WO2022028560A1 - 测量方法、装置、通信节点及存储介质 - Google Patents

测量方法、装置、通信节点及存储介质 Download PDF

Info

Publication number
WO2022028560A1
WO2022028560A1 PCT/CN2021/111097 CN2021111097W WO2022028560A1 WO 2022028560 A1 WO2022028560 A1 WO 2022028560A1 CN 2021111097 W CN2021111097 W CN 2021111097W WO 2022028560 A1 WO2022028560 A1 WO 2022028560A1
Authority
WO
WIPO (PCT)
Prior art keywords
measurement
mdt
information
communication node
configuration information
Prior art date
Application number
PCT/CN2021/111097
Other languages
English (en)
French (fr)
Inventor
陈嘉君
高音
刘壮
李大鹏
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to EP21852251.4A priority Critical patent/EP4195744A1/en
Priority to US17/909,648 priority patent/US20230354060A1/en
Priority to JP2022552282A priority patent/JP2023537166A/ja
Publication of WO2022028560A1 publication Critical patent/WO2022028560A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition

Definitions

  • the present application relates to the field of communication technologies, for example, to a measurement method, an apparatus, a communication node, and a storage medium.
  • MDT drive tests
  • the MDT in the related art only measures when the UE is in the idle state, and reports the measurement amount in the idle state after the UE enters the connected state, and does not support the continuous measurement of the UE, which is inconvenient for the network side to perform subsequent functions. Processing, if it is not convenient for the network side to perform location prediction.
  • the present application provides a measurement method, device, communication node and storage medium, which effectively realize continuous MDT measurement.
  • an embodiment of the present application provides a measurement method, which is applied to a first communication node, including:
  • a measurement report is generated and transmitted according to the MDT measurement configuration information.
  • an embodiment of the present application provides a measurement method, which is applied to a second communication node, including:
  • a measurement report transmitted by the first communication node is acquired, where the measurement report is used for network optimization.
  • an embodiment of the present application provides a measurement device, which is configured on a first communication node and includes:
  • an acquisition module configured to acquire minimized drive test MDT measurement configuration information, the MDT measurement configuration information instructs the first communication node to perform continuous MDT measurement;
  • the generating module is configured to generate and transmit a measurement report according to the MDT measurement configuration information.
  • an embodiment of the present application provides a measurement device, configured on a second communication node, including:
  • a transmission module configured to transmit MDT measurement configuration information, where the MDT measurement configuration information instructs the first communication node to perform continuous MDT measurement;
  • an acquisition module configured to acquire a measurement report transmitted by the first communication node, where the measurement report is used for network optimization.
  • an embodiment of the present application provides a first communication node, including:
  • processors one or more processors
  • a storage device for storing one or more programs
  • the one or more processors When the one or more programs are executed by the one or more processors, the one or more processors implement the method as provided in the first aspect of the present application.
  • an embodiment of the present application provides a second communication node, including:
  • processors one or more processors
  • a storage device for storing one or more programs
  • the one or more processors When the one or more programs are executed by the one or more processors, the one or more processors implement the method provided by the second aspect of the present application.
  • an embodiment of the present application provides a storage medium, where the storage medium stores a computer program, and when the computer program is executed by a processor, any one of the methods in the embodiments of the present application is implemented.
  • FIG. 1 is a schematic flowchart of a measurement method provided by an embodiment of the present application.
  • FIG. 2 is a schematic flowchart of a measurement method provided by an embodiment of the present application.
  • FIG. 2a is a schematic flowchart of determining predicted location information according to an embodiment of the present application
  • FIG. 2b is a schematic flowchart of another determination of predicted location information provided by an embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of a measurement device provided by an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of a measurement device provided by an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of a first communication node according to an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of a second communication node according to an embodiment of the present application.
  • FIG. 1 is a schematic flowchart of a measurement method provided by an embodiment of the present application, and the method may be applicable to the case of continuous MDT measurement.
  • the method may be performed by a measurement device provided by the present application, and the measurement device may be implemented by software and/or hardware, and is generally integrated on the first communication node.
  • the first communication node may be a UE.
  • a measurement method provided by this application includes the following steps:
  • the MDT measurement configuration information may be information instructing the first communication node to perform continuous MDT measurement.
  • the MDT measurement configuration information may instruct the first communication node to perform continuous MDT measurement in an idle state, an inactive state, or a connected state.
  • the MDT measurement configuration information may be transmitted from the second communication node to the first communication node to instruct the first communication node to perform continuous MDT measurements.
  • the content included in the MDT measurement configuration information is not limited, as long as the first communication node can be instructed to perform continuous MDT measurement.
  • the MDT measurement configuration information may include indication information or MDT measurement activation information to indicate in which state the first communication node performs the MDT continuous measurement.
  • the MDT measurement configuration information may further include MDT position prediction measurement configuration information, where the MDT position prediction measurement configuration information may indicate the content of the required measurement.
  • the measurement report may be a report formed based on the data collected after continuous MDT measurement. After acquiring the MDT measurement configuration information, in this step, MDT measurement acquisition may be performed according to the MDT measurement configuration information, and the collected data may be stored. The collected data can be used to form measurement reports. The content included in the measurement report may be determined based on the content included in the MDT location prediction measurement configuration information.
  • the timing of generating the measurement report and transmitting the measurement report is not limited here, it can be generated and sent when the second communication node requests the first communication node to send the measurement report; the measurement report can also be generated in advance, and the second communication node requests the first communication node to send the measurement report.
  • the measurement report is sent to the second communication node when the measurement report is sent; the measurement report may also be generated at a set timing, and the generated measurement report is directly sent to the second communication node.
  • the setting timing is not limited and can be determined according to the actual situation.
  • This example provides a measurement method, which can perform continuous MDT measurement based on MDT measurement configuration information, so as to generate and transmit a measurement report, so as to facilitate network optimization.
  • the MDT measurement configuration information is one of a Radio Resource Control (Radio Resource Control, RRC) message and record MDT measurement activation information; wherein, the RRC message is an RRC setup request message or an RRC reconfiguration message or a location Prediction request message.
  • RRC Radio Resource Control
  • the location prediction request information may be information for instructing the first communication node to perform continuous MDT measurement.
  • the measurement report includes measurement quantities of one or more of the following states: idle state; inactive state; connected state.
  • the content included in the measurement report may be determined based on the content indicated by the MDT measurement configuration information.
  • the measurement report may include the measurement amount in the idle state.
  • the measurement report may include the measurement amount in the inactive state.
  • the measurement report may include the measurement amount in the connected state.
  • the measurement report includes continuous historical location measurement information in a continuous state of the first communication node, and the continuous historical location measurement information includes one or more of the following: a time point or multiple time points. Longitude and latitude coordinates; the identification of the connected cell at one time point or multiple time points; the movement direction angle of the first communication node at one time point or multiple time points; the first communication node at one time point or multiple time points The movement speed of the node.
  • the continuous state may include one or more of the following: idle state; inactive state; connected state.
  • the continuous historical location measurement information is information obtained when the first communication node performs continuous MDT measurement, and the information can be used for location prediction.
  • the movement direction angle can be understood as the angle characterizing the movement direction.
  • the MDT measurement configuration information includes one or more of the following: MDT measurement activation information; MDT continuous measurement reporting indication information; indication information of whether to record MDT measurement in a connected state; whether to record MDT connected in an inactive state Indication information of the measurement; Indication information of whether to record the MDT measurement that resides in the idle state; MDT location prediction measurement configuration information.
  • the MDT measurement activation information may indicate in which state the first communication node performs the MDT measurement.
  • the MDT continuous measurement reporting indication information may be indication information instructing the first communication node to perform continuous measurement reporting.
  • the MDT location prediction measurement configuration information may be content indicating that the first communication node needs to measure when the MDT continuous measurement is performed.
  • the MDT continuous measurement reporting indication information may be considered as indication information for indicating whether to perform the MDT continuous measurement reporting indication.
  • the indication information of whether to record the MDT measurement in the connected state may indicate whether to record the MDT measurement in the connected state.
  • the indication information of whether to record the MDT measurement of the inactive connection may indicate whether to record the MDT measurement of the inactive connection.
  • the indication information of whether to record the MDT measurement of the idle state residency may indicate whether to record the MDT measurement of the idle state residency.
  • the MDT measurement activation information indicates the following content: the MDT continuous measurement reporting indication is set to positive, and whether to record the MDT measurement in the connected state is set to Positive; whether to record the MDT measurement of inactive connections is set to positive; whether to record the MDT measurement of idle state residency is set to positive.
  • the MDT continuous measurement reporting indication can be set to positive, whether to record the MDT measurement in the connected state is set to positive, and whether to record the MDT measurement of the inactive state connection is set to positive. and whether to record the MDT measurement of the idle state residency is set to be positive, so as to realize the continuous MDT measurement of the first communication node in the connected state, the idle state and the inactive state.
  • the MDT position prediction measurement configuration information includes one or more of the following: a position measurement period; an effective time for the position prediction measurement configuration; indication information on whether the latitude and longitude coordinate measurement is required; indication information on whether the altitude measurement is required; Indication information of whether to measure and record the identity of the connected cell; indication information of whether to perform speed measurement; indication information of whether to measure the direction angle of movement of the first communication node.
  • the position measurement period can be considered as the period of position measurement.
  • the effective time of the position prediction measurement configuration can be understood as the effective time for the position prediction measurement configuration.
  • FIG. 2 is a schematic flowchart of a measurement method provided by an embodiment of the present application.
  • the method may be applicable to continuous MDT measurement, and the method may It is performed by the measurement device provided by the present application, and is integrated on the second communication node.
  • the second communication node includes but is not limited to: a base station.
  • the measurement method provided by this application includes the following steps:
  • the second communication node may first determine the MDT measurement configuration information and then transmit the MDT measurement configuration information.
  • the content included in the MDT measurement configuration information is not limited, and can be determined based on the content and status of the required measurement.
  • the MDT measurement configuration information may instruct the first communication node to perform continuous MDT measurement, so as to obtain a measurement report transmitted by the first communication node for network optimization.
  • this step may acquire the measurement report transmitted by the first communication node, so as to perform network optimization based on the measurement report. It is not limited here how to perform network optimization based on the measurement report.
  • the measurement method provided in this example can control the first communication node to perform continuous MDT measurement by sending the MDT measurement configuration information to the first communication node, thereby obtaining the measurement report fed back by the first communication node, thereby realizing network optimization.
  • the MDT measurement configuration information is one of an RRC message and record MDT measurement activation information; wherein, the RRC message is an RRC setup request message or an RRC reconfiguration message or a location prediction request message; the MDT measurement configuration The information is transmitted after obtaining the indication information of the MDT predicted position measurement.
  • the measurement report includes measurement quantities of one or more of the following states: idle state; inactive state; connected state.
  • the measurement report includes continuous historical location measurement information in a continuous state of the first communication node, and the continuous historical location measurement information includes one or more of the following: a time point or multiple time points. Longitude and latitude coordinates; the identification of the connected cell at one time point or multiple time points; the movement direction angle of the first communication node at one time point or multiple time points; the first communication node at one time point or multiple time points The movement speed of the node.
  • the MDT measurement configuration information includes one or more of the following: MDT measurement activation information; MDT continuous measurement reporting indication information; indication information of whether to record MDT measurement in a connected state; whether to record MDT connected in an inactive state Indication information of the measurement; Indication information of whether to record the MDT measurement that resides in the idle state; MDT location prediction measurement configuration information.
  • the MDT measurement activation information indicates the following content: the MDT continuous measurement reporting indication is set to positive, and whether to record the MDT measurement in the connected state is set to Positive; whether to record the MDT measurement of inactive connections is set to positive; whether to record the MDT measurement of idle state residency is set to positive.
  • the MDT position prediction measurement configuration information includes one or more of the following: a position measurement period; an effective time for the position prediction measurement configuration; indication information on whether the latitude and longitude coordinate measurement is required; indication information on whether the altitude measurement is required; Indication information of whether to measure and record the identity of the connected cell; indication information of whether to perform speed measurement; indication information of whether to measure the direction angle of movement of the first communication node.
  • the method further includes:
  • predicted location information where the predicted location information is information generated based on the measurement report, and the predicted location information is used for network optimization.
  • the second communication node may send the measurement report to the device that determines predicted location information, such as a core network or a location service network element, for the device to determine predicted location information to determine predicted location information.
  • the predicted location information can be understood as predicted location information, the information can be generated based on the measurement report, and the specific generating means is not limited here.
  • the second communication node may use the predicted location information to perform network optimization.
  • the present application is exemplarily described below.
  • the measurement method provided by the present application can be regarded as a continuous measurement method, and the related MDT technology does not support continuous measurement of the UE in idle state, inactive (ie INACTIVE) state and connected state.
  • acquisition, and the recorded MDT in the related art that is, the Logged MDT measurement is only measured in the idle state, and the measurement amount in the idle state is reported after entering the connected state.
  • some functions on the wireless network side only rely on the measurement amount in the idle state.
  • the location prediction function on the network side needs to collect historical location measurement data and measurement data related to historical locations.
  • the artificial intelligence (AI) functional entity on the network side needs to A continuous historical data of UE user trajectories is used for training and prediction, which means that the UE needs to measure location-related measurements in idle state, INACTIVE state and connected state, and then notify the network end. Therefore, it is necessary to solve how to perform MDT continuous measurement and acquisition in various states of the UE.
  • the Radio Access Network only supports the positioning of the current terminal location, and cannot predict the possible location of the terminal at the next time point based on the relevant historical training data.
  • the prediction of the terminal location has great reference significance for improving the handover success rate between base stations and performing load balancing.
  • the current UE only performs location measurement in the idle state, so the network side cannot obtain the historical location data of a continuous UE user trajectory of the UE through the measurement report of the UE, and thus cannot make predictions.
  • MDT continuously measures position as well as position-dependent measurements.
  • MDT is an automated way to collect and report measurement data for ordinary users/commercial terminals through network configuration, introduced by the 3rd Generation Partnership Project (3GPP) in the Long Term Evolution (LTE) system.
  • 3GPP 3rd Generation Partnership Project
  • LTE Long Term Evolution
  • This application provides a new method, which enables the UE to continuously collect MDT measurements in the idle state, the INACTIVE state and the connected state, and uses the collected historical measurement data of continuous UE user trajectories for training and prediction and introduction to the UE.
  • Velocity and motion direction angle measurements are used to improve the accuracy of UE position prediction.
  • the UE can continuously report the measurement quantity, that is, the measurement report, so as to improve the accuracy of the UE position prediction.
  • Fig. 2a is a schematic flowchart of determining predicted location information provided by an embodiment of the present application. Referring to Fig. 2a, this example shows location prediction based on recorded MDT continuous measurement. When determining the predicted location information, the following steps are included:
  • the base station receives UE-related messages sent by the core network, such as UE text setup request (ie, initial context setup request) message or handover request message (ie, handover request), or path request message (ie, Trace start), which carries the activation of the UE Indication of MDT predicted location measurements.
  • UE text setup request ie, initial context setup request
  • handover request ie, handover request
  • path request message ie, Trace start
  • the base station sends the record MDT measurement activation information to the UE through the air interface.
  • the MDT measurement activation information is carried, and the recorded MDT measurement activation information carries one or more of the following: MDT continuous measurement reporting indication information; whether to record the indication information of the MDT measurement in the connected state (RRC_CONNECTED); whether to record the MDT measurement of the INACTIVE state connection. Indication information; indication information of whether to record the MDT measurement residing in the idle state (RRC_IDLE); MDT location prediction measurement configuration information, the MDT location prediction measurement configuration information is used to instruct the UE to perform related measurements.
  • the MDT position prediction measurement configuration information carries one or more of the following: position measurement period; effective time of position prediction measurement configuration; indication information on whether longitude and latitude coordinate measurement is required; indication information on whether altitude measurement is required; Indication information of the measurement and recording of the connected or camped cell identity; Indication information of whether to perform speed measurement; Indication information of whether to perform UE direction angle measurement.
  • the MDT measurement activation information indicates the following items: the MDT continuous measurement reporting indication is set to be positive, whether to record the MDT measurement in the connected state (RRC_CONNECTED) is set to be positive; whether to record the MDT connected in the INACTIVE state Measurement is set to positive; MDT measurement of whether to log idle state (RRC_IDLE) residency is set to positive.
  • the UE receives the MDT measurement activation information, and according to the content, measures the corresponding content in an idle state (IDLE), an INACTIVE state, or a connected state (CONNECTED), respectively.
  • IDLE idle state
  • INACTIVE INACTIVE
  • CONNECTED connected state
  • the base station sends message request information (ie, UE Information Request) to the UE through the air interface, indicating the MDT measurement that the UE needs to report.
  • message request information ie, UE Information Request
  • the UE sends the UE message response information (ie UE Information Response) to the base station, which contains one or more of the following continuous historical position measurement information in the continuous state of the UE: the latitude and longitude coordinates of a time point or multiple time points; a time point The identification of the connected cell at one or more time points; the direction angle of UE movement at one time point or multiple time points; the UE movement speed at one time point or multiple time points.
  • UE message response information ie UE Information Response
  • the base station sends the received UE measurement report to the location service network element.
  • the location service network element calculates the current location of the UE and the predicted location or predicted cell at a certain future time point or future time period according to the continuous historical location measurement information of the UE in the continuous state.
  • the location service network element sends the predicted location information to the base station, where the predicted location information includes the predicted location of one or more UEs at a certain time point or time period in the future, which can be one or more of the following: the predicted latitude and longitude coordinates ; the predicted cell identification; the predicted altitude information; the predicted connection beam identification information with a certain cell; the predicted tracking area information (Tracking Area, TA).
  • the predicted location information includes the predicted location of one or more UEs at a certain time point or time period in the future, which can be one or more of the following: the predicted latitude and longitude coordinates ; the predicted cell identification; the predicted altitude information; the predicted connection beam identification information with a certain cell; the predicted tracking area information (Tracking Area, TA).
  • the base station receives the predicted location information or the predicted cell location sent by the location service network element, and uses the predicted location or predicted cell of the UE to perform network optimization.
  • the determination of the predicted location information may also be determined by the core network.
  • FIG. 2b is a schematic flowchart of another determination of predicted location information provided by an embodiment of the present application.
  • this example shows location prediction based on a location prediction MDT measurement configuration.
  • the base station when determining the predicted location information, the base station sends MDT measurement configuration information, such as an RRC message, to the UE through the air interface, instructing the relevant UE to perform the relevant measurement.
  • the RRC message may be an RRC establishment request message or an RRC reconfiguration message, or may be a new message, such as a location prediction request message, that is, a Location-prediction Request.
  • the RRC message carries at least one of the following: MDT continuous measurement reporting indication; whether to record the indication information of the MDT location prediction measurement in the connected state (RRC_CONNECTED); whether to record the indication information of the MDT location prediction measurement connected in the INACTIVE state; whether to record the idle state (RRC_IDLE) Indication information of the resident MDT position prediction measurement; MDT position prediction measurement configuration information.
  • Example 1 provides a measurement method for position prediction, comprising:
  • the base station sends the MDT measurement configuration information to the UE, wherein the MDT measurement configuration information is used to indicate that the UE is in an idle state, an INACTIVE state or a connected state, and the MDT measurement collection is continued;
  • the base station receives the MDT measurement report sent by the UE, wherein the measurement report includes measurement quantities in one or more of the following states: MDT measurement quantities in an idle state; MDT measurement quantities in an INACTIVE state; and MDT measurement quantities in a connected state.
  • Example 2 According to the method described in Example 1, the base station sends MDT measurement configuration information to the UE, including:
  • the base station sends a LoggedMDT measurement activation message to the UE through the air interface, wherein the LoggedMDT measurement activation message carries one or more of the following: MDT continuous measurement reporting indication; whether to record the indication information of MDT measurement in the connected state (RRC_CONNECTED); whether to record the INACTIVE state connection
  • MDT continuous measurement reporting indication whether to record the indication information of MDT measurement in the connected state (RRC_CONNECTED); whether to record the INACTIVE state connection
  • the indication information of the MDT measurement whether to record the indication information of the MDT measurement resident in the idle state (RRC_IDLE); MDT location prediction measurement configuration information;
  • the base station sends an RRC message to the UE through the air interface, where the RRC message may be an RRC setup request message or an RRC reconfiguration message, wherein the RRC message carries at least one of the following: MDT continuous measurement reporting indication information; whether to record the connection state ( RRC_CONNECTED) indication information of MDT position prediction measurement; whether to record the indication information of MDT position prediction measurement connected in INACTIVE state; whether to record the indication information of MDT position prediction measurement residing in idle state (RRC_IDLE); MDT position prediction measurement configuration information.
  • RRC_CONNECTED connection state
  • RRC_IDLE idle state
  • Example 3 is according to the method of Example 1 or 2
  • the MDT measurement activation information is configured with the following items: MDT continuous measurement reporting indication is set to positive, whether to record the MDT measurement in the connected state (RRC_CONNECTED) is set to positive; whether to record the MDT measurement setting of the INACTIVE state connection positive; whether to record the MDT measurement of the idle state (RRC_IDLE) residency is set to positive.
  • Example 4 According to the method described in any one of Examples 1-3, the MDT location prediction measurement configuration information includes one or more of the following:
  • Location measurement period effective time of location prediction measurement configuration; indication information of whether latitude and longitude coordinate measurement is required; indication information of whether to perform altitude measurement; Indication information of the measurement quantity; indication information of whether the UE direction angle measurement quantity needs to be performed.
  • Example 5 illustrates the method of Example 1 in accordance with one or more embodiments of the present disclosure.
  • the measurement report includes MDT measurement quantities in one or more of the following states: idle state; INACTIVE state; connected state.
  • Example 6 According to the method described in Example 1, the measurement report includes one or more of the following continuous historical location measurement information in the continuous state of the UE: one time point or multiple time points The latitude and longitude coordinates of a time point; the identification of the connected cell at one time point or multiple time points; the UE movement direction angle at one time point or multiple time points; the UE movement speed at one time point or multiple time points.
  • Example 7 is according to the method of Example 1, further comprising:
  • the base station sends the MDT measurement report of the UE to the location service network element, and the location service network element calculates the current location of the UE and the predicted location information or predicted cell information at a certain future time point or future time period according to the continuous historical location measurement information.
  • FIG. 3 is a schematic structural diagram of a measurement device provided by an embodiment of the application, and the device may be configured on a first communication node, as shown in FIG. 3 .
  • the device includes: an obtaining module 31, configured to obtain minimum drive test MDT measurement configuration information, the MDT measurement configuration information instructing the first communication node to perform continuous MDT measurement; a generation module 32, configured to measure according to the MDT The configuration information generates and transmits measurement reports.
  • the measurement device provided in this embodiment is used to implement the measurement method in the embodiment shown in FIG. 1 .
  • the implementation principle and technical effect of the measurement device provided in this embodiment are similar to the measurement method in the embodiment shown in FIG. 1 , and details are not repeated here. .
  • the MDT measurement configuration information is one of an RRC message and record MDT measurement activation information; wherein, the RRC message is an RRC setup request message or an RRC reconfiguration message or a location prediction request message.
  • the measurement report includes measurement quantities of one or more of the following states: idle state; inactive state; connected state.
  • the measurement report includes continuous historical location measurement information in a continuous state of the first communication node, and the continuous historical location measurement information includes one or more of the following: a time point or multiple time points. Longitude and latitude coordinates; the identification of the connected cell at one time point or multiple time points; the movement direction angle of the first communication node at one time point or multiple time points; the first communication node at one time point or multiple time points The movement speed of the node.
  • the MDT measurement configuration information includes one or more of the following: MDT measurement activation information; MDT continuous measurement reporting indication information; indication information of whether to record MDT measurement in a connected state; whether to record MDT connected in an inactive state Indication information of the measurement; Indication information of whether to record the MDT measurement that resides in the idle state; MDT location prediction measurement configuration information.
  • the MDT measurement activation information indicates the following content: the MDT continuous measurement reporting indication is set to positive, and whether to record the MDT measurement in the connected state is set to Positive; whether to record the MDT measurement of inactive connections is set to positive; whether to record the MDT measurement of idle state residency is set to positive.
  • the MDT position prediction measurement configuration information includes one or more of the following: a position measurement period; an effective time for the position prediction measurement configuration; indication information on whether the latitude and longitude coordinate measurement is required; indication information on whether the altitude measurement is required; Indication information of whether to measure and record the identity of the connected cell; indication information of whether to perform speed measurement; indication information of whether to measure the direction angle of movement of the first communication node.
  • FIG. 4 is a schematic structural diagram of a measurement device provided by an embodiment of the application, and the device may be configured on a second communication node, as shown in FIG. 4 .
  • the device includes:
  • the transmission module 41 is configured to transmit MDT measurement configuration information, where the MDT measurement configuration information instructs the first communication node to perform continuous MDT measurement;
  • the obtaining module 42 is configured to obtain a measurement report transmitted by the first communication node, where the measurement report is used for network optimization.
  • the measurement device provided in this embodiment is used to implement the measurement method in the embodiment shown in FIG. 2 .
  • the implementation principle and technical effect of the measurement device provided in this embodiment are similar to the measurement method in the embodiment shown in FIG. 2 , and details are not repeated here. .
  • the MDT measurement configuration information is one of an RRC message and record MDT measurement activation information; wherein, the RRC message is an RRC setup request message or an RRC reconfiguration message or a location prediction request message; the MDT measurement configuration The information is transmitted after obtaining the indication information of the MDT predicted position measurement.
  • the measurement report includes measurement quantities of one or more of the following states: idle state; inactive state; connected state.
  • the measurement report includes continuous historical location measurement information in a continuous state of the first communication node, and the continuous historical location measurement information includes one or more of the following: a time point or multiple time points. Longitude and latitude coordinates; the identification of the connected cell at one time point or multiple time points; the movement direction angle of the first communication node at one time point or multiple time points; the first communication node at one time point or multiple time points The movement speed of the node.
  • the MDT measurement configuration information includes one or more of the following: MDT measurement activation information; MDT continuous measurement reporting indication information; indication information of whether to record MDT measurement in a connected state; whether to record MDT connected in an inactive state Indication information of the measurement; Indication information of whether to record the MDT measurement that resides in the idle state; MDT location prediction measurement configuration information.
  • the MDT measurement activation information indicates the following content: the MDT continuous measurement reporting indication is set to positive, and whether to record the MDT measurement in the connected state is set to Positive; whether to record the MDT measurement of inactive connections is set to positive; whether to record the MDT measurement of idle state residency is set to positive.
  • the MDT position prediction measurement configuration information includes one or more of the following: a position measurement period; an effective time for the position prediction measurement configuration; indication information on whether to perform latitude and longitude coordinate measurement; indication information on whether to perform altitude measurement; Indication information of whether to measure and record the identity of the connected cell; indication information of whether to perform speed measurement; indication information of whether to measure the direction angle of movement of the first communication node.
  • the device further includes: a predicted location information acquisition module, configured as:
  • predicted location information where the predicted location information is information generated based on the measurement report, and the predicted location information is used for network optimization.
  • FIG. 5 is a schematic structural diagram of a first communication node provided by an embodiment of the present application.
  • the first communication node includes one or more processors 51 and a storage device 52; the processors 51 in the first communication node may be one or more, and one processor 51 is taken as an example in FIG. 5; the storage device 52 for storing one or more programs; the one or more programs are executed by the one or more processors 51 so that the one or more processors 51 implement the measurement method as described in FIG. 1 of the present application .
  • the first communication node further includes: a communication device 53 , an input device 54 and an output device 55 .
  • the processor 51 , the storage device 52 , the communication device 53 , the input device 54 and the output device 55 in the first communication node may be connected by a bus or in other ways, and the connection by a bus is taken as an example in FIG. 5 .
  • the input device 54 may be used to receive input numerical or character information, and to generate key signal input related to user settings and function control of the first communication node.
  • the output device 55 may include a display device such as a display screen.
  • the communication device 53 may include a receiver and a transmitter.
  • the communication device 53 is configured to transmit and receive information according to the control of the processor 51 .
  • the information includes, but is not limited to, MDT measurement configuration information and measurement reports.
  • the storage device 52 can be configured to store software programs, computer-executable programs and modules, such as program instructions/modules corresponding to the measurement method described in FIG. 1 of the present application (for example, the acquisition module in the measurement device). 31 and the generation module 32).
  • the storage device 52 may include a storage program area and a storage data area, wherein the storage program area may store an operating system, an application program required for at least one function; the storage data area may store data created according to the use of the first communication node, and the like.
  • storage device 52 may include high-speed random access memory, and may also include non-volatile memory, such as at least one magnetic disk storage device, flash memory device, or other non-volatile solid state storage device.
  • the storage device 52 may further include memory located remotely from the processor 51, the remote memory may be connected to the first communication node through a network.
  • networks include, but are not limited to, the Internet, an intranet, a local area network, a mobile communication network, and combinations thereof.
  • FIG. 6 is a schematic structural diagram of a second communication node provided by an embodiment of the present application.
  • the second communication node provided by this application includes one or more processors 61 and a storage device 62; the number of processors 61 in the second communication node may be one or more, and in FIG. Take the processor 61 as an example; the storage device 62 is used to store one or more programs; the one or more programs are executed by the one or more processors 61, so that the one or more processors 61 implement the Apply the measurement method described in Figure 2.
  • the second communication node further includes: a communication device 63 , an input device 64 and an output device 65 .
  • the processor 61 , the storage device 62 , the communication device 63 , the input device 64 and the output device 65 in the second communication node may be connected by a bus or in other ways, and the connection by a bus is taken as an example in FIG. 6 .
  • the input device 64 may be used to receive input numerical or character information, and to generate key signal input related to user settings and function control of the second communication node.
  • the output device 65 may include a display device such as a display screen.
  • the communication device 63 may include a receiver and a transmitter.
  • the communication device 63 is configured to transmit and receive information according to the control of the processor 61 .
  • the information includes, but is not limited to, MDT measurement configuration information and measurement reports.
  • the storage device 62 can be configured to store software programs, computer-executable programs, and modules, such as program instructions/modules corresponding to the measurement method described in FIG. 2 of the present application (for example, the transmission module in the measurement device). 41 and acquisition module 42).
  • the storage device 62 may include a stored program area and a stored data area, wherein the stored program area may store an operating system, an application program required for at least one function; the storage data area may store data created according to the use of the device, and the like.
  • storage device 62 may include high-speed random access memory, and may also include non-volatile memory, such as at least one magnetic disk storage device, flash memory device, or other non-volatile solid state storage device.
  • storage device 62 may further include memory located remotely relative to processor 61, and these remote memories may be connected to the second communication node through a network.
  • networks include, but are not limited to, the Internet, an intranet, a local area network, a mobile communication network, and combinations thereof.
  • Embodiments of the present application further provide a storage medium, where a computer program is stored in the storage medium, and when the computer program is executed by a processor, any one of the methods described in the present application is implemented, and the storage medium stores a computer program, and the computer When the program is executed by the processor, any one of the measurement methods described in the embodiments of the present application is implemented.
  • the measurement method applied to the first communication node and the measurement method applied to the second communication node wherein the measurement method applied to the first communication node includes: obtaining the minimum drive test MDT measurement configuration information, the MDT measurement configuration information instructing the first communication node to perform continuous MDT measurements;
  • a measurement report is generated and transmitted according to the MDT measurement configuration information.
  • the measurement method applied to the second communication node includes: transmitting MDT measurement configuration information, the MDT measurement configuration information instructing the first communication node to perform continuous MDT measurement;
  • a measurement report transmitted by the first communication node is acquired, where the measurement report is used for network optimization.
  • the computer storage medium of the embodiments of the present application may adopt any combination of one or more computer-readable media.
  • the computer-readable medium may be a computer-readable signal medium or a computer-readable storage medium.
  • the computer readable storage medium may be, for example, but not limited to, an electrical, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus or device, or any combination of the above.
  • Computer readable storage media include: electrical connections with one or more wires, portable computer disks, hard disks, random access memory (RAM), read only memory (Read Only Memory, ROM), Erasable Programmable Read Only Memory (EPROM), Flash Memory, Optical Fiber, Portable Compact Disc Read Only Memory (CD-ROM), Optical Memory devices, magnetic memory devices, or any suitable combination of the foregoing.
  • a computer-readable storage medium can be any tangible medium that contains or stores a program that can be used by or in connection with an instruction execution system, apparatus, or device.
  • a computer-readable signal medium may include a propagated data signal in baseband or as part of a carrier wave, with computer-readable program code embodied thereon. Such propagated data signals may take a variety of forms including, but not limited to, electromagnetic signals, optical signals, or any suitable combination of the foregoing.
  • a computer-readable signal medium can also be any computer-readable medium other than a computer-readable storage medium that can transmit, propagate, or transport the program for use by or in connection with the instruction execution system, apparatus, or device .
  • Program code embodied on a computer-readable medium may be transmitted using any suitable medium, including but not limited to: wireless, wire, optical fiber cable, radio frequency (RF), etc., or any suitable combination of the foregoing.
  • suitable medium including but not limited to: wireless, wire, optical fiber cable, radio frequency (RF), etc., or any suitable combination of the foregoing.
  • Computer program code for performing the operations of the present application may be written in one or more programming languages, including object-oriented programming languages—such as Java, Smalltalk, C++, but also conventional A procedural programming language, such as the "C" language or similar programming language.
  • the program code may execute entirely on the user's computer, partly on the user's computer, as a stand-alone software package, partly on the user's computer and partly on a remote computer, or entirely on the remote computer or server.
  • the remote computer may be connected to the user's computer through any kind of network, including a Local Area Network (LAN) or Wide Area Network (WAN), or may be connected to an external computer (eg, use an internet service provider to connect via the internet).
  • LAN Local Area Network
  • WAN Wide Area Network
  • user equipment encompasses any suitable type of wireless user equipment such as a mobile telephone, portable data processing device, portable web browser or vehicle mounted mobile station.
  • the various embodiments of the present application may be implemented in hardware or special purpose circuits, software, logic, or any combination thereof.
  • some aspects may be implemented in hardware, while other aspects may be implemented in firmware or software that may be executed by a controller, microprocessor or other computing device, although the application is not limited thereto.
  • Embodiments of the present application may be implemented by the execution of computer program instructions by a data processor of a mobile device, eg in a processor entity, or by hardware, or by a combination of software and hardware.
  • Computer program instructions may be assembly instructions, Instruction Set Architecture (ISA) instructions, machine instructions, machine-dependent instructions, microcode, firmware instructions, state setting data, or written in any combination of one or more programming languages source or object code.
  • ISA Instruction Set Architecture
  • the block diagrams of any logic flow in the figures of the present application may represent program steps, or may represent interconnected logic circuits, modules and functions, or may represent a combination of program steps and logic circuits, modules and functions.
  • Computer programs can be stored on memory.
  • the memory may be of any type suitable for the local technical environment and may be implemented using any suitable data storage technology, such as, but not limited to, Read-Only Memory (ROM), Random Access Memory (RAM), optical Memory devices and systems (Digital Video Disc (DVD) or Compact Disk (CD)), etc.
  • Computer-readable media may include non-transitory storage media.
  • the data processor may be of any type suitable for the local technical environment, such as, but not limited to, a general purpose computer, a special purpose computer, a microprocessor, a Digital Signal Processor (DSP), an Application Specific Integrated Circuit (ASIC) ), programmable logic devices (Field-Programmable Gate Array, FPGA) and processors based on multi-core processor architecture.
  • a general purpose computer such as, but not limited to, a general purpose computer, a special purpose computer, a microprocessor, a Digital Signal Processor (DSP), an Application Specific Integrated Circuit (ASIC) ), programmable logic devices (Field-Programmable Gate Array, FPGA) and processors based on multi-core processor architecture.
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • FPGA Field-Programmable Gate Array

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种测量方法、装置、通信节点及存储介质,该测量方法应用于第一通信节点,包括:获取最小化路测MDT测量配置信息,所述MDT测量配置信息指示所述第一通信节点进行持续MDT测量;根据所述MDT测量配置信息生成并传输测量报告。

Description

测量方法、装置、通信节点及存储介质
本申请要求在2020年08月06日提交中国专利局、申请号为202010785583.9的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,例如涉及一种测量方法、装置、通信节点及存储介质。
背景技术
最小化路测(Minimization of drive tests,MDT)技术是通过用户设备(User Equipment,UE)上报网络侧所需要的网络优化的相关信息,从而减少传统路测。
相关技术中的MDT在进行测量时,只是在UE处于空闲态下测量,并当UE进入连接态后上报空闲态时的测量量,并不支持UE的持续测量,从而不便于网络侧进行后续功能处理,如不便于网络侧进行位置预测。
发明内容
本申请提供一种测量方法、装置、通信节点及存储介质,有效的实现了持续MDT测量。
第一方面,本申请实施例提供了一种测量方法,应用于第一通信节点,包括:
获取最小化路测MDT测量配置信息,所述MDT测量配置信息指示所述第一通信节点进行持续MDT测量;
根据所述MDT测量配置信息生成并传输测量报告。
第二方面,本申请实施例提供了一种测量方法,应用于第二通信节点,包括:
传输MDT测量配置信息,所述MDT测量配置信息指示第一通信节点进行持续MDT测量;
获取所述第一通信节点传输的测量报告,所述测量报告用于进行网络优化。
第三方面,本申请实施例提供了一种测量装置,配置于第一通信节点,包括:
获取模块,设置为获取最小化路测MDT测量配置信息,所述MDT测量配 置信息指示所述第一通信节点进行持续MDT测量;
生成模块,设置为根据所述MDT测量配置信息生成并传输测量报告。
第四方面,本申请实施例提供了一种测量装置,配置于第二通信节点,包括:
传输模块,设置为传输MDT测量配置信息,所述MDT测量配置信息指示第一通信节点进行持续MDT测量;
获取模块,用于获取所述第一通信节点传输的测量报告,所述测量报告用于进行网络优化。
第五方面,本申请实施例提供了一种第一通信节点,包括:
一个或多个处理器;
存储装置,用于存储一个或多个程序;
当所述一个或多个程序被所述一个或多个处理器执行,使得所述一个或多个处理器实现如本申请第一方面提供的方法。
第六方面,本申请实施例提供了一种第二通信节点,包括:
一个或多个处理器;
存储装置,用于存储一个或多个程序;
当所述一个或多个程序被所述一个或多个处理器执行,使得所述一个或多个处理器实现如本申请第二方面提供的方法。
第七方面,本申请实施例提供了一种存储介质,所述存储介质存储有计算机程序,所述计算机程序被处理器执行时实现本申请实施例中的任意一种方法。
附图说明
图1为本申请实施例提供的一种测量方法的流程示意图;
图2为本申请实施例提供的一种测量方法的流程示意图;
图2a为本申请实施例提供的一种预测位置信息确定的流程示意图;
图2b为本申请实施例提供的又一种预测位置信息确定的流程示意图;
图3为本申请实施例提供的一种测量装置的结构示意图;
图4为本申请实施例提供的一种测量装置的结构示意图;
图5为本申请实施例提供的一种第一通信节点的结构示意图;
图6为本申请实施例提供的一种第二通信节点的结构示意图。
具体实施方式
下文中将结合附图对本申请的实施例进行详细说明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互任意组合。
在附图的流程图示出的步骤可以在诸如一组计算机可执行指令的计算机系统中执行。并且,虽然在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤。
在一个示例性实施方式中,图1为本申请实施例提供的一种测量方法的流程示意图,该方法可以适用于进行持续MDT测量的情况。该方法可以由本申请提供的测量装置执行,该测量装置可以由软件和/或硬件实现,并一般集成在第一通信节点上。第一通信节点可以为UE。
如图1所示,本申请提供的一种测量方法,包括如下步骤:
S110、获取最小化路测MDT测量配置信息,所述MDT测量配置信息指示所述第一通信节点进行持续MDT测量。
MDT测量配置信息可以为指示第一通信节点进行持续MDT测量的信息。MDT测量配置信息可以指示第一通信节点在空闲态、非活跃态或者连接态进行MDT的持续测量。
MDT测量配置信息可以为第二通信节点传输至第一通信节点,以指示第一通信节点进行持续MDT测量。MDT测量配置信息所包括的内容不作限定,只要能够指示第一通信节点进行持续MDT测量即可。示例性的,MDT测量配置信息可以包括有指示信息或MDT测量激活信息以指示在第一通信节点在哪种状态下进行MDT持续测量。MDT测量配置信息还可以包括MDT位置预测测量配置信息,该MDT位置预测测量配置信息可以指示所需测量的内容。
S120、根据所述MDT测量配置信息生成并传输测量报告。
测量报告可以为基于MDT持续测量后采集数据形成的报告。在获取MDT测量配置信息后,本步骤可以根据MDT测量配置信息进行MDT测量采集,并存储采集的数据。采集的数据可以用于形成测量报告。测量报告所包括的内容可以基于MDT位置预测测量配置信息所包括的内容确定。
此处不限定生成测量报告和传输测量报告的时机,可以在第二通信节点请求第一通信节点发送测量报告时生成并发送;也可以预先生成测量报告,在第 二通信节点请求第一通信节点发送测量报告时发送测量报告至第二通信节点;还可以在设定时机生成测量报告,并直接将生成的测量报告发送至第二通信节点。设定时机不作限定可以根据实际情况确定。
本示例提供的一种测量方法,该方法能够基于MDT测量配置信息进行持续MDT测量,从而生成并传输测量报告,以便于进行网络优化。
在上述实施例的基础上,提出了上述实施例的变型实施例,在此需要说明的是,为了使描述简要,在变型实施例中仅描述与上述实施例的不同之处。
在一个实施例中,所述MDT测量配置信息为无线资源控制(Radio Resource Control,RRC)消息和记录MDT测量激活信息中的一个;其中,RRC消息为RRC建立请求消息或RRC重配置消息或位置预测请求消息。
位置预测请求信息可以为用于指示第一通信节点进行持续MDT测量的信息。
在一个实施例中,所述测量报告包括以下一个或多个状态的测量量:空闲态;非活跃态;连接态。
测量报告所包括的内容可以基于MDT测量配置信息指示的内容确定。示例性的,在MDT测量配置信息指示第一通信节点在空闲态进行持续MDT测量时,测量报告可以包括空闲态的测量量。在MDT测量配置信息指示第一通信节点在非活跃态进行持续MDT测量时,测量报告可以包括非活跃态的测量量。在MDT测量配置信息指示第一通信节点在连接态进行持续MDT测量时,测量报告可以包括连接态的测量量。
在一个实施例中,所述测量报告包括所述第一通信节点连续状态下的连续历史位置测量信息,所述连续历史位置测量信息包括如下一个或多个:一个时间点或者多个时间点的经纬度坐标;一个时间点或者多个时间点的连接小区标识;一个时间点或者多个时间点的所述第一通信节点的运动方向角;一个时间点或者多个时间点的所述第一通信节点的运动速度。
连续状态可以包括如下一个或多个:空闲态;非活跃态;连接态。连续历史位置测量信息为第一通信节点进行持续MDT测量时所获取的信息,该信息可以用于进行位置预测。
运动方向角可以理解为表征运动方向的角度。
在一个实施例中,所述MDT测量配置信息包括如下一个或多个:MDT测量激活信息;MDT持续测量上报指示信息;是否记录连接态的MDT测量的指示信息;是否记录非活跃态连接的MDT测量的指示信息;是否记录空闲态驻留的MDT测量的指示信息;MDT位置预测测量配置信息。
MDT测量激活信息可以指示第一通信节点在哪种状态下进行MDT测量。MDT持续测量上报指示信息可以为指示第一通信节点进行持续测量上报的指示信息。MDT位置预测测量配置信息可以为指示第一通信节点在进行MDT持续测量时所需测量的内容。
MDT持续测量上报指示信息可以认为是是否进行MDT持续测量上报指示的指示信息。是否记录连接态的MDT测量的指示信息可以指示是否记录连接态的MDT测量。是否记录非活跃态连接的MDT测量的指示信息可以指示是否记录非活跃态连接的MDT测量。是否记录空闲态驻留的MDT测量的指示信息可以指示是否记录空闲态驻留的MDT测量。
在一个实施例中,在所述MDT测量配置信息包括MDT位置预测测量配置信息的情况下,MDT测量激活信息指示如下内容:MDT持续测量上报指示设置为肯定,是否记录连接态的MDT测量设置为肯定;是否记录非活跃态连接的MDT测量设置为肯定;是否记录空闲态驻留的MDT测量设置为肯定。
在MDT测量配置信息包括MDT位置预测配置信息的情况下,可以通过将MDT持续测量上报指示设置为肯定,是否记录连接态的MDT测量设置为肯定,是否记录非活跃态连接的MDT测量设置为肯定和是否记录空闲态驻留的MDT测量设置为肯定以实现第一通信节点在连接态、空闲态和非活跃态下进行持续MDT测量。
在一个实施例中,MDT位置预测测量配置信息包括如下一个或多个:位置测量周期;位置预测测量配置有效时间;是否需要进行经纬度坐标测量的指示信息;是否需要进行海拔高度测量的指示信息;是否需要进行所连接小区标识的测量和记录的指示信息;是否需要进行速度测量的指示信息;是否需要进行所述第一通信节点的运动方向角测量的指示信息。
位置测量周期可以认为是位置测量的周期。位置预测测量配置有效时间可以理解为进行位置预测测量配置的有效时间。
在一个示例性实施方式中,本申请还提供了一种测量方法,图2为本申请实施例提供的一种测量方法的流程示意图,该方法可以适用于进行持续MDT测量的情况,该方法可以由本申请提供的测量装置执行,并集成在第二通信节点上。第二通信节点包括但不限于:基站。
如图2所示,本申请提供的测量方法,包括如下步骤:
S210、传输MDT测量配置信息,所述MDT测量配置信息指示第一通信节点进行持续MDT测量。
第二通信节点可以首先确定MDT测量配置信息,然后传输MDT测量配置 信息。MDT测量配置信息所包括的内容不作限定,可以基于所需测量的内容和状态确定。MDT测量配置信息可以指示第一通信节点进行持续MDT测量,从而获取第一通信节点传输的测量报告,以进行网络优化。
S220、获取所述第一通信节点传输的测量报告,所述测量报告用于进行网络优化。
在传输MDT测量配置信息至第一通信节点后,本步骤可以获取第一通信节点传输的测量报告,以基于该测量报告进行网络优化。此处不限定如何基于测量报告进行网络优化。
本示例尚未详尽的内容可以参见上述实施例,此处不作赘述。
本示例提供的测量方法,能够通过向第一通信节点发送MDT测量配置信息,以控制第一通信节点进行持续MDT测量,从而获取第一通信节点反馈的测量报告,进而实现网络优化。
在上述实施例的基础上,提出了上述实施例的变型实施例,在此需要说明的是,为了使描述简要,在变型实施例中仅描述与上述实施例的不同之处。
在一个实施例中,所述MDT测量配置信息为RRC消息和记录MDT测量激活信息中的一个;其中,RRC消息为RRC建立请求消息或RRC重配置消息或位置预测请求消息;所述MDT测量配置信息在获取到MDT预测位置测量的指示信息后传输。
在一个实施例中,所述测量报告包括以下一个或多个状态的测量量:空闲态;非活跃态;连接态。
在一个实施例中,所述测量报告包括所述第一通信节点连续状态下的连续历史位置测量信息,所述连续历史位置测量信息包括如下一个或多个:一个时间点或者多个时间点的经纬度坐标;一个时间点或者多个时间点的连接小区标识;一个时间点或者多个时间点的所述第一通信节点的运动方向角;一个时间点或者多个时间点的所述第一通信节点的运动速度。
在一个实施例中,所述MDT测量配置信息包括如下一个或多个:MDT测量激活信息;MDT持续测量上报指示信息;是否记录连接态的MDT测量的指示信息;是否记录非活跃态连接的MDT测量的指示信息;是否记录空闲态驻留的MDT测量的指示信息;MDT位置预测测量配置信息。
在一个实施例中,在所述MDT测量配置信息包括MDT位置预测测量配置信息的情况下,MDT测量激活信息指示如下内容:MDT持续测量上报指示设置为肯定,是否记录连接态的MDT测量设置为肯定;是否记录非活跃态连接的MDT测量设置为肯定;是否记录空闲态驻留的MDT测量设置为肯定。
在一个实施例中,MDT位置预测测量配置信息包括如下一个或多个:位置测量周期;位置预测测量配置有效时间;是否需要进行经纬度坐标测量的指示信息;是否需要进行海拔高度测量的指示信息;是否需要进行所连接小区标识的测量和记录的指示信息;是否需要进行速度测量的指示信息;是否需要进行所述第一通信节点的运动方向角测量的指示信息。
在一个实施例中,该方法还包括:
传输所述测量报告;
获取预测位置信息,所述预测位置信息为基于所述测量报告生成的信息,所述预测位置信息用于进行网络优化。
在获取测量报告后,第二通信节点可以将测量报告发送给进行预测位置信息确定的设备,如核心网或位置服务网元,以供进行预测位置信息确定的设备确定预测位置信息。预测位置信息可以理解为预测的位置信息,该信息可以基于测量报告生成,具体生成手段此处不作限定。第二通信节点获取预测位置信息后可以使用预测位置信息进行网络优化。
以下对本申请进行示例性的描述,本申请提供的测量方法可以认为是一种持续测量的方法,相关的MDT技术并不支持UE在空闲态、不活跃(即INACTIVE)态和连接态下持续测量采集,且相关技术中的记录MDT,即Logged MDT测量只是在空闲态下测量,并当进入连接态后上报空闲态时的测量量。而无线网络侧有些功能仅仅依赖空闲态的测量量并不够,比如网络侧位置预测功能需要采集历史位置测量数据以及和历史位置相关的测量数据,网络侧人工智能(Artificial Intelligence,AI)功能实体需要一段连续的UE用户轨迹的历史数据用于训练和预测,意味着UE需要在空闲态、INACTIVE态和连接态都对位置相关测量进行测量,并后续通知给网络端。因此需要解决如何在UE的多种状态下进行MDT持续测量采集。
无线接入网络(Radio Access Network,RAN)只支持当前终端位置的定位,并不能根据相关历史训练数据预测终端下一个时间点可能的位置。而对终端位置的预测,对于基站间提高切换成功率,进行负荷均衡等有很大的参考意义。而当前UE仅仅在空闲态进行位置测量,所以网络侧无法通过UE的测量报告获取UE一段连续的UE用户轨迹的历史位置数据,进而无法进行预测,因此需要解决如何在UE的多种状态下进行MDT持续测量位置以及位置相关测量。
MDT是第三代合作伙伴计划(3rd Generation Partnership Project,3GPP)在长期演进(Long Term Evolution,LTE)系统中引入的一种通过网络配置对普通用户/商用终端进行测量数据采集、上报的自动化路测技术,本申请提供了一种新 的方法,使UE在空闲态、INACTIVE态和连接态持续MDT测量采集,并利用采集的连续的UE用户轨迹的历史测量数据用于训练和预测并且引入UE速度和运动方向角测量量来提高UE位置预测的准确度。本申请中UE能够持续上报测量量,即测量报告,提高UE位置预测的准确度。
图2a为本申请实施例提供的一种预测位置信息确定的流程示意图,参见图2a,该示例示出了基于记录MDT持续测量的位置预测。在进行预测位置信息确定时,包括如下步骤:
1.基站接收核心网发送的UE相关消息,如UE文本建立请求(即initial context setup request)消息或者切换请求消息(即handover request),或者路径请求消息(即Trace start),其中携带激活该UE MDT预测位置测量的指示。
2.基站通过空口向UE发送记录MDT测量激活信息。其中携带MDT测量激活信息,记录MDT测量激活信息携带以下一项或者多项:MDT持续测量上报指示信息;是否记录连接态(RRC_CONNECTED)的MDT测量的指示信息;是否记录INACTIVE态连接的MDT测量的指示信息;是否记录空闲态(RRC_IDLE)驻留的MDT测量的指示信息;MDT位置预测测量配置信息,MDT位置预测测量配置信息用于指示UE进行相关测量。
其中,MDT位置预测测量配置信息携带以下一项或者多项:位置测量周期;位置预测测量配置有效时间;是否需要进行经纬度坐标测量的指示信息;是否需要进行海拔高度测量的指示信息;是否需要进行所连接或者驻留小区标识的测量和记录的指示信息;是否需要进行速度测量量的指示信息;是否需要进行UE方向角测量量的指示信息。
其中,当配置了MDT位置预测测量配置信息,MDT测量激活信息指示以下项:MDT持续测量上报指示设置为肯定,是否记录连接态(RRC_CONNECTED)的MDT测量设置为肯定;是否记录INACTIVE态连接的MDT测量设置为肯定;是否记录空闲态(RRC_IDLE)驻留的MDT测量设置为肯定。
3.UE接收MDT测量激活信息,并根据其中内容分别在空闲态(IDLE)或者INACTIVE态或者连接态(CONNECTED)进行相应内容的测量。
4.基站通过空口向UE发送消息请求信息(即UE Information Request),指示UE需要上报的MDT测量。
5.UE向基站发送UE消息响应信息(即UE Information Response),其中包含以下一项或者多项UE连续状态下的连续历史位置测量信息:一个时间点或者多个时间点的经纬度坐标;一个时间点或者多个时间点的连接小区标识;一个 时间点或者多个时间点的UE运动方向角;一个时间点或者多个时间点的UE运动速度。
6.基站将接收到的UE测量报告发送给位置服务网元。
7.位置服务网元根据UE连续状态下的连续历史位置测量信息,计算UE当前位置和未来某个时间点或未来某个时间段的预测位置或者预测小区。
8.位置服务网元将预测位置信息发送给基站,其中预测位置信息是包含一个或者多个UE未来某个时间点或者时间段的预测位置,可以是以下一项或者多项:预测的经纬度坐标;预测的所在小区标识;预测的海拔高度信息;预测的和某个小区的连接波束标识信息;预测的所在跟踪区域信息(Tracking Area,TA)。
9.基站接收位置服务网元发送的预测位置信息或者预测小区位置,并使用UE的预测位置或者预测小区进行网络优化。
需要注意的是,预测位置信息的确定也可以由核心网确定。
图2b为本申请实施例提供的又一种预测位置信息确定的流程示意图,参见图2b,该示例示出了基于位置预测MDT测量配置的位置预测。该示例在进行预测位置信息确定时,基站通过空口向UE发送MDT测量配置信息,如RRC消息,指示相关UE进行相关测量。其中RRC消息可以是RRC建立请求消息或者是RRC重配置消息,也可以是新的消息,如位置预测请求消息,即Location-prediction Request。其中,RRC消息携带以下至少一项:MDT持续测量上报指示;是否记录连接态(RRC_CONNECTED)的MDT位置预测测量的指示信息;是否记录INACTIVE态连接的MDT位置预测测量的指示信息;是否记录空闲态(RRC_IDLE)驻留的MDT位置预测测量的指示信息;MDT位置预测测量配置信息。
根据本申请的一个或多个实施例,示例1提供了一种用于位置预测的测量方法,包括:
基站发送MDT测量配置信息给UE,其中MDT测量配置信息用于指示UE在空闲态或INACTIVE态或连接态,持续MDT测量采集;
基站接收UE发送的MDT测量报告,其中,测量报告中包含以下一个或者多个状态的测量量:空闲态MDT测量量;INACTIVE态MDT测量量;连接态MDT测量量。
根据本公开的一个或多个实施例,示例2根据示例1所述的方法,基站发送MDT测量配置信息给UE,包括:
基站通过空口向UE发送LoggedMDT测量激活消息,其中,LoggedMDT 测量激活消息携带以下一项或者多项:MDT持续测量上报指示;是否记录连接态(RRC_CONNECTED)的MDT测量的指示信息;是否记录INACTIVE态连接的MDT测量的指示信息;是否记录空闲态(RRC_IDLE)驻留的MDT测量的指示信息;MDT位置预测测量配置信息;
或者,基站通过空口向UE发送RRC消息,其中,RRC消息可以是RRC建立请求消息或者是RRC重配置消息,其中,RRC消息携带以下至少一项:MDT持续测量上报指示信息;是否记录连接态(RRC_CONNECTED)的MDT位置预测测量的指示信息;是否记录INACTIVE态连接的MDT位置预测测量的指示信息;是否记录空闲态(RRC_IDLE)驻留的MDT位置预测测量的指示信息;MDT位置预测测量配置信息。
根据本公开的一个或多个实施例,示例3根据示例1或2所述的方法,
如果配置了MDT位置预测测量配置信息,MDT测量激活信息配置以下项:MDT持续测量上报指示设置为肯定,是否记录连接态(RRC_CONNECTED)的MDT测量设置为肯定;是否记录INACTIVE态连接的MDT测量设置为肯定;是否记录空闲态(RRC_IDLE)驻留的MDT测量设置为肯定。
根据本公开的一个或多个实施例,示例4根据示例1-3任一所述的方法,MDT位置预测测量配置信息,包括如下一个或多个:
位置测量周期;位置预测测量配置有效时间;是否需要进行经纬度坐标测量的指示信息;是否需要进行海拔高度测量的指示信息;是否需要进行所连接小区标识的测量和记录的指示信息;是否需要进行速度测量量的指示信息;是否需要进行UE方向角测量量的指示信息。
根据本公开的一个或多个实施例,示例5根据示例1所述的方法进行说明。
测量报告中包含以下一个或者多个状态的MDT测量量:空闲态;INACTIVE态;连接态。
根据本公开的一个或多个实施例,示例6根据示例1所述的方法,测量报告中包含以下一项或者多项UE连续状态下的连续历史位置测量信息:一个时间点或者多个时间点的经纬度坐标;一个时间点或者多个时间点的连接小区标识;一个时间点或者多个时间点的UE运动方向角;一个时间点或者多个时间点的UE运动速度。
根据本公开的一个或多个实施例,示例7根据示例1所述的方法,还包括:
基站将UE的MDT测量报告发送给位置服务网元,位置服务网元根据连续历史位置测量信息,计算UE当前位置和未来某个时间点或未来某个时间段的预测位置信息或者预测小区信息。
在一个示例性实施方式中,本申请还提供了一种测量装置,图3为本申请实施例提供的一种测量装置的结构示意图,该装置可以配置于第一通信节点,如图3所示,该装置包括:获取模块31,设置为获取最小化路测MDT测量配置信息,所述MDT测量配置信息指示所述第一通信节点进行持续MDT测量;生成模块32,设置为根据所述MDT测量配置信息生成并传输测量报告。
本实施例提供的测量装置用于实现如图1所示实施例的测量方法,本实施例提供的测量装置实现原理和技术效果与图1所示实施例的测量方法类似,此处不再赘述。
在上述实施例的基础上,提出了上述实施例的变型实施例,在此需要说明的是,为了使描述简要,在变型实施例中仅描述与上述实施例的不同之处。
在一个实施例中,所述MDT测量配置信息为RRC消息和记录MDT测量激活信息中的一个;其中,RRC消息为RRC建立请求消息或RRC重配置消息或位置预测请求消息。
在一个实施例中,所述测量报告包括以下一个或多个状态的测量量:空闲态;非活跃态;连接态。
在一个实施例中,所述测量报告包括所述第一通信节点连续状态下的连续历史位置测量信息,所述连续历史位置测量信息包括如下一个或多个:一个时间点或者多个时间点的经纬度坐标;一个时间点或者多个时间点的连接小区标识;一个时间点或者多个时间点的所述第一通信节点的运动方向角;一个时间点或者多个时间点的所述第一通信节点的运动速度。
在一个实施例中,所述MDT测量配置信息包括如下一个或多个:MDT测量激活信息;MDT持续测量上报指示信息;是否记录连接态的MDT测量的指示信息;是否记录非活跃态连接的MDT测量的指示信息;是否记录空闲态驻留的MDT测量的指示信息;MDT位置预测测量配置信息。
在一个实施例中,在所述MDT测量配置信息包括MDT位置预测测量配置信息的情况下,MDT测量激活信息指示如下内容:MDT持续测量上报指示设置为肯定,是否记录连接态的MDT测量设置为肯定;是否记录非活跃态连接的MDT测量设置为肯定;是否记录空闲态驻留的MDT测量设置为肯定。
在一个实施例中,MDT位置预测测量配置信息包括如下一个或多个:位置测量周期;位置预测测量配置有效时间;是否需要进行经纬度坐标测量的指示信息;是否需要进行海拔高度测量的指示信息;是否需要进行所连接小区标识的测量和记录的指示信息;是否需要进行速度测量的指示信息;是否需要进行所述第一通信节点的运动方向角测量的指示信息。
在一个示例性实施方式中,本申请还提供了一种测量装置,图4为本申请实施例提供的一种测量装置的结构示意图,该装置可以配置于第二通信节点,如图4所示,该装置包括:
传输模块41,设置为传输MDT测量配置信息,所述MDT测量配置信息指示第一通信节点进行持续MDT测量;
获取模块42,用于获取所述第一通信节点传输的测量报告,所述测量报告用于进行网络优化。
本实施例提供的测量装置用于实现如图2所示实施例的测量方法,本实施例提供的测量装置实现原理和技术效果与图2所示实施例的测量方法类似,此处不再赘述。
在上述实施例的基础上,提出了上述实施例的变型实施例,在此需要说明的是,为了使描述简要,在变型实施例中仅描述与上述实施例的不同之处。
在一个实施例中,所述MDT测量配置信息为RRC消息和记录MDT测量激活信息中的一个;其中,RRC消息为RRC建立请求消息或RRC重配置消息或位置预测请求消息;所述MDT测量配置信息在获取到MDT预测位置测量的指示信息后传输。
在一个实施例中,所述测量报告包括以下一个或多个状态的测量量:空闲态;非活跃态;连接态。
在一个实施例中,所述测量报告包括所述第一通信节点连续状态下的连续历史位置测量信息,所述连续历史位置测量信息包括如下一个或多个:一个时间点或者多个时间点的经纬度坐标;一个时间点或者多个时间点的连接小区标识;一个时间点或者多个时间点的所述第一通信节点的运动方向角;一个时间点或者多个时间点的所述第一通信节点的运动速度。
在一个实施例中,所述MDT测量配置信息包括如下一个或多个:MDT测量激活信息;MDT持续测量上报指示信息;是否记录连接态的MDT测量的指示信息;是否记录非活跃态连接的MDT测量的指示信息;是否记录空闲态驻留的MDT测量的指示信息;MDT位置预测测量配置信息。
在一个实施例中,在所述MDT测量配置信息包括MDT位置预测测量配置信息的情况下,MDT测量激活信息指示如下内容:MDT持续测量上报指示设置为肯定,是否记录连接态的MDT测量设置为肯定;是否记录非活跃态连接的MDT测量设置为肯定;是否记录空闲态驻留的MDT测量设置为肯定。
在一个实施例中,MDT位置预测测量配置信息包括如下一个或多个:位置测量周期;位置预测测量配置有效时间;是否需要进行经纬度坐标测量的指示 信息;是否需要进行海拔高度测量的指示信息;是否需要进行所连接小区标识的测量和记录的指示信息;是否需要进行速度测量的指示信息;是否需要进行所述第一通信节点的运动方向角测量的指示信息。
在一个实施例中,该装置还包括:预测位置信息获取模块,设置为:
传输所述测量报告;
获取预测位置信息,所述预测位置信息为基于所述测量报告生成的信息,所述预测位置信息用于进行网络优化。
在一个示例性实施方式中,本申请实施例还提供了一种第一通信节点,图5为本申请实施例提供的一种第一通信节点的结构示意图,如图5所示,本申请提供的第一通信节点,包括一个或多个处理器51和存储装置52;该第一通信节点中的处理器51可以是一个或多个,图5中以一个处理器51为例;存储装置52用于存储一个或多个程序;所述一个或多个程序被所述一个或多个处理器51执行,使得所述一个或多个处理器51实现如本申请图1中所述的测量方法。
第一通信节点还包括:通信装置53、输入装置54和输出装置55。
第一通信节点中的处理器51、存储装置52、通信装置53、输入装置54和输出装置55可以通过总线或其他方式连接,图5中以通过总线连接为例。
输入装置54可用于接收输入的数字或字符信息,以及产生与第一通信节点的用户设置以及功能控制有关的按键信号输入。输出装置55可包括显示屏等显示设备。
通信装置53可以包括接收器和发送器。通信装置53设置为根据处理器51的控制进行信息收发通信。信息包括但不限于MDT测量配置信息和测量报告。
存储装置52作为一种计算机可读存储介质,可设置为存储软件程序、计算机可执行程序以及模块,如本申请图1所述测量方法对应的程序指令/模块(例如,测量装置中的获取模块31和生成模块32)。存储装置52可包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序;存储数据区可存储根据第一通信节点的使用所创建的数据等。此外,存储装置52可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。在一些实例中,存储装置52可进一步包括相对于处理器51远程设置的存储器,这些远程存储器可以通过网络连接至第一通信节点。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
在一个示例性实施方式中,本申请实施例还提供了一种第二通信节点,图6为本申请实施例提供的一种第二通信节点的结构示意图。如图6所示,本申请 提供的第二通信节点,包括一个或多个处理器61和存储装置62;该第二通信节点中的处理器61可以是一个或多个,图6中以一个处理器61为例;存储装置62用于存储一个或多个程序;所述一个或多个程序被所述一个或多个处理器61执行,使得所述一个或多个处理器61实现如本申请图2中所述的测量方法。
第二通信节点还包括:通信装置63、输入装置64和输出装置65。
第二通信节点中的处理器61、存储装置62、通信装置63、输入装置64和输出装置65可以通过总线或其他方式连接,图6中以通过总线连接为例。
输入装置64可用于接收输入的数字或字符信息,以及产生与第二通信节点的用户设置以及功能控制有关的按键信号输入。输出装置65可包括显示屏等显示设备。
通信装置63可以包括接收器和发送器。通信装置63设置为根据处理器61的控制进行信息收发通信。信息包括但不限于MDT测量配置信息和测量报告。
存储装置62作为一种计算机可读存储介质,可设置为存储软件程序、计算机可执行程序以及模块,如本申请图2所述测量方法对应的程序指令/模块(例如,测量装置中的传输模块41和获取模块42)。存储装置62可包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序;存储数据区可存储根据设备的使用所创建的数据等。此外,存储装置62可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。在一些实例中,存储装置62可进一步包括相对于处理器61远程设置的存储器,这些远程存储器可以通过网络连接至第二通信节点。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
本申请实施例还提供一种存储介质,所述存储介质存储有计算机程序,所述计算机程序被处理器执行时实现本申请任一所述方法,所述存储介质存储有计算机程序,所述计算机程序被处理器执行时实现本申请实施例中任一所述的测量方法。如应用于第一通信节点的测量方法和应用于第二通信节点的测量方法,其中,应用于第一通信节点的测量方法包括:获取最小化路测MDT测量配置信息,所述MDT测量配置信息指示所述第一通信节点进行持续MDT测量;
根据所述MDT测量配置信息生成并传输测量报告。
应用于第二通信节点的测量方法包括:传输MDT测量配置信息,所述MDT测量配置信息指示第一通信节点进行持续MDT测量;
获取所述第一通信节点传输的测量报告,所述测量报告用于进行网络优化。
本申请实施例的计算机存储介质,可以采用一个或多个计算机可读的介质 的任意组合。计算机可读介质可以是计算机可读信号介质或者计算机可读存储介质。计算机可读存储介质例如可以是,但不限于:电、磁、光、电磁、红外线、或半导体的系统、装置或器件,或者任意以上的组合。计算机可读存储介质的更具体的例子(非穷举的列表)包括:具有一个或多个导线的电连接、便携式计算机磁盘、硬盘、随机存取存储器(Random Access Memory,RAM)、只读存储器(Read Only Memory,ROM)、可擦式可编程只读存储器(Erasable Programmable Read Only Memory,EPROM)、闪存、光纤、便携式紧凑磁盘只读存储器(Compact Disc Read Only Memory,CD-ROM)、光存储器件、磁存储器件、或者上述的任意合适的组合。计算机可读存储介质可以是任何包含或存储程序的有形介质,该程序可以被指令执行系统、装置或者器件使用或者与其结合使用。
计算机可读的信号介质可以包括在基带中或者作为载波一部分传播的数据信号,其中承载了计算机可读的程序代码。这种传播的数据信号可以采用多种形式,包括但不限于:电磁信号、光信号或上述的任意合适的组合。计算机可读的信号介质还可以是计算机可读存储介质以外的任何计算机可读介质,该计算机可读介质可以发送、传播或者传输用于由指令执行系统、装置或者器件使用或者与其结合使用的程序。
计算机可读介质上包含的程序代码可以用任何适当的介质传输,包括但不限于:无线、电线、光缆、无线电频率(Radio Frequency,RF)等等,或者上述的任意合适的组合。
可以以一种或多种程序设计语言或其组合来编写用于执行本申请操作的计算机程序代码,所述程序设计语言包括面向对象的程序设计语言—诸如Java、Smalltalk、C++,还包括常规的过程式程序设计语言,诸如“C”语言或类似的程序设计语言。程序代码可以完全地在用户计算机上执行、部分地在用户计算机上执行、作为一个独立的软件包执行、部分在用户计算机上部分在远程计算机上执行、或者完全在远程计算机或服务器上执行。在涉及远程计算机的情形中,远程计算机可以通过任意种类的网络,包括局域网(Local Area Network,LAN)或广域网(Wide Area Network,WAN),连接到用户计算机,或者,可以连接到外部计算机(例如利用因特网服务提供商来通过因特网连接)。
以上所述,仅为本申请的示例性实施例而已,并非用于限定本申请的保护范围。
本领域内的技术人员应明白,术语用户设备涵盖任何适合类型的无线用户设备,例如移动电话、便携数据处理装置、便携网络浏览器或车载移动台。
一般来说,本申请的多种实施例可以在硬件或专用电路、软件、逻辑或其 任何组合中实现。例如,一些方面可以被实现在硬件中,而其它方面可以被实现在可以被控制器、微处理器或其它计算装置执行的固件或软件中,尽管本申请不限于此。
本申请的实施例可以通过移动装置的数据处理器执行计算机程序指令来实现,例如在处理器实体中,或者通过硬件,或者通过软件和硬件的组合。计算机程序指令可以是汇编指令、指令集架构(Instruction Set Architecture,ISA)指令、机器指令、机器相关指令、微代码、固件指令、状态设置数据、或者以一种或多种编程语言的任意组合编写的源代码或目标代码。
本申请附图中的任何逻辑流程的框图可以表示程序步骤,或者可以表示相互连接的逻辑电路、模块和功能,或者可以表示程序步骤与逻辑电路、模块和功能的组合。计算机程序可以存储在存储器上。存储器可以具有任何适合于本地技术环境的类型并且可以使用任何适合的数据存储技术实现,例如但不限于只读存储器(Read-Only Memory,ROM)、随机访问存储器(Random Access Memory,RAM)、光存储器装置和系统(数码多功能光碟(Digital Video Disc,DVD)或光盘(Compact Disk,CD))等。计算机可读介质可以包括非瞬时性存储介质。数据处理器可以是任何适合于本地技术环境的类型,例如但不限于通用计算机、专用计算机、微处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、可编程逻辑器件(Field-Programmable Gate Array,FPGA)以及基于多核处理器架构的处理器。

Claims (20)

  1. 一种测量方法,应用于第一通信节点,包括:
    获取最小化路测MDT测量配置信息,其中,所述MDT测量配置信息指示所述第一通信节点进行持续MDT测量;
    根据所述MDT测量配置信息生成并传输测量报告。
  2. 根据权利要求1所述的方法,其中,所述MDT测量配置信息为无线资源控制RRC消息和记录MDT测量激活信息中的一种;其中,所述RRC消息为RRC建立请求消息或RRC重配置消息或位置预测请求消息。
  3. 根据权利要求1所述的方法,其中,所述测量报告包括以下至少一个状态的测量量:空闲态;非活跃态;连接态。
  4. 根据权利要求1所述的方法,其中,所述测量报告包括所述第一通信节点连续状态下的连续历史位置测量信息,所述连续历史位置测量信息包括如下至少之一:一个时间点或者多个时间点的经纬度坐标;一个时间点或者多个时间点的连接小区标识;一个时间点或者多个时间点的所述第一通信节点的运动方向角;一个时间点或者多个时间点的所述第一通信节点的运动速度。
  5. 根据权利要求1所述的方法,其中,所述MDT测量配置信息包括如下至少之一:MDT测量激活信息;MDT持续测量上报指示信息;是否记录连接态的MDT测量的指示信息;是否记录非活跃态连接的MDT测量的指示信息;是否记录空闲态驻留的MDT测量的指示信息;MDT位置预测测量配置信息。
  6. 根据权利要求5所述的方法,其中,在所述MDT测量配置信息包括所述MDT位置预测测量配置信息的情况下,MDT测量激活信息指示如下内容:MDT持续测量上报指示设置为肯定,是否记录连接态的MDT测量设置为肯定;是否记录非活跃态连接的MDT测量设置为肯定;是否记录空闲态驻留的MDT测量设置为肯定。
  7. 根据权利要求5所述的方法,其中,所述MDT位置预测测量配置信息包括如下至少之一:位置测量周期;位置预测测量配置有效时间;是否需要进行经纬度坐标测量的指示信息;是否需要进行海拔高度测量的指示信息;是否需要进行所连接小区标识的测量和记录的指示信息;是否需要进行速度测量的指示信息;是否需要进行所述第一通信节点的运动方向角测量的指示信息。
  8. 一种测量方法,应用于第二通信节点,包括:
    传输最小化路测MDT测量配置信息,其中,所述MDT测量配置信息指示第一通信节点进行持续MDT测量;
    获取所述第一通信节点传输的测量报告,其中,所述测量报告用于进行网 络优化。
  9. 根据权利要求8所述的方法,其中,所述MDT测量配置信息为无线资源控制RRC消息和记录MDT测量激活信息中的一种;其中,所述RRC消息为RRC建立请求消息或RRC重配置消息或位置预测请求消息;所述MDT测量配置信息在获取到MDT预测位置测量的指示信息后传输。
  10. 根据权利要求8所述的方法,其中,所述测量报告包括以下至少一个状态的测量量:空闲态;非活跃态;连接态。
  11. 根据权利要求8所述的方法,其中,所述测量报告包括所述第一通信节点连续状态下的连续历史位置测量信息,所述连续历史位置测量信息包括如下至少之一:一个时间点或者多个时间点的经纬度坐标;一个时间点或者多个时间点的连接小区标识;一个时间点或者多个时间点的所述第一通信节点的运动方向角;一个时间点或者多个时间点的所述第一通信节点的运动速度。
  12. 根据权利要求8所述的方法,其中,所述MDT测量配置信息包括如下至少之一:MDT测量激活信息;MDT持续测量上报指示信息;是否记录连接态的MDT测量的指示信息;是否记录非活跃态连接的MDT测量的指示信息;是否记录空闲态驻留的MDT测量的指示信息;MDT位置预测测量配置信息。
  13. 根据权利要求12所述的方法,其中,在所述MDT测量配置信息包括所述MDT位置预测测量配置信息的情况下,MDT测量激活信息指示如下内容:MDT持续测量上报指示设置为肯定,是否记录连接态的MDT测量设置为肯定;是否记录非活跃态连接的MDT测量设置为肯定;是否记录空闲态驻留的MDT测量设置为肯定。
  14. 根据权利要求12所述的方法,其中,所述MDT位置预测测量配置信息包括如下至少之一:位置测量周期;位置预测测量配置有效时间;是否需要进行经纬度坐标测量的指示信息;是否需要进行海拔高度测量的指示信息;是否需要进行所连接小区标识的测量和记录的指示信息;是否需要进行速度测量的指示信息;是否需要进行所述第一通信节点的运动方向角测量的指示信息。
  15. 根据权利要求8所述的方法,还包括:
    传输所述测量报告;
    获取预测位置信息,所述预测位置信息为基于所述测量报告生成的信息,所述预测位置信息用于进行网络优化。
  16. 一种测量装置,配置于第一通信节点,包括:
    获取模块,设置为获取最小化路测MDT测量配置信息,其中,所述MDT 测量配置信息指示所述第一通信节点进行持续MDT测量;
    生成模块,设置为根据所述MDT测量配置信息生成并传输测量报告。
  17. 一种测量装置,配置于第二通信节点,包括:
    传输模块,设置为传输最小化路测MDT测量配置信息,其中,所述MDT测量配置信息指示第一通信节点进行持续MDT测量;
    获取模块,设置为获取所述第一通信节点传输的测量报告,其中,所述测量报告用于进行网络优化。
  18. 一种第一通信节点,包括:
    一个或多个处理器;
    存储装置,设置为存储一个或多个程序;
    当所述一个或多个程序被所述一个或多个处理器执行,使得所述一个或多个处理器实现如权利要求1-7中任一项所述的方法。
  19. 一种第二通信节点,包括:
    一个或多个处理器;
    存储装置,设置为存储一个或多个程序;
    当所述一个或多个程序被所述一个或多个处理器执行,使得所述一个或多个处理器实现如权利要求8-15中任一项所述的方法。
  20. 一种存储介质,其中,所述存储介质存储有计算机程序,所述计算机程序被处理器执行时实现权利要求1-15中任一项所述的方法。
PCT/CN2021/111097 2020-08-06 2021-08-06 测量方法、装置、通信节点及存储介质 WO2022028560A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP21852251.4A EP4195744A1 (en) 2020-08-06 2021-08-06 Measurement method and device, communication node, and storage medium
US17/909,648 US20230354060A1 (en) 2020-08-06 2021-08-06 Measurement method and device, communication node, and storage medium
JP2022552282A JP2023537166A (ja) 2020-08-06 2021-08-06 測定方法、測定装置、通信ノード及び記憶媒体

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010785583.9 2020-08-06
CN202010785583.9A CN111935740A (zh) 2020-08-06 2020-08-06 一种测量方法、装置、通信节点及存储介质

Publications (1)

Publication Number Publication Date
WO2022028560A1 true WO2022028560A1 (zh) 2022-02-10

Family

ID=73306856

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/111097 WO2022028560A1 (zh) 2020-08-06 2021-08-06 测量方法、装置、通信节点及存储介质

Country Status (5)

Country Link
US (1) US20230354060A1 (zh)
EP (1) EP4195744A1 (zh)
JP (1) JP2023537166A (zh)
CN (1) CN111935740A (zh)
WO (1) WO2022028560A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024072285A1 (en) * 2022-09-27 2024-04-04 Telefonaktiebolaget Lm Ericsson (Publ) Network nodes, a wireless communications device and methods for configuring the wireless communications device with mdt measurements in a wireless communications network

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111935740A (zh) * 2020-08-06 2020-11-13 中兴通讯股份有限公司 一种测量方法、装置、通信节点及存储介质
CN111935765A (zh) * 2020-08-10 2020-11-13 中兴通讯股份有限公司 位置预测方法、装置、节点和存储介质
WO2023044851A1 (en) * 2021-09-26 2023-03-30 Qualcomm Incorporated Ran reporting data to core network data repository

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102149106A (zh) * 2010-02-10 2011-08-10 电信科学技术研究院 一种mdt测量实现方法及其设备
US20120322386A1 (en) * 2010-01-28 2012-12-20 Yi Seungjune Method of performing a minimization of drive test (mdt) in wireless communication system
CN102938905A (zh) * 2011-08-16 2013-02-20 中兴通讯股份有限公司 最小化路测的方法及装置
CN111278043A (zh) * 2019-01-18 2020-06-12 维沃软件技术有限公司 测量方法及设备
CN111935740A (zh) * 2020-08-06 2020-11-13 中兴通讯股份有限公司 一种测量方法、装置、通信节点及存储介质

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120322386A1 (en) * 2010-01-28 2012-12-20 Yi Seungjune Method of performing a minimization of drive test (mdt) in wireless communication system
CN102149106A (zh) * 2010-02-10 2011-08-10 电信科学技术研究院 一种mdt测量实现方法及其设备
CN102938905A (zh) * 2011-08-16 2013-02-20 中兴通讯股份有限公司 最小化路测的方法及装置
CN111278043A (zh) * 2019-01-18 2020-06-12 维沃软件技术有限公司 测量方法及设备
CN111935740A (zh) * 2020-08-06 2020-11-13 中兴通讯股份有限公司 一种测量方法、装置、通信节点及存储介质

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024072285A1 (en) * 2022-09-27 2024-04-04 Telefonaktiebolaget Lm Ericsson (Publ) Network nodes, a wireless communications device and methods for configuring the wireless communications device with mdt measurements in a wireless communications network

Also Published As

Publication number Publication date
EP4195744A1 (en) 2023-06-14
JP2023537166A (ja) 2023-08-31
US20230354060A1 (en) 2023-11-02
CN111935740A (zh) 2020-11-13

Similar Documents

Publication Publication Date Title
WO2022028560A1 (zh) 测量方法、装置、通信节点及存储介质
US20220247839A1 (en) Service Subscription Method and System for Reporting Service Change in Communication System
US20240089909A1 (en) Anchor terminal determination method, information sending method, communication node, and storage medium
EP2534872B1 (en) Method and apparatus for reporting of measurement data
EP2640115A1 (en) Radio coverage reporting
CN102685671B (zh) 一种mdt测量结果上报和上报指示方法及装置
KR20210066900A (ko) 업링크 도달 시간차에 대한 로케이팅 방법 및 그의 장치
RU2013137239A (ru) Сетевой объект, устройство мобильной связи и способ для этого
US20230037992A1 (en) GEOLOCATING MINIMIZATION OF DRIVE TEST (MDT) MEASUREMENT REPORTS (MRs) WITH MISSING SATELLITE NAVIGATION SYSTEM COORDINATES
WO2021159959A1 (zh) 定位信息的处理方法、装置及存储介质
CN108521876B (zh) 蓝牙设备的测量方法及装置
WO2022152108A1 (zh) 协作信息发送方法、资源确定方法、通信节点及存储介质
EP3852405A1 (en) Communication method and device
WO2021139398A1 (zh) 位置预测方法、装置、网元、基站和存储介质
WO2022033436A1 (zh) 位置预测方法、装置、节点和存储介质
WO2024046169A1 (zh) 定位方法、设备和存储介质
CN113016233B (zh) 跟踪管理
KR20140030553A (ko) 이종네트워크 연동에 따른 인디케이터 표시방법 및 이를 위한 단말기
KR102112627B1 (ko) 이종네트워크 연동에 따른 인디케이터 표시방법 및 이를 위한 단말기
KR102132190B1 (ko) 무선 통신 시스템에서 펨토 셀 근접 유무 추정 방법 및 장치
CN115918109A (zh) 定位方法、通信装置及通信系统
US20180299528A1 (en) Single positioning controller and positioning control system
WO2012051919A1 (zh) 信息上报方法和用户设备
WO2024065187A1 (zh) 通信方法、通信装置、介质及程序产品
US20220248261A1 (en) Reporting of network performance degradation in a communications system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21852251

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022552282

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2021852251

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE