WO2022030227A1 - 管理システム、管理装置、管理方法及び管理プログラム - Google Patents

管理システム、管理装置、管理方法及び管理プログラム Download PDF

Info

Publication number
WO2022030227A1
WO2022030227A1 PCT/JP2021/026814 JP2021026814W WO2022030227A1 WO 2022030227 A1 WO2022030227 A1 WO 2022030227A1 JP 2021026814 W JP2021026814 W JP 2021026814W WO 2022030227 A1 WO2022030227 A1 WO 2022030227A1
Authority
WO
WIPO (PCT)
Prior art keywords
water content
substance
information acquisition
pile
management system
Prior art date
Application number
PCT/JP2021/026814
Other languages
English (en)
French (fr)
Inventor
たかし 吉川
直樹 池川
琢士 栗野
康 高野瀬
大輔 高
絵未 海谷
Original Assignee
栗田工業株式会社
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 栗田工業株式会社, 株式会社日立製作所 filed Critical 栗田工業株式会社
Priority to CN202180057796.2A priority Critical patent/CN116157343A/zh
Priority to BR112023001405A priority patent/BR112023001405A2/pt
Priority to US18/019,233 priority patent/US20230273341A1/en
Priority to KR1020237004948A priority patent/KR20230035664A/ko
Priority to AU2021320688A priority patent/AU2021320688A1/en
Priority to EP21854607.5A priority patent/EP4190724A4/en
Publication of WO2022030227A1 publication Critical patent/WO2022030227A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01WMETEOROLOGY
    • G01W1/00Meteorology
    • G01W1/10Devices for predicting weather conditions
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G3/00Storing bulk material or loose, i.e. disorderly, articles
    • B65G3/02Storing bulk material or loose, i.e. disorderly, articles in the open air
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/04Manufacturing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/06Energy or water supply

Definitions

  • the present invention relates to a management system, a management device, a management method and a management program.
  • a substance such as coal absorbs water due to precipitation or the like, which may cause various problems when the water content increases. For example, when iron ore, coal, dust, and slag as raw materials for steelmaking have a large amount of water, clogging may occur in the hopper, silo, belt conveyor transfer portion, and the like. Further, when the water content of coal as a coke raw material is large, the bulk density of coke charged into the coke oven decreases, so that the production amount decreases. Further, if the amount of water contained in the substance constituting the pile in the yard becomes too large, the substance constituting the pile flows and the pile collapse is likely to occur.
  • the present invention has decided to provide a management system, a management device, a management method and a program capable of predicting the water content of a substance placed in a yard at a specific time in the future.
  • a management system for a substance that is a raw material for steelmaking and / or a fuel for power generation, which is managed outdoors includes a water content information acquisition unit, a weather information acquisition unit, and a prediction unit.
  • the water content information acquisition unit is configured to acquire water content information indicating the water content contained in the substance.
  • the meteorological information acquisition unit is configured to acquire meteorological information indicating the expected future weather outdoors.
  • the prediction unit is configured to predict the amount of water contained in the substance at a specific point in the future based on the water content information and the meteorological information.
  • the water content information acquisition unit is configured to acquire the water content information for each pile of the substance, and the prediction unit obtains the water content contained in the substance at a specific time point in the future.
  • a management system configured to make predictions for each pile of said material.
  • the management system further includes a first output unit, and the first output unit is configured to output the water content predicted by the prediction unit for each pile of the substance.
  • the management system further includes a judgment unit, which is configured to determine whether or not a problem may occur in the substance based on the prediction of the water content.
  • the management system further includes a second output unit, which is configured to output a warning when the determination unit determines that a problem may occur with the substance. ..
  • the meteorological information acquisition unit is configured to acquire the meteorological information indicating the expected future weather of the outdoors, and is configured to acquire the moisture content information indicating the moisture content contained in the substance.
  • the unit is a management device configured to predict the amount of water contained in the substance at a specific time in the future based on the water content information and the meteorological information. It is a method of managing a substance that is an iron-making raw material and / or a power generation fuel that is managed outdoors, and includes a water content information acquisition process, a meteorological information acquisition process, and a prediction process.
  • the water content information indicating the water content contained in the substance is acquired, the meteorological information acquisition step acquires the weather information indicating the expected future weather outdoors, and the prediction step obtains the water content information and the water content information.
  • a management method for predicting the amount of water contained in the substance at a specific time in the future based on the meteorological information It is a management program for substances that are iron-making raw materials and / or power generation fuels that are managed outdoors, and the computer functions as a water content information acquisition unit, a weather information acquisition unit, and a prediction unit.
  • the meteorological information acquisition unit is configured to acquire meteorological information indicating the expected future weather of the outdoors, said to be configured to acquire moisture content information indicating the amount of water contained in the substance.
  • the prediction unit is a management program configured to predict the amount of water contained in the substance at a specific time in the future based on the water content information and the meteorological information. Of course, this is not the case.
  • the program for realizing the software according to the present embodiment may be provided as a non-temporary recording medium that can be read by a computer, may be provided as a downloadable from an external server, or may be provided as a downloadable from an external computer. It may be provided so as to start the program and realize the function on the client terminal (so-called cloud computing).
  • a circuit in a broad sense is a circuit realized by at least appropriately combining a circuit, a circuit, a processor, a memory, and the like. That is, an integrated circuit for a specific application (Application Specific Integrated Circuit: ASIC), a programmable logic device (for example, a simple programmable logic device (Simple Programmable Logic Device: SPLD), a composite programmable logic device (Complex Program)) It includes a programmable gate array (Field Programmable Gate Array: FPGA) and the like.
  • the "raw material for steelmaking” refers to a material used as a raw material and fuel for steelmaking in steelmaking facilities such as steelworks, for example, coal, steel, dust, slag, coke, sintered ore, limestone, and dolomite. Examples thereof include auxiliary raw materials such as.
  • the “power generation fuel” refers to a fuel used for power generation in a power generation facility such as a power plant, and examples thereof include coal and biomass fuel.
  • the management system includes one or more of the first output unit, the determination unit, the second output unit, the pile information measurement unit, and the pile information acquisition unit. May be good. Note that FIG. 1 described below mainly describes a management system including all of them.
  • FIG. 1 is a schematic diagram of a management system according to the present embodiment.
  • the management system 1 includes a management device 2, an output device 3, and a pile information measuring device 4.
  • FIG. 2 is a schematic schematic diagram showing a functional configuration of the management device according to the present embodiment.
  • the management device 2 according to the present embodiment includes a water content information acquisition unit 21, a weather information acquisition unit 22, a prediction unit 23, a determination unit 24, and a pile information acquisition unit 25.
  • the output device 3 is an example of a first output unit and a second output unit.
  • the pile information measuring device 4 is an example of the pile information measuring unit, but will be described below without particular distinction.
  • the water content information acquired by the water content information acquisition unit 21 is the water content at the time when the prediction unit 23 starts the prediction (hereinafter, may be referred to as “prediction start time”) or at a specific time point in the past.
  • prediction start time the time when the prediction unit 23 starts the prediction
  • the water content at a specific point in the past When using the water content at a specific point in the past, it may or may not be corrected in consideration of the change in the water content up to the present. In particular, in consideration of the storage environment of the substance and the like, if it is judged that the change in the water content from the specific time point in the past to the start time of the prediction is small, it is not necessary to correct it.
  • the amount of water acquired by the water content information acquisition unit 21 the amount of water entering and exiting the substance may be corrected in consideration of the storage environment of the substance and the like. For example, when a substance is placed outdoors from a specific point in the past to the start of prediction, the actual weather information during that period may be taken into consideration.
  • the substance when the water content is not corrected, when the manufacturer of the substance informs the initial water content at the time of delivery of the substance, or when the initial water content is measured, the substance is further placed in the yard as it is. In addition to the arrangement, there is a case where the prediction of the water content in the prediction unit is started.
  • the method for measuring the water content of a substance is not particularly limited, and for example, it can be measured by a water meter such as a microwave type or an infrared light type, a thermogravimetric meter, a dry weight method or the like.
  • the weather information is not particularly limited, but one or more of precipitation (rainfall and snowfall), temperature, wind direction, wind speed, solar radiation, relative humidity, etc. can be used.
  • the meteorological information it is particularly preferable to use the amount of precipitation.
  • These meteorological information can be obtained from the Japan Meteorological Agency and other national meteorological agencies and weather forecasting companies.
  • the “specific time point in the future” means a time point in the future rather than the time when the forecast starts.
  • the specific time point in the future is not particularly limited, and for example, 1 second or more, 10 seconds or more, 1 minute or more, 1 hour or more, 2 hours or more, 5 hours or more after the prediction start time. It may be 10 hours or more, 20 hours or more, 1 day or more, 2 days or more, and 3 days or more. Further, the specific time point in the future may be 100 days or less, 70 days or less, 50 days or less, 30 days or less, 20 days or less, 10 days or less, and 7 days or less after the prediction start time.
  • this prediction unit 23 for example, the relationship between the weather information and the increase / decrease in the water content from the time of prediction to a specific point in the future (hereinafter, may be simply referred to as “increase / decrease in water content”) is used as a function.
  • the increase or decrease in water content is calculated from the meteorological information by creating a lookup table or constructing the relationship between them as a trained model. By adding the increase / decrease in the water content to the water content information acquired by the water content information acquisition unit 21 in this way, the water content contained in the substance at a specific time point in the future can be predicted.
  • the total increase in water content due to the absorption of the precipitation by the substance may be obtained.
  • the total amount of decrease in the amount of water due to evaporation of water from the surface of the substance may be obtained from the meteorological information.
  • the prediction unit 23 is configured to predict the amount of water contained in the substance at a specific time in the future for each pile P of the substance.
  • the pile P placed in the yard is not always composed of the same substance, and the amount of water contained therein may be different, so that the pile P is included in the substance at a specific point in the future.
  • the prediction unit 23 further includes the area, volume, planar shape, three-dimensional shape, and the area, volume, planar shape, and three-dimensional shape of the pile P of the substance acquired by the pile information acquisition unit 25 in addition to the water content information and the weather information. It is preferably configured to predict the amount of water contained in a substance at a particular point in the future based on pile information containing one or more selected from the group consisting of positions.
  • the prediction unit 23 uses information of any one or more of the area, volume, planar shape and three-dimensional shape of the pile P, for example, the area, volume, planar shape and three-dimensional shape of the pile P together with the precipitation information. From the heel and the precipitation amount, for example, an increase in the water content of the substance can be calculated using a function, a lookup table, a trained model, or the like.
  • the problems that occur here include clogging in the process after the hopper, silo, belt conveyor transfer part, etc., a decrease in production due to a decrease in the bulk density of coke, a pile collapse, and the like. ..
  • Judgment as to whether or not a substance may have a problem is made based on the prediction information, that is, the amount of water contained in the substance at a specific point in time in the predicted future. Specifically, for example, it is determined that a problem may occur when the prediction information exceeds a preset threshold value. It should be noted that the threshold value does not necessarily have to cause a problem when the value is exceeded, and may have a certain degree of possibility. Further, the threshold value may be one in consideration of the safety factor.
  • the threshold value may be set as an empirical value accumulated in actual operation, or may be set as a value specified by conducting an experiment. Further, the threshold value may or may not be changed for each substance (type, brand, delivery date, etc.) constituting the pile.
  • a plurality of threshold values that is, a plurality of numerical bands may be provided for the prediction information, and it may be determined whether or not a stepwise problem occurs in each numerical band. For example, when the water content at a specific point in the future is 8% or more and less than 11%, clogging is likely to occur in a later process, and when the water content at a specific point in the future is 11% or more, clogging is certain in a later process. It is possible to judge that it will occur in. In addition, it may be determined whether or not different problems occur in each numerical band.
  • the pile information acquisition unit 25 is configured to acquire pile information including one or more selected from the group consisting of the area, volume, planar shape, three-dimensional shape, and position of the pile P of the substance.
  • pile information including one or more selected from the group consisting of the area, volume, planar shape, three-dimensional shape and position of the pile P of the substance in this way and using this pile information together with the weather information, the future It is possible to appropriately predict the amount of water contained in a substance at a specific time point.
  • the first output unit 3a is configured to output the water content predicted by the prediction unit 23 for each pile P of the substance.
  • the second output unit 3b is configured to output a warning when the determination unit determines that a problem may occur in the substance.
  • a warning is output.
  • the warning output from the second output unit 3b is not particularly limited, but it is preferable to display the content of a specific problem such as "clogging" or "decrease in bulk density".
  • first output unit 3a and the second output unit 3b have been described separately here for convenience, the first output unit 3a and the second output unit 3b are the same output device as shown in FIG. 3 may be used, or a different output device may be used.
  • FIG. 3 is an example of a screen output to the output device 3 according to the present embodiment.
  • This output screen shows an image of the entire yard viewed from the sky in a plan view. Further, on this output screen, the predicted water content and the warning are displayed on one output screen.
  • a band is displayed on each pile in three stages, and a numerical value is displayed on the band. This numerical value shows the water content of the pile on the day, 3 days later, and 7 days later in order from the top.
  • the band is "safe" when the water content is less than 10%, and “caution” because it can cause clogging in a later process when the water content is 10% or more and less than 12%.
  • the water content of the substance is 11.5% on the day (“Caution” coloring + “!” Mark), and 3 days later 12.5% (“Danger” coloring + “!!!”. “Mark”), estimated to be 13.5% (“danger” coloring + “!!!” mark) 7 days later. That is, it is shown that in this pile, clogging can occur in the process after 3 days, and pile collapse can occur after 3 days.
  • such a display of water content can be switched to, for example, a display of precipitation amount, which is blue when the precipitation amount is 20 mm, yellow when the precipitation amount is 20 mm or more and less than 50 mm, and red when the precipitation amount is 50 mm or more.
  • You may display three color-coded bands (on the day, three days later, and seven days later in order from the top) and the numerical value of precipitation on the bands.
  • the cumulative values of today's weather and expected precipitation are shown.
  • the upper and lower three-tiered bands for the cumulative value of expected precipitation show the wind speeds on the day, 3 days later, and 7 days later, respectively, from the top.
  • the color of the band is darkened in the order of "danger”, “caution”, and "safety”.
  • the cumulative value of the expected precipitation may or may not change the threshold value as a reference for "danger”, “caution”, and "safety” every 3 days and 7 days after the day. ..
  • the output result of the management system 1 according to the present embodiment is from such an actual sky. It does not have to be displayed on the image, and may be displayed on the model diagram. Further, the output screen may or may not show today's weather and expected precipitation as shown in FIG. Further, the output screen may or may not show information other than today's weather and expected rainfall.
  • the pile information measuring unit 4 is configured to measure pile information including one or more selected from the group consisting of the area, volume, planar shape, three-dimensional shape and position of the pile P of the substance.
  • the area, volume, planar shape, and three-dimensional shape of the pile P are calculated in consideration of the scale from an image obtained by imaging from a position higher than the maximum height of the pile P, for example, above the pile P. be able to.
  • the image is taken on a boom such as a drone that can fly at a position higher than the maximum height of the pile P and a reclaimer that can extend to a position higher than the maximum height of the pile P.
  • An example is a device in which a device is attached to take an image.
  • the area of the pile P can also be measured by surveying in the yard Y where the pile P is arranged. From the viewpoint of ease of measuring pile information, the pile information measuring unit 4 is not particularly limited, but it is preferable to use the above-mentioned flying object.
  • the position of the pile P in the pile information is not particularly limited as long as the position of the pile can be quantitatively measured.
  • the position on the earth may be measured by a device such as a satellite navigation system (GNSS) such as the Global Positioning System (GPS), or an image may be taken from a position higher than the maximum height of the pile P, for example, above the pile P. You may measure the position of the whole image in the obtained yard.
  • GNSS satellite navigation system
  • GPS Global Positioning System
  • the height at which the pile information measuring unit 4 is arranged is not particularly limited, but it is preferably arranged at a position 20 m or more and 200 m or less higher than the yard Y.
  • the heights at which the pile information measuring unit 4 is arranged include, for example, 25 m or more, 30 m or more, 35 m or more, 40 m or more, 45 m or more, 50 m or more, 55 m or more, 60 m or more, 65 m or more, 70 m or more, 75 m.
  • the specific measures are not particularly limited because they depend on the specific content of the problem, but if it is determined that clogging may occur in a later process, the substance may be a hopper, silo, or belt conveyor. An anti-clogging agent is added to the substance before it reaches the transit part or the like.
  • the clogging inhibitor is not particularly limited, and is, for example, a highly water-absorbent resin defined by JIS K7223 (1996) and JIS K7224 (1996), for example, poly (meth) acrylic acid, poly (meth) acrylic acid salt, poly.
  • poly (meth) acrylic acid poly (meth) acrylic acid salt
  • examples thereof include copolymers containing (meth) acrylic acid ester, poly (meth) acrylamide, polyalkylene imine, polyoxyalkylene, polymaleic acid, and any of the monomers constituting these.
  • the bulk density improving agent is not particularly limited, but for example, a surfactant can be used.
  • the bulk density improving agent is dialkylsulfosuccinic acid (8 to 16 carbon atoms of the alkyl group) or a salt thereof (for example,). , Sodium salt, ammonium salt, potassium salt, triethanolamine salt), anionic surfactants such as polyoxyethylene alkyl ether sulfate, and nonionic surfactants such as polyoxyethylene (POE) addition polymers or salts thereof. Agents and the like can be used.
  • the water-shielding agent is not particularly limited, and examples thereof include acrylic acid-based, methacrylic acid-based, and vinyl acetate-based resin emulsion solutions.
  • the water-shielding agent composed of such a resin emulsion solution forms a hydrophobic film on the surface of the pile.
  • the impermeable effect cannot be obtained even if it is applied immediately before or after the precipitation starts.
  • the management system according to the present embodiment even the water content of the substance placed in the yard, for example, after 3 days, can be accurately predicted. Therefore, such a water-impervious agent is appropriate. It can be added to the pile at the appropriate time. As a result, it is possible to reduce the amount of the water-impervious agent, which is expensive and time-consuming to apply.
  • addition of these agents is carried out by the addition device of each agent (clog prevention agent addition device, bulk density improving agent addition device, water-shielding agent addition device, none of which is shown), addition part (clogging prevention agent addition part, Neither the bulk density improver addition part nor the water-impervious agent addition part (not shown) may be used. Further, these may be added automatically, or may be added manually by an operator or the like.
  • FIG. 4 is a schematic diagram showing a hardware configuration of the management device 2 according to the present embodiment.
  • the management device 2 has a communication unit 26, a storage unit 27, and a control unit 28, and these components are electrically connected to the inside of the management device 2 via the communication bus 29. It is connected to the.
  • these components will be further described.
  • the communication unit 26 preferably has a wired communication means such as USB, IEEE1394, Thunderbolt, wired LAN network communication, etc., but requires wireless LAN network communication, mobile communication such as 3G / LTE / 5G, Bluetooth (registered trademark) communication, and the like. Can be included depending on. That is, it is more preferable to carry out as a set of these plurality of communication means. As a result, information and commands are exchanged between the management device 2 and other communicable devices.
  • a wired communication means such as USB, IEEE1394, Thunderbolt, wired LAN network communication, etc.
  • mobile communication such as 3G / LTE / 5G, Bluetooth (registered trademark) communication, and the like.
  • FIG. 5 is a flowchart of the management method according to the present embodiment.
  • the water content information is acquired (moisture content information acquisition step S1) and the weather information is acquired (weather information acquisition step S2), and these are input information.
  • the amount of water contained in the substance at a specific time point in the future is predicted (prediction step S3).
  • the water content information acquisition process S1 and the weather information acquisition process S2 regardless of the order, the water content information acquisition process S1 may come first, or the weather information acquisition process S2 may come first.
  • the water content information acquisition step S1 and the weather information acquisition step S2 may be performed at the same time.
  • a determination step, a pile information acquisition step, a first output step, a second output step, a pile information measurement step, and an addition step may be provided. Since these are the same as the operations of the determination unit, the pile information acquisition unit, the first output unit, the second output unit, the pile information measurement unit, and the addition unit, the description thereof is omitted here.
  • the management program according to the present embodiment is a management program for substances that are iron-making raw materials and / or power generation fuels that are managed outdoors, and the computer functions as a water content information acquisition unit, a weather information acquisition unit, and a prediction unit. It is something that makes you. Since the water content information acquisition unit, the weather information acquisition unit, and the prediction unit have been described above, the description thereof is omitted here.
  • Management system 2 Management device 21 Moisture content information acquisition unit 22 Meteorological information acquisition unit 23 Prediction unit 24 Judgment unit 25 Pile information acquisition unit 26 Communication unit 27 Storage unit 28 Control unit 29 Communication bus 3 Output device 3a 1st output unit 3b 2 Output unit 4 Pile information measuring device or pile information measuring unit Y yard P pile

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Economics (AREA)
  • Human Resources & Organizations (AREA)
  • Strategic Management (AREA)
  • Theoretical Computer Science (AREA)
  • Marketing (AREA)
  • Tourism & Hospitality (AREA)
  • Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Health & Medical Sciences (AREA)
  • Primary Health Care (AREA)
  • Environmental Sciences (AREA)
  • Ecology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Atmospheric Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Development Economics (AREA)
  • Operations Research (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Game Theory and Decision Science (AREA)
  • Quality & Reliability (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Public Health (AREA)
  • Water Supply & Treatment (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Aviation & Aerospace Engineering (AREA)

Abstract

ヤードに配置されている物質の未来の特定時点における水分量を予測することができる管理システム、管理装置、管理方法及びプログラムを提供すること。 本発明の一態様によれば、屋外で管理される、製鉄原料及び/又は発電燃料である物質の管理システムが提供される。この管理システムは、水分量情報取得部と、気象情報取得部と、予測部とを備える。水分量情報取得部は、物質に含まれる水分量を示す水分量情報を取得するように構成される。気象情報取得部は、屋外の未来の予想される気象を示す気象情報を取得するように構成される。予測部は、水分量情報及び気象情報に基づいて、未来の特定時点の物質に含まれる水分量を予測するように構成される。

Description

管理システム、管理装置、管理方法及び管理プログラム
 本発明は、管理システム、管理装置、管理方法及び管理プログラムに関する。
 製鉄所では、製鉄原料として鉄鉱石、石炭、ダスト及びスラグ等が、発電所では、発電燃料として石炭等が、山積みされパイルの状態でヤード内に保管される。このようにして保管されたこれらの物質は、用途に応じて種々の処理が施されて使用される。
 ここで、ヤードにおいて石炭等の物質は野晒しの状態で配置される。したがって、石炭等の物質は、降水等によって水を吸収し、これによって水分量が多くなると種々の問題が起こり得る。例えば、製鉄原料としての鉄鉱石、石炭、ダスト及びスラグの水分量が多い場合、ホッパー、サイロ、ベルトコンベア乗継部等で詰まりが発生することがある。また、コークス原料としての石炭の水分量が多い場合、コークス炉に装入されるコークスの嵩密度が低下するため、生産量が低下する。さらに、ヤードにおいてパイルを構成する物質に含まれる水分量が多くなりすぎると、パイルを構成する物質が流れてパイル崩壊が起こりやすくなる。
 従来、石炭等の物質の水分を測定するために、ヤードの原料パイルから少量の物質をサンプリングして水分量を測定する方法や、原料輸送用のベルトコンベア上で水分計を用いて水分量を測定する方法等(例えば、特許文献1参照)が行われている。
特開平7-43319号公報
 しかしながら、サンプリングによる方法では、時間と手間を要する。特許文献1のような方法では、ヤードから移送された後に石炭等の物質の水分量を測定するため、パイルとして配置されている段階に生じるパイル崩壊を防止することはできないし、水分量が多いときに石炭等の物質に添加する剤に不足が生じることもある。
 本発明では上記事情に鑑み、ヤードに配置されている物質の未来の特定時点における水分量を予測することができる管理システム、管理装置、管理方法及びプログラムを提供することとした。
 本発明の一態様によれば、屋外で管理される、製鉄原料及び/又は発電燃料である物質の管理システムが提供される。この管理システムは、水分量情報取得部と、気象情報取得部と、予測部とを備える。水分量情報取得部は、物質に含まれる水分量を示す水分量情報を取得するように構成される。気象情報取得部は、屋外の未来の予想される気象を示す気象情報を取得するように構成される。予測部は、水分量情報及び気象情報に基づいて、未来の特定時点の物質に含まれる水分量を予測するように構成される。
 具体的には、次に記載の各態様で提供されてもよい。
 前記管理システムにおいて、前記水分量情報取得部は、前記水分量情報を、前記物質のパイルごとに取得するように構成され、前記予測部は、未来の特定時点の前記物質に含まれる水分量を、前記物質のパイルごとに予測するように構成される、管理システム。
 前記管理システムにおいて、第1出力部をさらに備え、前記第1出力部は、前記予測部において予測された水分量を、前記物質のパイルごとに出力するように構成される、管理システム。
 前記管理システムにおいて、判断部をさらに備え、前記判断部は、前記水分量の予測に基づいて、前記物質に問題が生じ得るか否かを判断するように構成される、管理システム。
 前記管理システムにおいて、第2出力部をさらに備え、前記第2出力部は、前記判断部が、前記物質に問題が生じ得ると判断した場合に、警告を出力するように構成される、管理システム。
 前記管理システムにおいて、パイル情報取得部をさらに備え、前記パイル情報取得部は、前記物質のパイルの面積、体積、平面形状、立体形状及び位置からなる群から選択される1以上を含むパイル情報を取得するように構成され、前記予測部は、さらに前記パイル情報に基づいて、未来の特定時点の前記物質に含まれる水分量を予測するように構成される、管理システム。
 前記管理システムにおいて前記気象情報は、降水量を含む、管理システム。
 屋外で管理される、製鉄原料及び/又は発電燃料である物質の管理装置であって、水分量情報取得部と、気象情報取得部と、予測部とを備え、前記水分量情報取得部は、前記物質に含まれる水分量を示す水分量情報を取得するように構成され、前記気象情報取得部は、前記屋外の未来の予想される気象を示す気象情報を取得するように構成され、前記予測部は、前記水分量情報及び前記気象情報に基づいて、未来の特定時点の前記物質に含まれる水分量を予測するように構成される、管理装置。
 屋外で管理される、製鉄原料及び/又は発電燃料である物質の管理方法であって、水分量情報取得工程と、気象情報取得工程と、予測工程とを備え、前記水分量情報取得工程では、前記物質に含まれる水分量を示す水分量情報を取得し、前記気象情報取得工程では、前記屋外の未来の予想される気象を示す気象情報を取得し、前記予測工程では、前記水分量情報及び前記気象情報に基づいて、未来の特定時点の前記物質に含まれる水分量を予測する、管理方法。
 屋外で管理される、製鉄原料及び/又は発電燃料である物質の管理プログラムであって、コンピュータを、水分量情報取得部、気象情報取得部及び予測部として機能させ、前記水分量情報取得部は、前記物質に含まれる水分量を示す水分量情報を取得するように構成され、前記気象情報取得部は、前記屋外の未来の予想される気象を示す気象情報を取得するように構成され、前記予測部は、前記水分量情報及び前記気象情報に基づいて、未来の特定時点の前記物質に含まれる水分量を予測するように構成される、管理プログラム。
 もちろん、この限りではない。
 本発明によれば、ヤードに配置されている物質の未来の特定時点における水分量を予測することができる。
本実施形態に係る管理システムを示す概略図である。 本実施形態に係る管理装置の機能構成を示す概略図である。 本実施形態に係る出力装置に出力される画面の一例である。 本実施形態に係る管理装置のハードウェア構成を示す概略図である。 本実施形態に係る管理方法のフローチャート図である。
 以下、図面を用いて本発明の実施形態について説明する。以下に示す実施形態中で示した各種特徴事項は、互いに組み合わせ可能である。
 本実施形態に係るソフトウェアを実現するためのプログラムは、コンピュータが読み取り可能な非一時的な記録媒体として提供されてもよいし、外部のサーバからダウンロード可能に提供されてもよいし、外部のコンピュータで当該プログラムを起動させてクライアント端末でその機能を実現(いわゆるクラウドコンピューティング)するように提供されてもよい。
 また、本実施形態において「部」とは、例えば、広義の回路によって実施されるハードウェア資源と、これらのハードウェア資源によって具体的に実現されうるソフトウェアの情報処理とを合わせたものも含みうる。また、本実施形態においては様々な情報を取り扱うが、これら情報は、例えば電圧・電流を表す信号値の物理的な値、0又は1で構成される2進数のビット集合体としての信号値の高低、又は量子的な重ね合わせ(いわゆる量子ビット)によって表され、広義の回路上で通信・演算が実行されうる。
 また、広義の回路とは、回路(Circuit)、回路類(Circuitry)、プロセッサ(Processor)、及びメモリ(Memory)等を少なくとも適当に組み合わせることによって実現される回路である。すなわち、特定用途向け集積回路(Application Specific Integrated Circuit:ASIC)、プログラマブル論理デバイス(例えば、単純プログラマブル論理デバイス(Simple Programmable Logic Device:SPLD)、複合プログラマブル論理デバイス(Complex Programmable Logic Device:CPLD)、及びフィールドプログラマブルゲートアレイ(Field Programmable Gate Array:FPGA))等を含むものである。
<管理システム>
 本実施形態に係る管理システムは、屋外で管理される、製鉄原料及び/又は発電燃料である物質の管理システムである。具体的に、この管理システムは、水分量情報取得部と、気象情報取得部と、予測部とを少なくとも備える。水分量情報取得部は、物質に含まれる水分量を示す水分量情報を取得するように構成されるものである。また、気象情報取得部は、屋外の未来の予想される気象を示す気象情報を取得するように構成されるものである。さらに、予測部は、水分量情報及び気象情報に基づいて、未来の特定時点の物質に含まれる水分量を予測するように構成されるものである。
 ここで、「製鉄原料」とは、製鉄所等の製鉄設備における製鉄の原料及び燃料として使用されるものをいい、例えば石炭、鉄鋼、ダスト、スラグ、コークス、焼結鉱の他、石灰石、ドロマイト等の副原料等が挙げられる。また、「発電燃料」とは、発電所等の発電設備における発電の燃料として使用されるものをいい、例えば石炭、バイオマス燃料等が挙げられる。
 また、必須の構成ではないが、本実施形態に係る管理システムは、第1出力部、判断部、第2出力部、パイル情報測定部及びパイル情報取得部のうち、1又は2以上を備えてもよい。なお、以下で説明する図1には、これら全てを備える管理システムについて主として説明する。
〔管理システムの機能的構成〕
 図1は、本実施形態に係る管理システムの概略図である。この管理システム1は、管理装置2と、出力装置3と、パイル情報測定装置4とを備える。
 このうち、管理装置2は、管理システム1における物質の管理のための情報処理を制御するものである。図2は、本実施形態に係る管理装置の機能構成を示す概略模式図である。この図2に示すように、本実施形態に係る管理装置2は、水分量情報取得部21、気象情報取得部22、予測部23、判断部24及びパイル情報取得部25を備える。なお、出力装置3は、第1出力部及び第2出力部の一例である。また、パイル情報測定装置4は、パイル情報測定部の一例であるが、以下では特に区別せず説明する。
〔管理システムの機能〕
 以下、管理システム1の各部の機能について具体的に説明する。
 [水分量情報取得部]
 水分量情報取得部21は、物質に含まれる水分量を示す水分量情報を取得するように構成されるものである。
 ここで、水分量情報取得部21において取得する水分量情報は、予測部23が予測を開始する時点(以下、「予測開始時点」ということもある。)又はそれよりも過去の特定時点における水分量である。
 過去の特定時点における水分量を用いる場合、現在までの水分量の変化を考慮して補正してもよいし、補正しなくてもよい。特に、物質の保管環境等を考慮して、過去の特定時点から予測開始時点までの水分量の変化が少ないと判断される場合には補正しなくてもよい。一方で、この水分量情報取得部21において取得する水分量について補正する場合、物質の保管環境等を考慮して、物質への水分の入出量を補正すればよい。例えば、過去の特定時点から予測開始時点まで物質が屋外に配置される場合には、その期間の気象情報実績を考慮すればよい。なお、水分量について補正しない場合としては、物質の納入時に、その物質のメーカーより初期の水分量を知らされた場合や初期の水分量を測定した場合等においてさらに、その物質をそのままヤード内に配置するとともに、予測部における水分量の予測を開始した場合等が挙げられる。
 水分量情報取得部21は、水分量情報を、物質のパイルPごとに取得するように構成されることが好ましい。ヤードに配置されるパイルPは、全てが同一の物質によって構成されているとは限らない。例えば、銘柄やロット、保管環境等が異なることにより、そこに含有される水分量が異なることがある。このような場合等に、水分量情報を物質のパイルPごとに取得し、後述する予測部23で、未来の特定時点の物質に含まれる水分量を、物質のパイルPごとに予測することにより、それぞれのパイルPを構成する物質について未来の特定時点の水分量をより適切に予測し得る。
 なお、物質の水分量の測定方法としては、特に限定されず、例えばマイクロ波式、赤外光式等の水分計、熱重量計、乾燥重量方式等によって測定することができる。
 [気象情報取得部]
 気象情報取得部22は、屋外の未来の予想される気象を示す気象情報を取得するように構成されるものである。
 気象情報としては、特に限定されないが、降水量(降雨量及び降雪量)、気温、風向、風速、日射量、相対湿度等のうち1又は2以上を用いることができる。気象情報としては、特に、降水量を用いることが好ましい。なお、これらの気象情報は、日本国気象庁をはじめとする各国気象庁や、気象予報会社から得ることができる。
 [予測部]
 予測部23は、水分量情報取得部21で取得された水分量情報、及び気象情報取得部22で取得された気象情報に基づいて、未来の特定時点の物質に含まれる水分量を予測するように構成されるものである。
 ここで、「未来の特定時点」とは、予測開始時点よりも未来の時点をいう。具体的に、未来の特定時点としては、特に限定されず、例えば予測開始時点の1秒後以上、10秒後以上、1分後以上、1時間後以上、2時間後以上、5時間後以上、10時間後以上、20時間後以上、1日後以上、2日以上、3日以上であってよい。また、未来の特定時点としては、予測開始時点の100日後以下、70日後以下、50日後以下、30日後以下、20日後以下、10日後以下、7日後以下であってよい。
 具体的に、この予測部23においては、例えば気象情報と、予測時から未来の特定時点までの水分量の増減(以下、単に「水分量の増減」ということもある。)との関係を関数又はルックアップテーブルを作成するか、それらの関係を学習済モデルとして構築する等によって、気象情報から水分量の増減を算出する。このようにして水分量の増減を、水分量情報取得部21で取得された水分量情報に加えることで、未来の特定時点における物質に含まれる水分量を予測することができる。
 例えば、気象情報として降水量を用いる場合、物質がその降水を吸収することによる水分量の総増加量を求めればよい。
 また、例えば、気象情報として気温、風速、日射量、相対湿度、等を用いる場合、それらの気象情報で水分が物質の表面から蒸発することによる水分量の総減少量を求めればよい。
 また、予測部23は、未来の特定時点の物質に含まれる水分量を、物質のパイルPごとに予測するように構成されることが好ましい。上述したとおり、ヤードに配置されるパイルPは全てが同一の物質によって構成されているとは限らず、そこに含有される水分量が異なることがあるため、未来の特定時点の物質に含まれる水分量を、物質のパイルPごとに予測して、それに見合った対応策を検討することで、より適切に生じ得る問題に対応できる可能性がある。これによって対応すべき優先度が容易に理解できるようになる。
 後述するパイル情報取得部25を設ける場合、予測部23は、水分量情報及び気象情報に加えてさらに、パイル情報取得部25において取得した物質のパイルPの面積、体積、平面形状、立体形状及び位置からなる群から選択される1以上を含むパイル情報に基づいて、未来の特定時点の物質に含まれる水分量を予測するように構成されることが好ましい。
 なお、「面積」及び「平面形状」とは、ヤードY(パイルP)の上方からパイルPを平面視した場合の面積及び平面形状をいう。
 予測部23が、パイルPの面積、体積、平面形状及び立体形状のいずれか1以上の情報を用いる場合、例えば降水量情報と合わせて、パイルPの面積、体積、平面形状及び立体形状のいずれかと、降水量とから、例えば、関数やルックアップテーブル、学習済みモデル等を用いて物質の含水量の増加を算出することができる。
 また、例えば、パイルPの面積と降水量とから、パイルPに直接降水する水の量を予測することができる。直接降水する水の量と、物質の含水量の増加分の関係を事前に求めておき、含水量の増加分を算出することもできる。
 さらに、予測部23が、パイルPの位置の情報を用いる場合、例えば気象情報と照らし合わせて、パイルPのより正確な位置における気象情報を適用することができるようになり、より精度の高い予測ができる。
 [判断部]
 判断部24は、水分量の予測(以下、「予測情報」ということもある。)に基づいて、物質に問題が生じ得るか否かを判断するように構成されるものである。
 具体的に、ここで生じる問題としては、上述したとおり、ホッパー、サイロ、ベルトコンベア乗継部等の後のプロセスにおける詰まり、コークスの嵩密度の低下による生産量の低下、パイル崩壊等が挙げられる。
 物質に問題が生じ得るか否かの判断は、予測情報、すなわち、予測された未来の特定時点の物質に含まれる水分量に基づいて行う。具体的に、例えば予測情報が、予め設けられた閾値を超えた場合に、問題が生じ得ると判断する。なお、閾値としては、その値を超えた場合に必ず問題が起こるものである必要はなく、一定程度の可能性が生じるものであってもよい。また、閾値としては、安全係数を考慮したものであってもよい。
 閾値は、実際の運用で蓄積された経験的な数値を設定しても、実験を行って特定した数値を設定してもよい。また、閾値は、パイルを構成する物質(種類、銘柄、納品日等)ごとに変更してもよいし、変更しなくてもよい。
 また、予測情報に対して、複数の閾値、すなわち複数の数値帯を設けて、それぞれの数値帯で段階的な問題が起こるか否かを判断してもよい。例えば、未来の特定時点の水分量が8%以上11%未満のときには、後のプロセスで詰まりが起こりやすくなり、未来の特定時点の水分量が11%以上のときには、後のプロセスで詰まりが確実に起こると判断することが挙げられる。また、それぞれの数値帯で異なる問題が起こるか否かを判断してもよい。例えば、未来の特定時点の水分量が8%以上11%未満のときには、後のプロセスで詰まりが起こりやすくなり、未来の特定時点の水分量が11%以上のときには、パイル崩壊が起こりやすくなる、と判断することが挙げられる。
 [パイル情報取得部]
 パイル情報取得部25は、物質のパイルPの面積、体積、平面形状、立体形状及び位置からなる群から選択される1以上を含むパイル情報を取得するように構成されるものである。
 このように物質のパイルPの面積、体積、平面形状、立体形状及び位置からなる群から選択される1以上を含むパイル情報を取得して、このパイル情報を気象情報とともに用いることにより、未来の特定時点の物質に含まれる水分量を適切に予測することができる。
 [第1出力部]
 第1出力部3aは、予測部23において予測された水分量を、物質のパイルPごとに出力するように構成されるものである。
 このようにパイルPごとに予測された水分量を出力することにより、問題が生じやすいパイルPを可視化し、オペレータの早期の対応を促すことができる。
 [第2出力部]
 第2出力部3bは、判断部が、物質に問題が生じ得ると判断した場合に、警告を出力するように構成されるものである。
 すなわち、例えば予測情報が予め設けられた閾値を超えるために問題が生じ得ると判断部が判断した場合において、警告を出力するものである。
 第2出力部3bから出力される警告としては、特に限定されないが、例えば、「詰まり」、「嵩密度低下」等、具体的な問題の内容を表示することが好ましい。
 なお、ここでは、便宜上第1出力部3aと第2出力部3bとを分けて説明したが、第1出力部3aと第2出力部3bとしては、図1に示したような同一の出力装置3を用いてもよいし、異なる出力装置を用いてもよい。
 以下、本実施形態に係る管理システムによる出力の一例について説明する。図3は、本実施形態に係る出力装置3に出力される画面の一例である。この出力画面は、ヤード全体を上空から平面視した像を示している。また、この出力画面においては、予測された水分量と、警告とを一つの出力画面において表示している。ここで、この出力画面において、各パイル上に3段に分けて帯を表示し、さらにその上に数値を表示している。この数値は、上から順に当日、3日後、7日後のパイルの水分量を示している。帯は、水分量が10%未満の場合には問題が起こりにくいものとして「安全」と、10%以上12%未満の場合には後のプロセスで詰まりが起こるものになり得るとして「注意」と、12%以上の場合にはパイル崩壊が起こり得るものとして「危険」とそれぞれ評価している。さらに、「注意」の場合、すなわち10%以上12%未満の場合には、「!」マークを、「危険」の場合、すなわち12%以上の場合には、「!!!」マークを表示している。なお、図3では、「危険」、「注意」、「安全」の順に帯の色を濃く着色しているが、例えば「危険」を赤色、「注意」を黄色、「安全」を青色で着色して、水分量の評価を視覚的に認識しやすくしてもよい。
 例えば出力画面右上のパイルについて、物質の水分量が当日に11.5%(「注意」の着色+「!」マーク)、3日後に12.5%(「危険」の着色+「!!!」マーク)、7日後に13.5%(「危険」の着色+「!!!」マーク)と予測されている。すなわち、このパイルでは、当日に後のプロセスで詰まりが起こり得るものになり、3日後以降にはパイル崩壊が起こり得るものになることを示している。
 また、このような水分量の表示は、例えば降水量の表示にも切り替えることができ、降水量が20mmの場合には青色、20mm以上50mm未満の場合には黄色、50mm以上の場合には赤色に色分けした3本の帯(上から順に当日、3日後、7日後)と、その帯上に降水量の数値を表示してもよい。
 さらに、この出力画面右上のパイルの左上の角には、「!!!」マークを表示している。これは、パイル崩壊が起こる可能性が高い、特に注意が必要なパイルであることを意味している。
 なお、この出力画面の右側には、本日の天気と予想降水量の累積値が示されている。予想降水量の累積値についての上下3段の帯は、上から順にそれぞれ当日、3日後及び7日後の風速を示している。この予想降水量の累積値についても、上述した3段階評価の例であれば「危険」、「注意」、「安全」の順に帯の色を濃く表示している。なお、予想降水量の累積値は、当日、3日後及び7日後ごとに、「危険」、「注意」、「安全」の基準となる閾値を変えてもよいし、閾値を変えなくてもよい。
 なお、図3の例では、パイルの像上に問題発生の可能性に応じて色付けをする例を示したが、本実施形態に係る管理システム1の出力結果はこのような実際の上空からの像上に表示しなくてもよく、モデル図上に表示してもよい。また、出力画面には、図3のように本日の天気と予想降水量が示されていてもよいし、示されていなくてもよい。さらに、出力画面には、本日の天気と予想降水量以外の情報が示されていてもよいし、示されていなくてもよい。
 以上のようにして、予測された未来の特定時点の水分量や、気象情報(降水量)等について閾値を設け、問題発生の可能性について視覚的に認識できるよう表示することで、オペレータ等が素早く対応を検討でき、また、問題の見落としを抑制することもできる。
 また、予測部において、パイルPごとの未来の特定時点の水分量を予測して、パイルPの像やモデル図の上に、パイルPごとの未来の特定時点の水分量や気象情報(降水量)等の問題の発生に関連する情報を表示することで、パイルPごとにどのような問題が起こっているかオペレータの視認性をより高めることができる。
 [パイル情報測定部]
 パイル情報測定部4は、物質のパイルPの面積、体積、平面形状、立体形状及び位置からなる群から選択される1以上を含むパイル情報を測定するように構成されるものである。
 パイル情報のうちパイルPの面積、体積、平面形状、立体形状は、例えばパイルPの上空、パイルPの最大高さよりも高い位置から撮像して得られた像より、縮尺を考慮して算出することができる。具体的には、パイルPの最大高さよりも高い位置を飛行することができるドローン等の飛行体や、パイルPの最大高さよりも高い位置まで伸長することができるリクレーマー等のブームに、撮像装置を取り付けて撮像する装置が挙げられる。また、パイルPの面積は、パイルPが配置されるヤードY内の測量によって測定することもできる。パイル情報の測定の容易性の観点から、パイル情報測定部4としては、特に限定されないが、上述した飛行体を用いることが好ましい。
 また、パイル情報のうちパイルPの位置は、パイルの位置を定量的に測定できるものであれば特に限定されない。例えばグローバルポジショニングシステム(GPS)等の衛星航法システム(GNSS)等、地球上における位置を機器によって測定してもよいし、例えばパイルPの上空、パイルPの最大高さよりも高い位置から撮像して得られたヤード内の全体像のうち、どの位置にあるかを測定してもよい。
 パイル情報測定部4の配置される高さとしては、特に限定されないが、ヤードYから20m以上200m以下高い位置に配置されることが好ましい。具体的に、パイル情報測定部4の配置される高さとしては、例えば25m以上、30m以上、35m以上、40m以上、45m以上、50m以上、55m以上、60m以上、65m以上、70m以上、75m以上、80m以上、85m以上、90m以上、95m以上、100m以上、105m以上、110m以上、115m以上、120m以上、125m以上、130m以上、135m以上であってよく、また、195m以下、190m以下、185m以下、180m以下、175m以下、170m以下、165m以下、160m以下であってもよい。
 パイル情報測定部4によって測定したパイル情報は、パイル情報取得部25と通信して送信してもよいし、パイル情報測定部4に記録媒体を付してパイル情報をそこに記録し、その記録媒体を介して、パイル情報取得部25にパイル情報を取得させてもよい。
 このような管理システムによれば、ヤードに配置されている物質の未来の特定時点における水分量を予測することができ、この未来の特定時点における水分量を原因として生じ得る問題に対して早期に対応できる。
 具体的な対応としては、問題の具体的内容によるため、特に限定されるものではないが、後のプロセスにおいて詰まりの発生が起こり得ると判断される場合には、物質がホッパー、サイロ、ベルトコンベア乗継部等に到達する前に、物質に対して詰まり防止剤を添加する。
 詰まり防止剤としては、特に限定されないが、例えばJIS K7223(1996)及びJIS K7224(1996)で定義される高吸水性樹脂、例えば、ポリ(メタ)アクリル酸、ポリ(メタ)アクリル酸塩、ポリ(メタ)アクリル酸エステル、ポリ(メタ)アクリルアミド、ポリアルキレンイミン、ポリオキシアルキレン、ポリマレイン酸、及びこれらを構成する単量体のいずれかを含む共重合体等が挙げられる。
 コークス原料としての石炭の水分量が多く、コークス炉に装入されるコークスの嵩密度が低下し得る場合には、嵩密度向上剤を添加する。
 嵩密度向上剤としては、特に限定されないが、例えば界面活性剤を用いることができる・具体的に嵩密度向上剤としては、ジアルキルスルホコハク酸(アルキル基の炭素数8~16)又はその塩(例えば、ナトリウム塩、アンモニウム塩、カリウム塩、トリエタノールアミン塩)、ポリオキシエチレンアルキルエーテル硫酸塩等のアニオン系界面活性剤や、ポリオキシエチレン(POE)付加重合物又はその塩等のノニオン系界面活性剤等を用いることができる。
 なお、詰まり防止剤や嵩密度向上剤の添加箇所としては、ホッパー、サイロ、ベルトコンベア乗継部等に到達する前であれば特に限定されず、パイル又は後のプロセス中であってよい。
 また、屋外に設置されているパイルの水の吸収を抑制する場合には、遮水剤を添加する。
 遮水剤としては、特に限定されないが、アクリル酸系、メタクリル酸系及び酢酸ビニル系の樹脂エマルション溶液が挙げられる。
 ここで、このような樹脂エマルション溶液からなる遮水剤は、パイルの表面に疎水性の被膜を形成するものである。しかしながら、パイルに対する樹脂エマルションの適用から被膜の形成までには1~2日の時間を要するため、降水の直前や、降水が始まった後に適用しても遮水効果は得られない。本実施形態に係る管理システムによれば、ヤードに配置されている物質の、例えば3日後の水分量であっても、正確に予測することができるため、このような遮水剤を、適切なパイルに適切な時期に添加することができる。これによって、高価で適用に手間を要する遮水剤の使用量を削減することもできる。
 なお、これらの剤の添加は各剤の添加装置(詰まり防止剤添加装置、嵩密度向上剤添加装置、遮水剤添加装置、いずれも図示せず。)、添加部(詰まり防止剤添加部、嵩密度向上剤添加部、遮水剤添加部、いずれも図示せず。)を用いて行ってもよい。また、これらを用いて自動で添加してもよいし、オペレータ等が手動で添加してもよい。
〔管理システムのハードウェア構成〕
 図4は、本実施形態に係る管理装置2のハードウェア構成を示す概略図である。図4に示されるように、管理装置2は、通信部26と、記憶部27と、制御部28とを有し、これらの構成要素が管理装置2の内部において通信バス29を介して電気的に接続されている。以下、これらの構成要素についてさらに説明する。
 通信部26は、USB、IEEE1394、Thunderbolt、有線LANネットワーク通信等といった有線型の通信手段が好ましいが、無線LANネットワーク通信、3G/LTE/5G等のモバイル通信、Bluetooth(登録商標)通信等を必要に応じて含めることができる。すなわち、これら複数の通信手段の集合として実施することがより好ましい。これにより管理装置2と通信可能な他の機器との間で情報や命令のやりとりが実行される。
 記憶部27は、前述の記載により定義される様々な情報を記憶する。これは、例えばソリッドステートドライブ(Solid State Drive:SSD)等のストレージデバイスとして、または、プログラムの演算に係る一時的に必要な情報(引数、配列等)を記憶するランダムアクセスメモリ(Random Access Memory:RAM)等のメモリとして実施され得る。また、記憶部27は、これらの組合せであってもよい。また、記憶部27は、後述する制御部28が読み出し可能な各種のプログラムを記憶している。
 制御部28は、管理装置2に関連する全体動作の処理・制御を行う。この制御部28は、例えば中央処理装置(Central Processing Unit:CPU、図示せず。)である。制御部28は、記憶部27に記憶された所定のプログラムを読み出すことによって、管理装置2に係る種々の機能を実現するものである。すなわち、ソフトウェア(記憶部27に記憶されている。)による情報処理がハードウェア(制御部28)によって具体的に実現されることで、図4に示されるように、制御部28における各機能部として実行され得る。なお、図4においては、単一の制御部28として表記されているが、実際はこれに限るものではなく、機能ごとに複数の制御部28を有するように構成してもよく、また、単一の制御部と複数の制御部を組合せてもよい。
<管理方法>
 本実施形態に係る管理方法は、屋外で管理される、製鉄原料及び/又は発電燃料である物質の管理方法であって、水分量情報取得工程と、気象情報取得工程と、予測工程とを備えるものである。このうち、水分量情報取得工程では、物質に含まれる水分量を示す水分量情報を取得する。また、気象情報取得工程では、屋外の未来の予想される気象を示す気象情報を取得する。さらに、予測工程では、水分量情報及び気象情報に基づいて、未来の特定時点の物質に含まれる水分量を予測する。
 図5は、本実施形態に係る管理方法のフローチャート図である。図5に示すとおり、本実施形態に係る管理方法においては、水分量情報を取得する(水分量情報取得工程S1)とともに、気象情報を取得して(気象情報取得工程S2)、これらを入力情報として、未来の特定時点の物質に含まれる水分量を予測する(予測工程S3)。ここで、水分量情報取得工程S1及び気象情報取得工程S2について、順序の先行は問わず、水分量情報取得工程S1が先であっても、気象情報取得工程S2が先であってもよいし、水分量情報取得工程S1及び気象情報取得工程S2を同時に行ってもよい。
 なお、本実施形態に係る管理方法においては、判断工程、パイル情報取得工程、第1出力工程、第2出力工程、パイル情報測定工程及び添加工程を設けてもよい。これらはそれぞれ、判断部、パイル情報取得部、第1出力部、第2出力部、パイル情報測定部及び添加部の動作と同様であるので、ここでの説明は省略する。
<管理プログラム>
 本実施形態に係る管理プログラムは、屋外で管理される、製鉄原料及び/又は発電燃料である物質の管理プログラムであって、コンピュータを、水分量情報取得部、気象情報取得部及び予測部として機能させるものである。水分量情報取得部、気象情報取得部及び予測部については上述したので、ここでの説明は省略する。
 本発明は、以上の実施形態には何ら制限されず、適宜変更を加えて実施することができる。
 1   管理システム
 2   管理装置
 21  水分量情報取得部
 22  気象情報取得部
 23  予測部
 24  判断部
 25  パイル情報取得部
 26  通信部
 27  記憶部
 28  制御部
 29  通信バス
 3   出力装置
 3a  第1出力部
 3b  第2出力部
 4   パイル情報測定装置又はパイル情報測定部
 Y   ヤード
 P   パイル

Claims (10)

  1.  屋外で管理される、製鉄原料及び/又は発電燃料である物質の管理システムであって、
     水分量情報取得部と、気象情報取得部と、予測部とを備え、
     前記水分量情報取得部は、前記物質に含まれる水分量を示す水分量情報を取得するように構成され、
     前記気象情報取得部は、前記屋外の未来の予想される気象を示す気象情報を取得するように構成され、
     前記予測部は、前記水分量情報及び前記気象情報に基づいて、未来の特定時点の前記物質に含まれる水分量を予測するように構成される、
     管理システム。
  2.  請求項1に記載の管理システムにおいて、
     前記水分量情報取得部は、前記水分量情報を、前記物質のパイルごとに取得するように構成され、
     前記予測部は、未来の特定時点の前記物質に含まれる水分量を、前記物質のパイルごとに予測するように構成される、
     管理システム。
  3.  請求項2に記載の管理システムにおいて、
     第1出力部をさらに備え、
     前記第1出力部は、前記予測部において予測された水分量を、前記物質のパイルごとに出力するように構成される、
     管理システム。
  4.  請求項1~請求項3のいずれか1項に記載の管理システムにおいて、
     判断部をさらに備え、
     前記判断部は、前記水分量の予測に基づいて、前記物質に問題が生じ得るか否かを判断するように構成される、
     管理システム。
  5.  請求項4に記載の管理システムにおいて、
     第2出力部をさらに備え、
     前記第2出力部は、前記判断部が、前記物質に問題が生じ得ると判断した場合に、警告を出力するように構成される、
     管理システム。
  6.  請求項1~請求項5のいずれか1項に記載の管理システムにおいて、
     パイル情報取得部をさらに備え、
     前記パイル情報取得部は、前記物質のパイルの面積、体積、平面形状、立体形状及び位置からなる群から選択される1以上を含むパイル情報を取得するように構成され、
     前記予測部は、さらに前記パイル情報に基づいて、未来の特定時点の前記物質に含まれる水分量を予測するように構成される、
     管理システム。
  7.  請求項1~請求項6のいずれか1項に記載の管理システムにおいて
     前記気象情報は、降水量を含む、
     管理システム。
  8.  屋外で管理される、製鉄原料及び/又は発電燃料である物質の管理装置であって、
     水分量情報取得部と、気象情報取得部と、予測部とを備え、
     前記水分量情報取得部は、前記物質に含まれる水分量を示す水分量情報を取得するように構成され、
     前記気象情報取得部は、前記屋外の未来の予想される気象を示す気象情報を取得するように構成され、
     前記予測部は、前記水分量情報及び前記気象情報に基づいて、未来の特定時点の前記物質に含まれる水分量を予測するように構成される、
     管理装置。
  9.  屋外で管理される、製鉄原料及び/又は発電燃料である物質の管理方法であって、
     水分量情報取得工程と、気象情報取得工程と、予測工程とを備え、
     前記水分量情報取得工程では、前記物質に含まれる水分量を示す水分量情報を取得し、
     前記気象情報取得工程では、前記屋外の未来の予想される気象を示す気象情報を取得し、
     前記予測工程では、前記水分量情報及び前記気象情報に基づいて、未来の特定時点の前記物質に含まれる水分量を予測する、
     管理方法。
  10.  屋外で管理される、製鉄原料及び/又は発電燃料である物質の管理プログラムであって、
     コンピュータを、水分量情報取得部、気象情報取得部及び予測部として機能させ、
     前記水分量情報取得部は、前記物質に含まれる水分量を示す水分量情報を取得するように構成され、
     前記気象情報取得部は、前記屋外の未来の予想される気象を示す気象情報を取得するように構成され、
     前記予測部は、前記水分量情報及び前記気象情報に基づいて、未来の特定時点の前記物質に含まれる水分量を予測するように構成される、
     管理プログラム。
PCT/JP2021/026814 2020-08-03 2021-07-16 管理システム、管理装置、管理方法及び管理プログラム WO2022030227A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN202180057796.2A CN116157343A (zh) 2020-08-03 2021-07-16 管理系统、管理装置、管理方法以及管理程序
BR112023001405A BR112023001405A2 (pt) 2020-08-03 2021-07-16 Sistema de gestão, dispositivo de gestão, método de gestão e programa de gestão
US18/019,233 US20230273341A1 (en) 2020-08-03 2021-07-16 Management system, management device, management method, and non-transitory computer readable media
KR1020237004948A KR20230035664A (ko) 2020-08-03 2021-07-16 관리시스템, 관리장치, 관리방법 및 관리 프로그램
AU2021320688A AU2021320688A1 (en) 2020-08-03 2021-07-16 Management system, management device, management method, and management program
EP21854607.5A EP4190724A4 (en) 2020-08-03 2021-07-16 MANAGEMENT SYSTEM, MANAGEMENT DEVICE, MANAGEMENT METHOD AND MANAGEMENT PROGRAM

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-131552 2020-08-03
JP2020131552A JP7159251B2 (ja) 2020-08-03 2020-08-03 管理システム、管理装置、管理方法及び管理プログラム

Publications (1)

Publication Number Publication Date
WO2022030227A1 true WO2022030227A1 (ja) 2022-02-10

Family

ID=80117277

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/026814 WO2022030227A1 (ja) 2020-08-03 2021-07-16 管理システム、管理装置、管理方法及び管理プログラム

Country Status (8)

Country Link
US (1) US20230273341A1 (ja)
EP (1) EP4190724A4 (ja)
JP (1) JP7159251B2 (ja)
KR (1) KR20230035664A (ja)
CN (1) CN116157343A (ja)
AU (1) AU2021320688A1 (ja)
TW (1) TW202223773A (ja)
WO (1) WO2022030227A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2024099455A (ja) * 2023-01-12 2024-07-25 栗田工業株式会社 管理システム、管理装置、管理方法及び管理プログラム

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61243707A (ja) * 1985-04-19 1986-10-30 Sumitomo Metal Ind Ltd 撒水制御方法
JPH01162614A (ja) * 1987-12-15 1989-06-27 Ngk Insulators Ltd 炭麈飛散防止方法
JPH0275510A (ja) * 1988-09-09 1990-03-15 Sumitomo Metal Ind Ltd 粉塵飛散防止方法
JPH04286512A (ja) * 1991-03-12 1992-10-12 Kawasaki Steel Corp 原料ヤードに堆積した粉粒体の飛散防止散水制御方法
JP2019091111A (ja) * 2017-11-10 2019-06-13 三菱日立パワーシステムズ株式会社 木質バイオマスの流通支援装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03133813A (ja) * 1989-10-17 1991-06-07 Mitsubishi Heavy Ind Ltd 屋外貯炭場の石炭湿分管理装置
JPH0743319A (ja) 1993-07-29 1995-02-14 Kawasaki Steel Corp 石炭の水分測定方法およびその装置
JP2003171005A (ja) * 2001-12-05 2003-06-17 Nippon Steel Corp 粉塵防止における散水制御方法
WO2017047061A1 (ja) * 2015-09-14 2017-03-23 日本電気株式会社 災害予測システム、水分量予測装置、災害予測方法およびプログラム記録媒体

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61243707A (ja) * 1985-04-19 1986-10-30 Sumitomo Metal Ind Ltd 撒水制御方法
JPH01162614A (ja) * 1987-12-15 1989-06-27 Ngk Insulators Ltd 炭麈飛散防止方法
JPH0275510A (ja) * 1988-09-09 1990-03-15 Sumitomo Metal Ind Ltd 粉塵飛散防止方法
JPH04286512A (ja) * 1991-03-12 1992-10-12 Kawasaki Steel Corp 原料ヤードに堆積した粉粒体の飛散防止散水制御方法
JP2019091111A (ja) * 2017-11-10 2019-06-13 三菱日立パワーシステムズ株式会社 木質バイオマスの流通支援装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4190724A4 *

Also Published As

Publication number Publication date
EP4190724A1 (en) 2023-06-07
AU2021320688A1 (en) 2023-03-16
TW202223773A (zh) 2022-06-16
JP7159251B2 (ja) 2022-10-24
JP2022028247A (ja) 2022-02-16
US20230273341A1 (en) 2023-08-31
KR20230035664A (ko) 2023-03-14
CN116157343A (zh) 2023-05-23
EP4190724A4 (en) 2024-01-17

Similar Documents

Publication Publication Date Title
EP3753867A1 (en) Information processing device, information processing method, and information processing program
WO2022030227A1 (ja) 管理システム、管理装置、管理方法及び管理プログラム
CN110544313B (zh) 铲装设备及其铲装引导方法、装置、设备和存储介质
CN110782214A (zh) 应用于建筑废弃物回收处理的智慧监管系统
KR20100093709A (ko) 덤프트럭 적재 토량 산출방법 및 토량환산계수 산출방법
CN110284503A (zh) 一种大体积混凝土浇筑预防冷缝的施工控制方法
CN111476501A (zh) 装卸工程车的工作量计量方法、装置、设备及介质
CN114858987A (zh) 一种基于物联网河湖水量水质监测与管理系统
CN111721374A (zh) 建筑工地数据分析终端
CN111047545A (zh) 建筑工地数据分析系统
WO2022030228A1 (ja) 管理システム、管理装置、管理方法及び管理プログラム
JP2008050076A (ja) 飛散防止散水方法
WO2024150579A1 (en) Management system, management apparatus, management method, and management program
CN113850353B (zh) 一种基于rfid的挖掘机方量度量系统
JP4359089B2 (ja) 鉱物資源の生産高算出方法及びシステム
CN204405015U (zh) 一种大空隙排水沥青路面构造深度测试仪
JP2022028245A (ja) 管理システム、管理装置、管理方法及びプログラム
CN114166326A (zh) 一种铲车自动计量系统在溜井倒矿防作弊系统
CN201722568U (zh) 砂浆车及其成品斗容积检测系统
RU2593640C1 (ru) Способ оценки и мониторинга ресурса работоспособности портального крана
CN114565270B (zh) 炼钢评估方法、装置、设备及介质
Ashraf et al. LOW-COST smart productivity tracking model for earthmoving operations
CN103592305A (zh) 一种便携式在役电杆集料外露率检测仪器及其检测方法
US20230068671A1 (en) Method for snowmelt flood prediction
Senov et al. Development of a Combined Mechatronic System Based on a Mobile Platform and a Drone for Monitoring of Natural Hazards in Mountainous Areas

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21854607

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112023001405

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20237004948

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202317013213

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2021854607

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021854607

Country of ref document: EP

Effective date: 20230303

ENP Entry into the national phase

Ref document number: 2021320688

Country of ref document: AU

Date of ref document: 20210716

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112023001405

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20230125