WO2022029999A1 - Thermochemical conversion method and thermochemical conversion device - Google Patents

Thermochemical conversion method and thermochemical conversion device Download PDF

Info

Publication number
WO2022029999A1
WO2022029999A1 PCT/JP2020/030362 JP2020030362W WO2022029999A1 WO 2022029999 A1 WO2022029999 A1 WO 2022029999A1 JP 2020030362 W JP2020030362 W JP 2020030362W WO 2022029999 A1 WO2022029999 A1 WO 2022029999A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermochemical conversion
oxidant
concentration
electrons
electron
Prior art date
Application number
PCT/JP2020/030362
Other languages
French (fr)
Japanese (ja)
Inventor
基龍 金
貴弘 小堀
邦夫 吉川
史武 高橋
モハメド イズマイル エルザイード、タメール
Original Assignee
株式会社エコクルジャパン
国立大学法人東京工業大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社エコクルジャパン, 国立大学法人東京工業大学 filed Critical 株式会社エコクルジャパン
Priority to JP2020573060A priority Critical patent/JP6991647B1/en
Priority to PCT/JP2020/030362 priority patent/WO2022029999A1/en
Priority to JP2021197717A priority patent/JP2022031859A/en
Publication of WO2022029999A1 publication Critical patent/WO2022029999A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C99/00Subject-matter not provided for in other groups of this subclass

Definitions

  • the present invention relates to a thermochemical conversion method and a thermochemical conversion device.
  • thermochemical conversion such as combustion, gasification, and pyrolysis is performed.
  • oxidizing agents air, oxygen, oxygen-enriched air, etc.
  • thermochemical conversion such as combustion, gasification, and pyrolysis is performed.
  • Various techniques have been proposed to generate energy such as electric power and heat, and to generate liquid fuel and gaseous fuel.
  • a vertical waste incinerator that incinerates industrial waste (particularly medical waste) containing high calorific value substances and flame-retardant substances has been proposed (see Patent Documents 1 and 2). It is said that by adopting such a technique, dioxin can be thermally decomposed and incinerated ash can be sterilized, and the strength and heat resistance of the incinerator can be improved.
  • thermochemical conversion reaction of solid fuel (1) the solid fuel is finely pulverized, (2) the thermochemical conversion reaction temperature is raised, and (3) the thermochemical conversion reaction of solid fuel is carried out. It was necessary to take measures such as lengthening the residence time in the furnace (combustion furnace, gasification furnace, thermal decomposition furnace, etc.). However, for (1), it may be difficult to finely grind solid fuel in the first place, and for (2), it is necessary to increase the supply amount of oxidant, especially during gasification and thermal decomposition, and as a result, it is necessary to increase the supply amount of the oxidizing agent.
  • the present invention has been made in view of such circumstances, and can satisfactorily thermochemically convert solid fuels that are difficult to be finely pulverized, and generate heat of combustible gas generated by gasification / pyrolysis. It is an object of the present invention to provide a method capable of increasing the amount and reducing the size of a thermochemical conversion reactor.
  • thermochemical conversion of the solid fuel can be promoted over the entire thermochemical conversion reaction reactor, and the calorific value of the combustible gas generated by gasification / pyrolysis can be increased.
  • the thermochemical conversion reactor can be downsized.
  • tar is generated during gasification and thermal decomposition of solid fuel, and the tar is condensed in the process of cooling the generated gas, which causes clogging of the wake equipment. Adopting the method and the thermochemical conversion device has the advantages that the decomposition of tar in the pyrolysis gas is promoted by the action of electrons, the tar becomes lighter and more difficult to condense, and the tar concentration also decreases.
  • the concentration of electrons injected into the oxidant can be controlled according to the flow rate of the oxidant supplied into the thermochemical conversion reaction furnace, so that the flow rate of the oxidant fluctuates. Even so, the electron concentration can be maintained.
  • the thermochemical conversion reaction furnace is provided with an oxidant inlet that receives an oxidant from the outside, and in the electron injection step, the oxidant immediately before flowing into the oxidant inlet is provided. Can be injected with electrons.
  • the thermochemical conversion apparatus according to the present invention includes an oxidant flow generating means for generating an oxidant flow, and an oxidant supply pipe for connecting the oxidant flow generating means and the thermochemical conversion reaction furnace.
  • the thermochemical conversion reaction reactor has an oxidant inlet that receives an oxidant supply from the outside, and the oxidant is used as an electron injection means so as to inject electrons into the oxidant immediately before flowing into the oxidant inlet. It can be installed in the supply pipe.
  • thermochemical conversion method the oxidant supplied into the thermochemical conversion reaction furnace is heated by the apparent heat recovered from the combustion gas discharged from the thermochemical conversion reaction furnace or the flammable gas.
  • An oxidant heating step can be included.
  • the thermochemical conversion apparatus the oxidizing agent supplied into the thermochemical conversion reaction furnace by the sensible heat recovered from the combustion gas discharged from the thermochemical conversion reaction furnace or the combustible gas is used.
  • An oxidant heating means for heating can be provided.
  • the oxidant supplied into the thermochemical conversion reaction furnace can be heated by the sensible heat recovered from the combustion gas discharged from the thermochemical conversion reaction furnace or the flammable gas. Therefore, the energy utilization efficiency can be improved.
  • thermochemical conversion method In the electron injection step of the thermochemical conversion method according to the present invention, electrons having a concentration of 500 / cc or more can be injected into the oxidizing agent. Further, in the thermochemical conversion apparatus according to the present invention, an electron injection means for injecting electrons having a concentration of 500 cells / cc or more into an oxidizing agent can be adopted.
  • thermochemical conversion reactor even a solid fuel that is difficult to be finely pulverized can be satisfactorily thermochemically converted, the calorific value of the combustible gas generated by gasification / pyrolysis is increased, and the amount of tar contained is increased. It is possible to provide a method that enables miniaturization of the thermochemical conversion reactor.
  • thermochemical conversion apparatus 1 is an apparatus for supplying an oxidizing agent into the thermochemical conversion reaction furnace C to thermochemically convert a solid fuel, and as shown in FIG. 1, oxidation. It is provided with an agent supply machine 10, an oxidant supply pipe 20, a flow meter 30, an oxidant preheater 40, an electron generator 50, an electron concentration measuring device 60, a control unit 70, and the like.
  • the thermochemical conversion reaction reactor C is a furnace having a space for thermochemically converting solid fuel, and is, for example, a combustion furnace, a gasification furnace, a pyrolysis furnace, or the like.
  • the oxidant supply machine 10 functions to generate an oxidant flow supplied to the thermochemical conversion reaction furnace C, and corresponds to the oxidant flow generation means in the present invention.
  • the oxidant supply pipe 20 is a tube for connecting the oxidant supply machine 10 and the thermochemical conversion reaction furnace C to supply the oxidant produced by the oxidant supply machine 10 to the thermochemical conversion reaction furnace C. Is.
  • the thermochemical conversion reaction reactor C has an oxidant inlet (not shown) that receives an oxidant supply from the outside, and the oxidant supply pipe 20 is connected to the oxidant inlet.
  • the flow meter 30 functions to measure the flow rate of the oxidant supplied into the thermochemical conversion reaction reactor C, and corresponds to the oxidant flow rate measuring means in the present invention.
  • the flow rate of the oxidant measured by the flow meter 30 is sent to the control unit 70 and used for controlling the oxidant supply machine 10.
  • the control unit 70 controls the operation of the oxidant feeder 10 based on the flow rate measured by the flow meter 30, so as to supply the oxidant at a predetermined flow rate to the thermochemical conversion reaction furnace C. It has become.
  • the oxidant preheater 40 heats the oxidant supplied into the thermochemical conversion reactor C by the sensible heat recovered from the combustion gas discharged from the thermochemical conversion reactor C or the combustible gas. It functions and corresponds to the oxidizing agent heating means in the present invention.
  • the operation of the oxidant preheater 40 is controlled by the control unit 70.
  • the control unit 70 is adapted to supply an oxidant having a temperature lower than the heat resistant temperature of the electron generator 50 by adjusting the temperature of the oxidant heated by the oxidant preheater 40. Even if the oxidant preheater 40 itself is provided with a heating device so that the oxidant can be heated without using the sensible heat recovered from the gas discharged from the thermochemical conversion reaction furnace C. good.
  • the electron generator 50 functions to inject electrons of a predetermined concentration into the oxidizing agent supplied into the thermochemical conversion reaction furnace C, and corresponds to the electron injecting means in the present invention.
  • the electron generator 50 for example, a method in which a high pulse voltage is applied to a negative electrode (electron generation terminal) sharpened in a needle shape to directly emit electrons into the air can be adopted. Then, the electron generation terminal of the electron generator 50 is inserted into the hole provided on the wall surface of the oxidant supply pipe 20, and a high voltage is applied to the electron generation terminal, whereby the oxidant circulating inside the oxidant supply pipe 20 is applied. Can be injected with electrons.
  • the electron concentration can be set to a predetermined concentration.
  • the operation of the electron generator 50 is controlled by the control unit 70.
  • the control unit 70 generates electrons having a concentration set based on various conditions in the electron generator 50, and injects electrons from the electron generator 50 into the oxidant supply pipe 20. Further, the control unit 70 controls the concentration of electrons injected into the oxidizing agent from the electron generator 50 according to the flow rate measured by the flow meter 30.
  • the electron generator 50 in the present embodiment is configured to inject electrons having a concentration of 500 cells / cc or more into the oxidizing agent.
  • the concentration of electrons generated by the electron generator 50 is such that the concentration of electrons in the oxidant immediately before flowing into the oxidant inlet of the thermochemical conversion reaction reactor C is 500 cells / cc or more. Is set relatively high (for example, about 50,000 / cc).
  • the electron concentration measuring device 60 functions to measure the concentration of electrons contained in the oxidizing agent flowing through the oxidizing agent supply pipe 20.
  • the electron concentration measured by the electron concentration measuring device 60 is sent to the control unit 70 and used to control the operation of the oxidant feeder 10 and the electron generator 50.
  • the structure of the electron concentration measuring instrument 60 is not particularly limited, and may be, for example, a structure that is preliminarily incorporated inside the oxidant supply pipe 20, and may be attached to the outside (removably) of the oxidant supply pipe 20. It may have a structure that can be used. When the latter structure is adopted, the oxidant can be extracted through the holes provided in the oxidant supply pipe 20 and the concentration of electrons contained in the extracted oxidant can be measured.
  • the concentration of electrons injected into the oxidizing agent is set based on at least one of (temperature, gasification temperature, thermal decomposition temperature, etc.). That is, the control unit 70 functions as the electron concentration setting means in the present invention. Then, the control unit 70 generates electrons of a set concentration in the electron generator 50, and injects electrons from the electron generator 50 into the oxidant supply pipe 20. Further, the control unit 70 controls the concentration of electrons injected into the oxidant according to the flow rate measured by the flow meter 30. That is, the control unit 70 also functions as the electron concentration control means in the present invention.
  • thermochemical conversion method using the thermochemical conversion device 1 according to the present embodiment (a oxidant is supplied into the thermochemical conversion reaction reactor C to heat a solid fuel). Method of chemical conversion) will be described.
  • the control unit 70 of the thermochemical conversion device 1 has at least one of the volume of the thermochemical conversion space in the thermochemical conversion reaction reactor C, the type of solid fuel, and the thermochemical conversion reaction temperature. Based on the above, the concentration of electrons injected into the oxidizing agent is set (electron concentration setting step: S1). In the electron concentration setting step S1, the control unit 70 sets the optimum electron concentration based on various information input via an input unit (not shown), or various types stored in a storage unit (not shown). The control unit 70 can set the optimum electron concentration based on the information.
  • control unit 70 operates the oxidant supply machine 10 to supply the oxidant to the thermochemical conversion reaction furnace C, and operates the oxidant supply machine 10 based on the flow rate measured by the flow meter 30.
  • a predetermined flow of oxidant is supplied to the thermochemical conversion reaction reactor C (oxidizer supply step: S2).
  • the oxidant supply step S2 includes the oxidant flow rate measuring step in the present invention, and the flow rate measured by the flow meter 30 is used for controlling the electron concentration described later.
  • control unit 70 operates the oxidant preheater 40 and supplies it into the thermochemical conversion reaction furnace C by the apparent heat recovered from the combustion gas discharged from the thermochemical conversion reaction furnace C or the combustible gas.
  • the oxidant to be heated is heated (oxidizer heating step: S3).
  • the control unit 70 adjusts the temperature of the oxidant so that the temperature of the oxidant heated by the oxidant preheater 40 is lower than the heat resistant temperature of the electron generator 50.
  • the control unit 70 operates the electron generator 50 to generate electrons of the concentration (predetermined concentration) set in the electron concentration setting step S1 in the electron generator 50, and the electron generator 50 is sent to the oxidant supply pipe 20. And electrons are injected (electron injection step: S4).
  • the control unit 70 controls the concentration of electrons injected into the oxidant according to the flow rate of the oxidant measured by the flow meter 30 in the oxidant supply step S2. That is, the electron injection step S4 includes the electron concentration control step in the present invention.
  • electrons having a concentration of 500 cells / cc or more are injected into the oxidizing agent.
  • the control unit 70 operates the electron concentration measuring device 60, measures the concentration of electrons contained in the oxidant flowing through the oxidant supply pipe 20, and monitors whether or not the measured concentration is within a predetermined range. (Electron concentration measurement step: S5). When the concentration measured in the electron concentration measuring step S5 is within a predetermined range, the control unit 70 continues electron injection without changing the electron concentration generated by the electron generator 50. On the other hand, when the concentration measured in the electron concentration measuring step S5 is out of the predetermined range, the control unit 70 uses the electron generator 50 so that the concentration measured by the electron concentration measuring device 60 is within the predetermined range. The concentration of generated electrons is changed (electron concentration adjusting step: S6).
  • control unit 70 determines the predetermined termination conditions (for example, the passage of a preset operating time, the weight of the solid fuel in the thermochemical conversion reaction reactor C is equal to or less than a predetermined threshold, and the thermochemical conversion reaction.
  • the predetermined termination conditions for example, the passage of a preset operating time, the weight of the solid fuel in the thermochemical conversion reaction reactor C is equal to or less than a predetermined threshold, and the thermochemical conversion reaction.
  • the control of various devices is stopped, and the thermochemical conversion of the solid fuel is completed.
  • thermochemical conversion apparatus 1 since electrons of a predetermined concentration are injected into the oxidant supplied into the thermochemical conversion reaction reactor C, the thermochemical conversion of the solid fuel is promoted. be able to. That is, the electrons supplied into the thermochemical conversion reaction reactor C together with the oxidizing agent collide with the oxidizing agent and the pyrolysis gas in the pyrolysis gas combustion / gasification region of the thermochemical conversion reaction reactor C. Secondary electrons are generated, which generate ions and radicals, and as a result, the combustion and gasification of the pyrolysis gas is promoted.
  • thermochemical conversion of the solid fuel can be promoted over the entire thermochemical conversion reactor, and the calorific value of the combustible gas produced by gasification / pyrolysis can be increased.
  • the thermochemical conversion reactor C can be miniaturized.
  • tar is generated during gasification and thermal decomposition of solid fuel, and tar is condensed in the process of cooling the generated gas, which causes blockage of wake equipment.
  • thermochemical conversion apparatus 1 in the above-described embodiment, at least one of the volume of the thermochemical conversion space in the thermochemical conversion reaction reactor C, the type of solid fuel, and the thermochemical conversion reaction temperature. Based on any one of them, the concentration of electrons injected into the oxidant can be set to an optimum value.
  • thermochemical conversion apparatus 1 the flow meter 30 for measuring the flow rate of the oxidant supplied into the thermochemical conversion reaction reactor C and the flow rate measured by the flow meter 30 are used. Accordingly, a control unit 70 for controlling the concentration of electrons injected into the oxidant is provided, so that the oxidant is injected according to the flow rate of the oxidant supplied into the thermochemical conversion reaction reactor C.
  • the electron concentration can be controlled. Therefore, the electron concentration can be maintained even if the flow rate of the oxidizing agent fluctuates.
  • thermochemical conversion reaction reactor C the inside of the thermochemical conversion reaction reactor C is generated by the apparent heat recovered from the combustion gas discharged from the thermochemical conversion reaction reactor C or the combustible gas. Since the oxidant supplied to the oxidant can be heated by the oxidant preheater 40, the energy utilization efficiency can be improved.
  • the solid fuel in the thermochemical conversion reaction reactor C is set by setting the concentration of electrons to be injected into the oxidizing agent to 500 / cc or more.
  • the thermochemical conversion of the fuel can be further promoted.
  • thermochemical conversion device 1A according to the second embodiment of the present invention is a modification of the configurations of the electron generator 50 and the electron concentration measuring device 60 of the thermochemical conversion device 1 according to the first embodiment. Since it is substantially the same as the first embodiment, different configurations will be mainly described, and common configurations will be designated by the same reference numerals and detailed description thereof will be omitted.
  • both the electron generator 50A and the electron concentration measuring device 60A are attached (removably) to the outside of the oxidant supply pipe 20. It is provided inside the housing H.
  • the electrons generated by the electron generator 50A are mixed with the oxidant taken into the housing H and supplied to the inside of the oxidant supply pipe 20 through the holes provided in the oxidant supply pipe 20.
  • the electron concentration measuring device 60A measures the concentration of electrons in the housing H.
  • thermochemical conversion method (method of supplying an oxidizing agent into the thermochemical conversion reaction reactor C to thermochemically convert a solid fuel) using the thermochemical conversion apparatus 1A according to the present embodiment is first. Since it is the same as the thermochemical conversion method in the embodiment, detailed description thereof will be omitted.
  • thermochemical conversion device 1A When the thermochemical conversion device 1A according to the above-described embodiment is adopted, the same operation and effect as the thermochemical conversion device 1 according to the first embodiment can be obtained. Further, in the thermochemical conversion device 1A according to the present embodiment, since both the electron generator 50A and the electron concentration measuring device 60A are provided inside the common housing H, they are generated by the electron generator 50A. The electron concentration immediately after the electron concentration (before being supplied to the oxidizing agent supply tube 20) can be measured by the electron concentration measuring device 60A. Also in this embodiment, the electrons generated by the electron generator 50A so that the concentration of electrons in the oxidant immediately before flowing into the oxidant inlet of the thermochemical conversion reaction reactor C is 500 / cc or more. The concentration of the above is set relatively high (for example, about 50,000 / cc).
  • thermochemical conversion device 1B according to the third embodiment of the present invention is obtained by changing the position of the housing H of the thermochemical conversion device 1A according to the second embodiment, and the other configurations are substantially the same as those of the second embodiment. Since they are the same, different configurations will be mainly described, and common configurations will be designated by the same reference numerals and detailed description thereof will be omitted.
  • thermochemical conversion device 1B As shown in FIG. 4, both the electron generator 50B and the electron concentration measuring device 60B are attached (removably) to the outside of the oxidant supply pipe 20. It is provided inside the housing H. Similar to the second embodiment, the electrons generated by the electron generator 50B are mixed with the oxidant taken into the housing H, and the oxidant supply pipe 20 is passed through the hole provided in the oxidant supply pipe 20. Supplied inside.
  • the electron concentration measuring device 60B measures the concentration of electrons in the housing H.
  • one side surface of the housing H accommodating the electron generator 50B and the electron concentration measuring device 60B is a specific portion of the side wall of the thermochemical conversion reaction furnace C (a portion provided with an oxidant intake).
  • the other side surface of the housing H is connected to the oxidant supply pipe 20.
  • the electron-containing oxidizing agent flowing out from the oxidizing agent outlet provided on one side surface of the housing H is supplied to the thermochemical conversion reaction furnace C. That is, in the present embodiment, the oxidant supply pipe 20 is connected to the thermochemical conversion reaction furnace C via the housing H.
  • the oxidant supply pipe 20 is interposed between the electron generators 50 and 50A and the thermochemical conversion reaction furnace C, and the electron concentration decreases toward the downstream side.
  • the electron generator 50B in the housing H arranged in the vicinity of the thermochemical conversion reaction furnace C immediately before flowing into the oxidant intake of the thermochemical conversion reaction furnace C. Electrons can be injected into the oxidant.
  • thermochemical conversion method (method of supplying an oxidizing agent into the thermochemical conversion reaction reactor C to thermochemically convert a solid fuel) using the thermochemical conversion apparatus 1B according to the present embodiment is first. Since it is the same as the thermochemical conversion method in the second embodiment, detailed description thereof will be omitted, but in the present embodiment, it flows into the oxidizing agent inlet of the thermochemical conversion reaction reactor C in the electron injection step. It is possible to inject electrons into the oxidant immediately before the chemical treatment.
  • thermochemical conversion device 1B When the thermochemical conversion device 1B according to the above-described embodiment is adopted, the same action and effect as those of the thermochemical conversion devices 1.1A according to the first and second embodiments can be obtained. Further, in the thermochemical conversion device 1B according to the present embodiment, since both the electron generator 50B and the electron concentration measuring device 60B are provided inside the common housing H, they are generated by the electron generator 50B. The concentration of electrons immediately after being made can be measured by the electron concentration measuring device 60B. Further, in the thermochemical conversion apparatus 1B according to the present embodiment, since the electrons are injected into the oxidant immediately before flowing into the oxidant intake of the thermochemical conversion reaction furnace C, the electrons are the thermochemical conversion reaction furnace. The decrease in electron concentration until it flows into C can be suppressed as much as possible.
  • thermochemical conversion device 1C according to the fourth embodiment of the present invention has the positions of the flow meter 30, the electron generator 50, the electron concentration measuring device 60, etc. of the thermochemical conversion device 1 according to the first embodiment changed. Since the other configurations are substantially the same as those of the first embodiment, different configurations will be mainly described, and common configurations will be designated by the same reference numerals and detailed description thereof will be omitted.
  • the electron generator 50C is set in the suction unit of the oxidant supply machine 10, and the oxidant flowing out from the oxidant supply machine 10 may contain electrons. You can do it.
  • the flow meter 30C is arranged on the downstream side of the oxidant preheater 40, and the electron concentration measuring instrument 60C is arranged near the thermochemical conversion reaction furnace C. Thereby, the flow rate of the oxidant in the vicinity of the middle stream of the oxidant supply pipe 20 can be measured, and the electron concentration of the oxidant immediately before flowing into the oxidant inlet of the thermochemical conversion reaction reactor C can be measured. Can be done.
  • the heat resistant temperature of the electron generator 50C is not considered (that is, the heat resistant temperature of the electron generator 50C is set.
  • the air can be heated by the oxidant preheater 40 (up to temperatures above).
  • thermochemical conversion method (method of supplying an oxidizing agent into the thermochemical conversion reaction reactor C to thermochemically convert a solid fuel) using the thermochemical conversion device 1C according to the present embodiment is first. Since it is the same as the thermochemical conversion method in the embodiment, detailed description thereof will be omitted, but in the present embodiment, the electron injection step can be carried out at the same time as the oxidant supply step. Further, in the present embodiment, in the oxidant heating step, the air can be heated by the oxidant preheater 40 to a temperature exceeding the heat resistant temperature of the electron generator 50C.
  • thermochemical conversion device 1C When the thermochemical conversion device 1C according to the above-described embodiment is adopted, the same operation and effect as the thermochemical conversion device 1 according to the first embodiment can be obtained. Also in this embodiment, the electrons generated by the electron generator 50C so that the concentration of electrons in the oxidant immediately before flowing into the oxidant inlet of the thermochemical conversion reaction reactor C is 500 / cc or more. The concentration of the above is set relatively high (for example, about 50,000 / cc).
  • thermochemical conversion device 1D according to the fifth embodiment of the present invention omits the electron concentration measuring device 60 and the like of the thermochemical conversion device 1 and the like according to the first embodiment, and the other configurations are the first embodiment. Since they are substantially the same as the above, different configurations will be mainly described, and common configurations will be designated by the same reference numerals and detailed description thereof will be omitted.
  • thermochemical conversion device 1D according to the present embodiment does not include the electron concentration measuring device 60 or the like adopted in the first embodiment or the like. Therefore, in the thermochemical conversion method using the thermochemical conversion device 1D according to the present embodiment, the electron concentration measuring step carried out in the first embodiment and the like and the electron generation based on the measured electron concentration. The electron concentration adjusting step of feedback-controlling the vessel 50 is not performed.
  • the control unit 70D in the present embodiment describes the elements described in the first embodiment (volume of thermochemical conversion space, type of solid fuel, thermochemical conversion reaction temperature).
  • the electron concentration is set based on the number of electrons generated per electron generator 50 (product standard value), etc., the set number of generated electrons is generated by the electron generator 50, and the oxidizer is generated from the electron generator 50.
  • the concentration of electrons injected into the oxidant from the electron generator 50 is controlled according to the flow rate measured by the flow meter 30.
  • thermochemical conversion device 1D When the thermochemical conversion device 1D according to the above-described embodiment is adopted, the same operation and effect as the thermochemical conversion device 1 according to the first embodiment can be obtained. Also in this embodiment, the electrons generated by the electron generator 50 are generated so that the concentration of electrons in the oxidant immediately before flowing into the oxidant inlet of the thermochemical conversion reaction reactor C is 500 / cc or more. The concentration of the above is set relatively high (for example, about 50,000 / cc).
  • each step of the thermochemical conversion method (electron concentration setting step S1, oxidant supply step S2, oxidant heating step S3, electron injection step S4, electron concentration measuring step S5, electron concentration).
  • the control unit 70 sends a control signal to operate various devices in the adjustment step S6)
  • the user may operate and operate the various devices. That is, the thermochemical conversion method according to the present invention is not limited to the method automatically performed by a specific device, but also includes a method performed by a user's operation.
  • thermochemical conversion apparatus As the thermochemical conversion apparatus in this embodiment, an apparatus having the same configuration as that of the first embodiment was adopted.
  • a high-pressure blower (manufactured by Showa Denki Co., Ltd.) is used as the oxidant supply machine, a mass flow meter (manufactured by Azbil Co., Ltd.) is used as the flow meter, and a negative ion generation unit (manufactured by Andes Electric Co., Ltd.) is used as the electron generator.
  • An air ion counter (manufactured by Andes Electric Co., Ltd.) was adopted as the concentration measuring instrument, and a processor (manufactured by Ecocle Japan Co., Ltd.) that integratedly controls these devices was adopted as the control unit.
  • the negative ion generation unit (trade name: ITM-F301) can generate electrons having a concentration of 500,000 / cc or more.
  • a 1m3 reactor tester (manufactured by Ecocle Japan) is used as the thermochemical conversion reaction furnace, wood chips with a specific gravity of 0.18 are used as the solid fuel, and an inner diameter of 60 mm is used as the oxidant supply pipe. Adopted the steel pipe of. The distance from the negative ion generation unit to the 1 m3 furnace tester was 45 cm. The oxidant preheater was omitted.
  • a high-pressure blower is operated by a processor, an oxidant (air) is supplied to a 1 m3 furnace tester via a steel pipe, and the high-pressure blower is operated based on the flow rate measured by a mass flow meter.
  • an oxidant having a flow rate of 210 L / min was supplied to the 1 m3 furnace tester.
  • the negative ion generation unit was operated by the processor, and electrons having a predetermined concentration (500,000 / cc) or more were generated by the negative ion generation unit, and the electrons were injected into the steel pipe.
  • the negative ion generating unit is attached to the outer wall of the steel pipe, and the terminal of the negative ion generating unit is directly inserted into the hole provided in the outer wall of the steel pipe to inject electrons into the steel pipe. I made it.
  • the air ion counter is operated by the processor, the concentration of electrons contained in the oxidant flowing through the steel pipe is measured, and while monitoring whether the measured concentration is equal to or higher than a predetermined threshold (500 / cc).
  • the solid fuel was gasified, and the control of various devices was stopped after the lapse of a preset operating time.
  • the production rates (mg / sec) of carbon dioxide (CO 2 ), carbon monoxide (CO), methane (CH 4 ), and hydrogen (H 2 ) produced by gasification of solid fuel were measured.
  • the time history as shown by the curve A was obtained in each of FIGS. 7 to 10.
  • the temperature inside the 1 m3 furnace tester in this example was 900 ° C. at the bottom of the furnace.
  • thermochemical conversion apparatus As the thermochemical conversion apparatus in this embodiment, an apparatus having the same configuration as that in the first embodiment is adopted, and as the thermochemical conversion reactor, a 1 L small reactor (hereinafter referred to as “small reactor”) is adopted. It was adopted. Cellulose having a volume of 20 cm 3 was used as the solid fuel, and a steel pipe having an inner diameter of 16 mm was used as the oxidant supply pipe. The distance from the negative ion generation unit to the small reactor was 5 cm.
  • the air ion counter is operated by the processor, the concentration of electrons contained in the oxidant flowing through the steel pipe is measured, and while monitoring whether the measured concentration is equal to or higher than a predetermined threshold (500 / cc).
  • a predetermined threshold 500 / cc.
  • the solid fuel was gasified, and the control of various devices was stopped after the lapse of a preset operating time.
  • Example 3 In this example, using the same simulation model as in Example 2, the electron concentration in the oxidant was set to be an order of magnitude higher (5000 / cc) than in Example 2. In this example, the average production rates of carbon dioxide (CO 2 ), hydrogen (H 2 ), and ethylene (C 2 H 4 ) produced by gasification of solid fuel were calculated. A gray bar graph with hatching (second from the right) of B) was obtained. The temperature inside the small reactor in this example was 500 ° C.
  • Example 4 In this example, using the same simulation model as in Example 2, the electron concentration in the oxidant was set to be an order of magnitude higher (50,000 / cc) than in Example 3. In this embodiment, the average production rates of carbon dioxide (CO 2 ), hydrogen (H 2 ), and ethylene (C 2 H 4 ) produced by gasification of solid fuel were calculated. A black-painted (far right) bar graph of B) was obtained. The temperature inside the small reactor in this example was 500 ° C.
  • Example 5 In this example, the same simulation model as in Example 2 was used, and the electron concentration in the oxidizing agent was set to be lower than that in Example 2 (300 / cc). In this example, the average production rates of carbon dioxide (CO 2 ), hydrogen (H 2 ), and ethylene (C 2 H 4 ) produced by gasification of solid fuel were calculated. A white bar graph with hatching (second from the left) in B) was obtained. The temperature inside the small reactor in this example was 500 ° C.
  • Example 6 In this example, using the same simulation model as in Example 2, the electron concentration in the oxidant was set to be lower than that in Example 5 (100 cells / cc or more). In this embodiment, the average production rates of carbon dioxide (CO 2 ), hydrogen (H 2 ), and ethylene (C 2 H 4 ) produced by gasification of solid fuel were calculated. A blank (leftmost) bar graph of B) was obtained. The temperature inside the small reactor in this example was 500 ° C.
  • Example 1 Using the same equipment as in Example 1 except that the negative ion generation unit was omitted, the high-pressure blower was operated by the processor, the oxidant was supplied to the 1 m 3 furnace tester via the steel pipe, and the mass flow was increased. By controlling the operation of the high-pressure blower based on the flow rate measured by the meter , an oxidizer with a flow rate of 210 L / min is supplied to the 1 m3 furnace tester to gasify the solid fuel, and the elapsed operating time set in advance. The control of various devices was stopped.
  • the present invention is not limited to each of the above embodiments, and those embodiments to which a person skilled in the art has appropriately modified the design are also included in the scope of the present invention as long as they have the features of the present invention.
  • each element provided in each of the above embodiments, its arrangement, material, condition, shape, size, and the like are not limited to those exemplified, and can be appropriately changed.
  • the elements included in each of the above embodiments can be combined as much as technically possible, and the combination thereof is also included in the scope of the present invention as long as the features of the present invention are included.

Abstract

Provided is a method allowing even solid fuels, which are difficult to pulverize, to be converted thermochemically in a satisfactory manner, allowing for an increase in the amount of heat generation from a flammable gas generated by gasification/thermal decomposition, and, moreover, allowing for a reduction in the size of a thermochemical conversion reaction oven. This invention is a method for supplying an oxidant to the interior of a thermochemical conversion reaction oven C to convert the solid fuel thermochemically, the method comprising an electron injection step of injecting a predetermined concentration of electrons into the oxidant supplied to the interior of the thermochemical conversion reaction oven C.

Description

熱化学的変換方法及び熱化学的変換装置Thermochemical conversion method and thermochemical conversion device
 本発明は、熱化学的変換方法及び熱化学的変換装置に関する。 The present invention relates to a thermochemical conversion method and a thermochemical conversion device.
 従来より、石炭やバイオマス、廃棄物等の固体燃料に対して、酸化剤(空気、酸素又は酸素富化空気等)と反応させることによって、燃焼・ガス化・熱分解等の熱化学的な変換を行い、電力や熱等のエネルギーを発生させたり、液体燃料や気体燃料を生成したりする技術が種々提案されている。例えば近年においては、高発熱量物質や難燃物を含む産業廃棄物(特に医療系廃棄物)を焼却させる竪型ごみ焼却炉が提案されている(特許文献1及び2参照)。かかる技術を採用すると、ダイオキシン類の熱分解を行うとともに焼却灰を滅菌することができ、焼却炉の強度や耐熱性を向上させることができる、とされている。 Conventionally, by reacting solid fuels such as coal, biomass, and waste with oxidizing agents (air, oxygen, oxygen-enriched air, etc.), thermochemical conversion such as combustion, gasification, and pyrolysis is performed. Various techniques have been proposed to generate energy such as electric power and heat, and to generate liquid fuel and gaseous fuel. For example, in recent years, a vertical waste incinerator that incinerates industrial waste (particularly medical waste) containing high calorific value substances and flame-retardant substances has been proposed (see Patent Documents 1 and 2). It is said that by adopting such a technique, dioxin can be thermally decomposed and incinerated ash can be sterilized, and the strength and heat resistance of the incinerator can be improved.
特開2004-301352号公報Japanese Unexamined Patent Publication No. 2004-301352 特開2005-69542号公報Japanese Unexamined Patent Publication No. 2005-69542
 ところで、固体燃料の熱化学的変換反応を促進するためには、(1)固体燃料を微粉砕する、(2)熱化学的変換反応温度を上げる、(3)固体燃料の熱化学的変換反応炉(燃焼炉・ガス化炉・熱分解炉等)内における滞留時間を長くする、等の方策を講じる必要があった。しかし、(1)については、固体燃料の微粉砕がそもそも困難な場合があり、(2)については、特にガス化や熱分解の際に酸化剤の供給量を増やす必要があり、その結果、生成される可燃性ガスの発熱量が低下するという問題があり、(3)については、熱化学的変換反応炉の大型化が必要であるという問題があった。特許文献1及び2に記載されたような従来の技術を採用してもこれらの問題は解決されておらず、有効な解決策が待望されていた。 By the way, in order to promote the thermochemical conversion reaction of solid fuel, (1) the solid fuel is finely pulverized, (2) the thermochemical conversion reaction temperature is raised, and (3) the thermochemical conversion reaction of solid fuel is carried out. It was necessary to take measures such as lengthening the residence time in the furnace (combustion furnace, gasification furnace, thermal decomposition furnace, etc.). However, for (1), it may be difficult to finely grind solid fuel in the first place, and for (2), it is necessary to increase the supply amount of oxidant, especially during gasification and thermal decomposition, and as a result, it is necessary to increase the supply amount of the oxidizing agent. There is a problem that the calorific value of the generated combustible gas is reduced, and there is a problem that the thermochemical conversion reaction furnace needs to be increased in size for (3). Even if the conventional techniques described in Patent Documents 1 and 2 are adopted, these problems have not been solved, and an effective solution has been long-awaited.
 本発明は、かかる事情に鑑みてなされたものであり、微粉砕が困難な固体燃料をも良好に熱化学的に変換させることができ、ガス化・熱分解によって生成される可燃性ガスの発熱量を増大させることができ、なおかつ、熱化学的変換反応炉の小型化を可能とする方法を提供することを目的とする。 The present invention has been made in view of such circumstances, and can satisfactorily thermochemically convert solid fuels that are difficult to be finely pulverized, and generate heat of combustible gas generated by gasification / pyrolysis. It is an object of the present invention to provide a method capable of increasing the amount and reducing the size of a thermochemical conversion reactor.
 前記目的を達成するため、本発明に係る熱化学的変換方法は、熱化学的変換反応炉内に酸化剤を供給して固体燃料を熱化学的に変換する方法であって、熱化学的変換反応炉内に供給される酸化剤に所定濃度の電子を注入する電子注入工程を含むものである。 In order to achieve the above object, the thermochemical conversion method according to the present invention is a method of supplying an oxidizing agent into a thermochemical conversion reaction furnace to thermochemically convert a solid fuel, and is a thermochemical conversion method. It includes an electron injection step of injecting electrons of a predetermined concentration into an oxidizing agent supplied into the reaction furnace.
 また、本発明に係る熱化学的変換装置は、熱化学的変換反応炉内に酸化剤を供給して固体燃料を熱化学的に変換する装置であって、熱化学的変換反応炉内に供給される酸化剤に所定濃度の電子を注入する電子注入手段を備えるものである。 Further, the thermochemical conversion device according to the present invention is a device that supplies an oxidant into a thermochemical conversion reaction furnace to thermochemically convert a solid fuel, and supplies the solid fuel into the thermochemical conversion reaction furnace. It is provided with an electron injection means for injecting electrons of a predetermined concentration into the oxidizing agent to be produced.
 かかる方法及び構成を採用すると、熱化学的変換反応炉内に供給される酸化剤に所定濃度の電子を注入するため、固体燃料の熱化学的変換を促進することができる。すなわち、酸化剤とともに熱化学的変換反応炉内に供給された電子が、熱化学的変換反応炉の熱分解ガス燃焼・ガス化領域内で酸化剤及び熱分解ガスと衝突することにより、二次電子が生成され、これによりイオンとラジカルが生成される結果、熱分解ガスの燃焼・ガス化が促進される。そして、熱分解ガスの燃焼・ガス化によって発生する熱が熱分解残渣の燃焼・ガス化領域に伝達されるため、熱分解残渣の燃焼・ガス化が促進される。この結果、熱化学的変換反応炉内全域にわたって、固体燃料の熱化学的変換を促進することができ、ガス化・熱分解によって生成される可燃性ガスの発熱量を増大させることができる。また、固体燃料処理量を増大させることができることから、熱化学的変換反応炉の小型化が可能となる。さらに、固体燃料のガス化・熱分解時にはタールが発生し、生成ガスが冷却される過程でタールが凝縮し、後流機器の閉塞を招くという問題があるが、本発明に係る熱化学的変換方法及び熱化学的変換装置を採用すると、電子の作用によって熱分解ガス中のタールの分解が促進され、タールが軽質化して凝縮しづらくなり、かつタール濃度も減少する、という利点がある。 When such a method and configuration are adopted, electrons of a predetermined concentration are injected into the oxidant supplied in the thermochemical conversion reaction furnace, so that the thermochemical conversion of the solid fuel can be promoted. That is, the electrons supplied into the thermochemical conversion reaction furnace together with the oxidizing agent collide with the oxidizing agent and the pyrolysis gas in the pyrolysis gas combustion / gasification region of the thermochemical conversion reaction furnace, so that they are secondary. As a result of the generation of electrons and the generation of ions and radicals, the combustion and gasification of the pyrolysis gas is promoted. Then, since the heat generated by the combustion / gasification of the pyrolysis gas is transferred to the combustion / gasification region of the pyrolysis residue, the combustion / gasification of the pyrolysis residue is promoted. As a result, the thermochemical conversion of the solid fuel can be promoted over the entire thermochemical conversion reaction reactor, and the calorific value of the combustible gas generated by gasification / pyrolysis can be increased. In addition, since the amount of solid fuel processed can be increased, the thermochemical conversion reactor can be downsized. Further, there is a problem that tar is generated during gasification and thermal decomposition of solid fuel, and the tar is condensed in the process of cooling the generated gas, which causes clogging of the wake equipment. Adopting the method and the thermochemical conversion device has the advantages that the decomposition of tar in the pyrolysis gas is promoted by the action of electrons, the tar becomes lighter and more difficult to condense, and the tar concentration also decreases.
 本発明に係る熱化学的変換方法において、熱化学的変換反応炉内における熱化学的変換空間の容積、固体燃料の種類、燃化学的変換反応温度、のうち少なくとも何れか一つに基づいて、酸化剤に注入される電子の濃度を設定する電子濃度設定工程を含むことができる。また、本発明に係る熱化学的変換装置において、熱化学的変換反応炉内における熱化学的変換空間の容積、固体燃料の種類、熱化学的変換反応温度、のうち少なくとも何れか一つに基づいて、酸化剤に注入される電子の濃度を設定する電子濃度設定手段を備えることができる。 In the thermochemical conversion method according to the present invention, based on at least one of the volume of the thermochemical conversion space in the thermochemical conversion reaction furnace, the type of solid fuel, and the thermochemical conversion reaction temperature, It can include an electron concentration setting step of setting the concentration of electrons injected into the oxidant. Further, in the thermochemical conversion apparatus according to the present invention, it is based on at least one of the volume of the thermochemical conversion space in the thermochemical conversion reaction furnace, the type of solid fuel, and the thermochemical conversion reaction temperature. Therefore, an electron concentration setting means for setting the concentration of electrons injected into the oxidizing agent can be provided.
 かかる方法及び構成を採用すると、熱化学的変換反応炉内における熱化学的変換空間の容積、固体燃料の種類、熱化学的変換反応温度、のうち少なくとも何れか一つに基づいて、酸化剤に注入される電子の濃度を最適な値に設定することができる。 When such a method and configuration are adopted, the oxidant is based on at least one of the volume of the thermochemical conversion space in the thermochemical conversion reaction furnace, the type of solid fuel, and the thermochemical conversion reaction temperature. The concentration of injected electrons can be set to the optimum value.
 本発明に係る熱化学的変換方法において、熱化学的変換反応炉内に供給される酸化剤の流量を測定する酸化剤流量測定工程と、酸化剤流量測定工程で測定した流量に応じて、酸化剤に注入される電子の濃度を制御する電子濃度制御工程と、を含むことができる。また、本発明に係る熱化学的変換装置において、熱化学的変化反応炉内に供給される酸化剤の流量を測定する酸化剤流量測定手段と、酸化剤流量測定手段で測定した流量に応じて、酸化剤に注入される電子の濃度を制御する電子濃度制御手段と、を備えることができる。 In the thermochemical conversion method according to the present invention, oxidation is performed according to the flow rate measured in the oxidant flow rate measuring step for measuring the flow rate of the oxidant supplied in the thermochemical conversion reaction furnace and the oxidant flow rate measuring step. It can include an electron concentration control step of controlling the concentration of electrons injected into the agent. Further, in the thermochemical conversion apparatus according to the present invention, according to the oxidant flow rate measuring means for measuring the flow rate of the oxidant supplied into the thermochemical change reaction furnace and the flow rate measured by the oxidant flow rate measuring means. , An electron concentration controlling means for controlling the concentration of electrons injected into the oxidizing agent can be provided.
 かかる方法及び構成を採用すると、熱化学的変換反応炉内に供給される酸化剤の流量に応じて、酸化剤に注入される電子の濃度を制御することができるため、酸化剤の流量が変動しても電子濃度を維持することができる。 By adopting such a method and configuration, the concentration of electrons injected into the oxidant can be controlled according to the flow rate of the oxidant supplied into the thermochemical conversion reaction furnace, so that the flow rate of the oxidant fluctuates. Even so, the electron concentration can be maintained.
 本発明に係る熱化学的変換方法において、熱化学的変換反応炉は、 外部から酸化剤の供給を受ける酸化剤取入口を備え、電子注入工程では、酸化剤取入口に流入する直前の酸化剤に電子を注入することができる。また、本発明に係る熱化学的変換装置において、酸化剤流を生成する酸化剤流生成手段と、酸化剤流生成手段と熱化学的変換反応炉とを接続する酸化剤供給管と、を備え、熱化学的変換反応炉は、外部から酸化剤の供給を受ける酸化剤取入口を有し、この酸化剤取入口に流入する直前の酸化剤に電子を注入するように電子注入手段を酸化剤供給管に設置することができる。 In the thermochemical conversion method according to the present invention, the thermochemical conversion reaction furnace is provided with an oxidant inlet that receives an oxidant from the outside, and in the electron injection step, the oxidant immediately before flowing into the oxidant inlet is provided. Can be injected with electrons. Further, the thermochemical conversion apparatus according to the present invention includes an oxidant flow generating means for generating an oxidant flow, and an oxidant supply pipe for connecting the oxidant flow generating means and the thermochemical conversion reaction furnace. The thermochemical conversion reaction reactor has an oxidant inlet that receives an oxidant supply from the outside, and the oxidant is used as an electron injection means so as to inject electrons into the oxidant immediately before flowing into the oxidant inlet. It can be installed in the supply pipe.
 かかる方法及び構成を採用すると、熱化学的変換反応炉の酸化剤取入口に流入する直前の酸化剤に電子を注入するため、電子が熱化学的変換反応炉内に流入するまでの電子濃度の減少を可及的抑制することができる。なお、酸化剤流生成手段に電子注入手段を設置することもできる。 When such a method and configuration are adopted, electrons are injected into the oxidant immediately before flowing into the oxidant inlet of the thermochemical conversion reaction furnace, so that the electron concentration until the electrons flow into the thermochemical conversion reaction furnace The decrease can be suppressed as much as possible. It is also possible to install an electron injection means in the oxidizing agent flow generating means.
 本発明に係る熱化学的変換方法において、熱化学的変換反応炉から排出される燃焼ガス又は可燃性ガスから回収した顕熱によって、熱化学的変換反応炉内に供給される酸化剤を加熱する酸化剤加熱工程を含むことができる。また、本発明に係る熱化学的変換装置において、熱化学的変換反応炉から排出される燃焼ガス又は可燃性ガスから回収した顕熱によって、熱化学的変換反応炉内に供給される酸化剤を加熱する酸化剤加熱手段を備えることができる。 In the thermochemical conversion method according to the present invention, the oxidant supplied into the thermochemical conversion reaction furnace is heated by the apparent heat recovered from the combustion gas discharged from the thermochemical conversion reaction furnace or the flammable gas. An oxidant heating step can be included. Further, in the thermochemical conversion apparatus according to the present invention, the oxidizing agent supplied into the thermochemical conversion reaction furnace by the sensible heat recovered from the combustion gas discharged from the thermochemical conversion reaction furnace or the combustible gas is used. An oxidant heating means for heating can be provided.
 かかる方法及び構成を採用すると、熱化学的変換反応炉から排出される燃焼ガス又は可燃性ガスから回収した顕熱によって、熱化学的変換反応炉内に供給される酸化剤を加熱することができるので、エネルギー利用効率を向上させることができる。 By adopting such a method and configuration, the oxidant supplied into the thermochemical conversion reaction furnace can be heated by the sensible heat recovered from the combustion gas discharged from the thermochemical conversion reaction furnace or the flammable gas. Therefore, the energy utilization efficiency can be improved.
 本発明に係る熱化学的変換方法の電子注入工程において、濃度が500個/c c以上の電子を酸化剤に注入することができる。また、本発明に係る熱化学的変換装置において、濃度が500個/cc以上の電子を酸化剤に注入する電子注入手段を採用することができる。 In the electron injection step of the thermochemical conversion method according to the present invention, electrons having a concentration of 500 / cc or more can be injected into the oxidizing agent. Further, in the thermochemical conversion apparatus according to the present invention, an electron injection means for injecting electrons having a concentration of 500 cells / cc or more into an oxidizing agent can be adopted.
 かかる方法及び構成を採用すると、酸化剤に注入する電子の濃度を500個/cc 以上に設定することにより、熱化学的変換反応炉内での固体燃料の熱化学的変換をより促進することができる。 By adopting such a method and configuration, it is possible to further promote the thermochemical conversion of the solid fuel in the thermochemical conversion reaction furnace by setting the concentration of electrons injected into the oxidant to 500 / cc or more. can.
 本発明によれば、微粉砕が困難な固体燃料をも良好に熱化学的に変換させることができ、ガス化・熱分解によって生成される可燃性ガスの発熱量を増大させ、含有するタール量を低減することができ、なおかつ、熱化学的変換反応炉の小型化を可能とする方法を提供することが可能となる。 According to the present invention, even a solid fuel that is difficult to be finely pulverized can be satisfactorily thermochemically converted, the calorific value of the combustible gas generated by gasification / pyrolysis is increased, and the amount of tar contained is increased. It is possible to provide a method that enables miniaturization of the thermochemical conversion reactor.
本発明の第一実施形態に係る熱化学的変換装置の構成図である。It is a block diagram of the thermochemical conversion apparatus which concerns on 1st Embodiment of this invention. 本発明の第一実施形態に係る熱化学的変換装置を用いた熱化学的変換方法を説明するためのフローチャートである。It is a flowchart for demonstrating the thermochemical conversion method using the thermochemical conversion apparatus which concerns on 1st Embodiment of this invention. 本発明の第二実施形態に係る熱化学的変換装置の構成図である。It is a block diagram of the thermochemical conversion apparatus which concerns on 2nd Embodiment of this invention. 本発明の第三実施形態に係る熱化学的変換装置の構成図である。It is a block diagram of the thermochemical conversion apparatus which concerns on 3rd Embodiment of this invention. 本発明の第四実施形態に係る熱化学的変換装置の構成図である。It is a block diagram of the thermochemical conversion apparatus which concerns on 4th Embodiment of this invention. 本発明の第五実施形態に係る熱化学的変換装置の構成図である。It is a block diagram of the thermochemical conversion apparatus which concerns on 5th Embodiment of this invention. 本発明の実施例1及び比較例1における固体燃料熱分解時の二酸化炭素の生成速度を示すタイムチャートである。It is a time chart which shows the production rate of carbon dioxide at the time of solid fuel pyrolysis in Example 1 and Comparative Example 1 of this invention. 本発明の実施例1及び比較例1における固体燃料熱分解時の一酸化炭素の生成速度を示すタイムチャートである。It is a time chart which shows the production rate of carbon monoxide at the time of solid fuel pyrolysis in Example 1 and Comparative Example 1 of this invention. 本発明の実施例1及び比較例1における固体燃料熱分解時のメタンの生成速度を示すタイムチャートである。It is a time chart which shows the production rate of methane at the time of solid fuel pyrolysis in Example 1 and Comparative Example 1 of this invention. 本発明の実施例1及び比較例1における固体燃料熱分解時の水素の生成速度を示すタイムチャートである。It is a time chart which shows the hydrogen production rate at the time of solid fuel pyrolysis in Example 1 and Comparative Example 1 of this invention. 本発明の実施例2及び比較例2における固体燃料熱分解時の二酸化炭素の生成速度を示すタイムチャートである。It is a time chart which shows the production rate of carbon dioxide at the time of solid fuel pyrolysis in Example 2 and Comparative Example 2 of this invention. 本発明の実施例2~6において注入する電子の濃度を変更した場合における各生成ガス((A)は二酸化炭素、(B)は水素及びエチレン)の平均生成速度を示すバーチャートである。6 is a bar chart showing the average production rate of each produced gas ((A) is carbon dioxide, (B) is hydrogen and ethylene) when the concentration of electrons to be injected is changed in Examples 2 to 6 of the present invention.
 以下、図を参照しながら、本発明の各実施形態について説明する。 Hereinafter, each embodiment of the present invention will be described with reference to the drawings.
<第一実施形態>
 最初に、図1を用いて、本発明の第一実施形態に係る熱化学的変換装置1の構成について説明する。本実施形態に係る熱化学的変換装置1は、熱化学的変換反応炉C内に酸化剤を供給して固体燃料を熱化学的に変換する装置であって、図1に示すように、酸化剤供給機10、酸化剤供給管20、流量計30、酸化剤予熱器40、電子発生器50、電子濃度測定器60、制御部70、等を備えている。ここで、熱化学的変換反応炉Cとは、固体燃料を熱化学的に変換する空間を有する炉であり、例えば燃焼炉、ガス化炉、熱分解炉等である。
<First Embodiment>
First, the configuration of the thermochemical conversion device 1 according to the first embodiment of the present invention will be described with reference to FIG. The thermochemical conversion apparatus 1 according to the present embodiment is an apparatus for supplying an oxidizing agent into the thermochemical conversion reaction furnace C to thermochemically convert a solid fuel, and as shown in FIG. 1, oxidation. It is provided with an agent supply machine 10, an oxidant supply pipe 20, a flow meter 30, an oxidant preheater 40, an electron generator 50, an electron concentration measuring device 60, a control unit 70, and the like. Here, the thermochemical conversion reaction reactor C is a furnace having a space for thermochemically converting solid fuel, and is, for example, a combustion furnace, a gasification furnace, a pyrolysis furnace, or the like.
 酸化剤供給機10は、熱化学的変換反応炉Cに供給される酸化剤流を生成するように機能するものであり、本発明における酸化剤流生成手段に相当する。酸化剤供給管20は、酸化剤供給機10と熱化学的変換反応炉Cとを接続して酸化剤供給機10で生成された酸化剤を熱化学的変換反応炉Cに供給するための管である。熱化学的変換反応炉Cは、外部から酸化剤の供給を受ける(図示されていない)酸化剤取入口を有しており、その酸化剤取入口に酸化剤供給管20が接続されている。 The oxidant supply machine 10 functions to generate an oxidant flow supplied to the thermochemical conversion reaction furnace C, and corresponds to the oxidant flow generation means in the present invention. The oxidant supply pipe 20 is a tube for connecting the oxidant supply machine 10 and the thermochemical conversion reaction furnace C to supply the oxidant produced by the oxidant supply machine 10 to the thermochemical conversion reaction furnace C. Is. The thermochemical conversion reaction reactor C has an oxidant inlet (not shown) that receives an oxidant supply from the outside, and the oxidant supply pipe 20 is connected to the oxidant inlet.
 流量計30は、熱化学的変換反応炉C内に供給される酸化剤の流量を測定するように機能するものであり、本発明における酸化剤流量測定手段に相当する。流量計30で測定された酸化剤の流量は、制御部70に送られて、酸化剤供給機10の制御に用いられる。具体的には、制御部70は、流量計30で測定した流量に基づいて酸化剤供給機10の動作を制御することにより、所定流量の酸化剤を熱化学的変換反応炉Cに供給するようになっている。 The flow meter 30 functions to measure the flow rate of the oxidant supplied into the thermochemical conversion reaction reactor C, and corresponds to the oxidant flow rate measuring means in the present invention. The flow rate of the oxidant measured by the flow meter 30 is sent to the control unit 70 and used for controlling the oxidant supply machine 10. Specifically, the control unit 70 controls the operation of the oxidant feeder 10 based on the flow rate measured by the flow meter 30, so as to supply the oxidant at a predetermined flow rate to the thermochemical conversion reaction furnace C. It has become.
 酸化剤予熱器40は、熱化学的変換反応炉Cから排出される燃焼ガス又は可燃性ガスから回収した顕熱によって、熱化学的変換反応炉C内に供給される酸化剤を加熱するように機能するものであり、本発明における酸化剤加熱手段に相当する。酸化剤予熱器40の動作は、制御部70によって制御される。具体的には、制御部70は、酸化剤予熱器40により加熱される酸化剤の温度を調整することにより、電子発生器50の耐熱温度未満の酸化剤を供給するようになっている。なお、酸化剤予熱器40自体に加熱装置を設けておき、熱化学的変換反応炉Cから排出されるガスから回収した顕熱を利用することなく酸化剤を加熱することができるようにしてもよい。 The oxidant preheater 40 heats the oxidant supplied into the thermochemical conversion reactor C by the sensible heat recovered from the combustion gas discharged from the thermochemical conversion reactor C or the combustible gas. It functions and corresponds to the oxidizing agent heating means in the present invention. The operation of the oxidant preheater 40 is controlled by the control unit 70. Specifically, the control unit 70 is adapted to supply an oxidant having a temperature lower than the heat resistant temperature of the electron generator 50 by adjusting the temperature of the oxidant heated by the oxidant preheater 40. Even if the oxidant preheater 40 itself is provided with a heating device so that the oxidant can be heated without using the sensible heat recovered from the gas discharged from the thermochemical conversion reaction furnace C. good.
 電子発生器50は、熱化学的変換反応炉C内に供給される酸化剤に所定濃度の電子を注入するように機能するものであり、本発明における電子注入手段に相当する。電子発生器50としては、例えば、針状に尖らせたマイナス電極(電子発生端子)にパルス性の高電圧を印加して空気中に直接電子を放出させる方式のものを採用することができる。そして、酸化剤供給管20の壁面に設けた孔に電子発生器50の電子発生端子を挿入し、電子発生端子に高電圧を印加することにより、酸化剤供給管20の内部を流通する酸化剤に電子を注入することができる。この際、電子発生器50の電子発生端子の数を変更したり、電子発生端子の一部にのみ(例えば100本の端子のうち50本にのみ)電圧を印加したりすることにより、発生させる電子の濃度を所定濃度に設定することができる。 The electron generator 50 functions to inject electrons of a predetermined concentration into the oxidizing agent supplied into the thermochemical conversion reaction furnace C, and corresponds to the electron injecting means in the present invention. As the electron generator 50, for example, a method in which a high pulse voltage is applied to a negative electrode (electron generation terminal) sharpened in a needle shape to directly emit electrons into the air can be adopted. Then, the electron generation terminal of the electron generator 50 is inserted into the hole provided on the wall surface of the oxidant supply pipe 20, and a high voltage is applied to the electron generation terminal, whereby the oxidant circulating inside the oxidant supply pipe 20 is applied. Can be injected with electrons. At this time, it is generated by changing the number of electron generating terminals of the electron generator 50 or applying a voltage only to a part of the electron generating terminals (for example, only 50 out of 100 terminals). The electron concentration can be set to a predetermined concentration.
 電子発生器50の動作は、制御部70によって制御される。具体的には、制御部70は、種々の条件に基づいて設定した濃度の電子を電子発生器50で発生させ、電子発生器50から酸化剤供給管20へと電子を注入させる。また、制御部70は、流量計30で測定した流量に応じて、電子発生器50から酸化剤に注入される電子の濃度を制御する。本実施形態における電子発生器50は、濃度が500個/cc以上の電子を酸化剤に注入するように構成されている。本実施形態においては、熱化学的変換反応炉Cの酸化剤取入口に流入する直前の酸化剤における電子の濃度が500個/cc以上となるように、電子発生器50で発生させる電子の濃度を比較的高く(例えば50000個/cc程度に)設定するようにする。 The operation of the electron generator 50 is controlled by the control unit 70. Specifically, the control unit 70 generates electrons having a concentration set based on various conditions in the electron generator 50, and injects electrons from the electron generator 50 into the oxidant supply pipe 20. Further, the control unit 70 controls the concentration of electrons injected into the oxidizing agent from the electron generator 50 according to the flow rate measured by the flow meter 30. The electron generator 50 in the present embodiment is configured to inject electrons having a concentration of 500 cells / cc or more into the oxidizing agent. In the present embodiment, the concentration of electrons generated by the electron generator 50 is such that the concentration of electrons in the oxidant immediately before flowing into the oxidant inlet of the thermochemical conversion reaction reactor C is 500 cells / cc or more. Is set relatively high (for example, about 50,000 / cc).
 電子濃度測定器60は、酸化剤供給管20を流れる酸化剤に含まれる電子の濃度を測定するように機能するものである。電子濃度測定器60で測定された電子の濃度は制御部70に送られて、酸化剤供給機10や電子発生器50の動作を制御するために用いられる。電子濃度測定器60の構造は特に限定されるものではなく、例えば、酸化剤供給管20の内部に予め組み込まれる構造を有するものでもよく、酸化剤供給管20の外部に(取り外し可能に)取り付けられる構造を有するものでもよい。後者の構造を採用する場合は、酸化剤供給管20に設けられた孔を介して酸化剤を抽出し、その抽出した酸化剤に含まれる電子の濃度を測定することができる。 The electron concentration measuring device 60 functions to measure the concentration of electrons contained in the oxidizing agent flowing through the oxidizing agent supply pipe 20. The electron concentration measured by the electron concentration measuring device 60 is sent to the control unit 70 and used to control the operation of the oxidant feeder 10 and the electron generator 50. The structure of the electron concentration measuring instrument 60 is not particularly limited, and may be, for example, a structure that is preliminarily incorporated inside the oxidant supply pipe 20, and may be attached to the outside (removably) of the oxidant supply pipe 20. It may have a structure that can be used. When the latter structure is adopted, the oxidant can be extracted through the holes provided in the oxidant supply pipe 20 and the concentration of electrons contained in the extracted oxidant can be measured.
 制御部70は、本装置の各種機器を統合制御するものである。具体的には、制御部70は、流量計30で測定した流量に基づいて酸化剤供給機10の動作を制御することにより、所定流量の酸化剤を熱化学的変換反応炉Cに供給する。また、制御部70は、酸化剤予熱器40により加熱される酸化剤の温度を調整することにより、電子発生器50の耐熱温度未満の酸化剤を供給する。さらに、制御部70は、熱化学的変換反応炉C内における熱化学的変換空間(燃焼空間、ガス化空間、熱分解空間等)の容積、固体燃料の種類、熱化学的変換反応温度(燃焼温度、ガス化温度、熱分解温度等)、のうち少なくとも何れか一つに基づいて、酸化剤に注入される電子の濃度を設定する。すなわち、制御部70は、本発明における電子濃度設定手段として機能する。そして、制御部70は、設定した濃度の電子を電子発生器50で発生させ、電子発生器50から酸化剤供給管20へと電子を注入させる。また、制御部70は、流量計30で測定した流量に応じて、酸化剤に注入される電子の濃度を制御する。すなわち、制御部70は、本発明における電子濃度制御手段としても機能する。 The control unit 70 integrates and controls various devices of this device. Specifically, the control unit 70 supplies the oxidant at a predetermined flow rate to the thermochemical conversion reaction furnace C by controlling the operation of the oxidant supply machine 10 based on the flow rate measured by the flow meter 30. Further, the control unit 70 supplies an oxidant having a temperature lower than the heat resistant temperature of the electron generator 50 by adjusting the temperature of the oxidant heated by the oxidant preheater 40. Further, the control unit 70 includes the volume of the thermochemical conversion space (combustion space, gasification space, pyrolysis space, etc.) in the thermochemical conversion reaction reactor C, the type of solid fuel, and the thermochemical conversion reaction temperature (combustion). The concentration of electrons injected into the oxidizing agent is set based on at least one of (temperature, gasification temperature, thermal decomposition temperature, etc.). That is, the control unit 70 functions as the electron concentration setting means in the present invention. Then, the control unit 70 generates electrons of a set concentration in the electron generator 50, and injects electrons from the electron generator 50 into the oxidant supply pipe 20. Further, the control unit 70 controls the concentration of electrons injected into the oxidant according to the flow rate measured by the flow meter 30. That is, the control unit 70 also functions as the electron concentration control means in the present invention.
 次に、図2のフローチャートを用いて、本実施形態に係る熱化学的変換装置1を用いた熱化学的変換方法(熱化学的変換反応炉C内に酸化剤を供給して固体燃料を熱化学的に変換する方法)について説明する。 Next, using the flowchart of FIG. 2, a thermochemical conversion method using the thermochemical conversion device 1 according to the present embodiment (a oxidant is supplied into the thermochemical conversion reaction reactor C to heat a solid fuel). Method of chemical conversion) will be described.
 まず、熱化学的変換装置1の制御部70は、熱化学的変換反応炉C内における熱化学的変換空間の容積、固体燃料の種類、熱化学的変換反応温度、のうち少なくとも何れか一つに基づいて、酸化剤に注入される電子の濃度を設定する(電子濃度設定工程:S1)。電子濃度設定工程S1においては、図示されていない入力部を介して入力された各種情報に基づいて制御部70が最適な電子濃度を設定したり、図示されていない記憶部に記憶されていた各種情報に基づいて制御部70が最適な電子濃度を設定したりすることができる。 First, the control unit 70 of the thermochemical conversion device 1 has at least one of the volume of the thermochemical conversion space in the thermochemical conversion reaction reactor C, the type of solid fuel, and the thermochemical conversion reaction temperature. Based on the above, the concentration of electrons injected into the oxidizing agent is set (electron concentration setting step: S1). In the electron concentration setting step S1, the control unit 70 sets the optimum electron concentration based on various information input via an input unit (not shown), or various types stored in a storage unit (not shown). The control unit 70 can set the optimum electron concentration based on the information.
 次いで、制御部70は、酸化剤供給機10を作動させ、熱化学的変換反応炉Cに向けて酸化剤を供給するとともに、流量計30で測定した流量に基づいて酸化剤供給機10の動作を制御することにより、所定流量の酸化剤を熱化学的変換反応炉Cに供給する(酸化剤供給工程:S2)。酸化剤供給工程S2は、本発明における酸化剤流量測定工程を含むものであり、流量計30で測定した流量は、後述する電子濃度の制御に用いられる。 Next, the control unit 70 operates the oxidant supply machine 10 to supply the oxidant to the thermochemical conversion reaction furnace C, and operates the oxidant supply machine 10 based on the flow rate measured by the flow meter 30. By controlling the above, a predetermined flow of oxidant is supplied to the thermochemical conversion reaction reactor C (oxidizer supply step: S2). The oxidant supply step S2 includes the oxidant flow rate measuring step in the present invention, and the flow rate measured by the flow meter 30 is used for controlling the electron concentration described later.
 次いで、制御部70は、酸化剤予熱器40を作動させ、熱化学的変換反応炉Cから排出される燃焼ガス又は可燃性ガスから回収した顕熱によって、熱化学的変換反応炉C内に供給される酸化剤を加熱する(酸化剤加熱工程:S3)。この際、制御部70は、酸化剤予熱器40により加熱される酸化剤の温度が電子発生器50の耐熱温度未満となるように、酸化剤の温度を調整する。 Next, the control unit 70 operates the oxidant preheater 40 and supplies it into the thermochemical conversion reaction furnace C by the apparent heat recovered from the combustion gas discharged from the thermochemical conversion reaction furnace C or the combustible gas. The oxidant to be heated is heated (oxidizer heating step: S3). At this time, the control unit 70 adjusts the temperature of the oxidant so that the temperature of the oxidant heated by the oxidant preheater 40 is lower than the heat resistant temperature of the electron generator 50.
 次いで、制御部70は、電子発生器50を作動させ、電子濃度設定工程S1で設定した濃度(所定濃度)の電子を電子発生器50で発生させ、電子発生器50から酸化剤供給管20へと電子を注入させる(電子注入工程:S4)。電子注入工程S4において、制御部70は、酸化剤供給工程S2において流量計30で測定した酸化剤の流量に応じて、酸化剤に注入される電子の濃度を制御する。すなわち、電子注入工程S4は、本発明における電子濃度制御工程を含むものである。電子注入工程S4においては、濃度が500個/cc以上の電子を酸化剤に注入するようにする。 Next, the control unit 70 operates the electron generator 50 to generate electrons of the concentration (predetermined concentration) set in the electron concentration setting step S1 in the electron generator 50, and the electron generator 50 is sent to the oxidant supply pipe 20. And electrons are injected (electron injection step: S4). In the electron injection step S4, the control unit 70 controls the concentration of electrons injected into the oxidant according to the flow rate of the oxidant measured by the flow meter 30 in the oxidant supply step S2. That is, the electron injection step S4 includes the electron concentration control step in the present invention. In the electron injection step S4, electrons having a concentration of 500 cells / cc or more are injected into the oxidizing agent.
 続いて、制御部70は、電子濃度測定器60を作動させ、酸化剤供給管20を流れる酸化剤に含まれる電子の濃度を測定し、測定した濃度が所定範囲内であるか否かをモニタリングする(電子濃度測定工程:S5)。電子濃度測定工程S5で測定した濃度が所定範囲内である場合には、制御部70は、電子発生器50で発生させる電子の濃度を変更することなく電子注入を継続する。一方、電子濃度測定工程S5で測定した濃度が所定範囲外である場合には、制御部70は、電子濃度測定器60で測定される濃度が所定範囲内になるように、電子発生器50で発生させる電子の濃度を変更する(電子濃度調整工程:S6)。 Subsequently, the control unit 70 operates the electron concentration measuring device 60, measures the concentration of electrons contained in the oxidant flowing through the oxidant supply pipe 20, and monitors whether or not the measured concentration is within a predetermined range. (Electron concentration measurement step: S5). When the concentration measured in the electron concentration measuring step S5 is within a predetermined range, the control unit 70 continues electron injection without changing the electron concentration generated by the electron generator 50. On the other hand, when the concentration measured in the electron concentration measuring step S5 is out of the predetermined range, the control unit 70 uses the electron generator 50 so that the concentration measured by the electron concentration measuring device 60 is within the predetermined range. The concentration of generated electrons is changed (electron concentration adjusting step: S6).
 その後、制御部70は、所定の終了条件(例えば、予め設定された作動時間の経過、熱化学的変換反応炉C内における固体燃料の重量が所定の閾値以下となること、熱化学的変換反応炉C内の温度が所定の閾値以下となること、等)が満たされた場合に各種機器の制御を停止させ、固体燃料の熱化学的変換を終了する。 After that, the control unit 70 determines the predetermined termination conditions (for example, the passage of a preset operating time, the weight of the solid fuel in the thermochemical conversion reaction reactor C is equal to or less than a predetermined threshold, and the thermochemical conversion reaction. When the temperature in the furnace C becomes equal to or lower than a predetermined threshold, etc.) is satisfied, the control of various devices is stopped, and the thermochemical conversion of the solid fuel is completed.
 以上説明した実施形態に係る熱化学的変換装置1においては、熱化学的変換反応炉C内に供給される酸化剤に所定濃度の電子を注入するため、固体燃料の熱化学的変換を促進することができる。すなわち、酸化剤とともに熱化学的変換反応炉C内に供給された電子が、熱化学的変換反応炉Cの熱分解ガス燃焼・ガス化領域内で酸化剤及び熱分解ガスと衝突することにより、二次電子が生成され、これによりイオンとラジカルが生成される結果、熱分解ガスの燃焼・ガス化が促進される。そして、熱分解ガスの燃焼・ガス化によって発生する熱が熱分解残渣燃焼・ガス化領域に伝達されるため、熱分解残渣の燃焼・ガス化が促進される。この結果、熱化学的変換反応炉全域にわたって、固体燃料の熱化学的変換を促進することができ、ガス化・熱分解によって生成される可燃性ガスの発熱量を増大させることができる。また、燃料処理量を増大させることができることから、熱化学的変換反応炉Cの小型化が可能となる。さらに、固体燃料のガス化・熱分解時にはタールが発生し、生成ガスが冷却される過程でタールが凝縮し、後流機器の閉塞を招くという問題があるが、本装置1を採用すると、電子の作用によって熱分解ガス中のタールの分解が促進され、タールが軽質化して凝縮しづらくなり、かつタール濃度も減少する、という利点がある。 In the thermochemical conversion apparatus 1 according to the embodiment described above, since electrons of a predetermined concentration are injected into the oxidant supplied into the thermochemical conversion reaction reactor C, the thermochemical conversion of the solid fuel is promoted. be able to. That is, the electrons supplied into the thermochemical conversion reaction reactor C together with the oxidizing agent collide with the oxidizing agent and the pyrolysis gas in the pyrolysis gas combustion / gasification region of the thermochemical conversion reaction reactor C. Secondary electrons are generated, which generate ions and radicals, and as a result, the combustion and gasification of the pyrolysis gas is promoted. Then, since the heat generated by the combustion / gasification of the pyrolysis gas is transferred to the pyrolysis residue combustion / gasification region, the combustion / gasification of the pyrolysis residue is promoted. As a result, the thermochemical conversion of the solid fuel can be promoted over the entire thermochemical conversion reactor, and the calorific value of the combustible gas produced by gasification / pyrolysis can be increased. Further, since the amount of fuel processed can be increased, the thermochemical conversion reactor C can be miniaturized. Furthermore, tar is generated during gasification and thermal decomposition of solid fuel, and tar is condensed in the process of cooling the generated gas, which causes blockage of wake equipment. There is an advantage that the decomposition of tar in the pyrolysis gas is promoted by the action of the above, the tar becomes lighter and more difficult to condense, and the tar concentration also decreases.
 また、以上説明した実施形態に係る熱化学的変換装置1においては、熱化学的変換反応炉C内における熱化学的変換空間の容積、固体燃料の種類、熱化学的変換反応温度、のうち少なくとも何れか一つに基づいて、酸化剤に注入される電子の濃度を最適な値に設定することができる。 Further, in the thermochemical conversion apparatus 1 according to the above-described embodiment, at least one of the volume of the thermochemical conversion space in the thermochemical conversion reaction reactor C, the type of solid fuel, and the thermochemical conversion reaction temperature. Based on any one of them, the concentration of electrons injected into the oxidant can be set to an optimum value.
 また、以上説明した実施形態に係る熱化学的変換装置1においては、熱化学的変換反応炉C内に供給される酸化剤の流量を測定する流量計30と、流量計30で測定した流量に応じて、酸化剤に注入される電子の濃度を制御する制御部70と、を備えるため、熱化学的変換反応炉C内に供給される酸化剤の流量に応じて、酸化剤に注入される電子の濃度を制御することができる。従って、酸化剤の流量が変動しても電子濃度を維持することができる。 Further, in the thermochemical conversion apparatus 1 according to the above-described embodiment, the flow meter 30 for measuring the flow rate of the oxidant supplied into the thermochemical conversion reaction reactor C and the flow rate measured by the flow meter 30 are used. Accordingly, a control unit 70 for controlling the concentration of electrons injected into the oxidant is provided, so that the oxidant is injected according to the flow rate of the oxidant supplied into the thermochemical conversion reaction reactor C. The electron concentration can be controlled. Therefore, the electron concentration can be maintained even if the flow rate of the oxidizing agent fluctuates.
 また、以上説明した実施形態に係る熱化学的変換装置1においては、熱化学的変換反応炉Cから排出される燃焼ガス又は可燃性ガスから回収した顕熱によって、熱化学的変換反応炉C内に供給される酸化剤を酸化剤予熱器40で加熱することができるので、エネルギー利用効率を向上させることができる。 Further, in the thermochemical conversion apparatus 1 according to the above-described embodiment, the inside of the thermochemical conversion reaction reactor C is generated by the apparent heat recovered from the combustion gas discharged from the thermochemical conversion reaction reactor C or the combustible gas. Since the oxidant supplied to the oxidant can be heated by the oxidant preheater 40, the energy utilization efficiency can be improved.
 また、以上説明した実施形態に係る熱化学的変換装置1においては、酸化剤に注入する電子の濃度を500個/cc 以上に設定することにより、熱化学的変換反応炉C内での固体燃料の熱化学的変換をより促進することができる。 Further, in the thermochemical conversion apparatus 1 according to the above-described embodiment, the solid fuel in the thermochemical conversion reaction reactor C is set by setting the concentration of electrons to be injected into the oxidizing agent to 500 / cc or more. The thermochemical conversion of the fuel can be further promoted.
<第二実施形態>
 次に、図3を用いて、本発明の第二実施形態に係る熱化学的変換装置1Aの構成について説明する。本実施形態に係る熱化学的変換装置1Aは、第一実施形態に係る熱化学的変換装置1の電子発生器50及び電子濃度測定器60の構成を変更したものであり、その他の構成については第一実施形態と実質的に同一であるため、異なる構成を中心に説明することとし、共通する構成については同一の符号を付して詳細な説明を省略する。
<Second embodiment>
Next, the configuration of the thermochemical conversion device 1A according to the second embodiment of the present invention will be described with reference to FIG. The thermochemical conversion device 1A according to the present embodiment is a modification of the configurations of the electron generator 50 and the electron concentration measuring device 60 of the thermochemical conversion device 1 according to the first embodiment. Since it is substantially the same as the first embodiment, different configurations will be mainly described, and common configurations will be designated by the same reference numerals and detailed description thereof will be omitted.
 本実施形態に係る熱化学的変換装置1Aにおいては、図3に示すように、電子発生器50A及び電子濃度測定器60Aの双方が、酸化剤供給管20の外部に(取り外し可能に)取り付けられる筐体Hの内部に設けられている。電子発生器50Aで発生させた電子は、筐体H内に取り込まれる酸化剤と混合され、酸化剤供給管20に設けられた孔を介して酸化剤供給管20の内部に供給される。電子濃度測定器60Aは、筐体H内における電子の濃度を測定する。 In the thermochemical conversion device 1A according to the present embodiment, as shown in FIG. 3, both the electron generator 50A and the electron concentration measuring device 60A are attached (removably) to the outside of the oxidant supply pipe 20. It is provided inside the housing H. The electrons generated by the electron generator 50A are mixed with the oxidant taken into the housing H and supplied to the inside of the oxidant supply pipe 20 through the holes provided in the oxidant supply pipe 20. The electron concentration measuring device 60A measures the concentration of electrons in the housing H.
 本実施形態に係る熱化学的変換装置1Aを用いた熱化学的変換方法(熱化学的変換反応炉C内に酸化剤を供給して固体燃料を熱化学的に変換する方法)は、第一実施形態における熱化学的変換方法と同様であるため、詳細な説明を省略する。 The thermochemical conversion method (method of supplying an oxidizing agent into the thermochemical conversion reaction reactor C to thermochemically convert a solid fuel) using the thermochemical conversion apparatus 1A according to the present embodiment is first. Since it is the same as the thermochemical conversion method in the embodiment, detailed description thereof will be omitted.
 以上説明した実施形態に係る熱化学的変換装置1Aを採用すると、第一実施形態に係る熱化学的変換装置1と同様の作用効果を得ることができる。また、本実施形態に係る熱化学的変換装置1Aにおいては、電子発生器50Aと電子濃度測定器60Aとの双方が共通の筐体Hの内部に設けられているため、電子発生器50Aで発生させた直後(酸化剤供給管20に供給される前)の電子の濃度を、電子濃度測定器60Aによって測定することができる。なお、本実施形態においても、熱化学的変換反応炉Cの酸化剤取入口に流入する直前の酸化剤における電子の濃度が500個/cc以上となるように、電子発生器50Aで発生させる電子の濃度を比較的高く(例えば50000個/cc程度に)設定するようにする。 When the thermochemical conversion device 1A according to the above-described embodiment is adopted, the same operation and effect as the thermochemical conversion device 1 according to the first embodiment can be obtained. Further, in the thermochemical conversion device 1A according to the present embodiment, since both the electron generator 50A and the electron concentration measuring device 60A are provided inside the common housing H, they are generated by the electron generator 50A. The electron concentration immediately after the electron concentration (before being supplied to the oxidizing agent supply tube 20) can be measured by the electron concentration measuring device 60A. Also in this embodiment, the electrons generated by the electron generator 50A so that the concentration of electrons in the oxidant immediately before flowing into the oxidant inlet of the thermochemical conversion reaction reactor C is 500 / cc or more. The concentration of the above is set relatively high (for example, about 50,000 / cc).
<第三実施形態>
 次に、図4を用いて、本発明の第三実施形態に係る熱化学的変換装置1Bの構成について説明する。本実施形態に係る熱化学的変換装置1Bは、第二実施形態に係る熱化学的変換装置1Aの筐体Hの位置を変更したものであり、その他の構成については第二実施形態と実質的に同一であるため、異なる構成を中心に説明することとし、共通する構成については同一の符号を付して詳細な説明を省略する。
<Third embodiment>
Next, the configuration of the thermochemical conversion device 1B according to the third embodiment of the present invention will be described with reference to FIG. The thermochemical conversion device 1B according to the present embodiment is obtained by changing the position of the housing H of the thermochemical conversion device 1A according to the second embodiment, and the other configurations are substantially the same as those of the second embodiment. Since they are the same, different configurations will be mainly described, and common configurations will be designated by the same reference numerals and detailed description thereof will be omitted.
 本実施形態に係る熱化学的変換装置1Bにおいては、図4に示すように、電子発生器50B及び電子濃度測定器60Bの双方が、酸化剤供給管20の外部に(取り外し可能に)取り付けられる筐体Hの内部に設けられている。第二実施形態と同様に、電子発生器50Bで発生させた電子は、筐体H内に取り込まれる酸化剤と混合され、酸化剤供給管20に設けられた孔を介して酸化剤供給管20の内部に供給される。電子濃度測定器60Bは、筐体H内における電子の濃度を測定する。 In the thermochemical conversion device 1B according to the present embodiment, as shown in FIG. 4, both the electron generator 50B and the electron concentration measuring device 60B are attached (removably) to the outside of the oxidant supply pipe 20. It is provided inside the housing H. Similar to the second embodiment, the electrons generated by the electron generator 50B are mixed with the oxidant taken into the housing H, and the oxidant supply pipe 20 is passed through the hole provided in the oxidant supply pipe 20. Supplied inside. The electron concentration measuring device 60B measures the concentration of electrons in the housing H.
 本実施形態においては、電子発生器50B及び電子濃度測定器60Bを収納した筐体Hの一方の側面が熱化学的変換反応炉Cの側壁の特定部位(酸化剤取入口が設けられた部位)に取り付けられており、筐体Hの他方の側面が酸化剤供給管20に接続されている。そして、筐体Hの一方の側面に設けられた酸化剤流出口から流出する電子含有酸化剤が熱化学的変換反応炉Cに供給されるようになっている。すなわち、本実施形態においては、筐体Hを介して酸化剤供給管20が熱化学的変換反応炉Cに接続されている。 In the present embodiment, one side surface of the housing H accommodating the electron generator 50B and the electron concentration measuring device 60B is a specific portion of the side wall of the thermochemical conversion reaction furnace C (a portion provided with an oxidant intake). The other side surface of the housing H is connected to the oxidant supply pipe 20. Then, the electron-containing oxidizing agent flowing out from the oxidizing agent outlet provided on one side surface of the housing H is supplied to the thermochemical conversion reaction furnace C. That is, in the present embodiment, the oxidant supply pipe 20 is connected to the thermochemical conversion reaction furnace C via the housing H.
 第一及び第二実施形態においては、電子発生器50・50Aと熱化学的変換反応炉Cとの間に酸化剤供給管20が介在しており、下流側になるほど電子の濃度が低下するのに対し、本実施形態においては、熱化学的変換反応炉Cの近傍に配置された筐体H内の電子発生器50Bにより、熱化学的変換反応炉Cの酸化剤取入口に流入する直前の酸化剤に電子を注入することができるようになっている。 In the first and second embodiments, the oxidant supply pipe 20 is interposed between the electron generators 50 and 50A and the thermochemical conversion reaction furnace C, and the electron concentration decreases toward the downstream side. On the other hand, in the present embodiment, the electron generator 50B in the housing H arranged in the vicinity of the thermochemical conversion reaction furnace C immediately before flowing into the oxidant intake of the thermochemical conversion reaction furnace C. Electrons can be injected into the oxidant.
 本実施形態に係る熱化学的変換装置1Bを用いた熱化学的変換方法(熱化学的変換反応炉C内に酸化剤を供給して固体燃料を熱化学的に変換する方法)は、第一及び第二実施形態における熱化学的変換方法と同様であるため、詳細な説明を省略するが、本実施形態においては、電子注入工程で、熱化学的変換反応炉Cの酸化剤取入口に流入する直前の酸化剤に電子を注入することができる。 The thermochemical conversion method (method of supplying an oxidizing agent into the thermochemical conversion reaction reactor C to thermochemically convert a solid fuel) using the thermochemical conversion apparatus 1B according to the present embodiment is first. Since it is the same as the thermochemical conversion method in the second embodiment, detailed description thereof will be omitted, but in the present embodiment, it flows into the oxidizing agent inlet of the thermochemical conversion reaction reactor C in the electron injection step. It is possible to inject electrons into the oxidant immediately before the chemical treatment.
 以上説明した実施形態に係る熱化学的変換装置1Bを採用すると、第一及び第二実施形態に係る熱化学的変換装置1・1Aと同様の作用効果を得ることができる。また、本実施形態に係る熱化学的変換装置1Bにおいては、電子発生器50Bと電子濃度測定器60Bとの双方が共通の筐体Hの内部に設けられているため、電子発生器50Bで発生させた直後の電子の濃度を、電子濃度測定器60Bによって測定することができる。また、本実施形態に係る熱化学的変換装置1Bにおいては、熱化学的変換反応炉Cの酸化剤取入口に流入する直前の酸化剤に電子を注入するため、電子が熱化学的変換反応炉C内に流入するまでの電子濃度の減少を可及的抑制することができる。 When the thermochemical conversion device 1B according to the above-described embodiment is adopted, the same action and effect as those of the thermochemical conversion devices 1.1A according to the first and second embodiments can be obtained. Further, in the thermochemical conversion device 1B according to the present embodiment, since both the electron generator 50B and the electron concentration measuring device 60B are provided inside the common housing H, they are generated by the electron generator 50B. The concentration of electrons immediately after being made can be measured by the electron concentration measuring device 60B. Further, in the thermochemical conversion apparatus 1B according to the present embodiment, since the electrons are injected into the oxidant immediately before flowing into the oxidant intake of the thermochemical conversion reaction furnace C, the electrons are the thermochemical conversion reaction furnace. The decrease in electron concentration until it flows into C can be suppressed as much as possible.
<第四実施形態>
 次に、図5を用いて、本発明の第四実施形態に係る熱化学的変換装置1Cの構成について説明する。本実施形態に係る熱化学的変換装置1Cは、第一実施形態に係る熱化学的変換装置1の流量計30、電子発生器50及び電子濃度測定器60等の位置を変更したものであり、その他の構成については第一実施形態と実質的に同一であるため、異なる構成を中心に説明することとし、共通する構成については同一の符号を付して詳細な説明を省略する。
<Fourth Embodiment>
Next, the configuration of the thermochemical conversion device 1C according to the fourth embodiment of the present invention will be described with reference to FIG. The thermochemical conversion device 1C according to the present embodiment has the positions of the flow meter 30, the electron generator 50, the electron concentration measuring device 60, etc. of the thermochemical conversion device 1 according to the first embodiment changed. Since the other configurations are substantially the same as those of the first embodiment, different configurations will be mainly described, and common configurations will be designated by the same reference numerals and detailed description thereof will be omitted.
 本実施形態に係る熱化学的変換装置1Cにおいては、電子発生器50Cを酸化剤供給機10の吸入部に設定しており、酸化剤供給機10から流出する酸化剤に電子を含有させることができるようになっている。また、本実施形態においては、流量計30Cを酸化剤予熱器40の下流側に配置するとともに、電子濃度測定器60Cを熱化学的変換反応炉Cの近傍に配置している。これにより、酸化剤供給管20の中流付近における酸化剤の流量を測定することができるとともに、熱化学的変換反応炉Cの酸化剤取入口に流入する直前の酸化剤の電子濃度を測定することができる。 In the thermochemical conversion device 1C according to the present embodiment, the electron generator 50C is set in the suction unit of the oxidant supply machine 10, and the oxidant flowing out from the oxidant supply machine 10 may contain electrons. You can do it. Further, in the present embodiment, the flow meter 30C is arranged on the downstream side of the oxidant preheater 40, and the electron concentration measuring instrument 60C is arranged near the thermochemical conversion reaction furnace C. Thereby, the flow rate of the oxidant in the vicinity of the middle stream of the oxidant supply pipe 20 can be measured, and the electron concentration of the oxidant immediately before flowing into the oxidant inlet of the thermochemical conversion reaction reactor C can be measured. Can be done.
 なお、本実施形態においては、酸化剤予熱器40の上流側に電子発生器50Cを配置しているため、電子発生器50Cの耐熱温度を考慮することなく(すなわち電子発生器50Cの耐熱温度を超える温度まで)酸化剤予熱器40によって空気を加熱することができる。 In this embodiment, since the electron generator 50C is arranged on the upstream side of the oxidant preheater 40, the heat resistant temperature of the electron generator 50C is not considered (that is, the heat resistant temperature of the electron generator 50C is set. The air can be heated by the oxidant preheater 40 (up to temperatures above).
 本実施形態に係る熱化学的変換装置1Cを用いた熱化学的変換方法(熱化学的変換反応炉C内に酸化剤を供給して固体燃料を熱化学的に変換する方法)は、第一実施形態における熱化学的変換方法と同様であるため、詳細な説明を省略するが、本実施形態においては、電子注入工程を酸化剤供給工程と同時期に実施することができる。また、本実施形態においては、酸化剤加熱工程で、電子発生器50Cの耐熱温度を超える温度まで酸化剤予熱器40により空気を加熱することができる。 The thermochemical conversion method (method of supplying an oxidizing agent into the thermochemical conversion reaction reactor C to thermochemically convert a solid fuel) using the thermochemical conversion device 1C according to the present embodiment is first. Since it is the same as the thermochemical conversion method in the embodiment, detailed description thereof will be omitted, but in the present embodiment, the electron injection step can be carried out at the same time as the oxidant supply step. Further, in the present embodiment, in the oxidant heating step, the air can be heated by the oxidant preheater 40 to a temperature exceeding the heat resistant temperature of the electron generator 50C.
 以上説明した実施形態に係る熱化学的変換装置1Cを採用すると、第一実施形態に係る熱化学的変換装置1と同様の作用効果を得ることができる。なお、本実施形態においても、熱化学的変換反応炉Cの酸化剤取入口に流入する直前の酸化剤における電子の濃度が500個/cc以上となるように、電子発生器50Cで発生させる電子の濃度を比較的高く(例えば50000個/cc程度に)設定するようにする。 When the thermochemical conversion device 1C according to the above-described embodiment is adopted, the same operation and effect as the thermochemical conversion device 1 according to the first embodiment can be obtained. Also in this embodiment, the electrons generated by the electron generator 50C so that the concentration of electrons in the oxidant immediately before flowing into the oxidant inlet of the thermochemical conversion reaction reactor C is 500 / cc or more. The concentration of the above is set relatively high (for example, about 50,000 / cc).
<第五実施形態>
 次に、図6を用いて、本発明の第五実施形態に係る熱化学的変換装置1Dの構成について説明する。本実施形態に係る熱化学的変換装置1Dは、第一実施形態等に係る熱化学的変換装置1等の電子濃度測定器60等を省いたものであり、その他の構成については第一実施形態と実質的に同一であるため、異なる構成を中心に説明することとし、共通する構成については同一の符号を付して詳細な説明を省略する。
<Fifth Embodiment>
Next, the configuration of the thermochemical conversion device 1D according to the fifth embodiment of the present invention will be described with reference to FIG. The thermochemical conversion device 1D according to the present embodiment omits the electron concentration measuring device 60 and the like of the thermochemical conversion device 1 and the like according to the first embodiment, and the other configurations are the first embodiment. Since they are substantially the same as the above, different configurations will be mainly described, and common configurations will be designated by the same reference numerals and detailed description thereof will be omitted.
 本実施形態に係る熱化学的変換装置1Dは、第一実施形態等で採用されていた電子濃度測定器60等を備えていない。このため、本実施形態に係る熱化学的変換装置1Dを用いた熱化学的変換方法においては、第一実施形態等で実施されていた電子濃度測定工程と、測定した電子濃度に基づいて電子発生器50をフィードバック制御する電子濃度調整工程と、を実施しない。 The thermochemical conversion device 1D according to the present embodiment does not include the electron concentration measuring device 60 or the like adopted in the first embodiment or the like. Therefore, in the thermochemical conversion method using the thermochemical conversion device 1D according to the present embodiment, the electron concentration measuring step carried out in the first embodiment and the like and the electron generation based on the measured electron concentration. The electron concentration adjusting step of feedback-controlling the vessel 50 is not performed.
 本実施形態における制御部70Dは、電子濃度に基づいたフィードバック制御を行う代わりに、第一実施形態で説明した要素(熱化学的変換空間の容積、固体燃料の種類、熱化学的変換反応温度)や、電子発生器50一個当たりの電子発生数(製品規格値)等に基づいて電子の濃度を設定し、設定した発生数の電子を電子発生器50で発生させ、電子発生器50から酸化剤供給管20へと電子を注入させるとともに、流量計30で測定した流量に応じて、電子発生器50から酸化剤に注入される電子の濃度を制御する。 Instead of performing feedback control based on the electron concentration, the control unit 70D in the present embodiment describes the elements described in the first embodiment (volume of thermochemical conversion space, type of solid fuel, thermochemical conversion reaction temperature). Or, the electron concentration is set based on the number of electrons generated per electron generator 50 (product standard value), etc., the set number of generated electrons is generated by the electron generator 50, and the oxidizer is generated from the electron generator 50. In addition to injecting electrons into the supply pipe 20, the concentration of electrons injected into the oxidant from the electron generator 50 is controlled according to the flow rate measured by the flow meter 30.
 以上説明した実施形態に係る熱化学的変換装置1Dを採用すると、第一実施形態に係る熱化学的変換装置1と同様の作用効果を得ることができる。なお、本実施形態においても、熱化学的変換反応炉Cの酸化剤取入口に流入する直前の酸化剤における電子の濃度が500個/cc以上となるように、電子発生器50で発生させる電子の濃度を比較的高く(例えば50000個/cc程度に)設定するようにする。 When the thermochemical conversion device 1D according to the above-described embodiment is adopted, the same operation and effect as the thermochemical conversion device 1 according to the first embodiment can be obtained. Also in this embodiment, the electrons generated by the electron generator 50 are generated so that the concentration of electrons in the oxidant immediately before flowing into the oxidant inlet of the thermochemical conversion reaction reactor C is 500 / cc or more. The concentration of the above is set relatively high (for example, about 50,000 / cc).
 なお、以上の各実施形態においては、熱化学的変換方法の各工程(電子濃度設定工程S1、酸化剤供給工程S2、酸化剤加熱工程S3、電子注入工程S4、電子濃度測定工程S5、電子濃度調整工程S6)で制御部70が制御信号を送って各種機器を作動させた例を示したが、ユーザが各種機器を操作して作動させてもよい。すなわち、本発明に係る熱化学的変換方法は、特定の装置によって自動的に実施される方法に限られるものではなく、ユーザの操作によって実施される方法も含むものである。 In each of the above embodiments, each step of the thermochemical conversion method (electron concentration setting step S1, oxidant supply step S2, oxidant heating step S3, electron injection step S4, electron concentration measuring step S5, electron concentration). Although an example in which the control unit 70 sends a control signal to operate various devices in the adjustment step S6) is shown, the user may operate and operate the various devices. That is, the thermochemical conversion method according to the present invention is not limited to the method automatically performed by a specific device, but also includes a method performed by a user's operation.
 ここで、本発明の各実施例について説明する。 Here, each embodiment of the present invention will be described.
<実施例1>
 本実施例における熱化学的変換装置としては、第一実施形態と同様の構成を有する装置を採用した。酸化剤供給機として高圧ブロア(昭和電機社製)を採用し、流量計としてマスフローメータ(アズビル社製)を採用し、電子発生器としてマイナスイオン発生ユニット(アンデス電気社製)を採用し、電子濃度測定器として空気イオンカウンタ(アンデス電気社製)を採用し、制御部としてこれら機器を統合制御するプロセッサ(エコクルジャパン社製)を採用した。なお、マイナスイオン発生ユニット(商品名:ITM-F301)は、濃度が50万個/cc以上の電子を発生させることができるものである。熱化学的変換反応炉としては、1m炉試験機(エコクルジャパン社製)を採用し、固体燃料としては、比重0.18のウッドチップを採用し、酸化剤供給管としては、内径60mmの鋼管パイプを採用した。マイナスイオン発生ユニットから1m炉試験機までの距離は、45cmであった。なお、酸化剤予熱器については省略した。
<Example 1>
As the thermochemical conversion apparatus in this embodiment, an apparatus having the same configuration as that of the first embodiment was adopted. A high-pressure blower (manufactured by Showa Denki Co., Ltd.) is used as the oxidant supply machine, a mass flow meter (manufactured by Azbil Co., Ltd.) is used as the flow meter, and a negative ion generation unit (manufactured by Andes Electric Co., Ltd.) is used as the electron generator. An air ion counter (manufactured by Andes Electric Co., Ltd.) was adopted as the concentration measuring instrument, and a processor (manufactured by Ecocle Japan Co., Ltd.) that integratedly controls these devices was adopted as the control unit. The negative ion generation unit (trade name: ITM-F301) can generate electrons having a concentration of 500,000 / cc or more. A 1m3 reactor tester (manufactured by Ecocle Japan) is used as the thermochemical conversion reaction furnace, wood chips with a specific gravity of 0.18 are used as the solid fuel, and an inner diameter of 60 mm is used as the oxidant supply pipe. Adopted the steel pipe of. The distance from the negative ion generation unit to the 1 m3 furnace tester was 45 cm. The oxidant preheater was omitted.
 本実施例ではまず、プロセッサで高圧ブロアを作動させ、鋼管パイプを介して1m炉試験機に向けて酸化剤(空気)を供給するとともに、マスフローメータで測定した流量に基づいて高圧ブロアの動作を制御することにより、流量210L/分の酸化剤を1m炉試験機に供給した。次いで、プロセッサでマイナスイオン発生ユニットを作動させ、所定濃度(50万個/cc)以上の電子をマイナスイオン発生ユニットで発生させて鋼管パイプへと電子を注入した。なお、本実施例では、鋼管パイプの外壁にマイナスイオン発生ユニットを取り付け、鋼管パイプの外壁に設けられた孔にマイナスイオン発生ユニットの端子を直接挿入することにより、電子を鋼管パイプに注入するようにした。次いで、プロセッサで空気イオンカウンタを作動させ、鋼管パイプを流れる酸化剤に含まれる電子の濃度を測定し、測定した濃度が所定の閾値(500個/cc)以上であるか否かをモニタリングしつつ固体燃料をガス化させ、予め設定された作動時間の経過をもって各種機器の制御を停止させた。 In this embodiment, first, a high-pressure blower is operated by a processor, an oxidant (air) is supplied to a 1 m3 furnace tester via a steel pipe, and the high-pressure blower is operated based on the flow rate measured by a mass flow meter. By controlling the above, an oxidant having a flow rate of 210 L / min was supplied to the 1 m3 furnace tester. Next, the negative ion generation unit was operated by the processor, and electrons having a predetermined concentration (500,000 / cc) or more were generated by the negative ion generation unit, and the electrons were injected into the steel pipe. In this embodiment, the negative ion generating unit is attached to the outer wall of the steel pipe, and the terminal of the negative ion generating unit is directly inserted into the hole provided in the outer wall of the steel pipe to inject electrons into the steel pipe. I made it. Next, the air ion counter is operated by the processor, the concentration of electrons contained in the oxidant flowing through the steel pipe is measured, and while monitoring whether the measured concentration is equal to or higher than a predetermined threshold (500 / cc). The solid fuel was gasified, and the control of various devices was stopped after the lapse of a preset operating time.
 本実施例において、固体燃料のガス化によって生成される二酸化炭素(CO)、一酸化炭素(CO)、メタン(CH)、水素(H)の生成速度(mg/sec)を測定したところ、図7~図10の各々において曲線Aで示すような時間履歴が得られた。なお、本実施例における1m炉試験機内の温度は、炉の最下部で900℃であった。 In this example, the production rates (mg / sec) of carbon dioxide (CO 2 ), carbon monoxide (CO), methane (CH 4 ), and hydrogen (H 2 ) produced by gasification of solid fuel were measured. However, the time history as shown by the curve A was obtained in each of FIGS. 7 to 10. The temperature inside the 1 m3 furnace tester in this example was 900 ° C. at the bottom of the furnace.
<実施例2>
 本実施例における熱化学的変換装置としては、実施例1と同様の構成を有する装置を採用し、熱化学的変換反応炉としては、1L小型反応炉(以下、「小型反応炉」と称する)を採用した。固体燃料としては、体積20cmのセルロースを採用し、酸化剤供給管としては、内径16mmの鋼管パイプを採用した。マイナスイオン発生ユニットから小型反応炉までの距離は、5cmであった。
<Example 2>
As the thermochemical conversion apparatus in this embodiment, an apparatus having the same configuration as that in the first embodiment is adopted, and as the thermochemical conversion reactor, a 1 L small reactor (hereinafter referred to as “small reactor”) is adopted. It was adopted. Cellulose having a volume of 20 cm 3 was used as the solid fuel, and a steel pipe having an inner diameter of 16 mm was used as the oxidant supply pipe. The distance from the negative ion generation unit to the small reactor was 5 cm.
 本実施例ではまず、高圧ボンベから鋼管パイプを介して小型反応炉に向けて酸化剤(空気)を供給するとともに、マスフローメータで測定した流量に基づいてニードルバルブで流量を調整することにより、流量0.028mL/分の酸化剤を小型反応炉に供給した。次いで、プロセッサでマイナスイオン発生ユニットを作動させ、所定濃度(50万個/cc)以上の電子をマイナスイオン発生ユニットで発生させて鋼管パイプへと電子を注入した。次いで、プロセッサで空気イオンカウンタを作動させ、鋼管パイプを流れる酸化剤に含まれる電子の濃度を測定し、測定した濃度が所定の閾値(500個/cc)以上であるか否かをモニタリングしつつ固体燃料をガス化させ、予め設定された作動時間の経過をもって各種機器の制御を停止させた。 In this embodiment, first, an oxidant (air) is supplied from a high-pressure cylinder to a small reactor via a steel pipe, and the flow rate is adjusted by a needle valve based on the flow rate measured by a mass flow meter. An oxidant of 0.028 mL / min was supplied to the small reactor. Next, the negative ion generation unit was operated by the processor, and electrons having a predetermined concentration (500,000 / cc) or more were generated by the negative ion generation unit, and the electrons were injected into the steel pipe. Next, the air ion counter is operated by the processor, the concentration of electrons contained in the oxidant flowing through the steel pipe is measured, and while monitoring whether the measured concentration is equal to or higher than a predetermined threshold (500 / cc). The solid fuel was gasified, and the control of various devices was stopped after the lapse of a preset operating time.
 本実施例において、小型反応炉に供給される固体燃料のガス化によって生成される二酸化炭素(CO)の生成速度(mg/sec)を測定したところ、図11の曲線Aで示すような時間履歴が得られた。また、本実施例において、小型反応炉に供給される固体燃料のガス化によって生成される二酸化炭素(CO)、水素(H)、エチレン(C)の平均生成速度を、本実施例の構成を模したシミュレーションモデルを用いて算出したところ、図12(A)、(B)のグレー(中央)の棒グラフが得られた。なお、本実施例における小型反応炉内の温度は500℃であった。 In this example, when the production rate (mg / sec) of carbon dioxide (CO 2 ) produced by the gasification of the solid fuel supplied to the small reactor was measured, the time as shown by the curve A in FIG. 11 was measured. The history was obtained. Further, in this embodiment, the average production rate of carbon dioxide (CO 2 ), hydrogen (H 2 ), and ethylene (C 2 H 4 ) produced by gasification of the solid fuel supplied to the small reactor is shown. As a result of calculation using a simulation model simulating the configuration of the example, gray (center) bar graphs of FIGS. 12A and 12B were obtained. The temperature inside the small reactor in this example was 500 ° C.
<実施例3>
 本実施例では、実施例2と同様のシミュレーションモデルを用いて、酸化剤中の電子濃度が実施例2よりも一桁多く(5000個/cc)なるように設定した。本実施例において、固体燃料のガス化によって生成される二酸化炭素(CO)、水素(H)、エチレン(C)の平均生成速度を算出したところ、図12(A)、(B)のハッチング付きグレー(右から2番目)の棒グラフが得られた。なお、本実施例における小型反応炉内の温度は500℃であった。
<Example 3>
In this example, using the same simulation model as in Example 2, the electron concentration in the oxidant was set to be an order of magnitude higher (5000 / cc) than in Example 2. In this example, the average production rates of carbon dioxide (CO 2 ), hydrogen (H 2 ), and ethylene (C 2 H 4 ) produced by gasification of solid fuel were calculated. A gray bar graph with hatching (second from the right) of B) was obtained. The temperature inside the small reactor in this example was 500 ° C.
<実施例4>
 本実施例では、実施例2と同様のシミュレーションモデルを用いて、酸化剤中の電子濃度が実施例3よりも一桁多く(50000個/cc)なるように設定した。本実施例において、固体燃料のガス化によって生成される二酸化炭素(CO)、水素(H)、エチレン(C)の平均生成速度を算出したところ、図12(A)、(B)の黒塗り(一番右側)の棒グラフが得られた。なお、本実施例における小型反応炉内の温度は500℃であった。
<Example 4>
In this example, using the same simulation model as in Example 2, the electron concentration in the oxidant was set to be an order of magnitude higher (50,000 / cc) than in Example 3. In this embodiment, the average production rates of carbon dioxide (CO 2 ), hydrogen (H 2 ), and ethylene (C 2 H 4 ) produced by gasification of solid fuel were calculated. A black-painted (far right) bar graph of B) was obtained. The temperature inside the small reactor in this example was 500 ° C.
<実施例5>
 本実施例では、実施例2と同様のシミュレーションモデルを用いて、酸化剤中の電子濃度が実施例2よりも少なく(300個/cc)なるように設定した。本実施例において、固体燃料のガス化によって生成される二酸化炭素(CO)、水素(H)、エチレン(C)の平均生成速度を算出したところ、図12(A)、(B)のハッチング付き白抜き(左から2番目)の棒グラフが得られた。なお、本実施例における小型反応炉内の温度は500℃であった。
<Example 5>
In this example, the same simulation model as in Example 2 was used, and the electron concentration in the oxidizing agent was set to be lower than that in Example 2 (300 / cc). In this example, the average production rates of carbon dioxide (CO 2 ), hydrogen (H 2 ), and ethylene (C 2 H 4 ) produced by gasification of solid fuel were calculated. A white bar graph with hatching (second from the left) in B) was obtained. The temperature inside the small reactor in this example was 500 ° C.
<実施例6>
 本実施例では、実施例2と同様のシミュレーションモデルを用いて、酸化剤中の電子濃度が実施例5よりも少なく(100個/cc以上に)なるように設定した。本実施例において、固体燃料のガス化によって生成される二酸化炭素(CO)、水素(H)、エチレン(C)の平均生成速度を算出したところ、図12(A)、(B)の白抜き(一番左側)の棒グラフが得られた。なお、本実施例における小型反応炉内の温度は500℃であった。
<Example 6>
In this example, using the same simulation model as in Example 2, the electron concentration in the oxidant was set to be lower than that in Example 5 (100 cells / cc or more). In this embodiment, the average production rates of carbon dioxide (CO 2 ), hydrogen (H 2 ), and ethylene (C 2 H 4 ) produced by gasification of solid fuel were calculated. A blank (leftmost) bar graph of B) was obtained. The temperature inside the small reactor in this example was 500 ° C.
<比較例1>
 マイナスイオン発生ユニットを省いたことを除いて実施例1と同様の装置を用い、プロセッサで高圧ブロアを作動させ、鋼管パイプを介して1m炉試験機に向けて酸化剤を供給するとともに、マスフローメータで測定した流量に基づいて高圧ブロアの動作を制御することにより、流量210L/分の酸化剤を1m炉試験機に供給して固体燃料をガス化させ、予め設定された作動時間の経過をもって各種機器の制御を停止させた。固体燃料のガス化によって生成される二酸化炭素(CO)、一酸化炭素(CO)、メタン(CH)、水素(H)の生成速度(mg/sec)を測定したところ、図7~図10の各々において曲線Bで示すような時間履歴が得られた。この際の1m炉試験機内の温度は、炉の最下部で900℃であった。
<Comparative Example 1>
Using the same equipment as in Example 1 except that the negative ion generation unit was omitted, the high-pressure blower was operated by the processor, the oxidant was supplied to the 1 m 3 furnace tester via the steel pipe, and the mass flow was increased. By controlling the operation of the high-pressure blower based on the flow rate measured by the meter , an oxidizer with a flow rate of 210 L / min is supplied to the 1 m3 furnace tester to gasify the solid fuel, and the elapsed operating time set in advance. The control of various devices was stopped. The production rates (mg / sec) of carbon dioxide (CO 2 ), carbon monoxide (CO), methane (CH 4 ), and hydrogen (H 2 ) produced by gasification of solid fuel were measured. The time history as shown by the curve B was obtained in each of FIGS. 10. At this time, the temperature inside the 1 m 3 furnace tester was 900 ° C. at the bottom of the furnace.
<比較例2>
 マイナスイオン発生ユニットを省いたことを除いて実施例2と同様の装置を用い、高圧ボンベから鋼管パイプを介して小型反応炉に向けて酸化剤を供給するとともに、マスフローメータで測定した流量に基づいてニードルバルブで流量を調整することにより、流量0.028mL/分の酸化剤を小型反応炉に供給して固体燃料をガス化させ、予め設定された作動時間の経過をもって各種機器の制御を停止させた。固体燃料のガス化によって生成される二酸化炭素(CO)の生成速度(mg/sec)を測定したところ、図11において曲線Bで示すような時間履歴が得られた。この際の小型反応炉内の温度は500℃であった。
<Comparative Example 2>
Using the same equipment as in Example 2 except that the negative ion generation unit was omitted, the oxidant was supplied from the high-pressure valve to the small reactor via the steel pipe, and based on the flow rate measured by the mass flow meter. By adjusting the flow rate with the needle valve, an oxidizer with a flow rate of 0.028 mL / min is supplied to the small reactor to gasify the solid fuel, and the control of various devices is stopped after the elapsed preset operating time. I let you. When the production rate (mg / sec) of carbon dioxide (CO 2 ) produced by the gasification of the solid fuel was measured, the time history as shown by the curve B in FIG. 11 was obtained. At this time, the temperature inside the small reactor was 500 ° C.
<考察>
 以上の結果から明らかなように、固体燃料の熱化学的変換用の酸化剤に電子を注入した各実施例においては、各比較例よりも、二酸化炭素(CO)、一酸化炭素(CO)、メタン(CH)、水素(H)の生成量が顕著に増大した(図7~図11)。また、酸化剤に注入する電子濃度を500個/cc以上に増大させると、各生成ガス(二酸化炭素(CO)、水素(H)、エチレン(C))の平均生成速度が顕著に増大することが明らかとなった(図12)。
<Discussion>
As is clear from the above results, in each example in which electrons were injected into the oxidant for thermochemical conversion of solid fuel, carbon dioxide (CO 2 ) and carbon monoxide (CO) were higher than in each comparative example. , Methane (CH 4 ) and hydrogen (H 2 ) were significantly increased (FIGS. 7 to 11). Further, when the electron concentration injected into the oxidant is increased to 500 / cc or more, the average production rate of each produced gas (carbon dioxide (CO 2 ), hydrogen (H 2 ), ethylene (C 2 H 4 )) becomes higher. It was revealed that the increase was remarkable (Fig. 12).
 本発明は、以上の各実施形態に限定されるものではなく、これら実施形態に当業者が適宜設計変更を加えたものも、本発明の特徴を備えている限り、本発明の範囲に包含される。すなわち、前記各実施形態が備える各要素及びその配置、材料、条件、形状、サイズ等は、例示したものに限定されるわけではなく適宜変更することができる。また、前記各実施形態が備える各要素は、技術的に可能な限りにおいて組み合わせることができ、これらを組み合わせたものも本発明の特徴を含む限り本発明の範囲に包含される。 The present invention is not limited to each of the above embodiments, and those embodiments to which a person skilled in the art has appropriately modified the design are also included in the scope of the present invention as long as they have the features of the present invention. To. That is, each element provided in each of the above embodiments, its arrangement, material, condition, shape, size, and the like are not limited to those exemplified, and can be appropriately changed. Further, the elements included in each of the above embodiments can be combined as much as technically possible, and the combination thereof is also included in the scope of the present invention as long as the features of the present invention are included.
 1・1A・1B・1C・1D…熱化学的変換装置
 10…酸化剤供給機(酸化剤流生成手段)
 20…酸化剤供給管
 30・30C…流量計(酸化剤流量測定手段)
 40…酸化剤予熱器(酸化剤加熱手段)
 50・50A・50B・50C…電子発生器(電子注入手段)
 70・70D…制御部(電子濃度設定手段、電子濃度制御手段)
 S1…電子濃度設定工程
 S2…酸化剤供給工程(酸化剤流量測定工程)
 S3…酸化剤加熱工程
 S4…電子注入工程(電子濃度制御工程)
 C…熱化学的変換反応炉
 
1.1A, 1B, 1C, 1D ... Thermochemical conversion device 10 ... Oxidizing agent feeder (oxidizing agent flow generating means)
20 ... Oxidizing agent supply pipe 30 / 30C ... Flow meter (Oxidizing agent flow measuring means)
40 ... Oxidizing agent preheater (oxidizing agent heating means)
50 ・ 50A ・ 50B ・ 50C ... Electron generator (electron injection means)
70 / 70D ... Control unit (electron concentration setting means, electron concentration control means)
S1 ... Electron concentration setting process S2 ... Oxidizing agent supply process (Oxidizing agent flow rate measurement process)
S3 ... Oxidizing agent heating process S4 ... Electron injection process (electron concentration control process)
C ... Thermochemical conversion reactor

Claims (14)

  1.  熱化学的変換反応炉内に酸化剤を供給して固体燃料を熱化学的に変換する方法であって、
     前記熱化学的変換反応炉内に供給される酸化剤に所定濃度の電子を注入する電子注入工程を含む、熱化学的変換方法。
    Thermochemical conversion A method of thermochemically converting solid fuel by supplying an oxidizer into the reactor.
    A thermochemical conversion method comprising an electron injection step of injecting electrons of a predetermined concentration into an oxidizing agent supplied into the thermochemical conversion reaction furnace.
  2.  前記熱化学的変換反応炉内における熱化学的変換空間の容積、固体燃料の種類、燃化学的変換反応温度、のうち少なくとも何れか一つに基づいて、酸化剤に注入される電子の濃度を設定する電子濃度設定工程を含む、請求項1に記載の熱化学的変換方法。 The concentration of electrons injected into the oxidant is determined based on at least one of the volume of the thermochemical conversion space in the thermochemical conversion reaction furnace, the type of solid fuel, and the thermochemical conversion reaction temperature. The thermochemical conversion method according to claim 1, which comprises a step of setting an electron concentration to be set.
  3.  前記熱化学的変換反応炉内に供給される酸化剤の流量を測定する酸化剤流量測定工程と、
     前記酸化剤流量測定工程で測定した流量に応じて、酸化剤に注入される電子の濃度を制御する電子濃度制御工程と、
    を含む、請求項1又は2に記載の熱化学的変換方法。
    An oxidant flow rate measuring step for measuring the flow rate of the oxidant supplied into the thermochemical conversion reaction furnace, and a step of measuring the oxidant flow rate.
    An electron concentration control step that controls the concentration of electrons injected into the oxidant according to the flow rate measured in the oxidant flow measurement step, and an electron concentration control step.
    The thermochemical conversion method according to claim 1 or 2, wherein the method comprises.
  4.  前記熱化学的変換反応炉は、 外部から酸化剤の供給を受ける酸化剤取入口を備え、
     前記電子注入工程では、前記酸化剤取入口に流入する直前の酸化剤に電子を注入する、請求項1から3の何れか一項に記載の熱化学的変換方法。
    The thermochemical conversion reactor is equipped with an oxidant inlet that receives an oxidant supply from the outside.
    The thermochemical conversion method according to any one of claims 1 to 3, wherein in the electron injection step, electrons are injected into the oxidant immediately before flowing into the oxidant inlet.
  5.  前記熱化学的変換反応炉から排出される燃焼ガス又は可燃性ガスから回収した顕熱によって、前記熱化学的変換反応炉内に供給される酸化剤を加熱する酸化剤加熱工程を含む、請求項1から4の何れか一項に記載の熱化学的変換方法。 The claim comprises an oxidant heating step of heating the oxidant supplied into the thermochemical conversion reaction furnace by the sensible heat recovered from the combustion gas discharged from the thermochemical conversion reaction furnace or the flammable gas. The thermochemical conversion method according to any one of 1 to 4.
  6.  前記電子注入工程では、濃度が500個/c c以上の電子を酸化剤に注入する、請求項1から5の何れか一項に記載の熱化学的変換方法。 The thermochemical conversion method according to any one of claims 1 to 5, wherein in the electron injection step, electrons having a concentration of 500 cells / c or more are injected into an oxidizing agent.
  7.  熱化学的変換反応炉内に酸化剤を供給して固体燃料を熱化学的に変換する装置であって、
     前記熱化学的変換反応炉内に供給される酸化剤に所定濃度の電子を注入する電子注入手段を備える、熱化学的変換装置。
    Thermochemical conversion A device that thermochemically converts solid fuel by supplying an oxidizer into the reactor.
    A thermochemical conversion apparatus comprising an electron injection means for injecting electrons of a predetermined concentration into an oxidizing agent supplied into the thermochemical conversion reaction furnace.
  8.  前記熱化学的変換反応炉内における熱化学的変換空間の容積、固体燃料の種類、熱化学的変換反応温度、のうち少なくとも何れか一つに基づいて、酸化剤に注入される電子の濃度を設定する電子濃度設定手段を備える、請求項7に記載の熱化学的変換装置。 The concentration of electrons injected into the oxidant is determined based on at least one of the volume of the thermochemical conversion space in the thermochemical conversion reaction furnace, the type of solid fuel, and the thermochemical conversion reaction temperature. The thermochemical conversion apparatus according to claim 7, further comprising an electron concentration setting means for setting.
  9.  前記熱化学的変換反応炉内に供給される酸化剤の流量を測定する酸化剤流量測定手段と、
     前記酸化剤流量測定手段で測定した流量に応じて、酸化剤に注入される電子の濃度を制御する電子濃度制御手段と、
    を備える、請求項7又は8に記載の熱化学的変換装置。
    An oxidant flow rate measuring means for measuring the flow rate of the oxidant supplied into the thermochemical conversion reaction furnace, and an oxidant flow rate measuring means.
    An electron concentration control means for controlling the concentration of electrons injected into the oxidant according to the flow rate measured by the oxidant flow rate measuring means, and an electron concentration control means.
    7. The thermochemical conversion apparatus according to claim 7.
  10.  酸化剤流を生成する酸化剤流生成手段と、
     前記酸化剤流生成手段と前記熱化学的変換反応炉とを接続する酸化剤供給管と、を備え、
     前記電子注入手段は、前記酸化剤供給管に設置されている、請求項7から9の何れか一項に記載の熱化学的変換装置。
    Oxidizing agent flow generating means to generate oxidizing agent flow and
    An oxidant supply pipe for connecting the oxidant flow generating means and the thermochemical conversion reaction furnace is provided.
    The thermochemical conversion device according to any one of claims 7 to 9, wherein the electron injection means is installed in the oxidizing agent supply pipe.
  11.  前記熱化学的変換反応炉は、外部から酸化剤の供給を受ける酸化剤取入口を有し、
     前記電子注入手段は、前記酸化剤取入口に流入する直前の酸化剤に電子を注入するように前記酸化剤供給管に設置されている、請求項10に記載の熱化学的変換装置。
    The thermochemical conversion reactor has an oxidant inlet that receives an oxidant supply from the outside.
    The thermochemical conversion device according to claim 10, wherein the electron injection means is installed in the oxidant supply pipe so as to inject electrons into the oxidant immediately before flowing into the oxidant inlet.
  12.  前記熱化学的変換反応炉へ向けた酸化剤流を生成する酸化剤流生成手段を備え、
     前記電子注入手段は、前記酸化剤流生成手段に設置されている、請求項7から9の何れか一項に記載の熱化学的変換装置。
    A means for generating an oxidant flow for generating an oxidant flow toward the thermochemical conversion reaction furnace is provided.
    The thermochemical conversion device according to any one of claims 7 to 9, wherein the electron injection means is installed in the oxidant flow generating means.
  13.  前記熱化学的変換反応炉から排出される燃焼ガス又は可燃性ガスから回収した顕熱によって、前記熱化学的変換反応炉内に供給される酸化剤を加熱する酸化剤加熱手段を備える、請求項7から12の何れか一項に記載の熱化学的変換装置。 The claim comprises an oxidant heating means for heating the oxidant supplied into the thermochemical conversion reaction furnace by the sensible heat recovered from the combustion gas discharged from the thermochemical conversion reaction furnace or the flammable gas. The thermochemical conversion apparatus according to any one of 7 to 12.
  14.  前記電子注入手段は、濃度が500個/cc以上の電子を酸化剤に注入する、請求項7から13の何れか一項に記載の熱化学的変換装置。
     
    The thermochemical conversion apparatus according to any one of claims 7 to 13, wherein the electron injection means injects electrons having a concentration of 500 cells / cc or more into an oxidizing agent.
PCT/JP2020/030362 2020-08-07 2020-08-07 Thermochemical conversion method and thermochemical conversion device WO2022029999A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020573060A JP6991647B1 (en) 2020-08-07 2020-08-07 Thermochemical conversion method and thermochemical conversion device
PCT/JP2020/030362 WO2022029999A1 (en) 2020-08-07 2020-08-07 Thermochemical conversion method and thermochemical conversion device
JP2021197717A JP2022031859A (en) 2020-08-07 2021-12-06 Thermochemical conversion method and thermochemical conversion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/030362 WO2022029999A1 (en) 2020-08-07 2020-08-07 Thermochemical conversion method and thermochemical conversion device

Publications (1)

Publication Number Publication Date
WO2022029999A1 true WO2022029999A1 (en) 2022-02-10

Family

ID=80117218

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/030362 WO2022029999A1 (en) 2020-08-07 2020-08-07 Thermochemical conversion method and thermochemical conversion device

Country Status (2)

Country Link
JP (2) JP6991647B1 (en)
WO (1) WO2022029999A1 (en)

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004156523A (en) * 2002-11-06 2004-06-03 Hidekazu Itaka Combustion efficiency improving device
US6972118B2 (en) * 2001-12-14 2005-12-06 Hadronic Press, Inc. Apparatus and method for processing hydrogen, oxygen and other gases
JP2007506856A (en) * 2004-08-05 2007-03-22 コリア インスティテュート オブ エナジー リサーチ Low-temperature catalytic gasification apparatus and method for biomass refined fuel
JP3133388U (en) * 2007-03-22 2007-07-12 有限会社公郷生命工学研究所 Pneumatic electronic equipment
JP2007526110A (en) * 2003-12-09 2007-09-13 セパレーション デザイン グループ、エルエルシー Sorption methods, equipment, and systems
JP3136471U (en) * 2007-04-19 2007-11-01 有限会社公郷生命工学研究所 Air thermal electronic device
CN203392969U (en) * 2013-07-05 2014-01-15 江苏达胜加速器制造有限公司 Device for improving wastewater treatment efficiency by irradiation of electron accelerator
JP2014512500A (en) * 2011-02-09 2014-05-22 クリアサイン コンバスチョン コーポレイション Method and apparatus for electrodynamically driving charged gas or charged particles accompanying the gas
JP2015163833A (en) * 2014-01-28 2015-09-10 株式会社五常 Low-temperature pyrolysis treatment furnace, low-temperature pyrolysis treatment system, and low-temperature pyrolysis treatment method
JP2016531184A (en) * 2013-08-20 2016-10-06 バイオマス エナジー エンハンスメンツ エルエルシー Biochar by microwave using processed (BENEFICITED) raw material
JP2016535815A (en) * 2013-11-09 2016-11-17 テクガー エルエルシー Char by microwave system
JP2017523271A (en) * 2014-06-17 2017-08-17 フュエライナ テクロノジーズ,エルエルシー Hybrid fuel and method for producing hybrid fuel
JP2018086602A (en) * 2016-11-28 2018-06-07 芳信 林 Recycling system of alpha-ray generation product as the activation means of molecule or atom

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4423312B2 (en) * 2007-03-07 2010-03-03 シャープ株式会社 Electronics
JP2018136505A (en) * 2017-02-23 2018-08-30 コニカミノルタ株式会社 Image forming apparatus
JP7258333B2 (en) * 2018-12-03 2023-04-17 株式会社ダイワオート Internal combustion engine auxiliary equipment

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6972118B2 (en) * 2001-12-14 2005-12-06 Hadronic Press, Inc. Apparatus and method for processing hydrogen, oxygen and other gases
JP2004156523A (en) * 2002-11-06 2004-06-03 Hidekazu Itaka Combustion efficiency improving device
JP2007526110A (en) * 2003-12-09 2007-09-13 セパレーション デザイン グループ、エルエルシー Sorption methods, equipment, and systems
JP2007506856A (en) * 2004-08-05 2007-03-22 コリア インスティテュート オブ エナジー リサーチ Low-temperature catalytic gasification apparatus and method for biomass refined fuel
JP3133388U (en) * 2007-03-22 2007-07-12 有限会社公郷生命工学研究所 Pneumatic electronic equipment
JP3136471U (en) * 2007-04-19 2007-11-01 有限会社公郷生命工学研究所 Air thermal electronic device
JP2014512500A (en) * 2011-02-09 2014-05-22 クリアサイン コンバスチョン コーポレイション Method and apparatus for electrodynamically driving charged gas or charged particles accompanying the gas
CN203392969U (en) * 2013-07-05 2014-01-15 江苏达胜加速器制造有限公司 Device for improving wastewater treatment efficiency by irradiation of electron accelerator
JP2016531184A (en) * 2013-08-20 2016-10-06 バイオマス エナジー エンハンスメンツ エルエルシー Biochar by microwave using processed (BENEFICITED) raw material
JP2016535815A (en) * 2013-11-09 2016-11-17 テクガー エルエルシー Char by microwave system
JP2015163833A (en) * 2014-01-28 2015-09-10 株式会社五常 Low-temperature pyrolysis treatment furnace, low-temperature pyrolysis treatment system, and low-temperature pyrolysis treatment method
JP2017523271A (en) * 2014-06-17 2017-08-17 フュエライナ テクロノジーズ,エルエルシー Hybrid fuel and method for producing hybrid fuel
JP2018086602A (en) * 2016-11-28 2018-06-07 芳信 林 Recycling system of alpha-ray generation product as the activation means of molecule or atom

Also Published As

Publication number Publication date
JP2022031859A (en) 2022-02-22
JP6991647B1 (en) 2022-02-03
JPWO2022029999A1 (en) 2022-02-10

Similar Documents

Publication Publication Date Title
US7752983B2 (en) Method and apparatus for plasma gasification of waste materials
JP4219889B2 (en) Hazardous waste treatment method and apparatus
KR20070004667A (en) System for gasification of biomass and method for operation thereof
US8999018B2 (en) Apparatus and method for rapidly producing synthetic gas from bio-diesel by-product using microwave plasma
JP2015507673A (en) Externally heated microwave plasma gasification furnace and synthesis gas production method
US20230081521A1 (en) Treatment apparatus and treatment method for raw material
WO2022029999A1 (en) Thermochemical conversion method and thermochemical conversion device
JP6595073B1 (en) Waste treatment method and system
CN101816090B (en) Fuel cell apparatus
KR20120019177A (en) Microwave plasma gasifier and method for synthetic gas production
US20060144305A1 (en) Method and apparatus for plasma gasification of waste materials
KR20130115924A (en) Microwave plasma gasifier and improve method of gasification efficiency using thereof
EP2660302A1 (en) Gasification melting furnace and treating method for combustible material using the same
KR100834298B1 (en) A method of incineration by generating water gas using thermal energy in an incinerator itself.
JP2006291251A (en) Method for blowing reducing material into blast furnace and device therefor
KR102098399B1 (en) Integrated gasification fuel cell system capable of controlling nitrogenous compopund
JP6574351B2 (en) Waste treatment facility and method for controlling the amount of power transmitted from the facility
CN109072102A (en) coal gasification
CN115612769B (en) Energy system of iron-making blast furnace
US7582265B2 (en) Gas conduit for plasma gasification reactors
CN214307097U (en) Pulverized coal combustion device based on steam thermal plasma
KR101590120B1 (en) Gasification system for fuel substitution of industrial fired boiler
CN105861006B (en) One kind being based on high voltage electrolytic biomass pressurized pyrolysis technique
JPH11135139A (en) Combined power generating system of fuel cell and gas turbine
KR101519528B1 (en) Method and device for preparing synthesis gas from biomass

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020573060

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20948082

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20948082

Country of ref document: EP

Kind code of ref document: A1