WO2022030156A1 - Ionizing radiation conversion device, method for detecting ionizing radiation, and method for producing ionizing radiation conversion device - Google Patents

Ionizing radiation conversion device, method for detecting ionizing radiation, and method for producing ionizing radiation conversion device Download PDF

Info

Publication number
WO2022030156A1
WO2022030156A1 PCT/JP2021/025295 JP2021025295W WO2022030156A1 WO 2022030156 A1 WO2022030156 A1 WO 2022030156A1 JP 2021025295 W JP2021025295 W JP 2021025295W WO 2022030156 A1 WO2022030156 A1 WO 2022030156A1
Authority
WO
WIPO (PCT)
Prior art keywords
ionizing radiation
radiation conversion
substrate
conversion layer
conversion device
Prior art date
Application number
PCT/JP2021/025295
Other languages
French (fr)
Japanese (ja)
Inventor
太佑 松井
幸広 金子
卓之 根上
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2022541164A priority Critical patent/JPWO2022030156A1/ja
Publication of WO2022030156A1 publication Critical patent/WO2022030156A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/24Measuring radiation intensity with semiconductor detectors

Definitions

  • the present disclosure relates to an ionizing radiation conversion device, a method for detecting ionizing radiation, and a method for manufacturing an ionizing radiation conversion device.
  • Non-Patent Document 1 methyl ammonium iodide is used as a perovskite compound that converts X-rays into electric charges.
  • An object of the present disclosure is to provide an ionizing radiation conversion device having high sensitivity to ionizing radiation.
  • the ionizing radiation conversion device is A first laminated body including a first substrate and a first ionizing radiation conversion layer arranged on the first substrate, and a second including a second substrate and a second ionizing radiation conversion layer arranged on the second substrate.
  • the first ionizing radiation conversion layer contains a first perovskite compound and contains.
  • the second ionizing radiation conversion layer contains a second perovskite compound and contains.
  • the first ionizing radiation conversion layer is arranged between the first substrate and the second substrate.
  • the present disclosure provides an ionizing radiation conversion device having high sensitivity to ionizing radiation.
  • FIG. 1 shows a cross-sectional view of the ionizing radiation conversion device according to the first embodiment.
  • FIG. 2 shows a cross-sectional view of another ionizing radiation conversion device according to the first embodiment.
  • FIG. 3 shows a cross-sectional view of an ionizing radiation conversion device in which the first laminated body and the second laminated body are connected in parallel with each other.
  • FIG. 4 shows a cross-sectional view of an ionizing radiation conversion device consisting of a single laminate.
  • FIG. 5 shows a cross-sectional view of the ionizing radiation conversion device according to the second embodiment.
  • the absorbed ionizing radiation for example, X-ray
  • the ionizing radiation has a high penetrating ability. Therefore, from the viewpoint of the absorbing ability, it is desirable that the ionizing radiation conversion layer is thick.
  • the film thickness of the ionizing radiation conversion layer be less than or equal to the carrier diffusion length.
  • the carrier diffusion length of the polycrystalline perovskite compound is several hundred nm to several ⁇ m, and the carrier diffusion length of the single crystal perobskite compound is about several ⁇ m. If the film thickness is equal to or less than the carrier diffusion length, there is a problem that the ionizing radiation conversion layer cannot sufficiently absorb the ionizing radiation.
  • the ionizing radiation conversion layer is used as a sensor, it is possible to apply an external voltage to take out the carrier, but if the film thickness of the ionizing radiation conversion layer is large, the external voltage required for taking out the carrier becomes large. .. As a result, there arises a problem that the S / N ratio decreases due to the increase in dark current.
  • the ionizing radiation conversion device of the present disclosure by stacking a plurality of laminated devices having a thin film ionizing radiation conversion layer that facilitates carrier extraction, the ionizing radiation is sufficiently absorbed and the generated carriers are efficiently extracted. Is possible.
  • ionizing radiation means ⁇ ray, ⁇ ray, neutron beam, proton beam, X-ray, or ⁇ ray.
  • FIG. 1 shows a cross-sectional view of the ionizing radiation conversion device 100 according to the first embodiment.
  • the ionizing radiation conversion device 100 includes a first laminated body 10 and a second laminated body 20.
  • the second laminated body 20 is arranged on the first laminated body 10.
  • the first laminated body 10 has a first substrate 11 and a first ionizing radiation conversion layer 12 arranged on the first substrate 11.
  • the second laminated body 20 has a second substrate 21 and a second ionizing radiation conversion layer 22 arranged on the second substrate 21.
  • the first ionizing radiation conversion layer 12 is arranged between the first substrate 11 and the second substrate 21.
  • the ionizing radiation conversion device 100 has high sensitivity to ionizing radiation. That is, the ionizing radiation conversion device 100 can efficiently convert ionizing radiation into electric charges.
  • the ionizing radiation conversion device 100 can be used, for example, as an ionizing radiation detector, an image pickup device, a dosimeter, or a beta volta battery.
  • the ionizing radiation conversion device 100 may further include a read-out circuit that reads out the electric charge.
  • the readout circuit is electrically connected to the ionizing radiation conversion device 100.
  • the readout circuit may be located inside the first board 11 or may be located outside the first board 11, for example.
  • FIG. 2 shows a cross-sectional view of the ionizing radiation conversion device 200 according to the first embodiment.
  • the first laminated body 10 may further include a first electrode 13.
  • the first ionizing radiation conversion layer 12 is arranged between the first substrate 11 and the first electrode 13.
  • the second laminated body 20 may further include a second electrode 23.
  • the second ionizing radiation conversion layer 22 is arranged between the second substrate 21 and the second electrode 23.
  • the ionizing radiation incident on the ionizing radiation conversion device 200 loses a part of the energy in the first ionizing radiation conversion layer 12 and the second ionizing radiation conversion layer 22 to form electron hole pairs.
  • the holes and electrons generated in the first ionizing radiation conversion layer 12 reach the first substrate 11 and the first electrode 13, respectively, and are taken out to an external circuit.
  • the holes and electrons generated in the second ionizing radiation conversion layer 22 reach the second substrate 21 and the second electrode 23, respectively, and are taken out to an external circuit.
  • the first substrate 11 and the second substrate 21 may be made of glass or plastic. Alternatively, the first substrate 11 and the second substrate 21 may be made of a conductive material.
  • the conductive material may or may not have translucency.
  • An example of a conductive material having translucency is a metal oxide.
  • An example of the metal oxide is (I) Indium-tin composite oxide, (Ii) Antimony-doped tin oxide, (Iii) Fluorine-doped tin oxide, (Iv) zinc oxide doped with at least one element selected from the group consisting of boron, aluminum, gallium, and indium, or (v) a complex thereof.
  • non-transmissive conductive materials include platinum, gold, silver, copper, aluminum, rhodium, indium, titanium, iron, nickel, tin, zinc, or alloys containing any of these, or conductivity. It is a carbon material of.
  • Both the first electrode 13 and the second electrode 23 are made of a conductive material. Examples of conductive materials are as described above.
  • At least one selected from the group consisting of the first substrate 11, the first electrode 13, the second substrate 21, and the second electrode 23 may be made of a material having no translucency. As a result, the resistance value of the electrode can be suppressed to a low level, and the performance of the ionizing radiation conversion device is improved.
  • an electrode may be further provided between the first substrate 11 and the first ionizing radiation conversion layer 12.
  • the electrode is made of a conductive material.
  • an electrode may be further provided between the second substrate 21 and the second ionizing radiation conversion layer 22.
  • the electrode is made of a conductive material.
  • the first laminated body 10 When the ionizing radiation conversion device 200 is connected to an external circuit, the first laminated body 10 may be connected in series with the second laminated body 20 or may be connected in parallel.
  • the first laminated body 10 does not have to be in contact with the second laminated body 20.
  • Another layer may be arranged between the first laminated body 10 and the second laminated body 20.
  • An example of another layer may be an insulating layer.
  • the insulating layer is composed of an insulating material.
  • the insulating material may be an organic insulating material or an inorganic insulating material. Examples of organic insulating materials are epoxy resins, silicone resins, or polyimides. Examples of inorganic insulating materials are silicon oxide, silicon nitride, silicon nitride, hafnium oxide, aluminum oxide, and tantalum oxide.
  • the insulating layer may be made of glass or plastic.
  • FIG. 3 shows a cross-sectional view of an ionizing radiation conversion device 200 in which the first laminated body 10 and the second laminated body 20 are electrically connected in parallel with each other.
  • the first laminated body 10 is electrically connected in parallel with the second laminated body 20 by the lead wire 14.
  • the parallel connection increases the current value taken out to the external circuit, so that the performance of the ionizing radiation conversion device 200 is improved.
  • FIG. 4 shows a cross-sectional view of an ionizing radiation conversion device 300 made of a single laminated body. As an example of a single laminated body, the first laminated body 10 is shown.
  • the ionizing radiation conversion layer can be made thinner as compared with the ionizing radiation conversion device 300. As a result, the distance that the generated carriers move to the electrodes is shortened, so that the carrier loss is small and the carriers can be efficiently taken out to the external circuit.
  • Ionizing radiation may be detected by detecting the electric charge generated by irradiating the first perovskite compound and the second perovskite compound with ionizing radiation. According to the above detection method, ionizing radiation can be detected with high sensitivity.
  • the "perovskite compound” is a compound represented by ABX 3 or an analog thereof.
  • the compound represented by ABX 3 is, for example, BaTiO 3 , MgSiO 3 , CsPbI 3 , CsPbBr 3 or (CH 3 NH 3 ) PbI 3 .
  • the methylammonium cation that is, CH 3 NH 3+
  • MA the methylammonium cation
  • the analog of the compound represented by ABX 3 has the following structure (i) or (ii).
  • the first perovskite compound and the second perovskite compound may independently contain two or more kinds of cations and one or more kinds of monovalent anions.
  • the perovskite compound may substantially consist of two or more cations and one or more monovalent anions.
  • a perovskite compound is substantially composed of two or more cations and one or more monovalent anions" means that two or more cations are used with respect to the total amount of substance of all the elements constituting the perovskite compound. And it means that the total amount of substance of one or more monovalent anions is 90 mol% or more.
  • the perovskite compound may consist of two or more cations and one or more monovalent anions.
  • the two or more cations may contain at least one selected from the group consisting of Pb 2+ , Sn 2+ , Ge 2+ , and Bi 3+ .
  • the monovalent anion is, for example, a halogen anion or a composite anion.
  • halogen anions are fluorine anions, chlorine anions, bromine anions, or iodine anions.
  • composite anions are SCN-, NO 3- , or HCOO- .
  • the perovskite compound may be, for example, a compound represented by ABX 3 (A is a monovalent cation, B is a divalent cation, and X is a halogen anion). Since such a perovskite compound has a high ability to absorb ionizing radiation and a long carrier diffusion length, the ionizing radiation can be efficiently converted into an electric signal.
  • Examples of monovalent cations are organic cations or alkali metal cations.
  • organic cations are MA, formamidinium cations (ie NH 2 CHNH 2+ ), phenylethylammonium cations (ie C 6 H 5 C 2 H 4 NH 3 + ), or guanidinium cations (ie NH 2 CHNH 2 +). CH 6 N 3 + ).
  • alkali metal cations examples include cesium cations (ie, Cs + ) or rubidium cations (ie, Rb + ).
  • divalent metal cations examples include lead cations (ie, Pb 2+ ), tin cations (ie, Sn 2+ ), or germanium cations (ie, Ge 2+ ).
  • the divalent metal cation may be Pb 2+ .
  • Perovskite compounds include, for example, CH 3 NH 3 PbI 3 , CH 3 CH 2 NH 3 PbI 3 , HC (NH 2 ) 2 PbI 3 , CH 3 NH 3 PbBr 3 , CH 3 NH 3 PbCl 3 , CsPbI 3 , or CsPbBr. It is 3 .
  • the difference between the band gap of the first perovskite compound and the band gap of the second perovskite compound may be 0.1 eV or less.
  • the first perovskite compound may be the same as the second perovskite compound.
  • Each of the first ionizing radiation conversion layer 12 and the second ionizing radiation conversion layer 22 may have a thickness of 0.1 ⁇ m or more. Each of the first ionizing radiation conversion layer 12 and the second ionizing radiation conversion layer 22 may have a thickness of 0.1 ⁇ m or more and 1 cm or less. Each of the first ionizing radiation conversion layer 12 and the second ionizing radiation conversion layer 22 may have a thickness of 100 ⁇ m or more and 1 mm or less.
  • the first ionizing radiation conversion layer 12 may have a thickness different from that of the second ionizing radiation conversion layer 22.
  • the first ionizing radiation conversion layer 12 may contain 30 mol% or more of the first perovskite compound.
  • the first ionizing radiation conversion layer 12 may contain 80 mol% or more of the first perovskite compound.
  • the first ionizing radiation conversion layer 12 may be composed of only the first perovskite compound.
  • the second ionizing radiation conversion layer 22 may contain 30 mol% or more of the second perovskite compound.
  • the second ionizing radiation conversion layer 22 may contain 80 mol% or more of the second perovskite compound.
  • the second ionizing radiation conversion layer 22 may be composed of only the second perovskite compound.
  • the perovskite compound may be used as a scintillator.
  • the same can be achieved by arranging an element such as a photodiode that converts light into an electric signal between the first ionizing radiation conversion layer 12 containing the perovskite compound and the first substrate 11. The effect of is obtained.
  • the first electrode 11 is not provided, and the first substrate 11 may be a glass substrate or a plastic substrate.
  • FIG. 5 shows a cross-sectional view of the ionizing radiation conversion device 400 according to the second embodiment.
  • the ionizing radiation conversion device 400 includes a third laminated body 30 in addition to the first laminated body 10 and the second laminated body 20.
  • the second laminated body 20 is arranged between the first laminated body 10 and the third laminated body 30.
  • the third laminated body 30 has a third substrate 31, a third ionizing radiation conversion layer 32, and a third electrode 33.
  • the third ionizing radiation conversion layer 32 is arranged between the third substrate 31 and the third electrode 33.
  • the ionizing radiation conversion device 400 has higher sensitivity to ionizing radiation. That is, the ionizing radiation conversion device 400 can more efficiently convert the ionizing radiation into electric charges.
  • the material constituting the third substrate 31 and the third electrode 33 may be the conductive material described in the first embodiment.
  • At least two laminates selected from the group consisting of the first laminate 10, the second laminate 20, and the third laminate 30 may be electrically connected in parallel with each other.
  • the parallel connection increases the current value taken out to the external circuit, so that the performance of the ionizing radiation conversion device 400 is improved.
  • the ionizing radiation conversion device of the present disclosure for example, four or more laminated bodies may be laminated in order to convert ionizing radiation more efficiently. That is, the ionizing radiation conversion device of the present disclosure may include four or more ionizing radiation conversion layers. In the ionizing radiation conversion device of the present disclosure, for example, 10 or more laminated bodies may be laminated. That is, the ionizing radiation conversion device of the present disclosure may include 10 or more ionizing radiation conversion layers.
  • the method for manufacturing an ionizing radiation conversion device includes a first step of preparing a first substrate 11 and a second step of forming a first ionizing radiation conversion layer 12 containing a perovskite compound on the first substrate 11.
  • the first substrate 11 is prepared.
  • the first substrate 11 may have a read-out circuit.
  • the pixel pitch is, for example, 125 micrometers.
  • the first ionizing radiation conversion layer 12 containing the first perovskite compound is formed on the first substrate 11.
  • a raw material is prepared so that the first perovskite compound has a desired composition.
  • the raw material of the first perovskite compound is dissolved in a solvent to obtain a precursor solution of the first ionizing radiation conversion layer 12.
  • the first ionizing radiation conversion layer 12 is formed.
  • the second step will be described.
  • raw materials for the first perovskite compound for example, 0.92 mol / L PbI 2 , 0.17 mol / L PbBr 2 , 0.83 mol / L formamidinium iodide, 0.17 mol / L methylammonium bromide. , And 0.05 mol / L CsI are prepared. These materials are dissolved in a mixed solvent of dimethyl sulfoxide and N, N-dimethylformamide. As a result, a precursor solution of the first ionizing radiation conversion layer 12 containing the perovskite compound is obtained.
  • the mixing ratio of dimethyl sulfoxide and N, N-dimethylformamide is, for example, 1: 4 (volume ratio).
  • the first ionizing radiation conversion layer 12 is formed by applying the precursor solution, for example, by an inkjet method.
  • the first electrode 13 is formed on the first ionizing radiation conversion layer 12.
  • a first electrode 13 made of gold is formed by a thin-film deposition method.
  • the first electrode 13 has a thickness of, for example, 100 nanometers. In this way, the first laminated body 10 is obtained.
  • the second laminated body 20 is obtained in the same manner as the first laminated body 10.
  • the second laminated body 20 By arranging the second laminated body 20 on the first laminated body 10, an ionizing radiation conversion device can be obtained. As described above, the second ionizing radiation conversion layer 22 having the second ionizing radiation conversion layer 22 arranged on the second substrate 21 is placed on the first laminated body 10 having the first ionizing radiation conversion layer 12 arranged on the first substrate 11. 2 The laminated body 20 may be formed.
  • the method for detecting ionizing radiation of the present disclosure is a method of detecting ionizing radiation using the above-mentioned ionizing radiation conversion device of the present disclosure.
  • the method for detecting ionizing radiation of the present disclosure is, for example, the first laminated body 10 including the first ionizing radiation conversion layer 12 arranged on the first substrate 11 and the first substrate 11, and the second substrate 21 and the first.
  • An ionizing radiation conversion device containing 2 perovskite compounds and the second laminated body 20 being laminated on the first laminated body 10 is used.
  • the charge or light generated by irradiating the first perovskite compound and the second perovskite compound with ionizing radiation by the ionizing radiation conversion device is detected.
  • the ionizing radiation conversion device of the present disclosure is used, for example, in an ionizing radiation detector.

Abstract

This ionizing radiation conversion device comprises: a first layered body including a first substrate and a first ionizing radiation conversion layer arranged on the first substrate; and a second layered body including a second substrate and a second ionizing radiation conversion layer arranged on the second substrate. The first ionizing radiation conversion layer contains a first perovskite compound, the second ionizing radiation conversion layer contains a second perovskite compound, and the first ionizing radiation conversion layer is arranged between the first substrate and the second substrate.

Description

電離放射線変換デバイス、電離放射線の検出方法、及び電離放射線変換デバイスの製造方法Ionizing radiation conversion device, ionizing radiation detection method, and manufacturing method of ionizing radiation conversion device
 本開示は、電離放射線変換デバイス、電離放射線の検出方法、及び電離放射線変換デバイスの製造方法に関する。 The present disclosure relates to an ionizing radiation conversion device, a method for detecting ionizing radiation, and a method for manufacturing an ionizing radiation conversion device.
 X線のような電離放射線を電気信号に変えるデバイスは種々あり、物質から発せられる電離放射線の強度を測定すること、または電離放射線を物質に照射した結果、物質を透過する電離放射線を測定することで物質の内部情報を得ることができる。電離放射線を電気信号に変換する材料は種々考案され実用化されている。一般的にこの材料は原子番号が大きい原子を含むことが望ましい。現在、電離放射線を電気信号に変換する材料として使用されているのはアモルファスセレンまたはヨウ化セシウムである。近年、ヨウ化鉛メチルアンモニウムに代表されるペロブスカイト化合物がその材料として着目されている。 There are various devices that convert ionizing radiation such as X-rays into electrical signals, measuring the intensity of ionizing radiation emitted from a substance, or measuring the ionizing radiation that penetrates a substance as a result of irradiating the substance with ionizing radiation. You can get the inside information of the substance with. Various materials for converting ionizing radiation into electrical signals have been devised and put into practical use. Generally, it is desirable that this material contains an atom having a large atomic number. Amorphous selenium or cesium iodide is currently used as a material for converting ionizing radiation into electrical signals. In recent years, perovskite compounds typified by methylammonium lead iodide have been attracting attention as their materials.
 電離放射線を電気信号に変える場合、前述の材料を厚くすることで、その感度を上げることが可能である。 When converting ionizing radiation into an electrical signal, it is possible to increase its sensitivity by thickening the above-mentioned material.
 非特許文献1では、X線を電荷に変換するペロブスカイト化合物として、ヨウ化鉛メチルアンモニウムが使用されている。 In Non-Patent Document 1, methyl ammonium iodide is used as a perovskite compound that converts X-rays into electric charges.
 本開示の目的は、電離放射線に対して高い感度を有する電離放射線変換デバイスを提供することにある。 An object of the present disclosure is to provide an ionizing radiation conversion device having high sensitivity to ionizing radiation.
 本開示の一態様に係る電離放射線変換デバイスは、
 第1基板および前記第1基板上に配置された第1電離放射線変換層を含む第1積層体、並びに
 第2基板および前記第2基板上に配置された第2電離放射線変換層を含む第2積層体、を備え、
 前記第1電離放射線変換層は、第1ペロブスカイト化合物を含有し、
 前記第2電離放射線変換層は、第2ペロブスカイト化合物を含有し、
 前記第1電離放射線変換層は、前記第1基板および前記第2基板の間に配置されている。
The ionizing radiation conversion device according to one aspect of the present disclosure is
A first laminated body including a first substrate and a first ionizing radiation conversion layer arranged on the first substrate, and a second including a second substrate and a second ionizing radiation conversion layer arranged on the second substrate. With a laminate,
The first ionizing radiation conversion layer contains a first perovskite compound and contains.
The second ionizing radiation conversion layer contains a second perovskite compound and contains.
The first ionizing radiation conversion layer is arranged between the first substrate and the second substrate.
 本開示は、電離放射線に対して高い感度を有する電離放射線変換デバイスを提供する。 The present disclosure provides an ionizing radiation conversion device having high sensitivity to ionizing radiation.
図1は、第1実施形態による電離放射線変換デバイスの断面図を示す。FIG. 1 shows a cross-sectional view of the ionizing radiation conversion device according to the first embodiment. 図2は、第1実施形態による他の電離放射線変換デバイスの断面図を示す。FIG. 2 shows a cross-sectional view of another ionizing radiation conversion device according to the first embodiment. 図3は、第1積層体および第2積層体が互いに並列に接続された電離放射線変換デバイスの断面図を示す。FIG. 3 shows a cross-sectional view of an ionizing radiation conversion device in which the first laminated body and the second laminated body are connected in parallel with each other. 図4は、単一の積層体からなる電離放射線変換デバイスの断面図を示す。FIG. 4 shows a cross-sectional view of an ionizing radiation conversion device consisting of a single laminate. 図5は、第2実施形態による電離放射線変換デバイスの断面図を示す。FIG. 5 shows a cross-sectional view of the ionizing radiation conversion device according to the second embodiment.
 (本開示の基礎となった知見)
 吸収した電離放射線(例えば、X線)を電気信号に変換する場合、電離放射線は透過能が高いため、吸収能の観点では電離放射線変換層は厚い方が望ましい。一方で、電離放射線によって励起された電子と正孔を外部回路に取り出すためには、電離放射線変換層の膜厚をキャリア拡散長以下とすることが望ましい。電離放射線変換材料として、ペロブスカイト化合物を用いる場合、多結晶のペロブスカイト化合物のキャリア拡散長は、数百nmから数μm、単結晶のペロブスカイト化合物のキャリア拡散長は、数μm程度である。これらのキャリア拡散長と同等以下の膜厚では、電離放射線変換層が電離放射線を十分に吸収しきれないという課題がある。また、電離放射線変換層をセンサとして利用する場合、外部電圧を印加してキャリアを取り出すことも可能であるが、電離放射線変換層の膜厚が大きいと、キャリア取り出しに必要な外部電圧は大きくなる。その結果、ダーク電流が大きくなることで、S/N比が低下するという問題が生じる。
(Findings underlying this disclosure)
When the absorbed ionizing radiation (for example, X-ray) is converted into an electric signal, the ionizing radiation has a high penetrating ability. Therefore, from the viewpoint of the absorbing ability, it is desirable that the ionizing radiation conversion layer is thick. On the other hand, in order to extract electrons and holes excited by ionizing radiation to an external circuit, it is desirable that the film thickness of the ionizing radiation conversion layer be less than or equal to the carrier diffusion length. When a perovskite compound is used as the ionization radiation conversion material, the carrier diffusion length of the polycrystalline perovskite compound is several hundred nm to several μm, and the carrier diffusion length of the single crystal perobskite compound is about several μm. If the film thickness is equal to or less than the carrier diffusion length, there is a problem that the ionizing radiation conversion layer cannot sufficiently absorb the ionizing radiation. When the ionizing radiation conversion layer is used as a sensor, it is possible to apply an external voltage to take out the carrier, but if the film thickness of the ionizing radiation conversion layer is large, the external voltage required for taking out the carrier becomes large. .. As a result, there arises a problem that the S / N ratio decreases due to the increase in dark current.
 本開示の電離放射線変換デバイスでは、キャリア取り出しが容易な薄膜の電離放射線変換層を備えた積層体デバイスを複数積層させることで、十分に電離放射線を吸収するとともに、発生したキャリアを効率的に取り出すことが可能となる。 In the ionizing radiation conversion device of the present disclosure, by stacking a plurality of laminated devices having a thin film ionizing radiation conversion layer that facilitates carrier extraction, the ionizing radiation is sufficiently absorbed and the generated carriers are efficiently extracted. Is possible.
 本開示において、「電離放射線」とは、α線、β線、中性子線、陽子線、X線、またはγ線を意味する。 In the present disclosure, "ionizing radiation" means α ray, β ray, neutron beam, proton beam, X-ray, or γ ray.
 以下、本開示の実施形態が、図面を参照しながら説明される。 Hereinafter, embodiments of the present disclosure will be described with reference to the drawings.
 (第1実施形態)
 第1実施形態による電離放射線変換デバイス100の構成について説明する。
(First Embodiment)
The configuration of the ionizing radiation conversion device 100 according to the first embodiment will be described.
 図1は、第1実施形態による電離放射線変換デバイス100の断面図を示す。 FIG. 1 shows a cross-sectional view of the ionizing radiation conversion device 100 according to the first embodiment.
 電離放射線変換デバイス100は、第1積層体10および第2積層体20を備える。ここで、第2積層体20は、第1積層体10上に配置されている。 The ionizing radiation conversion device 100 includes a first laminated body 10 and a second laminated body 20. Here, the second laminated body 20 is arranged on the first laminated body 10.
 第1積層体10は、第1基板11および第1基板11上に配置されている第1電離放射線変換層12を有する。 The first laminated body 10 has a first substrate 11 and a first ionizing radiation conversion layer 12 arranged on the first substrate 11.
 第2積層体20は、第2基板21および第2基板21上に配置されている第2電離放射線変換層22を有する。第1電離放射線変換層12は、第1基板11および第2基板21の間に配置されている。 The second laminated body 20 has a second substrate 21 and a second ionizing radiation conversion layer 22 arranged on the second substrate 21. The first ionizing radiation conversion layer 12 is arranged between the first substrate 11 and the second substrate 21.
 以上の構成によれば、電離放射線変換デバイス100は、電離放射線に対して高い感度を有する。すなわち、電離放射線変換デバイス100は、電離放射線を効率よく電荷に変換することができる。 According to the above configuration, the ionizing radiation conversion device 100 has high sensitivity to ionizing radiation. That is, the ionizing radiation conversion device 100 can efficiently convert ionizing radiation into electric charges.
 電離放射線変換デバイス100は、例えば、電離放射線検出器、撮像装置、線量計、またはベータボルタ電池として使用され得る。 The ionizing radiation conversion device 100 can be used, for example, as an ionizing radiation detector, an image pickup device, a dosimeter, or a beta volta battery.
 電離放射線変換デバイス100は、電荷を読み出す読み出し回路をさらに備えていてもよい。ここで、読み出し回路は、電離放射線変換デバイス100に電気的に接続されている。 The ionizing radiation conversion device 100 may further include a read-out circuit that reads out the electric charge. Here, the readout circuit is electrically connected to the ionizing radiation conversion device 100.
 読み出し回路は、例えば、第1基板11中に位置していてもよく、第1基板11の外部に位置していてもよい。 The readout circuit may be located inside the first board 11 or may be located outside the first board 11, for example.
 図2は、第1実施形態による電離放射線変換デバイス200の断面図を示す。 FIG. 2 shows a cross-sectional view of the ionizing radiation conversion device 200 according to the first embodiment.
 第1積層体10は、第1電極13をさらに備えていてもよい。ここで、第1電離放射線変換層12は、第1基板11および第1電極13の間に配置されている。 The first laminated body 10 may further include a first electrode 13. Here, the first ionizing radiation conversion layer 12 is arranged between the first substrate 11 and the first electrode 13.
 第2積層体20は、第2電極23をさらに備えていてもよい。ここで、第2電離放射線変換層22は、第2基板21および第2電極23の間に配置されている。 The second laminated body 20 may further include a second electrode 23. Here, the second ionizing radiation conversion layer 22 is arranged between the second substrate 21 and the second electrode 23.
 以下、図2を用いて直接変換方式の電離放射線変換デバイスの動作の概略を説明する。電離放射線変換デバイス200に入射された電離放射線は、第1電離放射線変換層12および第2電離放射線変換層22でその一部のエネルギーを失い、電子正孔対を形成する。第1電離放射線変換層12において生成された正孔および電子は、それぞれ第1基板11および第1電極13に到達し、外部回路に取り出される。第2電離放射線変換層22において生成された正孔および電子は、それぞれ第2基板21および第2電極23に到達し、外部回路に取り出される。 Hereinafter, the outline of the operation of the direct conversion type ionizing radiation conversion device will be described with reference to FIG. The ionizing radiation incident on the ionizing radiation conversion device 200 loses a part of the energy in the first ionizing radiation conversion layer 12 and the second ionizing radiation conversion layer 22 to form electron hole pairs. The holes and electrons generated in the first ionizing radiation conversion layer 12 reach the first substrate 11 and the first electrode 13, respectively, and are taken out to an external circuit. The holes and electrons generated in the second ionizing radiation conversion layer 22 reach the second substrate 21 and the second electrode 23, respectively, and are taken out to an external circuit.
 第1基板11および第2基板21は、ガラスまたはプラスチックから構成されていてもよい。あるいは、第1基板11および第2基板21は、導電性材料から構成されていてもよい。 The first substrate 11 and the second substrate 21 may be made of glass or plastic. Alternatively, the first substrate 11 and the second substrate 21 may be made of a conductive material.
 導電性材料は、透光性を有していてもよく、透光性を有していなくてもよい。 The conductive material may or may not have translucency.
 透光性を有する導電性材料の例は、金属酸化物である。当該金属酸化物の例は、
(i)インジウム-錫複合酸化物、
(ii)アンチモンがドープされた酸化錫、
(iii)フッ素がドープされた酸化錫、
(iv)ホウ素、アルミニウム、ガリウム、およびインジウムからなる群より選択される少なくとも1つの元素がドープされた酸化亜鉛、または
(v)これらの複合物
である。
An example of a conductive material having translucency is a metal oxide. An example of the metal oxide is
(I) Indium-tin composite oxide,
(Ii) Antimony-doped tin oxide,
(Iii) Fluorine-doped tin oxide,
(Iv) zinc oxide doped with at least one element selected from the group consisting of boron, aluminum, gallium, and indium, or (v) a complex thereof.
 透光性を有しない導電性材料の例は、白金、金、銀、銅、アルミニウム、ロジウム、インジウム、チタン、鉄、ニッケル、スズ、亜鉛、あるいはこれらのいずれかを含む合金、または、導電性の炭素材料である。 Examples of non-transmissive conductive materials include platinum, gold, silver, copper, aluminum, rhodium, indium, titanium, iron, nickel, tin, zinc, or alloys containing any of these, or conductivity. It is a carbon material of.
 第1電極13および第2電極23は、いずれも導電性材料から構成される。導電性材料の例は、上述の通りである。 Both the first electrode 13 and the second electrode 23 are made of a conductive material. Examples of conductive materials are as described above.
 第1基板11、第1電極13、第2基板21、および第2電極23からなる群より選択される少なくとも1つは、透光性を有しない材料から構成されていてもよい。これにより、電極の抵抗値を低く抑えることができ、電離放射線変換デバイスの性能が向上する。 At least one selected from the group consisting of the first substrate 11, the first electrode 13, the second substrate 21, and the second electrode 23 may be made of a material having no translucency. As a result, the resistance value of the electrode can be suppressed to a low level, and the performance of the ionizing radiation conversion device is improved.
 第1基板11がガラスまたはプラスチックから構成される場合、第1基板11および第1電離放射線変換層12の間にさらに電極を備えていてもよい。当該電極は、導電性材料から構成される。 When the first substrate 11 is made of glass or plastic, an electrode may be further provided between the first substrate 11 and the first ionizing radiation conversion layer 12. The electrode is made of a conductive material.
 第2基板21がガラスまたはプラスチックから構成される場合、第2基板21および第2電離放射線変換層22の間にさらに電極を備えていてもよい。当該電極は、導電性材料から構成される。 When the second substrate 21 is made of glass or plastic, an electrode may be further provided between the second substrate 21 and the second ionizing radiation conversion layer 22. The electrode is made of a conductive material.
 電離放射線変換デバイス200が外部回路に接続される場合、第1積層体10は、第2積層体20と直列に接続されていてもよく、あるいは、並列に接続されていてもよい。 When the ionizing radiation conversion device 200 is connected to an external circuit, the first laminated body 10 may be connected in series with the second laminated body 20 or may be connected in parallel.
 第1積層体10は、第2積層体20に接していなくてもよい。 The first laminated body 10 does not have to be in contact with the second laminated body 20.
 第1積層体10と第2積層体20との間に別の層が配置されていてもよい。別の層の例は、絶縁層であってもよい。当該絶縁層は、絶縁材料から構成される。絶縁材料は、有機絶縁材料であってもよく、無機絶縁材料であってもよい。有機絶縁材料の例は、エポキシ樹脂、シリコン樹脂、またはポリイミドである。無機絶縁材料の例は、酸化ケイ素、窒化ケイ素、酸窒化ケイ素、酸化ハフニウム、酸化アルミニウム、酸化タンタルである。 Another layer may be arranged between the first laminated body 10 and the second laminated body 20. An example of another layer may be an insulating layer. The insulating layer is composed of an insulating material. The insulating material may be an organic insulating material or an inorganic insulating material. Examples of organic insulating materials are epoxy resins, silicone resins, or polyimides. Examples of inorganic insulating materials are silicon oxide, silicon nitride, silicon nitride, hafnium oxide, aluminum oxide, and tantalum oxide.
 当該絶縁層は、ガラスまたはプラスチックから構成されていてもよい。 The insulating layer may be made of glass or plastic.
 図3は、第1積層体10および第2積層体20が互いに並列に電気的に接続された電離放射線変換デバイス200の断面図を示す。 FIG. 3 shows a cross-sectional view of an ionizing radiation conversion device 200 in which the first laminated body 10 and the second laminated body 20 are electrically connected in parallel with each other.
 図3では、第1積層体10は、リード線14によって第2積層体20と並列に電気的に接続されている。当該並列接続により、外部回路に取り出される電流値が増加するため、電離放射線変換デバイス200の性能が向上する。 In FIG. 3, the first laminated body 10 is electrically connected in parallel with the second laminated body 20 by the lead wire 14. The parallel connection increases the current value taken out to the external circuit, so that the performance of the ionizing radiation conversion device 200 is improved.
 図4は、単一の積層体からなる電離放射線変換デバイス300の断面図を示す。単一の積層体の一例として、第1積層体10が示される。 FIG. 4 shows a cross-sectional view of an ionizing radiation conversion device 300 made of a single laminated body. As an example of a single laminated body, the first laminated body 10 is shown.
 電離放射線変換デバイス100および200は、複数の電離放射線変換層を有するため、電離放射線変換デバイス300と比較して、電離放射線変換層を薄くできる。その結果、生成したキャリアが電極まで移動する距離が短くなるため、キャリアの損失が少なく、効率的にキャリアを外部回路に取り出すことができる。 Since the ionizing radiation conversion devices 100 and 200 have a plurality of ionizing radiation conversion layers, the ionizing radiation conversion layer can be made thinner as compared with the ionizing radiation conversion device 300. As a result, the distance that the generated carriers move to the electrodes is shortened, so that the carrier loss is small and the carriers can be efficiently taken out to the external circuit.
 第1ペロブスカイト化合物および第2ペロブスカイト化合物に電離放射線が照射されることにより発生した電荷を検出することで、電離放射線を検出してもよい。以上の検出方法によれば、感度よく電離放射線を検出できる。 Ionizing radiation may be detected by detecting the electric charge generated by irradiating the first perovskite compound and the second perovskite compound with ionizing radiation. According to the above detection method, ionizing radiation can be detected with high sensitivity.
 本開示において、「ペロブスカイト化合物」とは、ABX3により表される化合物またはその類縁体である。 In the present disclosure, the "perovskite compound" is a compound represented by ABX 3 or an analog thereof.
 ABX3により表される化合物は、例えば、BaTiO3、MgSiO3、CsPbI3、CsPbBr3または(CH3NH3)PbI3である。以下、メチルアンモニウムカチオン(すなわち、CH3NH3 +)を「MA」という。 The compound represented by ABX 3 is, for example, BaTiO 3 , MgSiO 3 , CsPbI 3 , CsPbBr 3 or (CH 3 NH 3 ) PbI 3 . Hereinafter, the methylammonium cation (that is, CH 3 NH 3+ ) is referred to as “MA”.
 ABX3により表される化合物の類縁体は、以下の(i)または(ii)の構造を有する。
 (i)ABX3により表される化合物において、Aサイト、Bサイト、またはXサイトの一部が欠損した構造(例えば、MA3Bi29
 (ii)ABX3により表される化合物において、Aサイト、Bサイト、またはXサイトが異なる複数の価数の材料によって構成される構造(例えば、Cs(Ag0.5Bi0.5)I3
The analog of the compound represented by ABX 3 has the following structure (i) or (ii).
(I) In the compound represented by ABX 3 , a structure in which A site, B site, or a part of X site is deleted (for example, MA 3 Bi 2 I 9 ).
(Ii) In the compound represented by ABX 3 , the structure in which the A site, the B site, or the X site is composed of a material having a plurality of different valences (for example, Cs (Ag 0.5 Bi 0.5 ) I 3 ).
 第1ペロブスカイト化合物および第2ペロブスカイト化合物は、それぞれ独立に、2種以上のカチオンおよび1種以上の1価のアニオンを含んでいてもよい。 The first perovskite compound and the second perovskite compound may independently contain two or more kinds of cations and one or more kinds of monovalent anions.
 ペロブスカイト化合物は、実質的に、2種以上のカチオンおよび1種以上の1価のアニオンからなっていてもよい。「ペロブスカイト化合物が、実質的に、2種以上のカチオンおよび1種以上の1価のアニオンからなる」とは、ペロブスカイト化合物を構成する全元素の合計の物質量に対して、2種以上のカチオンおよび1種以上の1価のアニオンの合計の物質量が90モル%以上であることを意味する。ペロブスカイト化合物は、2種以上のカチオンおよび1種以上の1価のアニオンからなっていてもよい。 The perovskite compound may substantially consist of two or more cations and one or more monovalent anions. "A perovskite compound is substantially composed of two or more cations and one or more monovalent anions" means that two or more cations are used with respect to the total amount of substance of all the elements constituting the perovskite compound. And it means that the total amount of substance of one or more monovalent anions is 90 mol% or more. The perovskite compound may consist of two or more cations and one or more monovalent anions.
 電離放射線に対する感度を高めるために、2種以上のカチオンは、Pb2+、Sn2+、Ge2+、およびBi3+からなる群より選択される少なくとも1つを含んでいてもよい。 To increase the sensitivity to ionizing radiation, the two or more cations may contain at least one selected from the group consisting of Pb 2+ , Sn 2+ , Ge 2+ , and Bi 3+ .
 1価のアニオンは、例えば、ハロゲンアニオンまたは複合アニオンである。ハロゲンアニオンの例は、フッ素アニオン、塩素アニオン、臭素アニオン、またはヨウ素アニオンである。複合アニオンの例は、SCN-、NO3 -、またはHCOO-である。 The monovalent anion is, for example, a halogen anion or a composite anion. Examples of halogen anions are fluorine anions, chlorine anions, bromine anions, or iodine anions. Examples of composite anions are SCN-, NO 3- , or HCOO- .
 ペロブスカイト化合物は、例えば、ABX3(Aは1価のカチオンであり、Bは2価のカチオンであり、かつ、Xはハロゲンアニオンである)により表される化合物であってもよい。このようなペロブスカイト化合物は、電離放射線の吸収能力が高く、かつキャリア拡散長が長くなるため、電離放射線を効率よく電気信号に変換できる。 The perovskite compound may be, for example, a compound represented by ABX 3 (A is a monovalent cation, B is a divalent cation, and X is a halogen anion). Since such a perovskite compound has a high ability to absorb ionizing radiation and a long carrier diffusion length, the ionizing radiation can be efficiently converted into an electric signal.
 1価のカチオンの例は、有機カチオンまたはアルカリ金属カチオンである。 Examples of monovalent cations are organic cations or alkali metal cations.
 有機カチオンの例は、MA、ホルムアミジニウムカチオン(すなわち、NH2CHNH2 +)、フェニルエチルアンモニウムカチオン(すなわち、C6524NH3 +)、またはグアニジニウムカチオン(すなわち、CH63 +)である。 Examples of organic cations are MA, formamidinium cations (ie NH 2 CHNH 2+ ), phenylethylammonium cations (ie C 6 H 5 C 2 H 4 NH 3 + ), or guanidinium cations (ie NH 2 CHNH 2 +). CH 6 N 3 + ).
 アルカリ金属カチオンの例は、セシウムカチオン(すなわち、Cs+)または、ルビジウムカチオン(すなわち、Rb+)である。 Examples of alkali metal cations are cesium cations (ie, Cs + ) or rubidium cations (ie, Rb + ).
 2価の金属カチオンの例は、鉛カチオン(すなわち、Pb2+)、錫カチオン(すなわち、Sn2+)、またはゲルマニウムカチオン(すなわち、Ge2+)である。電離放射線をより効率よく変換するために、2価の金属カチオンは、Pb2+であってもよい。 Examples of divalent metal cations are lead cations (ie, Pb 2+ ), tin cations (ie, Sn 2+ ), or germanium cations (ie, Ge 2+ ). For more efficient conversion of ionizing radiation, the divalent metal cation may be Pb 2+ .
 ペロブスカイト化合物は、例えば、CH3NH3PbI3、CH3CH2NH3PbI3、HC(NH22PbI3、CH3NH3PbBr3、CH3NH3PbCl3、CsPbI3、またはCsPbBr3である。 Perovskite compounds include, for example, CH 3 NH 3 PbI 3 , CH 3 CH 2 NH 3 PbI 3 , HC (NH 2 ) 2 PbI 3 , CH 3 NH 3 PbBr 3 , CH 3 NH 3 PbCl 3 , CsPbI 3 , or CsPbBr. It is 3 .
 第1ペロブスカイト化合物のバンドギャップと第2ペロブスカイト化合物のバンドギャップとの差が、0.1eV以下であってもよい。これにより、並列接続時の各積層体にかかる電位が揃うために、効率よく電荷を取り出すことができる。 The difference between the band gap of the first perovskite compound and the band gap of the second perovskite compound may be 0.1 eV or less. As a result, the electric potentials applied to each of the laminated bodies at the time of parallel connection are aligned, so that the electric charge can be efficiently taken out.
 第1ペロブスカイト化合物は、第2ペロブスカイト化合物と同一であってもよい。これにより、並列接続時の各積層体にかかる電位が揃うために、より効率よく電荷を取り出すことができる。 The first perovskite compound may be the same as the second perovskite compound. As a result, since the potentials applied to the laminated bodies at the time of parallel connection are the same, the electric charge can be taken out more efficiently.
 第1電離放射線変換層12および第2電離放射線変換層22の各々は、0.1μm以上の厚みを有していてもよい。第1電離放射線変換層12および第2電離放射線変換層22の各々は、0.1μm以上かつ1cm以下の厚みを有していてもよい。第1電離放射線変換層12および第2電離放射線変換層22の各々は、100μm以上かつ1mm以下の厚みを有していてもよい。 Each of the first ionizing radiation conversion layer 12 and the second ionizing radiation conversion layer 22 may have a thickness of 0.1 μm or more. Each of the first ionizing radiation conversion layer 12 and the second ionizing radiation conversion layer 22 may have a thickness of 0.1 μm or more and 1 cm or less. Each of the first ionizing radiation conversion layer 12 and the second ionizing radiation conversion layer 22 may have a thickness of 100 μm or more and 1 mm or less.
 第1電離放射線変換層12は、第2電離放射線変換層22とは異なる厚みを有していてもよい。 The first ionizing radiation conversion layer 12 may have a thickness different from that of the second ionizing radiation conversion layer 22.
 電離放射線に対する感度を高めるために、第1電離放射線変換層12は、第1ペロブスカイト化合物を30モル%以上含有していてもよい。第1電離放射線変換層12は、第1ペロブスカイト化合物を80モル%以上含有していてもよい。第1電離放射線変換層12は、第1ペロブスカイト化合物のみからなっていてもよい。 In order to increase the sensitivity to ionizing radiation, the first ionizing radiation conversion layer 12 may contain 30 mol% or more of the first perovskite compound. The first ionizing radiation conversion layer 12 may contain 80 mol% or more of the first perovskite compound. The first ionizing radiation conversion layer 12 may be composed of only the first perovskite compound.
 電離放射線に対する感度を高めるために、第2電離放射線変換層22は、第2ペロブスカイト化合物を30モル%以上含有していてもよい。第2電離放射線変換層22は、第2ペロブスカイト化合物を80モル%以上含有していてもよい。第2電離放射線変換層22は、第2ペロブスカイト化合物のみからなっていてもよい。 In order to increase the sensitivity to ionizing radiation, the second ionizing radiation conversion layer 22 may contain 30 mol% or more of the second perovskite compound. The second ionizing radiation conversion layer 22 may contain 80 mol% or more of the second perovskite compound. The second ionizing radiation conversion layer 22 may be composed of only the second perovskite compound.
 電離放射線変換デバイス100または200において、ペロブスカイト化合物はシンチレータとして使用されてもよい。例えば、第1積層体10において、ペロブスカイト化合物を含む第1電離放射線変換層12と第1基板11との間に、フォトダイオードのような光を電気信号に変換する素子を配置することで、同様の効果が得られる。この場合、第1電極11を備えず、かつ、第1基板11は、ガラス基板またはプラスチック基板であってもよい。 In the ionizing radiation conversion device 100 or 200, the perovskite compound may be used as a scintillator. For example, in the first laminated body 10, the same can be achieved by arranging an element such as a photodiode that converts light into an electric signal between the first ionizing radiation conversion layer 12 containing the perovskite compound and the first substrate 11. The effect of is obtained. In this case, the first electrode 11 is not provided, and the first substrate 11 may be a glass substrate or a plastic substrate.
 (第2実施形態)
 第2実施形態による電離放射線変換デバイス400の構成について説明する。第1実施形態において説明された事項は、適宜、省略され得る。
(Second Embodiment)
The configuration of the ionizing radiation conversion device 400 according to the second embodiment will be described. The matters described in the first embodiment may be omitted as appropriate.
 図5は、第2実施形態による電離放射線変換デバイス400の断面図を示す。 FIG. 5 shows a cross-sectional view of the ionizing radiation conversion device 400 according to the second embodiment.
 電離放射線変換デバイス400は、第1積層体10および第2積層体20に加えて、第3積層体30を備える。第2積層体20は、第1積層体10および第3積層体30の間に配置されている。 The ionizing radiation conversion device 400 includes a third laminated body 30 in addition to the first laminated body 10 and the second laminated body 20. The second laminated body 20 is arranged between the first laminated body 10 and the third laminated body 30.
 第3積層体30は、第3基板31、第3電離放射線変換層32、および第3電極33を有する。第3電離放射線変換層32は、第3基板31および第3電極33の間に配置されている。 The third laminated body 30 has a third substrate 31, a third ionizing radiation conversion layer 32, and a third electrode 33. The third ionizing radiation conversion layer 32 is arranged between the third substrate 31 and the third electrode 33.
 以上の構成によれば、電離放射線変換デバイス400は、電離放射線に対してより高い感度を有する。すなわち、電離放射線変換デバイス400は、電離放射線をより効率よく電荷に変換することができる。 According to the above configuration, the ionizing radiation conversion device 400 has higher sensitivity to ionizing radiation. That is, the ionizing radiation conversion device 400 can more efficiently convert the ionizing radiation into electric charges.
 第3基板31および第3電極33を構成する材料は、第1実施形態において説明された導電性材料であってもよい。 The material constituting the third substrate 31 and the third electrode 33 may be the conductive material described in the first embodiment.
 第1積層体10、第2積層体20、および第3積層体30からなる群より選択される少なくとも2つの積層体が、互いに並列に電気的に接続されていてもよい。当該並列接続により、外部回路に取り出される電流値が増加するため、電離放射線変換デバイス400の性能が向上する。 At least two laminates selected from the group consisting of the first laminate 10, the second laminate 20, and the third laminate 30 may be electrically connected in parallel with each other. The parallel connection increases the current value taken out to the external circuit, so that the performance of the ionizing radiation conversion device 400 is improved.
 本開示の電離放射線変換デバイスにおいては、電離放射線をより効率よく変換するために、例えば、4つ以上の積層体が積層されていてもよい。すなわち、本開示の電離放射線変換デバイスは、4つ以上の電離放射線変換層を含んでいてもよい。本開示の電離放射線変換デバイスにおいては、例えば、10個以上の積層体が積層されていてもよい。すなわち、本開示の電離放射線変換デバイスは、10個以上の電離放射線変換層を含んでいてもよい。 In the ionizing radiation conversion device of the present disclosure, for example, four or more laminated bodies may be laminated in order to convert ionizing radiation more efficiently. That is, the ionizing radiation conversion device of the present disclosure may include four or more ionizing radiation conversion layers. In the ionizing radiation conversion device of the present disclosure, for example, 10 or more laminated bodies may be laminated. That is, the ionizing radiation conversion device of the present disclosure may include 10 or more ionizing radiation conversion layers.
 (電離放射線変換デバイスの製造方法)
 以下、電離放射線変換デバイスの製造方法が説明される。
(Manufacturing method of ionizing radiation conversion device)
Hereinafter, a method for manufacturing an ionizing radiation conversion device will be described.
 電離放射線変換デバイスの製造方法は、第1基板11を用意する第1工程、および第1基板11上にペロブスカイト化合物を含む第1電離放射線変換層12を形成する第2工程を含む。 The method for manufacturing an ionizing radiation conversion device includes a first step of preparing a first substrate 11 and a second step of forming a first ionizing radiation conversion layer 12 containing a perovskite compound on the first substrate 11.
 第1工程では、第1基板11を用意する。第1基板11は、読み出し回路を有していてもよい。複数の画素を有する場合は、画素ピッチは、例えば、125マイクロメートルである。 In the first step, the first substrate 11 is prepared. The first substrate 11 may have a read-out circuit. When having a plurality of pixels, the pixel pitch is, for example, 125 micrometers.
 第2工程では、第1基板11上に第1ペロブスカイト化合物を含む第1電離放射線変換層12が形成される。 In the second step, the first ionizing radiation conversion layer 12 containing the first perovskite compound is formed on the first substrate 11.
 第2工程では、第1ペロブスカイト化合物が目的の組成を有するように、原料が用意される。第1ペロブスカイト化合物の原料を溶媒に溶解させ、第1電離放射線変換層12の前駆体溶液が得られる。この前駆体溶液を第1基板11上に塗布することで、第1電離放射線変換層12が形成される。 In the second step, a raw material is prepared so that the first perovskite compound has a desired composition. The raw material of the first perovskite compound is dissolved in a solvent to obtain a precursor solution of the first ionizing radiation conversion layer 12. By applying this precursor solution on the first substrate 11, the first ionizing radiation conversion layer 12 is formed.
 第2工程の具体例が説明される。第1ペロブスカイト化合物の原料として、例えば、0.92mol/LのPbI2、0.17mol/LのPbBr2、0.83mol/Lのヨウ化ホルムアミジニウム、0.17mol/Lの臭化メチルアンモニウム、および0.05mol/LのCsIが用意される。これらの材料を、ジメチルスルホキシドおよびN,N-ジメチルホルムアミドの混合溶媒に溶解する。これにより、ペロブスカイト化合物を含む第1電離放射線変換層12の前駆体溶液が得られる。混合溶媒に関して、ジメチルスルホキシドおよびN,N-ジメチルホルムアミドの混合比は、例えば、1:4(体積比)である。前駆体溶液を、例えば、インクジェット法によりに塗布することで第1電離放射線変換層12が形成される。 Specific examples of the second step will be described. As raw materials for the first perovskite compound, for example, 0.92 mol / L PbI 2 , 0.17 mol / L PbBr 2 , 0.83 mol / L formamidinium iodide, 0.17 mol / L methylammonium bromide. , And 0.05 mol / L CsI are prepared. These materials are dissolved in a mixed solvent of dimethyl sulfoxide and N, N-dimethylformamide. As a result, a precursor solution of the first ionizing radiation conversion layer 12 containing the perovskite compound is obtained. With respect to the mixed solvent, the mixing ratio of dimethyl sulfoxide and N, N-dimethylformamide is, for example, 1: 4 (volume ratio). The first ionizing radiation conversion layer 12 is formed by applying the precursor solution, for example, by an inkjet method.
 次いで、第1電離放射線変換層12上に第1電極13が形成される。例えば、蒸着法により、金からなる第1電極13が形成される。第1電極13は、例えば、100ナノメートルの厚みを有する。このようにして、第1積層体10が得られる。 Next, the first electrode 13 is formed on the first ionizing radiation conversion layer 12. For example, a first electrode 13 made of gold is formed by a thin-film deposition method. The first electrode 13 has a thickness of, for example, 100 nanometers. In this way, the first laminated body 10 is obtained.
 第1積層体10と同様にして、第2積層体20が得られる。 The second laminated body 20 is obtained in the same manner as the first laminated body 10.
 第2積層体20を第1積層体10上に配置することで、電離放射線変換デバイスが得られる。以上のように、第1基板上11に配置された第1電離放射線変換層12を有する第1積層体10上に、第2基板21上に配置された第2電離放射線変換層22を有する第2積層体20を形成してもよい。 By arranging the second laminated body 20 on the first laminated body 10, an ionizing radiation conversion device can be obtained. As described above, the second ionizing radiation conversion layer 22 having the second ionizing radiation conversion layer 22 arranged on the second substrate 21 is placed on the first laminated body 10 having the first ionizing radiation conversion layer 12 arranged on the first substrate 11. 2 The laminated body 20 may be formed.
 (電離放射線の検出方法)
 本開示の電離放射線の検出方法は、上述の本開示の電離放射線変換デバイスを用いて、電離放射線を検出する方法である。
(Detection method of ionizing radiation)
The method for detecting ionizing radiation of the present disclosure is a method of detecting ionizing radiation using the above-mentioned ionizing radiation conversion device of the present disclosure.
 すなわち、本開示の電離放射線の検出方法は、例えば、第1基板11および第1基板11上に配置された第1電離放射線変換層12を含む第1積層体10、および第2基板21および第2基板21上に配置された第2電離放射線変換層22を含む第2積層体20を備え、第1電離放射線変換層12は第1ペロブスカイト化合物を含有し、第2電離放射線変換層22は第2ペロブスカイト化合物を含有し、第2積層体20は第1積層体10上に積層されている、電離放射線変換デバイスを用いる。本開示の電離放射線の検出方法では、当該電離放射線変換デバイスによって、第1ペロブスカイト化合物および第2ペロブスカイト化合物に電離放射線が照射されることにより発生した電荷または光を検出する。 That is, the method for detecting ionizing radiation of the present disclosure is, for example, the first laminated body 10 including the first ionizing radiation conversion layer 12 arranged on the first substrate 11 and the first substrate 11, and the second substrate 21 and the first. The second laminated body 20 including the second ionizing radiation conversion layer 22 arranged on the two substrates 21, the first ionizing radiation conversion layer 12 contains the first perovskite compound, and the second ionizing radiation conversion layer 22 is the second. An ionizing radiation conversion device containing 2 perovskite compounds and the second laminated body 20 being laminated on the first laminated body 10 is used. In the method for detecting ionizing radiation of the present disclosure, the charge or light generated by irradiating the first perovskite compound and the second perovskite compound with ionizing radiation by the ionizing radiation conversion device is detected.
 本開示の電離放射線変換デバイスは、例えば、電離放射線検出器において利用される。 The ionizing radiation conversion device of the present disclosure is used, for example, in an ionizing radiation detector.
10 第1積層体
11 第1基板
12 第1電離放射線変換層
13 第1電極
14 リード線
20 第2積層体
21 第2基板
22 第2電離放射線変換層
23 第2電極
30 第3積層体
31 第3基板
32 第3電離放射線変換層
33 第3電極
100、200、300、400 電離放射線変換デバイス
10 1st laminated body 11 1st substrate 12 1st ionizing radiation conversion layer 13 1st electrode 14 lead wire 20 2nd laminated body 21 2nd substrate 22 2nd ionizing radiation conversion layer 23 2nd electrode 30 3rd laminated body 31 3 Substrate 32 3rd ionizing radiation conversion layer 33 3rd electrode 100, 200, 300, 400 Ionizing radiation conversion device

Claims (10)

  1.  第1基板および前記第1基板上に配置された第1電離放射線変換層を含む第1積層体、並びに
     第2基板および前記第2基板上に配置された第2電離放射線変換層を含む第2積層体、を備え、
     前記第1電離放射線変換層は、第1ペロブスカイト化合物を含有し、
     前記第2電離放射線変換層は、第2ペロブスカイト化合物を含有し、
     前記第1電離放射線変換層は、前記第1基板および前記第2基板の間に配置されている、
    電離放射線変換デバイス。
    A first laminated body including a first substrate and a first ionizing radiation conversion layer arranged on the first substrate, and a second including a second substrate and a second ionizing radiation conversion layer arranged on the second substrate. With a laminate,
    The first ionizing radiation conversion layer contains a first perovskite compound and contains.
    The second ionizing radiation conversion layer contains a second perovskite compound and contains.
    The first ionizing radiation conversion layer is arranged between the first substrate and the second substrate.
    Ionizing radiation conversion device.
  2.  前記第1積層体は、第1電極をさらに含み、
     前記第2積層体は、第2電極をさらに含み、
     前記第1電離放射線変換層は、前記第1基板および前記第1電極の間に配置され、
     前記第2電離放射線変換層は、前記第2基板および前記第2電極の間に配置されている、
    請求項1に記載の電離放射線変換デバイス。
    The first laminated body further includes a first electrode, and the first laminated body further includes a first electrode.
    The second laminated body further includes a second electrode, and the second laminated body further includes a second electrode.
    The first ionizing radiation conversion layer is arranged between the first substrate and the first electrode.
    The second ionizing radiation conversion layer is arranged between the second substrate and the second electrode.
    The ionizing radiation conversion device according to claim 1.
  3.  前記第1ペロブスカイト化合物および前記第2ペロブスカイト化合物は、それぞれ独立に、2種以上のカチオンおよび1種以上の1価のアニオンを含有する、
    請求項1または2に記載の電離放射線変換デバイス。
    The first perovskite compound and the second perovskite compound each independently contain two or more cations and one or more monovalent anions.
    The ionizing radiation conversion device according to claim 1 or 2.
  4.  前記2種以上のカチオンは、Pb2+、Sn2+、Ge2+、およびBi3+からなる群より選択される少なくとも1つを含む、
    請求項3に記載の電離放射線変換デバイス。
    The two or more cations include at least one selected from the group consisting of Pb 2+ , Sn 2+ , Ge 2+ , and Bi 3+ .
    The ionizing radiation conversion device according to claim 3.
  5.  前記第1基板、前記第1電極、前記第2基板、および前記第2電極からなる群より選択される少なくとも1つは、透光性を有しない材料から構成される、
    請求項2に記載の電離放射線変換デバイス。
    At least one selected from the group consisting of the first substrate, the first electrode, the second substrate, and the second electrode is composed of a material having no translucency.
    The ionizing radiation conversion device according to claim 2.
  6.  前記第1積層体は、前記第2積層体と並列に接続されている、
    請求項1から5のいずれか一項に記載の電離放射線変換デバイス。
    The first laminated body is connected in parallel with the second laminated body.
    The ionizing radiation conversion device according to any one of claims 1 to 5.
  7.  前記第1ペロブスカイト化合物のバンドギャップと前記第2ペロブスカイト化合物のバンドギャップとの差が、0.1eV以下である、
    請求項1から6のいずれか一項に記載の電離放射線変換デバイス。
    The difference between the band gap of the first perovskite compound and the band gap of the second perovskite compound is 0.1 eV or less.
    The ionizing radiation conversion device according to any one of claims 1 to 6.
  8.  前記第1ペロブスカイト化合物は、前記第2ペロブスカイト化合物と同一である、
    請求項1から7のいずれか一項に記載の電離放射線変換デバイス。
    The first perovskite compound is the same as the second perovskite compound.
    The ionizing radiation conversion device according to any one of claims 1 to 7.
  9.  第1基板および前記第1基板上に配置された第1電離放射線変換層を含む第1積層体、並びに
     第2基板および前記第2基板上に配置された第2電離放射線変換層を含む第2積層体、を備え、
     前記第1電離放射線変換層は、第1ペロブスカイト化合物を含有し、
     前記第2電離放射線変換層は、第2ペロブスカイト化合物を含有し、
     前記第2積層体は、前記第1積層体上に積層されている、
    電離放射線変換デバイス、を用いて、前記第1ペロブスカイト化合物および前記第2ペロブスカイト化合物に電離放射線が照射されることにより発生した電荷または光を検出することを含む、
    電離放射線の検出方法。
    A first laminated body including a first substrate and a first ionizing radiation conversion layer arranged on the first substrate, and a second including a second substrate and a second ionizing radiation conversion layer arranged on the second substrate. With a laminate,
    The first ionizing radiation conversion layer contains a first perovskite compound and contains.
    The second ionizing radiation conversion layer contains a second perovskite compound and contains.
    The second laminated body is laminated on the first laminated body.
    The ionizing radiation conversion device, comprising detecting the charge or light generated by the irradiation of the first perovskite compound and the second perovskite compound with ionizing radiation.
    How to detect ionizing radiation.
  10.  第1基板上に配置された第1電離放射線変換層を含む第1積層体上に、第2基板上に配置された第2電離放射線変換層を含む第2積層体を形成すること、を含み、
     前記第1電離放射線変換層は、第1ペロブスカイト化合物を含有し、
     前記第2電離放射線変換層は、第2ペロブスカイト化合物を含有する、
    電離放射線変換デバイスの製造方法。
    Including forming a second laminated body including a second ionizing radiation conversion layer arranged on a second substrate on a first laminated body including a first ionizing radiation conversion layer arranged on a first substrate. ,
    The first ionizing radiation conversion layer contains a first perovskite compound and contains.
    The second ionizing radiation conversion layer contains a second perovskite compound.
    How to manufacture an ionizing radiation conversion device.
PCT/JP2021/025295 2020-08-06 2021-07-05 Ionizing radiation conversion device, method for detecting ionizing radiation, and method for producing ionizing radiation conversion device WO2022030156A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022541164A JPWO2022030156A1 (en) 2020-08-06 2021-07-05

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020134153 2020-08-06
JP2020-134153 2020-08-06

Publications (1)

Publication Number Publication Date
WO2022030156A1 true WO2022030156A1 (en) 2022-02-10

Family

ID=80119739

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/025295 WO2022030156A1 (en) 2020-08-06 2021-07-05 Ionizing radiation conversion device, method for detecting ionizing radiation, and method for producing ionizing radiation conversion device

Country Status (2)

Country Link
JP (1) JPWO2022030156A1 (en)
WO (1) WO2022030156A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019520565A (en) * 2016-06-08 2019-07-18 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Analytical grating for phase contrast imaging and / or dark field imaging
JP2019526782A (en) * 2016-06-07 2019-09-19 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Direct photon conversion detector
WO2020003603A1 (en) * 2018-06-26 2020-01-02 国立大学法人京都大学 Radiation detector and method for manufacturing radiation detector

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019526782A (en) * 2016-06-07 2019-09-19 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Direct photon conversion detector
JP2019520565A (en) * 2016-06-08 2019-07-18 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Analytical grating for phase contrast imaging and / or dark field imaging
WO2020003603A1 (en) * 2018-06-26 2020-01-02 国立大学法人京都大学 Radiation detector and method for manufacturing radiation detector

Also Published As

Publication number Publication date
JPWO2022030156A1 (en) 2022-02-10

Similar Documents

Publication Publication Date Title
He et al. Detecting ionizing radiation using halide perovskite semiconductors processed through solution and alternative methods
Wei et al. Halide lead perovskites for ionizing radiation detection
Wu et al. Metal halide perovskites for X-ray detection and imaging
JP6960907B2 (en) Radiation detector and manufacturing method of radiation detector
Kim et al. Printable organometallic perovskite enables large-area, low-dose X-ray imaging
Heiss et al. Perovskites target X-ray detection
US10656290B2 (en) Direct photon conversion detector
US10690786B2 (en) X-ray detector and manufacturing method thereof
TWI470262B (en) Radiographic detector formed on scintillator
JP6535271B2 (en) Radiation detector and method of manufacturing radiation detector
Wu et al. Halide Perovskite: A Promising Candidate for Next‐Generation X‐Ray Detectors
JPH01165984A (en) Apparatus for converting video to electric signal
CN112531116B (en) Perovskite ultra-fast X-ray detector and preparation method thereof
US20180246227A1 (en) Detection panel and detection apparatus
KR20170029371A (en) X-ray detector
KR101595429B1 (en) Optical semiconductor device having transition metal dechalcogenides
KR101653440B1 (en) Organic device for detecting x-ray image based on coplanar electrode structure and thereof manufacture method
WO2022030156A1 (en) Ionizing radiation conversion device, method for detecting ionizing radiation, and method for producing ionizing radiation conversion device
WO2022030157A1 (en) Ionizing radiation conversion device and ionizing radiation detection method
WO2022030158A1 (en) Ionizing radiation conversion device and ionizing radiation detection method
WO2022030141A1 (en) Ionizing radiation conversion device, method for manufacturing same, and ionizing radiation detection method
JP2022030278A (en) Ionizing radiation conversion device, manufacturing method thereof, and detection method for ionizing radiation
Tan et al. Self-powered X-ray detector based on lead halide perovskites under electric field poling effect
WO2022030154A1 (en) Ionizing radiation conversion device and method for detecting ionizing radiation
EP3730972A1 (en) Radiation detection device for detecting gamma or x-ray radiation quanta

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21852676

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022541164

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21852676

Country of ref document: EP

Kind code of ref document: A1