WO2022028587A1 - Reducing power consumption in direct wireless communications systems - Google Patents

Reducing power consumption in direct wireless communications systems Download PDF

Info

Publication number
WO2022028587A1
WO2022028587A1 PCT/CN2021/111239 CN2021111239W WO2022028587A1 WO 2022028587 A1 WO2022028587 A1 WO 2022028587A1 CN 2021111239 W CN2021111239 W CN 2021111239W WO 2022028587 A1 WO2022028587 A1 WO 2022028587A1
Authority
WO
WIPO (PCT)
Prior art keywords
slots
resource
sensing
transmission
periodic
Prior art date
Application number
PCT/CN2021/111239
Other languages
French (fr)
Inventor
Virgile Garcia
Umer Salim
Hongzhi Wang
Original Assignee
Huizhou Tcl Cloud Internet Corporation Technology Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huizhou Tcl Cloud Internet Corporation Technology Co., Ltd. filed Critical Huizhou Tcl Cloud Internet Corporation Technology Co., Ltd.
Priority to CN202180057347.8A priority Critical patent/CN116134879A/en
Publication of WO2022028587A1 publication Critical patent/WO2022028587A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/02Selection of wireless resources by user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0808Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the following disclosure relates to point-to-point communications in a wireless communications system, and more particularly for energy saving procedures in partial sensing sidelink communications.
  • Wireless communication systems such as the third-generation (3G) of mobile telephone standards and technology are well known.
  • 3G standards and technology have been developed by the Third Generation Partnership Project (3GPP) (RTM) .
  • RTM Third Generation Partnership Project
  • the 3rd generation of wireless communications has generally been developed to support macro-cell mobile phone communications.
  • Communication systems and networks have developed towards a broadband and mobile system.
  • UE User Equipment
  • RAN Radio Access Network
  • CN Core Network
  • LTE Long Term Evolution
  • E-UTRAN Evolved Universal Mobile Telecommunication System Territorial Radio Access Network
  • 5G or NR new radio
  • NR is proposed to utilise an Orthogonal Frequency Division Multiplexed (OFDM) physical transmission format.
  • OFDM Orthogonal Frequency Division Multiplexed
  • the NR protocols are intended to offer options for operating in unlicensed radio bands, to be known as NR-U.
  • NR-U When operating in an unlicensed radio band the gNB and UE must compete with other devices for physical medium/resource access.
  • Wi-Fi RTM
  • NR-U NR-U
  • LAA LAA
  • NR is intended to support Ultra-reliable and low-latency communications (URLLC) and massive Machine-Type Communications (mMTC) are intended to provide low latency and high reliability for small packet sizes (typically 32 bytes) .
  • URLLC Ultra-reliable and low-latency communications
  • mMTC massive Machine-Type Communications
  • a user-plane latency of 1ms has been proposed with a reliability of 99.99999%, and at the physical layer a packet loss rate of 10 -5 or 10 -6 has been proposed.
  • mMTC services are intended to support a large number of devices over a long life-time with highly energy efficient communication channels, where transmission of data to and from each device occurs sporadically and infrequently. For example, a cell may be expected to support many thousands of devices.
  • the disclosure below relates to various improvements to cellular wireless communications systems.
  • the invention is defined in the claims in which there is required a method of identifying available transmission resources for a sidelink transmission from a first UE to a second UE, the method performed at the first UE and comprising the steps of identifying a potential resource for use for transmission; monitoring a subset of slots preceding the potential resource for conflicting transmissions; and marking the potential resource unavailable for transmission if a conflicting transmission is detected.
  • the subset of slots may be a set of periodic slots repeating with a period greater than 1.
  • the subset of slots may be non-contiguous due to at least one unmonitored slot lying between two monitored slots.
  • the subset of slots may be a periodic set of slots.
  • the period may be defined by higher layer signalling.
  • the period may be 100ms.
  • Monitoring may comprise monitoring for an SCI message and decoding a received SCI to identify reservations.
  • Monitoring may comprise monitoring for an occasion of a periodic transmission which may also have an occasion conflicting with the potential resource.
  • the potential resource may be marked as unavailable if the conflicting transmission is greater than a threshold.
  • the subset of slots may comprise a contiguous set of slots preceding the potential resource, and a set of periodic slots prior to the contiguous set of slots.
  • Figure 1 shows selected elements of a cellular communications network
  • Figure 2 shows selected elements in a Radio Area Network of the cellular wireless communication network of Figure 1;
  • Figures 3 to 8 show timing ofslots that are sensed to evaluate a potential resource for selection.
  • FIG. 1 shows a schematic diagram of three base stations (for example, eNB or gNBs depending on the particular cellular standard and terminology) forming a cellular network.
  • each of the base stations will be deployed by one cellular network operator to provide geographic coverage for UEs in the area.
  • the base stations form a Radio Area Network (RAN) .
  • RAN Radio Area Network
  • Each base station provides wireless coverage for UEs in its area or cell.
  • the base stations are interconnected via the X2 interface and are connected to the core network via the S1 interface.
  • a PC5 interface is provided between UEs for SideLink (SL) communications.
  • SL SideLink
  • the base stations each comprise hardware and software to implement the RAN’s functionality, including communications with the core network and other base stations, carriage of control and data signals between the core network and UEs, and maintaining wireless communications with UEs associated with each base station.
  • the core network comprises hardware and software to implement the network functionality, such as overall network management and control, and routing of calls and data.
  • V2V vehicle-to-vehicle
  • the UEs may be incorporated into vehicles such as cars, trucks and buses. These vehicular UEs are capable of communicating with each other in in-coverage mode, where a base station manages and allocates the resources and in out-of-coverage mode, without any base station managing and allocating the resources.
  • V2X vehicle-to-everything
  • the vehicles may be communicating not only with other vehicles, but also with infrastructure, pedestrians, cellular networks and potentially other surrounding devices.
  • V2X use cases include:
  • Vehicles Platooning -this enables the vehicles to dynamically form a platoon travelling together. All the vehicles in the platoon obtain information from the leading vehicle to manage this platoon. This information allows the vehicles to drive closer than normal in a coordinated manner, going to the same direction and travelling together.
  • Extended Sensors this enables the exchange of raw or processed data gathered through local sensors or live video images among vehicles, road site units, devices of pedestrian and V2X application servers.
  • the vehicles can increase the perception of their environment beyond of what their own sensors can detect and have a more broad and holistic view of the local situation.
  • High data rate is one of the key characteristics.
  • Each vehicle and/or RSU shares its own perception data obtained from its local sensors with vehicles in proximity and that allows vehicles to synchronize and coordinate their trajectories or manoeuvres. Each vehicle shares its driving intention with vehicles in proximity too.
  • Remote Driving this enables a remote driver or a V2X application to operate a remote vehicle for those passengers who cannot drive by themselves or remote vehicles located in dangerous environments. For a case where variation is limited and routes are predictable, such as public transportation, driving based on cloud computing can be used. High reliability and low latency are the main requirements.
  • FIG. 2 illustrates a base station 102 forming a RAN, and a transmitter (Tx) UE 150 and a receiver (Rx) UE 152 in the RAN.
  • the base station 102 is arranged to wirelessly communicate over respective connections 154 with each of the Tx UE 150, i.e. UE-A, and the Rx UE 152, i.e. UE-B.
  • the Tx UE 150 and the Rx UE 152 are arranged to wirelessly communicate with each other over a sidelink 156.
  • TDD half duplex
  • a resource pool is a set of time-frequency resources from which resources for a transmission can be selected.
  • UEs can be configured with multiple transmit and receive resource pools.
  • Mode 1 Two modes of operation are used for resource allocation for sidelink communication depending on whether the UEs are within coverage of a cellular network.
  • the V2X communication is operating in-coverage of the base stations (eg eNBs or gNBs) . All the scheduling and the resource assignments may be made by the base stations.
  • Mode 2 applies when the V2X services operate out-of-coverage of cellular base stations.
  • the UEs need to schedule themselves. For fair utilization, sensing-based resource allocation is generally adopted at the UEs.
  • UEs reserve resources for a transmission by transmitting a Sidelink Control Information (SCI) message indicating the resources to be used.
  • SCI Sidelink Control Information
  • the SCI notifies the recipient (which may be a single UE in unicast, a group of UEs in groupcast, or all reachable UEs in broadcast) of the details of the transmission it can expect.
  • the SCI is the control information needed to decode the Sidelink data content, and also resource indications for reservations, with the first stage SCI being transmitted in the PSCCH and the second stage SCI being transmitted in the PSSCH.
  • UEs may reserve transmission resources both for a first transmission of a Transport Block (TB) of data, and also for transmitting repetitions of the TB to improve reliability if the initial transmission fails.
  • TB Transport Block
  • the standards such as 3GPP TR 37.985, v16.0.0, describes the features required by to LTE and NR standards to support V2X services and a set of requirements sufficient for basic road safety services.
  • Vehicles containing UEs with these features can use the uplink, downlink and sidelink to exchange information on their own status, such as position, speed, and heading with other nearby vehicles, infrastructure nodes, and pedestrians.
  • the sidelink communications enhance efficiency and include sidelink carrier aggregation, higher-order modulation, and reduced latency.
  • the apparatus, methods and systems described herein reduces power consumption of devices in sidelink autonomous resource selection mode.
  • the (sub) set of slots to be sensed are configured and matched the configuration of the resource pool. This is achieved by monitoring retransmission resource reservations and periodic resource reservations.
  • Also described herein is a further apparatus, methods and systems for power reduction by enabling down-selection of the sensing performed and configuring the sensing to match user capabilities.
  • the apparatus, methods and systems described herein focuses on the power consumption part and improvements made over partial sensing defined by the standards.
  • UEs can have limited or no sensing capabilities. When no sensing is made by UE, the UE simply performs a random selection, with the risk of collisions.
  • a tradeoff method called “partial sensing” allows the UEs to sense the resource pool for a limited time to search for reservations that could impact their selection. The reservations are periodic and the possible periodicities are multiples of 100ms.
  • thepartial sensing UE may choose any resource in the selection window. If n is the time of resource selection, the selection window is [n+T1, n+T2] . To determine whether the resources in the selection window are reserved or not, the partial sensing UE must sense the channel for potential transmissions with reservations that could fall in the selection window.
  • Figure 3 shows the slots (8 1ms sensing slots only are shown for clarity) that need to be sensed in order to determine if the desired Slot A is free.
  • the limited sensing UE senses all previous (logical) slots to search for reservation of retransmissions.
  • Partial sensing is defined and allowed by the Radio Resource Control (RRC or higher layers) configurations. If partial sensing is configured by the higher layers, then the followingtwo steps are used:
  • the UE determines by its implementation a set of subframes which consists of at least Y subframes within the time interval [n+T 1 , n+T 2 ] where selections of T 1 and T 2 are up to UE implementations under T 1 ⁇ 4 and T 2min (prio TX ) ⁇ T 2 ⁇ 100, if T 2min (prio TX ) is provided by higher layers forprio TX , otherwise 20 ⁇ T 2 ⁇ 100.
  • Y is set in the RRC
  • n is the time of the resource selection
  • n+T1 is the beginning of the selection window
  • n+T2 is the end of the selection window.
  • UE selection of T 2 fulfils the latency requirement and Yis greater than or equal to the high layer parameter minNumCandidateSF.
  • the UE assumes that any set of L subCH contiguous sub-channels included in the corresponding PSSCH resource pool (described in TS 36.213 g20 section 14.1.5) within the determined set of subframes corresponds to one candidate single-subframe resource.
  • the total number of the candidate single-subframe resources is denoted byM total .
  • Step 2 If a subframe is included in the set of subframes in Step 1, the UE shall monitor any subframe if k-th bit of the high layer parameter gapCandidateSensing is set to 1. The UE shall perform the behaviour in the following steps based on PSCCH decoded and S-RSSI measured in these subframes.
  • t y is the time of the resource selected and Pstep is 100ms in LTE.
  • periodicities are selected from a list of standardized values.
  • the possible values for periodicities are a multiple of 100ms, up to 1000ms. It is also possible to select which periodicities are allowed in a pool, configured byResourceReservePeriodas a subset of the possible multiples of 100ms.
  • partial sensing is configured in absolute time with the gapCandidateSensing parameter.
  • This parameter is a list of 10 Booleans, where the k th value tells partial sensing UE whether or not to sense the time k*100ms before the evaluated resource.
  • the two lists are independently configured, and this leaves full flexibility in period configuration and partial sensing and it is up to the configuration to trade off the three aspects: possible periods; sensing power reduction; collision risk. Collision risks happen when partial sensing UE are not required to sense in the time that match configured periods, to reduce their power consumption.
  • Resource pools may be configured to support periodic reservations, which can be configured up to 1000ms in advance, and can lead to collision if not sensed properly.
  • periodic reservations When configured to support periodic reservations the resource pool has a sensing window that starts up to 1100ms before the time of resource selection.
  • NR the possible periods (up to 16) in a resource pool are also configured in ResourceReservePeriod but the choice for these is largely extended and allow any integer value between 1ms to 99ms, with the multiples of 100ms up to 1000ms. Additionally, NR introduced several different mechanisms that need sidelink partial sensing. In NR, resource allocation for retransmissions is fully flexible in frequency and time, making it possible to reserve (one or two) retransmissions up to 32 logical time slots ahead. Reusing the prior art LTE partial sensing for NR, would require a very long bitstring indication to point to all possible instants in the 1100ms window.
  • the apparatus, methods and systems described herein provide efficient signaling and configuration to enable the UE to perform partial sensing and still catch the possible reservations, both for retransmissions and for periodically reserved reservations, based on the periods defined in NR and retransmissions assignments.
  • a partial sensing UE can be configured or pre-configured to perform sensing of the slots that indicate retransmissions resources that may collide with a potential resource selected by the partial sensing UE for its own use.
  • an SCI can reserve retransmissions up to 32 logical slots in advance (in LTE, up to 16) .
  • partial sensing UEs perform sensing on all logical slots before the selected slot that is in the range of the retransmission time resource indication.
  • Listening to these 16 or 32 slots can prevent listening to the full sensing window of 100ms (for aperiodic resource pool; 1100ms for a resource pool with periodic reservation allowed) and thus reduce power consumption.
  • the partial sensing UE may be configured to sense only part of available slots, following a (pre) configured pattern.
  • the possible patterns can be preset and signaled by (pre) configuration with an index, or alternatively use a bitmap that indicates which logical slots to sense.
  • Figure 4 shows the slots that need to be sensed in order to determine if the desired Slot A is free.
  • thepartial sensing UE only senses 4 out of 8 (logical) slots prior to its selected resource to search for reservations of retransmissions.
  • Figure 5 shows a missed retransmission reservation (SCI) , leading to a collision in the desired Slot A.
  • SCI missed retransmission reservation
  • Resource selection for retransmissions in a resource pool where partial sensing UEs are configured can be set so that retransmissions resources match the limited sensing time pattern. This limits the flexibility of resource allocation but allows partial sensing users to listen to all possible conflicting retransmission resource that could affect their resource selection.
  • the apparatus, systems and methods described herein may remove from the candidate set of resources in Step 1 any resources in the slots non-listened by the partial sensing users.
  • the limited sensing can all be enabled/disabled using flags configured in the resource pool. This functionality can impact on resource selection flexibility and device power consumption, so it may be enabled when limited sensingUEs are present or expected in the resource pool.
  • This method may be suitable for a resource pool with blind retransmissions that always use the retransmission resources reserved.
  • HARQ feedback-based retransmission resource pools may also benefit from this approach.
  • Partial sensing UEs may exchange capabilities between UEs and/or with network, and the partial sensing UE capability can define which sensing method and/or how much sensing, e.g. per evaluated resource or per time unit, the partial sensing UEs can perform.
  • the resource pool can be configured appropriately for example by determining which set of resource to listen to and whether to manage the capabilities and expectations of various partial sensing UEs.
  • the methods presented herein function without distinguishing whether the resource pool is configured for aperiodic resource only or periodic reservations and are therefore capable of catching the reserved retransmissions of both kinds.
  • Partial sensing UEs can be configured to perform sensing of a limited set of slots in a resource pool, including all the slots that coincide with the configured possible periods of reservation that will collide with the evaluated resource.
  • the partial sensing monitors the slots that correspond to times for all the period values P i configured in ResourceReservePeriodList, for all j such that P i *j ⁇ SensingWindow.
  • Partial sensing UEs can be configured to perform sensing of a limited set of slots in a resource pool, including the N last slots that coincide with the configured possible periods of reservation that will collide with the evaluated resource.
  • N can be (pre) configured, possibly for each period configured.
  • Figure 6 shows an example where periods, selected for illustration, of 20ms and 50ms are configured in the resource pool.
  • the partial sensing UE evaluates potential access in a slot marked Evaluated Resource A by sensing the Listened to slots every 20ms and every 50ms before Evaluated Resource A. Other slots are not required to be sensed or listened to.
  • sensing is performed on the exact slot that is at the time of possible periodic conflict, with the exact listening duration being limited to listening to the PSCCHto decode first stage of the SCIand possibly listening to the PSSCH for the second stage of the SCI of these specific slots to determine if it is an intended receiver of data.
  • this proposed partial sensing requires the partial sensing UE to monitor the slots that correspond to times for all the period values P i configured in ResourceReservePeriodList, for all j such that j ⁇ N.
  • only one slot per configured period is sensed; that is the slot 50 ms before Evaluated Resource A and the slot 20 ms before Evaluated Resource A. If the slot corresponding to the time instant of a potential periodic reservation collision is not a SL slot, then the partial sensing UE may sense the instant that is the last SL slot occasion corresponding to such periodicity.
  • anypartial sensing UE that performsa periodic reservation does not have a data to transmit, it simply does not transmit on the reserved resources.
  • N 1
  • the period to sense for example ReducedSensingPeriodList, can be configured and signalled with a bitmap of the same length as the possible period list.
  • the apparatus, methods and systems may set a minimum and/or maximum period value for the periods to be sensed. These limited sensing periods can be configured to match the partial sensing UE capabilities that are signalled over the resource pool. Thus, this partial sensing monitors the slots that correspond to times for the period values P i in the configured subset ReducedSensingPeriodList, for all j such that P i *j ⁇ SensingWindow (or ⁇ N) .
  • Partial sensing UEs can be configured to perform the partial sensing methods described herein over a limited sensing window.
  • the window for periodic enabled resource pool is 1100ms, which is long relative to the many occasions of small period reservations.
  • the reservation pool allows limited sensing users to reduce their sensing windows to a minimum size, for example 100ms.
  • the exact value of window sensing can be left for implementation but may be constrained to that configured minimum.
  • UEs with limited sensing features can share their user limited sensing capability including the maximum sensing window size possible.
  • the apparatus, methods and systems described herein can be configured or preconfigured and activated/deactivated with a dedicated flag in the configuration, or simply by the presence or absence of the required configuration parameters. Such change in configuration can be triggered by the presence of limited sensingUEs and their capability.
  • the sidelink resource pools will allow both aperiodic transmissions with multiple repetitions reserved in a single SCI, transmissions with periodic reservation of resources, and periodic reservations may also have retransmissions.
  • the periodic transmissions may need to resort to one shot transmissions, for example in case HARQ NACK is received and re-transmissions can be performed within the packet delay budget.
  • the UEs with constrained power need to apply a combination of the strategies described herein to minimize their sensing requirements.
  • the partial sensing UEs will listen to a group of resources just prior to their selection window (the Evaluated Resource A) to detect any retransmission reservations potentially colliding with the candidate resource, and then beyond that will sense over the slots which correspond to the periodic instances for the periods configures as part of the resource pool configuration.
  • Resource pool configuration can indicate with suitable fields the bounds on the two intervals of partial sensing.
  • the partial sensing bounds may be linked to the priority of the transmissions.
  • the resource pool configuration can define a priority threshold and if the power constrained UEs are transmitting a packet which has priority higher than the configured threshold, they can perform sensing with one indicated bound, for example both periodic and aperiodic partial sensing limited to a duration of 100ms. If the priority of the packet is equal or lower than the configured threshold, these UEs will perform partial sensing over longer durations, either spanning the full sensing window or indicated by configuring an explicit duration as part of resource pool configuration.
  • UEs with limited sensing capabilities can be configured to stop or pause their monitoring for the set of slots/sub-channels that correspond to potential reservation announcement of an already reserved resource.
  • an SCI is monitored in one of the possible conflicting reservation slots sensed by the partial sensing UE.
  • the SCI reserves resource overlapping with the Evaluated Resource A for another UE.
  • the sensing for future conflicting reservations is stopped and set as non-available, with a new Evaluated Resource selected from one of the other resources in the Y list.
  • the partial sensing UE may sense the last occasion of the reservation conflict occasions to verify if the periodic resource is still using the periodic resource. Note that if the limited sensing UE is considering several frequency-divided resources (different sub-channels) in a same slot, and if only part of that slot is already reserved, the limited sensing UE can still monitor the remainingslots to check for further conflicts with the non-conflicted resources. This will still require partial sensing UE to have its radio reception active, but it can reduce the decoding and processing to the PSCCH areas that may still lead to further conflicts.
  • This interrupted sensing can apply both to periodic reservation partial sensing and retransmission partial sensing.
  • periodic reservation partial sensing the potential conflicting occasions are using the same sub-channel as the selected resource and these can be easily identified and removed from sensing.
  • retransmission partial sensing retransmission resources have full flexibility in time and frequency domains, thus to interrupt sensing over slot occasions that has potential conflicts, all the candidate resources of a selected slot must be already be reserved to cancel the monitoring of the corresponding slots.
  • any of the devices or apparatus that form part of the network may include at least a processor, a storage unit and a communications interface, wherein the processor unit, storage unit, and communications interface are configured to perform the method of any aspect of the present invention. Further options and choices are described below.
  • the signal processing functionality of the embodiments of the invention especially the gNB and the UE may be achieved using computing systems or architectures known to those who are skilled in the relevant art.
  • Computing systems such as, a desktop, laptop or notebook computer, hand-held computing device (PDA, cell phone, palmtop, etc. ) , mainframe, server, client, or any other type of special or general purpose computing device as may be desirable or appropriate for a given application or environment can be used.
  • the computing system can include one or more processors which can be implemented using a general or special-purpose processing engine such as, for example, a microprocessor, microcontroller or other control module.
  • the computing system can also include a main memory, such as random access memory (RAM) or other dynamic memory, for storing information and instructions to be executed by a processor. Such a main memory also may be used for storing temporary variables or other intermediate information during execution of instructions to be executed by the processor.
  • the computing system may likewise include a read only memory (ROM) or other static storage device for storing static information and instructions for a processor.
  • ROM read only memory
  • the computing system may also include an information storage system which may include, for example, a media drive and a removable storage interface.
  • the media drive may include a drive or other mechanism to support fixed or removable storage media, such as a hard disk drive, a floppy disk drive, a magnetic tape drive, an optical disk drive, a compact disc (CD) or digital video drive (DVD) (RTM) read or write drive (R or RW) , or other removable or fixed media drive.
  • Storage media may include, for example, a hard disk, floppy disk, magnetic tape, optical disk, CD or DVD, or other fixed or removable medium that is read by and written to by media drive.
  • the storage media may include a computer-readable storage medium having particular computer software or data stored therein.
  • an information storage system may include other similar components for allowing computer programs or other instructions or data to be loaded into the computing system.
  • Such components may include, for example, a removable storage unit and an interface , such as a program cartridge and cartridge interface, a removable memory (for example, a flash memory or other removable memory module) and memory slot, and other removable storage units and interfaces that allow software and data to be transferred from the removable storage unit to computing system.
  • the computing system can also include a communications interface.
  • a communications interface can be used to allow software and data to be transferred between a computing system and external devices.
  • Examples of communications interfaces can include a modem, a network interface (such as an Ethernet or other NIC card) , a communications port (such as for example, a universal serial bus (USB) port) , a PCMCIA slot and card, etc.
  • Software and data transferred via a communications interface are in the form of signals which can be electronic, electromagnetic, and optical or other signals capable of being received by a communications interface medium.
  • computer program product may be used generally to refer to tangible media such as, for example, a memory, storage device, or storage unit.
  • These and other forms of computer-readable media may store one or more instructions for use by the processor comprising the computer system to cause the processor to perform specified operations.
  • Such instructions generally 45 referred to as ‘computer program code’ (which may be grouped in the form of computer programs or other groupings) , when executed, enable the computing system to perform functions of embodiments of the present invention.
  • the code may directly cause a processor to perform specified operations, be compiled to do so, and/or be combined with other software, hardware, and/or firmware elements (e.g., libraries for performing standard functions) to do so.
  • the non-transitory computer readable medium may comprise at least one from a group consisting of: a hard disk, a CD-ROM, an optical storage device, a magnetic storage device, a Read Only Memory, a Programmable Read Only Memory, an Erasable Programmable Read Only Memory, EPROM, an Electrically Erasable Programmable Read Only Memory and a Flash memory.
  • the software may be stored in a computer-readable medium and loaded into computing system using, for example, removable storage drive.
  • a control module (in this example, software instructions or executable computer program code) , when executed by the processor in the computer system, causes a processor to perform the functions of the invention as described herein.
  • inventive concept can be applied to any circuit for performing signal processing functionality within a network element. It is further envisaged that, for example, a semiconductor manufacturer may employ the inventive concept in a design of a stand-alone device, such as a microcontroller of a digital signal processor (DSP) , or application-specific integrated circuit (ASIC) and/or any other sub-system element.
  • DSP digital signal processor
  • ASIC application-specific integrated circuit
  • aspects of the invention may be implemented in any suitable form including hardware, software, firmware or any combination of these.
  • the invention may optionally be implemented, at least partly, as computer software running on one or more data processors and/or digital signal processors or configurable module components such as FPGA devices.
  • an embodiment of the invention may be physically, functionally and logically implemented in any suitable way. Indeed, the functionality may be implemented in a single unit, in a plurality of units or as part of other functional units.
  • the present invention has been described in connection with some embodiments, it is not intended to be limited to the specific form set forth herein. Rather, the scope of the present invention is limited only by the accompanying claims. Additionally, although a feature may appear to be described in connection with particular embodiments, one skilled in the art would recognise that various features of the described embodiments may be combined in accordance with the invention. In the claims, the term ‘comprising’ does not exclude the presence of other elements or steps.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Transceivers (AREA)

Abstract

In a listen before transmit system a UE listens to only a subset of transmission resources to determine availability of potential transmission resources. A UE may listen to a non-contiguous or periodic set of slots to determine if there are conflicting transmissions.

Description

Reducing Power Consumption in Direct Wireless Communications Systems Technical Field
The following disclosure relates to point-to-point communications in a wireless communications system, and more particularly for energy saving procedures in partial sensing sidelink communications.
Background
Wireless communication systems, such as the third-generation (3G) of mobile telephone standards and technology are well known. Such 3G standards and technology have been developed by the Third Generation Partnership Project (3GPP) (RTM) . The 3rd generation of wireless communications has generally been developed to support macro-cell mobile phone communications. Communication systems and networks have developed towards a broadband and mobile system.
In cellular wireless communication systems User Equipment (UE) is connected by a wireless link to a Radio Access Network (RAN) . The RAN comprises a set of base stations which provide wireless links to the UEs located in cells covered by the base station, and an interface to a Core Network (CN) which provides overall network control. As will be appreciated the RAN and CN each conduct respective functions in relation to the overall network. For convenience the term cellular network will be used to refer to the combined RAN &CN, and it will be understood that the term is used to refer to the respective system for performing the disclosed function.
The 3rd Generation Partnership Project has developed the so-called Long Term Evolution (LTE) system, namely, an Evolved Universal Mobile Telecommunication System Territorial Radio Access Network, (E-UTRAN) , for a mobile access network where one or more macro-cells are supported by a base station known as an eNodeB or eNB (evolved NodeB) . More recently, LTE is evolving further towards the so-called 5G or NR (new radio) systems where one or more cells are supported by a base station known as a gNB. NR is proposed to utilise an Orthogonal Frequency Division Multiplexed (OFDM) physical transmission format.
The NR protocols are intended to offer options for operating in unlicensed radio bands, to be known as NR-U. When operating in an unlicensed radio band the gNB and UE must compete with other devices for physical medium/resource access. For example, Wi-Fi (RTM) , NR-U, and LAA may utilise the same physical resources.
A trend in wireless communications is towards the provision of lower latency and higher reliability services. For example, NR is intended to support Ultra-reliable and low-latency communications (URLLC) and massive Machine-Type Communications (mMTC) are intended to provide low latency and high reliability for small packet sizes (typically 32 bytes) . A user-plane latency of 1ms has been proposed with a reliability of 99.99999%, and at the physical layer a packet loss rate of 10 -5 or 10 -6 has been proposed.
mMTC services are intended to support a large number of devices over a long life-time with highly energy efficient communication channels, where transmission of data to and from each device occurs sporadically and infrequently. For example, a cell may be expected to support many thousands of devices.
The disclosure below relates to various improvements to cellular wireless communications systems.
Summary
The invention is defined in the claims in which there is required a method of identifying available transmission resources for a sidelink transmission from a first UE to a second UE, the method performed at the first UE and comprising the steps of identifying a potential resource for use for transmission; monitoring a subset of slots preceding the potential resource for conflicting transmissions; and marking the potential resource unavailable for transmission if a conflicting transmission is detected.
The subset of slots may be a set of periodic slots repeating with a period greater than 1.
The subset of slots may be non-contiguous due to at least one unmonitored slot lying between two monitored slots.
The subset of slots may be a periodic set of slots.
The period may be defined by higher layer signalling.
The period may be 100ms.
Monitoring may comprise monitoring for an SCI message and decoding a received SCI to identify reservations.
Monitoring may comprise monitoring for an occasion of a periodic transmission which may also have an occasion conflicting with the potential resource.
The potential resource may be marked as unavailable if the conflicting transmission is greater than a threshold.
The subset of slots may comprise a contiguous set of slots preceding the potential resource, and a set of periodic slots prior to the contiguous set of slots.
There is also required a UE configured to perform the method of any preceding claim.
Brief description of the drawings
Further details, aspects and embodiments of the invention will be described, by way of example only, with reference to the drawings. Elements in the figures are illustrated for simplicity and clarity and have not necessarily been drawn to scale. Like reference numerals have been included in the respective drawings to ease understanding.
Figure 1 shows selected elements of a cellular communications network;
Figure 2 shows selected elements in a Radio Area Network of the cellular wireless communication network of Figure 1; and
Figures 3 to 8 show timing ofslots that are sensed to evaluate a potential resource for selection.
Detailed description of the preferred embodiments
Those skilled in the art will recognise and appreciate that the specifics of the examples described are merely illustrative of some embodiments and that the teachings set forth herein are applicable in a variety of alternative settings.
Figure 1 shows a schematic diagram of three base stations (for example, eNB or gNBs depending on the particular cellular standard and terminology) forming a cellular network. Typically, each of the base stations will be deployed by one cellular network operator to provide geographic coverage for UEs in the area. The base stations form a Radio Area Network (RAN) . Each base station provides wireless coverage for UEs in its area or cell. The base stations are interconnected via the X2 interface and are connected to the core network via the S1 interface.  As will be appreciated only basic details are shown for the purposes of exemplifying the key features of a cellular network. A PC5 interface is provided between UEs for SideLink (SL) communications. The interface and component names mentioned in relation to Figure 1 are used for example only and different systems, operating to the same principles, may use different nomenclature.
The base stations each comprise hardware and software to implement the RAN’s functionality, including communications with the core network and other base stations, carriage of control and data signals between the core network and UEs, and maintaining wireless communications with UEs associated with each base station. The core network comprises hardware and software to implement the network functionality, such as overall network management and control, and routing of calls and data.
In vehicle-to-vehicle (V2V) applications, the UEs may be incorporated into vehicles such as cars, trucks and buses. These vehicular UEs are capable of communicating with each other in in-coverage mode, where a base station manages and allocates the resources and in out-of-coverage mode, without any base station managing and allocating the resources. In vehicle-to-everything (V2X) applications, the vehicles may be communicating not only with other vehicles, but also with infrastructure, pedestrians, cellular networks and potentially other surrounding devices. V2X use cases include:
Vehicles Platooning -this enables the vehicles to dynamically form a platoon travelling together. All the vehicles in the platoon obtain information from the leading vehicle to manage this platoon. This information allows the vehicles to drive closer than normal in a coordinated manner, going to the same direction and travelling together.
Extended Sensors -this enables the exchange of raw or processed data gathered through local sensors or live video images among vehicles, road site units, devices of pedestrian and V2X application servers. The vehicles can increase the perception of their environment beyond of what their own sensors can detect and have a more broad and holistic view of the local situation. High data rate is one of the key characteristics.
Advanced Driving -this enables semi-automated or full-automated driving. Each vehicle and/or RSU shares its own perception data obtained from its local sensors with vehicles in proximity and that allows vehicles to synchronize and coordinate their trajectories or manoeuvres. Each vehicle shares its driving intention with vehicles in proximity too.
Remote Driving -this enables a remote driver or a V2X application to operate a remote vehicle for those passengers who cannot drive by themselves or remote vehicles located in dangerous environments. For a case where variation is limited and routes are predictable, such as public transportation, driving based on cloud computing can be used. High reliability and low latency are the main requirements.
Figure 2 illustrates a base station 102 forming a RAN, and a transmitter (Tx) UE 150 and a receiver (Rx) UE 152 in the RAN. The base station 102 is arranged to wirelessly communicate over respective connections 154 with each of the Tx UE 150, i.e. UE-A, and the Rx UE 152, i.e. UE-B. The Tx UE 150 and the Rx UE 152 are arranged to wirelessly communicate with each other over a sidelink 156.
Sidelink transmissions utilise TDD (half duplex) on either a dedicated carrier, or a shared carrier with conventional Uu transmissions between a base station and UE. Resource pools of transmission resources are utilised to manage resource and allocation and manage interference between potentially concurrent transmissions. A resource pool is a set of time-frequency  resources from which resources for a transmission can be selected. UEs can be configured with multiple transmit and receive resource pools.
Two modes of operation are used for resource allocation for sidelink communication depending on whether the UEs are within coverage of a cellular network. In Mode 1, the V2X communication is operating in-coverage of the base stations (eg eNBs or gNBs) . All the scheduling and the resource assignments may be made by the base stations.
Mode 2 applies when the V2X services operate out-of-coverage of cellular base stations. Here the UEs need to schedule themselves. For fair utilization, sensing-based resource allocation is generally adopted at the UEs. In Mode 2, UEs reserve resources for a transmission by transmitting a Sidelink Control Information (SCI) message indicating the resources to be used. The SCI notifies the recipient (which may be a single UE in unicast, a group of UEs in groupcast, or all reachable UEs in broadcast) of the details of the transmission it can expect. The SCI is the control information needed to decode the Sidelink data content, and also resource indications for reservations, with the first stage SCI being transmitted in the PSCCH and the second stage SCI being transmitted in the PSSCH. UEs may reserve transmission resources both for a first transmission of a Transport Block (TB) of data, and also for transmitting repetitions of the TB to improve reliability if the initial transmission fails.
The standards, such as 3GPP TR 37.985, v16.0.0, describes the features required by to LTE and NR standards to support V2X services and a set of requirements sufficient for basic road safety services. Vehicles containing UEs with these features can use the uplink, downlink and sidelink to exchange information on their own status, such as position, speed, and heading with other nearby vehicles, infrastructure nodes, and pedestrians. The sidelink communications enhance efficiency and include sidelink carrier aggregation, higher-order modulation, and reduced latency.
The apparatus, methods and systems described herein reduces power consumption of devices in sidelink autonomous resource selection mode. The (sub) set of slots to be sensed are configured and matched the configuration of the resource pool. This is achieved by monitoring retransmission resource reservations and periodic resource reservations. Also described herein is a further apparatus, methods and systems for power reduction by enabling down-selection of the sensing performed and configuring the sensing to match user capabilities.
In particular, the apparatus, methods and systems described herein focuses on the power consumption part and improvements made over partial sensing defined by the standards.
In the LTE standards, to avoid full sensing of the resource pools by the UE, and thus reduce power consumption, UEs can have limited or no sensing capabilities. When no sensing is made by UE, the UE simply performs a random selection, with the risk of collisions. A tradeoff method called “partial sensing” allows the UEs to sense the resource pool for a limited time to search for reservations that could impact their selection. The reservations are periodic and the possible periodicities are multiples of 100ms. In normal operation of partial sensing for resource selection, thepartial sensing UE may choose any resource in the selection window. If n is the time of resource selection, the selection window is [n+T1, n+T2] . To determine whether the resources in the selection window are reserved or not, the partial sensing UE must sense the channel for potential transmissions with reservations that could fall in the selection window.
Figure 3 shows the slots (8 1ms sensing slots only are shown for clarity) that need to be sensed in order to determine if the desired Slot A is free. In this example the limited sensing UE senses all previous (logical) slots to search for reservation of retransmissions.
Partial sensing, is defined and allowed by the Radio Resource Control (RRC or higher layers) configurations. If partial sensing is configured by the higher layers, then the followingtwo steps are used:
Step 1) A candidate single-subframe resource for PSSCH transmission R x, y is defined as a set of L subCH contiguous sub-channels with sub-channel x+j in subframe
Figure PCTCN2021111239-appb-000001
where j=0, ..., L subCH-1. The UE determines by its implementation a set of subframes which consists of at least Y subframes within the time interval [n+T 1, n+T 2] where selections of T 1 and T 2 are up to UE implementations under T 1≤4 and T 2min (prio TX) ≤T 2≤100, if T 2min (prio TX) is provided by higher layers forprio TX, otherwise 20≤T 2≤100. Y is set in the RRC, n is the time of the resource selection, n+T1 is the beginning of the selection window and n+T2 is the end of the selection window. UE selection of T 2fulfils the latency requirement and Yis greater than or equal to the high layer parameter minNumCandidateSF. The UE assumes that any set of L subCH contiguous sub-channels included in the corresponding PSSCH resource pool (described in TS 36.213 g20 section 14.1.5) within the determined set of subframes corresponds to one candidate single-subframe resource. The total number of the candidate single-subframe resources is denoted byM total.
Step 2) If a subframe
Figure PCTCN2021111239-appb-000002
is included in the set of subframes in Step 1, the UE shall monitor any subframe
Figure PCTCN2021111239-appb-000003
if k-th bit of the high layer parameter gapCandidateSensing is set to 1. The UE shall perform the behaviour in the following steps based on PSCCH decoded and S-RSSI measured in these subframes. t y is the time of the resource selected and Pstep is 100ms in LTE.
In LTE, periodicities are selected from a list of standardized values. When partial sensing UEs are configured in a resource pool, the possible values for periodicities are a multiple of 100ms, up to 1000ms. It is also possible to select which periodicities are allowed in a pool, configured byResourceReservePeriodas a subset of the possible multiples of 100ms.
For partial sensing UEs, only a part of the resources of the selection window are considered (the Y resources) . Thus, for a particular resource in the selection window (at time t_Y) , it sufficient to check t_Y-k*Pstep, and where Pstep=100ms meaning that the partial sensing UE checks every 100ms, which are the only possible place where an existing reservation by another UE falling at the desired time could be located. Thus, partial sensing allows the partial sensing UE to evaluate the at least Y resources (the resources configured in the resource pool) in the selection window.
In particular, partial sensing is configured in absolute time with the gapCandidateSensing parameter. This parameter is a list of 10 Booleans, where the k th value tells partial sensing UE whether or not to sense the time k*100ms before the evaluated resource.
If only part of the period values is allowed, the actual sensing needed is reduced since only these periods could lead to a reservation. However, the two lists are independently configured, and this leaves full flexibility in period configuration and partial sensing and it is up to the configuration to trade off the three aspects: possible periods; sensing power reduction;  collision risk. Collision risks happen when partial sensing UE are not required to sense in the time that match configured periods, to reduce their power consumption.
Resource pools may be configured to support periodic reservations, which can be configured up to 1000ms in advance, and can lead to collision if not sensed properly. When configured to support periodic reservations the resource pool has a sensing window that starts up to 1100ms before the time of resource selection.
In NR, the possible periods (up to 16) in a resource pool are also configured in ResourceReservePeriod but the choice for these is largely extended and allow any integer value between 1ms to 99ms, with the multiples of 100ms up to 1000ms. Additionally, NR introduced several different mechanisms that need sidelink partial sensing. In NR, resource allocation for retransmissions is fully flexible in frequency and time, making it possible to reserve (one or two) retransmissions up to 32 logical time slots ahead. Reusing the prior art LTE partial sensing for NR, would require a very long bitstring indication to point to all possible instants in the 1100ms window.
The apparatus, methods and systems described herein provide efficient signaling and configuration to enable the UE to perform partial sensing and still catch the possible reservations, both for retransmissions and for periodically reserved reservations, based on the periods defined in NR and retransmissions assignments.
In a resource pool, a partial sensing UE can be configured or pre-configured to perform sensing of the slots that indicate retransmissions resources that may collide with a potential resource selected by the partial sensing UE for its own use.
In NR, an SCI can reserve retransmissions up to 32 logical slots in advance (in LTE, up to 16) . To make sure that there is no ongoing reservation of retransmissions over the resource selected for evaluation, partial sensing UEs perform sensing on all logical slots before the selected slot that is in the range of the retransmission time resource indication.
Listening to these 16 or 32 slots can prevent listening to the full sensing window of 100ms (for aperiodic resource pool; 1100ms for a resource pool with periodic reservation allowed) and thus reduce power consumption.
To limit the cost of sensing 16 or 32 slots prior to selecting the required resources, the partial sensing UE may be configured to sense only part of available slots, following a (pre) configured pattern. The possible patterns can be preset and signaled by (pre) configuration with an index, or alternatively use a bitmap that indicates which logical slots to sense.
Figure 4 shows the slots that need to be sensed in order to determine if the desired Slot A is free. In this example, thepartial sensing UE only senses 4 out of 8 (logical) slots prior to its selected resource to search for reservations of retransmissions.
Figure 5 shows a missed retransmission reservation (SCI) , leading to a collision in the desired Slot A. Limiting the sensing will save battery life but collisions with reservations of retransmissions may occur if it was reserved in a slot not sensed. This is a compromise that the configuration will set according to its traffic and the capability configured for each resource pool.
Resource selection for retransmissions in a resource pool where partial sensing UEs are configured can be set so that retransmissions resources match the limited sensing time pattern. This limits the flexibility of resource allocation but allows partial sensing users to listen to all possible conflicting retransmission resource that could affect their resource selection.
To do so, if the resource selection of a transmission and its retransmission are done at once in the Step 2 of NR Sidelink resource allocation Mode 2, to check that the chosen candidate is suitable for the time pattern configured. The time pattern must be reversed, as, for example,  sensing 5 slots prior to an evaluated resource by a limited sensing user means a resource 5 slots ahead in time is reserving retransmissions. If the resources are independently selected for transmissions and retransmissions, then the apparatus, systems and methods described herein may remove from the candidate set of resources in Step 1 any resources in the slots non-listened by the partial sensing users.
The limited sensing can all be enabled/disabled using flags configured in the resource pool. This functionality can impact on resource selection flexibility and device power consumption, so it may be enabled when limited sensingUEs are present or expected in the resource pool.
This method may be suitable for a resource pool with blind retransmissions that always use the retransmission resources reserved. HARQ feedback-based retransmission resource pools may also benefit from this approach.
Partial sensing UEs may exchange capabilities between UEs and/or with network, and the partial sensing UE capability can define which sensing method and/or how much sensing, e.g. per evaluated resource or per time unit, the partial sensing UEs can perform. When this information is exchanged, the resource pool can be configured appropriately for example by determining which set of resource to listen to and whether to manage the capabilities and expectations of various partial sensing UEs.
The methods presented herein function without distinguishing whether the resource pool is configured for aperiodic resource only or periodic reservations and are therefore capable of catching the reserved retransmissions of both kinds.
These limited sensing methods are applied by partial sensing UEs with limited sensing capabilities and not necessarily by all users of the pool, even if the resource pool is configured with these methods as enabled. The configuration can affect the other partial sensing UEs that are not configured by systems and methods described herein, by limiting their resource selection, for instance.
Partial sensing UEs can be configured to perform sensing of a limited set of slots in a resource pool, including all the slots that coincide with the configured possible periods of reservation that will collide with the evaluated resource. Thus, the partial sensing monitors the slots that correspond to times
Figure PCTCN2021111239-appb-000004
for all the period values P i configured in ResourceReservePeriodList, for all j such that P i*j≤SensingWindow.
Partial sensing UEs can be configured to perform sensing of a limited set of slots in a resource pool, including the N last slots that coincide with the configured possible periods of reservation that will collide with the evaluated resource. N can be (pre) configured, possibly for each period configured. Figure 6 shows an example where periods, selected for illustration, of 20ms and 50ms are configured in the resource pool. The partial sensing UE evaluates potential access in a slot marked Evaluated Resource A by sensing the Listened to slots every 20ms and every 50ms before Evaluated Resource A. Other slots are not required to be sensed or listened to. More particularly, sensing is performed on the exact slot that is at the time of possible periodic conflict, with the exact listening duration being limited to listening to the PSCCHto decode first stage of the SCIand possibly listening to the PSSCH for the second stage of the SCI of these specific slots to determine if it is an intended receiver of data.
Thus, this proposed partial sensing requires the partial sensing UE to monitor the slots that correspond to times
Figure PCTCN2021111239-appb-000005
for all the period values P i configured in ResourceReservePeriodList, for all j such that j≤N.
In order to reduce sensing time and so power consumption, N=1 is used, and only the slots that correspond to the last occasion of a time difference equal to the configured possible  periods are sensed. In Figure 7, only one slot per configured period is sensed; that is the slot 50 ms before Evaluated Resource A and the slot 20 ms before Evaluated Resource A. If the slot corresponding to the time instant of a potential periodic reservation collision is not a SL slot, then the partial sensing UE may sense the instant that is the last SL slot occasion corresponding to such periodicity.
When anypartial sensing UE that performsa periodic reservation does not have a data to transmit, it simply does not transmit on the reserved resources. Thus, a partial sensing UE sensing only the last occasion (N=1) is not guaranteed to know for sure whether a resource was periodically reserved at that time. Thus, to improve reliability, it is possible to set N>1.
To reduce the sensing time, it is further possible to configure limited sensing UEs to only sense the slots corresponding to a subset of the possible periods. This may generate collisions for the benefit of power saving. The period to sense, for example ReducedSensingPeriodList, can be configured and signalled with a bitmap of the same length as the possible period list.
Alternatively, the apparatus, methods and systems may set a minimum and/or maximum period value for the periods to be sensed. These limited sensing periods can be configured to match the partial sensing UE capabilities that are signalled over the resource pool. Thus, this partial sensing monitors the slots that correspond to times
Figure PCTCN2021111239-appb-000006
for the period values P i in the configured subset ReducedSensingPeriodList, for all j such that P i*j≤SensingWindow (or ≤N) .
Partial sensing UEs can be configured to perform the partial sensing methods described herein over a limited sensing window.
In NR, the window for periodic enabled resource pool is 1100ms, which is long relative to the many occasions of small period reservations. Thus, the reservation pool allows limited sensing users to reduce their sensing windows to a minimum size, for example 100ms. The exact value of window sensing can be left for implementation but may be constrained to that configured minimum. UEs with limited sensing features can share their user limited sensing capability including the maximum sensing window size possible.
The apparatus, methods and systems described herein can be configured or preconfigured and activated/deactivated with a dedicated flag in the configuration, or simply by the presence or absence of the required configuration parameters. Such change in configuration can be triggered by the presence of limited sensingUEs and their capability.
Typically, the sidelink resource pools will allow both aperiodic transmissions with multiple repetitions reserved in a single SCI, transmissions with periodic reservation of resources, and periodic reservations may also have retransmissions. In addition, the periodic transmissions may need to resort to one shot transmissions, for example in case HARQ NACK is received and re-transmissions can be performed within the packet delay budget. The UEs with constrained power need to apply a combination of the strategies described herein to minimize their sensing requirements.
Thus, the partial sensing UEs will listen to a group of resources just prior to their selection window (the Evaluated Resource A) to detect any retransmission reservations potentially colliding with the candidate resource, and then beyond that will sense over the slots which correspond to the periodic instances for the periods configures as part of the resource pool configuration.
Resource pool configuration can indicate with suitable fields the bounds on the two intervals of partial sensing. The partial sensing bounds may be linked to the priority of the transmissions. As a simple example, the resource pool configuration can define a priority threshold and if the power constrained UEs are transmitting a packet which has priority higher than the configured threshold, they can perform sensing with one indicated bound, for example  both periodic and aperiodic partial sensing limited to a duration of 100ms. If the priority of the packet is equal or lower than the configured threshold, these UEs will perform partial sensing over longer durations, either spanning the full sensing window or indicated by configuring an explicit duration as part of resource pool configuration.
In the partial sensing methods described herein and to further reduce the power consumption due to monitoring radio resource, UEs with limited sensing capabilities can be configured to stop or pause their monitoring for the set of slots/sub-channels that correspond to potential reservation announcement of an already reserved resource.
For example, in Figure 8 an SCI is monitored in one of the possible conflicting reservation slots sensed by the partial sensing UE. The SCI reserves resource overlapping with the Evaluated Resource A for another UE. The sensing for future conflicting reservations is stopped and set as non-available, with a new Evaluated Resource selected from one of the other resources in the Y list.
Optionally, the partial sensing UE may sense the last occasion of the reservation conflict occasions to verify if the periodic resource is still using the periodic resource. Note that if the limited sensing UE is considering several frequency-divided resources (different sub-channels) in a same slot, and if only part of that slot is already reserved, the limited sensing UE can still monitor the remainingslots to check for further conflicts with the non-conflicted resources. This will still require partial sensing UE to have its radio reception active, but it can reduce the decoding and processing to the PSCCH areas that may still lead to further conflicts.
This interrupted sensing can apply both to periodic reservation partial sensing and retransmission partial sensing. In the case of periodic reservation partial sensing, the potential conflicting occasions are using the same sub-channel as the selected resource and these can be easily identified and removed from sensing. In the case of retransmission partial sensing, retransmission resources have full flexibility in time and frequency domains, thus to interrupt sensing over slot occasions that has potential conflicts, all the candidate resources of a selected slot must be already be reserved to cancel the monitoring of the corresponding slots.
Although not shown in detail any of the devices or apparatus that form part of the network may include at least a processor, a storage unit and a communications interface, wherein the processor unit, storage unit, and communications interface are configured to perform the method of any aspect of the present invention. Further options and choices are described below.
The signal processing functionality of the embodiments of the invention especially the gNB and the UE may be achieved using computing systems or architectures known to those who are skilled in the relevant art. Computing systems such as, a desktop, laptop or notebook computer, hand-held computing device (PDA, cell phone, palmtop, etc. ) , mainframe, server, client, or any other type of special or general purpose computing device as may be desirable or appropriate for a given application or environment can be used. The computing system can include one or more processors which can be implemented using a general or special-purpose processing engine such as, for example, a microprocessor, microcontroller or other control module.
The computing system can also include a main memory, such as random access memory (RAM) or other dynamic memory, for storing information and instructions to be executed by a processor. Such a main memory also may be used for storing temporary variables or other intermediate information during execution of instructions to be executed by the processor. The computing system may likewise include a read only memory (ROM) or other static storage device for storing static information and instructions for a processor.
The computing system may also include an information storage system which may include, for example, a media drive and a removable storage interface. The media drive may include a drive or other mechanism to support fixed or removable storage media, such as a hard disk drive, a floppy disk drive, a magnetic tape drive, an optical disk drive, a compact disc (CD) or digital video drive (DVD) (RTM) read or write drive (R or RW) , or other removable or fixed media drive. Storage media may include, for example, a hard disk, floppy disk, magnetic tape, optical disk, CD or DVD, or other fixed or removable medium that is read by and written to by media drive. The storage media may include a computer-readable storage medium having particular computer software or data stored therein.
In alternative embodiments, an information storage system may include other similar components for allowing computer programs or other instructions or data to be loaded into the computing system. Such components may include, for example, a removable storage unit and an interface , such as a program cartridge and cartridge interface, a removable memory (for example, a flash memory or other removable memory module) and memory slot, and other removable storage units and interfaces that allow software and data to be transferred from the removable storage unit to computing system.
The computing system can also include a communications interface. Such a communications interface can be used to allow software and data to be transferred between a computing system and external devices. Examples of communications interfaces can include a modem, a network interface (such as an Ethernet or other NIC card) , a communications port (such as for example, a universal serial bus (USB) port) , a PCMCIA slot and card, etc. Software and data transferred via a communications interface are in the form of signals which can be electronic, electromagnetic, and optical or other signals capable of being received by a communications interface medium.
In this document, the terms ‘computer program product’ , ‘computer-readable medium’ and the like may be used generally to refer to tangible media such as, for example, a memory, storage device, or storage unit. These and other forms of computer-readable media may store one or more instructions for use by the processor comprising the computer system to cause the processor to perform specified operations. Such instructions, generally 45 referred to as ‘computer program code’ (which may be grouped in the form of computer programs or other groupings) , when executed, enable the computing system to perform functions of embodiments of the present invention. Note that the code may directly cause a processor to perform specified operations, be compiled to do so, and/or be combined with other software, hardware, and/or firmware elements (e.g., libraries for performing standard functions) to do so.
The non-transitory computer readable medium may comprise at least one from a group consisting of: a hard disk, a CD-ROM, an optical storage device, a magnetic storage device, a Read Only Memory, a Programmable Read Only Memory, an Erasable Programmable Read Only Memory, EPROM, an Electrically Erasable Programmable Read Only Memory and a Flash memory. In an embodiment where the elements are implemented using software, the software may be stored in a computer-readable medium and loaded into computing system using, for example, removable storage drive. A control module (in this example, software instructions or executable computer program code) , when executed by the processor in the computer system, causes a processor to perform the functions of the invention as described herein.
Furthermore, the inventive concept can be applied to any circuit for performing signal processing functionality within a network element. It is further envisaged that, for example, a semiconductor manufacturer may employ the inventive concept in a design of a stand-alone device, such as a microcontroller of a digital signal processor (DSP) , or application-specific integrated circuit (ASIC) and/or any other sub-system element.
It will be appreciated that, for clarity purposes, the above description has described embodiments of the invention with reference to a single processing logic. However, the inventive concept may equally be implemented by way of a plurality of different functional units and processors to provide the signal processing functionality. Thus, references to specific functional units are only to be seen as references to suitable means for providing the described functionality, rather than indicative of a strict logical or physical structure or organisation.
Aspects of the invention may be implemented in any suitable form including hardware, software, firmware or any combination of these. The invention may optionally be implemented, at least partly, as computer software running on one or more data processors and/or digital signal processors or configurable module components such as FPGA devices.
Thus, the elements and components of an embodiment of the invention may be physically, functionally and logically implemented in any suitable way. Indeed, the functionality may be implemented in a single unit, in a plurality of units or as part of other functional units. Although the present invention has been described in connection with some embodiments, it is not intended to be limited to the specific form set forth herein. Rather, the scope of the present invention is limited only by the accompanying claims. Additionally, although a feature may appear to be described in connection with particular embodiments, one skilled in the art would recognise that various features of the described embodiments may be combined in accordance with the invention. In the claims, the term ‘comprising’ does not exclude the presence of other elements or steps.
Furthermore, although individually listed, a plurality of means, elements or method steps may be implemented by, for example, a single unit or processor. Additionally, although individual features may be included in different claims, these may possibly be advantageously combined, and the inclusion in different claims does not imply that a combination of features is not feasible and/or advantageous. Also, the inclusion of a feature in one category of claims does not imply a limitation to this category, but rather indicates that the feature is equally applicable to other claim categories, as appropriate.
Furthermore, the order of features in the claims does not imply any specific order in which the features must be performed and in particular the order of individual steps in a method claim does not imply that the steps must be performed in this order. Rather, the steps may be performed in any suitable order. In addition, singular references do not exclude a plurality. Thus, references to ‘a’ , ‘an’ , ‘first’ , ‘second’ , etc. do not preclude a plurality.
Although the present invention has been described in connection with some embodiments, it is not intended to be limited to the specific form set forth herein. Rather, the scope of the present invention is limited only by the accompanying claims. Additionally, although a feature may appear to be described in connection with particular embodiments, one skilled in the art would recognise that various features of the described embodiments may be combined in accordance with the invention. In the claims, the term ‘comprising’ or “including” does not exclude the presence of other elements.

Claims (11)

  1. A method of identifying available transmission resources for a sidelink transmission from a first UE to a second UE, the method performed at the first UE and comprising the steps of
    identifying a potential resource for use for transmission;
    monitoring a subset of slots preceding the potential resource for conflicting transmissions; and
    marking the potential resource unavailable for transmission if a conflicting transmission is detected.
  2. The method of claim 1, wherein the subset of slots are a set of periodic slots repeating with a period greater than 1.
  3. The method of claim 1, wherein the subset of slots is non-contiguous due to at least one unmonitored slot lying between two monitored slots.
  4. The method of any preceding claims wherein the subset of slots is a periodic set of slots.
  5. The method of claim 4, wherein the period is defined by higher layer signalling.
  6. The method of claim 4 or claim 5, wherein the period is 100ms.
  7. The method of any preceding claim wherein monitoring comprises monitoring for an SCI message and decoding a received SCI to identify reservations.
  8. The method of any preceding claim wherein monitoring comprises monitoring for an occasion of a periodic transmission which may also have an occasion conflicting with the potential resource.
  9. The method of any preceding claim, wherein the potential resource is marked as unavailable if the conflicting transmission is greater than a threshold.
  10. The method of any preceding claim, wherein the subset of slots comprises a contiguous set of slots preceding the potential resource, and a set of periodic slots prior to the contiguous set of slots.
  11. A UE configured to perform the method of any preceding claim.
PCT/CN2021/111239 2020-08-06 2021-08-06 Reducing power consumption in direct wireless communications systems WO2022028587A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202180057347.8A CN116134879A (en) 2020-08-06 2021-08-06 Reducing power consumption in a direct wireless communication system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202063061966P 2020-08-06 2020-08-06
US63/061,966 2020-08-06

Publications (1)

Publication Number Publication Date
WO2022028587A1 true WO2022028587A1 (en) 2022-02-10

Family

ID=80117056

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/111239 WO2022028587A1 (en) 2020-08-06 2021-08-06 Reducing power consumption in direct wireless communications systems

Country Status (2)

Country Link
CN (1) CN116134879A (en)
WO (1) WO2022028587A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106165510A (en) * 2014-03-30 2016-11-23 Lg电子株式会社 In the wireless communication system supporting device-to-device communication, transmit/receive method and the equipment thereof of down link control information
WO2019066629A1 (en) * 2017-09-29 2019-04-04 엘지전자 주식회사 Method for transmitting v2x message by terminal in wireless communication system, and terminal using same method
CN110710129A (en) * 2017-06-08 2020-01-17 高通股份有限公司 Conflict handling mechanism for dynamic TDD systems
CN111194057A (en) * 2018-11-27 2020-05-22 维沃移动通信有限公司 Resource exclusion method and terminal
CN111356240A (en) * 2018-12-20 2020-06-30 华硕电脑股份有限公司 Method and apparatus for handling collisions between sidelink feedback and sidelink data

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106165510A (en) * 2014-03-30 2016-11-23 Lg电子株式会社 In the wireless communication system supporting device-to-device communication, transmit/receive method and the equipment thereof of down link control information
CN110710129A (en) * 2017-06-08 2020-01-17 高通股份有限公司 Conflict handling mechanism for dynamic TDD systems
WO2019066629A1 (en) * 2017-09-29 2019-04-04 엘지전자 주식회사 Method for transmitting v2x message by terminal in wireless communication system, and terminal using same method
CN111194057A (en) * 2018-11-27 2020-05-22 维沃移动通信有限公司 Resource exclusion method and terminal
CN111356240A (en) * 2018-12-20 2020-06-30 华硕电脑股份有限公司 Method and apparatus for handling collisions between sidelink feedback and sidelink data

Also Published As

Publication number Publication date
CN116134879A (en) 2023-05-16

Similar Documents

Publication Publication Date Title
US10117240B2 (en) Transmission of prioritized messages
WO2021023071A1 (en) Sidelink control information design
CN107294897B (en) Downlink information sending and receiving method and device
US11265870B2 (en) Systems and methods for determining information indicative of cancelation
WO2022028490A1 (en) Sidelink resource selection based on user equipment coordination
WO2021063297A1 (en) Feedback resource determination from sidelink shared channel
CN115669118A (en) Method and device for allocating resources through carrier aggregation in V2X system
EP4068889A1 (en) Efficient signaling of non-preferred transmission resources
WO2021023081A1 (en) Sidelink feedback resource allocation
EP3503640A1 (en) Communication method and terminal
WO2021155848A1 (en) Pre-emption management in sidelink transmission systems
CN116349349A (en) NR side link multiplexing control/data multiplexing
CN107889161B (en) Method and device for transmitting control signaling and data
WO2021000849A1 (en) Channel state information acquisition
WO2022078245A1 (en) Power saving for sidelink communications
WO2022028587A1 (en) Reducing power consumption in direct wireless communications systems
WO2022017477A1 (en) Periodic reservations for sidelink communications in cellular networks
WO2022073455A1 (en) Reducing power consumption in direct wireless communications systems
EP4247087A1 (en) Communication method, terminal device and system
EP3673698B1 (en) Methods and nodes for communication on multiple channels
WO2021160044A1 (en) Resource allocation in sidelink transmission systems
Panzner et al. Coexistence of 5G sidelink communication and 5G sidelink positioning
WO2022028428A1 (en) Sidelink Resource Selection
US20240106575A1 (en) Sidelink scheduling in cellular networks
WO2021227955A1 (en) Transmission resource allocation for device to device communications

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21853886

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21853886

Country of ref document: EP

Kind code of ref document: A1