WO2022030622A1 - Method for producing compound - Google Patents

Method for producing compound Download PDF

Info

Publication number
WO2022030622A1
WO2022030622A1 PCT/JP2021/029343 JP2021029343W WO2022030622A1 WO 2022030622 A1 WO2022030622 A1 WO 2022030622A1 JP 2021029343 W JP2021029343 W JP 2021029343W WO 2022030622 A1 WO2022030622 A1 WO 2022030622A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
compound represented
general formula
formula
production method
Prior art date
Application number
PCT/JP2021/029343
Other languages
French (fr)
Japanese (ja)
Inventor
僚 張替
千絵美 小島
慎悟 今野
徹 山崎
Original Assignee
株式会社クレハ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クレハ filed Critical 株式会社クレハ
Priority to JP2022541750A priority Critical patent/JP7427096B2/en
Priority to US18/040,365 priority patent/US20230271929A1/en
Priority to EP21853755.3A priority patent/EP4194445A4/en
Priority to CN202180060304.5A priority patent/CN116171273B/en
Publication of WO2022030622A1 publication Critical patent/WO2022030622A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D303/00Compounds containing three-membered rings having one oxygen atom as the only ring hetero atom
    • C07D303/02Compounds containing oxirane rings
    • C07D303/48Compounds containing oxirane rings with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, directly attached to ring carbon atoms, e.g. ester or nitrile radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/61Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups
    • C07C45/63Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups by introduction of halogen; by substitution of halogen atoms by other halogen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/27Preparation of carboxylic acid esters from ortho-esters
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/39Preparation of carboxylic acid esters by oxidation of groups which are precursors for the acid moiety of the ester
    • C07C67/42Preparation of carboxylic acid esters by oxidation of groups which are precursors for the acid moiety of the ester by oxidation of secondary alcohols or ketones
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D249/00Heterocyclic compounds containing five-membered rings having three nitrogen atoms as the only ring hetero atoms
    • C07D249/02Heterocyclic compounds containing five-membered rings having three nitrogen atoms as the only ring hetero atoms not condensed with other rings
    • C07D249/081,2,4-Triazoles; Hydrogenated 1,2,4-triazoles
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D301/00Preparation of oxiranes
    • C07D301/02Synthesis of the oxirane ring

Definitions

  • the present invention relates to a method for producing a compound.
  • Patent Document 1 discloses a method for producing methyl 2- (2-chloro-4- (4-chlorophenoxy) phenyl) -2-oxoacetic acid, which is an intermediate of an azole derivative.
  • the present invention has been made in view of the above problems, and one aspect of the present invention is to realize a method capable of producing an intermediate of an azole derivative at a lower cost than an existing production method. do.
  • the production method is a production method for a compound represented by the general formula (IV).
  • R 1 is a C1-C6 - alkyl group
  • X 1 is a halogen group, a C1- C4 -haloalkyl group or a C1- C4 -haloalkoxy group
  • X 2 is a halogen group, a C1- C4 -haloalkyl group or a C1- C4 -haloalkoxy group
  • n is 1, 2 or 3
  • inorganic bases At least one of dimethyl sulfide and dimethyl sulfoxide, and
  • Methyl-LG where LG is a nucleophilically replaceable desorbing group, a halogen group, an alkoxysulfonyloxy group, an aryloxysulfonyloxy).
  • the production method comprising the step of converting the compound represented by the general formula (II) into the compound represented by the general formula (IV) using the above: [In formula (II), R 1 , X 1 , X 2 , and n are the same as R 1 , X 1 , X 2 , and n in formula (IV)].
  • the intermediate of the azole derivative can be produced at a lower cost than the existing production method.
  • the X-ray diffraction pattern of the triazole-1-yl body (A) is shown. intensity indicates the X-ray diffraction intensity, and Angle indicates the diffraction angle (2 ⁇ ).
  • the X-ray diffraction pattern of the triazole-4-yl body (B) is shown. intensity indicates the X-ray diffraction intensity, and Angle indicates the diffraction angle (2 ⁇ ).
  • R 1 is a C1-C6 - alkyl group
  • X 1 is a halogen group, a C1- C4 -haloalkyl group or a C1- C4 -haloalkoxy group
  • X 2 is a halogen group, a C1- C4 -haloalkyl group or a C1- C4 -haloalkoxy group
  • n is 1, 2 or 3].
  • the C1 - C6 - alkyl group is a linear or branched alkyl group having 1 to 6 carbon atoms, and is, for example, a methyl group, an ethyl group, a 1-methylethyl group, or a 1,1-dimethyl group.
  • Ethyl group propyl group, 1-methylpropyl group, 2-methylpropyl group, 1,1-dimethylpropyl group, 2,2-dimethylpropyl group, 1-ethylpropyl group, butyl group, 1-methylbutyl group, 2- Methylbutyl group, 3-methylbutyl group, 3,3-dimethylbutyl group, 2,2-dimethylbutyl group, 1,1-dimethylbutyl group, 1-ethylbutyl group, 2-ethylbutyl group, pentyl group, 1-methylpentyl group , 2-Methylpentyl group, 3-methylpentyl group or 4-methylpentyl group.
  • halogen group examples include a chlorine group, a bromine group, an iodine group or a fluorine group.
  • the C1- C4 - haloalkyl group one or two or more halogen atoms are substituted at substitutable positions of the C1- C4 - alkyl group, and when the number of substituted halogen groups is two or more, the halogen is used.
  • the groups may be the same or different.
  • the C1- C4 - alkyl group is a linear or branched-chain alkyl group having 1 to 4 carbon atoms.
  • the C1- C4 - alkyl group is a linear or branched alkyl group having 1 to 4 carbon atoms, and examples thereof include a methyl group, an ethyl group, a propyl group and a butyl group.
  • the halogen group is as described above.
  • Examples of the C1- C4 - haloalkyl group include a chloromethyl group, a 2-chloroethyl group, a 2,3-dichloropropyl group, a bromomethyl group, a chlorodifluoromethyl group, a trifluoromethyl group, and 3,3,3-. Examples include a trifluoropropyl group.
  • the C1- C4 - haloalkoxy group one or two or more halogen atoms are substituted at substitutable positions of the C1- C4 -alkoxy group, and when the number of substituted halogen groups is two or more, the halogen atom is substituted.
  • the halogen groups may be the same or different.
  • the C1- C4 - alkoxy group is a linear or branched-chain alkoxy group having 1 to 4 carbon atoms.
  • the C1- C4 - alkoxy group is a linear or branched alkoxy group having 1 to 4 carbon atoms, and is, for example, a methoxy group, an ethoxy group, a propoxy group, an isopropoxy group, or a 1-methylpropoxy group. , 2-Methylpropoxy group, butoxy group, 1,1-dimethylethoxy group and the like.
  • the production method 1 of this embodiment is a step of converting a compound represented by the general formula (II) (hereinafter referred to as “ketoester derivative (II)”) into an oxirane derivative (IV) according to the following scheme 1. (Referred to as "step 1").
  • step 1 a compound represented by the general formula (II)
  • step 1 a compound represented by the general formula (II)
  • step 1 a compound represented by the general formula (II)
  • step 1 a compound represented by the general formula (II)
  • step 1 a compound represented by the general formula (II)
  • step 1 a compound represented by the general formula (II)
  • step 1 a compound represented by the general formula (II)
  • step 1 a compound represented by the general formula (II)
  • step 1 a compound represented by the general formula (II)
  • step 1 a compound represented by the general formula (II)
  • step 1 a compound represented by the general formula (II)
  • step 1 a
  • Step 1 In the manufacturing method 1 of this embodiment, the step 1 is In the coexistence of inorganic bases (A) At least one of dimethyl sulfide and dimethyl sulfoxide, and (b) Methyl-LG (where LG is a nucleophilically replaceable desorbing group, a halogen group, an alkoxysulfonyloxy group, an aryloxysulfonyloxy). Group, alkylsulfonyloxy group, haloalkylsulfonyloxy group, and arylsulfonyloxy group) Is a step of converting the ketoester derivative (II) into the oxylan derivative (IV) using the above. [In formula (II), R 1 , X 1 , X 2 , and n are identical to R 1 , X 1 , X 2 , and n in formula (IV)].
  • step 1 oxylanation is performed while preparing a sulfonium salt in the reaction system using at least one of dimethyl sulfide and dimethyl sulfoxide and methyl-LG. That is, the preparation of the sulfonium salt and the oxyranization reaction are carried out at the same time.
  • the inorganic base is added from the viewpoint of advancing the reaction of step 1.
  • Examples of the inorganic base used in step 1 include sodium hydride, cesium carbonate, potassium phosphate, potassium carbonate and the like, and potassium carbonate is preferable.
  • LG is a leaving group selected from a nucleophilically replaceable leaving group, for example, a halogen group, an alkoxysulfonyloxy group, an aryloxysulfonyloxy group, an alkylsulfonyloxy group, a haloalkylsulfonyloxy group, and an arylsulfonyloxy group. It shows a group, preferably an alkoxysulfonyloxy group.
  • the amount of the inorganic base coexisting in the reaction system in step 1 is 1.0 to 10.0 equivalents (eq.) With respect to 1 equivalent (eq.) Of the ketoester derivative (II) from the viewpoint of advancing the reaction of step 1. ) Is preferable.
  • the amount of the above-mentioned “(a) at least one of dimethyl sulfide and dimethyl sulfoxide” (referred to as “required amount of reaction") added to the reaction system in step 1 is the ketoester derivative (II) 1 from the viewpoint of carrying out the reaction in just proportion. It is preferably 1.0 to 10.0 equivalents (eq.) With respect to the equivalent (eq.).
  • the amount of the "(b) methyl-LG" added to the reaction system in step 1 (referred to as “required amount of reaction") is 1 equivalent (eq.) Of the ketoester derivative (II) from the viewpoint of carrying out the reaction in just proportion. On the other hand, it is preferably 1.0 to 10.0 equivalents (eq.).
  • Step 1 proceeds in an organic solvent.
  • a solvent in which the reaction of step 1 proceeds is appropriately selected, and examples thereof include dichloroethane and the like.
  • the reaction of step 1 can be carried out, for example, while heating, refluxing and stirring in an oil bath.
  • the oil bath temperature may be, for example, 85 to 100 ° C. so that the internal temperature is 80 to 90 ° C.
  • step 1 it is preferable to add the reaction required amounts of the above (a) and (b) in divided portions.
  • the divided addition in step 1 means that the required reaction amounts of (a) and (b) are added in one or more divided portions.
  • a person skilled in the art can appropriately set an appropriate timing and number of additions from the second time onward in consideration of reaction conditions and the like. For example, the second divided addition may be performed before the activity of the reagent added the first time is lost.
  • the reaction of (a) and (b) required for the reaction of step 1 is compared with the case where the (a) and (b) are added all at once without the divided addition. It has the effect of reducing the amount of reagents used. It is considered that this is because the reaction is efficiently carried out by the divided addition of (a) and (b) as compared with the case of adding (a) and (b) all at once.
  • the addition amount for each addition is not particularly limited.
  • the amount of the divided addition can be appropriately adjusted according to the number of times of the divided addition. Further, each divided addition amount (for example, the divided addition amount of the first and second divided additions when the required reaction amount is divided into two portions) may be the same or different.
  • the above (a) may be at least one of dimethyl sulfide and dimethyl sulfoxide, but both dimethyl sulfide and dimethyl sulfoxide are preferable.
  • the addition of dimethyl sulfide and dimethyl sulfoxide in combination has the effect of not only reducing the amount of reagent used but also improving the yield, as compared with the case where only dimethyl sulfoxide is added. ..
  • the production method 1 of this embodiment instead of TMSOB, at least one of dimethyl sulfide and dimethyl sulfoxide, which are relatively easily available, and methyl-LG are used for oxylanation, so that it is not necessary to separately prepare TMSOB.
  • the manufacturing method 1 of this embodiment the construction cost of the plant required for manufacturing the TMSOB, the labor cost at the time of manufacturing, the utility cost, etc. are not required, and the practitioner of the manufacturing method 1 of the present embodiment manufactures the TMSOB. It is possible to enjoy manufacturing merits such as shortening of the batch cycle time required for. Further, since the practitioner of the production method 1 of this embodiment handles DMSO under basic conditions, it is possible to enjoy the merit of high safety in production.
  • the oxylane derivative (IV) produced by the production method 1 of this embodiment is one of the intermediates of the compound represented by the general formula (I) described later (hereinafter referred to as “azole derivative (I)”).
  • the oxylan derivative (IV) can be produced at low cost without using expensive TMSOB, iodine, and iodomethane, so that the azole derivative (I) can be produced at low cost.
  • R 1 , X 1 , X 2 , and n are the same as R 1 , X 1 , X 2 , and n in the general formula (IV)].
  • the production method 1 of this embodiment may include the production method of the ketoester derivative (II) of this embodiment (hereinafter referred to as “production method 2”) before the step 1.
  • the production method 2 of this embodiment is a step of converting a compound represented by the general formula (III) (hereinafter referred to as “methyl ketone derivative (III)”) into a ketoester derivative (II) according to the following scheme 2. (Hereinafter referred to as "step 2") is included.
  • R 1 , X 1 , X 2 , and n in the following scheme 2 correspond to R 1 , X 1 , X 2 , and n in the general formula (IV).
  • Step 2 bromine is allowed to act on the methyl ketone derivative (III) while heating the reaction system in a solvent containing dimethyl sulfoxide, and then R1 - OH (where R1 is referred to as R1). It is the same as R 1 in the general formula (IV)) to produce a ketoester derivative (II).
  • R1 in the general formula (IV)
  • X 1 , X 2 , and n are the same as X 1 , X 2 , and n in formula (IV)].
  • step 2 the synthesis of ketocarboxylic acid using bromine and dimethyl sulfoxide and the esterification using R1 - OH are continuously carried out.
  • the ketoester derivative (II) can be produced at low cost and the yield is high as compared with the case where iodine is used as in Patent Document 1.
  • R1 - OH is used as the esterification reagent used in the esterification reaction, the ketoester derivative (II) can be produced at a lower cost as compared with the case where iodomethane is used as in Patent Document 1.
  • the amount of dimethyl sulfoxide added to the reaction system in step 2 is 2.0 to 10.0 equivalents (eq.) With respect to 1 equivalent (eq.) Of the methylketone derivative (III) from the viewpoint of carrying out the reaction in just proportion. Is preferable.
  • the amount of bromine added to the reaction system in step 2 is 0.5 to 3.0 equivalents (eq.) With respect to 1 equivalent (eq.) Of the methylketone derivative (III) from the viewpoint of carrying out the reaction in just proportion. It is preferable to have.
  • the reaction temperature of the ketocarboxylic acid synthesis reaction in step 2 is preferably 60 to 85 ° C, more preferably 70 ° C, from the viewpoint of preferably carrying out the reaction.
  • the synthetic reaction of ketocarboxylic acid in step 2 can be carried out while stirring and heating so that the internal temperature becomes the above temperature in an oil bath.
  • the esterification reaction in step 2 can be carried out, for example, while heating and refluxing in an oil bath.
  • the oil bath temperature may be 60 to 80 ° C. so that the internal temperature is preferably 55 to 65 ° C., more preferably 65 ° C.
  • Step 2 proceeds in an organic solvent.
  • a solvent in which the reaction of step 2 proceeds is appropriately selected, and examples thereof include dichloroethane and the like.
  • step 2 the reaction system to which bromine is added is heated in a solvent containing dimethyl sulfoxide, and then the methyl ketone derivative (III) is added to the methyl ketone derivative (III). Can be reacted with bromine and then with R1-OH (where R 1 is the same as R 1 in the general formula (IV)) to produce the ketoester derivative (II). good.
  • the heating temperature of the reaction system before the addition of the methyl ketone derivative (III) is preferably an internal temperature of 60 to 75 ° C., 65. More preferably, it is ° C.
  • the reaction temperature of the reaction system after the addition of the methyl ketone derivative (III) is preferably 65 to 80 ° C, more preferably 70 ° C.
  • the step 2 is preferably carried out in the coexistence of at least one compound selected from the group consisting of urea, adipic acid dihydrazide and dibutylhydroxytoluene. It is more preferable to carry out in coexistence.
  • white deposits are generated in the reaction vessel by using bromine. Although this white deposit is not contained in the final product of step 2, it causes clogging of the reaction vessel, so it is necessary to remove the white deposit in the reaction vessel each time.
  • by carrying out the reaction of step 2 in the coexistence of the compound it is possible to suppress the generation of white deposits adhering to the inside of the reaction vessel in step 2.
  • the practitioner can enjoy the merit that the production efficiency is improved because the treatment for removing the white deposits in the reaction vessel becomes unnecessary. Since the effect of suppressing the generation of white deposits is high, the compound coexisting in the reaction system in step 2 is preferably urea.
  • the amount of at least one compound selected from the group consisting of urea, adipic acid dihydrazide and dibutylhydroxytoluene coexisting in the reaction system in step 2 is the amount of the methyl ketone derivative (III) 1 from the viewpoint of suppressing the generation of white deposits. It is preferably 0.1 to 2.0 equivalents (eq.) With respect to the equivalent (eq.).
  • the method for producing the azole derivative (I) of this embodiment (hereinafter referred to as "production method 3") will be described.
  • the production method 3 of this embodiment includes the above-mentioned production method of the oxylan derivative (IV) of the present embodiment in order to produce the oxylan derivative (IV) which is an intermediate of the azole derivative (I), and is obtained by the production method.
  • a step of converting the obtained oxylan derivative (IV) into an azole derivative (I) according to the following scheme 3 (hereinafter referred to as “step 3”) is included.
  • step 3 the oxylan derivative (IV) can be produced at low cost, so that the azole derivative (I) can be produced at low cost.
  • R 1 , X 1 , X 2 , and n in the following scheme 3 correspond to R 1 , X 1 , X 2 , and n in the general formula (IV).
  • step 3 the oxylan derivative (IV) produced by the production method 1 is used as an azole derivative (I) using 1,2,4-triazole in the presence of an inorganic base. Convert to.
  • step 3 1,2,4-triazole and an inorganic base are used, and a salt of 1,2,4-triazole and the inorganic base (for example, when potassium carbonate is used as the inorganic base) in the reaction system. , 1,2,4-Triazole potassium salt) is azoled.
  • 1,2,4-Triazole potassium salt is azoled.
  • the inorganic base used in step 3 is as illustrated in the description of step 1.
  • the inorganic base used in step 3 may be the same as or different from the inorganic base used in step 1.
  • the amount of the inorganic base coexisting in the reaction system in step 3 is 0.1 to 3.0 equivalents (eq.) With respect to 1 equivalent (eq.) Of the oxylane derivative (IV) from the viewpoint of advancing the reaction in step 3. ) Is preferable.
  • the amount of 1,2,4-triazole added to the reaction system in step 3 is 1.0 to 1 equivalent (eq.) Of the oxylan derivative (IV) from the viewpoint of carrying out the reaction of step 3 in just proportion. It is preferably 3.0 equivalents (eq.).
  • Step 3 proceeds in an organic solvent.
  • a solvent in which the reaction of step 3 proceeds is appropriately selected, and examples thereof include N, N-dimethylformamide, N, N-dimethylacetamide and the like.
  • the reaction of step 3 can be carried out, for example, with stirring at room temperature or while heating and stirring in an oil bath.
  • the reaction temperature at this time is, for example, an internal temperature of 40 to 120 ° C.
  • the method for converting the oxylan derivative (IV) to the azole derivative (I) is not limited to the above-mentioned method, and a known method (for example, the method disclosed in Patent Document 1) can also be used. be. Therefore, the production method 3 according to another aspect of the present invention includes the above-mentioned method for producing the oxylan derivative (IV) of the present embodiment, and the oxylan derivative (IV) obtained by the production method is used as a known method ( For example, it may be a method of converting to an azole derivative (I) according to the method disclosed in Patent Document 1).
  • the production method is a method for producing a compound represented by the general formula (IV), in which (a) at least one of dimethyl sulfide and dimethylsulfoxide, and (b) in the presence of an inorganic base.
  • Methyl-LG where LG is a nucleophilically replaceable desorbing group, a halogen group, an alkoxysulfonyloxy group, an aryloxysulfonyloxy group, an alkylsulfonyloxy group, a haloalkylsulfonyloxy group, and an arylsulfonyloxy group.
  • (Selected from the group) is used to convert the compound represented by the general formula (II) into the compound represented by the general formula (IV). With such a configuration, the oxylan derivative (IV) can be produced without using costly TMSOB.
  • the reaction required amounts of the above (a) and the above (b) are divided and added. It is preferable to do so. Since the reaction is efficiently carried out by the divided addition of (a) and (b), the amount of the reagent used in (a) and (b) can be reduced.
  • the above (a) is preferably both dimethyl sulfide and dimethyl sulfoxide.
  • the addition of dimethyl sulfide has the effect of reducing the amount of reagent used in (a).
  • the production method according to the fourth aspect further comprises, in any one of the first to third aspects, the step 2 of converting the compound represented by the general formula (III) into the compound represented by the general formula (II).
  • step 2 bromine is allowed to act on the compound represented by the general formula (III) while heating the reaction system in a solvent containing dimethyl sulfoxide, and then R 1 ⁇ OH (where R 1 is represented by the formula (where R 1 is)).
  • R 1 ⁇ OH where R 1 is represented by the formula (where R 1 is)
  • It may be configured to produce the compound represented by the general formula (II) by allowing the action (which is the same as R 1 in IV). With such a configuration, the ketoester derivative (II) can be produced without using costly iodine or iodomethane.
  • the reaction system to which bromine is added is heated in a solvent containing dimethyl sulfoxide and then generally used.
  • the compound represented by the formula (III) is added to cause bromine to act on the compound represented by the general formula (III), and then R 1 -OH (where R 1 is R in the formula (IV)). It is preferable to carry out the same reaction as 1 ) to produce the compound represented by the general formula (II).
  • the step 2 for converting to the compound represented by the general formula (II) is selected from the group consisting of urea, adipic acid dihydrazide and dibutylhydroxytoluene. It is preferable to carry out in the coexistence of at least one kind. With such a configuration, it is possible to suppress the generation of white deposits adhering to the inside of the reaction vessel in step 2.
  • the production method according to this aspect 7 is a method for producing a compound represented by the general formula (I), and is a method for producing a compound represented by the general formula (IV) according to any one of the present aspects 1 to 6.
  • the compound represented by the general formula (IV) obtained by the production method is represented by the general formula (I) using 1,2,4-triazole in the presence of an inorganic base. It is a configuration including a step 3 for converting into a compound to be made. With such a configuration, the production cost of the intermediate of the azole derivative (I) can be reduced, so that the production cost of the azole derivative (I) can be reduced.
  • dimethyl sulfoxide 468 of 2'-chloro-4'-(4-chlorophenoxy) acetophenone 283.11 g (1.00 mol) A .77 g (6.00 mol) solution was added with a dropping funnel.
  • 39.07 g (0.50 mol) of dimethyl sulfoxide and 6 mL of dichloroethane were added.
  • the low boiling material was distilled off, 500 mL of toluene and 500 mL of methanol were added, and the mixture was heated under reflux.
  • Synthesis Example 2-3 the generation of white deposits adhering to the inside of the reaction vessel could be suppressed by 95% or more as compared with Synthesis Example 2-1 and Synthesis Example 2-2.
  • the present invention can be used as a method for producing an intermediate for synthesizing an azole derivative useful as a pesticide.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

The present invention provides a method which can produce an intermediate of an azole derivative at lower cost than an existing production method. The method is for producing a compound represented by general formula (IV) and includes a step in which a compound represented by general formula (II) is converted into the compound represented by general formula (IV) in the presence of an inorganic base using both (a) dimethyl sulfide and/or dimethyl sulfoxide and (b) a methyl-LG (wherein LG is a nucleophilically replaceable leaving group and is selected from among halogen groups, alkoxysulfonyloxy groups, aryloxysulfonyloxy groups, alkylsulfonyloxy groups, haloalkylsulfonyloxy groups, and arylsulfonyloxy groups).

Description

化合物の製造方法Method for producing compound
 本発明は化合物の製造方法に関する。 The present invention relates to a method for producing a compound.
 高い防除効果を示す農園芸用薬剤として、アゾール誘導体が有用である。そして、アゾール誘導体を製造するために、アゾール誘導体の中間体の製造方法が検討されている。例えば、特許文献1には、アゾール誘導体の中間体である2-(2-クロロ-4-(4-クロロフェノキシ)フェニル)-2-オキソ酢酸メチルを製造する方法が開示されている。 Azole derivatives are useful as agricultural and horticultural agents that show a high control effect. Then, in order to produce an azole derivative, a method for producing an intermediate of the azole derivative is being studied. For example, Patent Document 1 discloses a method for producing methyl 2- (2-chloro-4- (4-chlorophenoxy) phenyl) -2-oxoacetic acid, which is an intermediate of an azole derivative.
国際公開公報第2019/093522号International Publication No. 2019/093522
 特許文献1に記載されたアゾール誘導体の中間体化合物の製造方法では、トリメチルスルホキソニウムブロマイド(TMSOB)を用いてオキシラン化を行う工程と、ヨウ素やヨードメタンを用いて、ケトン基をケトエステル基へと置換する工程と、が開示されている。しかし、TMSOB、ヨウ素、及びヨードメタンは高価であるため、アゾール誘導体の中間体の製造コストが嵩むという課題を有している。このため、より安価にアゾール誘導体の中間体を製造できる方法が求められている。 In the method for producing an intermediate compound of an azole derivative described in Patent Document 1, a step of performing oxylanation using trimethylsulfoxonium bromide (TMSOB) and a step of converting a ketone group into a ketoester group using iodine or iodomethane. The process of replacement is disclosed. However, since TMSOB, iodine, and iodomethane are expensive, there is a problem that the production cost of an intermediate of an azole derivative increases. Therefore, there is a demand for a method capable of producing an intermediate of an azole derivative at a lower cost.
 本発明は前記の問題点に鑑みてなされたものであり、本発明の一態様は、既存の製造方法よりも安価にアゾール誘導体の中間体を製造することができる方法を実現することを目的とする。 The present invention has been made in view of the above problems, and one aspect of the present invention is to realize a method capable of producing an intermediate of an azole derivative at a lower cost than an existing production method. do.
 前記の課題を解決するために、本発明の一態様に係る製造方法は、一般式(IV)で表される化合物の製造方法であって、
Figure JPOXMLDOC01-appb-C000005
 [式(IV)中、Rは、C-C-アルキル基であり;
  Xは、ハロゲン基、C-C-ハロアルキル基又はC-C-ハロアルコキシ基であり;
  Xは、ハロゲン基、C-C-ハロアルキル基又はC-C-ハロアルコキシ基であり;
  nは、1、2又は3である]
 無機塩基の共存下にて、
  (a)ジメチルスルフィド及びジメチルスルホキシドの少なくとも一方、並びに
  (b)メチル-LG(ここで、LGは求核的に置換可能な脱離基であり、ハロゲン基、アルコキシスルホニルオキシ基、アリールオキシスルホニルオキシ基、アルキルスルホニルオキシ基、ハロアルキルスルホニルオキシ基、及びアリールスルホニルオキシ基から選ばれる)
を用いて、一般式(II)で表される化合物を前記一般式(IV)で表される化合物に変換する工程を含むことを特徴とする、製造方法:
Figure JPOXMLDOC01-appb-C000006
 [式(II)中、R、X、X、及びnは、式(IV)中のR、X、X、及びnと同一である]。
In order to solve the above-mentioned problems, the production method according to one aspect of the present invention is a production method for a compound represented by the general formula (IV).
Figure JPOXMLDOC01-appb-C000005
[In formula (IV), R 1 is a C1-C6 - alkyl group;
X 1 is a halogen group, a C1- C4 -haloalkyl group or a C1- C4 -haloalkoxy group;
X 2 is a halogen group, a C1- C4 -haloalkyl group or a C1- C4 -haloalkoxy group;
n is 1, 2 or 3]
In the coexistence of inorganic bases
(A) At least one of dimethyl sulfide and dimethyl sulfoxide, and (b) Methyl-LG (where LG is a nucleophilically replaceable desorbing group, a halogen group, an alkoxysulfonyloxy group, an aryloxysulfonyloxy). Group, alkylsulfonyloxy group, haloalkylsulfonyloxy group, and arylsulfonyloxy group)
The production method comprising the step of converting the compound represented by the general formula (II) into the compound represented by the general formula (IV) using the above:
Figure JPOXMLDOC01-appb-C000006
[In formula (II), R 1 , X 1 , X 2 , and n are the same as R 1 , X 1 , X 2 , and n in formula (IV)].
 本発明の一態様によれば、アゾール誘導体の中間体が既存の製造方法よりも安価に製造できる。 According to one aspect of the present invention, the intermediate of the azole derivative can be produced at a lower cost than the existing production method.
トリアゾール-1-イル体(A)のX線回折パターンを示す。intensityはX線回折強度、Angleは回折角(2θ)を示す。The X-ray diffraction pattern of the triazole-1-yl body (A) is shown. intensity indicates the X-ray diffraction intensity, and Angle indicates the diffraction angle (2θ). トリアゾール-4-イル体(B)のX線回折パターンを示す。intensityはX線回折強度、Angleは回折角(2θ)を示す。The X-ray diffraction pattern of the triazole-4-yl body (B) is shown. intensity indicates the X-ray diffraction intensity, and Angle indicates the diffraction angle (2θ). 本実施例で合成したトリアゾール-1-イル:トリアゾール-4-イル=95:5混合物(C)のX線回折パターンを示す。intensityはX線回折強度、Angleは回折角(2θ)を示す。The X-ray diffraction pattern of the triazole-1-yl: triazole-4-yl = 95: 5 mixture (C) synthesized in this example is shown. intensity indicates the X-ray diffraction intensity, and Angle indicates the diffraction angle (2θ).
 以下、本発明を実施するための好適な形態について説明する。尚、以下に説明する実施形態は、本発明の代表的な実施形態の一例を示したものであり、これにより本発明の範囲が狭く解釈されることはない。 Hereinafter, a suitable mode for carrying out the present invention will be described. It should be noted that the embodiments described below show an example of a typical embodiment of the present invention, and the scope of the present invention is not narrowly interpreted by this.
 〔1.一般式(IV)で表される化合物の製造方法〕
 本発明の一態様に係る一般式(IV)で表される化合物(以下、「オキシラン誘導体(IV)」と称する)の製造方法(以下「製造方法1」と称する)について説明する:
Figure JPOXMLDOC01-appb-C000007
 [式(IV)中、Rは、C-C-アルキル基であり;
  Xは、ハロゲン基、C-C-ハロアルキル基又はC-C-ハロアルコキシ基であり;
  Xは、ハロゲン基、C-C-ハロアルキル基又はC-C-ハロアルコキシ基であり;
  nは、1、2又は3である]。
[1. Method for producing a compound represented by the general formula (IV)]
A method for producing a compound represented by the general formula (IV) according to one aspect of the present invention (hereinafter referred to as "oxylan derivative (IV)") (hereinafter referred to as "production method 1") will be described:
Figure JPOXMLDOC01-appb-C000007
[In formula (IV), R 1 is a C1-C6 - alkyl group;
X 1 is a halogen group, a C1- C4 -haloalkyl group or a C1- C4 -haloalkoxy group;
X 2 is a halogen group, a C1- C4 -haloalkyl group or a C1- C4 -haloalkoxy group;
n is 1, 2 or 3].
 C-C-アルキル基は、炭素原子数が1~6個である直鎖又は分岐鎖状アルキル基であり、例えば、メチル基、エチル基、1-メチルエチル基、1,1-ジメチルエチル基、プロピル基、1-メチルプロピル基、2-メチルプロピル基、1,1-ジメチルプロピル基、2,2-ジメチルプロピル基、1-エチルプロピル基、ブチル基、1-メチルブチル基、2-メチルブチル基、3-メチルブチル基、3,3-ジメチルブチル基、2,2-ジメチルブチル基、1,1-ジメチルブチル基、1-エチルブチル基、2-エチルブチル基、ペンチル基、1-メチルペンチル基、2-メチルペンチル基、3-メチルペンチル基又は4-メチルペンチル基が挙げられる。 The C1 - C6 - alkyl group is a linear or branched alkyl group having 1 to 6 carbon atoms, and is, for example, a methyl group, an ethyl group, a 1-methylethyl group, or a 1,1-dimethyl group. Ethyl group, propyl group, 1-methylpropyl group, 2-methylpropyl group, 1,1-dimethylpropyl group, 2,2-dimethylpropyl group, 1-ethylpropyl group, butyl group, 1-methylbutyl group, 2- Methylbutyl group, 3-methylbutyl group, 3,3-dimethylbutyl group, 2,2-dimethylbutyl group, 1,1-dimethylbutyl group, 1-ethylbutyl group, 2-ethylbutyl group, pentyl group, 1-methylpentyl group , 2-Methylpentyl group, 3-methylpentyl group or 4-methylpentyl group.
 ハロゲン基としては、塩素基、臭素基、ヨウ素基又はフッ素基が挙げられる。 Examples of the halogen group include a chlorine group, a bromine group, an iodine group or a fluorine group.
 C-C-ハロアルキル基は、C-C-アルキル基の置換し得る位置に1又は2以上のハロゲン原子が置換されており、置換されるハロゲン基が2以上の場合は、ハロゲン基は同一又は異なってもよい。尚、C-C-アルキル基は、炭素原子数が1~4個である直鎖又は分岐鎖状アルキル基である。 In the C1- C4 - haloalkyl group, one or two or more halogen atoms are substituted at substitutable positions of the C1- C4 - alkyl group, and when the number of substituted halogen groups is two or more, the halogen is used. The groups may be the same or different. The C1- C4 - alkyl group is a linear or branched-chain alkyl group having 1 to 4 carbon atoms.
 C-C-アルキル基は、炭素原子数が1~4個である直鎖又は分岐鎖状アルキル基であり、例えば、メチル基、エチル基、プロピル基、ブチル基が挙げられる。ハロゲン基は前述したとおりである。C-C-ハロアルキル基としては、例えば、クロロメチル基、2-クロロエチル基、2,3-ジクロロプロピル基、ブロモメチル基、クロロジフルオロメチル基、トリフルオロメチル基、及び3,3,3-トリフルオロプロピル基が挙げられる。 The C1- C4 - alkyl group is a linear or branched alkyl group having 1 to 4 carbon atoms, and examples thereof include a methyl group, an ethyl group, a propyl group and a butyl group. The halogen group is as described above. Examples of the C1- C4 - haloalkyl group include a chloromethyl group, a 2-chloroethyl group, a 2,3-dichloropropyl group, a bromomethyl group, a chlorodifluoromethyl group, a trifluoromethyl group, and 3,3,3-. Examples include a trifluoropropyl group.
 C-C-ハロアルコキシ基は、C-C-アルコキシ基の置換し得る位置に1又は2以上のハロゲン原子が置換されており、置換されるハロゲン基が2以上の場合は、ハロゲン基は同一又は異なってもよい。尚、C-C-アルコキシ基は、炭素原子数が1~4個の直鎖又は分岐鎖状のアルコキシ基である。 In the C1- C4 - haloalkoxy group, one or two or more halogen atoms are substituted at substitutable positions of the C1- C4 -alkoxy group, and when the number of substituted halogen groups is two or more, the halogen atom is substituted. The halogen groups may be the same or different. The C1- C4 - alkoxy group is a linear or branched-chain alkoxy group having 1 to 4 carbon atoms.
 C-C-アルコキシ基は、炭素原子数1~4個の直鎖又は分岐鎖状のアルコキシ基であり、例えば、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、1-メチルプロポキシ基、2-メチルプロポキシ基、ブトキシ基、1,1-ジメチルエトキシ基が挙げられる。 The C1- C4 - alkoxy group is a linear or branched alkoxy group having 1 to 4 carbon atoms, and is, for example, a methoxy group, an ethoxy group, a propoxy group, an isopropoxy group, or a 1-methylpropoxy group. , 2-Methylpropoxy group, butoxy group, 1,1-dimethylethoxy group and the like.
 本態様の製造方法1は、以下のスキーム1に従って、一般式(II)で表される化合物(以下、「ケトエステル誘導体(II)」と称する)をオキシラン誘導体(IV)に変換する工程(以下、「工程1」と称する)を含む。尚、下記スキーム1中のR、X、X、及びnは、前記一般式(IV)中のR、X、X、及びnに対応する。 The production method 1 of this embodiment is a step of converting a compound represented by the general formula (II) (hereinafter referred to as “ketoester derivative (II)”) into an oxirane derivative (IV) according to the following scheme 1. (Referred to as "step 1"). In addition, R 1 , X 1 , X 2 , and n in the following scheme 1 correspond to R 1 , X 1 , X 2 , and n in the general formula (IV).
 <スキーム1>
Figure JPOXMLDOC01-appb-C000008
 (工程1)
 本態様の製造方法1における、工程1は、
 無機塩基の共存下にて、
  (a)ジメチルスルフィド及びジメチルスルホキシドの少なくとも一方、並びに
  (b)メチル-LG(ここで、LGは求核的に置換可能な脱離基であり、ハロゲン基、アルコキシスルホニルオキシ基、アリールオキシスルホニルオキシ基、アルキルスルホニルオキシ基、ハロアルキルスルホニルオキシ基、及びアリールスルホニルオキシ基から選ばれる)
を用いて、ケトエステル誘導体(II)をオキシラン誘導体(IV)に変換する工程である。
Figure JPOXMLDOC01-appb-C000009
 [式(II)中、R、X、X、及びnは、式(IV)中のR、X、X、及びnと同一である]。
<Scheme 1>
Figure JPOXMLDOC01-appb-C000008
(Step 1)
In the manufacturing method 1 of this embodiment, the step 1 is
In the coexistence of inorganic bases
(A) At least one of dimethyl sulfide and dimethyl sulfoxide, and (b) Methyl-LG (where LG is a nucleophilically replaceable desorbing group, a halogen group, an alkoxysulfonyloxy group, an aryloxysulfonyloxy). Group, alkylsulfonyloxy group, haloalkylsulfonyloxy group, and arylsulfonyloxy group)
Is a step of converting the ketoester derivative (II) into the oxylan derivative (IV) using the above.
Figure JPOXMLDOC01-appb-C000009
[In formula (II), R 1 , X 1 , X 2 , and n are identical to R 1 , X 1 , X 2 , and n in formula (IV)].
 工程1では、ジメチルスルフィド及びジメチルスルホキシドの少なくとも一方とメチル-LGとを使用して、反応系内でスルホニウム塩を調製しながらオキシラン化を行う。つまり、スルホニウム塩の調製とオキシラン化反応を同時に行う。 In step 1, oxylanation is performed while preparing a sulfonium salt in the reaction system using at least one of dimethyl sulfide and dimethyl sulfoxide and methyl-LG. That is, the preparation of the sulfonium salt and the oxyranization reaction are carried out at the same time.
 無機塩基は、工程1の反応を進行させる観点から添加される。工程1で用いる無機塩基としては、例えば、水素化ナトリウム、炭酸セシウム、リン酸カリウム、及び炭酸カリウム等が挙げられ、好ましくは炭酸カリウムである。 The inorganic base is added from the viewpoint of advancing the reaction of step 1. Examples of the inorganic base used in step 1 include sodium hydride, cesium carbonate, potassium phosphate, potassium carbonate and the like, and potassium carbonate is preferable.
 LGは、求核的に置換可能な脱離基、例えば、ハロゲン基、アルコキシスルホニルオキシ基、アリールオキシスルホニルオキシ基、アルキルスルホニルオキシ基、ハロアルキルスルホニルオキシ基、及びアリールスルホニルオキシ基から選ばれる脱離基を示し、好ましくはアルコキシスルホニルオキシ基である。 LG is a leaving group selected from a nucleophilically replaceable leaving group, for example, a halogen group, an alkoxysulfonyloxy group, an aryloxysulfonyloxy group, an alkylsulfonyloxy group, a haloalkylsulfonyloxy group, and an arylsulfonyloxy group. It shows a group, preferably an alkoxysulfonyloxy group.
 工程1において反応系に共存させる無機塩基の量は、工程1の反応を進行させる観点から、ケトエステル誘導体(II)1当量(eq.)に対して、1.0~10.0当量(eq.)であることが好ましい。 The amount of the inorganic base coexisting in the reaction system in step 1 is 1.0 to 10.0 equivalents (eq.) With respect to 1 equivalent (eq.) Of the ketoester derivative (II) from the viewpoint of advancing the reaction of step 1. ) Is preferable.
 工程1において反応系に添加する前記「(a)ジメチルスルフィド及びジメチルスルホキシドの少なくとも一方」の量(「反応必要量」という。)は、反応を過不足なく行う観点から、ケトエステル誘導体(II)1当量(eq.)に対して、1.0~10.0当量(eq.)であることが好ましい。 The amount of the above-mentioned "(a) at least one of dimethyl sulfide and dimethyl sulfoxide" (referred to as "required amount of reaction") added to the reaction system in step 1 is the ketoester derivative (II) 1 from the viewpoint of carrying out the reaction in just proportion. It is preferably 1.0 to 10.0 equivalents (eq.) With respect to the equivalent (eq.).
 工程1において反応系に添加する前記「(b)メチル-LG」の量(「反応必要量」という。)は、反応を過不足なく行う観点から、ケトエステル誘導体(II)1当量(eq.)に対して、1.0~10.0当量(eq.)であることが好ましい。 The amount of the "(b) methyl-LG" added to the reaction system in step 1 (referred to as "required amount of reaction") is 1 equivalent (eq.) Of the ketoester derivative (II) from the viewpoint of carrying out the reaction in just proportion. On the other hand, it is preferably 1.0 to 10.0 equivalents (eq.).
 工程1は有機溶媒中で進行する。前記有機溶媒としては、工程1の反応が進行する溶媒が適宜選択され、例えば、ジクロロエタン等が挙げられる。工程1の反応は、例えば、オイルバス中で加熱還流撹拌しながら行うことができる。この時、内温が80~90℃となるように、オイルバス温度を、例えば、85~100℃とすればよい。 Step 1 proceeds in an organic solvent. As the organic solvent, a solvent in which the reaction of step 1 proceeds is appropriately selected, and examples thereof include dichloroethane and the like. The reaction of step 1 can be carried out, for example, while heating, refluxing and stirring in an oil bath. At this time, the oil bath temperature may be, for example, 85 to 100 ° C. so that the internal temperature is 80 to 90 ° C.
 本態様の製造方法1において、工程1では、前記(a)及び(b)の反応必要量を分割して添加することが好ましい。工程1における分割添加とは、(a)及び(b)の反応必要量を1回以上分割して添加することである。2回目以降を添加するタイミング及び分割添加の回数は、当業者が反応条件等を考慮して適切なタイミング及び回数を適宜設定することができる。例えば、1回目に添加した試薬の活性が失われる前に2回目の分割添加を行えばよい。(a)及び(b)の分割添加により、(a)及び(b)を分割添加せずに一括で添加する場合と比較して、工程1の反応に必要な(a)及び(b)の試薬使用量を削減できるという効果を奏する。これは、(a)及び(b)の分割添加により、(a)及び(b)を一括で添加する場合と比較して、反応が効率的に行われるためであると考えられる。 In the production method 1 of this embodiment, in step 1, it is preferable to add the reaction required amounts of the above (a) and (b) in divided portions. The divided addition in step 1 means that the required reaction amounts of (a) and (b) are added in one or more divided portions. A person skilled in the art can appropriately set an appropriate timing and number of additions from the second time onward in consideration of reaction conditions and the like. For example, the second divided addition may be performed before the activity of the reagent added the first time is lost. By the divided addition of (a) and (b), the reaction of (a) and (b) required for the reaction of step 1 is compared with the case where the (a) and (b) are added all at once without the divided addition. It has the effect of reducing the amount of reagents used. It is considered that this is because the reaction is efficiently carried out by the divided addition of (a) and (b) as compared with the case of adding (a) and (b) all at once.
 前述した反応必要量を全て反応系に添加できればよいため、1度の添加ごとの添加量(「分割添加量」と称する。)は特に限定されない。分割添加量は分割添加の回数に応じて適宜調整することができる。また、各分割添加量(例えば、反応必要量を2回に分割して添加する場合の1回目と2回目との分割添加量)は、同じであってもよく、異なっていてもよい。 Since it is sufficient that all the required reaction amounts described above can be added to the reaction system, the addition amount for each addition (referred to as "divided addition amount") is not particularly limited. The amount of the divided addition can be appropriately adjusted according to the number of times of the divided addition. Further, each divided addition amount (for example, the divided addition amount of the first and second divided additions when the required reaction amount is divided into two portions) may be the same or different.
 前記(a)は、ジメチルスルフィド及びジメチルスルホキシドの少なくとも一方であればよいが、ジメチルスルフィド及びジメチルスルホキシドの両方であることが好ましい。(a)において、ジメチルスルフィドとジメチルスルホキシドとを併用して添加することにより、ジメチルスルホキシドのみを添加する場合と比較して、試薬使用量が削減できるだけでなく、収率も向上するという効果を奏する。 The above (a) may be at least one of dimethyl sulfide and dimethyl sulfoxide, but both dimethyl sulfide and dimethyl sulfoxide are preferable. In (a), the addition of dimethyl sulfide and dimethyl sulfoxide in combination has the effect of not only reducing the amount of reagent used but also improving the yield, as compared with the case where only dimethyl sulfoxide is added. ..
 本態様の製造方法1では、TMSOBの代わりに、比較的入手しやすいジメチルスルフィド及びジメチルスルホキシドの少なくとも一方とメチル-LGとを使用してオキシラン化を行うので、別途TMSOBを調製する必要がなくなる。本態様の製造方法1を実施することにより、TMSOBの製造に必要となるプラントの建設費や製造時の人件費やユーティリティ費等が不要となり、本態様の製造方法1の実施者はTMSOBの製造にかかるバッチサイクルタイムも短縮される等の製造上のメリットを享受することができる。また、本態様の製造方法1の実施者は塩基性条件下でDMSOを扱うため、製造における安全性が高いというメリットを享受することができる。 In the production method 1 of this embodiment, instead of TMSOB, at least one of dimethyl sulfide and dimethyl sulfoxide, which are relatively easily available, and methyl-LG are used for oxylanation, so that it is not necessary to separately prepare TMSOB. By implementing the manufacturing method 1 of this embodiment, the construction cost of the plant required for manufacturing the TMSOB, the labor cost at the time of manufacturing, the utility cost, etc. are not required, and the practitioner of the manufacturing method 1 of the present embodiment manufactures the TMSOB. It is possible to enjoy manufacturing merits such as shortening of the batch cycle time required for. Further, since the practitioner of the production method 1 of this embodiment handles DMSO under basic conditions, it is possible to enjoy the merit of high safety in production.
 本態様の製造方法1で製造されるオキシラン誘導体(IV)は、後述する一般式(I)で示される化合物(以下、「アゾール誘導体(I)」と称する)の中間体の一つである。本態様の製造方法1によって、高価なTMSOB、ヨウ素、及びヨードメタンを用いずに、オキシラン誘導体(IV)を安価に製造できるため、アゾール誘導体(I)を安価に製造することができる。
Figure JPOXMLDOC01-appb-C000010
 [式(I)中、R、X、X、及びnは、前記一般式(IV)中のR、X、X、及びnと同一である]。
The oxylane derivative (IV) produced by the production method 1 of this embodiment is one of the intermediates of the compound represented by the general formula (I) described later (hereinafter referred to as “azole derivative (I)”). According to the production method 1 of this embodiment, the oxylan derivative (IV) can be produced at low cost without using expensive TMSOB, iodine, and iodomethane, so that the azole derivative (I) can be produced at low cost.
Figure JPOXMLDOC01-appb-C000010
[In formula (I), R 1 , X 1 , X 2 , and n are the same as R 1 , X 1 , X 2 , and n in the general formula (IV)].
 〔2.ケトエステル誘導体(II)の製造方法〕
 本態様の製造方法1は、工程1の前に、本態様のケトエステル誘導体(II)の製造方法(以下、「製造方法2」と称する)を含んでもよい。
[2. Method for producing ketoester derivative (II)]
The production method 1 of this embodiment may include the production method of the ketoester derivative (II) of this embodiment (hereinafter referred to as “production method 2”) before the step 1.
 以下に、本態様の製造方法2は、以下のスキーム2に従って、一般式(III)で表される化合物(以下、「メチルケトン誘導体(III)」と称する)をケトエステル誘導体(II)に変換する工程(以下、「工程2」と称する)を含む。尚、下記スキーム2中のR、X、X、及びnは、前記一般式(IV)中のR、X、X、及びnに対応する。 Hereinafter, the production method 2 of this embodiment is a step of converting a compound represented by the general formula (III) (hereinafter referred to as “methyl ketone derivative (III)”) into a ketoester derivative (II) according to the following scheme 2. (Hereinafter referred to as "step 2") is included. In addition, R 1 , X 1 , X 2 , and n in the following scheme 2 correspond to R 1 , X 1 , X 2 , and n in the general formula (IV).
 <スキーム2>
Figure JPOXMLDOC01-appb-C000011
 (工程2)
 本態様の製造方法2において、工程2では、ジメチルスルホキシドを含む溶媒中、反応系を加熱しながらメチルケトン誘導体(III)に臭素を作用させ、次いで、R-OH(ここで、Rは、前記一般式(IV)中のRと同一である)を作用させて、ケトエステル誘導体(II)を生成する。
Figure JPOXMLDOC01-appb-C000012
 [式(III)中、X、X、及びnは、式(IV)中のX、X、及びnと同一である]。
<Scheme 2>
Figure JPOXMLDOC01-appb-C000011
(Step 2)
In the production method 2 of this embodiment, in step 2, bromine is allowed to act on the methyl ketone derivative (III) while heating the reaction system in a solvent containing dimethyl sulfoxide, and then R1 - OH (where R1 is referred to as R1). It is the same as R 1 in the general formula (IV)) to produce a ketoester derivative (II).
Figure JPOXMLDOC01-appb-C000012
[In formula (III), X 1 , X 2 , and n are the same as X 1 , X 2 , and n in formula (IV)].
 工程2では、臭素及びジメチルスルホキシドを用いたケトカルボン酸の合成と、R-OHを用いたエステル化とを連続して行う。ケトカルボン酸の合成反応に臭素を用いることで、特許文献1のようにヨウ素を使用する場合と比較して、ケトエステル誘導体(II)を安価に製造でき、さらには収率も高い。また、エステル化反応に用いるエステル化試薬としてR-OHを用いるので、特許文献1のようにヨードメタンを使用する場合と比較して、ケトエステル誘導体(II)を安価に製造できる。 In step 2, the synthesis of ketocarboxylic acid using bromine and dimethyl sulfoxide and the esterification using R1 - OH are continuously carried out. By using bromine in the synthesis reaction of ketocarboxylic acid, the ketoester derivative (II) can be produced at low cost and the yield is high as compared with the case where iodine is used as in Patent Document 1. Further, since R1 - OH is used as the esterification reagent used in the esterification reaction, the ketoester derivative (II) can be produced at a lower cost as compared with the case where iodomethane is used as in Patent Document 1.
 工程2において反応系に添加するジメチルスルホキシドの量は、反応を過不足なく行う観点から、メチルケトン誘導体(III)1当量(eq.)に対して、2.0~10.0当量(eq.)であることが好ましい。 The amount of dimethyl sulfoxide added to the reaction system in step 2 is 2.0 to 10.0 equivalents (eq.) With respect to 1 equivalent (eq.) Of the methylketone derivative (III) from the viewpoint of carrying out the reaction in just proportion. Is preferable.
 工程2において反応系に添加する臭素の量は、反応を過不足なく行う観点から、メチルケトン誘導体(III)1当量(eq.)に対して、0.5~3.0当量(eq.)であることが好ましい。 The amount of bromine added to the reaction system in step 2 is 0.5 to 3.0 equivalents (eq.) With respect to 1 equivalent (eq.) Of the methylketone derivative (III) from the viewpoint of carrying out the reaction in just proportion. It is preferable to have.
 工程2におけるケトカルボン酸の合成反応の反応温度は、反応を好適に行う観点から、内温が60~85℃であることが好ましく、70℃であることがより好ましい。例えば、工程2におけるケトカルボン酸の合成反応は、オイルバス中で内温が前記温度となるように撹拌加熱しながら行うことができる。また、工程2におけるエステル化反応は、例えば、オイルバス中で加熱還流しながら行うことができる。この時、内温が、好ましくは55~65℃、より好ましくは65℃となるように、オイルバス温度を60~80℃とすればよい。 The reaction temperature of the ketocarboxylic acid synthesis reaction in step 2 is preferably 60 to 85 ° C, more preferably 70 ° C, from the viewpoint of preferably carrying out the reaction. For example, the synthetic reaction of ketocarboxylic acid in step 2 can be carried out while stirring and heating so that the internal temperature becomes the above temperature in an oil bath. Further, the esterification reaction in step 2 can be carried out, for example, while heating and refluxing in an oil bath. At this time, the oil bath temperature may be 60 to 80 ° C. so that the internal temperature is preferably 55 to 65 ° C., more preferably 65 ° C.
 工程2は有機溶媒中で進行する。前記有機溶媒としては、工程2の反応が進行する溶媒が適宜選択され、例えば、ジクロロエタン等が挙げられる。 Step 2 proceeds in an organic solvent. As the organic solvent, a solvent in which the reaction of step 2 proceeds is appropriately selected, and examples thereof include dichloroethane and the like.
 本発明の別の一態様に係る製造方法2において、工程2では、ジメチルスルホキシドを含む溶媒中、臭素を添加した反応系を加熱後に、メチルケトン誘導体(III)を添加して、メチルケトン誘導体(III)に臭素を作用させ、次いで、R-OH(ここで、Rは、前記一般式(IV)中のRと同一である)を作用させて、ケトエステル誘導体(II)を生成してもよい。 In the production method 2 according to another aspect of the present invention, in step 2, the reaction system to which bromine is added is heated in a solvent containing dimethyl sulfoxide, and then the methyl ketone derivative (III) is added to the methyl ketone derivative (III). Can be reacted with bromine and then with R1-OH (where R 1 is the same as R 1 in the general formula (IV)) to produce the ketoester derivative (II). good.
 臭素を添加した反応系を加熱後にメチルケトン誘導体(III)を添加する場合、メチルケトン誘導体(III)を添加する前の反応系の加熱温度は、内温が60~75℃であることが好ましく、65℃であることがより好ましい。また、メチルケトン誘導体(III)添加後の反応系の反応温度は、内温が65~80℃であることが好ましく、70℃であることがより好ましい。臭素を添加した反応系を加熱後にメチルケトン誘導体(III)を添加することで、ケトカルボン酸の合成反応の際に生じる発熱を抑制することができるため、工程2をより安全に進行することができる。 When the methyl ketone derivative (III) is added after heating the reaction system to which bromine has been added, the heating temperature of the reaction system before the addition of the methyl ketone derivative (III) is preferably an internal temperature of 60 to 75 ° C., 65. More preferably, it is ° C. The reaction temperature of the reaction system after the addition of the methyl ketone derivative (III) is preferably 65 to 80 ° C, more preferably 70 ° C. By adding the methyl ketone derivative (III) after heating the reaction system to which bromine is added, the heat generation generated during the synthetic reaction of ketocarboxylic acid can be suppressed, so that the step 2 can proceed more safely.
 また、別の一態様に係る製造方法2において、工程2は、尿素、アジピン酸ジヒドラジド及びジブチルヒドロキシトルエンからなる群から選択される少なくとも1種の化合物の共存下にて行うことが好ましく、尿素の共存下にて行うことがより好ましい。工程2では、臭素を用いることにより反応容器内に白色付着物が発生する。この白色付着物は工程2の最終産物中には含まれないが、反応容器を詰まらせる原因となるため、反応容器内の白色付着物を都度取り除く必要がある。しかし、前記化合物の共存下で工程2の反応を行うことで、工程2において反応容器内に付着する白色付着物の発生を抑制することができる。その結果、実施者は反応容器内の白色付着物を取り除く処理が不要となるため製造効率が向上するというメリットを享受することができる。白色付着物の発生を抑制する効果が高いことから、工程2において反応系に共存させる化合物は、尿素であることが好ましい。 Further, in the production method 2 according to another aspect, the step 2 is preferably carried out in the coexistence of at least one compound selected from the group consisting of urea, adipic acid dihydrazide and dibutylhydroxytoluene. It is more preferable to carry out in coexistence. In step 2, white deposits are generated in the reaction vessel by using bromine. Although this white deposit is not contained in the final product of step 2, it causes clogging of the reaction vessel, so it is necessary to remove the white deposit in the reaction vessel each time. However, by carrying out the reaction of step 2 in the coexistence of the compound, it is possible to suppress the generation of white deposits adhering to the inside of the reaction vessel in step 2. As a result, the practitioner can enjoy the merit that the production efficiency is improved because the treatment for removing the white deposits in the reaction vessel becomes unnecessary. Since the effect of suppressing the generation of white deposits is high, the compound coexisting in the reaction system in step 2 is preferably urea.
 工程2において反応系に共存させる尿素、アジピン酸ジヒドラジド及びジブチルヒドロキシトルエンからなる群から選択される少なくとも1種の化合物の量は、白色付着物の発生を抑制する観点から、メチルケトン誘導体(III)1当量(eq.)に対して、0.1~2.0当量(eq.)であることが好ましい。 The amount of at least one compound selected from the group consisting of urea, adipic acid dihydrazide and dibutylhydroxytoluene coexisting in the reaction system in step 2 is the amount of the methyl ketone derivative (III) 1 from the viewpoint of suppressing the generation of white deposits. It is preferably 0.1 to 2.0 equivalents (eq.) With respect to the equivalent (eq.).
 〔3.アゾール誘導体(I)の製造方法〕
 本態様のアゾール誘導体(I)の製造方法(以下「製造方法3」と称する)について説明する。本態様の製造方法3は、アゾール誘導体(I)の中間体であるオキシラン誘導体(IV)を製造するために、前述した本態様のオキシラン誘導体(IV)の製造方法を含み、当該製造方法によって得られたオキシラン誘導体(IV)を、以下のスキーム3に従って、アゾール誘導体(I)に変換する工程(以下、「工程3」と称する)を含む。かかる構成により、オキシラン誘導体(IV)を安価に製造することができるため、アゾール誘導体(I)を安価に製造することができる。
[3. Method for Producing Azole Derivative (I)]
The method for producing the azole derivative (I) of this embodiment (hereinafter referred to as "production method 3") will be described. The production method 3 of this embodiment includes the above-mentioned production method of the oxylan derivative (IV) of the present embodiment in order to produce the oxylan derivative (IV) which is an intermediate of the azole derivative (I), and is obtained by the production method. A step of converting the obtained oxylan derivative (IV) into an azole derivative (I) according to the following scheme 3 (hereinafter referred to as “step 3”) is included. With such a configuration, the oxylan derivative (IV) can be produced at low cost, so that the azole derivative (I) can be produced at low cost.
 オキシラン誘導体(IV)の製造方法については、先に説明した通りであるため、ここでは、工程3についてのみ説明する。尚、下記スキーム3中のR、X、X、及びnは、前記一般式(IV)中のR、X、X、及びnに対応する。 Since the method for producing the oxylan derivative (IV) is as described above, only step 3 will be described here. In addition, R 1 , X 1 , X 2 , and n in the following scheme 3 correspond to R 1 , X 1 , X 2 , and n in the general formula (IV).
 <スキーム3>
Figure JPOXMLDOC01-appb-C000013
 本態様の製造方法3において、工程3では、製造方法1によって生成されたオキシラン誘導体(IV)を、無機塩基の共存下にて、1,2,4-トリアゾールを用いて、アゾール誘導体(I)に変換する。
<Scheme 3>
Figure JPOXMLDOC01-appb-C000013
In the production method 3 of this embodiment, in step 3, the oxylan derivative (IV) produced by the production method 1 is used as an azole derivative (I) using 1,2,4-triazole in the presence of an inorganic base. Convert to.
 工程3では、1,2,4-トリアゾールと無機塩基とを使用して、反応系内で1,2,4-トリアゾールと無機塩基との塩(例えば、無機塩基として炭酸カリウムを用いた場合は、1,2,4-トリアゾールカリウム塩)を調製しながらアゾール化を行う。これにより、実施者は1,2,4-トリアゾールと無機塩基との塩を予め調製する必要が無いため、製造効率が向上するというメリットを享受することができる。 In step 3, 1,2,4-triazole and an inorganic base are used, and a salt of 1,2,4-triazole and the inorganic base (for example, when potassium carbonate is used as the inorganic base) in the reaction system. , 1,2,4-Triazole potassium salt) is azoled. As a result, the practitioner does not need to prepare a salt of 1,2,4-triazole and an inorganic base in advance, and thus can enjoy the merit of improving the production efficiency.
 工程3で用いる無機塩基については、工程1の説明で例示した通りである。工程3で用いる無機塩基は、工程1で用いた無機塩基と同じであってもよく、異なっていてもよい。 The inorganic base used in step 3 is as illustrated in the description of step 1. The inorganic base used in step 3 may be the same as or different from the inorganic base used in step 1.
 工程3において反応系に共存させる無機塩基の量は、工程3の反応を進行させる観点から、オキシラン誘導体(IV)1当量(eq.)に対して、0.1~3.0当量(eq.)であることが好ましい。 The amount of the inorganic base coexisting in the reaction system in step 3 is 0.1 to 3.0 equivalents (eq.) With respect to 1 equivalent (eq.) Of the oxylane derivative (IV) from the viewpoint of advancing the reaction in step 3. ) Is preferable.
 工程3において反応系に添加する1,2,4-トリアゾールの量は、工程3の反応を過不足なく行う観点から、オキシラン誘導体(IV)1当量(eq.)に対して、1.0~3.0当量(eq.)であることが好ましい。 The amount of 1,2,4-triazole added to the reaction system in step 3 is 1.0 to 1 equivalent (eq.) Of the oxylan derivative (IV) from the viewpoint of carrying out the reaction of step 3 in just proportion. It is preferably 3.0 equivalents (eq.).
 工程3は有機溶媒中で進行する。前記有機溶媒としては、工程3の反応が進行する溶媒が適宜選択され、例えば、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド等が挙げられる。工程3の反応は、例えば、室温で撹拌しながら、又は、オイルバス中で加熱撹拌しながら行うことができる。この時の反応温度は、例えば、内温が40~120℃である。 Step 3 proceeds in an organic solvent. As the organic solvent, a solvent in which the reaction of step 3 proceeds is appropriately selected, and examples thereof include N, N-dimethylformamide, N, N-dimethylacetamide and the like. The reaction of step 3 can be carried out, for example, with stirring at room temperature or while heating and stirring in an oil bath. The reaction temperature at this time is, for example, an internal temperature of 40 to 120 ° C.
 オキシラン誘導体(IV)を、アゾール誘導体(I)に変換する方法は、前述の方法に限定されるものではなく、公知の方法(例えば、特許文献1に開示された方法)によって行うことも可能である。従って、本発明の別の一態様に係る製造方法3は、前述した本態様のオキシラン誘導体(IV)の製造方法を含み、当該製造方法によって得られたオキシラン誘導体(IV)を、公知の方法(例えば、特許文献1に開示された方法)に従ってアゾール誘導体(I)に変換する方法であってもよい。 The method for converting the oxylan derivative (IV) to the azole derivative (I) is not limited to the above-mentioned method, and a known method (for example, the method disclosed in Patent Document 1) can also be used. be. Therefore, the production method 3 according to another aspect of the present invention includes the above-mentioned method for producing the oxylan derivative (IV) of the present embodiment, and the oxylan derivative (IV) obtained by the production method is used as a known method ( For example, it may be a method of converting to an azole derivative (I) according to the method disclosed in Patent Document 1).
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。 The present invention is not limited to the above-described embodiments, and various modifications can be made within the scope of the claims, and the embodiments obtained by appropriately combining the technical means disclosed in the different embodiments. Is also included in the technical scope of the present invention.
 〔まとめ〕
 本態様1に係る製造方法は、一般式(IV)で表される化合物の製造方法であって、無機塩基の共存下にて、(a)ジメチルスルフィド及びジメチルスルホキシドの少なくとも一方、並びに(b)メチル-LG(ここで、LGは求核的に置換可能な脱離基であり、ハロゲン基、アルコキシスルホニルオキシ基、アリールオキシスルホニルオキシ基、アルキルスルホニルオキシ基、ハロアルキルスルホニルオキシ基、及びアリールスルホニルオキシ基から選ばれる)を用いて、一般式(II)で表される化合物を前記一般式(IV)で表される化合物に変換する工程1を含む構成である。かかる構成により、コストのかかるTMSOBを用いずに、オキシラン誘導体(IV)を製造することができる。
〔summary〕
The production method according to the first aspect is a method for producing a compound represented by the general formula (IV), in which (a) at least one of dimethyl sulfide and dimethylsulfoxide, and (b) in the presence of an inorganic base. Methyl-LG (where LG is a nucleophilically replaceable desorbing group, a halogen group, an alkoxysulfonyloxy group, an aryloxysulfonyloxy group, an alkylsulfonyloxy group, a haloalkylsulfonyloxy group, and an arylsulfonyloxy group. (Selected from the group) is used to convert the compound represented by the general formula (II) into the compound represented by the general formula (IV). With such a configuration, the oxylan derivative (IV) can be produced without using costly TMSOB.
 本態様2に係る製造方法は、本態様1において、前記一般式(IV)で表される化合物に変換する工程1では、前記(a)及び前記(b)の反応必要量を分割して添加することが好ましい。(a)及び(b)の分割添加により、反応が効率的に行われるため、(a)及び(b)の試薬使用量を削減できる。 In the production method according to the second aspect, in the step 1 of converting into the compound represented by the general formula (IV) in the first aspect, the reaction required amounts of the above (a) and the above (b) are divided and added. It is preferable to do so. Since the reaction is efficiently carried out by the divided addition of (a) and (b), the amount of the reagent used in (a) and (b) can be reduced.
 本態様3に係る製造方法は、本態様1又は2において、前記(a)は、ジメチルスルフィド及びジメチルスルホキシドの両方であることが好ましい。(a)において、ジメチルスルフィドを添加することにより、(a)の試薬使用量が削減できるという効果を奏する。 In the production method according to the third aspect, in the first or second aspect, the above (a) is preferably both dimethyl sulfide and dimethyl sulfoxide. In (a), the addition of dimethyl sulfide has the effect of reducing the amount of reagent used in (a).
 本態様4に係る製造方法は、本態様1から3のいずれかにおいて、一般式(III)で表される化合物を前記一般式(II)で表される化合物に変換する工程2をさらに含み、当該工程2では、ジメチルスルホキシドを含む溶媒中、反応系を加熱しながら一般式(III)で表される化合物に臭素を作用させ、次いで、R-OH(ここで、Rは、式(IV)中のRと同一である)を作用させて、前記一般式(II)で表される化合物を生成する構成であってもよい。かかる構成により、コストのかかるヨウ素やヨードメタンを用いずに、ケトエステル誘導体(II)を製造することができる。 The production method according to the fourth aspect further comprises, in any one of the first to third aspects, the step 2 of converting the compound represented by the general formula (III) into the compound represented by the general formula (II). In the step 2, bromine is allowed to act on the compound represented by the general formula (III) while heating the reaction system in a solvent containing dimethyl sulfoxide, and then R 1 −OH (where R 1 is represented by the formula (where R 1 is)). It may be configured to produce the compound represented by the general formula (II) by allowing the action (which is the same as R 1 in IV). With such a configuration, the ketoester derivative (II) can be produced without using costly iodine or iodomethane.
 本態様5に係る製造方法は、本態様4において、前記一般式(II)で表される化合物に変換する工程2では、ジメチルスルホキシドを含む溶媒中、臭素を添加した反応系を加熱後に、一般式(III)で表される化合物を添加して一般式(III)で表される化合物に臭素を作用させ、次いで、R-OH(ここで、Rは、式(IV)中のRと同一である)を作用させて、前記一般式(II)で表される化合物を生成することが好ましい。反応系の加熱後にメチルケトン誘導体(III)を添加することで、発熱を抑制することができるため、工程2を安全に進行することができる。 In the production method according to the fifth aspect, in the step 2 of converting to the compound represented by the general formula (II) in the present aspect 4, the reaction system to which bromine is added is heated in a solvent containing dimethyl sulfoxide and then generally used. The compound represented by the formula (III) is added to cause bromine to act on the compound represented by the general formula (III), and then R 1 -OH (where R 1 is R in the formula (IV)). It is preferable to carry out the same reaction as 1 ) to produce the compound represented by the general formula (II). By adding the methyl ketone derivative (III) after heating the reaction system, heat generation can be suppressed, so that step 2 can proceed safely.
 本態様6に係る製造方法は、本態様4又は5において、前記一般式(II)で表される化合物に変換する工程2は、尿素、アジピン酸ジヒドラジド及びジブチルヒドロキシトルエンからなる群から選択される少なくとも1種の共存下にて行うことが好ましい。かかる構成により、工程2において反応容器内に付着する白色付着物の発生を抑制することができる。 In the production method according to the sixth aspect, in the fourth or fifth aspect, the step 2 for converting to the compound represented by the general formula (II) is selected from the group consisting of urea, adipic acid dihydrazide and dibutylhydroxytoluene. It is preferable to carry out in the coexistence of at least one kind. With such a configuration, it is possible to suppress the generation of white deposits adhering to the inside of the reaction vessel in step 2.
 本態様7に係る製造方法は、一般式(I)で表される化合物の製造方法であって、本態様1から6のいずれかに記載の一般式(IV)で表される化合物の製造方法を含み、当該製造方法によって得られた前記一般式(IV)で表される化合物を、無機塩基の共存下にて、1,2,4-トリアゾールを用いて、前記一般式(I)で表される化合物に変換する工程3を含む構成である。かかる構成により、アゾール誘導体(I)の中間体の製造コストを低減することができるため、アゾール誘導体(I)の製造コストを低減することができる。 The production method according to this aspect 7 is a method for producing a compound represented by the general formula (I), and is a method for producing a compound represented by the general formula (IV) according to any one of the present aspects 1 to 6. The compound represented by the general formula (IV) obtained by the production method is represented by the general formula (I) using 1,2,4-triazole in the presence of an inorganic base. It is a configuration including a step 3 for converting into a compound to be made. With such a configuration, the production cost of the intermediate of the azole derivative (I) can be reduced, so that the production cost of the azole derivative (I) can be reduced.
 以下、製造例を示し、本発明を具体的に説明する。尚、本発明はその要旨を越えない限り以下の製造例に限定されるものではない。 Hereinafter, the present invention will be specifically described with reference to manufacturing examples. The present invention is not limited to the following production examples as long as the gist of the present invention is not exceeded.
 <合成例1>
 2-(2-クロロ-4-(4-クロロフェノキシ)フェニル)-2-オキシランカルボン酸メチル
 (合成例1-1)
 2-(2-クロロ-4-(4-クロロフェノキシ)フェニル)-2-オキソ酢酸メチル0.98g(3.0mmol)、ジクロロエタン4.5mLをフラスコに加えた後、炭酸カリウム2.24g(16.2mmol)、硫酸ジメチル1.54mL(16.2mmol)、及びジメチルスルホキシド0.58mL(8.1mmol)を加えて95℃のオイルバスで加熱還流撹拌した。反応開始から2時間後、水を加え、ジクロロエタンで2回抽出し、これを1回水洗した。無水硫酸ナトリウムで乾燥後、溶媒を留去し、黄色液体粗製物1.06gを得た。
<Synthesis example 1>
Methyl 2- (2-chloro-4- (4-chlorophenoxy) phenyl) -2-oxylancarboxylate (Synthesis Example 1-1)
Add 0.98 g (3.0 mmol) of 2- (2-chloro-4- (4-chlorophenoxy) phenyl) -2-oxoacetic acid methyl 0.98 g (3.0 mmol) and 4.5 mL of dichloroethane to the flask, and then add 2.24 g (16) of potassium carbonate. .2 mmol), 1.54 mL (16.2 mmol) of dimethyl sulfate, and 0.58 mL (8.1 mmol) of dimethyl sulfoxide were added, and the mixture was heated under reflux in an oil bath at 95 ° C. and stirred. Two hours after the start of the reaction, water was added, the mixture was extracted twice with dichloroethane, and this was washed once with water. After drying over anhydrous sodium sulfate, the solvent was distilled off to obtain 1.06 g of a crude yellow liquid.
 この黄色液体粗製物中の標記化合物をNMRによって定量した。その結果、標記化合物のNMR定量収率は61%であった。 The title compound in this yellow liquid crude product was quantified by NMR. As a result, the NMR quantitative yield of the title compound was 61%.
 (合成例1-2)
 粗2-(2-クロロ-4-(4-クロロフェノキシ)フェニル)-2-オキソ酢酸メチル12.90g(純度76%、30mmol)、炭酸カリウム14.95g(108mmol)、及びジクロロエタン60mLをフラスコに加えた後、ジメチルスルホキシド3.84mL(54mmol)、及び硫酸ジメチル10.26mL(108mmol)を分割して加えた。反応は95℃のオイルバスを用いて加熱還流下で行った。反応開始から7.5時間後、水を加えて分液し、水層をジクロロエタンで1回再抽出した後、有機層を合わせて2回水洗した。無水硫酸ナトリウムで乾燥後、溶媒を留去し、橙色液体粗製物13.07gを得た。
(Synthesis Example 1-2)
Crude 2- (2-chloro-4- (4-chlorophenoxy) phenyl) -2-oxomethyl acetate 12.90 g (purity 76%, 30 mmol), potassium carbonate 14.95 g (108 mmol), and 60 mL dichloroethane in a flask. After the addition, 3.84 mL (54 mmol) of dimethyl sulfoxide and 10.26 mL (108 mmol) of dimethyl sulfate were added in portions. The reaction was carried out under heating and reflux using an oil bath at 95 ° C. After 7.5 hours from the start of the reaction, water was added to separate the liquids, the aqueous layer was re-extracted once with dichloroethane, and then the organic layers were combined and washed twice. After drying over anhydrous sodium sulfate, the solvent was distilled off to obtain 13.07 g of a crude orange liquid.
 この橙色液体粗製物中の標記化合物をガスクロマトグラフィーによって定量(GC定量)した。その結果、標記化合物のGC定量収率は91%であった。 The title compound in this orange liquid crude product was quantified by gas chromatography (GC quantification). As a result, the GC quantitative yield of the title compound was 91%.
 (合成例1-3)
 粗2-(2-クロロ-4-(4-クロロフェノキシ)フェニル)-2-オキソ酢酸メチル17.18g(純度76%、40mmol)、炭酸カリウム13.27g(96mmol)、ジメチルスルフィド1.8mL(24mmol)、及びジクロロエタン60mLをフラスコに加えた後、ジメチルスルホキシド3.4mL(48mmol)、及び硫酸ジメチル7.1mL(96mmol)を分割して加えた。反応は95℃のオイルバスを用いて加熱還流下で行った。反応開始から5時間後、水を加えて分液し、有機層を2回水洗した。無水硫酸ナトリウムで乾燥後、溶媒を留去し、橙色液体粗製物17.50gを得た。
(Synthesis Example 1-3)
Crude 2- (2-chloro-4- (4-chlorophenoxy) phenyl) -2-oxomethyl acetate 17.18 g (purity 76%, 40 mmol), potassium carbonate 13.27 g (96 mmol), dimethyl sulfide 1.8 mL ( 24 mmol) and 60 mL of dichloroethane were added to the flask, followed by addition of 3.4 mL (48 mmol) of dimethyl sulfoxide and 7.1 mL (96 mmol) of dimethyl sulfate in portions. The reaction was carried out under heating and reflux using an oil bath at 95 ° C. After 5 hours from the start of the reaction, water was added to separate the liquids, and the organic layer was washed twice. After drying over anhydrous sodium sulfate, the solvent was distilled off to obtain 17.50 g of a crude orange liquid.
 橙色液体粗製物中の標記化合物をガスクロマトグラフィーによって定量(GC定量)した。その結果、標記化合物のGC定量収率は97%であった。 The title compound in the orange liquid crude product was quantified by gas chromatography (GC quantification). As a result, the GC quantitative yield of the title compound was 97%.
(合成例1-4)
 2-(2-クロロ-4-(4-クロロフェノキシ)フェニル)-2-オキソ酢酸メチル0.98g(3.0mmol)、リン酸カリウム3.82g(18.0mmol)、及びジクロロエタン6.0mLをフラスコに加えた後、硫酸ジメチル0.85mL(9.0mmol)、及びジメチルスルホキシド0.32mL(4.5mmol)を分割して加えた。反応は95℃のオイルバスで加熱還流下で行った。反応開始から7時間後、水を加え、ジクロロエタンで2回抽出し、これを1回水洗した。無水硫酸ナトリウムで乾燥後、溶媒を留去し、黄色液体粗製物1.16gを得た。
(Synthesis Example 1-4)
2- (2-Chloro-4- (4-chlorophenoxy) phenyl) -2-oxomethyl acetate 0.98 g (3.0 mmol), potassium phosphate 3.82 g (18.0 mmol), and dichloroethane 6.0 mL. After addition to the flask, 0.85 mL (9.0 mmol) of dimethyl sulfate and 0.32 mL (4.5 mmol) of dimethyl sulfoxide were added in portions. The reaction was carried out in an oil bath at 95 ° C. under heating and reflux. After 7 hours from the start of the reaction, water was added, the mixture was extracted twice with dichloroethane, and this was washed once with water. After drying over anhydrous sodium sulfate, the solvent was distilled off to obtain 1.16 g of a crude yellow liquid.
 この黄色液体粗製物中の標記化合物をNMRによって定量した。その結果、標記化合物のNMR定量収率は76%であった。 The title compound in this yellow liquid crude product was quantified by NMR. As a result, the NMR quantitative yield of the title compound was 76%.
 <合成例2>
 2-(2-クロロ-4-(4-クロロフェノキシ)フェニル)-2-オキソ酢酸メチルの合成
 (合成例2-1)
 2’-クロロ-4’-(4-クロロフェノキシ)アセトフェノン28.11g(0.10mol)、ジメチルスルホキシド50mL、及びジクロロエタン45mLをフラスコに加えて溶解し氷浴で冷却した後、臭素19.32g(0.12mol)を滴下ロートで加え、ジクロロエタン5mLで洗いこみ、内温が70℃になるようにオイルバスで加熱撹拌した。1時間後、低沸物を留去し、トルエン50mL、及びメタノール50mLを加えて加熱還流した。1時間後、トルエン50mLを加えて溶液の下層を分離し、下層をトルエンで1回再抽出した。上層と再抽出トルエンを合わせて飽和重層水で1回洗浄し、1回水洗し、飽和食塩水で1回洗浄した。無水硫酸ナトリウムで乾燥後、溶媒を留去し、橙色液体粗製物30.83gを得た。
<Synthesis example 2>
Synthesis of 2- (2-chloro-4- (4-chlorophenoxy) phenyl) -2-oxomethyl acetate (Synthesis Example 2-1)
Add 28.11 g (0.10 mol) of 2'-chloro-4'-(4-chlorophenoxy) acetophenone, 50 mL of dimethyl sulfoxide, and 45 mL of dichloroethane to a flask, dissolve, cool in an ice bath, and then 19.32 g of bromine (. 0.12 mol) was added with a dropping funnel, washed with 5 mL of dichloroethane, and heated and stirred in an oil bath so that the internal temperature became 70 ° C. After 1 hour, the low boiling material was distilled off, 50 mL of toluene and 50 mL of methanol were added, and the mixture was heated under reflux. After 1 hour, 50 mL of toluene was added to separate the lower layer of the solution and the lower layer was re-extracted once with toluene. The upper layer and the re-extracted toluene were combined and washed once with saturated brine, washed once with water, and washed once with saturated brine. After drying over anhydrous sodium sulfate, the solvent was distilled off to obtain 30.83 g of a crude orange liquid.
 この橙色液体粗製物中の標記化合物をガスクロマトグラフィーによって定量(GC定量)した。その結果、標記化合物のGC定量収率は83%であった。 The title compound in this orange liquid crude product was quantified by gas chromatography (GC quantification). As a result, the GC quantitative yield of the title compound was 83%.
 (合成例2-2)
 ジクロロエタン100mLをフラスコに加えた後、臭素38.36g(0.24mol)を滴下ロートで加えて撹拌した。反応容器を水浴で冷却した後、ジメチルスルホキシド28.4mLを滴下ロートで加えた。オイルバスで内温が70℃になるように加熱した後、2’-クロロ-4’-(4-クロロフェノキシ)アセトフェノン56.23g(0.20mol)のジメチルスルホキシド85.2mL溶液を滴下ロートで加えた。滴下終了から1時間後、ジメチルスルホキシド7.1mLを追加した。更に1時間後、低沸物を留去し、トルエン100mL、及びメタノール100mLを加えて加熱還流した。2時間後、トルエン100mLを加えて溶液の下層を分離し、下層をトルエンで1回再抽出した。上層と再抽出トルエンを合わせて飽和重層水で1回洗浄し、2回水洗した。溶媒を留去し、橙色液体粗製物59.29gを得た。
(Synthesis Example 2-2)
After adding 100 mL of dichloroethane to the flask, 38.36 g (0.24 mol) of bromine was added with a dropping funnel and stirred. After cooling the reaction vessel in a water bath, 28.4 mL of dimethyl sulfoxide was added with a dropping funnel. After heating in an oil bath to an internal temperature of 70 ° C., a solution of 56.23 g (0.20 mol) of 2'-chloro-4'-(4-chlorophenoxy) acetophenone in dimethyl sulfoxide 85.2 mL is added with a dropping funnel. added. One hour after the completion of the dropping, 7.1 mL of dimethyl sulfoxide was added. After another 1 hour, the low boiling material was distilled off, 100 mL of toluene and 100 mL of methanol were added, and the mixture was heated under reflux. After 2 hours, 100 mL of toluene was added to separate the lower layer of the solution and the lower layer was re-extracted once with toluene. The upper layer and the re-extracted toluene were combined and washed once with saturated layered water and washed twice. The solvent was distilled off to obtain 59.29 g of a crude orange liquid.
 この橙色液体粗製物中の標記化合物をガスクロマトグラフィーによって定量(GC定量)した。その結果、標記化合物のGC定量収率は77%であった。 The title compound in this orange liquid crude product was quantified by gas chromatography (GC quantification). As a result, the GC quantitative yield of the title compound was 77%.
 (合成例2-3)
 尿素18.01g(0.30mol)、及びジクロロエタン468mLをフラスコに加えた後、臭素191.80g(1.20mol)を滴下ロートで加えて撹拌した。反応容器を水浴で冷却した後、ジメチルスルホキシド156.26g(2.00mol)及びジクロロエタン25mLの混合溶液を滴下ロートで加えた。オイルバスで内温が70℃になるまで内温を見ながら段階的に加熱した後、2’-クロロ-4’-(4-クロロフェノキシ)アセトフェノン283.11g(1.00mol)のジメチルスルホキシド468.77g(6.00mol)溶液を滴下ロートで加えた。滴下終了から1時間後、ジメチルスルホキシド39.07g(0.50mol)及びジクロロエタン6mLを追加した。更に1時間後、低沸物を留去し、トルエン500mL及びメタノール500mLを加えて加熱還流した。3時間後、トルエン500mLを追加して溶液の下層を分離し、下層をトルエンで1回再抽出した。上層と再抽出トルエンを合わせて水で1回、5%重層水で1回、水で1回洗浄した。目的物のトルエン溶液1671.78gを橙色液体として得た。
(Synthesis Example 2-3)
After adding 18.01 g (0.30 mol) of urea and 468 mL of dichloroethane to the flask, 191.80 g (1.20 mol) of bromine was added with a dropping funnel and stirred. After cooling the reaction vessel in a water bath, a mixed solution of 156.26 g (2.00 mol) of dimethyl sulfoxide and 25 mL of dichloroethane was added with a dropping funnel. After gradually heating in an oil bath while observing the internal temperature until the internal temperature reaches 70 ° C, dimethyl sulfoxide 468 of 2'-chloro-4'-(4-chlorophenoxy) acetophenone 283.11 g (1.00 mol) A .77 g (6.00 mol) solution was added with a dropping funnel. One hour after the completion of the dropping, 39.07 g (0.50 mol) of dimethyl sulfoxide and 6 mL of dichloroethane were added. After another 1 hour, the low boiling material was distilled off, 500 mL of toluene and 500 mL of methanol were added, and the mixture was heated under reflux. After 3 hours, 500 mL of toluene was added to separate the lower layer of the solution and the lower layer was re-extracted once with toluene. The upper layer and the re-extracted toluene were combined and washed once with water, once with 5% layered water, and once with water. 1671.78 g of the desired toluene solution was obtained as an orange liquid.
 この橙色液体中の標記化合物をガスクロマトグラフィーによって定量(GC定量)した。その結果、標記化合物のGC定量収率は79%であった。 The title compound in this orange liquid was quantified by gas chromatography (GC quantification). As a result, the GC quantitative yield of the title compound was 79%.
 また、合成例2-3では、合成例2-1及び合成例2-2と比較して、反応容器内に付着する白色付着物の発生を95%以上抑制することができた。 Further, in Synthesis Example 2-3, the generation of white deposits adhering to the inside of the reaction vessel could be suppressed by 95% or more as compared with Synthesis Example 2-1 and Synthesis Example 2-2.
 (合成例2-4)
 ジクロロエタン500mL、及び臭素191.79g(1.20mol)をフラスコに加えた後、内温が65℃になるまでオイルバスで加熱撹拌した後、尿素18.02g(0.30mol)のジメチルスルホキシド156.28g(2.00mol)溶液を滴下ロートで加えた。その後、2’-クロロ-4’-(4-クロロフェノキシ)アセトフェノン283.68g(純度99.1%,1.00mol)のジメチルスルホキシド351.59g(4.50mol)溶液を滴下ロートで加えた。滴下終了から1時間後、ジメチルスルホキシド39.13g(0.50mol)を追加した。更に2時間後、低沸物を留去し、トルエン500mL及びメタノール500mLを加えて加熱還流した。7時間後、溶液の下層を分離し、下層をトルエンで1回再抽出した。上層と再抽出トルエンを合わせて3回水洗した。目的物のトルエン溶液1261.67gを橙色液体として得た。
(Synthesis Example 2-4)
After adding 500 mL of dichloroethane and 191.79 g (1.20 mol) of bromine to the flask, heating and stirring in an oil bath until the internal temperature reaches 65 ° C., dimethyl sulfoxide 156 of 18.02 g (0.30 mol) of urea. A 28 g (2.00 mol) solution was added with a dropping funnel. Then, a solution of 283.68 g (purity 99.1%, 1.00 mol) of dimethyl sulfoxide 351.59 g (4.50 mol) of 2'-chloro-4'-(4-chlorophenoxy) acetophenone was added with a dropping funnel. One hour after the completion of the dropping, 39.13 g (0.50 mol) of dimethyl sulfoxide was added. After another 2 hours, the low boiling material was distilled off, 500 mL of toluene and 500 mL of methanol were added, and the mixture was heated under reflux. After 7 hours, the lower layer of the solution was separated and the lower layer was re-extracted once with toluene. The upper layer and the re-extracted toluene were combined and washed with water three times. 261.67 g of a toluene solution of interest was obtained as an orange liquid.
 この橙色液体中の標記化合物をガスクロマトグラフィーによって定量(GC定量)した。その結果、標記化合物のGC定量収率は84%であった。 The title compound in this orange liquid was quantified by gas chromatography (GC quantification). As a result, the GC quantitative yield of the title compound was 84%.
 <合成例3>
 2-(2-クロロ-4-(4-クロロフェノキシ)フェニル)-2-ヒドロキシ-3-(1H-1,2,4-トリアゾール-1-イル)プロピオン酸メチルの合成
 粗2-(2-クロロ-4-(4-クロロフェノキシ)フェニル)-2-オキシランカルボン酸メチル152.35g(純度74%、0.33mol)、及びN,N-ジメチルアセトアミド154.12gをフラスコに加えた後、1,2,4-トリアゾール34.64g(0.50mol)、及び炭酸カリウム23.09g(0.17mol)を加え、50℃のオイルバスで加熱撹拌した。0.75時間後、内温を60℃に昇温した。5時間後、室温まで冷却し、反応液363.71gの内、111.95g(0.10mol相当)を500mLの円筒型セパラブルフラスコに移し、トルエン50mL及び水40mLを加えた後、標記化合物の種晶30mgを加えた。30分後、水160mLを滴下して30分間室温で撹拌した後、6℃のシクロヘキサンバスを用いて30分かけてゆっくり冷却し、3時間撹拌を続けた。その後、粗液を吸引ろ過し、水50mL及びトルエン25mLを用いて洗浄した。ろ取物を真空検体乾燥機を用いて減圧乾燥し目的物の白色固体粗製物を39.09g得た。
<Synthesis example 3>
2- (2-Chloro-4- (4-chlorophenoxy) phenyl) -2-hydroxy-3- (1H-1,2,4-triazole-1-yl) Synthesis of methyl propionate Crude 2- (2- (2-) After adding 152.35 g of methyl chloro-4- (4-chlorophenoxy) phenyl) -2-oxylancarboxylate (purity 74%, 0.33 mol) and 154.12 g of N, N-dimethylacetamide to the flask, 1 , 2,4-Triazole 34.64 g (0.50 mol) and potassium carbonate 23.09 g (0.17 mol) were added, and the mixture was heated and stirred in an oil bath at 50 ° C. After 0.75 hours, the internal temperature was raised to 60 ° C. After 5 hours, the mixture was cooled to room temperature, 111.95 g (equivalent to 0.10 mol) of the reaction solution 363.71 g was transferred to a 500 mL cylindrical separable flask, 50 mL of toluene and 40 mL of water were added, and then the title compound was added. 30 mg of seed crystals were added. After 30 minutes, 160 mL of water was added dropwise and the mixture was stirred at room temperature for 30 minutes, then slowly cooled over 30 minutes using a cyclohexane bath at 6 ° C., and stirring was continued for 3 hours. Then, the crude liquid was suction-filtered and washed with 50 mL of water and 25 mL of toluene. The filtrate was dried under reduced pressure using a vacuum sample dryer to obtain 39.09 g of the desired white solid crude product.
 この白色固体粗製物中の標記化合物を高速液体クロマトグラフィーによって定量(HPLC定量)した。その結果、標記化合物のHPLC定量収率は78%であった。また、トリアゾール-1-イル:トリアゾール-4-イル=85:15であった。 The title compound in this white solid crude product was quantified by high performance liquid chromatography (HPLC quantification). As a result, the HPLC quantitative yield of the title compound was 78%. In addition, triazole-1-yl: triazole-4-yl = 85:15.
 前記白色固体粗製物36.6gを、トルエン164.8gを適宜分割しながら用いて100℃で熱時ろ過した。ろ液189gをフラスコに加え、オイルバスで100℃に昇温し、内温が100℃に到達してから10分間加熱撹拌した。その後15℃/hの速度で92℃まで冷却した。92℃に到達後、標記化合物の種晶159mgを添加した後、92℃で30分撹拌を続けた。その後、75℃までは6℃/h、75℃から55℃までは10℃/h、55℃から5℃までは30℃/hで冷却を行い、5℃到達から2時間撹拌を続けた。粗液を吸引ろ過し、冷トルエン11.3gで洗浄した。ろ取物を、真空検体乾燥機を用いて減圧乾燥し目的物の白色固体を31.2g得た。 36.6 g of the white solid crude product was hot-filtered at 100 ° C. using 164.8 g of toluene while appropriately dividing it. 189 g of the filtrate was added to the flask, the temperature was raised to 100 ° C. in an oil bath, and the mixture was heated and stirred for 10 minutes after the internal temperature reached 100 ° C. After that, it was cooled to 92 ° C. at a rate of 15 ° C./h. After reaching 92 ° C., 159 mg of the seed crystal of the title compound was added, and then stirring was continued at 92 ° C. for 30 minutes. Then, the mixture was cooled at 6 ° C./h up to 75 ° C., 10 ° C./h from 75 ° C. to 55 ° C., and 30 ° C./h from 55 ° C. to 5 ° C., and stirring was continued for 2 hours after reaching 5 ° C. The crude liquid was suction filtered and washed with 11.3 g of cold toluene. The filtrate was dried under reduced pressure using a vacuum sample dryer to obtain 31.2 g of the desired white solid.
 この白色固体粗中の標記化合物を高速液体クロマトグラフィーによって定量(HPLC定量)した。その結果、標記化合物のHPLC定量回収率は94.6%であった。この時トリアゾール-1-イル:トリアゾール-4-イル=95:5であった。 The title compound in this white solid crude was quantified (HPLC quantification) by high performance liquid chromatography. As a result, the HPLC quantitative recovery rate of the title compound was 94.6%. At this time, triazole-1-yl: triazole-4-yl = 95: 5.
 トリアゾール-1-イル体(A)、トリアゾール-4-イル体(B)、及び前記トリアゾール-1-イル:トリアゾール-4-イル=95:5混合物(C)の粉末X線回折データを、ゲルマニウム-CuKα1放射線照射(λ=1.5406Å)を使用して室温にて記録した。2θスキャンを、5°≦2θ≦35°(ステップ幅0.03°)の間で一次元位置感応型検出器を使用することで室温にて実施した。 The powder X-ray diffraction data of the triazole-1-yl form (A), the triazole-4-yl form (B), and the triazole-1-yl: triazole-4-yl = 95: 5 mixture (C) are obtained from germanium. -Recorded at room temperature using CuKα1 irradiation (λ = 1.5406 Å). A 2θ scan was performed at room temperature using a one-dimensional position-sensitive detector between 5 ° ≤ 2θ ≤ 35 ° (step width 0.03 °).
 トリアゾール-1-イル体(A)、トリアゾール-4-イル体(B)及び前記トリアゾール-1-イル:トリアゾール-4-イル=95:5混合物(C)のそれぞれの粉末X線パターンを図1~3に示す。また、それぞれの粉末X線回折パターンの2θ値を以下の表1に提示する。
Figure JPOXMLDOC01-appb-T000014
The powder X-ray patterns of the triazole-1-yl compound (A), the triazole-4-yl compound (B) and the triazole-1-yl: triazole-4-yl = 95: 5 mixture (C) are shown in FIG. 1. Shown in 3. Further, the 2θ values of each powder X-ray diffraction pattern are presented in Table 1 below.
Figure JPOXMLDOC01-appb-T000014
 本発明は農薬として有用なアゾール誘導体を合成するための中間体の製造方法として利用することができる。 The present invention can be used as a method for producing an intermediate for synthesizing an azole derivative useful as a pesticide.

Claims (7)

  1.  一般式(IV)で表される化合物の製造方法であって、
    Figure JPOXMLDOC01-appb-C000001
     [式(IV)中、Rは、C-C-アルキル基であり;
      Xは、ハロゲン基、C-C-ハロアルキル基又はC-C-ハロアルコキシ基であり;
      Xは、ハロゲン基、C-C-ハロアルキル基又はC-C-ハロアルコキシ基であり;
      nは、1、2又は3である]
     無機塩基の共存下にて、
      (a)ジメチルスルフィド及びジメチルスルホキシドの少なくとも一方、並びに
      (b)メチル-LG(ここで、LGは求核的に置換可能な脱離基であり、ハロゲン基、アルコキシスルホニルオキシ基、アリールオキシスルホニルオキシ基、アルキルスルホニルオキシ基、ハロアルキルスルホニルオキシ基、及びアリールスルホニルオキシ基から選ばれる)
    を用いて、一般式(II)で表される化合物を前記一般式(IV)で表される化合物に変換する工程を含むことを特徴とする、製造方法:
    Figure JPOXMLDOC01-appb-C000002
     [式(II)中、R、X、X、及びnは、式(IV)中のR、X、X、及びnと同一である]。
    A method for producing a compound represented by the general formula (IV).
    Figure JPOXMLDOC01-appb-C000001
    [In formula (IV), R 1 is a C1-C6 - alkyl group;
    X 1 is a halogen group, a C1- C4 -haloalkyl group or a C1- C4 -haloalkoxy group;
    X 2 is a halogen group, a C1- C4 -haloalkyl group or a C1- C4 -haloalkoxy group;
    n is 1, 2 or 3]
    In the coexistence of inorganic bases
    (A) At least one of dimethyl sulfide and dimethyl sulfoxide, and (b) Methyl-LG (where LG is a nucleophilically replaceable desorbing group, a halogen group, an alkoxysulfonyloxy group, an aryloxysulfonyloxy). Group, alkylsulfonyloxy group, haloalkylsulfonyloxy group, and arylsulfonyloxy group)
    The production method comprising the step of converting the compound represented by the general formula (II) into the compound represented by the general formula (IV) using the above:
    Figure JPOXMLDOC01-appb-C000002
    [In formula (II), R 1 , X 1 , X 2 , and n are identical to R 1 , X 1 , X 2 , and n in formula (IV)].
  2.  前記一般式(IV)で表される化合物に変換する工程では、前記(a)及び前記(b)の反応必要量を分割して添加することを特徴とする、請求項1に記載の製造方法。 The production method according to claim 1, wherein in the step of converting to the compound represented by the general formula (IV), the required reaction amounts of the above (a) and (b) are added in divided portions. ..
  3.  前記(a)は、ジメチルスルフィド及びジメチルスルホキシドの両方である、請求項1又は2に記載の製造方法。 The production method according to claim 1 or 2, wherein (a) is both dimethyl sulfide and dimethyl sulfoxide.
  4.  一般式(III)で表される化合物を前記一般式(II)で表される化合物に変換する工程をさらに含み、
     当該工程では、ジメチルスルホキシドを含む溶媒中、反応系を加熱しながら一般式(III)で表される化合物に臭素を作用させ、次いで、R-OH(ここで、Rは、式(IV)中のRと同一である)を作用させて、前記一般式(II)で表される化合物を生成することを特徴とする、請求項1から3のいずれか1項に記載の製造方法:
    Figure JPOXMLDOC01-appb-C000003
     [式(III)中、X、X、及びnは、式(IV)中のX、X、及びnと同一である]。
    Further comprising the step of converting the compound represented by the general formula (III) into the compound represented by the general formula (II).
    In this step, bromine is allowed to act on the compound represented by the general formula (III) while heating the reaction system in a solvent containing dimethyl sulfoxide, and then R1 - OH (where R1 is represented by the formula (IV)). The production method according to any one of claims 1 to 3, wherein the compound represented by the general formula (II) is produced by the action of (same as R1 in). :
    Figure JPOXMLDOC01-appb-C000003
    [In formula (III), X 1 , X 2 , and n are the same as X 1 , X 2 , and n in formula (IV)].
  5.  前記一般式(II)で表される化合物に変換する工程では、ジメチルスルホキシドを含む溶媒中、臭素を添加した反応系を加熱した後に、一般式(III)で表される化合物を添加して一般式(III)で表される化合物に臭素を作用させ、次いで、R-OH(ここで、Rは、式(IV)中のRと同一である)を作用させて、前記一般式(II)で表される化合物を生成することを特徴とする、請求項4に記載の製造方法。 In the step of converting to the compound represented by the general formula (II), the reaction system to which bromine is added is heated in a solvent containing dimethyl sulfoxide, and then the compound represented by the general formula (III) is added and generally used. The compound represented by the formula (III) is allowed to act on bromine, and then R1 - OH (where R1 is the same as R1 in the formula (IV)) is allowed to act on the compound represented by the above general formula. The production method according to claim 4, wherein the compound represented by (II) is produced.
  6.  前記一般式(II)で表される化合物に変換する工程は、尿素、アジピン酸ジヒドラジド及びジブチルヒドロキシトルエンからなる群から選択される少なくとも1種の共存下にて行うことを特徴とする、請求項4又は5に記載の製造方法。 The step of converting to the compound represented by the general formula (II) is characterized in that it is carried out in the coexistence of at least one selected from the group consisting of urea, adipic acid dihydrazide and dibutylhydroxytoluene. The manufacturing method according to 4 or 5.
  7.  一般式(I)で表される化合物の製造方法であって、
     請求項1から6のいずれか1項に記載の一般式(IV)で表される化合物の製造方法を含み、
     当該製造方法によって得られた前記一般式(IV)で表される化合物を、無機塩基の共存下にて、1,2,4-トリアゾールを用いて、前記一般式(I)で表される化合物に変換する工程を含むことを特徴とする製造方法:
    Figure JPOXMLDOC01-appb-C000004
     [式(I)中、R、X、X、及びnは、式(IV)中のR、X、X、及びnと同一である]。
    A method for producing a compound represented by the general formula (I).
    A method for producing a compound represented by the general formula (IV) according to any one of claims 1 to 6 is included.
    The compound represented by the general formula (IV) obtained by the production method, using 1,2,4-triazole in the presence of an inorganic base, is represented by the general formula (I). A manufacturing method comprising a step of converting to:
    Figure JPOXMLDOC01-appb-C000004
    [In formula (I), R 1 , X 1 , X 2 , and n are the same as R 1 , X 1 , X 2 , and n in formula (IV)].
PCT/JP2021/029343 2020-08-06 2021-08-06 Method for producing compound WO2022030622A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2022541750A JP7427096B2 (en) 2020-08-06 2021-08-06 Method for producing compounds
US18/040,365 US20230271929A1 (en) 2020-08-06 2021-08-06 Method for producing compound
EP21853755.3A EP4194445A4 (en) 2020-08-06 2021-08-06 Method for producing compound
CN202180060304.5A CN116171273B (en) 2020-08-06 2021-08-06 Process for producing compound

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-134138 2020-08-06
JP2020134138 2020-08-06

Publications (1)

Publication Number Publication Date
WO2022030622A1 true WO2022030622A1 (en) 2022-02-10

Family

ID=80118171

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/029343 WO2022030622A1 (en) 2020-08-06 2021-08-06 Method for producing compound

Country Status (5)

Country Link
US (1) US20230271929A1 (en)
EP (1) EP4194445A4 (en)
JP (1) JP7427096B2 (en)
CN (1) CN116171273B (en)
WO (1) WO2022030622A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59206375A (en) * 1983-04-29 1984-11-22 バイエル・アクチエンゲゼルシヤフト Manufacture of oxiranes
CN102491959A (en) * 2011-12-19 2012-06-13 江苏澄扬作物科技有限公司 Preparation method of oxirane derivative
JP2012530109A (en) * 2009-06-18 2012-11-29 ビーエーエスエフ ソシエタス・ヨーロピア Antibacterial 1,2,4-triazolyl derivative
JP2012530110A (en) * 2009-06-18 2012-11-29 ビーエーエスエフ ソシエタス・ヨーロピア Antibacterial 1,2,4-triazolyl derivative
CN103059004A (en) * 2012-12-21 2013-04-24 泰州职业技术学院 Method of preparing 1-[Alpha-(2, 4-difluorophenyl)-2, 3-glycidyl]-1H-1, 2, 4-triazole
WO2016005211A1 (en) * 2014-07-08 2016-01-14 Basf Se Process for the preparation of substituted oxiranes and triazoles
WO2019093522A1 (en) 2017-11-13 2019-05-16 株式会社クレハ Azole derivative, intermediate compound, method for producing azole derivative, agent for agricultural and horticultural use, and material protection agent for industrial use

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013069615A1 (en) * 2011-11-11 2013-05-16 株式会社クレハ Method for producing 4-benzyl-1-methyl-6-oxabicyclo[3,2,0]heptane derivative
WO2014057844A1 (en) * 2012-10-11 2014-04-17 株式会社クレハ Method for producing cycloalkanol derivative, and method for producing azole derivative

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59206375A (en) * 1983-04-29 1984-11-22 バイエル・アクチエンゲゼルシヤフト Manufacture of oxiranes
JP2012530109A (en) * 2009-06-18 2012-11-29 ビーエーエスエフ ソシエタス・ヨーロピア Antibacterial 1,2,4-triazolyl derivative
JP2012530110A (en) * 2009-06-18 2012-11-29 ビーエーエスエフ ソシエタス・ヨーロピア Antibacterial 1,2,4-triazolyl derivative
CN102491959A (en) * 2011-12-19 2012-06-13 江苏澄扬作物科技有限公司 Preparation method of oxirane derivative
CN103059004A (en) * 2012-12-21 2013-04-24 泰州职业技术学院 Method of preparing 1-[Alpha-(2, 4-difluorophenyl)-2, 3-glycidyl]-1H-1, 2, 4-triazole
WO2016005211A1 (en) * 2014-07-08 2016-01-14 Basf Se Process for the preparation of substituted oxiranes and triazoles
WO2019093522A1 (en) 2017-11-13 2019-05-16 株式会社クレハ Azole derivative, intermediate compound, method for producing azole derivative, agent for agricultural and horticultural use, and material protection agent for industrial use

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
KAMBALE DIGAMBAR A., THORAT SAGAR S., PRATAPURE MADHUKAR S., GONNADE RAJESH G., KONTHAM RAVINDAR: "Lewis acid catalyzed cascade annulation of alkynols with α-ketoesters: a facile access to γ-spiroketal-γ-lactones", CHEMICAL COMMUNICATIONS, vol. 53, no. 49, 1 January 2017 (2017-01-01), UK , pages 6641 - 6644, XP055796654, ISSN: 1359-7345, DOI: 10.1039/C7CC03668J *
RAGHUNADH AKULA, MERUVA SURESH, KUMAR NUKA, KUMAR GUDLA, RAO L., SYAM KUMAR U.: "An Efficient and Practical Synthesis of Aryl and Hetaryl α-Keto Esters", SYNTHESIS, vol. 2012, no. 02, 1 January 2012 (2012-01-01), STUTTGART, DE. , pages 283 - 289, XP055907477, ISSN: 0039-7881, DOI: 10.1055/s-0031-1289647 *
See also references of EP4194445A4
SON JUNG-HO, ZHU JIE S., PHUAN PUAY-WAH, CIL ONUR, TEUTHORN ANDREW P., KU COLTON K., LEE SUJIN, VERKMAN ALAN S., KURTH MARK J.: "High-Potency Phenylquinoxalinone Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) Activators", JOURNAL OF MEDICINAL CHEMISTRY, vol. 60, no. 6, 23 March 2017 (2017-03-23), US , pages 2401 - 2410, XP055907577, ISSN: 0022-2623, DOI: 10.1021/acs.jmedchem.6b01759 *

Also Published As

Publication number Publication date
US20230271929A1 (en) 2023-08-31
JP7427096B2 (en) 2024-02-02
JPWO2022030622A1 (en) 2022-02-10
CN116171273B (en) 2024-05-14
EP4194445A4 (en) 2024-08-14
CN116171273A (en) 2023-05-26
EP4194445A1 (en) 2023-06-14

Similar Documents

Publication Publication Date Title
JP2010518144A (en) Process for producing entacapone substantially free of the Z isomer, synthetic intermediates thereof, and novel crystalline forms
JP2008239629A (en) Novel polymorph of venlafaxine hydrochloride and method for preparing it
IE41849B1 (en) Phenylsulphinyl and thio amidine derivatives
CN104540800A (en) Process for the preparation of (2Z,5Z)-5-(3-chloro-4- ((R)-2,3-dihydroxypropoxy)benzylidene)-2-(propylimino)-3-(o-tolyl)thiazolidin-4-one and intermediate used in said process
WO2022030622A1 (en) Method for producing compound
JPS6185353A (en) Manufacture of 4-phenyl-pyrrole derivative
JP7065638B2 (en) Imidazole salt and its manufacturing method
DK3250556T3 (en) PROCEDURES FOR THE PREPARATION OF COMPOUNDS, SUCH AS 3-ARYL BUTANALS THAT CAN BE USED FOR THE SYNTHESIS OF MEDETOMIDINE
CN111333558A (en) Visible light promoted α -selenone compound synthesis method
JPH0458472B2 (en)
JP6251197B2 (en) Process for preparing substituted phenylpropanones
WO2012042532A1 (en) Process for preparing bicalutamide
EP3109236B1 (en) Scalable process for the preparation of sorafenib tosylate ethanol solvate and sorafenib tosylate form iii
JP4800532B2 (en) Method for producing acylated 1,3-dicarbonyl compounds
JP7515684B2 (en) Method for producing azole derivatives
JPWO2016043189A1 (en) Method for producing triphenylbutene derivative
JP2013124248A (en) Manufacturing method for 4,4-difluoro-3,4-dihydroisoquinolines
JPH02289563A (en) Improved process for producing ortho-carboxypyridyl- and ortho-carboxyquinolylimidazolinones
JP7183476B2 (en) Compound manufacturing method
JPH03170467A (en) Benzothiazepine
EP3609877B1 (en) Process for the synthesis of firocoxib
JP7198201B2 (en) Method for producing difluoromethylene compound
US4410732A (en) Phenyl ketone derivatives
KR101354175B1 (en) Method of preparing methyl (e)-2-(3-methoxy)acrylate from 2-(3,3-demethoxy)propanoate
CN111909110A (en) Preparation method of 2, 4-disubstituted thiazole compound

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21853755

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022541750

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202317005660

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2021853755

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE