WO2022030049A1 - Storage battery maintenance system and storage battery maintenance method - Google Patents

Storage battery maintenance system and storage battery maintenance method Download PDF

Info

Publication number
WO2022030049A1
WO2022030049A1 PCT/JP2021/016625 JP2021016625W WO2022030049A1 WO 2022030049 A1 WO2022030049 A1 WO 2022030049A1 JP 2021016625 W JP2021016625 W JP 2021016625W WO 2022030049 A1 WO2022030049 A1 WO 2022030049A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
storage battery
replacement
charge
exchange
Prior art date
Application number
PCT/JP2021/016625
Other languages
French (fr)
Japanese (ja)
Inventor
洋平 河原
孝徳 山添
健士 井上
雅浩 米元
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to JP2022541113A priority Critical patent/JP7430802B2/en
Publication of WO2022030049A1 publication Critical patent/WO2022030049A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management

Definitions

  • the present invention relates to a system and a method for maintaining a storage battery.
  • the storage battery deteriorates as the usage period becomes longer, and the charge / discharge performance gradually deteriorates. As a result, if the storage battery cannot provide the required performance or the preset years of use have passed, it is determined that the storage battery has reached the end of its life in the battery system, and the storage battery is replaced with a new storage battery. It is common. As described above, in order to operate the battery system equipped with the storage battery in a stable period for a long period of time, it is necessary to efficiently replace the storage battery.
  • Patent Document 1 includes a power storage device including at least one replaceable first battery module and a server that holds characteristic information of one or more second battery modules that can be supplied to the power storage device.
  • a system and a power storage device maintenance system including the system are disclosed.
  • the power storage device receives characteristic information of the second battery module from the server system, and based on the operation of the owner of the power storage device, the power storage device is to be replaced at least one of the first battery modules.
  • a replacement battery module for replacement with the battery module of the above is determined from the second battery module.
  • the operation prediction of the replacement battery module and the non-replaceable battery module combined. Is performed, and the conformity of the replacement battery module is determined based on the operation prediction.
  • the storage battery maintenance system is a system for maintaining the storage battery mounted on the battery system, and is provided at a receiving unit that receives position information from the battery system and at different locations based on the position information.
  • the exchange base identification unit that identifies the exchange base in charge of exchanging the storage battery from among the plurality of exchange bases, and the judgment unit that determines whether or not the storage battery needs to be exchanged, and the determination.
  • a transmission unit for transmitting a procurement command instructing the procurement of a replacement storage battery for replacement with the storage battery to the exchange base in charge based on the result of the determination by the unit is provided.
  • the storage battery maintenance method is a maintenance method for a storage battery mounted on a battery system, in which position information is received from the battery system, and a plurality of exchanges set at different locations based on the position information are exchanged.
  • the exchange base in charge of replacing the storage battery is specified from the bases, the judgment as to whether or not the storage battery needs to be replaced is determined, and the replacement for replacement with the storage battery is performed based on the result of the judgment.
  • a procurement order instructing the procurement of storage batteries is sent to the exchange base in charge.
  • the storage battery can be replaced efficiently.
  • FIG. 1 is a diagram showing a configuration example of a storage battery maintenance system according to the first embodiment of the present invention.
  • the storage battery maintenance system 100 shown in FIG. 1 is a system for operating and maintaining a storage battery, and includes battery utilization systems 101A and 101B, a battery management device 102, and exchange bases 103A and 103B.
  • Battery utilization systems 101A and 101B are systems that utilize storage batteries to realize predetermined functions.
  • the battery utilization systems 101A and 101B transmit various information about the storage battery owned by the battery utilization system 101A and 101B to the battery management device 102, and when the life of the storage battery is approaching, the storage battery is replaced at the exchange bases 103A and 103B.
  • the battery utilization systems 101A and 101B may be collectively referred to as a battery utilization system 101.
  • FIG. 1 shows a case where two battery utilization systems 101A and 101B exist in the storage battery maintenance system 100, but the number of battery utilization systems 101 is not limited to this.
  • the storage battery maintenance system 100 can be configured by including an arbitrary number of battery utilization systems 101.
  • the battery management device 102 performs various processes related to the maintenance of the storage batteries of the battery utilization systems 101A and 101B, respectively, based on the information transmitted from the battery utilization systems 101A and 101B. Then, a storage battery replacement plan is formulated, and a command for instructing the procurement of replacement storage batteries is transmitted to the replacement bases 103A and 103B as necessary.
  • the battery management device 102 has the functions of a receiving unit 1021, a responsible exchange base specifying unit 1022, a determination unit 1023, a transmitting unit 1024, and a storage unit 1025.
  • each of these functions is realized by using, for example, a program executed by the CPU or a storage device such as an HDD or SSD.
  • the receiving unit 1021 receives information transmitted from the battery utilization systems 101A and 101B via a communication network such as a public line network, a mobile phone network, and the Internet.
  • This received information includes position information of the battery utilization systems 101A and 101B, information on the charge state and deterioration state of the storage battery of the battery utilization systems 101A and 101B, and the like.
  • the exchange base identification unit 1022 in charge is in charge of exchanging the storage battery of the battery utilization systems 101A and 101B from the exchange bases 103A and 103B based on the information received by the reception unit 1021 (hereinafter referred to as the exchange base in charge). ) Is specified respectively.
  • the exchange base 103A is specified as the exchange base in charge of the battery utilization system 101A
  • the exchange base 103B is specified as the exchange base in charge of the battery utilization system 101B.
  • the determination unit 1023 makes various determinations necessary when the exchange bases 103A and 103B exchange the storage batteries of the battery utilization systems 101A and 101B. For example, it is determined when to replace the storage battery and whether or not it is necessary to prepare for replacing the storage battery.
  • the transmission unit 1024 determines the judgment result of the judgment unit 1023 together with the information of the battery utilization systems 101A and 101B in charge of each of the charge exchange bases (exchange bases 103A and 103B) specified by the charge exchange base identification unit 1022. In response, a replacement battery procurement order is sent. The transmission of these information and commands is performed via a communication network such as a public line network, a mobile phone network, and the Internet, similarly to the information received by the receiving unit 1021.
  • a communication network such as a public line network, a mobile phone network, and the Internet
  • the storage unit 1025 stores various information regarding the management of the storage batteries of the battery utilization systems 101A and 101B.
  • the determination unit 1023 can make various determinations as described above based on the information stored by the storage unit 1025.
  • the exchange bases 103A and 103B are bases for carrying out processing and work related to the replacement of the storage batteries mounted on the battery utilization systems 101A and 101B in response to the command transmitted from the battery management device 102.
  • the exchange bases 103A and 103B are provided at different locations from each other, and have exchange management units 105A and 105B and replacement batteries 106A and 106B, respectively.
  • the exchange bases 103A and 103B may be collectively referred to as the exchange base 103.
  • FIG. 1 shows a case where two exchange bases 103A and 103B exist in the storage battery maintenance system 100, but the number of exchange bases 103 is not limited to this.
  • the storage battery maintenance system 100 can be configured by including an arbitrary number of exchange bases 103.
  • the replacement batteries 106A and 106B are stored in the replacement bases 103A and 103B, respectively.
  • the replacement batteries 106A and 106B are newly replaced. It is installed in the battery utilization systems 101A and 101B as a storage battery, respectively.
  • the exchange bases 103A and 103B are designated as the exchange bases in charge of the battery utilization systems 101A and 101B, respectively, according to the information transmitted from the transmission unit 1024 of the battery management device 102.
  • the replacement work of the storage battery at the exchange bases 103A and 103B may be performed manually by the operator, or may be automatically or semi-automatically performed by using the machine installed at the exchange bases 103A and 103B. ..
  • the replacement batteries 106A and 106B may be collectively referred to as the replacement battery 106.
  • the exchange management units 105A and 105B are installed at the exchange bases 103A and 103B, respectively, and manage the replacement batteries 106A and 106B, respectively. For example, in response to the replacement battery procurement command transmitted from the transmission unit 1024 of the battery management device 102, the order processing of new replacement batteries 106A and 106B is performed. Then, when the procurement of the replacement batteries 106A and 106B is completed and the storage batteries are ready to be replaced, the battery utilization systems 101A and 101B are instructed to replace the storage batteries, and the replacement work is carried out.
  • the ordering process for the replacement batteries 106A and 106B may be performed by the operator by operating the replacement management units 105A and 105B, or may be automatically performed by the replacement management units 105A and 105B.
  • the replacement management units 105A and 105B can interchange the replacement batteries 106A and 106B with each other according to the instruction of the battery management device 102.
  • the exchange management units 105A and 105B may be collectively referred to as the exchange management unit 105.
  • FIG. 2 is a diagram showing a configuration example of the battery utilization system 101.
  • the battery utilization system 101 is a system that utilizes a rechargeable and dischargeable storage battery, for example, a fluctuation suppression system for renewable energy such as solar power generation, a power supply system for UPS (Uninterruptible Power Supply), and a mobile body. It can be realized as a system for various purposes such as a power supply system.
  • FIG. 2 shows a configuration example of a power supply system for an electric vehicle as an example of such a battery utilization system 101.
  • the secondary battery system 204 is connected to the inverter 203 via a relay (not shown) and to the charger 205 via a relay (not shown). While the vehicle is running, the secondary battery system 204 is connected to the inverter 203, and the electric energy stored in the secondary battery system 204 is used to drive the motor generator 202 by the inverter 203. Further, at the time of charging, the secondary battery system 204 is connected to the charger 205 and is charged via the charger 205 by a household power source or a power supply from a desk lamp.
  • the secondary battery system 204 is provided with a state detecting means for detecting the charged state and the deteriorated state of the secondary battery system 204.
  • This state detecting means detects various information regarding the charging state and the deterioration state of the secondary battery system 204, and transmits the detection result to the system controller 201.
  • the system controller 201 controls the inverter 203 connected to the secondary battery system 204 by using the information transmitted by the state detecting means in the secondary battery system 204.
  • the secondary battery system 204 is connected to the inverter 203 under the control of the system controller 201, and the secondary battery system
  • the motor generator 202 is driven by using the energy stored in the secondary battery in 204. Further, at the time of regeneration, the secondary battery in the secondary battery system 204 is charged by the generated power of the motor generator 202.
  • the system controller 201 controls the charger 205 connected to the secondary battery system 204.
  • the charger 205 is used to charge the secondary battery in the secondary battery system 204 using an external power source such as a home or a charging stand.
  • the charger 205 is configured to control the charging voltage, charging current, etc. based on the command from the system controller 201, but the charging voltage and charging current are controlled based on the command from the secondary battery system 204. It may be carried out. Further, the charger 205 may be installed inside the vehicle or outside the vehicle depending on the configuration of the vehicle, the performance of the charger 205, the purpose of use, the installation conditions of the external power source, and the like.
  • the secondary battery system 204 and the charger 205 are connected based on the information transmitted by the system controller 201. It is connected and the secondary battery in the secondary battery system 204 is charged until a predetermined condition is met.
  • the electric energy stored in the secondary battery by charging is used not only when the vehicle runs next time, but also for operating electrical components inside and outside the vehicle. Further, if necessary, it may be discharged to an external power source represented by a household power source.
  • the battery utilization system 101 is provided with a position measuring device 206, a storage device 207, and a communication device 208.
  • the position measuring device 206 measures the position (latitude, longitude) of the battery utilization system 101, and transmits the obtained position information to the system controller 201. Thereby, the position where the battery utilization system 101 is operated can be specified.
  • the system controller 201 also transmits / receives data to / from the storage device 207, and transmits and stores the operation history of the battery utilization system 101 to the storage device 207.
  • the data stored in the storage device 207 is read out by the system controller 201 as needed, and is utilized for the processing executed by the system controller 201.
  • the system controller 201 also transmits / receives data to / from the communication device 208.
  • the communication device 208 transmits the information transmitted from the system controller 201 to the battery management device 102 outside the battery utilization system 101. That is, the system controller 201 includes information from the inverter 203, information from the secondary battery system 204, information from the charger 205, information from the position measuring device 206, information from the storage device 207, and the battery utilization system 101. General information is collected as needed and transmitted to the battery management device 102 via the communication device 208. As a result, for example, the position information measured by the position measuring device 206 is transmitted from the communication device 208 to the battery management device 102, and is received by the receiving unit 1021 in the battery management device 102. This location information is utilized when the above-mentioned charge exchange base is specified in the charge exchange base identification unit 1022. Further, the communication device 208 can also receive the information transmitted from the battery management device 102 and transmit it to the system controller 201.
  • FIG. 3 is a diagram showing a configuration example of the secondary battery system 204.
  • the secondary battery system 204 includes a secondary battery group 301 in which a plurality of secondary battery cells are connected in series to increase the voltage. Although not shown in FIG. 3, a multi-parallel connection secondary battery group 301 is adopted, in which a plurality of series connections of a plurality of secondary battery cells are connected in parallel to increase the capacity, if necessary. You may.
  • the secondary battery group 301 is electrically connected to the inverter 203 and the charger 205 of FIG. 2 by the battery connection terminals 306P and 306N.
  • the secondary battery system 204 includes a battery management means 302, a current sensor 303, a temperature sensor 304, and a state detection means 305.
  • the battery management means 302 has a function of measuring the voltage of each secondary battery cell of the secondary battery group 301, and if a voltage variation occurs between the secondary battery cells, it is equalized. It also has a function for.
  • the current sensor 303 measures the current flowing in and out of the secondary battery group 301. If you want to measure the power that goes in and out of the secondary battery group 301, multiply the total voltage of each secondary battery cell measured by the battery management means 302 by the current value measured by the current sensor 303. realizable.
  • the temperature sensor 304 measures the temperature of the secondary battery group 301 by measuring a typical temperature in the secondary battery group 301.
  • a temperature sensor 304 is installed in a place where the temperature is the highest, a place where the temperature is the lowest, a place where an average temperature can be obtained, etc. in the secondary battery group 301, and the temperature measured by the temperature sensor 304 at that place. Can be the temperature of the secondary battery group 301.
  • the state detecting means 305 detects the state of the secondary battery group 301 by using the measured values of the voltage, current, and temperature measured by the battery management means 302, the current sensor 303, and the temperature sensor 304, respectively.
  • the state of the secondary battery group 301 detected by the state detecting means 305 is a state of charge (SOC: State of Charge) of the secondary battery group 301, a deteriorated state (SOH: State of Health), and the like.
  • SOC State of Charge
  • SOH State of Health
  • the state of the secondary battery group 301 other than the charged state and the deteriorated state such as the maximum current or the maximum power that can be input to / received from the secondary battery group 301, the presence / absence of an abnormality in the secondary battery group 301, and various other characteristic information. May be detected.
  • the arithmetic processing for state detection performed by the state detecting means 305 will be described later.
  • the state of the secondary battery group 301 detected by the state detecting means 305 is transmitted from the state detecting means 305 to the system controller 201 of FIG. 2 via the battery signal input / output terminal 307.
  • Information such as calculation parameters used in the calculation processing performed by the state detection means 305 may be transmitted from the system controller 201 to the state detection means 305 via the battery signal input / output terminal 307.
  • the state detecting means 305 extracts the state such as the SOC and SOH of the secondary battery group 301, the maximum current or power that can be input / output, the presence / absence of an abnormality, and the characteristic information of the secondary battery group 301. Executes various arithmetic processes of. These arithmetic processes can be realized by a well-known method, and specific examples thereof will be described below.
  • the method of detecting by the voltage reference is a method of obtaining the SOC by storing the relationship between the voltage of the battery cell and the SOC in advance and converting the voltage into the SOC in real time.
  • the conversion accuracy when obtaining the SOC from the voltage differs depending on the type of battery.
  • SOC is obtained by measuring and integrating the current values entering and exiting the battery cell.
  • FIG. 4 is a diagram showing the battery cells constituting the secondary battery group 301 as an equivalent circuit.
  • reference numeral 401 represents an open circuit voltage (OCV: Open Circuit Voltage)
  • reference numeral 402 represents an internal resistance (R)
  • reference numeral 403 represents a polarization resistance component (Rp)
  • reference numeral 404 represents a capacitance component (C). ..
  • the battery cell is represented by a parallel connection pair of a polarization resistance component 403 and a capacitance component 404, and a series connection of an internal resistance 402 and an open circuit voltage 401.
  • CCV Closed Circuit Voltage
  • Vp is the polarization voltage, which corresponds to the voltage of the parallel connection pair of the polarization resistance component 403 and the capacitance component 404.
  • CCV OCV + I ⁇ R + Vp (Equation 1)
  • OCV is used for SOC calculation, but it is impossible to directly measure OCV when the battery cell is charged and discharged. Therefore, OCV is calculated by subtracting IR drop and Vp from CCV as shown in the following (Equation 2).
  • OCV CCV-I / R-Vp (Equation 2)
  • the values of CCV and I are determined by the voltage value detected by the battery management means 302 and the current value detected by the current sensor 303, respectively. Further, the value of R is determined by the characteristic parameter of the battery cell preset for state detection. This is stored in advance in, for example, a storage device (not shown) provided in the state detecting means 305. Further, the value of Vp is determined by using the current value detected by the current sensor 303 and the above-mentioned characteristic parameter of the battery cell. It is preferable that the characteristic parameters of the battery cell are extracted in advance according to various battery states such as the SOC and temperature of the battery cell and stored in the state detecting means 305. By doing so, it becomes possible to calculate the OCV with high accuracy.
  • the SOC can be obtained by using the relationship between the OCV and the SOC peculiar to the battery cell.
  • the relationship between OCV and SOC used here is determined by the characteristics of the materials that make up the battery cell.
  • FIG. 5 is a diagram showing an example of the relationship between OCV and SOC in a battery cell.
  • the state detecting means 305 can calculate the OCV by (Equation 2) and detect the SOC of the battery cell from the relationship between the OCV and the SOC as shown in FIG.
  • the SOC can be obtained by storing the map information representing OCV and SOC shown in FIG. 5 in advance in the state detecting means 305 and referring to the map information according to the following (Equation 3).
  • the SOC thus obtained from the OCV may be referred to as an SOCv.
  • SOCv MAP (OCV) (Equation 3)
  • Equation 4 is a calculation formula for detecting SOC by current integration.
  • SOCi SOCvinit + 100 ⁇ ⁇ Idt / Qmax (Equation 4)
  • SOCvinit represents the initial value of SOC.
  • the value of SOCv obtained by the above-mentioned calculation method based on OCV can be used.
  • the SOCvinit value is set to a fixed value in the subsequent calculation of (Equation 4).
  • Qmax indicates the full charge capacity of the secondary battery group 301.
  • SOCc W ⁇ SOCv + (1-W) ⁇ SOCi (Equation 5)
  • the weighting coefficient W may be set to a value capable of detecting SOC with high accuracy in consideration of the characteristics of the battery and the charge / discharge pattern of the battery.
  • the value of the internal resistance Rt in (Equation 6) and (Equation 7) is based on the charge / discharge duration, considering all of the internal resistance (R), the polarization resistance component (Rp), and the capacitance component (C). Can be decided. At this time, the maximum current can be estimated with high accuracy by grasping the influence of each deterioration. Further, by multiplying this by the battery voltage, the maximum power can be estimated with high accuracy.
  • ICHGmax (Battery upper limit voltage-OCV) / Rt (Equation 6)
  • IDISmax (OCV-Battery lower limit voltage) / Rt (Equation 7)
  • FIG. 6 is an explanatory diagram of a method for detecting internal resistance.
  • FIG. 6A shows the state of the current change when the secondary battery group 301 is discharged from time t0 to time t1
  • FIG. 6B shows the state of the current change when the secondary battery group 301 is discharged from time t0 to time t1. It shows the state of the voltage change when the battery is discharged to.
  • the present invention is not limited to this, and another method may be adopted if the internal resistance R of the secondary battery group 301 is obtained.
  • SOHR 100 ⁇ Current internal resistance / Initial internal resistance
  • FIG. 7 is an explanatory diagram of a method for detecting a full charge capacity.
  • FIG. 7A shows a state of voltage change when the battery is discharged from time t0 to time t1.
  • the battery voltage is measured before the start of discharging of the secondary battery group 301 (before time t0), and the SOC (SOC1) before discharging is detected by using the relationship between OCV and SOC shown in FIG. 5 described above. Further, after sufficient time has passed after the end of discharge (after time t1), a stable battery voltage is measured, and the SOC (SOC2) after discharge is detected by using the relationship between OCV and SOC in FIG. ..
  • the full charge capacity Qmax can be obtained by performing the following calculation (Equation 10) from the detection results of SOC1 and SOC2.
  • Qmax 100 ⁇ ⁇ Idt / (SOC2-SOC1) (Equation 10)
  • the reduction rate (maintenance rate) of the full charge capacity according to the deterioration can be obtained. Can be done.
  • this will be referred to as SOHQ. That is, the SOHQ, which is the SOH due to the decrease in the full charge capacity, is obtained by the following (Equation 11).
  • SOHQ 100 x current full charge capacity / initial full charge capacity (Equation 11)
  • the SOHQ calculation method includes the integral calculation of the current value. Therefore, as in the SOCi calculation described in (Equation 4) above, the current measurement error is also integrated, and the calculation accuracy decreases with the passage of time. Therefore, in the case of charging / discharging conditions with a small cumulative error, the above calculation is applied only when charging / discharging is performed so that SOC1 and SOC2 are greatly separated in a short period of time, for example, a charging / discharging pattern of excessive charging or excessive discharging. It is preferable to apply measures such as
  • FIG. 7B shows an example of the relationship between SOHR and SOHQ in the secondary battery group 301.
  • SOHQ may be obtained from the detection result of SOHR.
  • the obtained SOHQ value by multiplying the obtained SOHQ value by the initial capacity of the secondary battery group 301, the current full charge capacity Qmax value can be obtained.
  • the SOHQ detection method described above does not include integral calculation, the problem of cumulative current measurement error as described above does not occur.
  • the relationship between SOHR and SOHQ as shown in FIG. 7B can change variously depending on the usage conditions of the battery. Therefore, in order to obtain SOHQ with high accuracy, it is necessary to perform a battery test according to the assumed usage conditions in advance and extract the relationship between SOHR and SOHQ for as many usage conditions as possible.
  • the deterioration characteristics (relationship between SOHR and SOHQ) of the secondary battery group 301 thus obtained are implemented in advance in the state detection means 305 as state detection parameters after characteristic parameters such as mapping are performed.
  • SOHQ may be detected by adopting another method.
  • the state detecting means 305 can obtain the SOC and SOH of the secondary battery group 301 by executing the arithmetic processing described above.
  • SOHR and SOHQ detection methods have been described as SOH detection methods, but the description of the present embodiment will be described below by taking the case of using SOHQ as an example.
  • the battery status detection result by the status detecting means 305 is transmitted to the system controller 201 via the battery signal input / output terminal 307.
  • the system controller 201 controls charging / discharging of the secondary battery system 204 according to the received battery state. Further, the system controller 201 can also transmit the information received from the secondary battery system 204 to the storage device 207 and store it as history information.
  • the history information stored in the storage device 207 may be in the form of time-series data or in the form of a histogram.
  • the system controller 201 also stores the position information from the position measuring device 206 in the storage device 207 as history information in the same time-series data or histogram format.
  • the data is passed through the system controller 201, but the storage device 207 may directly receive the data from the position measuring device 206.
  • FIG. 8 is a diagram showing an example of history information of the battery utilization system 101 stored in the storage device 207 in a histogram format.
  • (a) is an example of SOC history information
  • (b) is an example of temperature history information
  • (c) is an example of current history information
  • (d) is an example of position history information.
  • the system controller 201 can transmit the history information of the battery utilization system 101 stored in the storage device 207 to the outside of the battery utilization system 101 including the battery management device 102 via the communication device 208.
  • the information from the state detecting means 305 or the position measuring device 206 may be transmitted to the outside as it is via the communication device 208.
  • the battery management device 102 that has received the information from the battery utilization system 101 accumulates the information and creates a histogram as shown in FIG. 8 using the accumulated information, as described above. It can be used when specifying the exchange base in charge.
  • the battery management device 102 acquires the position of the battery utilization system 101 by receiving the information transmitted by the battery utilization system 101 by the receiving unit 1021. Based on this location information, the responsible exchange base specifying unit 1022 can extract the main stay area of the battery utilization system 101 and specify the responsible exchange base. At this time, if the position information transmitted from the battery utilization system 101 is time-series data, or if the position information measured by the position measuring device 206 is transmitted from the battery utilization system 101 at predetermined time intervals, the received position. The information may be statistically processed by the exchange base identification unit 1022 in charge, and the main stay area of the battery utilization system 101 may be extracted based on the result. Based on the main stay area extracted in this way, it is possible to assign the exchange base corresponding to the battery utilization system 101 among the exchange bases 103A and 103B as the exchange base in charge.
  • the main stay area of the battery utilization system 101 may be extracted as a position range having a certain width, or a specific point may be extracted as the main stay area.
  • a position range in which the frequency of occurrence is equal to or higher than a predetermined value may be extracted as the main staying area, or the point having the highest frequency of occurrence may be set as the main staying area.
  • the main stay area of the battery utilization system 101 can be rephrased as the main position indicating the position where the battery utilization system 101 mainly exists.
  • the method of allocating the responsible exchange base when the main position of the battery utilization system 101 is extracted and the responsible exchange base is specified in the responsible exchange base specifying unit 1022 will be described.
  • FIG. 9 is an explanatory diagram of the method of allocating the exchange base in charge.
  • the nearest exchange base 103 is assigned to the main position of each battery utilization system 101 as the exchange base in charge.
  • the second method shown in FIG. 9B the area in charge of each exchange base 103 is determined in advance, and it is confirmed in which area the main position of each battery utilization system 101 is included. Allocate the exchange base in charge.
  • two methods first method and second method have been described as the method of allocating the exchange base in charge, but the exchange base in charge for each battery utilization system 101 may be determined by another method. ..
  • the battery management device 102 confirms the remaining life (remaining life) of the secondary battery group 301 based on the information from the battery utilization system 101. The method is described below.
  • FIG. 10 is an explanatory diagram relating to the calculation method of the remaining life of the battery.
  • FIG. 10A shows a method of calculating the remaining life when the battery life is defined by time. For example, assuming that the battery life is 10 years, the remaining life of the secondary battery group 301 can be obtained by subtracting the operating time of the secondary battery group 301 from 10 years. This calculation may be performed by the state detecting means 305 in the battery utilization system 101, or the time during which the secondary battery system 204 is operated is measured by the state detecting means 305, and the communication device is processed by the system controller 201. By transmitting the measurement result from 208 to the battery management device 102, it can also be carried out by the battery management device 102.
  • the operating time of the secondary battery group 301 may be held by the storage device 207 or may be held by a storage area (not shown) provided in the state detecting means 305. Any means may be adopted as long as the operating time can be stored.
  • An ID that can individually identify the secondary battery group 301 is stored in each battery utilization system 101, and the battery management device 102 also uses the secondary battery group 301 mounted in each battery utilization system 101 as an ID unit. In the case of management by, it is also possible to hold the set number of years of battery life according to the ID on the battery management device 102 side. By doing so, if the ID of the secondary battery group 301 mounted on each battery utilization system 101 and the operating time of the secondary battery group 301 are transmitted from each battery utilization system 101 to the battery management device 102, the battery can be used. The remaining life of the secondary battery group 301 can be calculated in the management device 102.
  • FIG. 10B shows a calculation method of the remaining life when the battery life is defined by the performance.
  • a certain value of a predetermined battery performance here, SOHQ
  • SOHQ a predetermined battery performance
  • the period from the present until the end of the life performance is the remaining life of the secondary battery group 301.
  • the SOHQ indicating the deterioration state of the current secondary battery group 301 is detected by the method as described above, and the secondary battery group 301 is continuously operated based on the operation history information of the secondary battery group 301.
  • the deterioration rate is obtained, and the date and time when the SOHQ value reaches the life performance is predicted. Then, by obtaining the difference between the predicted date and time and the current date and time, it is possible to calculate the remaining life of the secondary battery group 301.
  • the battery management device 102 determines the remaining life of the main stay area of the battery utilization system 101 and the secondary battery group 301 obtained as described above according to the ID assigned to each secondary battery group 301 as described above. Can be managed. Hereinafter, a method of managing the secondary battery group 301 by this ID will be described.
  • FIG. 11 is a diagram showing an example of a management list used for managing the secondary battery group 301 in the first embodiment of the present invention.
  • the management list of FIG. 11 is stored, for example, in the battery management device 102 by the storage unit 1025.
  • each item of ID, battery type, number of batteries, operating area, and remaining life is set.
  • ID the value of the ID assigned to each secondary battery group 301 is recorded.
  • battery type the type of the secondary battery used in the secondary battery group 301 is recorded.
  • number of batteries the number of secondary batteries constituting the secondary battery group 301 is recorded.
  • operating area the operating area of the battery utilization system 101 on which the secondary battery group 301 is mounted is recorded. For example, the above-mentioned major stay area is recorded as an operating area.
  • the remaining life the remaining life of the secondary battery group 301 calculated as described above is recorded.
  • the battery management device 102 can manage the secondary battery group 301 mounted on each battery utilization system 101 by using the management list as shown in FIG.
  • the management list shown in FIG. 11 is an example, and other items may be included in the management list.
  • FIG. 12 is a flowchart showing a flow of processing executed by the battery management device 102 in the first embodiment of the present invention.
  • the battery management device 102 designates the ID of the secondary battery group 301 to be monitored (S1201).
  • the battery management device 102 receives the history information transmitted from the battery utilization system 101 equipped with the secondary battery group 301 of the ID specified in step S1201 by the receiving unit 1021 (S1202).
  • the battery management device 102 extracts the main stay area of the battery utilization system 101 based on the position information included in the history information received in step S1202 by the exchange base identification unit 1022 in charge (S1203).
  • the main staying area from the location information by the method as described above.
  • the battery management device 102 identifies the responsible exchange base of the secondary battery group 301 with the ID specified in step S1201 based on the main stay area extracted in step S1203 by the responsible exchange base specifying unit 1022 (S1204). ..
  • the exchange base 103 corresponding to the battery utilization system 101 equipped with the secondary battery group 301 is provided by the two methods described in FIGS. 9 (a) and 9 (b) described above, or by another method. , It is possible to specify as the exchange base in charge.
  • the battery management device 102 is determined by the determination unit 1023 based on the information regarding the battery state of the secondary battery group 301 included in the history information received in step S1202, for example, information such as SOC, SOH, temperature, and current.
  • the estimated life arrival time of the next battery group 301 is acquired, and the remaining life is calculated (S1205).
  • the state detecting means 305 calculates the remaining life of the secondary battery group 301 in the battery utilization system 101
  • the process of step S1205 is omitted by receiving the history information including the calculation result in step S1202. You may.
  • the battery management device 102 determines by the determination unit 1023 whether or not it is necessary to prepare for replacement of the secondary battery group 301 based on the remaining life of the secondary battery group 301 calculated in step S1205 (step S1206). ..
  • the remaining life of the secondary battery group 301 and the replacement man-hours when replacing the secondary battery group 301 are compared.
  • the replacement man-hours at this time include the procurement period of the replacement battery 106 at the replacement base 103, the replacement work time, and the like.
  • the remaining life of the secondary battery group 301 is longer than the replacement man-hours, it is determined that the replacement preparation of the secondary battery group 301 is still unnecessary, and the process proceeds to step S1208.
  • the remaining life of the secondary battery group 301 is less than the replacement man-hours, it is determined that the replacement of the secondary battery group 301 is necessary, and the process proceeds to step S1207.
  • the comparison with the remaining life of the secondary battery group 301 is not limited to the replacement man-hours, and may be any value. That is, when the remaining life of the secondary battery group 301 estimated in step S1205 is equal to or less than a predetermined value, it can be determined that preparation for replacement of the secondary battery group 301 is necessary. Further, the determination in step S1206 may be performed by a method other than the above.
  • the battery management device 102 When it is determined in step S1206 that the secondary battery group 301 needs to be prepared for replacement, the battery management device 102 then receives a replacement battery for the replacement base 103 specified as the replacement base in charge in step S1204 by the transmission unit 1024.
  • the procurement command of 106 is transmitted (step S1207).
  • the exchange base 103 designated as the exchange base in charge when this procurement command is received by the exchange management unit 105, it is obtained from procurement such as input of data necessary for actually procuring the replacement battery 106, estimation, delivery procedure, etc. Carry out the paperwork up to.
  • the replacement battery 106 thus obtained is stored in the replacement base 103.
  • the secondary battery group 301 with the ID specified in step S1201 reaches the end of its life, the secondary battery group 301 is removed from the battery utilization system 101 at the replacement base 103, which is the replacement base in charge, and replaced with the stored replacement battery 106. do. As a result, the replacement work can be smoothly performed.
  • the replaced secondary battery group 301 that has been replaced with the replacement battery 106 and recovered from the battery utilization system 101 may be re-distributed as a new replacement battery 106.
  • the replacement base 103 measures the deteriorated state and the remaining life of the recirculated replacement battery 106, and the measurement result is managed by the battery management device 102.
  • step S1206 After determining in step S1206 that it is not necessary to prepare for replacement of the secondary battery group 301, or after issuing a procurement command for the replacement battery 106 in step S1207, the battery management device 102 has not been added to the ID specified so far. It is determined whether or not the designated ID exists (S1208). As a result, if an unspecified ID exists, the process returns to step S1201 and the above process is repeated. On the other hand, when all the IDs have been specified, the process shown in the flowchart of FIG. 12 is terminated.
  • the processes of steps S1201 to S1207 can be applied to all the managed secondary battery groups 301 according to the flowchart of FIG. 12 described above.
  • the replacement battery 106 can be procured in advance before each secondary battery group 301 reaches the end of its life, and the secondary battery group 301 can be smoothly replaced when the life is reached. Therefore, the optimum and efficient replacement maintenance of the battery utilization system 101 can be realized.
  • the storage battery maintenance system 100 is a system for maintaining the secondary battery group 301, which is a storage battery mounted on the battery utilization system 101.
  • the storage battery maintenance system 100 includes a receiving unit 1021, a responsible exchange base specifying unit 1022, a determination unit 1023, and a transmitting unit 1024.
  • the receiving unit 1021 receives the position information from the battery utilization system 101 (S1202).
  • the exchange base identification unit 1022 in charge selects the exchange base in charge of exchanging the secondary battery group 301 from among a plurality of exchange bases 103 provided at different locations based on the position information received by the reception unit 1021. Specify (S1204).
  • the determination unit 1023 determines whether or not it is necessary to prepare for replacement of the secondary battery group 301 (S1206).
  • the transmission unit 1024 transmits a procurement command instructing the procurement of the replacement battery 106 for replacement with the secondary battery group 301 to the exchange base in charge (S1207).
  • the secondary battery group 301 which is a storage battery, can be efficiently replaced with respect to the battery utilization system 101.
  • the determination unit 1023 estimates the remaining life of the secondary battery group 301 (S1205), and determines that it is necessary to prepare for replacement of the secondary battery group 301 when the estimated remaining life is equal to or less than a predetermined value (S1206:). Yes). Since this is done, it is possible to appropriately determine whether or not the secondary battery group 301 needs to be prepared for replacement.
  • the receiving unit 1021 receives the position information from the battery utilization system 101.
  • the exchange base specifying unit 1022 in charge extracts the main stay area of the battery utilization system 101 based on this location information (S1203), and identifies the exchange base in charge based on the main stay area (S1204). Because of this, even in the case of a system in which the battery utilization system 101 can be moved, such as a power supply system for an electric vehicle, the optimum exchange base in charge according to the position where the battery utilization system 101 is mainly operated. Can be identified.
  • the storage battery maintenance system 100 is provided at each of a plurality of exchange bases 103, and includes an exchange management unit 105 that manages the storage status of the exchange battery 106 procured in accordance with the procurement order. Since this is done, the replacement battery 106 can be appropriately managed at each exchange base 103.
  • the secondary battery group 301 that has been replaced with the replacement battery 106 at the exchange base in charge and recovered from the battery utilization system 101 may be redistributed as a new replacement battery 106. By doing so, it is possible to promote the reuse of the secondary battery group 301 recovered from the battery utilization system 101, and to contribute to environmental protection and resource saving.
  • FIG. 13 is a diagram showing a configuration example of a storage battery maintenance system according to a second embodiment of the present invention.
  • the storage battery maintenance system 100'shown in FIG. 13 is different from the storage battery maintenance system 100 of FIG. 1 described in the first embodiment, except that the battery management device 102 is replaced with the battery management device 102'. It has the same configuration.
  • the battery management device 102' has a required performance setting unit 1026 in addition to the functions of the reception unit 1021, the charge exchange base identification unit 1022, the determination unit 1023, the transmission unit 1024, and the storage unit 1025.
  • each of these functions is realized by using, for example, a program executed by the CPU or a storage device such as an HDD or SSD.
  • the required performance setting unit 1026 sets the required performance for the replacement battery 106. For example, the required value for the remaining life of the replacement battery 106 can be set as the required performance.
  • the required performance set by the required performance setting unit 1026 is stored in the storage unit 1025 and used when the transmission unit 1024 transmits a procurement command for the replacement battery 106.
  • FIG. 14 is a diagram showing an example of a management list used for managing the secondary battery group 301 in the second embodiment of the present invention.
  • the management list of FIG. 14 is stored by the storage unit 1025 in, for example, the battery management device 102'.
  • the required performance at the time of replacement is further described as an item representing the required performance set by the required performance setting unit 1026. Items have been added.
  • the required performance at the time of replacement the required performance for the replacement battery 106 used when replacing the secondary battery group 301 is recorded. For example, the remaining life of the replacement battery 106 is recorded in this.
  • the battery management device 102 determines that the secondary battery group 301 has reached the end of its life by the determination unit 1023, and the battery needs to be replaced.
  • the life of the battery utilization system 101 is about to reach the end (hereinafter referred to as the first case)
  • the period during which the secondary battery group 301 is used after replacement is until the life of the battery utilization system 101 is reached. It's just the rest of the period. Therefore, as the replacement battery 106, it is sufficient to prepare a battery that can be used only for the remaining period.
  • the battery utilization system 101 includes a secondary battery group 301 connected in multiple parallels, and only a part of the secondary battery cells needs to be replaced (hereinafter, referred to as a second case). It is desirable to prepare a replacement battery 106 according to the performance of another secondary battery cell that is not the target of replacement, and replace it with a secondary battery cell that has reached the end of its life.
  • the required performance setting unit 1026 is provided in the battery management device 102', and the item of the required performance at the time of replacement for the secondary battery group 301 is added to the management list shown in FIG. is doing. Then, when the battery management device 102'transmits a procurement command for the replacement battery 106 to the replacement base 103, the information on the required performance recorded in this item is included in the procurement command.
  • the exchange base 103 designated as the exchange base in charge receives the procurement command transmitted from the battery management device 102', it searches for a replacement battery 106 that satisfies the required performance based on the required performance information included in the procurement command. And procure. For example, among the replacement batteries 106 that have been collected from the battery utilization system 101 and re-distributed in the past, the replacement battery 106 that meets the required performance is procured. At this time, the replacement battery 106 that meets the required performance may be procured by having the replacement battery 106 collected and re-distributed at another exchange base 103 accommodated.
  • the replacement battery 106 having a sufficient remaining life to cover the period until the life of the battery utilization system 101 is reached can be procured. Further, in the second case, in the secondary battery group 301 of the multi-parallel connection, the replacement battery 106 can be procured so that the performance difference does not occur more than the threshold value with the secondary battery cell that is not the replacement target.
  • FIG. 15 is a flowchart showing a flow of processing executed by the battery management device 102'in the second embodiment of the present invention.
  • the same step numbers are assigned to the steps that perform the same processing as the flowchart of FIG. 12 described in the first embodiment. In the following, the description of the process of the same step number as in FIG. 12 will be omitted unless there is a particular need.
  • the battery management device 102 After posting the remaining life of the secondary battery group 301 in step S1205, the battery management device 102'sets the required performance for the replacement battery 106 by the required performance setting unit 1026 (S1501).
  • the required value of the remaining life (remaining life) of the replacement battery 106 is set according to the situation of the secondary battery group 301 and the battery utilization system 101 on which the secondary battery group 301 is mounted. For example, in the first case described above, based on the remaining life of the battery utilization system 101, a required value according to the remaining life is set for the replacement battery 106.
  • the required value of the remaining life (remaining life) for the replacement battery 106 is set based on the above.
  • the required value for the replacement battery 106 can be expressed by a period until the predicted end of life, a SOH value, or the like.
  • step S1501 The required performance for the replacement battery 106 set in step S1501 is recorded in the item of required performance at the time of replacement in the management list of FIG. 14 stored in the storage unit 1025. After finishing this, the process proceeds to step S1206.
  • step S1206 When it is determined in step S1206 that the secondary battery group 301 needs to be prepared for replacement, the battery management device 102'is set by the transmission unit 1024 with respect to the exchange base 103 specified as the responsible exchange base in step S1204 in step S1501. A procurement command including the required performance for the replacement battery 106 is transmitted (step S1502).
  • the exchange base 103 designated as the exchange base in charge receives this procurement command by the exchange management unit 105, the exchange battery 106 satisfying the required performance is procured.
  • the obtained replacement battery 106 is stored in the replacement base 103 and replaced with the secondary battery group 301 of the battery utilization system 101.
  • the required performance for the replacement battery 106 is set in consideration of the battery performance required for each battery utilization system 101 according to the flowchart of FIG. 15 described above, and the required performance is set.
  • the exchange base 103 designated as the exchange base in charge the replacement battery 106 with the optimum battery performance is procured in advance before each secondary battery group 301 reaches the end of its life, and the replacement battery 106 is smoothly reached at the end of its life.
  • the secondary battery group 301 can be replaced. Therefore, the optimum and efficient replacement maintenance of the battery utilization system 101 can be realized.
  • the storage battery maintenance system 100' provides a required performance setting unit 1026 for setting a required value for the remaining life of the replacement battery 106.
  • the transmission unit 1024 transmits a procurement command including the required value of the remaining life set by the required performance setting unit 1026 to the exchange base in charge (S1502). Therefore, in consideration of the battery performance required for the battery utilization system 101, it is possible to procure the replacement battery 106 having appropriate battery performance in just proportion to the replacement base in charge.
  • the required performance setting unit 1026 can set the required value of the remaining life for the replacement battery 106 based on the remaining life of the battery utilization system 101 (S1501). By doing so, even if the life of the battery utilization system 101 is about to reach the end as in the first case described above, the required value of the remaining life for the replacement battery 106 is appropriately set without excess or deficiency. It becomes possible to do.
  • the secondary battery group 301 is configured by using a plurality of battery cells.
  • the transmission unit 1024 can transmit a procurement command for the battery cell to be replaced designated among the plurality of battery cells.
  • the required performance setting unit 1026 can set the required value of the remaining life for the replacement battery 106 based on the remaining life of each battery cell excluding the battery cell to be replaced among the plurality of battery cells. (S1501). By doing so, even if only a part of the battery cells in the secondary battery group 301 needs to be replaced as in the second case described above, the required value of the remaining life of the replacement battery 106 is excessively insufficient. It is possible to set appropriately without.
  • the exchange management unit 105 provided in each exchange base 103 manages the storage status such as the number of stocks of the replacement battery 106 stored by each exchange base 103 as the exchange base in charge. Therefore, the replacement management unit 105 may perform charge / discharge control of the secondary battery group 301 mounted on the battery utilization system 101 in charge of each replacement base 103 based on the number of stocks of the replacement battery 106. ..
  • the replacement battery 106 cannot be sufficiently secured at the replacement base 103, and the number of the secondary battery group 301 mounted on the battery utilization system 101 in charge of the replacement base 103 increases, the replacement battery group 301 reaches the end of its life. The battery 106 may run short. As a result, a large number of man-hours may be required for replacement maintenance. Therefore, in this modification, in consideration of possible replacement of the secondary battery group 301 in the future, the battery utilization in charge of the replacement base 103 according to the number of stocks of the replacement battery 106 stored in the replacement base 103 is taken into consideration.
  • the exchange management unit 105 is provided with a function of transmitting a signal for changing the operation of the system 101.
  • the replacement management unit 105 suppresses charging / discharging of the secondary battery group 301 in the battery utilization system 101 to limit the charging / discharging current. Apply control. On the contrary, when the replacement battery 106 is in stock at the replacement base 103, the replacement management unit 105 does not apply or cancels the above charge / discharge limitation of the secondary battery group 301 in the battery utilization system 101. Apply control to Such a change in the operation of the battery utilization system 101 is performed, for example, by transmitting an operation command including a maximum charge / discharge current or a charge / discharge current suppression rate from the replacement management unit 105 to the battery utilization system 101. The operation command transmitted from the exchange management unit 105 is received by the communication device 208 in the battery utilization system 101 and output to the system controller 201 to be applied to the charge / discharge control performed by the system controller 201.
  • the exchange management unit 105 installed in the exchange base 103 which is the exchange base in charge, is a storage battery based on the number of stocks of the replacement batteries 106 stored in the exchange base in charge.
  • a command for changing the operation of the secondary battery group 301 is transmitted.
  • the number of replacement batteries 106 in stock is small, deterioration of the secondary battery group 301 can be suppressed and the end of life can be delayed, so that time is secured for resolving the shortage of stock of replacement batteries 106. can do.
  • the case where the control for limiting charge / discharge is applied is described as an example, but by changing the operation of the battery utilization system 101, the deterioration of the secondary battery group 301 is suppressed and the life is delayed. It is possible to adopt another means as long as it is possible. For example, when the number of replacement batteries 106 in stock is small, the SOC range of the secondary battery group 301 that can be used during operation may be changed. In this case, if the number of replacement batteries 106 in stock is low, an operation command for changing the maximum or minimum SOC of the secondary battery group 301 that can be used during operation is issued from the exchange management unit 105 to the battery utilization system 101. Is transmitted and reflected in the charge / discharge control performed by the system controller 201.

Landscapes

  • Business, Economics & Management (AREA)
  • Engineering & Computer Science (AREA)
  • Economics (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Human Resources & Organizations (AREA)
  • Marketing (AREA)
  • Operations Research (AREA)
  • Quality & Reliability (AREA)
  • Strategic Management (AREA)
  • Tourism & Hospitality (AREA)
  • Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

This storage battery maintenance system for performing maintenance on storage batteries installed in a battery system is provided with: a reception unit that receives position information from the storage system; a responsible replacement base identification unit that, on the basis of the position information, identifies a responsible replacement base which, among a plurality of replacement bases each of which is provided in a different location, is responsible for replacing the storage battery; a determination unit that determines whether preparation for replacing the storage battery is necessary; and a transmission unit that, on the basis of the determination result from the determination unit, transmits to the responsible replacement base a procurement command instructing the procurement of a replacement storage battery for replacing the storage battery.

Description

蓄電池保守システム、蓄電池保守方法Storage battery maintenance system, storage battery maintenance method
 本発明は、蓄電池の保守を行うシステムおよび方法に関する。 The present invention relates to a system and a method for maintaining a storage battery.
 現在、地球環境問題が大きくクローズアップされている。地球温暖化を防止するために、充放電可能な蓄電池を搭載し、この蓄電池に蓄えた電気エネルギーによりモーターを駆動することで、従来のガソリンエンジンによる動力の一部、または全てを代替するハイブリッド電気自動車や電気自動車などが普及している。 Currently, global environmental issues are getting a lot of attention. In order to prevent global warming, a rechargeable storage battery is installed, and by driving the motor with the electric energy stored in this storage battery, hybrid electricity that replaces part or all of the power of the conventional gasoline engine. Automobiles and electric vehicles are widespread.
 また電力分野では、温室効果ガスを排出しない太陽光発電などの再生可能エネルギーが注目され、導入が進んでいる。太陽光発電による発電出力は天候による変動が大きいため、連系する電力系統の電圧変動や周波数変動を引き起こす。この対策として、太陽光発電システムに変動抑制用の蓄電池を備えた電池システムを併設し、この電池システムにおいて蓄電池を充放電させることで、電力系統の出力を平滑化している。 In the electric power field, renewable energy such as solar power generation, which does not emit greenhouse gases, is attracting attention and is being introduced. Since the power output from photovoltaic power generation fluctuates greatly depending on the weather, it causes voltage fluctuations and frequency fluctuations in the connected power system. As a countermeasure, a battery system equipped with a storage battery for suppressing fluctuation is installed in the photovoltaic power generation system, and the storage battery is charged and discharged in this battery system to smooth the output of the power system.
 このように、地球温暖化を防止するために、様々な電池システムにおいて蓄電池が頻繁に活用されている。今後も、こうした蓄電池の活用範囲はますます広がっていくと予想される。 In this way, storage batteries are frequently used in various battery systems to prevent global warming. It is expected that the range of utilization of such storage batteries will continue to expand in the future.
 蓄電池は一般に、使用期間が長くなるにつれて劣化が進行し、充放電性能が次第に低下する。その結果、蓄電池が所定の要求性能を提供できなくなった場合や、予め設定された使用年数が経過した場合には、電池システムにおいて蓄電池の寿命が尽きたと判断され、新しい蓄電池に交換されるのが一般的である。このように、蓄電池を備えた電池システムを長期にわたって安定期に運用するためには、蓄電池の交換を効率的に実施する必要がある。 Generally, the storage battery deteriorates as the usage period becomes longer, and the charge / discharge performance gradually deteriorates. As a result, if the storage battery cannot provide the required performance or the preset years of use have passed, it is determined that the storage battery has reached the end of its life in the battery system, and the storage battery is replaced with a new storage battery. It is common. As described above, in order to operate the battery system equipped with the storage battery in a stable period for a long period of time, it is necessary to efficiently replace the storage battery.
 かかる課題を解決するために、特許文献1に記載の技術が知られている。特許文献1には、少なくとも1つ以上の交換可能な第1の電池モジュールを含む蓄電装置と、蓄電装置に供給可能な1つ以上の第2の電池モジュールの特性情報を保持するサーバを含むサーバシステムと、を備える蓄電装置保守システムが開示されている。この蓄電装置保守システムにおいて、蓄電装置は、サーバシステムから第2の電池モジュールの特性情報を受信し、蓄電装置の所有者の操作に基づいて、第1の電池モジュールのうちの少なくとも1つの交換対象の電池モジュールと交換するための交換用の電池モジュールを第2の電池モジュールの中から決定する。そして、交換用の電池モジュールの特性情報と、第1の電池モジュールのうちの交換対象外の電池モジュールの特性情報を用いて、交換用の電池モジュールと交換対象外の電池モジュールを合わせた運用予測を行い、その運用予測に基づいて交換用の電池モジュールの適合判定を行う。 The technique described in Patent Document 1 is known in order to solve such a problem. Patent Document 1 includes a power storage device including at least one replaceable first battery module and a server that holds characteristic information of one or more second battery modules that can be supplied to the power storage device. A system and a power storage device maintenance system including the system are disclosed. In this power storage device maintenance system, the power storage device receives characteristic information of the second battery module from the server system, and based on the operation of the owner of the power storage device, the power storage device is to be replaced at least one of the first battery modules. A replacement battery module for replacement with the battery module of the above is determined from the second battery module. Then, using the characteristic information of the replacement battery module and the characteristic information of the non-replaceable battery module in the first battery module, the operation prediction of the replacement battery module and the non-replaceable battery module combined. Is performed, and the conformity of the replacement battery module is determined based on the operation prediction.
日本国特開2014-139725号公報Japanese Patent Application Laid-Open No. 2014-139725
 蓄電池の交換に当たっては、交換用の蓄電池として、事前に適切な数量や品質の蓄電池を用意しておく必要がある。しかしながら、特許文献1の技術では、こうした点について特に考慮されていない。したがって、蓄電池の交換の効率化に関してさらなる改善の余地がある。 When replacing a storage battery, it is necessary to prepare a storage battery of appropriate quantity and quality in advance as a storage battery for replacement. However, in the technique of Patent Document 1, such a point is not particularly considered. Therefore, there is room for further improvement regarding the efficiency of battery replacement.
 本発明による蓄電池保守システムは、電池システムに搭載される蓄電池の保守を行うシステムであって、前記電池システムから位置情報を受信する受信部と、前記位置情報に基づいて、互いに異なる場所にそれぞれ設けられた複数の交換拠点の中から前記蓄電池の交換を担当する担当交換拠点を特定する担当交換拠点特定部と、前記蓄電池の交換準備が必要か否かの判断を実施する判断部と、前記判断部による前記判断の結果に基づいて、前記蓄電池と交換するための交換用蓄電池の調達を指示する調達指令を前記担当交換拠点に送信する送信部と、を備える。
 本発明による蓄電池保守方法は、電池システムに搭載される蓄電池の保守方法であって、前記電池システムから位置情報を受信し、前記位置情報に基づいて、互いに異なる場所にそれぞれ設定された複数の交換拠点の中から前記蓄電池の交換を担当する担当交換拠点を特定し、前記蓄電池の交換準備が必要か否かの判断を実施し、前記判断の結果に基づいて、前記蓄電池と交換するための交換用蓄電池の調達を指示する調達指令を前記担当交換拠点に送信する。
The storage battery maintenance system according to the present invention is a system for maintaining the storage battery mounted on the battery system, and is provided at a receiving unit that receives position information from the battery system and at different locations based on the position information. The exchange base identification unit that identifies the exchange base in charge of exchanging the storage battery from among the plurality of exchange bases, and the judgment unit that determines whether or not the storage battery needs to be exchanged, and the determination. A transmission unit for transmitting a procurement command instructing the procurement of a replacement storage battery for replacement with the storage battery to the exchange base in charge based on the result of the determination by the unit is provided.
The storage battery maintenance method according to the present invention is a maintenance method for a storage battery mounted on a battery system, in which position information is received from the battery system, and a plurality of exchanges set at different locations based on the position information are exchanged. The exchange base in charge of replacing the storage battery is specified from the bases, the judgment as to whether or not the storage battery needs to be replaced is determined, and the replacement for replacement with the storage battery is performed based on the result of the judgment. A procurement order instructing the procurement of storage batteries is sent to the exchange base in charge.
 本発明によれば、蓄電池の交換を効率的に実施することができる。 According to the present invention, the storage battery can be replaced efficiently.
本発明の第1の実施形態に係る蓄電池保守システムの構成例を示す図である。It is a figure which shows the structural example of the storage battery maintenance system which concerns on 1st Embodiment of this invention. 電池活用システムの構成例を示す図である。It is a figure which shows the configuration example of the battery utilization system. 二次電池システムの構成例を示す図である。It is a figure which shows the configuration example of a secondary battery system. 二次電池群を構成する電池セルを等価回路として表現した図である。It is a figure which expressed the battery cell which constitutes a secondary battery group as an equivalent circuit. 電池セルにおけるOCVとSOCとの関係の一例を示す図である。It is a figure which shows an example of the relationship between OCV and SOC in a battery cell. 内部抵抗の検知方法の説明図である。It is explanatory drawing of the detection method of an internal resistance. 満充電容量の検知方法の説明図である。It is explanatory drawing of the detection method of the full charge capacity. 履歴情報の例を示す図である。It is a figure which shows the example of the history information. 担当交換拠点の割り当て方法の説明図である。It is explanatory drawing of the allocation method of the exchange base in charge. 電池の残寿命の計算方法に関する説明図である。It is explanatory drawing about the calculation method of the remaining life of a battery. 本発明の第1の実施形態における管理リストの例を示す図である。It is a figure which shows the example of the management list in 1st Embodiment of this invention. 本発明の第1の実施形態において電池管理装置により実行される処理の流れを示すフローチャートである。It is a flowchart which shows the flow of the process executed by the battery management apparatus in 1st Embodiment of this invention. 本発明の第2の実施形態に係る蓄電池保守システムの構成例を示す図である。It is a figure which shows the structural example of the storage battery maintenance system which concerns on 2nd Embodiment of this invention. 本発明の第2の実施形態における管理リストの例を示す図である。It is a figure which shows the example of the management list in the 2nd Embodiment of this invention. 本発明の第2の実施形態において電池管理装置により実行される処理の流れを示すフローチャートである。It is a flowchart which shows the flow of the process executed by the battery management apparatus in the 2nd Embodiment of this invention.
 以下、図面を参照して、本発明の実施形態について説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
(第1の実施形態)
 図1は、本発明の第1の実施形態に係る蓄電池保守システムの構成例を示す図である。図1に示す蓄電池保守システム100は、蓄電池の運用と保守を行うシステムであり、電池活用システム101A,101Bと、電池管理装置102と、交換拠点103A,103Bとを備えて構成される。
(First Embodiment)
FIG. 1 is a diagram showing a configuration example of a storage battery maintenance system according to the first embodiment of the present invention. The storage battery maintenance system 100 shown in FIG. 1 is a system for operating and maintaining a storage battery, and includes battery utilization systems 101A and 101B, a battery management device 102, and exchange bases 103A and 103B.
 電池活用システム101A,101Bは、蓄電池を活用して所定の機能をそれぞれ実現するシステムである。電池活用システム101A,101Bは、自身が有する蓄電池に関する様々な情報を電池管理装置102へ送信するとともに、蓄電池の寿命が近づくと、交換拠点103A,103Bにおいて蓄電池の交換が行われる。なお、以下では電池活用システム101A,101Bをまとめて、電池活用システム101と称することがある。 Battery utilization systems 101A and 101B are systems that utilize storage batteries to realize predetermined functions. The battery utilization systems 101A and 101B transmit various information about the storage battery owned by the battery utilization system 101A and 101B to the battery management device 102, and when the life of the storage battery is approaching, the storage battery is replaced at the exchange bases 103A and 103B. In the following, the battery utilization systems 101A and 101B may be collectively referred to as a battery utilization system 101.
 図1の例では、蓄電池保守システム100内に2つの電池活用システム101A,101Bが存在している場合を示しているが、電池活用システム101の数はこれに限定されない。任意数の電池活用システム101を含んで、蓄電池保守システム100を構成することができる。 The example of FIG. 1 shows a case where two battery utilization systems 101A and 101B exist in the storage battery maintenance system 100, but the number of battery utilization systems 101 is not limited to this. The storage battery maintenance system 100 can be configured by including an arbitrary number of battery utilization systems 101.
 電池管理装置102は、電池活用システム101A,101Bから送信される情報に基づき、電池活用システム101A,101Bがそれぞれ有する蓄電池の保守に関する様々な処理を行う。そして、蓄電池の交換計画を策定し、交換用の蓄電池の調達を指示するための指令を、必要に応じて交換拠点103A,103Bへ送信する。 The battery management device 102 performs various processes related to the maintenance of the storage batteries of the battery utilization systems 101A and 101B, respectively, based on the information transmitted from the battery utilization systems 101A and 101B. Then, a storage battery replacement plan is formulated, and a command for instructing the procurement of replacement storage batteries is transmitted to the replacement bases 103A and 103B as necessary.
 電池管理装置102は、受信部1021、担当交換拠点特定部1022、判断部1023、送信部1024および記憶部1025の各機能を有する。電池管理装置102においてこれらの各機能は、例えばCPUにより実行されるプログラムや、HDD,SSD等の記憶装置を用いて実現される。 The battery management device 102 has the functions of a receiving unit 1021, a responsible exchange base specifying unit 1022, a determination unit 1023, a transmitting unit 1024, and a storage unit 1025. In the battery management device 102, each of these functions is realized by using, for example, a program executed by the CPU or a storage device such as an HDD or SSD.
 受信部1021は、公衆回線網、携帯電話網、インターネット等の通信ネットワークを介して電池活用システム101A,101Bから送信される情報を受信する。この受信情報は、電池活用システム101A,101Bの位置情報や、電池活用システム101A,101Bが有する蓄電池の充電状態、劣化状態に関する情報などを含む。 The receiving unit 1021 receives information transmitted from the battery utilization systems 101A and 101B via a communication network such as a public line network, a mobile phone network, and the Internet. This received information includes position information of the battery utilization systems 101A and 101B, information on the charge state and deterioration state of the storage battery of the battery utilization systems 101A and 101B, and the like.
 担当交換拠点特定部1022は、受信部1021が受信した情報に基づいて、交換拠点103A,103Bの中から、電池活用システム101A,101Bが有する蓄電池の交換を担当する拠点(以下、担当交換拠点と称する)をそれぞれ特定する。図1の例では、交換拠点103Aが電池活用システム101Aの担当交換拠点、交換拠点103Bが電池活用システム101Bの担当交換拠点として、それぞれ特定された様子を示している。 The exchange base identification unit 1022 in charge is in charge of exchanging the storage battery of the battery utilization systems 101A and 101B from the exchange bases 103A and 103B based on the information received by the reception unit 1021 (hereinafter referred to as the exchange base in charge). ) Is specified respectively. In the example of FIG. 1, the exchange base 103A is specified as the exchange base in charge of the battery utilization system 101A, and the exchange base 103B is specified as the exchange base in charge of the battery utilization system 101B.
 判断部1023は、交換拠点103A,103Bが電池活用システム101A,101Bの蓄電池の交換を行う際に必要な各種判断を実施する。例えば、蓄電池の交換時期の判断や、蓄電池の交換準備が必要か否かの判断を行う。 The determination unit 1023 makes various determinations necessary when the exchange bases 103A and 103B exchange the storage batteries of the battery utilization systems 101A and 101B. For example, it is determined when to replace the storage battery and whether or not it is necessary to prepare for replacing the storage battery.
 送信部1024は、担当交換拠点特定部1022が特定した各担当交換拠点(交換拠点103A,103B)に対して、それぞれが担当する電池活用システム101A,101Bの情報とともに、判断部1023の判断結果に応じて、交換用電池の調達指令を送信する。これらの情報や指令の送信は、受信部1021により受信される情報と同様に、公衆回線網、携帯電話網、インターネット等の通信ネットワークを介して行われる。 The transmission unit 1024 determines the judgment result of the judgment unit 1023 together with the information of the battery utilization systems 101A and 101B in charge of each of the charge exchange bases ( exchange bases 103A and 103B) specified by the charge exchange base identification unit 1022. In response, a replacement battery procurement order is sent. The transmission of these information and commands is performed via a communication network such as a public line network, a mobile phone network, and the Internet, similarly to the information received by the receiving unit 1021.
 記憶部1025は、電池活用システム101A,101Bが有する蓄電池の管理に関する様々な情報が記憶される。判断部1023は、記憶部1025により記憶された情報に基づき、前述のような各種判断を行うことができる。 The storage unit 1025 stores various information regarding the management of the storage batteries of the battery utilization systems 101A and 101B. The determination unit 1023 can make various determinations as described above based on the information stored by the storage unit 1025.
 交換拠点103A,103Bは、電池管理装置102から送信される指令に応じて、電池活用システム101A,101Bに搭載されている蓄電池の交換に関する処理や作業を実施するための拠点である。交換拠点103A,103Bは、互いに異なる場所にそれぞれ設けられており、交換管理部105A,105Bと、交換用電池106A,106Bとをそれぞれ有する。なお、以下では交換拠点103A,103Bをまとめて、交換拠点103と称することがある。 The exchange bases 103A and 103B are bases for carrying out processing and work related to the replacement of the storage batteries mounted on the battery utilization systems 101A and 101B in response to the command transmitted from the battery management device 102. The exchange bases 103A and 103B are provided at different locations from each other, and have exchange management units 105A and 105B and replacement batteries 106A and 106B, respectively. In the following, the exchange bases 103A and 103B may be collectively referred to as the exchange base 103.
 図1の例では、蓄電池保守システム100内に2つの交換拠点103A,103Bが存在している場合を示しているが、交換拠点103の数はこれに限定されない。任意数の交換拠点103を含んで、蓄電池保守システム100を構成することができる。 The example of FIG. 1 shows a case where two exchange bases 103A and 103B exist in the storage battery maintenance system 100, but the number of exchange bases 103 is not limited to this. The storage battery maintenance system 100 can be configured by including an arbitrary number of exchange bases 103.
 交換用電池106A,106Bは、交換拠点103A,103Bにそれぞれ保管されている。電池活用システム101A,101Bの蓄電池を交換する際には、交換拠点103A,103Bにおいて、電池活用システム101A,101Bに搭載されている蓄電池がそれぞれ取り外された後、交換用電池106A,106Bが新たな蓄電池として電池活用システム101A,101Bにそれぞれ搭載される。このとき前述のように、電池管理装置102の送信部1024から送信される情報に従って、交換拠点103A,103Bが電池活用システム101A,101Bの担当交換拠点にそれぞれ指定される。交換拠点103A,103Bにおける蓄電池の交換作業は、作業者が手動で実施してもよいし、交換拠点103A,103Bに設置された機械を用いて自動的に、または半自動的に実施してもよい。なお、以下では交換用電池106A,106Bをまとめて、交換用電池106と称することがある。 The replacement batteries 106A and 106B are stored in the replacement bases 103A and 103B, respectively. When replacing the storage batteries of the battery utilization systems 101A and 101B, after the storage batteries mounted on the battery utilization systems 101A and 101B are removed at the exchange bases 103A and 103B, the replacement batteries 106A and 106B are newly replaced. It is installed in the battery utilization systems 101A and 101B as a storage battery, respectively. At this time, as described above, the exchange bases 103A and 103B are designated as the exchange bases in charge of the battery utilization systems 101A and 101B, respectively, according to the information transmitted from the transmission unit 1024 of the battery management device 102. The replacement work of the storage battery at the exchange bases 103A and 103B may be performed manually by the operator, or may be automatically or semi-automatically performed by using the machine installed at the exchange bases 103A and 103B. .. In the following, the replacement batteries 106A and 106B may be collectively referred to as the replacement battery 106.
 交換管理部105A,105Bは、交換拠点103A,103Bにそれぞれ設置されており、交換用電池106A,106Bの管理を行う。例えば、電池管理装置102の送信部1024から送信される交換用電池の調達指令に応じて、新たな交換用電池106A,106Bの発注処理を行う。そして、交換用電池106A,106Bの調達が完了して蓄電池の交換準備が整ったら、電池活用システム101A,101Bに対して蓄電池の交換を指示し、交換作業を実施する。なお、交換用電池106A,106Bの発注処理は、オペレータが交換管理部105A,105Bを操作して行ってもよいし、交換管理部105A,105Bが自動的に行ってもよい。また、交換管理部105A,105Bは、電池管理装置102の指示に応じて、交換用電池106A,106Bを相互に融通し合うこともできる。なお、以下では交換管理部105A,105Bをまとめて、交換管理部105と称することがある。 The exchange management units 105A and 105B are installed at the exchange bases 103A and 103B, respectively, and manage the replacement batteries 106A and 106B, respectively. For example, in response to the replacement battery procurement command transmitted from the transmission unit 1024 of the battery management device 102, the order processing of new replacement batteries 106A and 106B is performed. Then, when the procurement of the replacement batteries 106A and 106B is completed and the storage batteries are ready to be replaced, the battery utilization systems 101A and 101B are instructed to replace the storage batteries, and the replacement work is carried out. The ordering process for the replacement batteries 106A and 106B may be performed by the operator by operating the replacement management units 105A and 105B, or may be automatically performed by the replacement management units 105A and 105B. Further, the replacement management units 105A and 105B can interchange the replacement batteries 106A and 106B with each other according to the instruction of the battery management device 102. In the following, the exchange management units 105A and 105B may be collectively referred to as the exchange management unit 105.
 次に、電池活用システム101の詳細について説明する。図2は、電池活用システム101の構成例を示す図である。なお、電池活用システム101は、充放電可能な蓄電池を活用したシステムであり、例えば太陽光発電等の再生可能エネルギーの変動抑制システムや、UPS(Uninterruptible Power Supply)用の電源システム、移動体用の電源システムなど、様々な用途のシステムとして実現可能である。図2では、こうした電池活用システム101の一例として、電気自動車用の電源システムの構成例を示している。 Next, the details of the battery utilization system 101 will be described. FIG. 2 is a diagram showing a configuration example of the battery utilization system 101. The battery utilization system 101 is a system that utilizes a rechargeable and dischargeable storage battery, for example, a fluctuation suppression system for renewable energy such as solar power generation, a power supply system for UPS (Uninterruptible Power Supply), and a mobile body. It can be realized as a system for various purposes such as a power supply system. FIG. 2 shows a configuration example of a power supply system for an electric vehicle as an example of such a battery utilization system 101.
 図2の電池活用システム101において、二次電池システム204は、リレー(図示せず)を介してインバータ203に接続されるとともに、リレー(図示せず)を介して充電器205に接続される。車両走行中には、二次電池システム204はインバータ203と接続され、二次電池システム204が蓄えている電気エネルギーを用いて、インバータ203によりモータジェネレータ202を駆動する。また、充電の際には、二次電池システム204は充電器205と接続され、家庭用の電源または電気スタンドからの電力供給により、充電器205を介して充電される。 In the battery utilization system 101 of FIG. 2, the secondary battery system 204 is connected to the inverter 203 via a relay (not shown) and to the charger 205 via a relay (not shown). While the vehicle is running, the secondary battery system 204 is connected to the inverter 203, and the electric energy stored in the secondary battery system 204 is used to drive the motor generator 202 by the inverter 203. Further, at the time of charging, the secondary battery system 204 is connected to the charger 205 and is charged via the charger 205 by a household power source or a power supply from a desk lamp.
 詳細は後述するが、二次電池システム204には、二次電池システム204の充電状態や劣化状態を検知するための状態検知手段が備えられている。この状態検知手段は、二次電池システム204の充電状態や劣化状態に関する様々な情報を検知し、その検知結果をシステムコントローラ201に送信する。システムコントローラ201は、二次電池システム204内の状態検知手段が送信する情報を用いて、二次電池システム204と接続されるインバータ203を制御する。具体的には、二次電池システム204を搭載した車両システムが始動して走行する場合には、システムコントローラ201の管理のもと、二次電池システム204はインバータ203に接続され、二次電池システム204内の二次電池が蓄えているエネルギーを用いてモータジェネレータ202を駆動する。また、回生時はモータジェネレータ202の発電電力により二次電池システム204内の二次電池が充電される。 The details will be described later, but the secondary battery system 204 is provided with a state detecting means for detecting the charged state and the deteriorated state of the secondary battery system 204. This state detecting means detects various information regarding the charging state and the deterioration state of the secondary battery system 204, and transmits the detection result to the system controller 201. The system controller 201 controls the inverter 203 connected to the secondary battery system 204 by using the information transmitted by the state detecting means in the secondary battery system 204. Specifically, when the vehicle system equipped with the secondary battery system 204 starts and runs, the secondary battery system 204 is connected to the inverter 203 under the control of the system controller 201, and the secondary battery system The motor generator 202 is driven by using the energy stored in the secondary battery in 204. Further, at the time of regeneration, the secondary battery in the secondary battery system 204 is charged by the generated power of the motor generator 202.
 前述に加え、システムコントローラ201は二次電池システム204に接続される充電器205を制御する。充電器205は、家庭または充電スタンドに代表される外部の電源を用いて二次電池システム204内の二次電池を充電する際に用いられる。本実施形態では、充電器205はシステムコントローラ201からの指令に基づき充電電圧や充電電流などを制御する構成としているが、二次電池システム204からの指令に基づき、充電電圧や充電電流の制御を実施してもよい。また、充電器205は車両の構成、充電器205の性能、使用目的、外部の電源の設置条件などに応じて、車両内部に設置してもよいし、車両の外部に設置することもできる。 In addition to the above, the system controller 201 controls the charger 205 connected to the secondary battery system 204. The charger 205 is used to charge the secondary battery in the secondary battery system 204 using an external power source such as a home or a charging stand. In the present embodiment, the charger 205 is configured to control the charging voltage, charging current, etc. based on the command from the system controller 201, but the charging voltage and charging current are controlled based on the command from the secondary battery system 204. It may be carried out. Further, the charger 205 may be installed inside the vehicle or outside the vehicle depending on the configuration of the vehicle, the performance of the charger 205, the purpose of use, the installation conditions of the external power source, and the like.
 二次電池システム204を備える車両が家庭用または充電スタンドに代表される外部の電源と接続された際には、システムコントローラ201が発信する情報に基づき、二次電池システム204と充電器205とが接続され、二次電池システム204内の二次電池が所定の条件になるまで充電される。充電によって二次電池に蓄えられた電気エネルギーは、次回の車両走行時に利用されるとともに、車両内外の電装品等を動作させるためにも利用される。さらに必要に応じて、家庭用の電源に代表される外部電源へも放出される場合がある。 When a vehicle equipped with the secondary battery system 204 is connected to an external power source such as a household or charging stand, the secondary battery system 204 and the charger 205 are connected based on the information transmitted by the system controller 201. It is connected and the secondary battery in the secondary battery system 204 is charged until a predetermined condition is met. The electric energy stored in the secondary battery by charging is used not only when the vehicle runs next time, but also for operating electrical components inside and outside the vehicle. Further, if necessary, it may be discharged to an external power source represented by a household power source.
 電池活用システム101には、位置計測装置206、記憶装置207および通信装置208が備えられている。位置計測装置206は、電池活用システム101の位置(緯度、経度)を計測し、得られた位置情報をシステムコントローラ201に送信する。これにより、電池活用システム101が運用されている位置を特定できる。システムコントローラ201は、記憶装置207ともデータを送受信しており、電池活用システム101の運用履歴を記憶装置207に送信して蓄積させる。記憶装置207内に蓄積されたデータは、システムコントローラ201により必要に応じて読み出され、システムコントローラ201が実行する処理に活用される。 The battery utilization system 101 is provided with a position measuring device 206, a storage device 207, and a communication device 208. The position measuring device 206 measures the position (latitude, longitude) of the battery utilization system 101, and transmits the obtained position information to the system controller 201. Thereby, the position where the battery utilization system 101 is operated can be specified. The system controller 201 also transmits / receives data to / from the storage device 207, and transmits and stores the operation history of the battery utilization system 101 to the storage device 207. The data stored in the storage device 207 is read out by the system controller 201 as needed, and is utilized for the processing executed by the system controller 201.
 さらに、システムコントローラ201は通信装置208ともデータを送受信している。通信装置208は、システムコントローラ201から送信される情報を、電池活用システム101外の電池管理装置102へ送信する。すなわち、システムコントローラ201は、インバータ203からの情報、二次電池システム204からの情報、充電器205からの情報、位置計測装置206からの情報、そして記憶装置207からの情報や、電池活用システム101全般の情報を必要に応じて収集し、通信装置208を介して電池管理装置102に送信する。これにより、例えば、位置計測装置206により計測された位置情報が通信装置208から電池管理装置102に送信され、電池管理装置102において受信部1021により受信される。この位置情報は、担当交換拠点特定部1022において、前述の担当交換拠点を特定する際に活用される。また、通信装置208は、電池管理装置102から送信される情報を受信し、システムコントローラ201へ送信することも可能である。 Further, the system controller 201 also transmits / receives data to / from the communication device 208. The communication device 208 transmits the information transmitted from the system controller 201 to the battery management device 102 outside the battery utilization system 101. That is, the system controller 201 includes information from the inverter 203, information from the secondary battery system 204, information from the charger 205, information from the position measuring device 206, information from the storage device 207, and the battery utilization system 101. General information is collected as needed and transmitted to the battery management device 102 via the communication device 208. As a result, for example, the position information measured by the position measuring device 206 is transmitted from the communication device 208 to the battery management device 102, and is received by the receiving unit 1021 in the battery management device 102. This location information is utilized when the above-mentioned charge exchange base is specified in the charge exchange base identification unit 1022. Further, the communication device 208 can also receive the information transmitted from the battery management device 102 and transmit it to the system controller 201.
 次に、二次電池システム204の詳細について述べる。図3は、二次電池システム204の構成例を示す図である。 Next, the details of the secondary battery system 204 will be described. FIG. 3 is a diagram showing a configuration example of the secondary battery system 204.
 二次電池システム204内には、複数の二次電池セルを直列に接続して高電圧化した二次電池群301が備えられている。なお、図3では図示を省略しているが、必要に応じて、複数の二次電池セルの直列接続を複数個並列に接続して高容量化した多並列接続の二次電池群301を採用してもよい。二次電池群301は、電池接続端子306P,306Nにより、図2のインバータ203や充電器205と電気的に接続される。 The secondary battery system 204 includes a secondary battery group 301 in which a plurality of secondary battery cells are connected in series to increase the voltage. Although not shown in FIG. 3, a multi-parallel connection secondary battery group 301 is adopted, in which a plurality of series connections of a plurality of secondary battery cells are connected in parallel to increase the capacity, if necessary. You may. The secondary battery group 301 is electrically connected to the inverter 203 and the charger 205 of FIG. 2 by the battery connection terminals 306P and 306N.
 また、二次電池システム204内には、電池管理手段302、電流センサ303、温度センサ304および状態検知手段305が備えられている。電池管理手段302は、二次電池群301の各二次電池セルの電圧を測定する機能を有しており、各二次電池セルの間で電圧ばらつきが生じた場合は、これを均等化するための機能も有する。電流センサ303は、二次電池群301に出入りする電流を測定する。なお、二次電池群301に出入りする電力を測定したい場合は、電池管理手段302で測定した各二次電池セルの電圧の合計値と、電流センサ303で測定した電流値とを乗算することで実現できる。 Further, the secondary battery system 204 includes a battery management means 302, a current sensor 303, a temperature sensor 304, and a state detection means 305. The battery management means 302 has a function of measuring the voltage of each secondary battery cell of the secondary battery group 301, and if a voltage variation occurs between the secondary battery cells, it is equalized. It also has a function for. The current sensor 303 measures the current flowing in and out of the secondary battery group 301. If you want to measure the power that goes in and out of the secondary battery group 301, multiply the total voltage of each secondary battery cell measured by the battery management means 302 by the current value measured by the current sensor 303. realizable.
 温度センサ304は、二次電池群301内で代表的な温度を測定することで、二次電池群301の温度を測定する。例えば、二次電池群301内で最も温度が高くなる場所、最も温度が低くなる場所、平均的な温度が得られる場所などに温度センサ304を設置し、その場所で温度センサ304が測定した温度を、二次電池群301の温度とすることができる。 The temperature sensor 304 measures the temperature of the secondary battery group 301 by measuring a typical temperature in the secondary battery group 301. For example, a temperature sensor 304 is installed in a place where the temperature is the highest, a place where the temperature is the lowest, a place where an average temperature can be obtained, etc. in the secondary battery group 301, and the temperature measured by the temperature sensor 304 at that place. Can be the temperature of the secondary battery group 301.
 状態検知手段305は、電池管理手段302と電流センサ303と温度センサ304がそれぞれ測定した電圧、電流、温度の測定値を用いて、二次電池群301の状態を検知する。状態検知手段305が検知する二次電池群301の状態とは、二次電池群301の充電状態(SOC:State of Charge)や、劣化状態(SOH:State of Health)などである。また、二次電池群301に入出力可能な最大電流または最大電力や、二次電池群301における異常の有無、その他の各種特性情報など、充電状態や劣化状態以外の二次電池群301の状態を検知してもよい。なお、状態検知手段305が行う状態検知のための演算処理については後述する。 The state detecting means 305 detects the state of the secondary battery group 301 by using the measured values of the voltage, current, and temperature measured by the battery management means 302, the current sensor 303, and the temperature sensor 304, respectively. The state of the secondary battery group 301 detected by the state detecting means 305 is a state of charge (SOC: State of Charge) of the secondary battery group 301, a deteriorated state (SOH: State of Health), and the like. Further, the state of the secondary battery group 301 other than the charged state and the deteriorated state, such as the maximum current or the maximum power that can be input to / received from the secondary battery group 301, the presence / absence of an abnormality in the secondary battery group 301, and various other characteristic information. May be detected. The arithmetic processing for state detection performed by the state detecting means 305 will be described later.
 状態検知手段305により検知された二次電池群301の状態は、電池信号入出力端子307を介して、状態検知手段305から図2のシステムコントローラ201へ送信される。なお、状態検知手段305が行う演算処理において用いられる演算用パラメータなどの情報を、システムコントローラ201から電池信号入出力端子307を介して状態検知手段305へ送信してもよい。 The state of the secondary battery group 301 detected by the state detecting means 305 is transmitted from the state detecting means 305 to the system controller 201 of FIG. 2 via the battery signal input / output terminal 307. Information such as calculation parameters used in the calculation processing performed by the state detection means 305 may be transmitted from the system controller 201 to the state detection means 305 via the battery signal input / output terminal 307.
 続いて、状態検知手段305の詳細な処理内容を説明する。前述したように、状態検知手段305は、二次電池群301のSOCやSOH、入出力可能な最大電流または最大電力、異常の有無、二次電池群301の特性情報等の状態を抽出するための各種演算処理を実行する。これらの演算処理は、周知の手法により実現可能であるが、以下ではその具体例を説明する。 Subsequently, the detailed processing contents of the state detecting means 305 will be described. As described above, the state detecting means 305 extracts the state such as the SOC and SOH of the secondary battery group 301, the maximum current or power that can be input / output, the presence / absence of an abnormality, and the characteristic information of the secondary battery group 301. Executes various arithmetic processes of. These arithmetic processes can be realized by a well-known method, and specific examples thereof will be described below.
 SOC検知は、電圧基準により検知する方法と、電流積算により検知する方法の2つが代表的である。電圧基準により検知する方法は、電池セルの電圧とSOCとの関係を予め記憶し、リアルタイムに電圧からSOCに変換することでSOCを求める方法である。この方法では、選定した電池セルの特性に応じて電圧とSOCの関係が異なるため、電池の種類に応じて電圧からSOCを得る際の変換精度に差が生じる。一方、電流積算により検知する方法は、電池セルに出入りした電流値を測定して積分することでSOCを得る。この方法では、電流測定値に含まれる測定誤差も積分してしまうため、時間の経過と共にSOC誤差が拡大するという課題がある。以上より、SOC検知方法に応じてその特徴は様々であるため、電池セルの特性やセンサ性能、周囲環境など、条件に応じてSOC検知方法を選定するなどして、SOC精度を確保する必要がある。 There are two typical methods for SOC detection: a method of detecting by voltage reference and a method of detecting by current integration. The method of detecting by the voltage reference is a method of obtaining the SOC by storing the relationship between the voltage of the battery cell and the SOC in advance and converting the voltage into the SOC in real time. In this method, since the relationship between the voltage and the SOC differs depending on the characteristics of the selected battery cell, the conversion accuracy when obtaining the SOC from the voltage differs depending on the type of battery. On the other hand, in the method of detecting by current integration, SOC is obtained by measuring and integrating the current values entering and exiting the battery cell. In this method, since the measurement error included in the current measurement value is also integrated, there is a problem that the SOC error increases with the passage of time. From the above, since the characteristics vary depending on the SOC detection method, it is necessary to ensure SOC accuracy by selecting the SOC detection method according to the conditions such as battery cell characteristics, sensor performance, and surrounding environment. be.
 まず、電圧基準によりSOCを検知する方法について、図4、図5を参照して以下に説明する。図4は、二次電池群301を構成する電池セルを等価回路として表現した図である。図4において、符号401は開回路電圧(OCV:Open Circuit Voltage)、符号402は内部抵抗(R)、符号403は分極抵抗成分(Rp)、符号404はキャパシタンス成分(C)をそれぞれ表している。 First, a method of detecting SOC based on a voltage reference will be described below with reference to FIGS. 4 and 5. FIG. 4 is a diagram showing the battery cells constituting the secondary battery group 301 as an equivalent circuit. In FIG. 4, reference numeral 401 represents an open circuit voltage (OCV: Open Circuit Voltage), reference numeral 402 represents an internal resistance (R), reference numeral 403 represents a polarization resistance component (Rp), and reference numeral 404 represents a capacitance component (C). ..
 図4に示すように、電池セルは、分極抵抗成分403とキャパシタンス成分404の並列接続対、内部抵抗402および開回路電圧401の直列接続で表される。この電池セルに電流Iを印加すると、電池セルの端子間電圧(CCV:Closed Circuit Voltage)は下記の(式1)で表される。(式1)において、Vpは分極電圧であり、分極抵抗成分403とキャパシタンス成分404の並列接続対の電圧に相当する。
 CCV=OCV+I・R+Vp   (式1)
As shown in FIG. 4, the battery cell is represented by a parallel connection pair of a polarization resistance component 403 and a capacitance component 404, and a series connection of an internal resistance 402 and an open circuit voltage 401. When a current I is applied to the battery cell, the voltage between the terminals of the battery cell (CCV: Closed Circuit Voltage) is represented by the following (Equation 1). In (Equation 1), Vp is the polarization voltage, which corresponds to the voltage of the parallel connection pair of the polarization resistance component 403 and the capacitance component 404.
CCV = OCV + I ・ R + Vp (Equation 1)
 OCVはSOCの演算に用いられるが、電池セルが充放電されている状況では、OCVを直接測定することが不可能である。このため、下記(式2)の様にCCVからIRドロップとVpを差し引くことにより、OCVが算出される。
 OCV=CCV-I・R-Vp   (式2)
OCV is used for SOC calculation, but it is impossible to directly measure OCV when the battery cell is charged and discharged. Therefore, OCV is calculated by subtracting IR drop and Vp from CCV as shown in the following (Equation 2).
OCV = CCV-I / R-Vp (Equation 2)
 (式2)において、CCVとIの値は、電池管理手段302で検出した電圧値と電流センサ303で検出した電流値によってそれぞれ決定される。また、Rの値は、状態検知用に予め設定された電池セルの特性パラメータによって決定される。これは、例えば状態検知手段305に設けられた記憶装置(図示せず)内に予め記憶されている。また、Vpの値は、電流センサ303で検出した電流値と、上記の電池セルの特性パラメータを用いて決定される。なお、電池セルの特性パラメータは、電池セルのSOCや温度など、様々な電池状態に応じて予め抽出しておき、状態検知手段305に記憶させておくことが好ましい。このようにすれば、OCVを高精度に算出することが可能となる。 In (Equation 2), the values of CCV and I are determined by the voltage value detected by the battery management means 302 and the current value detected by the current sensor 303, respectively. Further, the value of R is determined by the characteristic parameter of the battery cell preset for state detection. This is stored in advance in, for example, a storage device (not shown) provided in the state detecting means 305. Further, the value of Vp is determined by using the current value detected by the current sensor 303 and the above-mentioned characteristic parameter of the battery cell. It is preferable that the characteristic parameters of the battery cell are extracted in advance according to various battery states such as the SOC and temperature of the battery cell and stored in the state detecting means 305. By doing so, it becomes possible to calculate the OCV with high accuracy.
 こうして(式2)から求められたOCVに基づき、電池セルに固有のOCVとSOCの関係を使用して、SOCを求めることができる。ここで使用されるOCVとSOCの関係は、電池セルを構成する材料の特性によって定まる。 Based on the OCV thus obtained from (Equation 2), the SOC can be obtained by using the relationship between the OCV and the SOC peculiar to the battery cell. The relationship between OCV and SOC used here is determined by the characteristics of the materials that make up the battery cell.
 図5は、電池セルにおけるOCVとSOCとの関係の一例を示す図である。状態検知手段305は、(式2)によりOCVを算出し、図5に示すようなOCVとSOCの関係から、電池セルのSOCを検知することができる。例えば、図5に示すOCVとSOCを表すマップ情報を状態検知手段305に予め記憶しておき、下記(式3)に従ってこのマップ情報を参照することで、SOCを求めることができる。以降では、こうしてOCVから求められるSOCをSOCvと表すことがある。
 SOCv=MAP(OCV)   (式3)
FIG. 5 is a diagram showing an example of the relationship between OCV and SOC in a battery cell. The state detecting means 305 can calculate the OCV by (Equation 2) and detect the SOC of the battery cell from the relationship between the OCV and the SOC as shown in FIG. For example, the SOC can be obtained by storing the map information representing OCV and SOC shown in FIG. 5 in advance in the state detecting means 305 and referring to the map information according to the following (Equation 3). Hereinafter, the SOC thus obtained from the OCV may be referred to as an SOCv.
SOCv = MAP (OCV) (Equation 3)
 以上では、電圧(OCV)を基準にSOCを検知する方法を述べた。続いて、別のSOC検知手法である電流積算によるSOC検知方法について、以下に説明する。 In the above, the method of detecting SOC based on voltage (OCV) has been described. Subsequently, another SOC detection method, the SOC detection method by current integration, will be described below.
 下記(式4)は、電流積算によってSOCを検知するための計算式である。二次電池群301を充放電すると、二次電池群301に入出力される電流に従って、SOCはリアルタイムに変化していく。このときのSOCをSOCiと表すと、SOCiは(式4)のように電流値を積分する計算で表現することができる。
 SOCi=SOCvinit+100×∫Idt/Qmax    (式4)
The following (Equation 4) is a calculation formula for detecting SOC by current integration. When the secondary battery group 301 is charged and discharged, the SOC changes in real time according to the current input / output to the secondary battery group 301. When the SOC at this time is expressed as SOCi, SOCi can be expressed by the calculation of integrating the current values as in (Equation 4).
SOCi = SOCvinit + 100 × ∫Idt / Qmax (Equation 4)
 (式4)において、SOCvinitはSOCの初期値を表している。これには例えば、前述のOCVを基準とした計算方法によって得られたSOCvの値を用いることができる。任意の手法によりSOCvinitの値を決定したら、それ以降の(式4)の計算では、SOCvinitの値は固定値に設定される。また、Qmaxは二次電池群301の満充電容量を示す。 In (Equation 4), SOCvinit represents the initial value of SOC. For this, for example, the value of SOCv obtained by the above-mentioned calculation method based on OCV can be used. After the SOCvinit value is determined by an arbitrary method, the SOCvinit value is set to a fixed value in the subsequent calculation of (Equation 4). Further, Qmax indicates the full charge capacity of the secondary battery group 301.
 ここで、(式4)の計算方法では、二次電池群301に流れる電流値を積分していくため、電流測定誤差も積分されてしまい、時間の経過と共にSOCの誤差が拡大するという課題がある。そのため、所定時間積分した場合は、何らかの方法でSOC誤差をリセットするなどの対策が必要である。 Here, in the calculation method of (Equation 4), since the current value flowing through the secondary battery group 301 is integrated, the current measurement error is also integrated, and there is a problem that the SOC error increases with the passage of time. be. Therefore, when integrating for a predetermined time, it is necessary to take measures such as resetting the SOC error by some method.
 以上では、電圧基準によるSOC検知方法と、電流積算によるSOC検知方法について述べたが、これら2つのSOC検知方法を組み合わせて、より高精度なSOCを求める方法も採用できる。このときのSOCをSOCcと表すと、例えば以下の(式5)に従い、2つのSOC検知方法でそれぞれ求められるSOCv、SOCiを組み合わせることにより、SOCcを求めることができる。
 SOCc=W×SOCv+(1-W)×SOCi    (式5)
In the above, the SOC detection method based on the voltage reference and the SOC detection method based on the current integration have been described, but a method of obtaining a more accurate SOC by combining these two SOC detection methods can also be adopted. When the SOC at this time is expressed as SOCc, for example, SOCc can be obtained by combining SOCv and SOCi obtained by the two SOC detection methods according to the following (Equation 5).
SOCc = W × SOCv + (1-W) × SOCi (Equation 5)
 (式5)を用いてSOCcを求める場合、2つのSOC(SOCv、SOCi)を組み合わせるための重み係数Wの決定方法を確立する必要がある。この重み係数Wには、電池の特性と電池の充放電パターンを考慮して、SOCを高精度に検知できる値を設定するとよい。 When obtaining SOCc using (Equation 5), it is necessary to establish a method for determining the weighting coefficient W for combining two SOCs (SOCv, SOCi). The weighting coefficient W may be set to a value capable of detecting SOC with high accuracy in consideration of the characteristics of the battery and the charge / discharge pattern of the battery.
 以上より、電圧基準によるSOC検知方法と、電流積算によるSOC検知方法と、これら2つの組み合せによるSOC検知方法について述べたが、各方式に応じて事前に把握が必要な二次電池群301の特性パラメータに違いがある。具体的には、電圧基準によるSOC検知では、図4の等価回路中の各パラメータ特性、すなわち、図5のOCVとSOCの関係や、内部抵抗(R)、分極抵抗成分(Rp)、キャパシタンス成分(C)の値などを事前に把握しておく必要がある。一方、電流積算によるSOC検知では、図5のOCVとSOCの関係や、(式4)中の満充電容量Qmaxの値などを事前に把握しておく必要がある。さらに、両者を組み合せたSOC検知方法では、両方の特性パラメータを用意する必要がある。そして、これら特性パラメータは二次電池群301が劣化するに従って変化していくため、SOC検知精度を確保するためには、劣化に伴う特性変化についても把握する必要がある。 From the above, the SOC detection method based on voltage reference, the SOC detection method based on current integration, and the SOC detection method based on the combination of these two methods have been described, but the characteristics of the secondary battery group 301 that need to be grasped in advance according to each method. There are differences in the parameters. Specifically, in SOC detection based on voltage, each parameter characteristic in the equivalent circuit of FIG. 4, that is, the relationship between OCV and SOC in FIG. 5, internal resistance (R), polarization resistance component (Rp), and capacitance component. It is necessary to know the value of (C) in advance. On the other hand, in SOC detection by current integration, it is necessary to grasp in advance the relationship between OCV and SOC in FIG. 5, the value of the full charge capacity Qmax in (Equation 4), and the like. Furthermore, in the SOC detection method that combines both, it is necessary to prepare both characteristic parameters. Since these characteristic parameters change as the secondary battery group 301 deteriorates, it is necessary to grasp the characteristic changes due to the deterioration in order to ensure the SOC detection accuracy.
 上記の説明では、二次電池群301の状態のうちSOCの検知を例に述べたが、充放電可能な最大電流・電力を検知する場合や、電池が供給可能な電力量を検知する場合など、SOC以外の状態を検知して二次電池システム204の運用に活用する場合でも、前述した様々な特性パラメータを把握する必要がある。例えば、以下(式6)、(式7)により、電池の充放電可能な最大電流(ICHGmax:充電電流、IDISmax:放電電流)を検知することができる。この場合、(式6)、(式7)の内部抵抗Rtの値は、内部抵抗(R)、分極抵抗成分(Rp)、キャパシタンス成分(C)を全て考慮し、充放電継続時間に基づいて決定することができる。このとき、それぞれの劣化に伴う影響を把握することで、高精度な最大電流を推定できる。また、これに電池電圧を乗算することで、高精度な最大電力を推定できる。
 ICHGmax=(電池上限電圧―OCV)/Rt   (式6)
 IDISmax=(OCV-電池下限電圧)/Rt   (式7)
In the above explanation, SOC detection among the states of the secondary battery group 301 has been described as an example, but when detecting the maximum current / power that can be charged / discharged, or when detecting the amount of power that can be supplied by the battery, etc. Even when detecting a state other than the SOC and utilizing it for the operation of the secondary battery system 204, it is necessary to grasp the various characteristic parameters described above. For example, the maximum current that can be charged and discharged (ICHGmax: charge current, IDISmax: discharge current) of the battery can be detected by the following (Equation 6) and (Equation 7). In this case, the value of the internal resistance Rt in (Equation 6) and (Equation 7) is based on the charge / discharge duration, considering all of the internal resistance (R), the polarization resistance component (Rp), and the capacitance component (C). Can be decided. At this time, the maximum current can be estimated with high accuracy by grasping the influence of each deterioration. Further, by multiplying this by the battery voltage, the maximum power can be estimated with high accuracy.
ICHGmax = (Battery upper limit voltage-OCV) / Rt (Equation 6)
IDISmax = (OCV-Battery lower limit voltage) / Rt (Equation 7)
 以上より、SOCや最大電流・電力演算を例に、電池の状態検知の処理内容について説明した。前述の特性パラメータが正しく把握できるほど、これら状態検知は高精度に実現でき、二次電池システム204の最適運用につながる。以降では、この劣化に伴う二次電池群301の特性変化を検知するための処理内容について述べる。 From the above, the processing contents of battery status detection have been explained using SOC and maximum current / power calculation as examples. The more accurately the above-mentioned characteristic parameters can be grasped, the higher the accuracy of these state detections can be realized, which leads to the optimum operation of the secondary battery system 204. Hereinafter, the processing contents for detecting the characteristic change of the secondary battery group 301 due to this deterioration will be described.
 まず、内部抵抗の変化によるSOHの検知方法について述べる。電池が劣化すると、内部抵抗が増加するなどの図4の等価回路中のパラメータが変化する。そこで、内部抵抗の変化を検知することで、電池の劣化状態(SOH)を検知することができる。 First, the method of detecting SOH due to changes in internal resistance will be described. When the battery deteriorates, the parameters in the equivalent circuit of FIG. 4, such as the increase in internal resistance, change. Therefore, by detecting the change in the internal resistance, the deterioration state (SOH) of the battery can be detected.
 図6は、内部抵抗の検知方法の説明図である。図6(a)は、二次電池群301を時刻t0から時刻t1まで放電した場合の電流変化の様子を示しており、図6(b)は、二次電池群301を時刻t0から時刻t1まで放電した場合の電圧変化の様子を示している。 FIG. 6 is an explanatory diagram of a method for detecting internal resistance. FIG. 6A shows the state of the current change when the secondary battery group 301 is discharged from time t0 to time t1, and FIG. 6B shows the state of the current change when the secondary battery group 301 is discharged from time t0 to time t1. It shows the state of the voltage change when the battery is discharged to.
 図6(b)に示すように、時刻t0において二次電池群301の放電を開始すると、電流Iと内部抵抗Rの乗算結果分(=I×R)の電圧降下が発生する。また、時刻t1において放電を終了すると、電圧降下が回復する。そこで、電流変化が計測可能な時刻t0と時刻t1の2点において、以下の(式8)により内部抵抗Rの値を得ることが可能である。(式8)において、CCV(t)、I(t)は時刻tにおける電池電圧(端子間電圧)と電流をそれぞれ表し、Δtは測定間隔を表す。
 R=(CCV(t)-CCV(t-Δt))/(I(t)-I(t-Δt))   (式8)
As shown in FIG. 6B, when the discharge of the secondary battery group 301 is started at time t0, a voltage drop of the multiplication result of the current I and the internal resistance R (= I × R) occurs. Further, when the discharge is completed at time t1, the voltage drop is restored. Therefore, it is possible to obtain the value of the internal resistance R by the following (Equation 8) at the two points of time t0 and time t1 where the current change can be measured. In (Equation 8), CCV (t) and I (t) represent the battery voltage (voltage between terminals) and the current at time t, respectively, and Δt represents the measurement interval.
R = (CCV (t) -CCV (t-Δt)) / (I (t) -I (t-Δt)) (Equation 8)
 なお、本発明ではこれに限らず、二次電池群301の内部抵抗Rを求められれば、別の方法を採用してもよい。 The present invention is not limited to this, and another method may be adopted if the internal resistance R of the secondary battery group 301 is obtained.
 こうして求めた現在の内部抵抗Rの値を、二次電池群301の初期状態における内部抵抗Rの値で除算すれば、劣化状態に応じた内部抵抗の上昇率を求めることができる。以降では、これをSOHRと呼ぶものとする。すなわち、内部抵抗の変化によるSOHであるSOHRは、以下の(式9)により求められる。
 SOHR=100×現在の内部抵抗/初期の内部抵抗   (式9)
By dividing the current value of the internal resistance R thus obtained by the value of the internal resistance R in the initial state of the secondary battery group 301, the rate of increase in the internal resistance according to the deterioration state can be obtained. Hereinafter, this will be referred to as SOHR. That is, SOHR, which is SOH due to a change in internal resistance, is obtained by the following (Equation 9).
SOHR = 100 × Current internal resistance / Initial internal resistance (Equation 9)
 次に、満充電容量の減少によるSOHの検知方法について説明する。電池が劣化すると、前述の(式4)中の満充電容量Qmaxが減少する。そこで、満充電容量Qmaxの変化を検知することで、電池の劣化状態(SOH)を検知することができる。 Next, a method for detecting SOH due to a decrease in the full charge capacity will be described. When the battery deteriorates, the full charge capacity Qmax in the above-mentioned (Equation 4) decreases. Therefore, by detecting the change in the full charge capacity Qmax, the deterioration state (SOH) of the battery can be detected.
 図7は、満充電容量の検知方法の説明図である。図7(a)は、電池を時刻t0から時刻t1まで放電した場合の電圧変化の様子を示している。 FIG. 7 is an explanatory diagram of a method for detecting a full charge capacity. FIG. 7A shows a state of voltage change when the battery is discharged from time t0 to time t1.
 二次電池群301の放電開始前(時刻t0より手前)に電池電圧を測定し、前述の図5に示したOCVとSOCの関係を用いることで、放電前のSOC(SOC1)を検知する。また、放電終了後(時刻t1より後)に時間が十分に経過して安定した電池電圧を測定し、図5のOCVとSOCの関係を用いることで、放電後のSOC(SOC2)を検知する。これらのSOC1,SOC2の検知結果から以下の(式10)の計算を行うことで、満充電容量Qmaxを求めることができる。
 Qmax=100×∫Idt/(SOC2‐SOC1)   (式10)
The battery voltage is measured before the start of discharging of the secondary battery group 301 (before time t0), and the SOC (SOC1) before discharging is detected by using the relationship between OCV and SOC shown in FIG. 5 described above. Further, after sufficient time has passed after the end of discharge (after time t1), a stable battery voltage is measured, and the SOC (SOC2) after discharge is detected by using the relationship between OCV and SOC in FIG. .. The full charge capacity Qmax can be obtained by performing the following calculation (Equation 10) from the detection results of SOC1 and SOC2.
Qmax = 100 × ∫Idt / (SOC2-SOC1) (Equation 10)
 こうして求めた現在の満充電容量Qmaxの値を、二次電池群301の初期状態における満充電容量Qmaxの値で除算すれば、劣化に応じた満充電容量の減少率(維持率)を求めることができる。以降では、これをSOHQと呼ぶものとする。すなわち、満充電容量の減少によるSOHであるSOHQは、以下の(式11)により求められる。
 SOHQ=100×現在の満充電容量/初期の満充電容量   (式11)
By dividing the current value of the full charge capacity Qmax obtained in this way by the value of the full charge capacity Qmax in the initial state of the secondary battery group 301, the reduction rate (maintenance rate) of the full charge capacity according to the deterioration can be obtained. Can be done. Hereinafter, this will be referred to as SOHQ. That is, the SOHQ, which is the SOH due to the decrease in the full charge capacity, is obtained by the following (Equation 11).
SOHQ = 100 x current full charge capacity / initial full charge capacity (Equation 11)
 なお、(式10)で示すように、SOHQの計算方法では電流値の積分計算が含まれる。そのため、前述の(式4)で説明したSOCiの計算と同様に、電流測定誤差も積分されてしまい、時間の経過と共に計算精度が低下する。したがって、累積誤差が少ない充放電条件の場合、例えば、充電または放電過多の充放電パターンなど、短期間でSOC1とSOC2が大きく離れるような充放電が行われた場合に絞って、上記演算を適用するなどの対策を適用することが好ましい。 As shown in (Equation 10), the SOHQ calculation method includes the integral calculation of the current value. Therefore, as in the SOCi calculation described in (Equation 4) above, the current measurement error is also integrated, and the calculation accuracy decreases with the passage of time. Therefore, in the case of charging / discharging conditions with a small cumulative error, the above calculation is applied only when charging / discharging is performed so that SOC1 and SOC2 are greatly separated in a short period of time, for example, a charging / discharging pattern of excessive charging or excessive discharging. It is preferable to apply measures such as
 図7(b)は、二次電池群301におけるSOHRとSOHQの関係の一例を示している。このようなSOHRとSOHQの関係を予め取得しておき、この関係を用いることで、SOHRの検知結果からSOHQを求めるようにしてもよい。この場合、得られたSOHQの値に二次電池群301の初期容量を乗算すれば、現在の満充電容量Qmaxの値を求めることもできる。 FIG. 7B shows an example of the relationship between SOHR and SOHQ in the secondary battery group 301. By acquiring such a relationship between SOHR and SOHQ in advance and using this relationship, SOHQ may be obtained from the detection result of SOHR. In this case, by multiplying the obtained SOHQ value by the initial capacity of the secondary battery group 301, the current full charge capacity Qmax value can be obtained.
 以上説明したSOHQの検出方法では、積分計算が含まれないため、前述のように電流測定誤差が累積するという課題は生じない。しかし、図7(b)で示したようなSOHRとSOHQの関係は、電池の使用条件に応じて様々に変化し得る。そのため、SOHQを高精度で求めるためには、想定される使用条件に応じた電池試験を事前に行い、できるだけ多くの使用条件についてSOHRとSOHQの関係を抽出しておく必要がある。こうして得られた二次電池群301の劣化特性(SOHRとSOHQの関係)は、マップ化等の特性パラメータ化が行われた後、状態検知用パラメータとして状態検知手段305に予め実装される。 Since the SOHQ detection method described above does not include integral calculation, the problem of cumulative current measurement error as described above does not occur. However, the relationship between SOHR and SOHQ as shown in FIG. 7B can change variously depending on the usage conditions of the battery. Therefore, in order to obtain SOHQ with high accuracy, it is necessary to perform a battery test according to the assumed usage conditions in advance and extract the relationship between SOHR and SOHQ for as many usage conditions as possible. The deterioration characteristics (relationship between SOHR and SOHQ) of the secondary battery group 301 thus obtained are implemented in advance in the state detection means 305 as state detection parameters after characteristic parameters such as mapping are performed.
 なお、本実施形態では上記の2通りのSOHQ検知方法について説明したが、その他の別の方法を採用してSOHQを検知するようにしてもよい。 Although the above two SOHQ detection methods have been described in the present embodiment, SOHQ may be detected by adopting another method.
 状態検知手段305では、以上説明した演算処理を実行することで、二次電池群301のSOCやSOHを求めることができる。なお、上記説明ではSOHの検知方法として、SOHRとSOHQの両方の検知方法を述べたが、以降ではSOHQを用いた場合を例として、本実施形態の説明を進めることとする。 The state detecting means 305 can obtain the SOC and SOH of the secondary battery group 301 by executing the arithmetic processing described above. In the above description, both SOHR and SOHQ detection methods have been described as SOH detection methods, but the description of the present embodiment will be described below by taking the case of using SOHQ as an example.
 状態検知手段305による電池状態の検知結果は、電池信号入出力端子307を介してシステムコントローラ201に送信される。システムコントローラ201は、受信した電池状態に応じて二次電池システム204を充放電制御する。また、システムコントローラ201は、二次電池システム204から受信した情報を記憶装置207に送信し、履歴情報として蓄積させることもできる。記憶装置207に蓄積する履歴情報は、時系列データの形式でもよいし、ヒストグラム形式としてもよい。 The battery status detection result by the status detecting means 305 is transmitted to the system controller 201 via the battery signal input / output terminal 307. The system controller 201 controls charging / discharging of the secondary battery system 204 according to the received battery state. Further, the system controller 201 can also transmit the information received from the secondary battery system 204 to the storage device 207 and store it as history information. The history information stored in the storage device 207 may be in the form of time-series data or in the form of a histogram.
 システムコントローラ201はさらに、位置計測装置206からの位置情報も、時系列データまたはヒストグラム形式で同様に、履歴情報として記憶装置207に蓄積する。なお、本実施形態ではシステムコントローラ201を経由しているが、位置計測装置206からのデータを記憶装置207が直接受信する方法でもよい。 The system controller 201 also stores the position information from the position measuring device 206 in the storage device 207 as history information in the same time-series data or histogram format. In the present embodiment, the data is passed through the system controller 201, but the storage device 207 may directly receive the data from the position measuring device 206.
 図8は、記憶装置207にヒストグラム形式で蓄積される電池活用システム101の履歴情報の例を示す図である。図8において、(a)はSOCの履歴情報の例を、(b)は温度の履歴情報の例を、(c)は電流の履歴情報の例を、(d)は位置の履歴情報の例をそれぞれ示している。 FIG. 8 is a diagram showing an example of history information of the battery utilization system 101 stored in the storage device 207 in a histogram format. In FIG. 8, (a) is an example of SOC history information, (b) is an example of temperature history information, (c) is an example of current history information, and (d) is an example of position history information. Are shown respectively.
 システムコントローラ201は、記憶装置207に蓄積された電池活用システム101の履歴情報を、通信装置208を介して、電池管理装置102を含む電池活用システム101外に送信することができる。なお、記憶装置207に蓄積された履歴情報ではなく、状態検知手段305や位置計測装置206からの情報をそのまま通信装置208を介して外部に送信してもよい。この場合、電池活用システム101からの情報を受信した電池管理装置102では、その情報を蓄積しておき、蓄積された情報を用いて図8で示すようなヒストグラムを作成することで、前述のように担当交換拠点を特定する際などに利用することができる。 The system controller 201 can transmit the history information of the battery utilization system 101 stored in the storage device 207 to the outside of the battery utilization system 101 including the battery management device 102 via the communication device 208. Instead of the history information stored in the storage device 207, the information from the state detecting means 305 or the position measuring device 206 may be transmitted to the outside as it is via the communication device 208. In this case, the battery management device 102 that has received the information from the battery utilization system 101 accumulates the information and creates a histogram as shown in FIG. 8 using the accumulated information, as described above. It can be used when specifying the exchange base in charge.
 次に、電池活用システム101からの送信データを受信して処理を実行する電池管理装置102について説明する。電池管理装置102は、電池活用システム101が送信した情報を受信部1021により受信することで、電池活用システム101の位置を取得する。担当交換拠点特定部1022では、この位置情報に基づいて電池活用システム101の主要滞在地域を抽出し、担当交換拠点を特定することができる。このとき、電池活用システム101から送信される位置情報が時系列データである場合や、位置計測装置206により計測した位置情報が電池活用システム101から所定時間ごとに送信される場合は、受信した位置情報を担当交換拠点特定部1022において統計処理し、その結果に基づいて電池活用システム101の主要滞在地域を抽出してもよい。こうして抽出した主要滞在地域に基づき、交換拠点103A,103Bのうちで当該電池活用システム101に対応する交換拠点を、担当交換拠点として割り当てることが可能である。 Next, the battery management device 102 that receives the transmission data from the battery utilization system 101 and executes the processing will be described. The battery management device 102 acquires the position of the battery utilization system 101 by receiving the information transmitted by the battery utilization system 101 by the receiving unit 1021. Based on this location information, the responsible exchange base specifying unit 1022 can extract the main stay area of the battery utilization system 101 and specify the responsible exchange base. At this time, if the position information transmitted from the battery utilization system 101 is time-series data, or if the position information measured by the position measuring device 206 is transmitted from the battery utilization system 101 at predetermined time intervals, the received position. The information may be statistically processed by the exchange base identification unit 1022 in charge, and the main stay area of the battery utilization system 101 may be extracted based on the result. Based on the main stay area extracted in this way, it is possible to assign the exchange base corresponding to the battery utilization system 101 among the exchange bases 103A and 103B as the exchange base in charge.
 なお、電池活用システム101の主要滞在地域は、ある程度の幅を有する位置範囲として抽出してもよいし、特定の地点を主要滞在地域として抽出してもよい。例えば、図8(d)に示すヒストグラムにおいて発生頻度が所定値以上である位置範囲を主要滞在地域として抽出してもよいし、発生頻度が最も高い地点を主要滞在地域としてもよい。特定の地点を主要滞在地域として抽出する場合、電池活用システム101の主要滞在地域は、電池活用システム101が主に存在している位置を示す主要位置と言い換えることもできる。以下の説明では、担当交換拠点特定部1022において、電池活用システム101の主要位置を抽出して担当交換拠点を特定する際の担当交換拠点の割り当て方法について説明する。 The main stay area of the battery utilization system 101 may be extracted as a position range having a certain width, or a specific point may be extracted as the main stay area. For example, in the histogram shown in FIG. 8D, a position range in which the frequency of occurrence is equal to or higher than a predetermined value may be extracted as the main staying area, or the point having the highest frequency of occurrence may be set as the main staying area. When a specific point is extracted as the main stay area, the main stay area of the battery utilization system 101 can be rephrased as the main position indicating the position where the battery utilization system 101 mainly exists. In the following description, the method of allocating the responsible exchange base when the main position of the battery utilization system 101 is extracted and the responsible exchange base is specified in the responsible exchange base specifying unit 1022 will be described.
 図9は、担当交換拠点の割り当て方法の説明図である。図9(a)に示す第1の方法では、各電池活用システム101の主要位置に対して、それぞれ最寄りの交換拠点103を担当交換拠点として割り当てる。一方、図9(b)に示す第2の方法では、交換拠点103ごとの担当地域をあらかじめ決めておき、各電池活用システム101の主要位置がどの担当地域に含まれるかを確認することで、担当交換拠点を割り当てる。なお、上記では担当交換拠点の割り当て方法として2通りの方法(第1の方法、第2の方法)を説明したが、別の方法により各電池活用システム101に対する担当交換拠点を決定してもよい。 FIG. 9 is an explanatory diagram of the method of allocating the exchange base in charge. In the first method shown in FIG. 9A, the nearest exchange base 103 is assigned to the main position of each battery utilization system 101 as the exchange base in charge. On the other hand, in the second method shown in FIG. 9B, the area in charge of each exchange base 103 is determined in advance, and it is confirmed in which area the main position of each battery utilization system 101 is included. Allocate the exchange base in charge. In the above, two methods (first method and second method) have been described as the method of allocating the exchange base in charge, but the exchange base in charge for each battery utilization system 101 may be determined by another method. ..
 また、電池管理装置102は、電池活用システム101からの情報に基づいて、二次電池群301の残寿命(余寿命)を確認する。その方法を以下に述べる。 Further, the battery management device 102 confirms the remaining life (remaining life) of the secondary battery group 301 based on the information from the battery utilization system 101. The method is described below.
 図10は、電池の残寿命の計算方法に関する説明図である。図10(a)は、電池寿命が時間で定義されている場合の残寿命の計算方法を示している。例えば、電池寿命を10年とすると、10年から二次電池群301が運用された時間を減算すれば、二次電池群301の残寿命を求めることができる。この計算は、電池活用システム101において状態検知手段305が実施してもよいし、あるいは、二次電池システム204が運用された時間を状態検知手段305により計測し、システムコントローラ201の処理によって通信装置208から電池管理装置102に計測結果を送信することで、電池管理装置102でも実施可能である。なお、二次電池群301の運用時間は、記憶装置207で保持してもよいし、状態検知手段305内に備える記憶領域(図示せず)で保持してもよい。運用時間が記憶できる手段であれば、どのような手段を採用しても構わない。 FIG. 10 is an explanatory diagram relating to the calculation method of the remaining life of the battery. FIG. 10A shows a method of calculating the remaining life when the battery life is defined by time. For example, assuming that the battery life is 10 years, the remaining life of the secondary battery group 301 can be obtained by subtracting the operating time of the secondary battery group 301 from 10 years. This calculation may be performed by the state detecting means 305 in the battery utilization system 101, or the time during which the secondary battery system 204 is operated is measured by the state detecting means 305, and the communication device is processed by the system controller 201. By transmitting the measurement result from 208 to the battery management device 102, it can also be carried out by the battery management device 102. The operating time of the secondary battery group 301 may be held by the storage device 207 or may be held by a storage area (not shown) provided in the state detecting means 305. Any means may be adopted as long as the operating time can be stored.
 各電池活用システム101において二次電池群301を個別に識別可能なIDを記憶しておき、電池管理装置102の方でも、各電池活用システム101に搭載されている二次電池群301をID単位で管理する場合は、電池管理装置102側で電池寿命の設定年数をIDに応じて保持しておくことも可能である。こうすることで、各電池活用システム101に搭載されている二次電池群301のIDと共に、当該二次電池群301の運用時間を各電池活用システム101から電池管理装置102へ送信すれば、電池管理装置102において二次電池群301の残寿命を計算することができる。 An ID that can individually identify the secondary battery group 301 is stored in each battery utilization system 101, and the battery management device 102 also uses the secondary battery group 301 mounted in each battery utilization system 101 as an ID unit. In the case of management by, it is also possible to hold the set number of years of battery life according to the ID on the battery management device 102 side. By doing so, if the ID of the secondary battery group 301 mounted on each battery utilization system 101 and the operating time of the secondary battery group 301 are transmitted from each battery utilization system 101 to the battery management device 102, the battery can be used. The remaining life of the secondary battery group 301 can be calculated in the management device 102.
 一方、図10(b)は、電池寿命が性能で定義されている場合の残寿命の計算方法を示している。例えば、所定の電池性能(ここではSOHQ)のある値を寿命性能と定義し、二次電池群301が劣化することで電池性能がこの寿命性能を下回ると二次電池群301の寿命が尽きたと判断する場合、現在から寿命性能が尽きるまでの期間が二次電池群301の残寿命となる。この場合は、現在の二次電池群301の劣化状態を表すSOHQを前述のような方法で検知するとともに、二次電池群301の運用履歴情報に基づいて、二次電池群301が継続運用された場合の劣化速度を求め、SOHQの値が寿命性能に到達する日時を予測する。そして、予測した日時と現在の日時との差分を求めることで、二次電池群301の残寿命を計算することが可能である。 On the other hand, FIG. 10B shows a calculation method of the remaining life when the battery life is defined by the performance. For example, a certain value of a predetermined battery performance (here, SOHQ) is defined as a life performance, and when the battery performance falls below this life performance due to deterioration of the secondary battery group 301, the life of the secondary battery group 301 is exhausted. When determining, the period from the present until the end of the life performance is the remaining life of the secondary battery group 301. In this case, the SOHQ indicating the deterioration state of the current secondary battery group 301 is detected by the method as described above, and the secondary battery group 301 is continuously operated based on the operation history information of the secondary battery group 301. The deterioration rate is obtained, and the date and time when the SOHQ value reaches the life performance is predicted. Then, by obtaining the difference between the predicted date and time and the current date and time, it is possible to calculate the remaining life of the secondary battery group 301.
 電池管理装置102は、上記のようにして求めた電池活用システム101の主要滞在地域や二次電池群301の残寿命を、前述のように二次電池群301ごとに割り当てられたIDに応じて管理することができる。以下では、このIDによる二次電池群301の管理方法について説明する。 The battery management device 102 determines the remaining life of the main stay area of the battery utilization system 101 and the secondary battery group 301 obtained as described above according to the ID assigned to each secondary battery group 301 as described above. Can be managed. Hereinafter, a method of managing the secondary battery group 301 by this ID will be described.
 図11は、本発明の第1の実施形態において二次電池群301の管理に使用される管理リストの例を示す図である。図11の管理リストは、例えば電池管理装置102において記憶部1025により記憶されている。 FIG. 11 is a diagram showing an example of a management list used for managing the secondary battery group 301 in the first embodiment of the present invention. The management list of FIG. 11 is stored, for example, in the battery management device 102 by the storage unit 1025.
 図11の管理リストには、ID、電池種、電池数、稼働地域、残寿命の各項目が設定されている。IDには、二次電池群301ごとに割り当てられたIDの値が記録される。電池種には、二次電池群301に使用されている二次電池の種類が記録される。電池数には、二次電池群301を構成する二次電池の個数が記録される。稼働地域には、二次電池群301が搭載されている電池活用システム101の稼働地域が記録される。これには、例えば前述の主要滞在地域が稼働地域として記録される。残寿命には、前述のようにして計算される二次電池群301の残寿命が記録される。電池管理装置102では、図11のような管理リストを用いることで、各電池活用システム101に搭載されている二次電池群301の管理を行うことができる。なお、図11に示した管理リストは一例であり、他の項目を管理リストに含めてもよい。 In the management list of FIG. 11, each item of ID, battery type, number of batteries, operating area, and remaining life is set. In the ID, the value of the ID assigned to each secondary battery group 301 is recorded. In the battery type, the type of the secondary battery used in the secondary battery group 301 is recorded. In the number of batteries, the number of secondary batteries constituting the secondary battery group 301 is recorded. In the operating area, the operating area of the battery utilization system 101 on which the secondary battery group 301 is mounted is recorded. For example, the above-mentioned major stay area is recorded as an operating area. In the remaining life, the remaining life of the secondary battery group 301 calculated as described above is recorded. The battery management device 102 can manage the secondary battery group 301 mounted on each battery utilization system 101 by using the management list as shown in FIG. The management list shown in FIG. 11 is an example, and other items may be included in the management list.
 続いて、電池管理装置102の処理内容を以下に述べる。図12は、本発明の第1の実施形態において電池管理装置102により実行される処理の流れを示すフローチャートである。 Subsequently, the processing contents of the battery management device 102 will be described below. FIG. 12 is a flowchart showing a flow of processing executed by the battery management device 102 in the first embodiment of the present invention.
 まず、電池管理装置102は、監視対象とする二次電池群301のIDを指定する(S1201)。 First, the battery management device 102 designates the ID of the secondary battery group 301 to be monitored (S1201).
 次に電池管理装置102は、受信部1021により、ステップS1201で指定したIDの二次電池群301を搭載している電池活用システム101から送信される履歴情報を受信する(S1202)。 Next, the battery management device 102 receives the history information transmitted from the battery utilization system 101 equipped with the secondary battery group 301 of the ID specified in step S1201 by the receiving unit 1021 (S1202).
 次に電池管理装置102は、担当交換拠点特定部1022により、ステップS1202で受信した履歴情報に含まれる位置情報に基づいて、電池活用システム101の主要滞在地域を抽出する(S1203)。ここでは前述のような方法で、位置情報から主要滞在地域を抽出することが可能である。 Next, the battery management device 102 extracts the main stay area of the battery utilization system 101 based on the position information included in the history information received in step S1202 by the exchange base identification unit 1022 in charge (S1203). Here, it is possible to extract the main staying area from the location information by the method as described above.
 次に電池管理装置102は、担当交換拠点特定部1022により、ステップS1203で抽出した主要滞在地域に基づいて、ステップS1201で指定したIDの二次電池群301の担当交換拠点を特定する(S1204)。ここでは前述の図9(a)、(b)でそれぞれ説明した2通りの方法、あるいは他の方法により、当該二次電池群301を搭載している電池活用システム101に対応する交換拠点103を、担当交換拠点として特定することが可能である。 Next, the battery management device 102 identifies the responsible exchange base of the secondary battery group 301 with the ID specified in step S1201 based on the main stay area extracted in step S1203 by the responsible exchange base specifying unit 1022 (S1204). .. Here, the exchange base 103 corresponding to the battery utilization system 101 equipped with the secondary battery group 301 is provided by the two methods described in FIGS. 9 (a) and 9 (b) described above, or by another method. , It is possible to specify as the exchange base in charge.
 次に電池管理装置102は、判断部1023により、ステップS1202で受信した履歴情報に含まれる二次電池群301の電池状態に関する情報、例えばSOC、SOH、温度、電流等の情報に基づいて、二次電池群301の寿命到達予測時期を取得し、残寿命を計算する(S1205)。ここでは前述のような方法で、二次電池群301の残寿命を計算することが可能である。なお、電池活用システム101において状態検知手段305が二次電池群301の残寿命の計算を行う場合は、その計算結果を含む履歴情報をステップS1202において受信することで、ステップS1205の処理を省略してもよい。 Next, the battery management device 102 is determined by the determination unit 1023 based on the information regarding the battery state of the secondary battery group 301 included in the history information received in step S1202, for example, information such as SOC, SOH, temperature, and current. The estimated life arrival time of the next battery group 301 is acquired, and the remaining life is calculated (S1205). Here, it is possible to calculate the remaining life of the secondary battery group 301 by the method as described above. When the state detecting means 305 calculates the remaining life of the secondary battery group 301 in the battery utilization system 101, the process of step S1205 is omitted by receiving the history information including the calculation result in step S1202. You may.
 次に電池管理装置102は、判断部1023により、ステップS1205で計算した二次電池群301の残寿命に基づいて、二次電池群301の交換準備が必要か否かを判断する(ステップS1206)。ここでは例えば、二次電池群301の残寿命と、二次電池群301を交換する際の交換工数を比較する。このときの交換工数には、交換拠点103における交換用電池106の調達期間や、交換作業時間などが含まれる。その結果、二次電池群301の残寿命が交換工数よりも長い場合は、まだ二次電池群301の交換準備が不要と判断し、ステップS1208へ処理を進める。一方、二次電池群301の残寿命が交換工数以下である場合は、二次電池群301の交換準備が必要と判断し、ステップS1207へ処理を進める。 Next, the battery management device 102 determines by the determination unit 1023 whether or not it is necessary to prepare for replacement of the secondary battery group 301 based on the remaining life of the secondary battery group 301 calculated in step S1205 (step S1206). .. Here, for example, the remaining life of the secondary battery group 301 and the replacement man-hours when replacing the secondary battery group 301 are compared. The replacement man-hours at this time include the procurement period of the replacement battery 106 at the replacement base 103, the replacement work time, and the like. As a result, when the remaining life of the secondary battery group 301 is longer than the replacement man-hours, it is determined that the replacement preparation of the secondary battery group 301 is still unnecessary, and the process proceeds to step S1208. On the other hand, when the remaining life of the secondary battery group 301 is less than the replacement man-hours, it is determined that the replacement of the secondary battery group 301 is necessary, and the process proceeds to step S1207.
 なお、ステップS1206の判断において、二次電池群301の残寿命と比較されるのは交換工数に限らず、任意の値としてよい。すなわち、ステップS1205で推定された二次電池群301の残寿命が所定値以下である場合に、二次電池群301の交換準備が必要と判断することができる。また、上記以外の方法でステップS1206の判断を行うようにしてもよい。 In the determination of step S1206, the comparison with the remaining life of the secondary battery group 301 is not limited to the replacement man-hours, and may be any value. That is, when the remaining life of the secondary battery group 301 estimated in step S1205 is equal to or less than a predetermined value, it can be determined that preparation for replacement of the secondary battery group 301 is necessary. Further, the determination in step S1206 may be performed by a method other than the above.
 ステップS1206で二次電池群301の交換準備が必要と判断した場合、次に電池管理装置102は、送信部1024により、ステップS1204で担当交換拠点として特定した交換拠点103に対して、交換用電池106の調達指令を発信する(ステップS1207)。担当交換拠点に指定された交換拠点103では、この調達指令を交換管理部105により受信すると、交換用電池106を実際に調達するために必要なデータの入力や見積もり、配送手続きなど、調達から入手までの事務手続きを実行する。こうして入手した交換用電池106は、交換拠点103において貯蔵される。 When it is determined in step S1206 that the secondary battery group 301 needs to be prepared for replacement, the battery management device 102 then receives a replacement battery for the replacement base 103 specified as the replacement base in charge in step S1204 by the transmission unit 1024. The procurement command of 106 is transmitted (step S1207). At the exchange base 103 designated as the exchange base in charge, when this procurement command is received by the exchange management unit 105, it is obtained from procurement such as input of data necessary for actually procuring the replacement battery 106, estimation, delivery procedure, etc. Carry out the paperwork up to. The replacement battery 106 thus obtained is stored in the replacement base 103.
 ステップS1201で指定したIDの二次電池群301が寿命に到達すると、担当交換拠点である交換拠点103において、その二次電池群301を電池活用システム101から取り外し、貯蔵した交換用電池106と交換する。これにより、交換作業をスムーズに行うことができる。なお、交換用電池106と交換されて電池活用システム101から回収された交換後の二次電池群301を、新たな交換用電池106として再流通させるようにしてもよい。この場合、交換拠点103では、再流通された交換用電池106の劣化状態や残寿命を測定し、その測定結果を電池管理装置102において管理することが好ましい。 When the secondary battery group 301 with the ID specified in step S1201 reaches the end of its life, the secondary battery group 301 is removed from the battery utilization system 101 at the replacement base 103, which is the replacement base in charge, and replaced with the stored replacement battery 106. do. As a result, the replacement work can be smoothly performed. The replaced secondary battery group 301 that has been replaced with the replacement battery 106 and recovered from the battery utilization system 101 may be re-distributed as a new replacement battery 106. In this case, it is preferable that the replacement base 103 measures the deteriorated state and the remaining life of the recirculated replacement battery 106, and the measurement result is managed by the battery management device 102.
 ステップS1206で二次電池群301の交換準備が不要と判断した後、またはステップS1207で交換用電池106の調達指令を発信した後に、電池管理装置102は、これまでに指定したIDの他に未指定のIDが存在するか否かを判定する(S1208)。その結果、未指定のIDが存在する場合はステップS1201へ戻り、上記の処理を繰り返す。一方、全てのIDを指定済みである場合は、図12のフローチャートに示す処理を終了する。 After determining in step S1206 that it is not necessary to prepare for replacement of the secondary battery group 301, or after issuing a procurement command for the replacement battery 106 in step S1207, the battery management device 102 has not been added to the ID specified so far. It is determined whether or not the designated ID exists (S1208). As a result, if an unspecified ID exists, the process returns to step S1201 and the above process is repeated. On the other hand, when all the IDs have been specified, the process shown in the flowchart of FIG. 12 is terminated.
 本実施形態の電池管理装置102では、以上説明した図12のフローチャートにより、管理している全ての二次電池群301に対して、ステップS1201~S1207の処理を適用することができる。このようにすることで、各二次電池群301が寿命に到達する前に、事前に交換用電池106を調達しておき、寿命到達時にはスムーズに二次電池群301の交換を実施できる。したがって、最適で効率的な電池活用システム101の交換メンテナンスを実現できる。 In the battery management device 102 of the present embodiment, the processes of steps S1201 to S1207 can be applied to all the managed secondary battery groups 301 according to the flowchart of FIG. 12 described above. By doing so, the replacement battery 106 can be procured in advance before each secondary battery group 301 reaches the end of its life, and the secondary battery group 301 can be smoothly replaced when the life is reached. Therefore, the optimum and efficient replacement maintenance of the battery utilization system 101 can be realized.
 以上説明した本発明の第1の実施形態によれば、以下の作用効果を奏する。 According to the first embodiment of the present invention described above, the following effects are exhibited.
(1)蓄電池保守システム100は、電池活用システム101に搭載される蓄電池である二次電池群301の保守を行うシステムである。蓄電池保守システム100は、受信部1021と、担当交換拠点特定部1022と、判断部1023と、送信部1024とを備える。受信部1021は、電池活用システム101から位置情報を受信する(S1202)。担当交換拠点特定部1022は、受信部1021が受信した位置情報に基づいて、互いに異なる場所にそれぞれ設けられた複数の交換拠点103の中から二次電池群301の交換を担当する担当交換拠点を特定する(S1204)。判断部1023は、二次電池群301の交換準備が必要か否かの判断を実施する(S1206)。送信部1024は、判断部1023による判断の結果に基づいて、二次電池群301と交換するための交換用電池106の調達を指示する調達指令を担当交換拠点に送信する(S1207)。このようにしたので、電池活用システム101に対して、蓄電池である二次電池群301の交換を効率的に実施することができる。 (1) The storage battery maintenance system 100 is a system for maintaining the secondary battery group 301, which is a storage battery mounted on the battery utilization system 101. The storage battery maintenance system 100 includes a receiving unit 1021, a responsible exchange base specifying unit 1022, a determination unit 1023, and a transmitting unit 1024. The receiving unit 1021 receives the position information from the battery utilization system 101 (S1202). The exchange base identification unit 1022 in charge selects the exchange base in charge of exchanging the secondary battery group 301 from among a plurality of exchange bases 103 provided at different locations based on the position information received by the reception unit 1021. Specify (S1204). The determination unit 1023 determines whether or not it is necessary to prepare for replacement of the secondary battery group 301 (S1206). Based on the result of the determination by the determination unit 1023, the transmission unit 1024 transmits a procurement command instructing the procurement of the replacement battery 106 for replacement with the secondary battery group 301 to the exchange base in charge (S1207). As a result, the secondary battery group 301, which is a storage battery, can be efficiently replaced with respect to the battery utilization system 101.
(2)判断部1023は、二次電池群301の余寿命を推定し(S1205)、推定した余寿命が所定値以下の場合に二次電池群301の交換準備が必要と判断する(S1206:Yes)。このようにしたので、二次電池群301の交換準備が必要か否かを適切に判断することができる。 (2) The determination unit 1023 estimates the remaining life of the secondary battery group 301 (S1205), and determines that it is necessary to prepare for replacement of the secondary battery group 301 when the estimated remaining life is equal to or less than a predetermined value (S1206:). Yes). Since this is done, it is possible to appropriately determine whether or not the secondary battery group 301 needs to be prepared for replacement.
(3)受信部1021は、電池活用システム101から位置情報を受信する。担当交換拠点特定部1022は、この位置情報に基づいて電池活用システム101の主要滞在地域を抽出し(S1203)、該主要滞在地域に基づいて担当交換拠点を特定する(S1204)。このようにしたので、例えば電気自動車用の電源システムのように、電池活用システム101が移動可能なシステムの場合でも、電池活用システム101が主に運用されている位置に合わせて最適な担当交換拠点を特定することができる。 (3) The receiving unit 1021 receives the position information from the battery utilization system 101. The exchange base specifying unit 1022 in charge extracts the main stay area of the battery utilization system 101 based on this location information (S1203), and identifies the exchange base in charge based on the main stay area (S1204). Because of this, even in the case of a system in which the battery utilization system 101 can be moved, such as a power supply system for an electric vehicle, the optimum exchange base in charge according to the position where the battery utilization system 101 is mainly operated. Can be identified.
(4)蓄電池保守システム100は、複数の交換拠点103にそれぞれ設置され、調達指令に応じて調達された交換用電池106の保管状況を管理する交換管理部105を備える。このようにしたので、各交換拠点103において交換用電池106の管理を適切に行うことができる。 (4) The storage battery maintenance system 100 is provided at each of a plurality of exchange bases 103, and includes an exchange management unit 105 that manages the storage status of the exchange battery 106 procured in accordance with the procurement order. Since this is done, the replacement battery 106 can be appropriately managed at each exchange base 103.
(5)担当交換拠点で交換用電池106と交換されて電池活用システム101から回収された二次電池群301を、新たな交換用電池106として再流通させてもよい。このようにすれば、電池活用システム101から回収された二次電池群301の再利用を促進し、環境保護や省資源化への貢献を図ることができる。 (5) The secondary battery group 301 that has been replaced with the replacement battery 106 at the exchange base in charge and recovered from the battery utilization system 101 may be redistributed as a new replacement battery 106. By doing so, it is possible to promote the reuse of the secondary battery group 301 recovered from the battery utilization system 101, and to contribute to environmental protection and resource saving.
(第2の実施形態)
 次に、本発明の第2の実施形態について説明する。本実施形態では、電池活用システム101にとって必要な電池性能を考慮して、交換用電池106の調達指令を行う例を説明する。
(Second embodiment)
Next, a second embodiment of the present invention will be described. In this embodiment, an example of issuing a procurement command for the replacement battery 106 will be described in consideration of the battery performance required for the battery utilization system 101.
 図13は、本発明の第2の実施形態に係る蓄電池保守システムの構成例を示す図である。図13に示す蓄電池保守システム100’は、第1の実施形態で説明した図1の蓄電池保守システム100と比較して、電池管理装置102が電池管理装置102’に置き換えられている点以外は、同一の構成を有している。 FIG. 13 is a diagram showing a configuration example of a storage battery maintenance system according to a second embodiment of the present invention. The storage battery maintenance system 100'shown in FIG. 13 is different from the storage battery maintenance system 100 of FIG. 1 described in the first embodiment, except that the battery management device 102 is replaced with the battery management device 102'. It has the same configuration.
 電池管理装置102’は、前述の受信部1021、担当交換拠点特定部1022、判断部1023、送信部1024および記憶部1025の各機能に加えて、さらに要求性能設定部1026を有する。電池管理装置102’においてこれらの各機能は、例えばCPUにより実行されるプログラムや、HDD,SSD等の記憶装置を用いて実現される。 The battery management device 102'has a required performance setting unit 1026 in addition to the functions of the reception unit 1021, the charge exchange base identification unit 1022, the determination unit 1023, the transmission unit 1024, and the storage unit 1025. In the battery management device 102', each of these functions is realized by using, for example, a program executed by the CPU or a storage device such as an HDD or SSD.
 要求性能設定部1026は、交換用電池106に対する要求性能を設定する。例えば、交換用電池106の残寿命に対する要求値を、要求性能として設定することができる。要求性能設定部1026が設定した要求性能は、記憶部1025において記憶され、送信部1024が交換用電池106の調達指令を送信する際に利用される。 The required performance setting unit 1026 sets the required performance for the replacement battery 106. For example, the required value for the remaining life of the replacement battery 106 can be set as the required performance. The required performance set by the required performance setting unit 1026 is stored in the storage unit 1025 and used when the transmission unit 1024 transmits a procurement command for the replacement battery 106.
 図14は、本発明の第2の実施形態において二次電池群301の管理に使用される管理リストの例を示す図である。図14の管理リストは、例えば電池管理装置102’において記憶部1025により記憶されている。 FIG. 14 is a diagram showing an example of a management list used for managing the secondary battery group 301 in the second embodiment of the present invention. The management list of FIG. 14 is stored by the storage unit 1025 in, for example, the battery management device 102'.
 図14の管理リストには、第1の実施形態で説明した図11の管理リストの各項目に加えて、さらに要求性能設定部1026により設定された要求性能を表す項目として、交換時要求性能の項目が追加されている。交換時要求性能には、二次電池群301を交換する際に使用する交換用電池106に対する要求性能が記録される。これには、例えば交換用電池106の残寿命などが記録される。 In the management list of FIG. 14, in addition to each item of the management list of FIG. 11 described in the first embodiment, the required performance at the time of replacement is further described as an item representing the required performance set by the required performance setting unit 1026. Items have been added. In the required performance at the time of replacement, the required performance for the replacement battery 106 used when replacing the secondary battery group 301 is recorded. For example, the remaining life of the replacement battery 106 is recorded in this.
 電池管理装置102’において、判断部1023により二次電池群301が寿命に到達したと判定され、電池交換が必要になったとする。しかしながら、電池活用システム101としての寿命があと少しで訪れるような場合(以下、第1のケースと称する)には、交換後に二次電池群301を使用する期間は電池活用システム101の寿命到達までの残り期間に過ぎない。そのため、交換用電池106としては、その残り期間だけ使用可能な電池を用意すれば良いことになる。また、電池活用システム101が多並列接続の二次電池群301を備えており、そのうち一部の二次電池セルのみ交換が必要となった場合(以下、第2のケースと称する)には、交換対象ではない他の二次電池セルの性能に合わせて交換用電池106を用意し、寿命に達した二次電池セルと交換することが望ましい。 It is assumed that the battery management device 102'determines that the secondary battery group 301 has reached the end of its life by the determination unit 1023, and the battery needs to be replaced. However, when the life of the battery utilization system 101 is about to reach the end (hereinafter referred to as the first case), the period during which the secondary battery group 301 is used after replacement is until the life of the battery utilization system 101 is reached. It's just the rest of the period. Therefore, as the replacement battery 106, it is sufficient to prepare a battery that can be used only for the remaining period. Further, when the battery utilization system 101 includes a secondary battery group 301 connected in multiple parallels, and only a part of the secondary battery cells needs to be replaced (hereinafter, referred to as a second case). It is desirable to prepare a replacement battery 106 according to the performance of another secondary battery cell that is not the target of replacement, and replace it with a secondary battery cell that has reached the end of its life.
 上記の第1のケースおよび第2のケースのように、単純に新品の交換用電池106を調達するのではなく、所定の性能を有する交換用電池106を調達した方が、システム全体として最適な交換メンテナンスを実現できる場合もある。そこで、本実施形態の蓄電池保守システム100’では、電池管理装置102’に要求性能設定部1026を設けるとともに、図14に示す管理リストにおいて、二次電池群301に対する交換時要求性能の項目を追加している。そして、電池管理装置102’が交換拠点103へ交換用電池106の調達指令を発信する際には、この項目に記録される要求性能の情報を調達指令に含めるようにしている。 It is more optimal for the entire system to procure a replacement battery 106 having a predetermined performance instead of simply procuring a new replacement battery 106 as in the first case and the second case above. In some cases, replacement maintenance can be achieved. Therefore, in the storage battery maintenance system 100'of this embodiment, the required performance setting unit 1026 is provided in the battery management device 102', and the item of the required performance at the time of replacement for the secondary battery group 301 is added to the management list shown in FIG. is doing. Then, when the battery management device 102'transmits a procurement command for the replacement battery 106 to the replacement base 103, the information on the required performance recorded in this item is included in the procurement command.
 担当交換拠点に指定された交換拠点103では、電池管理装置102’から送信された調達指令を受信すると、その調達指令に含まれる要求性能の情報に基づき、要求性能を満たす交換用電池106を探索して調達する。例えば、過去に電池活用システム101から回収されて再流通された交換用電池106のうち、要求性能に合致する交換用電池106を調達する。このとき、他の交換拠点103で回収されて再流通された交換用電池106を融通してもらうことで、要求性能に合致する交換用電池106を調達してもよい。これにより、第1のケースでは、電池活用システム101の寿命到達までの期間を賄うのに十分な残寿命を有する交換用電池106を調達できる。また、第2のケースでは、多並列接続の二次電池群301において、交換対象ではない二次電池セルとの間で性能差が閾値以上発生しないように交換用電池106を調達できる。 When the exchange base 103 designated as the exchange base in charge receives the procurement command transmitted from the battery management device 102', it searches for a replacement battery 106 that satisfies the required performance based on the required performance information included in the procurement command. And procure. For example, among the replacement batteries 106 that have been collected from the battery utilization system 101 and re-distributed in the past, the replacement battery 106 that meets the required performance is procured. At this time, the replacement battery 106 that meets the required performance may be procured by having the replacement battery 106 collected and re-distributed at another exchange base 103 accommodated. Thereby, in the first case, the replacement battery 106 having a sufficient remaining life to cover the period until the life of the battery utilization system 101 is reached can be procured. Further, in the second case, in the secondary battery group 301 of the multi-parallel connection, the replacement battery 106 can be procured so that the performance difference does not occur more than the threshold value with the secondary battery cell that is not the replacement target.
 以上を踏まえて、電池管理装置102’の処理内容を以下に述べる。図15は、本発明の第2の実施形態において電池管理装置102’により実行される処理の流れを示すフローチャートである。なお、図15のフローチャートにおいて、第1の実施形態で説明した図12のフローチャートと同じ処理を行うステップには、同一のステップ番号を付している。以下では、この図12と同一ステップ番号の処理については、特に必要がない限り説明を省略する。 Based on the above, the processing contents of the battery management device 102'are described below. FIG. 15 is a flowchart showing a flow of processing executed by the battery management device 102'in the second embodiment of the present invention. In the flowchart of FIG. 15, the same step numbers are assigned to the steps that perform the same processing as the flowchart of FIG. 12 described in the first embodiment. In the following, the description of the process of the same step number as in FIG. 12 will be omitted unless there is a particular need.
 ステップS1205で二次電池群301の残寿命を掲載したら、電池管理装置102’は、要求性能設定部1026により、交換用電池106への要求性能を設定する(S1501)。ここでは、二次電池群301や二次電池群301が搭載されている電池活用システム101の状況に応じて、交換用電池106に対する残寿命(余寿命)の要求値を設定する。例えば前述の第1のケースでは、電池活用システム101の残寿命に基づき、その残寿命に応じた要求値を交換用電池106に対して設定する。また、例えば前述の第2のケースでは、二次電池群301を構成する複数の二次電池セルの中で交換対象の二次電池セルを除いた各二次電池セルの残寿命(余寿命)に基づいて、交換用電池106に対する残寿命(余寿命)の要求値を設定する。なお、交換用電池106に対する要求値は、寿命到達予測時期までの期間やSOHの値などで表すことができる。 After posting the remaining life of the secondary battery group 301 in step S1205, the battery management device 102'sets the required performance for the replacement battery 106 by the required performance setting unit 1026 (S1501). Here, the required value of the remaining life (remaining life) of the replacement battery 106 is set according to the situation of the secondary battery group 301 and the battery utilization system 101 on which the secondary battery group 301 is mounted. For example, in the first case described above, based on the remaining life of the battery utilization system 101, a required value according to the remaining life is set for the replacement battery 106. Further, for example, in the above-mentioned second case, the remaining life (remaining life) of each secondary battery cell excluding the secondary battery cell to be replaced among the plurality of secondary battery cells constituting the secondary battery group 301. The required value of the remaining life (remaining life) for the replacement battery 106 is set based on the above. The required value for the replacement battery 106 can be expressed by a period until the predicted end of life, a SOH value, or the like.
 ステップS1501で設定された交換用電池106への要求性能は、記憶部1025に記憶されている図14の管理リストにおいて、交換時要求性能の項目に記録される。これを終えたら、処理をステップS1206に進める。 The required performance for the replacement battery 106 set in step S1501 is recorded in the item of required performance at the time of replacement in the management list of FIG. 14 stored in the storage unit 1025. After finishing this, the process proceeds to step S1206.
 ステップS1206で二次電池群301の交換準備が必要と判断した場合、電池管理装置102’は、送信部1024により、ステップS1204で担当交換拠点として特定した交換拠点103に対して、ステップS1501で設定した交換用電池106への要求性能を含めた調達指令を発信する(ステップS1502)。担当交換拠点に指定された交換拠点103では、この調達指令を交換管理部105により受信すると、要求性能を満たす交換用電池106を調達する。入手した交換用電池106は、交換拠点103において貯蔵され、電池活用システム101の二次電池群301と交換される。 When it is determined in step S1206 that the secondary battery group 301 needs to be prepared for replacement, the battery management device 102'is set by the transmission unit 1024 with respect to the exchange base 103 specified as the responsible exchange base in step S1204 in step S1501. A procurement command including the required performance for the replacement battery 106 is transmitted (step S1502). When the exchange base 103 designated as the exchange base in charge receives this procurement command by the exchange management unit 105, the exchange battery 106 satisfying the required performance is procured. The obtained replacement battery 106 is stored in the replacement base 103 and replaced with the secondary battery group 301 of the battery utilization system 101.
 本実施形態の電池管理装置102’では、以上説明した図15のフローチャートに従って、各電池活用システム101にとって必要な電池性能を考慮して、交換用電池106に対する要求性能を設定し、その要求性能を含めた調達指令を発信する。これにより、担当交換拠点に指定された交換拠点103では、各二次電池群301が寿命に到達する前に、事前に最適な電池性能の交換用電池106を調達しておき、寿命到達時にはスムーズに二次電池群301の交換を実施できる。したがって、最適で効率的な電池活用システム101の交換メンテナンスを実現できる。 In the battery management device 102'of the present embodiment, the required performance for the replacement battery 106 is set in consideration of the battery performance required for each battery utilization system 101 according to the flowchart of FIG. 15 described above, and the required performance is set. Send the procurement order including. As a result, at the exchange base 103 designated as the exchange base in charge, the replacement battery 106 with the optimum battery performance is procured in advance before each secondary battery group 301 reaches the end of its life, and the replacement battery 106 is smoothly reached at the end of its life. The secondary battery group 301 can be replaced. Therefore, the optimum and efficient replacement maintenance of the battery utilization system 101 can be realized.
 以上説明した本発明の第2の実施形態によれば、第1の実施形態で説明した(1)~(5)に加えて、さらに以下の作用効果を奏する。 According to the second embodiment of the present invention described above, in addition to the (1) to (5) described in the first embodiment, the following effects are further exerted.
(6)蓄電池保守システム100’は、交換用電池106に対する余寿命の要求値を設定する要求性能設定部1026を備える。送信部1024は、この要求性能設定部1026により設定された余寿命の要求値を含む調達指令を、担当交換拠点に送信する(S1502)。このようにしたので、電池活用システム101にとって必要な電池性能を考慮し、過不足のない適切な電池性能を有する交換用電池106を担当交換拠点に調達させることができる。 (6) The storage battery maintenance system 100'provides a required performance setting unit 1026 for setting a required value for the remaining life of the replacement battery 106. The transmission unit 1024 transmits a procurement command including the required value of the remaining life set by the required performance setting unit 1026 to the exchange base in charge (S1502). Therefore, in consideration of the battery performance required for the battery utilization system 101, it is possible to procure the replacement battery 106 having appropriate battery performance in just proportion to the replacement base in charge.
(7)要求性能設定部1026は、電池活用システム101の余寿命に基づいて、交換用電池106に対する余寿命の要求値を設定することができる(S1501)。このようにすれば、前述の第1のケースのように、電池活用システム101としての寿命があと少しで訪れるような場合でも、交換用電池106に対する余寿命の要求値を過不足なく適切に設定することが可能となる。 (7) The required performance setting unit 1026 can set the required value of the remaining life for the replacement battery 106 based on the remaining life of the battery utilization system 101 (S1501). By doing so, even if the life of the battery utilization system 101 is about to reach the end as in the first case described above, the required value of the remaining life for the replacement battery 106 is appropriately set without excess or deficiency. It becomes possible to do.
(8)二次電池群301は、複数の電池セルを用いて構成されている。送信部1024は、この複数の電池セルの中で指定された交換対象の電池セルについて調達指令を送信することができる。また、要求性能設定部1026は、複数の電池セルの中で交換対象の電池セルを除いた各電池セルの余寿命に基づいて、交換用電池106に対する余寿命の要求値を設定することができる(S1501)。このようにすれば、前述の第2のケースのように、二次電池群301において一部の電池セルのみ交換が必要となった場合でも、交換用電池106に対する余寿命の要求値を過不足なく適切に設定することが可能となる。 (8) The secondary battery group 301 is configured by using a plurality of battery cells. The transmission unit 1024 can transmit a procurement command for the battery cell to be replaced designated among the plurality of battery cells. Further, the required performance setting unit 1026 can set the required value of the remaining life for the replacement battery 106 based on the remaining life of each battery cell excluding the battery cell to be replaced among the plurality of battery cells. (S1501). By doing so, even if only a part of the battery cells in the secondary battery group 301 needs to be replaced as in the second case described above, the required value of the remaining life of the replacement battery 106 is excessively insufficient. It is possible to set appropriately without.
(変形例)
 以上説明した第1、第2の実施形態は、以下のように変形することも可能である。
(Modification example)
The first and second embodiments described above can be modified as follows.
 各交換拠点103に設けられた交換管理部105では、各交換拠点103が担当交換拠点として保管している交換用電池106の在庫数などの保管状況を管理している。そこで、交換管理部105は、交換用電池106の在庫数に基づき、各交換拠点103が担当する電池活用システム101に搭載されている二次電池群301の充放電制御を行うようにしてもよい。 The exchange management unit 105 provided in each exchange base 103 manages the storage status such as the number of stocks of the replacement battery 106 stored by each exchange base 103 as the exchange base in charge. Therefore, the replacement management unit 105 may perform charge / discharge control of the secondary battery group 301 mounted on the battery utilization system 101 in charge of each replacement base 103 based on the number of stocks of the replacement battery 106. ..
 交換拠点103において交換用電池106を十分に確保できていない場合に、その交換拠点103が担当する電池活用システム101に搭載されている二次電池群301が寿命に到達する数が多くなると、交換用電池106が不足する可能性がある。結果として、交換メンテナンスにおいて大きな工数が生じるおそれがある。そこで、本変形例では、今後に起こり得る二次電池群301の交換を考慮して、交換拠点103に保管されている交換用電池106の在庫数に応じてその交換拠点103が担当する電池活用システム101の運用を変更するための信号を発信する機能を、交換管理部105に付与する。 If the replacement battery 106 cannot be sufficiently secured at the replacement base 103, and the number of the secondary battery group 301 mounted on the battery utilization system 101 in charge of the replacement base 103 increases, the replacement battery group 301 reaches the end of its life. The battery 106 may run short. As a result, a large number of man-hours may be required for replacement maintenance. Therefore, in this modification, in consideration of possible replacement of the secondary battery group 301 in the future, the battery utilization in charge of the replacement base 103 according to the number of stocks of the replacement battery 106 stored in the replacement base 103 is taken into consideration. The exchange management unit 105 is provided with a function of transmitting a signal for changing the operation of the system 101.
 具体的には、交換拠点103において交換用電池106の在庫数が少ない場合は、交換管理部105により、電池活用システム101における二次電池群301の充放電を抑制し、充放電電流を制限する制御を適用する。また反対に、交換拠点103において交換用電池106の在庫数が多い場合は、交換管理部105により、電池活用システム101における二次電池群301の上記の充放電制限を適用しない、又は制限を解除する制御を適用する。こうした電池活用システム101の運用の変更は、例えば交換管理部105から電池活用システム101へ最大充放電電流、又は充放電電流の抑制率などを含む運用指令を送信することにより行われる。交換管理部105から送信された運用指令は、電池活用システム101において通信装置208により受信され、システムコントローラ201へ出力されることにより、システムコントローラ201が行う充放電制御に適用される。 Specifically, when the number of replacement batteries 106 in stock at the replacement base 103 is small, the replacement management unit 105 suppresses charging / discharging of the secondary battery group 301 in the battery utilization system 101 to limit the charging / discharging current. Apply control. On the contrary, when the replacement battery 106 is in stock at the replacement base 103, the replacement management unit 105 does not apply or cancels the above charge / discharge limitation of the secondary battery group 301 in the battery utilization system 101. Apply control to Such a change in the operation of the battery utilization system 101 is performed, for example, by transmitting an operation command including a maximum charge / discharge current or a charge / discharge current suppression rate from the replacement management unit 105 to the battery utilization system 101. The operation command transmitted from the exchange management unit 105 is received by the communication device 208 in the battery utilization system 101 and output to the system controller 201 to be applied to the charge / discharge control performed by the system controller 201.
 以上説明した変形例によれば、担当交換拠点である交換拠点103に設置されている交換管理部105は、担当交換拠点で保管されている交換用電池106の在庫数に基づいて、蓄電池である二次電池群301の運用を変更するための指令を発信する。これにより、交換用電池106の在庫数が少ない場合は、二次電池群301の劣化を抑制して寿命への到達を遅らせることができるため、交換用電池106の在庫不足が解消する時間を確保することができる。なお、上記では一例として充放電を制限する制御を適用した場合について述べたが、電池活用システム101の運用を変更することで、二次電池群301の劣化を抑制して寿命への到達を遅らせることが可能な手段であれば別の手段を採用することが可能である。例えば、交換用電池106の在庫数が少ない場合は、運用中に利用可能な二次電池群301のSOC範囲を変更しても良い。この場合、交換用電池106の在庫数が少ない場合は、運用中に利用可能な二次電池群301の最高SOC又は最低SOCを変更するための運用指令を交換管理部105から電池活用システム101へと送信し、システムコントローラ201が行う充放電制御に反映させることで実現する。 According to the modification described above, the exchange management unit 105 installed in the exchange base 103, which is the exchange base in charge, is a storage battery based on the number of stocks of the replacement batteries 106 stored in the exchange base in charge. A command for changing the operation of the secondary battery group 301 is transmitted. As a result, when the number of replacement batteries 106 in stock is small, deterioration of the secondary battery group 301 can be suppressed and the end of life can be delayed, so that time is secured for resolving the shortage of stock of replacement batteries 106. can do. In the above, the case where the control for limiting charge / discharge is applied is described as an example, but by changing the operation of the battery utilization system 101, the deterioration of the secondary battery group 301 is suppressed and the life is delayed. It is possible to adopt another means as long as it is possible. For example, when the number of replacement batteries 106 in stock is small, the SOC range of the secondary battery group 301 that can be used during operation may be changed. In this case, if the number of replacement batteries 106 in stock is low, an operation command for changing the maximum or minimum SOC of the secondary battery group 301 that can be used during operation is issued from the exchange management unit 105 to the battery utilization system 101. Is transmitted and reflected in the charge / discharge control performed by the system controller 201.
 なお、本発明は、上記した実施形態や変形例に限定されるものではなく、本発明の技術的思想の範囲内で考えられるその他の実施態様も、本発明の範囲内に含まれる。 The present invention is not limited to the above-described embodiments and modifications, and other embodiments considered within the scope of the technical idea of the present invention are also included within the scope of the present invention.
 100,100’:蓄電池保守システム、101,101A,101B:電池活用システム、102,102’:電池管理装置、103,103A,103B:交換拠点、105,105A,105B:交換管理部、106,106A,106B:交換用電池、201:システムコントローラ、202:モータジェネレータ、203:インバータ、204:二次電池システム、205:充電器、206:位置計測装置、207:記憶装置、208:通信装置、301:二次電池群、302:電池管理手段、303:電流センサ、304:温度センサ、305:状態検知手段、306P,306N:電池接続端子、307:電池信号入出力端子、1021:受信部、1022:担当交換拠点特定部、1023:判断部、1024:送信部、1025:記憶部、1026:要求性能設定部 100,100': Storage battery maintenance system, 101,101A, 101B: Battery utilization system, 102,102': Battery management device, 103,103A, 103B: Exchange base, 105,105A, 105B: Exchange management unit, 106,106A , 106B: Replacement battery, 201: System controller, 202: Motor generator, 203: Inverter, 204: Secondary battery system, 205: Charger, 206: Position measuring device, 207: Storage device, 208: Communication device, 301 : Secondary battery group, 302: Battery management means, 303: Current sensor, 304: Temperature sensor, 305: Status detection means, 306P, 306N: Battery connection terminal, 307: Battery signal input / output terminal, 1021: Receiver, 1022 : Charged exchange base identification unit, 1023: Judgment unit, 1024: Transmission unit, 1025: Storage unit, 1026: Required performance setting unit

Claims (11)

  1.  電池システムに搭載される蓄電池の保守を行うシステムであって、
     前記電池システムから位置情報を受信する受信部と、
     前記位置情報に基づいて、互いに異なる場所にそれぞれ設けられた複数の交換拠点の中から前記蓄電池の交換を担当する担当交換拠点を特定する担当交換拠点特定部と、
     前記蓄電池の交換準備が必要か否かの判断を実施する判断部と、
     前記判断部による前記判断の結果に基づいて、前記蓄電池と交換するための交換用蓄電池の調達を指示する調達指令を前記担当交換拠点に送信する送信部と、を備える蓄電池保守システム。
    It is a system that maintains the storage battery installed in the battery system.
    A receiver that receives location information from the battery system,
    Based on the location information, the exchange base identification unit that identifies the exchange base in charge of exchanging the storage battery from among a plurality of exchange bases provided at different locations.
    A judgment unit that determines whether or not the storage battery needs to be replaced, and
    A storage battery maintenance system including a transmission unit that transmits a procurement command instructing procurement of a replacement storage battery for replacement with the storage battery to the exchange base in charge based on the result of the determination by the determination unit.
  2.  請求項1に記載の蓄電池保守システムにおいて、
     前記判断部は、前記蓄電池の余寿命を推定し、推定した前記余寿命が所定値以下の場合に前記蓄電池の交換準備が必要と判断する蓄電池保守システム。
    In the storage battery maintenance system according to claim 1,
    The determination unit is a storage battery maintenance system that estimates the remaining life of the storage battery and determines that it is necessary to prepare for replacement of the storage battery when the estimated remaining life is equal to or less than a predetermined value.
  3.  請求項1に記載の蓄電池保守システムにおいて、
     前記受信部は、前記電池システムから前記位置情報を受信し、
     前記担当交換拠点特定部は、前記位置情報に基づいて前記電池システムの主要滞在地域を抽出し、該主要滞在地域に基づいて前記担当交換拠点を特定する蓄電池保守システム。
    In the storage battery maintenance system according to claim 1,
    The receiving unit receives the position information from the battery system and receives the position information.
    The chargeable exchange base specifying unit is a storage battery maintenance system that extracts the main stay area of the battery system based on the location information and specifies the charge exchange base based on the main stay area.
  4.  請求項1に記載の蓄電池保守システムにおいて、
     前記交換用蓄電池に対する余寿命の要求値を設定する要求性能設定部を備え、
     前記送信部は、前記要求性能設定部により設定された前記余寿命の要求値を含む前記調達指令を、前記担当交換拠点に送信する蓄電池保守システム。
    In the storage battery maintenance system according to claim 1,
    It is equipped with a required performance setting unit that sets the required value of the remaining life of the replacement storage battery.
    The transmission unit is a storage battery maintenance system that transmits the procurement command including the required value of the remaining life set by the required performance setting unit to the exchange base in charge.
  5.  請求項4に記載の蓄電池保守システムにおいて、
     前記要求性能設定部は、前記電池システムの余寿命に基づいて、前記交換用蓄電池に対する前記余寿命の要求値を設定する蓄電池保守システム。
    In the storage battery maintenance system according to claim 4,
    The required performance setting unit is a storage battery maintenance system that sets a required value of the remaining life for the replacement storage battery based on the remaining life of the battery system.
  6.  請求項4に記載の蓄電池保守システムにおいて、
     前記蓄電池は、複数の電池セルを用いて構成されており、
     前記送信部は、前記複数の電池セルの中で指定された交換対象の電池セルについて前記調達指令を送信し、
     前記要求性能設定部は、前記複数の電池セルの中で前記交換対象の電池セルを除いた各電池セルの余寿命に基づいて、前記交換用蓄電池に対する前記余寿命の要求値を設定する蓄電池保守システム。
    In the storage battery maintenance system according to claim 4,
    The storage battery is configured by using a plurality of battery cells.
    The transmission unit transmits the procurement command for the battery cell to be replaced specified among the plurality of battery cells.
    The required performance setting unit sets the required value of the remaining life of the replacement storage battery based on the remaining life of each battery cell excluding the battery cell to be replaced among the plurality of battery cells. system.
  7.  請求項1に記載の蓄電池保守システムにおいて、
     前記複数の交換拠点にそれぞれ設置され、前記調達指令に応じて調達された前記交換用蓄電池の保管状況を管理する交換管理部を備える蓄電池保守システム。
    In the storage battery maintenance system according to claim 1,
    A storage battery maintenance system provided with an exchange management unit that is installed at each of the plurality of exchange bases and manages the storage status of the exchange storage battery procured in accordance with the procurement order.
  8.  請求項7に記載の蓄電池保守システムにおいて、
     前記担当交換拠点に設置されている前記交換管理部は、前記担当交換拠点で保管されている前記交換用蓄電池の在庫数に応じて、前記蓄電池の充放電制御を変更するための指令を発信する機能を備える蓄電池保守システム。
    In the storage battery maintenance system according to claim 7,
    The exchange management unit installed at the exchange base in charge issues a command for changing the charge / discharge control of the storage battery according to the number of stocks of the exchange storage battery stored at the exchange base in charge. Battery maintenance system with functions.
  9.  請求項8に記載の蓄電池保守システムにおいて、
     前記蓄電池の充放電制御を変更するための指令によって、前記交換用蓄電池の在庫数に応じて運用中における前記蓄電池の充放電電流の大きさ、又は、前記蓄電池のSOC使用可能範囲を変更する機能を備える蓄電池保守システム。
    In the storage battery maintenance system according to claim 8,
    A function to change the magnitude of the charge / discharge current of the storage battery during operation or the SOC usable range of the storage battery according to the number of stocks of the replacement storage battery according to the command for changing the charge / discharge control of the storage battery. Battery maintenance system equipped with.
  10.  請求項1に記載の蓄電池保守システムにおいて、
     前記担当交換拠点で前記交換用蓄電池と交換されて前記電池システムから回収された交換後の蓄電池を、新たな前記交換用蓄電池として再流通させる蓄電池保守システム。
    In the storage battery maintenance system according to claim 1,
    A storage battery maintenance system that recirculates a replaced storage battery that has been replaced with the replacement storage battery at the exchange base in charge and recovered from the battery system as a new replacement storage battery.
  11.  電池システムに搭載される蓄電池の保守方法であって、
     前記電池システムから位置情報を受信し、
     前記位置情報に基づいて、互いに異なる場所にそれぞれ設定された複数の交換拠点の中から前記蓄電池の交換を担当する担当交換拠点を特定し、
     前記蓄電池の交換準備が必要か否かの判断を実施し、
     前記判断の結果に基づいて、前記蓄電池と交換するための交換用蓄電池の調達を指示する調達指令を前記担当交換拠点に送信する蓄電池保守方法。
    It is a maintenance method for the storage battery installed in the battery system.
    Receives location information from the battery system
    Based on the location information, the exchange base in charge of exchanging the storage battery is specified from among a plurality of exchange bases set in different locations.
    Judgment as to whether or not the storage battery needs to be replaced is determined.
    A storage battery maintenance method for transmitting a procurement command instructing the procurement of a replacement storage battery for replacement with the storage battery to the exchange base in charge based on the result of the determination.
PCT/JP2021/016625 2020-08-04 2021-04-26 Storage battery maintenance system and storage battery maintenance method WO2022030049A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022541113A JP7430802B2 (en) 2020-08-04 2021-04-26 Storage battery maintenance system, storage battery maintenance method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-132402 2020-08-04
JP2020132402 2020-08-04

Publications (1)

Publication Number Publication Date
WO2022030049A1 true WO2022030049A1 (en) 2022-02-10

Family

ID=80117256

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/016625 WO2022030049A1 (en) 2020-08-04 2021-04-26 Storage battery maintenance system and storage battery maintenance method

Country Status (2)

Country Link
JP (1) JP7430802B2 (en)
WO (1) WO2022030049A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004213244A (en) * 2002-12-27 2004-07-29 Honda Motor Co Ltd Ordering/order receiving management system for repair part
JP2009237761A (en) * 2008-03-26 2009-10-15 Fujitsu Ltd Storage management system and method therefor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004213244A (en) * 2002-12-27 2004-07-29 Honda Motor Co Ltd Ordering/order receiving management system for repair part
JP2009237761A (en) * 2008-03-26 2009-10-15 Fujitsu Ltd Storage management system and method therefor

Also Published As

Publication number Publication date
JP7430802B2 (en) 2024-02-13
JPWO2022030049A1 (en) 2022-02-10

Similar Documents

Publication Publication Date Title
TWI740082B (en) Method for charging exchangeable energy storage devices positioned in a device-exchange station, sever, and method for mangaing a device-exchange station
JP7182476B2 (en) Remaining life diagnostic method and remaining life diagnostic system for secondary battery module
US10013678B2 (en) Battery secondary use management system
CN107003357B (en) Battery management system based on wireless network
US20150149015A1 (en) Information output method, information presentation device, and information output system
JP5158183B2 (en) Vehicle required power prediction device
JP6635743B2 (en) Storage battery maintenance device and storage battery maintenance method
US20180331546A1 (en) Battery management system including cloud server to schedule batteries for use and related methods
US20220242272A1 (en) Monitoring device, management system, and management method
CN103081213A (en) Battery management system, battery management apparatus, method of reusing battery, and information communication terminal apparatus
JP2014535123A (en) Battery management system and battery management method
JP2014054083A (en) System for predicting battery deterioration
JP5327207B2 (en) Charging system
WO2021039018A1 (en) Temperature estimation method, deterioration state estimation method, and lifespan prediction method for secondary battery module, temperature estimation device, deterioration state estimation device, and lifespan prediction device for secondary battery module, and charging device
CN117751297A (en) Method for determining the operating capacity of a vehicle accumulator
JP2013081332A (en) Battery system with charge control function, and charge system
KR102005244B1 (en) Battery management system and method for operating thereof
WO2022030049A1 (en) Storage battery maintenance system and storage battery maintenance method
JP5668753B2 (en) Secondary battery management system, battery system, secondary battery management method, and secondary battery management program
KR20210121610A (en) Vehicle and controlling method of vehicle
WO2019187680A1 (en) Secondary battery control device
KR101514660B1 (en) Battery Maintenance System And Service Providig Method Using The Same
JP5327206B2 (en) Power information processing device
EP3886033A1 (en) Bid management apparatus and bid management method in a power transaction market
KR20220049641A (en) Predicting method battery charging completion time and battery system using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21854040

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022541113

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21854040

Country of ref document: EP

Kind code of ref document: A1