기 위한 온도센서(190)를 포함할 수 있다. 또한, 상기 히트펌프(100)는 토출관(131)에 구비되어 압축기(150)에서 토출되는 냉매를 가열하는 가열부(170)를 포함할 수 있다. 상기 가열부(170)는 상기 토출관(131)의 외주면을 감싸는 형태로 구비될 수 있다. 상기 온도센서(190) 및 상기 가열부(170)의 위치는 상기 압축기(150)에 인접하여 설치될 수 있는데 이는 설계에 따라 달라질 수 도 있다.In addition, the heat pump 100 may include a temperature sensor 190 for measuring the temperature of the compressed and discharged refrigerant. In addition, the heat pump 100 may include a heating unit 170 provided in the discharge pipe 131 to heat the refrigerant discharged from the compressor 150 . The heating unit 170 may be provided in a shape surrounding the outer circumferential surface of the discharge pipe 131 . The position of the temperature sensor 190 and the heating unit 170 may be installed adjacent to the compressor 150, which may vary depending on the design.
도 7(a)를 참조하면, 상기 제2열교환기(120)로 이동한 고온고압의 냉매는 상기 제2열교환기(120)를 통해 상기 드럼에서 흡입되어 제1열교환기(110)를 통해 냉각된 공기를 다시 가열하게 될 것이다. 상기 제1열교환기(110) 및 제2열교환기(120)는 일정간격으로 구비되는 복수 개의 열전달 핀(fin)을 냉매가 순환하는 튜브가 여러 번 왕복하면서 형성되는 핀-튜브(fin-tube)형상의 열교환기일 수 있다. Referring to FIG. 7A , the high-temperature and high-pressure refrigerant that has moved to the second heat exchanger 120 is sucked from the drum through the second heat exchanger 120 and cooled through the first heat exchanger 110 . The air will be heated again. The first heat exchanger 110 and the second heat exchanger 120 are fin-tube formed by reciprocating a tube through which a refrigerant circulates through a plurality of heat transfer fins provided at regular intervals several times. It may be a shaped heat exchanger.
또한, 상기 제1열교환기(110)에서는 열교환을 통해 드럼(1300)에서 흡입된 습한 공기를 냉각시키고, 냉매는 공기의 열을 전달받아 증발하게 될 것이다. 그 뒤, 냉매는 상기 냉매순환유로(130) 중 유입관(132)을 통해 압축기(150)와 연결되어 상기 압축기(150)로 이동하게 될 것이다.In addition, the first heat exchanger 110 cools the humid air sucked in from the drum 1300 through heat exchange, and the refrigerant receives heat from the air and evaporates. Thereafter, the refrigerant is connected to the compressor 150 through the inlet pipe 132 of the refrigerant circulation path 130 to move to the compressor 150 .
도 7(b)는 Q영역을 확대해서 나타낸 것이다. 상기 가열부(170)는 통상적인 코일형태의 전기 히터나, 실리콘카바이드 히터(SiC heater) 등 와이어 형태의 히터가 사용될 수 있다. 이와 달리, 실리콘패드 사이에 니크롬 열선을 배선한 고무히터(rubber heater)등이 사용될 수 있다. 또한, 필름에 면상 발열체를 인쇄한 후, 이를 부착하여 사용하는 필름 형태의 히터를 사용할 수도 있다. 7(b) is an enlarged view of the Q region. As the heating unit 170, a conventional coil-type electric heater or a wire-type heater such as a silicon carbide heater (SiC heater) may be used. Alternatively, a rubber heater in which a nichrome heating wire is wired between silicon pads may be used. In addition, after printing the planar heating element on the film, it is also possible to use a heater in the form of a film used by attaching it.
즉, 상기 가열부(170)는 전기를 열로 변환시키는 발열체(171) 및 상기 발열체가 부착된 필름(172)을 포함할 수 있다. That is, the heating unit 170 may include a heating element 171 that converts electricity into heat and a film 172 to which the heating element is attached.
상기 발열체(171)는 면상발열체의 형태일 수 있다. 상기 필름형태의 가열부(170)에 사용되는 발열체는 면상형태일 수 있는데, 이를 면상발열체라고도 부른다. 상기 면상발열체의 일례로는 비닐계 필름에 탄소잉크(black carbon ink)를 인쇄하고 구리 박판(copper sheet)을 전극으로 하여 전원과 접합하여 발열하는 발열체가 있다. 다른 일례로는 유리섬유에 탄소잉크를 코팅하고 구리선을 전극선으로 하여 직조한 발열체일 수도 있고, 부직포 또는 필름에 탄소잉크를 분사한 후 구리박판을 전극선으로 한 발열체일 수도 있다. 또는 이와 다른 방식으로 필름형태로 가열부(170)를 구현할 수 도 있을 것이다.The heating element 171 may be in the form of a planar heating element. The heating element used in the film-type heating unit 170 may be of a planar shape, which is also called a planar heating element. As an example of the planar heating element, there is a heating element that generates heat by printing black carbon ink on a vinyl-based film and bonding to a power source using a copper sheet as an electrode. Another example may be a heating element coated with carbon ink on glass fiber and woven using a copper wire as an electrode wire, or a heating element using a thin copper plate as an electrode wire after carbon ink is sprayed on a nonwoven fabric or film. Alternatively, the heating unit 170 may be implemented in a film form in a different way.
상기 발열체(171)를 상기 필름(172)에 인쇄한 후 상기 토출관(131)에 부착하여 사용할 수도 있고, 상기 발열체(171)를 상기 토출관(131)에 인쇄한 후, 상기 필름(172)을 부착할 수도 있다. After printing the heating element 171 on the film 172, it may be used by attaching it to the discharge pipe 131. After the heating element 171 is printed on the discharge tube 131, the film 172 can also be attached.
일례로, 상기 발열체(171)는 상기 필름(172)에 스크리닝(screening) 방법으로 PTC(Positive Temperature Coefficient) 잉크를 인쇄한 형태일 수 있다. 상기 필름(172)의 재질은 투명재질로 하여 상기 발열체(171)가 보이도록 할 수 있으나, 이에 국한되지 않는다. 상기 필름(172)은 일반적으로 폴리이미드(Polyimide, PI), 아크릴(Acrylic), 열경화성 폴리우레탄(Thermoplastic Polyurethane, TPU), 또는 폴리에틸렌 테레프탈레이트(Polyethylene Terephthalate, PET)을 이용하여 제조될 수 있다. For example, the heating element 171 may have a form in which PTC (Positive Temperature Coefficient) ink is printed on the film 172 by a screening method. The film 172 may be made of a transparent material so that the heating element 171 can be seen, but is not limited thereto. The film 172 may generally be manufactured using polyimide (PI), acrylic, thermosetting polyurethane (TPU), or polyethylene terephthalate (PET).
도 4 및 도 6에 일례로 나타낸 의류처리장치(1000, 2000) 외에도 본 개시의 일례인 히트펌프(100)는 상기 히트펌프(100)를 이용한 제습기, 상기 히트펌프를 이용하는 난방기 또는 냉/난방기 등의 가전제품에도 활용될 수 있다. 즉, 가전제품은 냉매가 순환하는 유로를 형성하는 냉매순환유로(130), 상기 냉매순환유로(130)에 위치하여, 공기를 상기 냉매와 열교환을 통해 냉각시키는 제1열교환기(110), 상기 냉매순환유로(130)에 위치하여, 상기 냉매와 열교환을 통해 상기 제1열교환기(110)를 통과한 공기를 가열하는 제2열교환기(120), 상기 냉매순환유로(130)에 위치하여, 상기 제1열교환기(110)를 지난 상기 냉매를 압축하여 순환시키는 압축기(150), 상기 냉매순환유로(130) 중 상기 제1열교환기(110) 및 상기 제2열교환기(120)를 사이에 위치하여 상기 냉매를 팽창시키는 팽창부(160) 및 상기 냉매순환유로(130) 중 상기 압축기(150) 및 상기 제2열교환기(120) 사이에 위치하여 상기 냉매를 가열하는 가열부(170)를 포함할 수 있다. In addition to the clothes treatment apparatuses 1000 and 2000 shown as an example in FIGS. 4 and 6 , the heat pump 100 as an example of the present disclosure includes a dehumidifier using the heat pump 100 , a heater using the heat pump, or a cooling/heating machine, etc. It can also be used for home appliances. That is, the home appliance includes a refrigerant circulation passage 130 that forms a passage through which the refrigerant circulates, a first heat exchanger 110 that is located in the refrigerant circulation passage 130 and cools air through heat exchange with the refrigerant, the Located in the refrigerant circulation path 130, the second heat exchanger 120 for heating the air that has passed through the first heat exchanger 110 through heat exchange with the refrigerant, located in the refrigerant circulation path 130, A compressor 150 that compresses and circulates the refrigerant that has passed through the first heat exchanger 110, and the first heat exchanger 110 and the second heat exchanger 120 in the refrigerant circulation path 130 are interposed therebetween. an expansion unit 160 for expanding the refrigerant and a heating unit 170 for heating the refrigerant located between the compressor 150 and the second heat exchanger 120 among the refrigerant circulation passage 130 . may include
본 개시는 다양한 형태로 변형되어 실시될 수 있을 것인바 상술한 실시예에 그 권리범위가 한정되지 않는다. 따라서, 변형된 실시예가 본 개시 특허청구범위의 구성요소를 포함하고 있다면 본 개시의 권리범위에 속하는 것으로 보아야 할 것이다.The present disclosure may be modified and implemented in various forms, but the scope of rights is not limited to the above-described embodiments. Accordingly, if the modified embodiment includes the elements of the claims of the present disclosure, it should be regarded as belonging to the scope of the present disclosure.

Claims (19)

  1. 냉매가 순환하는 유로를 형성하는 냉매순환유로;a refrigerant circulation passage forming a passage in which the refrigerant circulates;
    상기 냉매순환유로에 위치하여, 상기 냉매와 열교환을 통해 공기를 냉각시키는 제1열교환기;a first heat exchanger located in the refrigerant circulation path to cool air through heat exchange with the refrigerant;
    상기 냉매순환유로에 위치하여, 상기 냉매와 열교환을 통해 상기 제1열교환기를 통과한 공기를 가열하는 제2열교환기;a second heat exchanger located in the refrigerant circulation path to heat the air that has passed through the first heat exchanger through heat exchange with the refrigerant;
    상기 냉매순환유로에 위치하여, 상기 제1열교환기를 지난 상기 냉매를 압축하여 순환시키는 압축기;a compressor positioned in the refrigerant circulation path to compress and circulate the refrigerant passing through the first heat exchanger;
    상기 냉매순환유로 중 상기 제1열교환기 및 상기 제2열교환기 사이에 위치하여 상기 냉매를 팽창시키는 팽창부; 및an expansion unit positioned between the first heat exchanger and the second heat exchanger in the refrigerant circulation path to expand the refrigerant; and
    상기 냉매순환유로 중 상기 압축기 및 상기 제2열교환기 사이에 위치하여 상기 냉매를 가열하는 가열부;를 포함하는 히트펌프(Heat Pump).and a heating unit positioned between the compressor and the second heat exchanger in the refrigerant circulation path to heat the refrigerant.
  2. 제1항에 있어서,According to claim 1,
    상기 가열부는the heating part
    상기 제2열교환기보다 상기 압축기에 가깝게 위치하는 것을 특징으로 하는 히트펌프.Heat pump, characterized in that located closer to the compressor than the second heat exchanger.
  3. 제1항에 있어서,According to claim 1,
    상기 냉매순환유로는The refrigerant circulation path
    상기 압축기와 상기 제2열교환기를 연결하는 토출관;을 포함하고, and a discharge pipe connecting the compressor and the second heat exchanger.
    상기 가열부는 상기 토출관의 외주면을 가열하는 것을 특징으로 하는 히트펌프.The heating unit heat pump, characterized in that for heating the outer peripheral surface of the discharge pipe.
  4. 제3항에 있어서,4. The method of claim 3,
    상기 압축기는the compressor is
    상기 제1열교환기를 지난 냉매가 유입되는 유입구; 및an inlet through which the refrigerant passing through the first heat exchanger is introduced; and
    상기 냉매를 압축 후 상기 제2열교환기로 토출하는 토출구;를 포함하고, and a discharge port for discharging the refrigerant to the second heat exchanger after compression;
    상기 가열부는 the heating part
    상기 토출구에 인접하는 것을 특징으로 하는 히트펌프.Heat pump, characterized in that adjacent to the discharge port.
  5. 제4항에 있어서,5. The method of claim 4,
    상기 가열부는 the heating part
    전기를 열로 변환하는 발열체가 인쇄된 필름의 형태로 구비되어,A heating element that converts electricity into heat is provided in the form of a printed film,
    상기 토출관에 부착되는 것을 특징으로 하는 히트펌프.Heat pump, characterized in that attached to the discharge pipe.
  6. 제4항에 있어서,5. The method of claim 4,
    상기 가열부는 the heating part
    전기를 열로 변환하는 발열체가 상기 토출관의 외주면을 감싸는 코일형태로 구비되는 것을 특징으로 하는 히트펌프.Heat pump, characterized in that the heating element that converts electricity into heat is provided in the form of a coil surrounding the outer peripheral surface of the discharge pipe.
  7. 냉매가 순환하는 유로를 형성하는 냉매순환유로, 상기 냉매순환유로에 위치하여, 상기 냉매와 열교환을 통해 공기를 냉각시키는 제1열교환기, 상기 냉매순환유로에 위치하여, 상기 냉매와 열교환을 통해 상기 제1열교환기를 통과한 공기를 가열하는 제2열교환기; 상기 냉매순환유로에 위치하여, 상기 제1열교환기를 지난 상기 냉매를 압축하여 순환시키는 압축기; 상기 압축기에서 냉매가 토출되는 토출구; 상기 냉매순환유로 중 상기 제1열교환기 및 상기 제2열교환기를 사이에 위치하여 상기 냉매를 팽창시키는 팽창부; 및 상기 냉매순환유로 중 상기 압축기 및 상기 제2열교환기 사이를 연결하는 토출관, 상기 토출관에 위치하여 상기 냉매를 가열하는 가열부;를 포함하는 히트펌프(Heat Pump)의 제어방법에 있어서,A refrigerant circulation passage forming a passage in which a refrigerant circulates, a first heat exchanger positioned in the refrigerant circulation passage to cool air through heat exchange with the refrigerant, located in the refrigerant circulation passage, through heat exchange with the refrigerant a second heat exchanger for heating the air that has passed through the first heat exchanger; a compressor positioned in the refrigerant circulation path to compress and circulate the refrigerant passing through the first heat exchanger; a discharge port through which the refrigerant is discharged from the compressor; an expansion unit positioned between the first heat exchanger and the second heat exchanger in the refrigerant circulation path to expand the refrigerant; and a discharge pipe connecting between the compressor and the second heat exchanger in the refrigerant circulation path, and a heating unit positioned in the discharge pipe to heat the refrigerant.
    상기 압축기의 운전을 개시하는 단계;starting operation of the compressor;
    상기 가열부를 동작시키는 단계;operating the heating unit;
    상기 토출구에 위치하거나 상기 토출관에서 상기 토출구에 인접하게 위치하여 상기 압축기에서 토출되는 냉매의 온도를 측정하는 온도센서가 온도를 측정하는 온도측정단계; 및 a temperature measuring step of measuring a temperature by a temperature sensor located at the discharge port or located adjacent to the discharge port in the discharge pipe to measure the temperature of the refrigerant discharged from the compressor; and
    상기 온도센서를 통해 측정된 온도가 기 설정된 제1기준온도 미만이면 상기 가열부를 동작시키고, 기 설정된 제2기준온도를 초과하면, 상기 가열부의 동작을 중단하는 온도유지단계;를 포함하고, When the temperature measured through the temperature sensor is less than a preset first reference temperature, the heating unit is operated, and when it exceeds the preset second reference temperature, the temperature maintaining step of stopping the operation of the heating unit; includes,
    상기 압축기의 운전 개시후 기 설정된 동작시간이 경과할 때까지, 상기 온도측정단계 및 상기 온도유지단계를 반복하는 것을 특징으로 하는 히트펌프의 제어방법.The control method of a heat pump, characterized in that the temperature measuring step and the temperature maintaining step are repeated until a preset operation time elapses after the start of the operation of the compressor.
  8. 제7항에 있어서,8. The method of claim 7,
    상기 동작시간을 경과시, 상기 가열부의 동작을 중단하는 단계를 더 포함하는 것을 특징으로 하는 히트펌프의 제어방법.When the operation time elapses, the control method of the heat pump, characterized in that it further comprises the step of stopping the operation of the heating unit.
  9. 외관을 형성하는 캐비닛;cabinets that form the facade;
    상기 캐비닛 내부에 회전가능하게 구비되어 의류를 수용하는 드럼;a drum rotatably provided inside the cabinet to accommodate clothes;
    상기 드럼의 공기를 순환시키기 위한 통로를 형성하는 덕트;a duct forming a passage for circulating the air of the drum;
    냉매가 순환하는 유로를 형성하는 냉매순환유로;a refrigerant circulation passage forming a passage in which the refrigerant circulates;
    상기 덕트의 내부에서 상기 냉매순환유로에 위치하여, 상기 냉매와 열교환을 통해 공기를 냉각시키는 제1열교환기;a first heat exchanger located in the refrigerant circulation path inside the duct to cool air through heat exchange with the refrigerant;
    상기 덕트의 내부에서 상기 냉매순환유로에 위치하여, 상기 냉매와 열교환을 통해 상기 제1열교환기를 통과한 공기를 가열하는 제2열교환기;a second heat exchanger located in the refrigerant circulation path inside the duct and configured to heat the air that has passed through the first heat exchanger through heat exchange with the refrigerant;
    상기 덕트의 외부에서 상기 냉매순환유로에 위치하여, 상기 제1열교환기를 지난 상기 냉매를 압축하여 순환시키는 압축기;a compressor positioned in the refrigerant circulation path outside the duct to compress and circulate the refrigerant passing through the first heat exchanger;
    상기 덕트의 외부에 위치하고, 상기 냉매순환유로 중 상기 제1열교환기 및 상기 제2열교환기를 사이에 위치하여 상기 냉매를 팽창시키는 팽창부; 및an expansion unit located outside the duct and positioned between the first heat exchanger and the second heat exchanger in the refrigerant circulation path to expand the refrigerant; and
    상기 냉매순환유로 중 상기 압축기 및 상기 제2열교환기 사이에 위치하여 상기 냉매를 가열하는 가열부;를 포함하는 의류처리장치.and a heating unit positioned between the compressor and the second heat exchanger in the refrigerant circulation path to heat the refrigerant.
  10. 제9항에 있어서,10. The method of claim 9,
    상기 가열부는the heating part
    상기 제2열교환기보다 상기 압축기에 가깝게 위치하는 것을 특징으로 하는 의류처리장치.The laundry treatment apparatus according to claim 1, wherein the second heat exchanger is located closer to the compressor.
  11. 제9항에 있어서,10. The method of claim 9,
    상기 냉매순환유로는The refrigerant circulation path
    상기 압축기와 상기 제2열교환기를 연결하는 토출관;을 포함하고, and a discharge pipe connecting the compressor and the second heat exchanger.
    상기 가열부는 상기 토출관의 외주면을 가열하는 것을 특징으로 하는 의류처리장치.and the heating unit heats an outer circumferential surface of the discharge pipe.
  12. 제11항에 있어서,12. The method of claim 11,
    상기 압축기는the compressor is
    상기 제1열교환기를 지난 냉매가 유입되는 유입구; 및an inlet through which the refrigerant passing through the first heat exchanger is introduced; and
    상기 냉매를 압축 후 상기 제2열교환기로 토출하는 토출구;를 포함하고, and a discharge port for discharging the refrigerant to the second heat exchanger after compression;
    상기 가열부는 the heating part
    상기 토출구에 인접하는 것을 특징으로 하는 의류처리장치.The laundry treatment apparatus, characterized in that adjacent to the discharge port.
  13. 제12항에 있어서,13. The method of claim 12,
    상기 가열부는 the heating part
    전기를 열로 변환하는 발열체가 인쇄된 필름의 형태로 구비되어,A heating element that converts electricity into heat is provided in the form of a printed film,
    상기 토출관에 부착되는 것을 특징으로 하는 의류처리장치.The laundry treatment apparatus, characterized in that it is attached to the discharge pipe.
  14. 제12항에 있어서,13. The method of claim 12,
    상기 가열부는 the heating part
    전기를 열로 변환하는 발열체가 상기 토출관의 외주면을 감싸는 코일형태로 구비되는 것을 특징으로 하는 의류처리장치.A clothes treatment apparatus characterized in that a heating element that converts electricity into heat is provided in the form of a coil surrounding the outer circumferential surface of the discharge pipe.
  15. 일면에 투입구를 포함하는 캐비닛;A cabinet including an inlet on one side;
    상기 캐비닛 내부에 위치하여 상기 투입구를 통해 의류를 수용하는 제1챔버;a first chamber positioned inside the cabinet to receive clothes through the inlet;
    상기 제1챔버의 하부에 위치하여 상기 제1챔버와 분리된 공간을 형성하는 제2챔버;a second chamber positioned below the first chamber to form a space separated from the first chamber;
    상기 제2챔버의 내부에 구비되어, 스팀을 생성하고 상기 제1챔버에 공급하는 스팀유닛;a steam unit provided inside the second chamber to generate steam and supply it to the first chamber;
    상기 제2챔버의 내부에 구비되어, 상기 제1챔버의 공기를 순환시키기 위한 통로를 형성하는 덕트;a duct provided inside the second chamber to form a passage for circulating air in the first chamber;
    상기 제2챔버의 내부에 구비되어, 냉매가 순환하는 유로를 형성하는 냉매순환유로;a refrigerant circulation passage provided in the second chamber to form a passage in which the refrigerant circulates;
    상기 덕트의 내부에서 상기 냉매순환유로에 위치하여, 상기 냉매와 열교환을 통해 공기를 냉각시키는 제1열교환기;a first heat exchanger located in the refrigerant circulation path inside the duct to cool air through heat exchange with the refrigerant;
    상기 덕트의 내부에서 상기 냉매순환유로에 위치하여, 상기 냉매와 열교환을 통해 상기 제1열교환기를 통과한 공기를 가열하는 제2열교환기;a second heat exchanger located in the refrigerant circulation path inside the duct and configured to heat the air that has passed through the first heat exchanger through heat exchange with the refrigerant;
    상기 덕트의 외부에서 상기 냉매순환유로에 위치하여, 상기 제1열교환기를 지난 상기 냉매를 압축하여 순환시키는 압축기;a compressor positioned in the refrigerant circulation path outside the duct to compress and circulate the refrigerant passing through the first heat exchanger;
    상기 덕트의 외부에 위치하고, 상기 냉매순환유로 중 상기 제1열교환기 및 상기 제2열교환기를 사이에 위치하여 상기 냉매를 팽창시키는 팽창부; 및an expansion unit located outside the duct and positioned between the first heat exchanger and the second heat exchanger in the refrigerant circulation path to expand the refrigerant; and
    상기 냉매순환유로 중 상기 압축기 및 상기 제2열교환기 사이에 위치하여 상기 냉매를 가열하는 가열부;를 포함하는 의류처리장치.and a heating unit positioned between the compressor and the second heat exchanger in the refrigerant circulation path to heat the refrigerant.
  16. 제15항에 있어서,16. The method of claim 15,
    상기 압축기는the compressor is
    상기 제1열교환기를 지난 냉매가 유입되는 유입구; 및an inlet through which the refrigerant passing through the first heat exchanger is introduced; and
    상기 냉매를 압축 후 상기 제2열교환기로 토출하는 토출구;를 포함하고, and a discharge port for discharging the refrigerant to the second heat exchanger after compression;
    상기 가열부는 the heating part
    상기 토출구에 인접하는 것을 특징으로 하는 의류처리장치.The laundry treatment apparatus, characterized in that adjacent to the discharge port.
  17. 제16항에 있어서,17. The method of claim 16,
    상기 냉매순환유로는The refrigerant circulation path
    상기 압축기와 상기 제2열교환기를 연결하는 토출관;을 포함하고, and a discharge pipe connecting the compressor and the second heat exchanger.
    상기 가열부는 상기 토출관의 외주면을 가열하는 것을 특징으로 하는 의류처리장치.and the heating unit heats an outer circumferential surface of the discharge pipe.
  18. 제17항에 있어서,18. The method of claim 17,
    상기 가열부는 the heating part
    전기를 열로 변환하는 발열체가 인쇄된 필름의 형태로 구비되어,A heating element that converts electricity into heat is provided in the form of a printed film,
    상기 토출관에 부착되는 것을 특징으로 하는 의류처리장치.The laundry treatment apparatus, characterized in that it is attached to the discharge pipe.
  19. 냉매가 순환하는 유로를 형성하는 냉매순환유로;a refrigerant circulation passage forming a passage in which the refrigerant circulates;
    상기 냉매순환유로에 위치하여, 공기를 상기 냉매와 열교환을 통해 냉각시키는 제1열교환기;a first heat exchanger positioned in the refrigerant circulation path to cool air through heat exchange with the refrigerant;
    상기 냉매순환유로에 위치하여, 상기 냉매와 열교환을 통해 상기 제1열교환기를 통과한 공기를 가열하는 제2열교환기;a second heat exchanger located in the refrigerant circulation path to heat the air that has passed through the first heat exchanger through heat exchange with the refrigerant;
    상기 냉매순환유로에 위치하여, 상기 제1열교환기를 지난 상기 냉매를 압축하여 순환시키는 압축기;a compressor positioned in the refrigerant circulation path to compress and circulate the refrigerant passing through the first heat exchanger;
    상기 냉매순환유로 중 상기 제1열교환기 및 상기 제2열교환기를 사이에 위치하여 상기 냉매를 팽창시키는 팽창부; 및an expansion unit positioned between the first heat exchanger and the second heat exchanger in the refrigerant circulation path to expand the refrigerant; and
    상기 냉매순환유로 중 상기 압축기 및 상기 제2열교환기 사이에 위치하여 상기 냉매를 가열하는 가열부;를 포함하는 가전제품.and a heating unit positioned between the compressor and the second heat exchanger in the refrigerant circulation path to heat the refrigerant.
PCT/KR2021/009308 2020-08-06 2021-07-20 Heat pump and control method therefor WO2022030815A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020200098356A KR20220018172A (en) 2020-08-06 2020-08-06 Heat Pump And Controlling Method Of The Same
KR10-2020-0098356 2020-08-06

Publications (1)

Publication Number Publication Date
WO2022030815A1 true WO2022030815A1 (en) 2022-02-10

Family

ID=80117392

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/009308 WO2022030815A1 (en) 2020-08-06 2021-07-20 Heat pump and control method therefor

Country Status (2)

Country Link
KR (1) KR20220018172A (en)
WO (1) WO2022030815A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20240051746A (en) * 2022-10-13 2024-04-22 삼성전자주식회사 Drying apparatus

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030042837A (en) * 2001-11-24 2003-06-02 삼성전자주식회사 Air conditioning system with refrigerant heating apparatus
KR20110043084A (en) * 2009-10-21 2011-04-27 위니아만도 주식회사 Drying machine of use heat pump and method of controlling the same
EP2540905A1 (en) * 2011-06-29 2013-01-02 Electrolux Home Products Corporation N.V. A laundry dryer with heat pump system
JP2013123443A (en) * 2011-12-13 2013-06-24 Panasonic Corp Clothing drying machine
JP2019118833A (en) * 2018-01-08 2019-07-22 エルジー エレクトロニクス インコーポレイティド Clothes processing device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030042837A (en) * 2001-11-24 2003-06-02 삼성전자주식회사 Air conditioning system with refrigerant heating apparatus
KR20110043084A (en) * 2009-10-21 2011-04-27 위니아만도 주식회사 Drying machine of use heat pump and method of controlling the same
EP2540905A1 (en) * 2011-06-29 2013-01-02 Electrolux Home Products Corporation N.V. A laundry dryer with heat pump system
JP2013123443A (en) * 2011-12-13 2013-06-24 Panasonic Corp Clothing drying machine
JP2019118833A (en) * 2018-01-08 2019-07-22 エルジー エレクトロニクス インコーポレイティド Clothes processing device

Also Published As

Publication number Publication date
KR20220018172A (en) 2022-02-15

Similar Documents

Publication Publication Date Title
WO2011136595A2 (en) Laundry treating apparatus
WO2016099225A1 (en) Clothes treatment apparatus
US20110000099A1 (en) Tumble dryer comprising a heat pump and heating system and method for operating the same
JP3321945B2 (en) Clothes dryer
WO2016148521A1 (en) Clothes treatment apparatus and method of controlling the same
WO2015068934A1 (en) Laundry machine
WO2015016571A1 (en) Laundry machine
WO2020040451A1 (en) Clothes care apparatus
WO2022030815A1 (en) Heat pump and control method therefor
WO2019135663A1 (en) Clothing treatment apparatus
CN113005739A (en) Control method of clothes treatment device
WO2011074850A2 (en) Control method of laundry treatment apparatus
KR102372507B1 (en) Dryer
AU2020312373B2 (en) Laundry processing apparatus
WO2021010608A1 (en) Clothing management device and method for controlling same
US9175433B2 (en) Control method of laundry treatment apparatus
WO2016195252A1 (en) Clothes treating apparatus
WO2021235628A1 (en) Clothing treatment apparatus
CN214401103U (en) Clothes nursing machine
JP2004135752A (en) Clothes dryer apparatus
KR101150949B1 (en) Drying machine of use heat pump and method of controlling the same
WO2018097530A2 (en) Method for controlling clothes drying apparatus and clothes drying apparatus
CN114561785A (en) Clothes nursing machine and temperature control method thereof
KR102082608B1 (en) Low Temperature Flame Retardant Dryer
WO2017222340A1 (en) Garment processing device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21853301

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21853301

Country of ref document: EP

Kind code of ref document: A1