WO2022029930A1 - Optical connector and optical connection structure - Google Patents

Optical connector and optical connection structure Download PDF

Info

Publication number
WO2022029930A1
WO2022029930A1 PCT/JP2020/030024 JP2020030024W WO2022029930A1 WO 2022029930 A1 WO2022029930 A1 WO 2022029930A1 JP 2020030024 W JP2020030024 W JP 2020030024W WO 2022029930 A1 WO2022029930 A1 WO 2022029930A1
Authority
WO
WIPO (PCT)
Prior art keywords
flange
optical
ferrule
optical connector
adapter
Prior art date
Application number
PCT/JP2020/030024
Other languages
French (fr)
Japanese (ja)
Inventor
光太 鹿間
昇男 佐藤
健 坂本
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to PCT/JP2020/030024 priority Critical patent/WO2022029930A1/en
Priority to JP2022541412A priority patent/JPWO2022029930A1/ja
Publication of WO2022029930A1 publication Critical patent/WO2022029930A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/38Mechanical coupling means having fibre to fibre mating means

Definitions

  • the present invention relates to a small optical connector and an optical connection structure.
  • the housing is equipped with a guide structure that allows the optical connector to be inserted and removed from the outside, and by inserting an optical connector that matches the guide structure, it can be optically coupled to the optical transmitter / receiver inside the housing. Is possible.
  • the size of pluggable transceivers is becoming smaller year by year due to the need for increased communication capacity, and the housing is becoming smaller to the same extent as the guide structure for optical connectors. Therefore, in order to further reduce the size of the housing in the future, it is required to reduce the size of the guide mechanism, that is, to further reduce the size of the optical connector that fits the guide mechanism.
  • optical connector for connecting optical fibers such as an optical connector for a pluggable transceiver
  • a cylindrical ferrule represented by an SC connector or an LC connector is known.
  • Non-Patent Document 1 The cylindrical ferrule disclosed in Non-Patent Document 1 is provided with a hole slightly larger than the clad outer diameter of the optical fiber along its central axis, the fiber is adhesively fixed, and the tip is polished with a spherical surface. Has been done.
  • the ferrule is integrated with a metal part called a flange by press fitting.
  • a coil spring is provided behind the flange on the opposite side of the ferrule end.
  • the optical connector has a stop ring component that is integrated with the coil spring so that the flange does not fall off, and a plastic housing component that is arranged so as to surround them. The optical fibers are connected to each other by inserting these ferrules into a split sleeve in the adapter and mechanically fastening the adapter housing and the connector housing.
  • the ferrules are pressed against each other in the split sleeve by the compressive force of the spring.
  • the fibers in the ferrule can be closely connected to each other, and it is possible to prevent Fresnel reflection by air.
  • connection method is called physical contact connection (PC connection), and PC connection technology using ferrules and springs is a method widely used in optical connectors.
  • PC connection physical contact connection
  • ferrules and springs are a method widely used in optical connectors.
  • optical connector of this structure uses a mechanical fastening structure such as a spring part and a housing part, there is a limit to miniaturization.
  • Non-Patent Document 2 As one measure for miniaturization, as disclosed in Non-Patent Document 2, the above-mentioned housing parts are removed, ferrules integrated with flanges are inserted into split sleeves, and flanges are sandwiched between leaf springs. Therefore, a structure has been proposed that expresses the pressing force required for PC connection.
  • a method using a leaf spring has problems such as a large size of an external leaf spring component and deterioration of operability at the time of insertion / removal.
  • Non-Patent Document 3 by using magnets for the flange and adapter and using it as a pressing force by exerting an attractive force by magnetic force on the flange, it is possible to realize PC connection without using mechanical fastening parts or spring parts. Small optical connectors are disclosed.
  • FIG. 11A shows the configuration of the optical connector disclosed in Non-Patent Document 3, and FIG. 11B shows a side sectional view thereof.
  • the optical connector includes a pair of optical fibers 701, a ferrule 702, and a flange 703, and the pair of optical fibers 701 and the ferrule 702 face each other and are housed in a sleeve in the adapter 704 and abutted against each other. It is a structure in which the connection is made.
  • the ferrule 702 and the flange 703 are integrated by press fitting.
  • the ferrule 702 has a microhole having an inner diameter slightly larger than the outer diameter of the fiber in the center of the ferrule 702, and the optical fiber 701 from which the coating 707 is removed is housed in the microhole, and the optical fiber 701 and the ferrule 702 are accommodated.
  • the optical fiber 701 and the flange 703 are fixed by an adhesive (not shown).
  • the tips of the optical fiber 701 and the ferrule 702 are polished into a convex spherical shape, and are appropriately polished into a shape suitable for PC connection.
  • at least one of the adapter 704 and the flange 703 is made of a permanent magnet, and if only one is a magnet, the other is made of a metallic magnetic material.
  • a coil spring is attached to the end of the flange on the fiber extraction side in order to eliminate the gap between the fiber cores and realize a PC connection that is in close contact. It was necessary to provide it or sandwich it with a leaf spring or the like.
  • the magnetic force is used as the pressing force to apply the pressing force for closely connecting the optical fibers 701 at the ends of the ferrule 702 by the attractive force of the magnet without applying the spring element. It will be possible to add.
  • the attractive force of the magnet also exerts the effect of holding the member, stable PC connection can be maintained without the need for mechanical fastening parts. That is, the number of members can be reduced, and as a result, a smaller PC connection type optical connector can be realized.
  • ferrule protrusion lengths when the sum of the lengths of the ferrules 702 protruding from the opposing flanges 703 (hereinafter referred to as “ferrule protrusion lengths") is longer than the length of the adapter 704 due to its structural characteristics, Since the flange 703 and the adapter 704 come into contact with each other, the ferrules 702 cannot come into contact with each other.
  • the length of the adapter 704 is the ferrule protrusion length. From the sum of the reference values, it is necessary to set the adapter 704 short or the ferrule protrusion length long in advance. For example, when shortening the adapter, it is necessary to set the reference value smaller by 2 ⁇ dx1 + dx2 in advance.
  • dx1 and dx2 are designed to be 0.05 mm, a gap of 0.3 mm may occur. Furthermore, in addition to the dimensional tolerance of the design length, the flatness of the member and the tolerance of the squareness also affect, so there is a concern that the gap will become larger.
  • the magnetic force becomes smaller as the gap between the magnetic materials becomes larger. Therefore, when the void becomes larger than necessary as in the above example, the magnetic force required for PC connection cannot be stably expressed. Further, when the temperature change or the like is taken into consideration, the member expands / contracts, so that the gap may increase and the magnetic force may further decrease.
  • the optical connector according to the present invention is an optical connector for connecting optical fibers having a waveguide surrounded by a clad so as to face each other, and the optical connector is described above.
  • a ferrule having a guide hole for accommodating the fiber, a flange arranged on the optical fiber extraction side at one end of the guide hole and connected to the ferrule via an elastic structure, and a pair of the ferrules having a central axis of the ferrule.
  • An optical fiber is provided with a sleeve that is housed so as to be opposed to each other and an adapter that includes a magnet or a metallic magnetic material around the sleeve, and the material of at least one of the adapter and the flange contains a magnet.
  • the length of the adapter in the longitudinal direction is set to be equal to or less than the sum of the protrusion lengths of the pair of ferrules, the elastic structure is elastically deformed, and the cores of the opposing optical fibers are in close contact with each other. It is characterized by.
  • the optical connector according to the present invention is an optical connector for connecting optical fibers having a waveguide surrounded by a cladding so as to face each other, and is provided with a guide hole for accommodating the optical fiber.
  • At least one of the materials includes a magnet
  • the length of the adapter in the longitudinal direction of the optical fiber is set to be equal to or less than the sum of the protrusion lengths of the pair of ferrules
  • the elastic structure is elastically deformed and opposed to the above. It is characterized in that the cores of the optical fibers are in close contact with each other.
  • the optical connector restrictions on the design and manufacture of the optical connector are relaxed, and it is possible to provide a small optical connector and an optical connection structure having a stable PC connection.
  • FIG. 1A is a side sectional view of an optical connector according to the first embodiment of the present invention.
  • FIG. 1B is a side sectional view of an optical connector according to the first embodiment of the present invention.
  • FIG. 2A is a diagram for explaining the effect of the optical connector according to the first embodiment of the present invention.
  • FIG. 2B is a diagram for explaining the effect of the optical connector according to the first embodiment of the present invention.
  • FIG. 3 is a side sectional view of an optical connector plug in the optical connector according to the first embodiment of the present invention.
  • FIG. 4 is a side sectional view of an optical connector plug in the optical connector according to the first embodiment of the present invention.
  • FIG. 5A is a side sectional view of the optical connector according to the second embodiment of the present invention.
  • FIG. 5B is a side sectional view of the optical connector according to the second embodiment of the present invention.
  • FIG. 6 is a side sectional view of an optical connector plug in the optical connector according to the second embodiment of the present invention.
  • FIG. 7 is a side sectional view of an optical connector plug in the optical connector according to the second embodiment of the present invention.
  • FIG. 8 is a side sectional view of an optical connector plug in the optical connector according to the third embodiment of the present invention.
  • FIG. 9 is a side sectional view of an optical connector plug in an optical connector according to a modification of the third embodiment of the present invention.
  • FIG. 10A is a diagram for explaining the operation of the optical connection structure according to the fourth embodiment of the present invention.
  • FIG. 10B is a diagram for explaining the operation of the optical connection structure according to the fourth embodiment of the present invention.
  • FIG. 11A is a bird's-eye view showing the configuration of a conventional optical connector.
  • FIG. 11B is a side sectional view of a conventional optical connector.
  • FIG. 1A shows the configuration of the optical connector 10 according to the present embodiment.
  • the optical connector 10 includes an optical fiber 101, a ferrule 102, and a flange 103, and the pair of optical fibers 101 and the ferrule 102 are opposed to each other so that the central axes of the ferrule 102 coincide with each other, and are housed in a sleeve 106 in the adapter 105. By abutting them together, the optical fibers 101 are connected to each other.
  • the ferrule 102 and the flange 103 are integrated (connected) via an elastic structure 108.
  • the flange 103 and the second flange 104 are connected via an elastic structure 108.
  • the elastic structure 108 is elastically deformed, and the second flange 104 is attracted to the adapter 105 by exerting a magnetic force and comes into contact with the adapter 105 (described later).
  • the ferrule 102 is provided with a microhole (guide hole) having an inner diameter slightly larger than the outer diameter of the optical fiber at the center of the ferrule 102, and the flange 103 is also provided with a hole capable of accommodating the optical fiber 101.
  • An optical fiber 101 from which the optical fiber coating 107 has been removed is housed in a microhole of the ferrule 102, and the optical fiber 101 and the ferrule 102, and the optical fiber 101 and the flange 103 are fixed by an adhesive (not shown).
  • the tips of the optical fiber 101 and the ferrule 102 are polished on a convex spherical surface, and are appropriately polished into a shape suitable for PC connection. Further, the optical fiber 101 has a waveguide core surrounded by a cladding.
  • any known type and material of optical fiber and type and material of ferrule can be applied.
  • quartz fiber or plastic fiber may be used, and zirconia, crystallized glass, borosilicate glass, plastic, metal, or the like may be used for the ferrule.
  • the coating 107 is applied around the optical fiber 101, a known tube, nylon coating, or the like may be provided around the coating in two or more layers.
  • the sleeve has a cylindrical sleeve having an inner diameter slightly larger than the outer diameter of the ferrule 102, or an inner diameter slightly smaller than the outer diameter of the ferrule 102 in the optical fiber longitudinal direction (X1 direction in FIG. 1). ) May be any of the split sleeves provided with splits. The same applies to the sleeve material regardless of whether zirconia, metal, plastic, etc. are used.
  • a permanent magnet is used for the adapter 105.
  • any known magnet may be used depending on the magnetic force to be expressed.
  • the material is, for example, a neodymium magnet, and in addition, a ferrite magnet, an alnico magnet, a samarium cobalt magnet, KS steel, MK steel, a neodymium iron boron magnet, or the like can be used.
  • the adapter 105 having a permanent magnet is magnetized to N pole and S pole along the longitudinal direction of the optical fiber shown in FIG.
  • a metallic magnetic material is used for the flange 103.
  • the flange 103 for example, there is SUS430, which is an inexpensive and excellent material for machining, and in addition, a flange 103 having magnetism such as iron, nickel, cobalt, or stainless steel (SUS) which is an iron-based alloy can be used. ..
  • a permanent magnet may be used for the flange 103.
  • the adapter 105 may be made of a metallic magnetic material as described above, a known soft magnetic material, or the like.
  • the magnet may be formed by stacking magnets having a half-divided structure symmetrically divided into two in the optical axis direction of the optical fiber 101, and similarly, a magnet arbitrarily divided into N parts. Pairs (N is an integer of 2 or more) may be used.
  • the size of the optical connector 10 according to the present embodiment at the time of connection is, for example, a cross-sectional size of 3 mm ⁇ 3 mm and a length in the optical axis direction (optical fiber longitudinal direction) of 9 mm. Since the size of the small optical connector such as the conventional LC type has a cross-sectional size of 7 mm ⁇ 9 mm and a length of 30 mm, the optical connector according to the present embodiment is very small compared to the conventional one. be.
  • the size of the optical connector 10 can be, for example, a cross-sectional size of 2 mm ⁇ 2 mm or more and 6 mm ⁇ 6 mm or less, and a length of 6 mm or more and 10 mm or less.
  • a SUS430 flange is used for the flange 103
  • a zirconia ferrule having an outer diameter of 1.25 mm ⁇ is used for the ferrule 102
  • a quartz-based single-mode optical fiber is used for the optical fiber 101
  • neodymium is used for the adapter 105.
  • a magnet (about 3 ⁇ 3 ⁇ 3 mm 3 ) can be used.
  • the protruding length of the ferrule 102 is set to about 1.5 mm, and the ferrule 102 to which the optical fiber 101 is fixed faces each other and is connected via the sleeve 106.
  • the outer shapes of the flange 103 and the adapter 105 are rectangular or rectangular is shown, but of course, any shape can be used for the outer shape.
  • the outer shape may be circular, elliptical, polygonal, or the like. The above is the same in the following other examples.
  • a large gap may occur between the flange 103 and the adapter 105 due to the dimensional tolerance between the ferrule protrusion length from the flange 103 and the length of the adapter 105 as described above.
  • the magnetic force between the flange 103 and the adapter 105 does not work sufficiently, and in the worst case, the PC connection may not be realized.
  • FIG. 2A even if the dimensional tolerance is large and a large gap is generated between the flange 103 and the adapter 105, FIG. 2B shows. As shown, the elastic structure 108 between the flange 103 and the ferrule 102 is elastically deformed so that the flange 103 and the adapter 105 can be brought into contact with each other.
  • contact means that at least a part of the facing surfaces is in contact with each other, and the surfaces do not have to be in perfect contact with each other. This is not surprising given that the actual contact surfaces are not perfectly parallel and flat.
  • the magnetic force acting on the flange 103 and the adapter 105 is F1
  • the elastic structure is deformed
  • the magnetic force acting when the flange 103 and the adapter 105 come into contact is F1max
  • the deformation of the elastic structure 108 acts between the flange 103 and the ferrule 102.
  • the reaction force is F2
  • the reaction force acting between the flange 103 and the ferrule 102 when the flange 103 and the adapter 105 are in contact F2max
  • a gap is generated between the flange 103 and the adapter 105, and the size thereof depends on the length of the gap. Its value is approximately inversely proportional to the square of the distance, and its value increases significantly as the gap becomes smaller.
  • reaction force F2 by selecting a material having a small Young's modulus as the elastic body, F2 can be made sufficiently smaller than F1, and within the range of elastic deformation, F2 is relative to the amount of decrease in the gap. It only increases linearly.
  • the configuration of the optical connector 10 according to the present embodiment is such that the pressing force Fa can realize PC connection in consideration of the above relationship. By designing, it is possible to realize stable PC connection even if there is a dimensional tolerance.
  • the optical connector 10 As described above, by using the optical connector 10 according to the present embodiment, various dimensional tolerances (length tolerance, flatness, squareness, etc.) of the ferrule protrusion length from the end of the flange 103 and the adapter length can be obtained.
  • the conditions for process control by polishing can be relaxed, the manufacturing yield of the member can be significantly improved, and the member cost can be reduced.
  • Non-Patent Document 3 when the magnet material is a neodymium magnet and the flange is SUS430, the magnet size is set to about 3 ⁇ 3 ⁇ 3 mm 3 , and the pressing force required for PC connection is achieved by 3 N or more.
  • the gap must be 0.08 mm or less, and the member dimensional tolerance must be strictly specified.
  • the dimensional error can be absorbed by the elastic deformation of the elastic structure 108, and sufficient pressing force can be transmitted to the ferrule 102. ..
  • the optical connector 10 As described above, according to the optical connector 10 according to the present embodiment, it is possible to maintain a stable PC connection without strictly defining the dimensional tolerance of the member, and it is possible to realize a compact and high-performance optical connector. ..
  • the length of the adapter 105 in the longitudinal direction of the optical fiber is set to be equal to or less than the sum of the protruding lengths of the two (one pair) ferrules 102 facing each other and the dimensional tolerance is taken into consideration, the length of the optical fiber is taken into consideration.
  • a gap is created between the flange 103 and the adapter 105 in the direction, but the elastic structure 108 connecting the ferrule 102 and the adapter 105 is deformed, so that the flange 103 and the adapter 105 come into contact with each other for stable PC. The connection can be realized.
  • the design value of the sum of the protrusion lengths of the two (1 pair) ferrules 102 facing each other from the flange 103 of the adapter 105 is the dimensional tolerance of the ferrule protrusion length ⁇ dx1 and the adapter length as described above. Assuming that the dimensional tolerance is dx2, it is necessary to anticipate and set this tolerance in advance. When shortening the adapter, it is necessary to set the reference value as small as 2 ⁇ dx1 + dx2 in advance.
  • the gap (gap) between the flange 103 and the adapter 105 is 2 x dx1 + dx2 minutes on each of the connecting sides. It will occur the maximum.
  • the elastic structure is an elastic structure capable of absorbing 2 ⁇ dx1 + dx2 for the maximum gap.
  • the flange 103 is on the side where the optical fiber is inserted from the outside in the longitudinal direction of the ferrule 102 (the X2 direction in FIGS. 2A and 2B) (hereinafter referred to as “optical fiber extraction side”).
  • a movable elastic deformation region 109 in which the elastic structure 108 can be deformed is provided between the end portion of the ferrule 102 and the end portion of the ferrule 102. In this movable elastic deformation region 109, the elastic structure 108 is shear deformable in the longitudinal direction.
  • the elastic structure 108 cannot be deformed because the members, specifically the ferrule 102 and the flange 103, mechanically interfere with each other within the range of the length of the movable elastic deformation region 109 or more.
  • the maximum deformable value of the elastic structure 108 it is possible to prevent shear failure of the elastic structure 108 due to excessive shear deformation.
  • FIG. 3 is a side sectional view showing the configuration of the optical connector plug 21 in the optical connector according to the first embodiment of the present invention.
  • the optical connector plug 21 includes an optical fiber 201, a ferrule 202, and a flange 203, and the ferrule 202 and the flange 203 are connected by an elastic adhesive 211 having an elastic structure.
  • the elastic adhesive 211 is arranged (applied or filled) along the outer circumference of the ferrule 202 and fixed.
  • Materials of the elastic adhesive 211 include silicone, modified silicone, urethane, modified urethane, silylated urethane and their derivatives, other rubber-based adhesives, modified silicone-type epoxy matrix-based adhesives, acrylic resins, and epoxy. A resin or the like can be appropriately selected.
  • a rubber sheet 212 which is an example of a rubber-based material that can be easily elastically deformed, can be used for the elastic structure.
  • the rubber sheet 212 is arranged along the outer circumference of the ferrule 202, and the rubber sheet 212 and the ferrule 202 or the rubber sheet 212 and the flange 203 are integrated by using a rubber adhesive.
  • the rubber material 212 any known rubber material can be used. Further, an additive or the like may be appropriately added to adjust the Young's modulus. By using a rubber sheet, it is possible to control the thickness of the elastic structure in advance.
  • the length of the elastic structure along the longitudinal direction of the ferrule is L
  • the thickness is t
  • the radius of the ferrule is r
  • the amount of elastic deformation in the longitudinal direction of the ferrule is dL
  • the magnetic force acting between the flange and the adapter before the deformation of the elastic structure is F.
  • is Poisson's ratio.
  • the rigidity G can be expressed by the equation (2) when the elastic structure is deformed by the amount of elastic deformation dL in the longitudinal direction of the ferrule.
  • the configuration of the above conditions can be realized if the Young's modulus E is 4.43 MPa or less. This value is a reasonable value because the Young's modulus of rubber-based materials and elastic adhesives can be designed to be about 0.1 MPa to 10 MPa.
  • the above values are an example, and the elastic structure can be arbitrarily designed in consideration of Young's modulus according to the equation (4).
  • an elastic adhesive or a rubber-based material is used for the elastic structure, but the present invention is not limited to this, and any structure may be used as long as it can perform a certain amount of shear deformation with a small force at room temperature.
  • a resin having a small Young's modulus is desirable.
  • the flange 203 and the ferrule 202 can be integrated and the elastic structure can be formed without using other additional parts.
  • the optical connector according to the present embodiment has substantially the same configuration as the optical connector according to the first embodiment and has substantially the same effect, but the adapter configuration and the flange configuration are different.
  • FIG. 5A is a side sectional view showing a configuration of an optical connector according to a second embodiment of the present invention.
  • the optical connector 30 includes an optical fiber 301 and a ferrule 302, and a first flange 303 and a second flange 304, and the optical fiber 301 and the ferrule 302 face each other and are housed in a sleeve 306 in the adapters 3051 and 3052.
  • the first flange 303 and the second flange 304 are connected by an elastic structure 308.
  • the elastic structure 108 is elastically deformed, and the second flange 304 attracts the adapters 3051 and 3052 by exerting a magnetic force and comes into contact with the adapter 105 (described later).
  • the adapter in the present embodiment has a structure in which the adapter is vertically divided into two halves and has a pair of N poles and S poles around the axis, and the attractive force by the magnet is expressed more greatly. There is.
  • the adapter has a half-split structure and consists of a pair of halves 3051 and 3052.
  • the half body 3051 is magnetized in one direction in the longitudinal direction of the optical fiber, one end having an N pole and the other end having an S pole.
  • the polarity of the half body 3052 is magnetized in the direction opposite to the magnetization direction of the half body 3051 in the longitudinal direction of the optical fiber, and one end is the S pole and the other end is the N pole.
  • the half body 3051 and the half body 3052 are symmetrical in the plane including the central axis of the optical connector 300, and the opposite surfaces of the half body 3051 and the half body 3052 have opposite polarities. There is.
  • the adapters 3051 and 3052 With the configuration of the adapters 3051 and 3052, it is possible to realize a small PC-connected optical connector by eliminating the mechanical pressing / holding structure, similar to the effect in the first embodiment. Furthermore, the attractive force of the magnet can be further expressed.
  • the adapter is divided into two parts (half-split) consisting of a pair of halves 3051 and 3052, but the adapter is divided into a plurality of parts (magnets) even if the adapter is not a pair. It suffices that the paired members (magnets) of each pair have opposite polarities on the facing surfaces.
  • the adapters 3051 and 3052 include magnets having at least one pair of N pole and S pole symmetrically along the direction orthogonal to the axial direction of the optical fiber 301, and form a pair of divided adapters.
  • the structure may be such that the opposing surfaces of the magnets are arranged so as to have opposite poles so that an attractive force acts on the magnets.
  • the adapters 3051 and 3052 are rectangular parallelepipeds, and the paired halves are symmetrical in a plane perpendicular to the upper surface including the central axis. If the pole half body is symmetric, another plane may be used as the plane of symmetry, and the configuration may be such that the N pole half body and the S pole half body are arranged symmetrically. If the adapters 3051 and 3052 have a cylindrical shape, the plane including the central axis may be a plane of symmetry.
  • the flange is composed of a first flange 303 and a second flange 304, and the flange integrated with the ferrule 302 is the first flange 303, while the flange on the side that attracts the adapters 3051 and 3052 by applying magnetic force is used.
  • the second flange 304 is used.
  • the first flange 303 is integrated with the ferrule 302 by press fitting, and cannot be deformed in the longitudinal direction of the optical fiber.
  • the first flange 303 and the second flange 304 are connected via an elastic structure 308.
  • the flange and the ferrule 302 are integrated via the elastic structure 308, whereas in the present embodiment, the flange and the ferrule 302 are integrated between the first flange 303 and the second flange 304.
  • the elastic structure 308 is arranged.
  • the effect in the first embodiment is the same. Since the elastic structure 308 between the second flange 304 and the first flange 303 is elastically deformed at the time of connecting the connector, the second flange 304 and the adapters 3051 and 3052 can be brought into contact with each other. As a result, since the magnetic force acting between the second flange 304 and the adapters 3051 and 3052 can be increased, an appropriate pressing force is applied to the ferrule 302, and a stable PC connection can be realized.
  • the lengths of the adapters 3051 and 3052 in the longitudinal direction of the optical fiber are set to be equal to or less than the sum of the protruding lengths of the two (1 pair) ferrules 302 facing each other, and the optical fiber takes dimensional tolerance into consideration.
  • a gap is created between the second flange 304 and the adapters 3051 and 3052 in the longitudinal direction, but the elastic structure 108 connecting the first flange 303 and the second flange 304 is deformed, so that the second flange 304 is deformed.
  • the flange 304 and the adapters 3051 and 3052 come into contact with each other to realize a stable PC connection.
  • the design value of the sum of the protrusion lengths of the two (1 pair) ferrules 302 facing the lengths of the adapters 3051 and 3052 from the second flange 304 has the dimensional tolerance of the ferrule protrusion length as described above. Assuming that ⁇ dx1 and the dimensional tolerance of the adapter length are dx2, it is necessary to anticipate and set this tolerance in advance.
  • the elastic structure is an elastic structure capable of absorbing 2 ⁇ dx1 + dx2 for the maximum gap.
  • the ferrule 302 protrusion length from the first flange 303 end, the ferrule 302 protrusion length from the second flange 304 end, and the adapter.
  • Various dimensional tolerances such as length (length tolerance, flatness, squareness, etc.) and conditions in process control by polishing can be relaxed, and the manufacturing yield of parts can be greatly improved and the cost of parts can be reduced. can.
  • the same equipment as the existing optical connector can be used for the press-fitting process and the ferrule polishing process of the first flange 303 and the ferrule 302. Great manufacturing advantage.
  • the flange is manufactured by machining or casting, it has a greater degree of structural freedom than ferrules made by sintering, drawing, injection molding, etc., and the thickness and length of the elastic structure 308 are close to the connecting portion of the elastic structure 308.
  • a structure such as a protrusion or a groove for limiting the elasticity can be easily provided.
  • thermal stress is likely to be applied to the elastic structure 308, but in the present embodiment, the first flange 303 and the second flange By using the same magnet or metal-based material for 304, thermal stress can be reduced.
  • the elastic adhesive 411 and the rubber sheet 421 can be used for the elastic structure.
  • a protrusion 412 can be provided on the outer periphery of the first flange 403.
  • the first flange 403 when the first flange 403 is attached to the second flange 404, the first flange 403 is the outer peripheral portion of the first flange 403, the end portion of the elastic structures 411 and 421 on the optical fiber extraction side, and the second flange.
  • a protrusion 412 is provided between the flange 404 and the inner wall of the end on the optical fiber extraction side.
  • the movable elastic deformation region 413 is formed between the end portion of the elastic structures 411 and 421 on the optical fiber extraction side and the inner wall of the end portion of the second flange 404 on the optical fiber extraction side.
  • the movable elastic deformation region 413 can prevent shear failure of the elastic structures 411 and 421 due to excessive shear deformation due to insertion.
  • the structure is not limited to the one shown in the figure, and a mechanical interference structure may be appropriately provided other than the protrusions. Has the same effect.
  • the first flange 403 since the magnetic force acts between the second flange 404 and the adapter, the first flange 403 does not necessarily have to be a metal material attracted to the magnet, but naturally a magnetic metal material or a magnet is used. You may use it. Further, the shapes of the first flange 403 and the second flange 404 may be appropriately changed including the inner diameter so that they can be easily connected by the elastic structures 411 and 421.
  • the adapter has a half-split structure and consists of a pair of halves, but the present invention is not limited to this, and the adapter has a structure consisting of an integral magnet as in the first embodiment. May be good.
  • the optical connector according to the present embodiment has substantially the same configuration as the optical connector according to the first embodiment and has substantially the same effect, but the adapter configuration and the flange configuration are different.
  • FIG. 8 is a side sectional view showing the configuration of the optical connector plug 51 in the optical connector according to the third embodiment of the present invention. Similar to the first embodiment, the optical connector plug 51 includes an optical fiber 501, a ferrule 502, and a flange 503, and the flange 503 and the ferrule 502 are connected by an elastic structure 508.
  • the type of elastic structure 508 can be applied to either a rubber sheet or an elastic adhesive.
  • the movable elastic deformation region 513 is defined on the optical fiber extraction side as in the first embodiment, and the elastic structure 508 is defined so as not to be shear elastically deformed beyond a predetermined range. ..
  • optical fiber connecting side the protruding side of the ferrule 502
  • the ferrule 502 is displaced relative to the optical fiber drawing side with respect to the flange 503.
  • the amount is limited by mechanical interference.
  • it is possible to prevent shear failure of the elastic structure 508 due to excessive shear deformation.
  • a stopper structure is provided so as to define the maximum range of motion of the shear deformation region 514 of elastic deformation.
  • a protrusion 512 is provided on the outer peripheral portion of the ferrule 502 between the end portion of the elastic structure 508 on the optical fiber connection side and the inner wall of the end portion of the flange 503 on the optical fiber connection side.
  • the opening on the optical fiber connection side of the flange 503 is set to a size at which the inner wall of the opening and the protrusion 512 of the ferrule 502 abut.
  • the protrusion 512 limits the amount of relative displacement of the ferrule 502 with respect to the flange 503 toward the optical fiber connection side. That is, the protrusion 512 has a stopper structure.
  • the ferrule 502 including the protrusion 512 and the flange 503 are inserted and integrated by a method of avoiding mechanical interference.
  • the first method can be realized by arranging the inner wall of the protrusion 512 and the flange 503 in only one area on the outer periphery. As shown in the side sectional view of FIG. 8, the protrusion 512 and the flange 503 are arranged on the same surface. When inserting the flange and the ferrule at the time of assembly, the rotation angles of the flange 503 and the ferrule 502 in the direction around the optical axis are adjusted, and the flange and the inner wall of the flange 503 are inserted so as not to hit each other.
  • the protrusion 512 and the flange 503 mechanically interfere with each other, and the shear deformation beyond the predetermined range can be prevented.
  • the adapter of the optical connector plug since it is performed manually, a large shear stress due to insertion and removal may be applied to the elastic structure 508, and careful handling in consideration of the insertion and removal force may be required. rice field.
  • the adapter of the optical connector plug can be removed without being aware of the insertion / removal force.
  • FIG. 9 is a side sectional view showing a configuration of an optical connector plug 52 in an optical connector according to a modification of the third embodiment of the present invention.
  • the optical connector plug 52 includes an optical fiber 501, a ferrule 502, a first flange 503 and a second flange 504, and a first flange 503 and a second flange 504, as in the second embodiment.
  • the type of elastic structure 508 can be applied to either a rubber sheet or an elastic adhesive.
  • the first flange 503 has an outer peripheral portion of the end portion of the elastic structure 508 on the optical fiber extraction side and an inner wall of the end portion of the second flange 504 on the optical fiber extraction side.
  • the protrusion 522 By providing the protrusion 522 in between, the movable elastic deformation region 523 is provided on the optical fiber extraction side.
  • the amount of relative displacement of the first flange 503 with respect to the second flange 504 toward the optical fiber extraction side is limited by mechanical interference when the connector plug is inserted or the like.
  • the diameter of the opening at the end of the ferrule 502 on the optical fiber connection side of the second flange 504 is smaller than the outer diameter of the optical fiber connection side of the first flange 503.
  • the protrusion 512 has a stopper structure.
  • the second flange 504 and the first flange 503 are integrated by a method of avoiding mechanical interference in the same manner as described above.
  • the first method can be realized by arranging the inner walls of the first and second flanges that interfere with each other only in one area on the outer periphery. As shown in the side sectional view of FIG. 9, the structures that interfere with each other are arranged on the same surface as described above.
  • the second method is a method of finally joining (fixing) the inner wall end portion provided on the optical fiber connection side of the second flange 504. This is done by inserting the first flange into the second flange and finally through the elastic structure before joining (fixing) the end of the second flange 504 on the optical fiber connection side to the main body. This can be achieved by joining (fixing) the end of the flange 504 on the optical fiber connection side to the main body.
  • a washer, a ring-shaped component, or the like may be used to insert and join (fix) the second flange 504 from the fiber connection side.
  • the stopper portion of the second flange 504 and the first flange 503 mechanically interfere with each other, and the shear deformation exceeds a predetermined range. Can be prevented.
  • the adapter of the optical connector plug when removing the adapter of the optical connector plug, since it is performed manually, a large shear stress due to insertion and removal may be applied to the elastic structure 508, and careful handling in consideration of the insertion and removal force may be required. rice field.
  • the adapter of the optical connector plug can be removed without being aware of the insertion / removal force.
  • the flange 503 or the second flange 504 it is possible to prevent the flange 503 or the second flange 504 from being excessively sheared and deformed to the optical fiber extraction side and the optical fiber connection side, and the elastic structure associated therewith. Shear failure of 508 can be prevented. With these structures, it is possible to prevent peeling of the adhesive portion and material destruction due to large deformation of the elastic structure 508 when inserting and removing the optical connector from the adapter or when handling the optical connector.
  • 10A and 10B are side sectional views showing before and after connecting the optical connector plug in the optical connection structure 60 according to the fourth embodiment, respectively.
  • the optical connector plug 21 and the optical waveguide device 610 are connected.
  • the configuration is almost the same as that of the first embodiment, but the optical fiber extraction side of one optical connector is optically coupled to the core of the waveguide device and the core of the optical fiber with low loss via the optical waveguide device and the adhesive. It is connected and integrated so that it can be used.
  • the base end of the ferrule 602 which is accommodated in the adapter 605 via the sleeve 606, is connected to the optical waveguide device 610 via the reinforcing plate 603 and the adhesive layer 604.
  • the optical waveguide device 610 has an optical waveguide layer 612 on the optical waveguide substrate 611, and the optical waveguide core 613 in the optical waveguide layer 612 is coupled to the short fiber 601 in the ferrule 602.
  • the optical connector plug 21 is inserted and housed in the adapter 605. As a result, the optical fiber 201 and the short fiber 601 are coupled and connected.
  • a plane light wave circuit (Planar Lightwave Circuit) having a light propagation mechanism, a light emitting element, a light receiving element, an optical modulation element, an optical functional element (for example, a splitter, a wavelength splitting / demultiplexing device, light) Switches, polarization control elements, optical filters), etc.
  • Materials for optical waveguide devices include, for example, semiconductors such as silicon and germanium, III-V semiconductors such as indium phosphide (InP), gallium arsenide (GaAs), and indium gallium arsenide (InGaAs), and lithium niobate. Strong dielectrics, polymers, quartz glass, etc.
  • the elastic adhesive 211 between the ferrule 202 and the flange 203 is elastically deformed even when the dimensional tolerance is large and a large gap is generated between the flange 203 and the adapter 605. Therefore, the flange 203 and the adapter 605 can be brought into contact with each other. As a result, since the magnetic force acting between the flange 203 and the adapter 605 can be increased, a sufficient pressing force is applied to the ferrule 202, and a stable PC connection can be realized.
  • any of the first to third embodiments may be used.
  • the adapter is provided in advance on the optical waveguide device side, but it may be adhesively fixed to the optical connector plug side to be inserted. Further, the ferrule may be attached to the flange in advance, or may be attached via an adapter at the time of connection.
  • a magnet used for the flange, the first flange, the second flange, or the adapter is shown, but the flange, the first flange, the second flange, or a part of the adapter is shown. It may be configured to include a magnet, and the flange, the first flange, the second flange, or the adapter may have sufficient magnetic force to exert the function of the optical connector according to the embodiment of the present invention.
  • the present invention relates to a small optical connector and an optical connection structure, and can be applied to devices and systems such as optical communication.

Abstract

An optical connector (10) according to the present invention for positioning optical fibers (101) having a waveguide core, the periphery of which is surrounded by cladding, so as to face one another and be connected to one another, said optical connector (10) being equipped with ferrules (102) provided with a guide hole for housing an optical fiber (101), flanges (103) which are positioned on the end of the guide holes from which the optical fiber is drawn, and are connected to the ferrules (102) via an elastic structure (108), a sleeve (106) which causes the pair of ferrules (102) to be housed therein so as to face one another in a manner such that the center axes of said ferrules (102) align, and an adapter (105) containing a magnet or a metallic magnetic material and positioned around the sleeve (106), wherein the material of the adapter (105) and/or the flange (103) includes a magnet, the length of the adapter (105) in the lengthwise direction of the optical fiber is set so as to be no greater than the sum of the projecting lengths of the pair of ferrules (102), and the elastic structure (108) elastically deforms, causing the cores of the facing optical fibers (101) to tightly adhere to and contact one another. As a result, the present invention makes it possible to provide an optical connector which is compact and has a stable connection, without severely restricting the member dimensional tolerance or fabrication tolerance.

Description

光コネクタおよび光接続構造Optical connector and optical connection structure
 本発明は、小型の光コネクタおよび光接続構造に関する。 The present invention relates to a small optical connector and an optical connection structure.
 近年、動画サービスやIoT(Internet of Things)、クラウドサービスなどによるトラフィックの増加に伴い、データセンタ内やデータセンタ間の通信容量の大幅な拡大が求められている。通信容量の拡大を実現するために従来の電気信号を用いた短距離通信方式に代わり、光通信で用いられる光伝送技術などを用いた光インタコネクション技術の導入が進んでいる。この光インタコネクション技術においては、プラガブルトランシーバと呼ばれる光トランシーバ形態が良く用いられる。 In recent years, with the increase in traffic from video services, IoT (Internet of Things), cloud services, etc., there is a demand for a significant increase in communication capacity within and between data centers. In order to realize the expansion of communication capacity, the introduction of optical interconnection technology using optical transmission technology used in optical communication is progressing instead of the conventional short-distance communication method using electric signals. In this optical interconnection technology, an optical transceiver form called a pluggable transceiver is often used.
 このプラガブルトランシーバにおいては、その金属筐体内に光送受信器をはじめとする各種光部品とそれらを制御するための電気回路部品およびプリント基板などが収容されている。また、筐体には外部から光コネクタを挿抜することが可能なガイド構造が備えてあり、ガイド構造に適合する光コネクタを挿入することで、筐体内の光送受信器と光学的に結合することが可能となっている。 In this pluggable transceiver, various optical components such as optical transceivers, electric circuit components for controlling them, printed circuit boards, etc. are housed in the metal housing. In addition, the housing is equipped with a guide structure that allows the optical connector to be inserted and removed from the outside, and by inserting an optical connector that matches the guide structure, it can be optically coupled to the optical transmitter / receiver inside the housing. Is possible.
 前述のように通信容量増大のニーズに伴い、プラガブルトランシーバのサイズは年々小型化しており、光コネクタのためのガイド構造と同等程度までに筐体が小型化している。そのため今後の更なる筐体の小型化に向けては、ガイド機構も小型化する、すなわち、ガイド機構に適合する光コネクタのサイズを更に小型化していくことが求められている。 As mentioned above, the size of pluggable transceivers is becoming smaller year by year due to the need for increased communication capacity, and the housing is becoming smaller to the same extent as the guide structure for optical connectors. Therefore, in order to further reduce the size of the housing in the future, it is required to reduce the size of the guide mechanism, that is, to further reduce the size of the optical connector that fits the guide mechanism.
 また、小型筐体内で光ファイバ同士を接続する用途もあり、本用途においても極力小型な光コネクタが求められている。更には筐体を排したボード上での光インタコネクションの導入が今後進展していくと考えられ、その際にもボード上での光接続部の専有面積を低減するため、小型な光コネクタの需要が高まっている。 There is also an application for connecting optical fibers to each other in a small housing, and even in this application, an optical connector as small as possible is required. Furthermore, it is expected that the introduction of optical interconnection on the board without the housing will progress in the future, and in that case as well, in order to reduce the occupied area of the optical connection on the board, a small optical connector is used. Demand is rising.
 一般的にプラガブルトランシーバ用の光コネクタをはじめとする光ファイバ同士を接続する光コネクタとしては、SCコネクタやLCコネクタに代表される円筒フェルールを用いたものが知られている。 Generally, as an optical connector for connecting optical fibers such as an optical connector for a pluggable transceiver, one using a cylindrical ferrule represented by an SC connector or an LC connector is known.
 非特許文献1に開示される円筒フェルールには、その中心軸に沿って光ファイバのクラッド外径よりもわずかに大きい孔を備えてあり、ファイバは接着固定されて先端は球面の研磨加工が施されている。 The cylindrical ferrule disclosed in Non-Patent Document 1 is provided with a hole slightly larger than the clad outer diameter of the optical fiber along its central axis, the fiber is adhesively fixed, and the tip is polished with a spherical surface. Has been done.
 また、フェルールは、フランジと呼ばれる金属部品と圧入により一体化されている。フェルール端と逆側のフランジ後方にはコイルばねを備えている。その他、光コネクタは、このコイルばねとフランジが脱落しないように一体化するストップリング部品、およびそれらの周囲を囲むように配置されるプラスチックのハウジング部品を有している。これらのフェルール同士をアダプタ内の割スリーブに挿入し、アダプタハウジングと前記コネクタハウジングが機械的に締結することで、光ファイバ同士の接続がなされる。 In addition, the ferrule is integrated with a metal part called a flange by press fitting. A coil spring is provided behind the flange on the opposite side of the ferrule end. In addition, the optical connector has a stop ring component that is integrated with the coil spring so that the flange does not fall off, and a plastic housing component that is arranged so as to surround them. The optical fibers are connected to each other by inserting these ferrules into a split sleeve in the adapter and mechanically fastening the adapter housing and the connector housing.
 このとき、フェルール同士は割スリーブ内において、バネによる圧縮力によって押圧される。この押圧によって前記フェルール内のファイバ同士が密着接続することが可能となっており、空気によるフレネル反射を防止することが可能となっている。 At this time, the ferrules are pressed against each other in the split sleeve by the compressive force of the spring. By this pressing, the fibers in the ferrule can be closely connected to each other, and it is possible to prevent Fresnel reflection by air.
 このような接続方法はフィジカルコンタクト接続(PC接続)と呼ばれ、フェルールおよびバネを用いたPC接続技術は光コネクタで広く用いられている手法である。しかしながら、本構造の光コネクタはバネ部品や、ハウジング部品などの機械的な締結構造を用いるため小型化に限界がある。 Such a connection method is called physical contact connection (PC connection), and PC connection technology using ferrules and springs is a method widely used in optical connectors. However, since the optical connector of this structure uses a mechanical fastening structure such as a spring part and a housing part, there is a limit to miniaturization.
 小型化の1方策として、非特許文献2に開示されるように、前記のハウジング部品を排して、フランジと一体化したフェルール同士を割スリーブ内に挿入し、フランジ同士を板バネで挟むことで、PC接続に必要な押圧力を発現させる構造が提案されている。しかしながら、このような板バネを用いる方式では外部の板バネ部品のサイズが大きいことや、挿抜の際の操作性が悪化するなどの問題がある。 As one measure for miniaturization, as disclosed in Non-Patent Document 2, the above-mentioned housing parts are removed, ferrules integrated with flanges are inserted into split sleeves, and flanges are sandwiched between leaf springs. Therefore, a structure has been proposed that expresses the pressing force required for PC connection. However, such a method using a leaf spring has problems such as a large size of an external leaf spring component and deterioration of operability at the time of insertion / removal.
 非特許文献3に、フランジ及びアダプタに磁石を用い、フランジに磁力による引力を働かせて押圧力として用いることで、機械的な締結部品やばね部品などを用いることなくPC接続を実現することが可能な小型光コネクタが開示されている。 In Non-Patent Document 3, by using magnets for the flange and adapter and using it as a pressing force by exerting an attractive force by magnetic force on the flange, it is possible to realize PC connection without using mechanical fastening parts or spring parts. Small optical connectors are disclosed.
 図11Aに、非特許文献3に開示される光コネクタの構成を、図11Bにその側面断面図を示す。光コネクタは、1対の光ファイバ701とフェルール702、およびフランジ703を備え、1対の光ファイバ701とフェルール702とを対向させアダプタ704内のスリーブに収容して突き合わせることで、光ファイバ同士の接続がなされる構造である。 FIG. 11A shows the configuration of the optical connector disclosed in Non-Patent Document 3, and FIG. 11B shows a side sectional view thereof. The optical connector includes a pair of optical fibers 701, a ferrule 702, and a flange 703, and the pair of optical fibers 701 and the ferrule 702 face each other and are housed in a sleeve in the adapter 704 and abutted against each other. It is a structure in which the connection is made.
 ここで、既存の光コネクタと同様に、フェルール702とフランジ703は圧入により一体化されている。フェルール702は、ファイバ外径よりわずかに大きい内径のマイクロホールをフェルール702の中心に備えており、このマイクロホール内に被覆707を除去した光ファイバ701が収容され、光ファイバ701とフェルール702と、光ファイバ701とフランジ703は、接着剤(図示せず)によって固定されている。 Here, as with the existing optical connector, the ferrule 702 and the flange 703 are integrated by press fitting. The ferrule 702 has a microhole having an inner diameter slightly larger than the outer diameter of the fiber in the center of the ferrule 702, and the optical fiber 701 from which the coating 707 is removed is housed in the microhole, and the optical fiber 701 and the ferrule 702 are accommodated. The optical fiber 701 and the flange 703 are fixed by an adhesive (not shown).
 光ファイバ701及びフェルール702の先端は、凸球面状に研磨加工されており、PC接続に適した形に適切に研磨されている。ここで、アダプタ704およびフランジ703の少なくとも一方は永久磁石からなり、一方のみが磁石の場合は他方は金属性磁性材料からなる。 The tips of the optical fiber 701 and the ferrule 702 are polished into a convex spherical shape, and are appropriately polished into a shape suitable for PC connection. Here, at least one of the adapter 704 and the flange 703 is made of a permanent magnet, and if only one is a magnet, the other is made of a metallic magnetic material.
 従来のLCコネクタ等の機械的なばねを用いた光コネクタでは、ファイバのコア間のギャップをなくして密着状態とするPC接続を実現するために、フランジのファイバ引出側の端部にコイルばねを設ける、あるいは板バネなどで挟む必要があった。 In an optical connector that uses a mechanical spring such as a conventional LC connector, a coil spring is attached to the end of the flange on the fiber extraction side in order to eliminate the gap between the fiber cores and realize a PC connection that is in close contact. It was necessary to provide it or sandwich it with a leaf spring or the like.
 一方、非特許文献3に開示される光コネクタでは、磁力を押圧力として用いることでバネ要素を加えることなく、磁石による引力によってフェルール702端の光ファイバ701同士を密着接続させるための押圧力を加えることが可能となる。また、磁石による引力が部材を保持する効果も発現するため、機械的な締結部品を要することなく安定的なPC接続を保つことができる。すなわち部材点数を少なくすることができ、結果的により小型なPC接続型光コネクタを実現することが可能となる。 On the other hand, in the optical connector disclosed in Non-Patent Document 3, the magnetic force is used as the pressing force to apply the pressing force for closely connecting the optical fibers 701 at the ends of the ferrule 702 by the attractive force of the magnet without applying the spring element. It will be possible to add. In addition, since the attractive force of the magnet also exerts the effect of holding the member, stable PC connection can be maintained without the need for mechanical fastening parts. That is, the number of members can be reduced, and as a result, a smaller PC connection type optical connector can be realized.
 しかしながら図11Bに示すように、その構造的特徴から、相対するフランジ703から突出するフェルール702の長さ(以下、「フェルール突き出し長さ」という。)の和がアダプタ704の長さよりも長い場合、フランジ703とアダプタ704が接触するのでフェルール702同士が接触できない。 However, as shown in FIG. 11B, when the sum of the lengths of the ferrules 702 protruding from the opposing flanges 703 (hereinafter referred to as "ferrule protrusion lengths") is longer than the length of the adapter 704 due to its structural characteristics, Since the flange 703 and the adapter 704 come into contact with each other, the ferrules 702 cannot come into contact with each other.
 そこで、フェルール702先端を必ず接触させるためには、アダプタ704及びフランジ703からのフェルール突き出し長さを正確に設計する必要がある。また、実際には部材の寸法公差があるため、公差を加味して最悪ケース、すなわち、フェルール突き出し長さがマイナス公差かつアダプタ704の長さがマイナス公差である場合を考慮して設計する必要がある。 Therefore, in order to make sure that the tip of the ferrule 702 is in contact with each other, it is necessary to accurately design the ferrule protrusion length from the adapter 704 and the flange 703. In addition, since there is actually a dimensional tolerance of the member, it is necessary to consider the worst case, that is, the case where the ferrule protrusion length is a negative tolerance and the length of the adapter 704 is a negative tolerance. be.
 例えば、フェルール突き出し長さの設計値からの寸法公差を±dx1、アダプタ704の長さの設計値からの公差を±dx2として、最悪ケースを想定すると、アダプタ704の長さはフェルール突き出し長さの基準値の和から、予めアダプタ704を短く或いはフェルール突き出し長さを長く設定しておく必要がある。例えばアダプタを短くする場合、予め基準値を2×dx1+dx2分小さく設定しておく必要がある。 For example, assuming the worst case, where the dimensional tolerance from the design value of the ferrule protrusion length is ± dx1 and the tolerance from the design value of the length of the adapter 704 is ± dx2, the length of the adapter 704 is the ferrule protrusion length. From the sum of the reference values, it is necessary to set the adapter 704 short or the ferrule protrusion length long in advance. For example, when shortening the adapter, it is necessary to set the reference value smaller by 2 × dx1 + dx2 in advance.
 しかしながら上記のように設計を行うと、ほとんどの接続ペアではアダプタ704と少なくとも一方のフランジ703の対向面の間には空隙が生じることになり、さらに、フェルール突き出し長さがプラス公差かつアダプタ704の長さがマイナス公差の場合かつ一方のフランジ703とアダプタ704が完全に接触する場合を想定すると、他方のフランジ703とアダプタ704間では、2x(2×dx1+dx2)という非常に大きなギャップが生じる。 However, with the design as described above, in most connection pairs there will be a gap between the adapter 704 and the facing surface of at least one flange 703, and the ferrule protrusion length will have a positive tolerance and the adapter 704 will have a positive tolerance. Assuming a negative tolerance in length and complete contact between one flange 703 and the adapter 704, a very large gap of 2x (2 x dx1 + dx2) occurs between the other flange 703 and the adapter 704.
 仮に、dx1およびdx2が0.05mmと設計すると、0.3mmのギャップが生じうる。さらに設計長さの寸法公差に加えて、部材の平面度や直角度の公差なども影響するため、よりギャップが大きくなる懸念がある。 If dx1 and dx2 are designed to be 0.05 mm, a gap of 0.3 mm may occur. Furthermore, in addition to the dimensional tolerance of the design length, the flatness of the member and the tolerance of the squareness also affect, so there is a concern that the gap will become larger.
 ここで、一般に磁力は磁性体間のギャップが大きくなるほど小さくなるため、空隙が上記例のように必要以上に大きくなる場合、PC接続に必要な磁力を安定して発現することができない。また、温度変化などを考慮すると部材の膨張/収縮が生じるため、ギャップが増大して更に磁力が低下する可能性がある。 Here, in general, the magnetic force becomes smaller as the gap between the magnetic materials becomes larger. Therefore, when the void becomes larger than necessary as in the above example, the magnetic force required for PC connection cannot be stably expressed. Further, when the temperature change or the like is taken into consideration, the member expands / contracts, so that the gap may increase and the magnetic force may further decrease.
 このように、フランジ703とアダプタ704間でギャップが大きくなると磁力が低下するので、安定したPC接続を維持できないので問題となる。この磁力低下による影響を防止するためには、部材公差を非常に厳しく規定する必要があるので、部材の加工及び組み立て難易度が上昇し、コネクタの製造歩留まりが低下するという問題があった。さらに、dx1はフェルールの研磨工程の影響を受けるため、研磨工程において歩留まりが低下するという問題があった。 In this way, if the gap between the flange 703 and the adapter 704 becomes large, the magnetic force will decrease, and it will not be possible to maintain a stable PC connection, which is a problem. In order to prevent the influence of this decrease in magnetic force, it is necessary to specify the member tolerance very strictly, so that there is a problem that the difficulty in processing and assembling the member increases and the manufacturing yield of the connector decreases. Further, since dx1 is affected by the ferrule polishing process, there is a problem that the yield is lowered in the polishing process.
 以上のように、小型の光コネクタの設計、製造において制約が生じるので問題となっていた。 As mentioned above, there are restrictions in the design and manufacture of small optical connectors, which has been a problem.
 上述したような課題を解決するために、本発明に係る光コネクタは、周囲をクラッドに囲まれた導波コアを有する光ファイバ同士を対向して接続するための光コネクタであって、前記光ファイバを収容するガイド孔を備えたフェルールと、前記ガイド孔の一端の光ファイバ引き出し側に配置され、前記フェルールと弾性構造を介して連結したフランジと、一対の前記フェルールが当該フェルールの中心軸が一致するようにして対向して収容されるスリーブと、前記スリーブの周囲に、磁石又は金属性磁性材料を含むアダプタとを備え、前記アダプタと前記フランジの少なくとも一方の材質は磁石を含み、光ファイバ長手方向における前記アダプタの長さが、一対の前記フェルールの突き出し長さの和以下に設定されており、前記弾性構造が弾性変形し、対向する前記光ファイバのコア同士が密着して接触することを特徴とする。 In order to solve the above-mentioned problems, the optical connector according to the present invention is an optical connector for connecting optical fibers having a waveguide surrounded by a clad so as to face each other, and the optical connector is described above. A ferrule having a guide hole for accommodating the fiber, a flange arranged on the optical fiber extraction side at one end of the guide hole and connected to the ferrule via an elastic structure, and a pair of the ferrules having a central axis of the ferrule. An optical fiber is provided with a sleeve that is housed so as to be opposed to each other and an adapter that includes a magnet or a metallic magnetic material around the sleeve, and the material of at least one of the adapter and the flange contains a magnet. The length of the adapter in the longitudinal direction is set to be equal to or less than the sum of the protrusion lengths of the pair of ferrules, the elastic structure is elastically deformed, and the cores of the opposing optical fibers are in close contact with each other. It is characterized by.
 また、本発明に係る光コネクタは、周囲をクラッドに囲まれた導波コアを有する光ファイバ同士を対向して接続するための光コネクタであって、前記光ファイバを収容するガイド孔を備えたフェルールと、前記ガイド孔の一端の光ファイバ引き出し側に配置され、前記フェルールと一体化した第1のフランジと、前記第1のフランジと弾性構造を介して連結した第2のフランジと、一対の前記フェルールが当該フェルールの中心軸が一致するようにして対向して収容されるスリーブと、前記スリーブの周囲に、磁石又は金属性磁性材料を含むアダプタとを備え、前記アダプタと前記第2のフランジの少なくとも一方の材質は磁石を含み、光ファイバ長手方向における前記アダプタの長さが、一対の前記フェルールの突き出し長さの和以下に設定されており、前記弾性構造が弾性変形し、対向する前記光ファイバのコア同士が密着して接触することを特徴とする。 Further, the optical connector according to the present invention is an optical connector for connecting optical fibers having a waveguide surrounded by a cladding so as to face each other, and is provided with a guide hole for accommodating the optical fiber. A pair of a ferrule, a first flange arranged on the optical fiber extraction side at one end of the guide hole and integrated with the ferrule, and a second flange connected to the first flange via an elastic structure. A sleeve in which the ferrule is housed so as to face each other so that the central axes of the ferrule coincide with each other, and an adapter containing a magnet or a metallic magnetic material around the sleeve, the adapter and the second flange. At least one of the materials includes a magnet, the length of the adapter in the longitudinal direction of the optical fiber is set to be equal to or less than the sum of the protrusion lengths of the pair of ferrules, and the elastic structure is elastically deformed and opposed to the above. It is characterized in that the cores of the optical fibers are in close contact with each other.
 本発明によれば、光コネクタの設計および製造における制約が緩和され、安定したPC接続を有する小型の光コネクタおよび光接続構造を提供できる。 According to the present invention, restrictions on the design and manufacture of the optical connector are relaxed, and it is possible to provide a small optical connector and an optical connection structure having a stable PC connection.
図1Aは、本発明の第1の実施の形態に係る光コネクタの側面断面図である。FIG. 1A is a side sectional view of an optical connector according to the first embodiment of the present invention. 図1Bは、本発明の第1の実施の形態に係る光コネクタの側面断面図である。FIG. 1B is a side sectional view of an optical connector according to the first embodiment of the present invention. 図2Aは、本発明の第1の実施の形態に係る光コネクタの効果を説明するための図である。FIG. 2A is a diagram for explaining the effect of the optical connector according to the first embodiment of the present invention. 図2Bは、本発明の第1の実施の形態に係る光コネクタの効果を説明するための図である。FIG. 2B is a diagram for explaining the effect of the optical connector according to the first embodiment of the present invention. 図3は、本発明の第1の実施例に係る光コネクタにおける光コネクタプラグの側面断面図である。FIG. 3 is a side sectional view of an optical connector plug in the optical connector according to the first embodiment of the present invention. 図4は、本発明の第1の実施例に係る光コネクタにおける光コネクタプラグの側面断面図である。FIG. 4 is a side sectional view of an optical connector plug in the optical connector according to the first embodiment of the present invention. 図5Aは、本発明の第2の実施の形態に係る光コネクタの側面断面図である。FIG. 5A is a side sectional view of the optical connector according to the second embodiment of the present invention. 図5Bは、本発明の第2の実施の形態に係る光コネクタの側面断面図である。FIG. 5B is a side sectional view of the optical connector according to the second embodiment of the present invention. 図6は、本発明の第2の実施の形態に係る光コネクタにおける光コネクタプラグの側面断面図である。FIG. 6 is a side sectional view of an optical connector plug in the optical connector according to the second embodiment of the present invention. 図7は、本発明の第2の実施の形態に係る光コネクタにおける光コネクタプラグの側面断面図である。FIG. 7 is a side sectional view of an optical connector plug in the optical connector according to the second embodiment of the present invention. 図8は、本発明の第3の実施の形態に係る光コネクタにおける光コネクタプラグの側面断面図である。FIG. 8 is a side sectional view of an optical connector plug in the optical connector according to the third embodiment of the present invention. 図9は、本発明の第3の実施の形態の変形例に係る光コネクタにおける光コネクタプラグの側面断面図である。FIG. 9 is a side sectional view of an optical connector plug in an optical connector according to a modification of the third embodiment of the present invention. 図10Aは、本発明の第4の実施の形態に係る光接続構造の動作を説明するための図である。FIG. 10A is a diagram for explaining the operation of the optical connection structure according to the fourth embodiment of the present invention. 図10Bは、本発明の第4の実施の形態に係る光接続構造の動作を説明するための図である。FIG. 10B is a diagram for explaining the operation of the optical connection structure according to the fourth embodiment of the present invention. 図11Aは、従来の光コネクタの構成を示す鳥瞰透視図である。FIG. 11A is a bird's-eye view showing the configuration of a conventional optical connector. 図11Bは、従来の光コネクタの側面断面図である。FIG. 11B is a side sectional view of a conventional optical connector.
<第1の実施の形態>
 本発明の第1の実施の形態について図1~図4を参照して説明する。
<First Embodiment>
The first embodiment of the present invention will be described with reference to FIGS. 1 to 4.
<光コネクタの構成>
 図1Aに、本実施の形態に係る光コネクタ10の構成を示す。光コネクタ10は、光ファイバ101とフェルール102、およびフランジ103を備え、一対の光ファイバ101とフェルール102をフェルール102の中心軸が一致するようにして対向させアダプタ105内のスリーブ106に収容して突き合わせることで、光ファイバ101同士の接続がなされる構造である。
<Structure of optical connector>
FIG. 1A shows the configuration of the optical connector 10 according to the present embodiment. The optical connector 10 includes an optical fiber 101, a ferrule 102, and a flange 103, and the pair of optical fibers 101 and the ferrule 102 are opposed to each other so that the central axes of the ferrule 102 coincide with each other, and are housed in a sleeve 106 in the adapter 105. By abutting them together, the optical fibers 101 are connected to each other.
 フェルール102とフランジ103は弾性構造108を介して一体化(連結)されている。フランジ103と第2のフランジ104とは、弾性構造108を介して連結されている。図1Bに示すように、弾性構造108が弾性変形して、第2のフランジ104は、アダプタ105と磁力を働かせてひきつけ合い、アダプタ105に接する(後述)。 The ferrule 102 and the flange 103 are integrated (connected) via an elastic structure 108. The flange 103 and the second flange 104 are connected via an elastic structure 108. As shown in FIG. 1B, the elastic structure 108 is elastically deformed, and the second flange 104 is attracted to the adapter 105 by exerting a magnetic force and comes into contact with the adapter 105 (described later).
 フェルール102は、光ファイバ外径よりわずかに大きい内径のマイクロホール(ガイド孔)をフェルール102中心に備えており、フランジ103も同様に光ファイバ101を収容可能な孔を備えている。フェルール102のマイクロホール内に光ファイバの被覆107を除去した光ファイバ101が収容され、光ファイバ101とフェルール102および光ファイバ101とフランジ103は接着剤(図示せず)によって固定されている。 The ferrule 102 is provided with a microhole (guide hole) having an inner diameter slightly larger than the outer diameter of the optical fiber at the center of the ferrule 102, and the flange 103 is also provided with a hole capable of accommodating the optical fiber 101. An optical fiber 101 from which the optical fiber coating 107 has been removed is housed in a microhole of the ferrule 102, and the optical fiber 101 and the ferrule 102, and the optical fiber 101 and the flange 103 are fixed by an adhesive (not shown).
 光ファイバ101及びフェルール102の先端は、凸球面上に研磨加工されており、PC接続に適した形に適切に研磨されている。また、光ファイバ101は、周囲をクラッドに囲まれた導波コアを有する。 The tips of the optical fiber 101 and the ferrule 102 are polished on a convex spherical surface, and are appropriately polished into a shape suitable for PC connection. Further, the optical fiber 101 has a waveguide core surrounded by a cladding.
 本実施の形態においては、光ファイバの種類や材質、フェルールの種類や材質は公知のいずれでも適用できる。例えば、石英系ファイバやプラスチックファイバでもよく、フェルールに関してもジルコニア、結晶化ガラス、ホウケイ酸ガラス、プラスチック、金属などいずれを用いてもよい。また、光ファイバ101の周囲には被覆107が施されているが、さらにその周囲に公知のチューブやナイロン被覆などを2重以上に設けてもよい。 In the present embodiment, any known type and material of optical fiber and type and material of ferrule can be applied. For example, quartz fiber or plastic fiber may be used, and zirconia, crystallized glass, borosilicate glass, plastic, metal, or the like may be used for the ferrule. Further, although the coating 107 is applied around the optical fiber 101, a known tube, nylon coating, or the like may be provided around the coating in two or more layers.
 また、スリーブについては、フェルール102の外径よりも僅かに大きい内径を有する円筒形のスリーブ、またはフェルール102の外径よりも僅かに小さい内径を有し、光ファイバ長手方向(図1におけるX1方向)に割りを設けた割スリーブのいずれを用いてもよい。スリーブ材料についても、ジルコニアや金属、プラスチックなどいずれを用いても同様である。 The sleeve has a cylindrical sleeve having an inner diameter slightly larger than the outer diameter of the ferrule 102, or an inner diameter slightly smaller than the outer diameter of the ferrule 102 in the optical fiber longitudinal direction (X1 direction in FIG. 1). ) May be any of the split sleeves provided with splits. The same applies to the sleeve material regardless of whether zirconia, metal, plastic, etc. are used.
 また、アダプタ105には、永久磁石を用いる。永久磁石の材料としては、発現させたい磁力に応じて、公知の磁石のいずれを用いてもよい。その材料は例えばネオジム磁石であり、ほかに、フェライト磁石、アルニコ磁石、サマリウムコバルト磁石、KS鋼、MK鋼、ネオジウム鉄ボロン磁石などを用いることができる。 Also, a permanent magnet is used for the adapter 105. As the material of the permanent magnet, any known magnet may be used depending on the magnetic force to be expressed. The material is, for example, a neodymium magnet, and in addition, a ferrite magnet, an alnico magnet, a samarium cobalt magnet, KS steel, MK steel, a neodymium iron boron magnet, or the like can be used.
 このとき、永久磁石を有するアダプタ105は、図1に示す光ファイバ長手方向に沿ってN極、S極に磁化されている。また、フランジ103には、金属性磁性材料を用いる。フランジ103としては、例えば安価で機械加工に優れる材料であるSUS430があり、他に鉄、ニッケル、コバルト、或いは鉄系の合金であるステンレス(SUS)等の磁性を有するものなどを用いることができる。 At this time, the adapter 105 having a permanent magnet is magnetized to N pole and S pole along the longitudinal direction of the optical fiber shown in FIG. Further, a metallic magnetic material is used for the flange 103. As the flange 103, for example, there is SUS430, which is an inexpensive and excellent material for machining, and in addition, a flange 103 having magnetism such as iron, nickel, cobalt, or stainless steel (SUS) which is an iron-based alloy can be used. ..
 なお、フランジ103に永久磁石を用いてもよい。フランジ103が永久磁石である場合は、アダプタ105を上記述べたような金属性磁性材料あるいは公知の軟磁性体などを用いてもよい。また、磁石は非特許文献3に記載のように光ファイバ101の光軸方向において、軸対称に2分割された半割構造の磁石を重ねた形としてもよく、同様に任意にN分割した磁石のペア(Nは2以上の整数)を用いてもよい。 A permanent magnet may be used for the flange 103. When the flange 103 is a permanent magnet, the adapter 105 may be made of a metallic magnetic material as described above, a known soft magnetic material, or the like. Further, as described in Non-Patent Document 3, the magnet may be formed by stacking magnets having a half-divided structure symmetrically divided into two in the optical axis direction of the optical fiber 101, and similarly, a magnet arbitrarily divided into N parts. Pairs (N is an integer of 2 or more) may be used.
 本実施の形態に係る光コネクタ10の接続時の大きさは、例えば、断面の大きさが3mm×3mmであり、光軸方向(光ファイバ長手方向)の長さが9mmである。従来のLC形などの小型光コネクタの大きさが、断面の大きさが7mm×9mmであり、長さが30mmなので、本実施の形態に係る光コネクタは従来のものに比べて非常に小型である。ここで、光コネクタ10の大きさは例えば、断面の大きさが2mm×2mm以上6mm×6mm以下であり、長さが6mm以上10mm以下とすることができる。 The size of the optical connector 10 according to the present embodiment at the time of connection is, for example, a cross-sectional size of 3 mm × 3 mm and a length in the optical axis direction (optical fiber longitudinal direction) of 9 mm. Since the size of the small optical connector such as the conventional LC type has a cross-sectional size of 7 mm × 9 mm and a length of 30 mm, the optical connector according to the present embodiment is very small compared to the conventional one. be. Here, the size of the optical connector 10 can be, for example, a cross-sectional size of 2 mm × 2 mm or more and 6 mm × 6 mm or less, and a length of 6 mm or more and 10 mm or less.
 本実施の形態に係る光コネクタ10において、例えば、フランジ103にSUS430フランジ、フェルール102に1.25mmφ外径のジルコニアフェルール、光ファイバ101には石英系のシングルモード光ファイバを用い、アダプタ105にネオジム磁石(3×3×3mm程度)を用いることができる。この場合、フェルール102の突出し長さを1.5mm程度として、光ファイバ101を固着したフェルール102を対向させてスリーブ106を介して接続されている。 In the optical connector 10 according to the present embodiment, for example, a SUS430 flange is used for the flange 103, a zirconia ferrule having an outer diameter of 1.25 mmφ is used for the ferrule 102, a quartz-based single-mode optical fiber is used for the optical fiber 101, and neodymium is used for the adapter 105. A magnet (about 3 × 3 × 3 mm 3 ) can be used. In this case, the protruding length of the ferrule 102 is set to about 1.5 mm, and the ferrule 102 to which the optical fiber 101 is fixed faces each other and is connected via the sleeve 106.
 また、本実施の形態では、図1に示すようにフランジ103およびアダプタ105の外形を矩形または長方形とする例を示したが、その外形は当然任意の形状を用いることができる。例えば外形が円形、楕円形、多角形などとしてもよい。上記は以下の他の実施例でも同様である。 Further, in the present embodiment, as shown in FIG. 1, an example in which the outer shapes of the flange 103 and the adapter 105 are rectangular or rectangular is shown, but of course, any shape can be used for the outer shape. For example, the outer shape may be circular, elliptical, polygonal, or the like. The above is the same in the following other examples.
<効果>
 次に、本実施の形態に係る光コネクタ10の効果を説明する。
<Effect>
Next, the effect of the optical connector 10 according to the present embodiment will be described.
 非引用文献3に開示される構造では、前述のようにフランジ103からのフェルール突き出し長さとアダプタ105の長さの寸法公差の関係で、フランジ103とアダプタ105間に大きなギャップが生じ得た。そのような場合、フランジ103とアダプタ105間の磁力が十分に働かず、最悪の場合にはPC接続が実現できあない可能性があった。前述のようにこれを防止するためには、前記各部材の寸法公差を非常に小さく設定する必要があった。 In the structure disclosed in Non-cited Document 3, a large gap may occur between the flange 103 and the adapter 105 due to the dimensional tolerance between the ferrule protrusion length from the flange 103 and the length of the adapter 105 as described above. In such a case, the magnetic force between the flange 103 and the adapter 105 does not work sufficiently, and in the worst case, the PC connection may not be realized. As described above, in order to prevent this, it is necessary to set the dimensional tolerance of each member to be very small.
 一方、本実施の形態に係る光コネクタ10によれば、図2Aに示すように、仮に寸法公差が大きく、フランジ103とアダプタ105の間に大きなギャップが生じた場合であっても、図2Bに示すように、フランジ103とフェルール102間の弾性構造108が弾性変形するので、フランジ103とアダプタ105とを接触させることができる。 On the other hand, according to the optical connector 10 according to the present embodiment, as shown in FIG. 2A, even if the dimensional tolerance is large and a large gap is generated between the flange 103 and the adapter 105, FIG. 2B shows. As shown, the elastic structure 108 between the flange 103 and the ferrule 102 is elastically deformed so that the flange 103 and the adapter 105 can be brought into contact with each other.
 ここで、「接触」とは、対向する面の少なくとも一部が接することをいい、面同士の完全な密着でなくてもよい。これは、実際の接触面が完全な平行かつ平坦でないことを考慮すれば、当然である。 Here, "contact" means that at least a part of the facing surfaces is in contact with each other, and the surfaces do not have to be in perfect contact with each other. This is not surprising given that the actual contact surfaces are not perfectly parallel and flat.
 上記の接触の結果、フランジ103とアダプタ105間に働く磁力が増大するのでフェルール102に十分な押圧力が加わり、寸法公差があった場合であっても安定したPC接続を実現できる。すなわち、PC接続を実現する上での寸法公差に関する設計、製造における制約を大幅に緩和することができる。 As a result of the above contact, the magnetic force acting between the flange 103 and the adapter 105 increases, so that sufficient pressing force is applied to the ferrule 102, and stable PC connection can be realized even when there is a dimensional tolerance. That is, it is possible to significantly relax the restrictions on design and manufacturing regarding the dimensional tolerance in realizing the PC connection.
 ここで、フランジ103とアダプタ105とに働く磁力をF1、弾性構造が変形し、フランジ103とアダプタ105が接触したときに働く磁力をF1max、弾性構造108の変形によってフランジ103とフェルール102間に働く反力をF2、フランジ103とアダプタ105が接触したときにフランジ103とフェルール102間に働く反力をF2maxとすると、フェルールに加わる最終的な押圧力Faは、Fa=F1max-F2maxとなる。 Here, the magnetic force acting on the flange 103 and the adapter 105 is F1, the elastic structure is deformed, and the magnetic force acting when the flange 103 and the adapter 105 come into contact is F1max, and the deformation of the elastic structure 108 acts between the flange 103 and the ferrule 102. Assuming that the reaction force is F2 and the reaction force acting between the flange 103 and the ferrule 102 when the flange 103 and the adapter 105 are in contact is F2max, the final pressing force Fa applied to the ferrule is Fa = F1max-F2max.
 ここで、フランジ103とアダプタ105間に働く磁力F1は寸法公差がある場合はフランジ103とアダプタ105間にギャップが生じるため、その大きさはギャップの長さに依存する。その値は、おおよそ距離の2乗に反比例し、ギャップが小さくなるにつれて大きくその値が上昇する。 Here, if the magnetic force F1 acting between the flange 103 and the adapter 105 has a dimensional tolerance, a gap is generated between the flange 103 and the adapter 105, and the size thereof depends on the length of the gap. Its value is approximately inversely proportional to the square of the distance, and its value increases significantly as the gap becomes smaller.
 一方、反力のF2に関しては、弾性体としてヤング率の小さい材料を選択することでF2をF1に比べて十分小さくできる上、弾性変形の範囲であればF2は前記ギャップの減少量に対して線形的に増加するのみである。 On the other hand, regarding the reaction force F2, by selecting a material having a small Young's modulus as the elastic body, F2 can be made sufficiently smaller than F1, and within the range of elastic deformation, F2 is relative to the amount of decrease in the gap. It only increases linearly.
 したがって、図2Aに示すような弾性変形が起きる前(ギャップが存在する状態)においてフェルールに加わる押圧力(F1min)よりも、弾性変形を生じさせてフランジ103とアダプタ105を接触させた際の押圧力Fa(=F1max-F2max)の方が大きくなる。 Therefore, the pressing force when the flange 103 and the adapter 105 are brought into contact with each other by causing elastic deformation rather than the pressing force (F1min) applied to the ferrule before the elastic deformation as shown in FIG. 2A occurs (in the state where the gap exists). The pressure Fa (= F1max-F2max) is larger.
 F1は磁石の性能と大きさにより、F2は弾性体の材料と寸法により決まるため、上記関係を考慮してPC接続を実現可能な押圧力Faとなるよう本実施形態に係る光コネクタ10の構成を設計することで、寸法公差があっても安定してPC接続を実現することができる。 Since F1 is determined by the performance and size of the magnet and F2 is determined by the material and dimensions of the elastic body, the configuration of the optical connector 10 according to the present embodiment is such that the pressing force Fa can realize PC connection in consideration of the above relationship. By designing, it is possible to realize stable PC connection even if there is a dimensional tolerance.
 以上のように、本実施の形態に係る光コネクタ10を用いることで、フランジ103端からのフェルール突き出し長さ及びアダプタ長さの各種寸法公差(長さ公差、平面度、直角度など)と、研磨による工程管理における条件を緩和することができ、部材の製造歩留まりを大幅に向上し部材コストを低減することができる。 As described above, by using the optical connector 10 according to the present embodiment, various dimensional tolerances (length tolerance, flatness, squareness, etc.) of the ferrule protrusion length from the end of the flange 103 and the adapter length can be obtained. The conditions for process control by polishing can be relaxed, the manufacturing yield of the member can be significantly improved, and the member cost can be reduced.
 例えば、非特許文献3に開示される構成で、磁石材料をネオジム磁石、フランジをSUS430としたときには、磁石サイズを3×3×3mm程度とし、PC接続に必要な押圧力を3N以上達成するためには、ギャップを0.08mm以下とする必要があり、部材寸法公差を厳しく規定する必要がある。 For example, in the configuration disclosed in Non-Patent Document 3, when the magnet material is a neodymium magnet and the flange is SUS430, the magnet size is set to about 3 × 3 × 3 mm 3 , and the pressing force required for PC connection is achieved by 3 N or more. For this purpose, the gap must be 0.08 mm or less, and the member dimensional tolerance must be strictly specified.
 一方、本実施の形態に係る光コネクタ10の構成では、部材寸法公差が大きくても弾性構造108の弾性変形によって寸法誤差を吸収することができ、十分な押圧力をフェルール102に伝えることができる。 On the other hand, in the configuration of the optical connector 10 according to the present embodiment, even if the member dimensional tolerance is large, the dimensional error can be absorbed by the elastic deformation of the elastic structure 108, and sufficient pressing force can be transmitted to the ferrule 102. ..
 以上により、本実施の形態に係る光コネクタ10によれば、部材の寸法公差を厳しく規定することなく安定的なPC接続を保つことができ、小型・高性能な光コネクタを実現することができる。 As described above, according to the optical connector 10 according to the present embodiment, it is possible to maintain a stable PC connection without strictly defining the dimensional tolerance of the member, and it is possible to realize a compact and high-performance optical connector. ..
 このように、光ファイバ長手方向におけるアダプタ105の長さが、対向する2個(1対)のフェルール102の突き出し長さの和以下に設定されていて、寸法公差を加味した場合、光ファイバ長手方向においてフランジ103とアダプタ105との間にギャップ(空隙)が生じるが、フェルール102とアダプタ105とを連結する弾性構造108が変形することにより、フランジ103とアダプタ105とが接触して安定したPC接続を実現することができる。 As described above, when the length of the adapter 105 in the longitudinal direction of the optical fiber is set to be equal to or less than the sum of the protruding lengths of the two (one pair) ferrules 102 facing each other and the dimensional tolerance is taken into consideration, the length of the optical fiber is taken into consideration. A gap is created between the flange 103 and the adapter 105 in the direction, but the elastic structure 108 connecting the ferrule 102 and the adapter 105 is deformed, so that the flange 103 and the adapter 105 come into contact with each other for stable PC. The connection can be realized.
 ここで、アダプタ105の長さと対向する2個(1対)のフェルール102のフランジ103からの突き出し長さの和の設計値は、前述のとおりフェルール突き出し長さの寸法公差を±dx1、アダプタ長さの寸法公差をdx2とすると、この公差分を予め見込んで設定する必要がある。アダプタを短くする場合、予め基準値を2×dx1+dx2分小さく設定しておく必要がある。そこから、さらに突き出し長さがプラス公差、アダプタ長さがマイナス公差の最悪の場合を想定すると、フランジ103とアダプタ105との間のギャップ(空隙)は、接続する両側それぞれで2×dx1+dx2分が最大生じることになる。上記を踏まえると本弾性構造は、前記最大ギャップ分の2×dx1+dx2を吸収できる弾性構造とすることが好ましい。 Here, the design value of the sum of the protrusion lengths of the two (1 pair) ferrules 102 facing each other from the flange 103 of the adapter 105 is the dimensional tolerance of the ferrule protrusion length ± dx1 and the adapter length as described above. Assuming that the dimensional tolerance is dx2, it is necessary to anticipate and set this tolerance in advance. When shortening the adapter, it is necessary to set the reference value as small as 2 × dx1 + dx2 in advance. Assuming the worst case where the protrusion length has a positive tolerance and the adapter length has a negative tolerance, the gap (gap) between the flange 103 and the adapter 105 is 2 x dx1 + dx2 minutes on each of the connecting sides. It will occur the maximum. Based on the above, it is preferable that the elastic structure is an elastic structure capable of absorbing 2 × dx1 + dx2 for the maximum gap.
 ここで、図2Bに示すように、フェルール102長手方向(図2A,図2BにおけるX2方向)の外部から光ファイバが挿入される側(以下、「光ファイバ引き出し側」という。)において、フランジ103の端部とフェルール102端部の間には、弾性構造108が変形可能な可動弾性変形領域109を設けてある。この可動弾性変形領域109において、弾性構造108は長手方向にせん断変形可能である。 Here, as shown in FIG. 2B, the flange 103 is on the side where the optical fiber is inserted from the outside in the longitudinal direction of the ferrule 102 (the X2 direction in FIGS. 2A and 2B) (hereinafter referred to as “optical fiber extraction side”). A movable elastic deformation region 109 in which the elastic structure 108 can be deformed is provided between the end portion of the ferrule 102 and the end portion of the ferrule 102. In this movable elastic deformation region 109, the elastic structure 108 is shear deformable in the longitudinal direction.
 換言すれば、可動弾性変形領域109の長さ以上の範囲では、部材同士、具体的にはフェルール102とフランジ103が機械干渉するため、弾性構造108は変形することができない。この構造によって、弾性構造108の変形可能な最大値をあらかじめ規定することで、過度なせん断変形に伴う弾性構造108のせん断破壊を防止することができる。 In other words, the elastic structure 108 cannot be deformed because the members, specifically the ferrule 102 and the flange 103, mechanically interfere with each other within the range of the length of the movable elastic deformation region 109 or more. With this structure, by prescribing the maximum deformable value of the elastic structure 108, it is possible to prevent shear failure of the elastic structure 108 due to excessive shear deformation.
<第1の実施例>
 図3は、本発明の第1の実施例に係る光コネクタにおける光コネクタプラグ21の構成を示す側面断面図である。光コネクタプラグ21は、光ファイバ201とフェルール202とフランジ203とを備え、フェルール202とフランジ203とが弾性構造である弾性接着剤211で連結される。
<First Example>
FIG. 3 is a side sectional view showing the configuration of the optical connector plug 21 in the optical connector according to the first embodiment of the present invention. The optical connector plug 21 includes an optical fiber 201, a ferrule 202, and a flange 203, and the ferrule 202 and the flange 203 are connected by an elastic adhesive 211 having an elastic structure.
 例えば、弾性接着剤211は、フェルール202の外周に沿って配置(塗布または充填)され固定される。 For example, the elastic adhesive 211 is arranged (applied or filled) along the outer circumference of the ferrule 202 and fixed.
 弾性接着剤211の材料としては、シリコーン、変性シリコーン、ウレタン、変性ウレタン、シリル化ウレタンやそれらの誘導体、またその他のゴム系接着材や、変性シリコーン型エポキシマトリックス系接着剤、アクリル系樹脂、エポキシ樹脂などを適宜選択することができる。 Materials of the elastic adhesive 211 include silicone, modified silicone, urethane, modified urethane, silylated urethane and their derivatives, other rubber-based adhesives, modified silicone-type epoxy matrix-based adhesives, acrylic resins, and epoxy. A resin or the like can be appropriately selected.
 また、図4に示すように、弾性構造には、容易に弾性変形が可能なゴム系材料の一例であるゴムシート212を用いることができる。ゴムシート212は、フェルール202の外周に沿って配置され、ゴムシート212とフェルール202またはゴムシート212とフランジ203間はゴム用接着剤を用いることで一体化させている。 Further, as shown in FIG. 4, a rubber sheet 212, which is an example of a rubber-based material that can be easily elastically deformed, can be used for the elastic structure. The rubber sheet 212 is arranged along the outer circumference of the ferrule 202, and the rubber sheet 212 and the ferrule 202 or the rubber sheet 212 and the flange 203 are integrated by using a rubber adhesive.
 ゴム材料212としては、公知のゴム材料のいずれも用いることができる。また、ヤング率を調整するために添加剤などを適宜加えてもよい。ゴムシートを用いることであらかじめ弾性構造の厚みを制御することが可能である。 As the rubber material 212, any known rubber material can be used. Further, an additive or the like may be appropriately added to adjust the Young's modulus. By using a rubber sheet, it is possible to control the thickness of the elastic structure in advance.
 次に、弾性構造、例えば弾性接着剤211やゴムシート212に用いる樹脂材料を選定する上での設計の一例について説明する。 Next, an example of design for selecting an elastic structure, for example, a resin material used for an elastic adhesive 211 or a rubber sheet 212 will be described.
 まず、前記弾性構造のフェルール長手方向に沿った長さをL、厚みをt、フェルール半径をr、フェルール長手方向の弾性変形量をdL、弾性構造変形前のフランジとアダプタ間に働く磁力をFとして、弾性材料の使用温度でのヤング率Eとする。このとき、樹脂を用いた弾性構造の剛性率Gは、式(1)で表せる。 First, the length of the elastic structure along the longitudinal direction of the ferrule is L, the thickness is t, the radius of the ferrule is r, the amount of elastic deformation in the longitudinal direction of the ferrule is dL, and the magnetic force acting between the flange and the adapter before the deformation of the elastic structure is F. Let the Young's modulus E at the operating temperature of the elastic material. At this time, the rigidity G of the elastic structure using the resin can be expressed by the equation (1).
 G = E/{2×(1+ν)}   (1) G = E / {2 × (1 + ν)} (1)
 ここで、νはポアソン比である。また、剛性率Gは、弾性構造がフェルール長手方向に弾性変形量dL変形させるとき、式(2)で表せる。 Here, ν is Poisson's ratio. Further, the rigidity G can be expressed by the equation (2) when the elastic structure is deformed by the amount of elastic deformation dL in the longitudinal direction of the ferrule.
 G = F×t/(2×π×r×L×dL)   (2) G = F × t / (2 × π × r × L × dL) (2)
 式(1)、式(2)より From formula (1) and formula (2)
 E = (1+ν)×F×t/(π×r×L×dL)   (3)
となる。したがって、使用温度でのヤング率Eは
E = (1 + ν) × F × t / (π × r × L × dL) (3)
Will be. Therefore, Young's modulus E at the operating temperature is
 E ≦ (1+ν)×F×t/(π×r×L×dL)   (4)
であれば、弾性構造がせん断変形し、弾性変形量dLのギャップを吸収できる。
E ≤ (1 + ν) × F × t / (π × r × L × dL) (4)
If so, the elastic structure is shear-deformed and can absorb the gap of the elastic deformation amount dL.
 ここで、樹脂のポアソン比νはおよそ0.4以上であり、ゴム系材料のポアソン比νはおよそ0.45以上である。そこで、ν=0.45として、仮にF=3N、t=0.1mm、r=0.625mm、L=1mmとして、dL=0.05mmのギャップを吸収可能な構造とする場合は、式(4)より、E ≦ 4.43MPaとなる。なお、Fは弾性構造変形前のフランジとアダプタ間に働く磁力とみなしてもよい。 Here, the Poisson's ratio ν of the resin is about 0.4 or more, and the Poisson's ratio ν of the rubber-based material is about 0.45 or more. Therefore, if ν = 0.45, F = 3N, t = 0.1 mm, r = 0.625 mm, L = 1 mm, and the structure is such that the gap of dL = 0.05 mm can be absorbed, the formula ( From 4), E ≤ 4.43 MPa. Note that F may be regarded as the magnetic force acting between the flange and the adapter before the elastic structure is deformed.
 したがって、上述の条件の構成は、ヤング率Eが4.43MPa以下であれば実現できる。この値は、ゴム系材料や弾性接着剤のヤング率は0.1MPaから10MPa程度に設計できるため、妥当な値である。上述の値は一例であって、式(4)に従って、弾性構造をヤング率を考慮して任意に設計できる。 Therefore, the configuration of the above conditions can be realized if the Young's modulus E is 4.43 MPa or less. This value is a reasonable value because the Young's modulus of rubber-based materials and elastic adhesives can be designed to be about 0.1 MPa to 10 MPa. The above values are an example, and the elastic structure can be arbitrarily designed in consideration of Young's modulus according to the equation (4).
 本実施の形態では、弾性構造に弾性接着剤またはゴム系材料を用いる例を示したが、これに限らず、一定量のせん断変形を小さな力で行うことができる構造であればよく、常温でのヤング率の小さい樹脂であれば望ましい。 In the present embodiment, an example in which an elastic adhesive or a rubber-based material is used for the elastic structure is shown, but the present invention is not limited to this, and any structure may be used as long as it can perform a certain amount of shear deformation with a small force at room temperature. A resin having a small Young's modulus is desirable.
 実施の形態によれば、フランジ203とフェルール202の一体化と弾性構造の形成を他の追加部品を用いることなく実現できる。 According to the embodiment, the flange 203 and the ferrule 202 can be integrated and the elastic structure can be formed without using other additional parts.
<第2の実施の形態>
 次に、本発明の第2の実施の形態を図5~図7を参照して説明する。本実施の形態に係る光コネクタは、第1の実施の形態に係る光コネクタと略同様の構成を備え、略同様の効果を奏するが、アダプタの構成とフランジの構成が異なる。
<Second embodiment>
Next, a second embodiment of the present invention will be described with reference to FIGS. 5 to 7. The optical connector according to the present embodiment has substantially the same configuration as the optical connector according to the first embodiment and has substantially the same effect, but the adapter configuration and the flange configuration are different.
 図5Aは、本発明の第2の実施の形態に係る光コネクタの構成を示す側面断面図である。光コネクタ30は、光ファイバ301とフェルール302、および第1のフランジ303と第2のフランジ304とを備え、光ファイバ301とフェルール302を対向させアダプタ3051、3052内のスリーブ306に収容される。ここで、第1のフランジ303と第2のフランジ304とが弾性構造308で連結されている。図5Bに示すように、弾性構造108が弾性変形して、第2のフランジ304は、アダプタ3051、3052と磁力を働かせてひきつけ合い、アダプタ105に接する(後述)。 FIG. 5A is a side sectional view showing a configuration of an optical connector according to a second embodiment of the present invention. The optical connector 30 includes an optical fiber 301 and a ferrule 302, and a first flange 303 and a second flange 304, and the optical fiber 301 and the ferrule 302 face each other and are housed in a sleeve 306 in the adapters 3051 and 3052. Here, the first flange 303 and the second flange 304 are connected by an elastic structure 308. As shown in FIG. 5B, the elastic structure 108 is elastically deformed, and the second flange 304 attracts the adapters 3051 and 3052 by exerting a magnetic force and comes into contact with the adapter 105 (described later).
 本実施の形態におけるアダプタは、アダプタが軸対称に2分割された半割構造を重ねた形としており、N極S極のペアを軸周りに有する構造とし、磁石による引力をより大きく発現させている。 The adapter in the present embodiment has a structure in which the adapter is vertically divided into two halves and has a pair of N poles and S poles around the axis, and the attractive force by the magnet is expressed more greatly. There is.
 詳細には、アダプタは、半割構造になっており、一対の半体3051、3052からなる。半体3051は、光ファイバ長手方向の一方向に磁化しており、一方の端部がN極であり、他方の端部がS極である。一方、半体3052の極性は、光ファイバ長手方向において、半体3051の磁化方向とは反対方向に磁化しており、一方の端部がS極で他方の端部がN極である。 Specifically, the adapter has a half-split structure and consists of a pair of halves 3051 and 3052. The half body 3051 is magnetized in one direction in the longitudinal direction of the optical fiber, one end having an N pole and the other end having an S pole. On the other hand, the polarity of the half body 3052 is magnetized in the direction opposite to the magnetization direction of the half body 3051 in the longitudinal direction of the optical fiber, and one end is the S pole and the other end is the N pole.
 このように、半体3051と半体3052とは、光コネクタ300の中心軸を含む平面で対称をなしており、半体3051と半体3052との対向する面は反対の極性を有している。 As described above, the half body 3051 and the half body 3052 are symmetrical in the plane including the central axis of the optical connector 300, and the opposite surfaces of the half body 3051 and the half body 3052 have opposite polarities. There is.
 このアダプタ3051、3052の構成により、第1の実施の形態での効果と同様に、機械的な押圧・保持構造を排して小型なPC接続の光コネクタを実現できる。さらに、磁石による引力をより大きく発現させることができる。 With the configuration of the adapters 3051 and 3052, it is possible to realize a small PC-connected optical connector by eliminating the mechanical pressing / holding structure, similar to the effect in the first embodiment. Furthermore, the attractive force of the magnet can be further expressed.
 以上により、アダプタ3051、3052や第1のフランジ303、第2のフランジ304のサイズをより小さくしても、十分な押圧力を発現させることが可能となり、より小型な光コネクタとすることができる。 As described above, even if the size of the adapters 3051 and 3052, the first flange 303, and the second flange 304 is made smaller, it is possible to develop a sufficient pressing force, and a smaller optical connector can be obtained. ..
 ここで、本実施の形態では、アダプタを一対の半体3051と3052からなる2分割(半割)の構成としたが、複数に分割した構成であり一対でなくても複数の部材(磁石)からなる対となる構成であればよく、それぞれの対となる部材(磁石)が、対向する面で反対の極性を有すればよい。 Here, in the present embodiment, the adapter is divided into two parts (half-split) consisting of a pair of halves 3051 and 3052, but the adapter is divided into a plurality of parts (magnets) even if the adapter is not a pair. It suffices that the paired members (magnets) of each pair have opposite polarities on the facing surfaces.
 すなわち、アダプタ3051、3052は、光ファイバ301の軸方向と直交する方向に沿って、軸対称にN極とS極をそれぞれ少なくとも1以上の対を有する磁石を含み、分割したアダプタの対となる磁石同士に引力が働くよう、磁石間の対向する面が反対の極となるように配置されている構成であればよい。 That is, the adapters 3051 and 3052 include magnets having at least one pair of N pole and S pole symmetrically along the direction orthogonal to the axial direction of the optical fiber 301, and form a pair of divided adapters. The structure may be such that the opposing surfaces of the magnets are arranged so as to have opposite poles so that an attractive force acts on the magnets.
 また、本実施の形態では、アダプタ3051、3052が直方体であり、対となる半体が中心軸を含む上面に垂直な平面で対称をなしている構成としたが、N極の半体とS極の半体が対称であれば他の面を対称面としてもよく、N極の半体とS極の半体が対称に配置される構成であればよい。アダプタ3051、3052が円筒形状であれば、中心軸を含む平面を対称面とすればよい。 Further, in the present embodiment, the adapters 3051 and 3052 are rectangular parallelepipeds, and the paired halves are symmetrical in a plane perpendicular to the upper surface including the central axis. If the pole half body is symmetric, another plane may be used as the plane of symmetry, and the configuration may be such that the N pole half body and the S pole half body are arranged symmetrically. If the adapters 3051 and 3052 have a cylindrical shape, the plane including the central axis may be a plane of symmetry.
 また、フランジは第1のフランジ303と第2のフランジ304から構成され、フェルール302と一体化するフランジを第1のフランジ303とし、他方アダプタ3051、3052と磁力を働かせてひきつけ合う側のフランジを第2のフランジ304としている。 Further, the flange is composed of a first flange 303 and a second flange 304, and the flange integrated with the ferrule 302 is the first flange 303, while the flange on the side that attracts the adapters 3051 and 3052 by applying magnetic force is used. The second flange 304 is used.
 第1のフランジ303は、フェルール302と圧入により一体化されており、光ファイバ長手方向に変形は不可能である。本構造では第1のフランジ303と第2のフランジ304間を、弾性構造308を介して連結している。第1の実施の形態では、フランジとフェルール302間を、弾性構造308を介して一体化していたのに対し、本実施の形態では、第1のフランジ303と第2のフランジ304との間に弾性構造308を配置している点に差異がある。 The first flange 303 is integrated with the ferrule 302 by press fitting, and cannot be deformed in the longitudinal direction of the optical fiber. In this structure, the first flange 303 and the second flange 304 are connected via an elastic structure 308. In the first embodiment, the flange and the ferrule 302 are integrated via the elastic structure 308, whereas in the present embodiment, the flange and the ferrule 302 are integrated between the first flange 303 and the second flange 304. There is a difference in that the elastic structure 308 is arranged.
 本実施の形態に係る光コネクタ30によれば、寸法公差が大きく、第2のフランジ304とアダプタ3051、3052の間に大きなギャップが生じた場合でも、第1の実施の形態における効果と同様に、コネクタ接続時には第2のフランジ304と第1のフランジ303間の弾性構造308が弾性変形するので、第2のフランジ304とアダプタ3051、3052とを接触させることができる。その結果、第2のフランジ304とアダプタ3051、3052間に働く磁力を増大させることができるので、フェルール302に適切な押圧力が加わり、安定したPC接続を実現できる。 According to the optical connector 30 according to the present embodiment, even if the dimensional tolerance is large and a large gap occurs between the second flange 304 and the adapters 3051 and 3052, the effect in the first embodiment is the same. Since the elastic structure 308 between the second flange 304 and the first flange 303 is elastically deformed at the time of connecting the connector, the second flange 304 and the adapters 3051 and 3052 can be brought into contact with each other. As a result, since the magnetic force acting between the second flange 304 and the adapters 3051 and 3052 can be increased, an appropriate pressing force is applied to the ferrule 302, and a stable PC connection can be realized.
 このように、光ファイバ長手方向におけるアダプタ3051、3052の長さが、対向する2個(1対)のフェルール302の突き出し長さの和以下に設定されていて、寸法公差を加味した、光ファイバ長手方向において第2のフランジ304とアダプタ3051、3052との間にギャップ(空隙)が生じるが、第1フランジ303と第2フランジ304とを連結する弾性構造108が変形することにより、第2のフランジ304とアダプタ3051、3052とが接触して安定したPC接続を実現することができる。 In this way, the lengths of the adapters 3051 and 3052 in the longitudinal direction of the optical fiber are set to be equal to or less than the sum of the protruding lengths of the two (1 pair) ferrules 302 facing each other, and the optical fiber takes dimensional tolerance into consideration. A gap is created between the second flange 304 and the adapters 3051 and 3052 in the longitudinal direction, but the elastic structure 108 connecting the first flange 303 and the second flange 304 is deformed, so that the second flange 304 is deformed. The flange 304 and the adapters 3051 and 3052 come into contact with each other to realize a stable PC connection.
 ここで、アダプタ3051、3052の長さと対向する2個(1対)のフェルール302の第2のフランジ304からの突き出し長さの和の設計値は、前述のとおりフェルール突き出し長さの寸法公差を±dx1、アダプタ長さの寸法公差をdx2とすると、この公差分を予め見込んで設定する必要がある。 Here, the design value of the sum of the protrusion lengths of the two (1 pair) ferrules 302 facing the lengths of the adapters 3051 and 3052 from the second flange 304 has the dimensional tolerance of the ferrule protrusion length as described above. Assuming that ± dx1 and the dimensional tolerance of the adapter length are dx2, it is necessary to anticipate and set this tolerance in advance.
 アダプタを短くする場合、予め基準値を2×dx1+dx2分小さく設定しておく必要がある。そこから、さらに突き出し長さがプラス公差、アダプタ長さがマイナス公差の最悪の場合を想定すると、第2のフランジ304とアダプタ3051、3052との間のギャップ(空隙)は、接続する両側それぞれで2×dx1+dx2分が最大生じることになる。上記を踏まえると本弾性構造は、前記最大ギャップ分の2×dx1+dx2を吸収できる弾性構造とすることが好ましい。 When shortening the adapter, it is necessary to set the reference value 2 x dx1 + dx2 smaller in advance. Assuming the worst case where the protrusion length has a positive tolerance and the adapter length has a negative tolerance, the gap (gap) between the second flange 304 and the adapters 3051 and 3052 will be on both sides to be connected. 2 × dx1 + dx2 minutes will occur at the maximum. Based on the above, it is preferable that the elastic structure is an elastic structure capable of absorbing 2 × dx1 + dx2 for the maximum gap.
 以上のように、本実施の形態に係る光コネクタ30を用いることで、第1のフランジ303端からのフェルール302突き出し長さ、第2のフランジ304端からのフェルール302の突き出し長さ、およびアダプタ長さなどの各種寸法公差(長さ公差、平面度、直角度など)と、研磨による工程管理における条件を緩和することができ、部材の製造歩留まりを大幅に向上し部材コストを低減することができる。 As described above, by using the optical connector 30 according to the present embodiment, the ferrule 302 protrusion length from the first flange 303 end, the ferrule 302 protrusion length from the second flange 304 end, and the adapter. Various dimensional tolerances such as length (length tolerance, flatness, squareness, etc.) and conditions in process control by polishing can be relaxed, and the manufacturing yield of parts can be greatly improved and the cost of parts can be reduced. can.
 また、第1の実施形態に比べて部材点数が増加する反面、第1のフランジ303とフェルール302との圧入工程及びフェルール研磨工程に、既存の光コネクタと同一の設備を用いることができるので、製造上の優位性が大きい。 Further, while the number of member points is increased as compared with the first embodiment, the same equipment as the existing optical connector can be used for the press-fitting process and the ferrule polishing process of the first flange 303 and the ferrule 302. Great manufacturing advantage.
 さらに、フランジは機械加工や鋳造などで作製するため、焼結や線引き、射出成型などで作るフェルールに比べて構造自由度が大きく、弾性構造308の連結部近傍に、弾性構造308の厚みや長さを制限するための突起や溝などの構造を容易に設けることができるという利点がある。 Furthermore, since the flange is manufactured by machining or casting, it has a greater degree of structural freedom than ferrules made by sintering, drawing, injection molding, etc., and the thickness and length of the elastic structure 308 are close to the connecting portion of the elastic structure 308. There is an advantage that a structure such as a protrusion or a groove for limiting the elasticity can be easily provided.
 また、第1の実施の形態ではフランジとフェルールの熱膨張係数差が比較的大きいため、弾性構造308に熱応力が加わりやすいが、本実施の形態では、第1のフランジ303及び第2のフランジ304に同一の磁石または金属系材料を用いることで、熱応力を低減することができる。 Further, in the first embodiment, since the difference in thermal expansion coefficient between the flange and the ferrule is relatively large, thermal stress is likely to be applied to the elastic structure 308, but in the present embodiment, the first flange 303 and the second flange By using the same magnet or metal-based material for 304, thermal stress can be reduced.
 なお、本実施の形態において、図6と図7それぞれに示すように、弾性構造に、弾性接着剤411とゴムシート421とを用いることができる。 In the present embodiment, as shown in FIGS. 6 and 7, the elastic adhesive 411 and the rubber sheet 421 can be used for the elastic structure.
 また、本実施の形態では、可動弾性変形領域413を機械干渉により制限するために、第1のフランジ403の外周に突起部412を設けることができる。 Further, in the present embodiment, in order to limit the movable elastic deformation region 413 by mechanical interference, a protrusion 412 can be provided on the outer periphery of the first flange 403.
 詳細には、第1のフランジ403は、第2のフランジ404に装着したときに、第1のフランジ403の外周部で、弾性構造411、421の光ファイバ引き出し側の端部と、第2のフランジ404における光ファイバ引き出し側の端部の内壁との間に、突起部412を備える。この突起部412により、アダプタ(図示せず)と第2のフランジ404を接触させるときに、第2のフランジの光ファイバ引き出し側の内壁と第1のフランジの突起部412が機械干渉することで、第1のフランジ403の光ファイバ引き出し側への動きを制限する。 Specifically, when the first flange 403 is attached to the second flange 404, the first flange 403 is the outer peripheral portion of the first flange 403, the end portion of the elastic structures 411 and 421 on the optical fiber extraction side, and the second flange. A protrusion 412 is provided between the flange 404 and the inner wall of the end on the optical fiber extraction side. When the adapter (not shown) and the second flange 404 are brought into contact with each other by the protrusion 412, the inner wall of the second flange on the optical fiber extraction side and the protrusion 412 of the first flange mechanically interfere with each other. , The movement of the first flange 403 toward the optical fiber lead-out side is restricted.
 その結果、弾性構造411、421の光ファイバ引き出し側の端部と、第2のフランジ404における光ファイバ引き出し側の端部の内壁との間が、可動弾性変形領域413となる。可動弾性変形領域413により、挿入に伴う過度なせん断変形に伴う弾性構造411、421のせん断破壊を防止することができる。 As a result, the movable elastic deformation region 413 is formed between the end portion of the elastic structures 411 and 421 on the optical fiber extraction side and the inner wall of the end portion of the second flange 404 on the optical fiber extraction side. The movable elastic deformation region 413 can prevent shear failure of the elastic structures 411 and 421 due to excessive shear deformation due to insertion.
 なお、本実施形態で示したような第1のフランジと第2のフランジが機械干渉する構造であれば、図示したような構造に限定するものではなく、突起以外でも適宜機械干渉構造を設けても同様の効果を奏する。 If the structure is such that the first flange and the second flange mechanically interfere with each other as shown in the present embodiment, the structure is not limited to the one shown in the figure, and a mechanical interference structure may be appropriately provided other than the protrusions. Has the same effect.
 また、本実施の形態において磁力は第2のフランジ404とアダプタとの間に働くため、第1のフランジ403は必ずしも磁石に引きつけられる金属材料とする必要はないが、当然磁性金属材料や磁石を用いてもよい。また第1のフランジ403及び第2のフランジ404の形状は、弾性構造411、421によって容易に連結が可能なように適宜内径も含めた形状を変更してもよい。 Further, in the present embodiment, since the magnetic force acts between the second flange 404 and the adapter, the first flange 403 does not necessarily have to be a metal material attracted to the magnet, but naturally a magnetic metal material or a magnet is used. You may use it. Further, the shapes of the first flange 403 and the second flange 404 may be appropriately changed including the inner diameter so that they can be easily connected by the elastic structures 411 and 421.
 本実施の形態では、アダプタが半割構造で一対の半体からなる例を示したが、これに限らず、第1の実施の形態と同様に、アダプタが一体の磁石からなる構造であってもよい。 In the present embodiment, an example in which the adapter has a half-split structure and consists of a pair of halves has been shown, but the present invention is not limited to this, and the adapter has a structure consisting of an integral magnet as in the first embodiment. May be good.
<第3の実施の形態>
 次に、本発明の第3の実施の形態を図8~図9を参照して説明する。本実施の形態に係る光コネクタは、第1の実施の形態に係る光コネクタと略同様の構成を備え、略同様の効果を奏するが、アダプタの構成とフランジの構成が異なる。
<Third embodiment>
Next, a third embodiment of the present invention will be described with reference to FIGS. 8 to 9. The optical connector according to the present embodiment has substantially the same configuration as the optical connector according to the first embodiment and has substantially the same effect, but the adapter configuration and the flange configuration are different.
 図8は、本発明の第3の実施の形態に係る光コネクタにおける光コネクタプラグ51の構成を示す側面断面図である。光コネクタプラグ51は、第1の実施の形態と同様に、光ファイバ501とフェルール502、およびフランジ503を備え、フランジ503とフェルール502とが弾性構造508で連結される。弾性構造508の種類はゴムシート或いは弾性接着剤いずれでも適用可能である。 FIG. 8 is a side sectional view showing the configuration of the optical connector plug 51 in the optical connector according to the third embodiment of the present invention. Similar to the first embodiment, the optical connector plug 51 includes an optical fiber 501, a ferrule 502, and a flange 503, and the flange 503 and the ferrule 502 are connected by an elastic structure 508. The type of elastic structure 508 can be applied to either a rubber sheet or an elastic adhesive.
 光コネクタプラグ51において、光ファイバ引き出し側に、第1の実施形態と同様に、可動弾性変形領域513が規定されており、弾性構造508が所定範囲以上のせん断弾性変形しないように規定されている。 In the optical connector plug 51, the movable elastic deformation region 513 is defined on the optical fiber extraction side as in the first embodiment, and the elastic structure 508 is defined so as not to be shear elastically deformed beyond a predetermined range. ..
 これにより、コネクタプラグ挿入時などにおいてフランジ503がフェルール502の突出側(以下、「光ファイバ接続側」という。)側に移動した際に、フェルール502のフランジ503に対する光ファイバ引き出し側への相対変位量が機械干渉により制限される。その結果、過度なせん断変形に伴う弾性構造508のせん断破壊を防止することができる。 As a result, when the flange 503 moves to the protruding side of the ferrule 502 (hereinafter referred to as "optical fiber connecting side") when the connector plug is inserted or the like, the ferrule 502 is displaced relative to the optical fiber drawing side with respect to the flange 503. The amount is limited by mechanical interference. As a result, it is possible to prevent shear failure of the elastic structure 508 due to excessive shear deformation.
 さらに、光ファイバ接続側においても、弾性変形のせん断変形領域514の最大可動域を規定するようなストッパ構造を設けている。詳細には、フェルール502の外周部で、弾性構造508の光ファイバ接続側の端部と、フランジ503における光ファイバ接続側の端部の内壁との間に、突起部512を備える。さらに、フランジ503の光ファイバ接続側の開口部を、開口部の内壁とフェルール502の突起部512とが当接する大きさに設定する。 Further, also on the optical fiber connection side, a stopper structure is provided so as to define the maximum range of motion of the shear deformation region 514 of elastic deformation. Specifically, a protrusion 512 is provided on the outer peripheral portion of the ferrule 502 between the end portion of the elastic structure 508 on the optical fiber connection side and the inner wall of the end portion of the flange 503 on the optical fiber connection side. Further, the opening on the optical fiber connection side of the flange 503 is set to a size at which the inner wall of the opening and the protrusion 512 of the ferrule 502 abut.
 この突起部512により、フェルール502のフランジ503に対する光ファイバ接続側への相対変位量が制限される。すなわち、この突起部512がストッパ構造となる。 The protrusion 512 limits the amount of relative displacement of the ferrule 502 with respect to the flange 503 toward the optical fiber connection side. That is, the protrusion 512 has a stopper structure.
 本実施の形態における光コネクタプラグ51を作製する際には、突起部512を含むフェルール502とフランジ503を挿入して一体化する上で機械干渉を避ける方法で組み立てる。 When manufacturing the optical connector plug 51 in the present embodiment, the ferrule 502 including the protrusion 512 and the flange 503 are inserted and integrated by a method of avoiding mechanical interference.
 例えば、第1の方法としては、突起部512及びフランジ503の内壁を外周上の一領域にのみに配置しておくことで実現できる。図8の側面断面図に示すように、突起部512とフランジ503が同一面に配されている。フランジとフェルールの組み立て時の挿入の際には、フランジ503及びフェルール502の光軸周り方向の回転角を調整し、突起部512とフランジ503の内壁が当たらないように挿入する。 For example, the first method can be realized by arranging the inner wall of the protrusion 512 and the flange 503 in only one area on the outer periphery. As shown in the side sectional view of FIG. 8, the protrusion 512 and the flange 503 are arranged on the same surface. When inserting the flange and the ferrule at the time of assembly, the rotation angles of the flange 503 and the ferrule 502 in the direction around the optical axis are adjusted, and the flange and the inner wall of the flange 503 are inserted so as not to hit each other.
 次に、各々の光軸周り方向の回転角を調整して図8に示す状態にした後に、弾性構造508を用いて連結することで、実装することが可能である。本方法では、バヨネット締結などのように挿入後に軸周りに回転させることで固定するような締結方法を利用してもよい。 Next, it is possible to mount by adjusting the rotation angle in each optical axis direction to the state shown in FIG. 8 and then connecting them using the elastic structure 508. In this method, a fastening method such as bayonet fastening, which is fixed by rotating around an axis after insertion, may be used.
 第2の方法としては、フランジ503の光ファイバ接続側に設けた内壁端部を後から接合(固着)する方法がある。これはフランジ503の光ファイバ接続側の端部を本体に接合(固着)する前に、外周の一部に突起を形成(接合)したフェルール502を、フランジ503の光ファイバ接続側から挿入した後に弾性構造508でフランジ503とフェルール502とを連結させ、最後にフランジ503の光ファイバ接続側の端部を本体に接合(固着)することにより実現できる。同様の方法でワッシャやリング形状の部品などを用いてフランジ503のファイバ接続側から挿入して接合(固着)してもよい。 As a second method, there is a method of joining (fixing) the end portion of the inner wall provided on the optical fiber connection side of the flange 503 later. This is because the ferrule 502 having a protrusion formed (joined) on a part of the outer periphery is inserted from the optical fiber connection side of the flange 503 before the end portion of the flange 503 on the optical fiber connection side is joined (fixed) to the main body. This can be realized by connecting the flange 503 and the ferrule 502 with the elastic structure 508, and finally joining (fixing) the end portion of the flange 503 on the optical fiber connection side to the main body. In the same manner, a washer, a ring-shaped component, or the like may be used to insert and join (fix) the flange 503 from the fiber connection side.
 本実施の形態によれば、所定範囲以上で弾性構造508がせん断変形すると、突起部512とフランジ503が機械干渉し、所定範囲以上のせん断変形を防止することができる。従来、光コネクタプラグのアダプタの取り外し時においては、手作業で実施するため挿抜に伴う大きなせん断応力が弾性構造508に加わる可能性があり、挿抜力を考慮した慎重な取り扱いを要する可能性があった。第3の実施形態においては、挿抜力を意識することなく、光コネクタプラグのアダプタの取り外すことが可能となる。 According to the present embodiment, when the elastic structure 508 is shear-deformed within a predetermined range, the protrusion 512 and the flange 503 mechanically interfere with each other, and the shear deformation beyond the predetermined range can be prevented. Conventionally, when removing the adapter of the optical connector plug, since it is performed manually, a large shear stress due to insertion and removal may be applied to the elastic structure 508, and careful handling in consideration of the insertion and removal force may be required. rice field. In the third embodiment, the adapter of the optical connector plug can be removed without being aware of the insertion / removal force.
<第3の実施の形態の変形例>
 図9は、本発明の第3の実施の形態の変形例に係る光コネクタにおける光コネクタプラグ52の構成を示す側面断面図である。光コネクタプラグ52は、第2の実施の形態と同様に、光ファイバ501とフェルール502および第1のフランジ503と第2のフランジ504とを備え、第1のフランジ503と第2のフランジ504とが弾性構造508で連結される。弾性構造508の種類はゴムシート或いは弾性接着剤いずれでも適用可能である。
<Modified example of the third embodiment>
FIG. 9 is a side sectional view showing a configuration of an optical connector plug 52 in an optical connector according to a modification of the third embodiment of the present invention. The optical connector plug 52 includes an optical fiber 501, a ferrule 502, a first flange 503 and a second flange 504, and a first flange 503 and a second flange 504, as in the second embodiment. Are connected by an elastic structure 508. The type of elastic structure 508 can be applied to either a rubber sheet or an elastic adhesive.
 第1のフランジ503は、第2の実施の形態同様に、外周部で、弾性構造508の光ファイバ引き出し側の端部と、第2のフランジ504における光ファイバ引き出し側の端部の内壁との間に、突起部522を備えることにより、光ファイバ引き出し側に可動弾性変形領域523を有する。これにより、コネクタプラグ挿入時などにおいて、第1のフランジ503の第2のフランジ504に対する光ファイバ引き出し側への相対変位量が、機械干渉により制限される。その結果、過度なせん断変形に伴う弾性構造508のせん断破壊を防止することができる。 Similar to the second embodiment, the first flange 503 has an outer peripheral portion of the end portion of the elastic structure 508 on the optical fiber extraction side and an inner wall of the end portion of the second flange 504 on the optical fiber extraction side. By providing the protrusion 522 in between, the movable elastic deformation region 523 is provided on the optical fiber extraction side. As a result, the amount of relative displacement of the first flange 503 with respect to the second flange 504 toward the optical fiber extraction side is limited by mechanical interference when the connector plug is inserted or the like. As a result, it is possible to prevent shear failure of the elastic structure 508 due to excessive shear deformation.
 さらに、第2のフランジ504におけるフェルール502の光ファイバ接続側の端部の開口部の径が、第1のフランジ503の光ファイバ接続側の外径より小さい。この構成により、アダプタと第2のフランジ504を接触させるときに、第1のフランジ503の光ファイバ接続側への動きを制限する。すなわち、光ファイバ接続側に可動弾性変形領域524が設定される。 Further, the diameter of the opening at the end of the ferrule 502 on the optical fiber connection side of the second flange 504 is smaller than the outer diameter of the optical fiber connection side of the first flange 503. With this configuration, when the adapter and the second flange 504 are brought into contact with each other, the movement of the first flange 503 toward the optical fiber connection side is restricted. That is, the movable elastic deformation region 524 is set on the optical fiber connection side.
 これにより、第1のフランジ503の第2のフランジ504に対する光ファイバ接続側への相対変位量が制限される。すなわち、この突起部512がストッパ構造となる。 This limits the amount of relative displacement of the first flange 503 to the second flange 504 on the optical fiber connection side. That is, the protrusion 512 has a stopper structure.
 本実施の形態における光コネクタプラグ52を作製する際には、前述と同様に第2のフランジ504と第1のフランジ503を一体化する上で、機械干渉を避ける方法で組み立てる。 When manufacturing the optical connector plug 52 in the present embodiment, the second flange 504 and the first flange 503 are integrated by a method of avoiding mechanical interference in the same manner as described above.
 例えば、第1の方法としては、第1及び第2のフランジの機械干渉する内壁を外周上の一領域にのみに配置しておくことで実現できる。図9の側面断面図に示すように、前述のように機械干渉する構造が同一面に配されている。第1および第2のフランジの組み立て時の挿入の際においては、第1のフランジ503及び第2のフランジ504の光軸周り方向の回転角を調整し、各々の内壁が接触しないように挿入する。 For example, the first method can be realized by arranging the inner walls of the first and second flanges that interfere with each other only in one area on the outer periphery. As shown in the side sectional view of FIG. 9, the structures that interfere with each other are arranged on the same surface as described above. When inserting the first and second flanges at the time of assembly, adjust the rotation angles of the first flange 503 and the second flange 504 in the direction around the optical axis, and insert them so that their inner walls do not touch each other. ..
 次に、各々の光軸周り方向の回転角を調整して図9に示す状態にした後に、弾性構造508を用いて連結することで、実装することが可能である。本方法では、バヨネット締結などのように挿入後に軸周りに回転させることで固定するような締結方法を利用してもよい。 Next, it is possible to mount by adjusting the rotation angle in each optical axis direction to the state shown in FIG. 9 and then connecting them using the elastic structure 508. In this method, a fastening method such as bayonet fastening, which is fixed by rotating around an axis after insertion, may be used.
 第2の方法としては、第2のフランジ504の光ファイバ接続側に設けた内壁端部を、最後に接合(固着)する方法である。これは第2のフランジ504の光ファイバ接続側の端部を本体に接合(固着)する前に、第1のフランジを第2のフランジに挿入して弾性構造を介して、最後に第2のフランジ504の光ファイバ接続側の端部を本体に接合(固着)することにより実現できる。同様の方法でワッシャやリング形状の部品などを用いて第2のフランジ504のファイバ接続側から挿入して接合(固着)してもよい。 The second method is a method of finally joining (fixing) the inner wall end portion provided on the optical fiber connection side of the second flange 504. This is done by inserting the first flange into the second flange and finally through the elastic structure before joining (fixing) the end of the second flange 504 on the optical fiber connection side to the main body. This can be achieved by joining (fixing) the end of the flange 504 on the optical fiber connection side to the main body. In the same manner, a washer, a ring-shaped component, or the like may be used to insert and join (fix) the second flange 504 from the fiber connection side.
 このように、本変形例に係る光コネクタにおいて、所定範囲以上に弾性構造508がせん断変形すると、第2のフランジ504のストッパ部と第1のフランジ503が機械干渉し、所定範囲以上のせん断変形を防止することができる。 As described above, in the optical connector according to the present deformation example, when the elastic structure 508 is shear-deformed beyond a predetermined range, the stopper portion of the second flange 504 and the first flange 503 mechanically interfere with each other, and the shear deformation exceeds a predetermined range. Can be prevented.
 従来、光コネクタプラグのアダプタの取り外し時においては、手作業で実施するため挿抜に伴う大きなせん断応力が弾性構造508に加わる可能性があり、挿抜力を考慮した慎重な取り扱いを要する可能性があった。本実施形態においては、挿抜力を意識することなく、光コネクタプラグのアダプタの取り外すことが可能となる。 Conventionally, when removing the adapter of the optical connector plug, since it is performed manually, a large shear stress due to insertion and removal may be applied to the elastic structure 508, and careful handling in consideration of the insertion and removal force may be required. rice field. In the present embodiment, the adapter of the optical connector plug can be removed without being aware of the insertion / removal force.
 以上のように、本実施の形態および変形例によれば、フランジ503または第2のフランジ504が光ファイバ引き出し側および光ファイバ接続側に過度にせん断変形することを防止でき、これに伴う弾性構造508のせん断破壊を防止することができる。これらの構造とすることで、光コネクタのアダプタからの挿抜時やその他ハンドリングの際に大きく弾性構造508の大きな変形による接着部の剥離や材料破壊などを防ぐことができる。 As described above, according to the present embodiment and the modification, it is possible to prevent the flange 503 or the second flange 504 from being excessively sheared and deformed to the optical fiber extraction side and the optical fiber connection side, and the elastic structure associated therewith. Shear failure of 508 can be prevented. With these structures, it is possible to prevent peeling of the adhesive portion and material destruction due to large deformation of the elastic structure 508 when inserting and removing the optical connector from the adapter or when handling the optical connector.
<第4の実施の形態>
 次に、本発明の第4の実施の形態に係る光接続構造を図10A~図10Bを参照に説明する。
<Fourth Embodiment>
Next, the optical connection structure according to the fourth embodiment of the present invention will be described with reference to FIGS. 10A to 10B.
 図10Aと図10Bはそれぞれ、第4の実施の形態に係る光接続構造60における光コネクタプラグの接続前と接続後とを示す側面断面図である。 10A and 10B are side sectional views showing before and after connecting the optical connector plug in the optical connection structure 60 according to the fourth embodiment, respectively.
 本実施の形態に係る光接続構造60では、光コネクタプラグ21と光導波路デバイス610と接続される。 In the optical connection structure 60 according to the present embodiment, the optical connector plug 21 and the optical waveguide device 610 are connected.
 構成は第1の実施例とほぼ同じであるが、一方の光コネクタの光ファイバ引出側は光導波路デバイスと接着剤を介して、導波路デバイスのコアと光ファイバのコアが低損失に光結合するように接続、一体化されている。 The configuration is almost the same as that of the first embodiment, but the optical fiber extraction side of one optical connector is optically coupled to the core of the waveguide device and the core of the optical fiber with low loss via the optical waveguide device and the adhesive. It is connected and integrated so that it can be used.
 詳細には、光接続構造60において、アダプタ605にスリーブ606を介して収容される、フェルール602の基端が、補強板603と接着層604を介して、光導波路デバイス610に接続される。光導波路デバイス610は、光導波路基板上611に光導波路層612を有し、光導波路層612内の光導波路コア613がフェルール602内の短尺ファイバ601と結合する。 Specifically, in the optical connection structure 60, the base end of the ferrule 602, which is accommodated in the adapter 605 via the sleeve 606, is connected to the optical waveguide device 610 via the reinforcing plate 603 and the adhesive layer 604. The optical waveguide device 610 has an optical waveguide layer 612 on the optical waveguide substrate 611, and the optical waveguide core 613 in the optical waveguide layer 612 is coupled to the short fiber 601 in the ferrule 602.
 光コネクタプラグ21は、アダプタ605に挿入、収容される。その結果、光ファイバ201と短尺ファイバ601が結合して接続される。 The optical connector plug 21 is inserted and housed in the adapter 605. As a result, the optical fiber 201 and the short fiber 601 are coupled and connected.
 ここで、光導波路デバイスとしては、光の伝搬機構を有する平面光波回路(Planar Lightwave Circuit)や光発光素子、光受光素子、光変調素子、光機能素子(例えばスプリッタ、波長合分波器、光スイッチ、偏波制御素子、光フィルタ)などである。光導波路デバイスの材料として例えば、シリコンやゲルマニウムなどの半導体や、インジウムリン(InP)やガリウムヒ素(GaAs)、インジウムガリウムヒ素(InGaAs)等に代表されるIII-V族半導体、ニオブ酸リチウムなどの強誘電体やポリマー、石英ガラスなどである。 Here, as the optical waveguide device, a plane light wave circuit (Planar Lightwave Circuit) having a light propagation mechanism, a light emitting element, a light receiving element, an optical modulation element, an optical functional element (for example, a splitter, a wavelength splitting / demultiplexing device, light) Switches, polarization control elements, optical filters), etc. Materials for optical waveguide devices include, for example, semiconductors such as silicon and germanium, III-V semiconductors such as indium phosphide (InP), gallium arsenide (GaAs), and indium gallium arsenide (InGaAs), and lithium niobate. Strong dielectrics, polymers, quartz glass, etc.
 本実施の形態に係る光接続構造60によれば、寸法公差が大きく、フランジ203とアダプタ605の間に大きなギャップが生じた場合でも、フェルール202とフランジ203間の弾性接着剤211が弾性変形するので、フランジ203とアダプタ605とを接触させることができる。その結果、フランジ203とアダプタ605間に働く磁力を増大させることができるので、フェルール202に十分な押圧力が加わり、安定したPC接続を実現できる。 According to the optical connection structure 60 according to the present embodiment, the elastic adhesive 211 between the ferrule 202 and the flange 203 is elastically deformed even when the dimensional tolerance is large and a large gap is generated between the flange 203 and the adapter 605. Therefore, the flange 203 and the adapter 605 can be brought into contact with each other. As a result, since the magnetic force acting between the flange 203 and the adapter 605 can be increased, a sufficient pressing force is applied to the ferrule 202, and a stable PC connection can be realized.
 この構造により、小型の光接続構造を実現できるほか、短尺光ファイバを介することで、疑似的に光導波路デバイスと光ファイバの小型な光コネクタ接続を提供することができる。なお、アダプタの材料と構造、フランジの材料と構造は、第1~第3の実施の形態のいずれを用いてもよい。 With this structure, it is possible to realize a small optical connection structure, and it is also possible to provide a pseudo optical waveguide device and a small optical connector connection of an optical fiber via a short optical fiber. As the material and structure of the adapter and the material and structure of the flange, any of the first to third embodiments may be used.
 本実施の形態では、アダプタはあらかじめ光導波路デバイス側に設けているが、挿入する光コネクタプラグ側に接着固定してもよい。また、フェルールは、あらかじめフランジに装着した状態としてもよいし、接続時にアダプタを介して装着してもよい。 In the present embodiment, the adapter is provided in advance on the optical waveguide device side, but it may be adhesively fixed to the optical connector plug side to be inserted. Further, the ferrule may be attached to the flange in advance, or may be attached via an adapter at the time of connection.
 本発明の本実施の形態では、フランジ、第1のフランジ、第2のフランジ、又はアダプタに磁石を用いる例を示したが、フランジ、第1のフランジ、第2のフランジ、又はアダプタの一部に磁石を含む構成でもよく、フランジ、第1のフランジ、第2のフランジ、又はアダプタが本発明の本実施の形態に係る光コネクタの機能を発揮するのに十分な磁力を有すればよい。 In the present embodiment of the present invention, an example in which a magnet is used for the flange, the first flange, the second flange, or the adapter is shown, but the flange, the first flange, the second flange, or a part of the adapter is shown. It may be configured to include a magnet, and the flange, the first flange, the second flange, or the adapter may have sufficient magnetic force to exert the function of the optical connector according to the embodiment of the present invention.
 本発明の実施の形態では、光コネクタの構成、製造方法などにおいて、各構成部の構造、寸法、材料等の一例を示したが、これに限らない。光コネクタの機能を発揮し効果を奏するものであればよい。 In the embodiment of the present invention, an example of the structure, dimensions, materials, etc. of each component in the configuration, manufacturing method, etc. of the optical connector is shown, but the present invention is not limited to this. Anything that exerts the function and effect of the optical connector may be used.
  本発明は、小型の光コネクタおよび光接続構造に関するものであり、光通信等の機器・システムに適用することができる。 The present invention relates to a small optical connector and an optical connection structure, and can be applied to devices and systems such as optical communication.
10 光コネクタ
101 光ファイバ
102 フェルール
103 フランジ
105 アダプタ
106 スリーブ
107 光ファイバの被覆
108 弾性構造
10 Optical connector 101 Optical fiber 102 Ferrule 103 Flange 105 Adapter 106 Sleeve 107 Optical fiber coating 108 Elastic structure

Claims (8)

  1.  周囲をクラッドに囲まれた導波コアを有する光ファイバ同士を対向して接続するための光コネクタであって、
     前記光ファイバを収容するガイド孔を備えたフェルールと、
     前記ガイド孔の一端の光ファイバ引き出し側に配置され、前記フェルールと弾性構造を介して連結したフランジと、
     一対の前記フェルールが当該フェルールの中心軸が一致するようにして対向して収容されるスリーブと、
     前記スリーブの周囲に、磁石又は金属性磁性材料を含むアダプタとを備え、
     前記アダプタと前記フランジの少なくとも一方の材質は磁石を含み、
     光ファイバ長手方向における前記アダプタの長さが、一対の前記フェルールの突き出し長さの和以下に設定されており、
     前記弾性構造が弾性変形し、
     対向する前記光ファイバのコア同士が密着して接触することを特徴とする光コネクタ。
    An optical connector for connecting optical fibers having a waveguide core surrounded by a clad so as to face each other.
    A ferrule having a guide hole for accommodating the optical fiber and
    A flange arranged on the optical fiber extraction side at one end of the guide hole and connected to the ferrule via an elastic structure,
    A sleeve in which a pair of the ferrules are housed so as to face each other so that the central axes of the ferrules coincide with each other.
    Around the sleeve, an adapter containing a magnet or a metallic magnetic material is provided.
    The material of at least one of the adapter and the flange includes a magnet.
    The length of the adapter in the longitudinal direction of the optical fiber is set to be equal to or less than the sum of the protrusion lengths of the pair of ferrules.
    The elastic structure is elastically deformed and
    An optical connector characterized in that the cores of the optical fibers facing each other are in close contact with each other.
  2.  周囲をクラッドに囲まれた導波コアを有する光ファイバ同士を対向して接続するための光コネクタであって、
     前記光ファイバを収容するガイド孔を備えたフェルールと、
     前記ガイド孔の一端の光ファイバ引き出し側に配置され、前記フェルールと一体化した第1のフランジと、
     前記第1のフランジと弾性構造を介して連結した第2のフランジと、
     一対の前記フェルールが当該フェルールの中心軸が一致するようにして対向して収容されるスリーブと、
     前記スリーブの周囲に、磁石又は金属性磁性材料を含むアダプタとを備え、
     前記アダプタと前記第2のフランジの少なくとも一方の材質は磁石を含み、
     光ファイバ長手方向における前記アダプタの長さが、一対の前記フェルールの突き出し長さの和以下に設定されており、
     前記弾性構造が弾性変形し、
     対向する前記光ファイバのコア同士が密着して接触することを特徴とする光コネクタ。
    An optical connector for connecting optical fibers having a waveguide core surrounded by a clad so as to face each other.
    A ferrule having a guide hole for accommodating the optical fiber and
    A first flange arranged on the optical fiber extraction side at one end of the guide hole and integrated with the ferrule,
    A second flange connected to the first flange via an elastic structure,
    A sleeve in which a pair of the ferrules are housed so as to face each other so that the central axes of the ferrules coincide with each other.
    Around the sleeve, an adapter containing a magnet or a metallic magnetic material is provided.
    The material of at least one of the adapter and the second flange comprises a magnet.
    The length of the adapter in the longitudinal direction of the optical fiber is set to be equal to or less than the sum of the protrusion lengths of the pair of ferrules.
    The elastic structure is elastically deformed and
    An optical connector characterized in that the cores of the optical fibers facing each other are in close contact with each other.
  3.  請求項1または請求項2に記載の光コネクタであって、
     前記弾性構造は、弾性接着剤であることを特徴とする光コネクタ。
    The optical connector according to claim 1 or 2.
    The elastic structure is an optical connector characterized by being an elastic adhesive.
  4.  請求項1または請求項2に記載の光コネクタであって、
     前記弾性構造は、ゴム系材料であることを特徴とする光コネクタ。
    The optical connector according to claim 1 or 2.
    The elastic structure is an optical connector characterized by being a rubber-based material.
  5.  請求項1から請求項4のいずれか一項に記載の光コネクタであって、
     前記弾性構造のフェルール長手方向の長さをL、厚みをt、フェルール半径をr、長手方向の弾性変形量をdL、前記弾性構造変形前の前記フランジとアダプタの間に働く磁力をF、弾性材料のポアソン比をνとするときに、前記弾性構造の材料のヤング率Eが、
     E ≦ (1+ν)×F×t/(π×r×L×dL)
    を満たすことを特徴とする光コネクタ。
    The optical connector according to any one of claims 1 to 4.
    The length of the elastic structure in the longitudinal direction of the ferrule is L, the thickness is t, the radius of the ferrule is r, the amount of elastic deformation in the longitudinal direction is dL, the magnetic force acting between the flange and the adapter before the deformation of the elastic structure is F, and elasticity. When the Poisson's ratio of the material is ν, the Young's modulus E of the material having the elastic structure is
    E ≤ (1 + ν) × F × t / (π × r × L × dL)
    An optical connector characterized by satisfying.
  6.  請求項1から請求項5のいずれか一項に記載の光コネクタであって、
     前記フェルール長手方向のファイバ引き出し側において、前記弾性構造の可動領域を制限するように前記フェルールと前記フランジ、または前記第1のフランジと前記第2のフランジが機械干渉する構造を設けてあることを特徴とする光コネクタ。
    The optical connector according to any one of claims 1 to 5.
    On the fiber extraction side in the longitudinal direction of the ferrule, a structure is provided in which the ferrule and the flange, or the first flange and the second flange mechanically interfere with each other so as to limit the movable region of the elastic structure. Characterized optical connector.
  7.  請求項1から請求項6のいずれか一項に記載の光コネクタであって、
     前記フェルール長手方向のファイバ接続側において、前記弾性構造の可動領域を制限するように前記フェルールと前記フランジ、または前記第1のフランジと前記第2のフランジが機械干渉する構造を設けてあることを特徴とする光コネクタ。
    The optical connector according to any one of claims 1 to 6.
    On the fiber connection side in the longitudinal direction of the ferrule, a structure is provided in which the ferrule and the flange, or the first flange and the second flange mechanically interfere with each other so as to limit the movable region of the elastic structure. Characterized optical connector.
  8.  請求項1から請求項7のいずれか一項に記載の光コネクタと、
     光導波路デバイスと
     を備える光接続構造。
    The optical connector according to any one of claims 1 to 7.
    Optical connection structure with optical waveguide device.
PCT/JP2020/030024 2020-08-05 2020-08-05 Optical connector and optical connection structure WO2022029930A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2020/030024 WO2022029930A1 (en) 2020-08-05 2020-08-05 Optical connector and optical connection structure
JP2022541412A JPWO2022029930A1 (en) 2020-08-05 2020-08-05

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/030024 WO2022029930A1 (en) 2020-08-05 2020-08-05 Optical connector and optical connection structure

Publications (1)

Publication Number Publication Date
WO2022029930A1 true WO2022029930A1 (en) 2022-02-10

Family

ID=80117787

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/030024 WO2022029930A1 (en) 2020-08-05 2020-08-05 Optical connector and optical connection structure

Country Status (2)

Country Link
JP (1) JPWO2022029930A1 (en)
WO (1) WO2022029930A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7472987B2 (en) 2020-08-05 2024-04-23 日本電信電話株式会社 Optical connector and optical connection structure

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS613106A (en) * 1984-06-15 1986-01-09 Sumitomo Electric Ind Ltd Optical fiber connector
JPH0584905U (en) * 1992-04-14 1993-11-16 日本電気株式会社 Optical communication connector
JPH06174971A (en) * 1992-12-01 1994-06-24 Citizen Watch Co Ltd Optical connector
JP2003536099A (en) * 2000-06-05 2003-12-02 フーバー ウント ズーナー アーゲー Method for assembling an optical plug connector, apparatus for performing the method, and plug connector for use in such a method
US20130236139A1 (en) * 2012-03-07 2013-09-12 Verizon Patent And Licensing Inc. Hardened multiport optical connector assembly
WO2018146925A1 (en) * 2017-02-10 2018-08-16 富士フイルム株式会社 Optical connector, photoacoustic emission device, and optical connector manufacturing method
CN110441868A (en) * 2019-07-31 2019-11-12 尚华 A kind of optical fiber seal wire, array magnetism optical fiber connector and its application method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS613106A (en) * 1984-06-15 1986-01-09 Sumitomo Electric Ind Ltd Optical fiber connector
JPH0584905U (en) * 1992-04-14 1993-11-16 日本電気株式会社 Optical communication connector
JPH06174971A (en) * 1992-12-01 1994-06-24 Citizen Watch Co Ltd Optical connector
JP2003536099A (en) * 2000-06-05 2003-12-02 フーバー ウント ズーナー アーゲー Method for assembling an optical plug connector, apparatus for performing the method, and plug connector for use in such a method
US20130236139A1 (en) * 2012-03-07 2013-09-12 Verizon Patent And Licensing Inc. Hardened multiport optical connector assembly
WO2018146925A1 (en) * 2017-02-10 2018-08-16 富士フイルム株式会社 Optical connector, photoacoustic emission device, and optical connector manufacturing method
CN110441868A (en) * 2019-07-31 2019-11-12 尚华 A kind of optical fiber seal wire, array magnetism optical fiber connector and its application method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7472987B2 (en) 2020-08-05 2024-04-23 日本電信電話株式会社 Optical connector and optical connection structure

Also Published As

Publication number Publication date
JPWO2022029930A1 (en) 2022-02-10

Similar Documents

Publication Publication Date Title
WO2021111589A1 (en) Optical connector and optical connection structure
EP0027818B1 (en) Elastomeric fiber optic splice
US9791632B2 (en) Optical assembly
US10754105B2 (en) Optical coupling device with waveguide assisted registration
JP2014182229A (en) Optical connector for multi-core fiber
CA2381599A1 (en) Fiber array coupler
JP2012194481A (en) Optical connector, method for mounting optical fiber, and electronic information device
JP3091680B2 (en) Multi-core optical connector for ribbon type optical cable
JP2024019552A (en) Optical connectors and optical connection structures
WO2022029930A1 (en) Optical connector and optical connection structure
WO1990007137A1 (en) Optical fiber connecting ferrule and optical connector using same
JPH0534550A (en) Multifiber connector for optical fibercable
WO2022029929A1 (en) Optical connector and optical connection structure
WO2020081439A1 (en) Ferrules including keying features and fiber optic junctions including the same
JP4248666B2 (en) Optical connector device
JP2014534472A (en) Optical fiber with core-to-core alignment
EP0927894A1 (en) Fiber-to-multiple-fiber magnetic switch
KR100773175B1 (en) Optical connector
WO2023053210A1 (en) Optical connector connecting structure
WO2023053211A1 (en) Optical connector connection structure
JP3435070B2 (en) Optical fiber connector and optical wiring board
Shikama et al. Miniature optical connector with magnetic physical contact
WO2022153354A1 (en) Optical module mounting structure and optical mounting board
JP2023180815A (en) Optical connection device, composite optical connection device, and method for manufacturing optical connection device
JPH08184727A (en) Optical connector

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20948378

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022541412

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20948378

Country of ref document: EP

Kind code of ref document: A1