WO2022028488A1 - 载波配置方法、服务器及存储介质 - Google Patents

载波配置方法、服务器及存储介质 Download PDF

Info

Publication number
WO2022028488A1
WO2022028488A1 PCT/CN2021/110613 CN2021110613W WO2022028488A1 WO 2022028488 A1 WO2022028488 A1 WO 2022028488A1 CN 2021110613 W CN2021110613 W CN 2021110613W WO 2022028488 A1 WO2022028488 A1 WO 2022028488A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
carrier parameters
carrier
configuration
parameters
Prior art date
Application number
PCT/CN2021/110613
Other languages
English (en)
French (fr)
Inventor
李乐
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2022028488A1 publication Critical patent/WO2022028488A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements

Definitions

  • the embodiments of the present application relate to the field of communications, and in particular, to a carrier configuration method, a server, and a storage medium.
  • NSA Non-standalone, non-independent networking
  • 5G gNB gNodeB, 5G base station
  • UE User Equipment, terminal
  • 4G eNB evolved NodeB, 4G base station
  • the X2 interface is responsible for signaling transmission between the UE and the 5G gNB. Since the number of carrier parameters supported by the 5G gNB can be up to 16, that is, the RRC Reconfiguration (Radio Resource Control Reconfiguration, RRC reconfiguration) message can contain up to 16 carriers.
  • RRC Reconfiguration Radio Resource Control Reconfiguration, RRC reconfiguration
  • the length of the RRC Reconfiguration message is very long; and the 4G eNB, as the previous generation wireless base station, may not be able to support the processing of the RRC Reconfiguration message with a longer length due to the model, hardware system limitations and software system limitations, which may cause carrier waves. Parameter transfer failed.
  • the embodiment of the present application provides a carrier configuration method, which is applied to a 5G base station.
  • the method includes: acquiring the number N1 of carrier parameters supported by the 4G base station; and performing a configuration step.
  • Several secondary carrier parameters are sent to the terminal through the 4G base station; wherein, the number of several secondary carrier parameters is not greater than N1, the configuration step is performed K times, and N1, M, and K are all integers greater than or equal to 1.
  • An embodiment of the present application provides a carrier configuration method, which is applied to a 4G base station.
  • the method includes: receiving a base station handover request including the number N1 of carrier parameters supported by the 4G base station and sent by a first 5G base station; where N1 is greater than or equal to 1
  • the base station handover request also instructs the handover from the first 5G base station to the second 5G base station; sends a base station connection request including the number N1 of carrier parameters supported by the 4G base station to the second 5G base station;
  • a configuration request for carrier parameters, and several carrier parameters among the P carrier parameters are sent to the terminal; wherein, the P carrier parameters include at least secondary carrier parameters, P is not greater than N1, and N1 and P are greater than or equal to 1. Integer.
  • An embodiment of the present application provides a carrier configuration method, which is applied to a first 4G base station.
  • the method includes: sending a base station connection request including the number N2 of carrier parameters supported by the first 4G base station to a second 5G base station through the second 4G base station;
  • the second 4G base station receives the configuration request containing L carrier parameters sent by the second 5G base station, and sends several carrier parameters of the L carrier parameters to the terminal; wherein the L carrier parameters include at least secondary carrier parameters, and L Not greater than N2, L is an integer greater than or equal to 1.
  • An embodiment of the present application further provides a server, including: at least one processor; and a memory connected in communication with the at least one processor; wherein the memory stores instructions that can be executed by the at least one processor, and the instructions are processed by the at least one processor The processor is executed to enable at least one processor to execute the above-mentioned carrier configuration method.
  • Embodiments of the present application further provide a computer-readable storage medium, storing a computer program, and when the computer program is executed by a processor, the foregoing carrier configuration method is implemented.
  • FIG. 1 is a flowchart of a carrier configuration method according to a first embodiment of the present application
  • FIG. 2 is a flowchart according to a specific implementation manner of step 101 in the first embodiment of the present application
  • FIG. 3 is a flowchart according to another specific implementation manner of step 101 in the first embodiment of the present application.
  • FIG. 4 is a flowchart of a carrier configuration method according to a second embodiment of the present application.
  • FIG. 5 is a flowchart of a carrier configuration method according to a third embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of a server according to a fourth embodiment of the present application.
  • the 5G gNB and the 4G eNB are dual-connected in the NSA; among them, the number of carrier parameters supported by the 5G gNB can be up to 16.
  • the 4G eNB needs to be responsible for the signaling transmission between the UE and the 5G gNB through the X2 interface. Since the number of carrier parameters supported by the 5G gNB can reach up to 16 That is, the RRC Reconfiguration message can contain up to 16 carrier parameters, so the length of the RRC Reconfiguration message is very long; and 4G eNB, as the previous generation wireless base station, may not be able to support due to model, hardware system limitations and software system limitations. The processing of long-length RRC Reconfiguration messages may cause the failure of carrier parameter transmission.
  • the main purpose of the embodiments of the present application is to propose a carrier configuration method, server and storage medium, which can avoid the problem that the 4G base station cannot transmit carrier parameters as much as possible, thereby realizing the configuration of carrier parameters.
  • the first embodiment of the present application relates to a carrier configuration method, which is applied to a 5G base station.
  • the specific process is shown in Figure 1, including:
  • Step 101 Obtain the number N1 of carrier parameters supported by the 4G base station.
  • the terminal needs to configure the carrier parameters supported by the 5G base station locally. Since the 5G base station needs to communicate with the terminal through the 4G base station, the 5G base station sends the carrier parameters. In the process to the terminal, the number of secondary carrier parameters sent will be limited by the number of carrier parameters supported by the 4G base station, so the 5G base station needs to first obtain the number N1 of carrier parameters supported by the 4G base station.
  • step 101 includes sub-step 1011 and sub-step 1012 .
  • Sub-step 1011 receiving a base station connection request sent by the 4G base station.
  • Sub-step 1012 the number N1 of carrier parameters supported by the 4G base station is obtained from the base station connection request.
  • the signal between the terminal and other 5G base stations may become weaker, while the signal between the terminal and the current 5G base station may become stronger.
  • other 5G base stations can sense the signal strength through the terminal measurement report. changes, so that it is necessary to switch to the current 5G base station, other 5G base stations and the current 5G base station communicate with the terminal through the current 4G base station.
  • Other 5G base stations first send a base station handover request containing the number N1 of carrier parameters supported by the 4G base station to the 4G base station, where N1 is an integer greater than or equal to 1, and the base station handover request also instructs to switch from other 5G base stations to the current 5G base station, so 4G
  • the base station After the base station receives the base station handover request, it sends a base station connection request containing the number N1 of carrier parameters supported by the 4G base station to the current 5G base station, and the current 5G base station receives the base station connection request sent by the 4G base station and contains the number N1 of carrier parameters supported by the 4G base station.
  • the 5G base station then parses the base station connection request to obtain the number N1 of carrier parameters supported by the 4G base station.
  • the number N1 of carrier parameters supported by the 4G base station can be directly obtained from the 4G base station, and the number of carrier parameters supported by the 4G base station can be obtained relatively quickly.
  • step 101 includes sub-steps 1013 to 1019 .
  • Sub-step 1013 send a configuration request including Z secondary carrier parameters to the 4G base station; wherein the Z secondary carrier parameters are read from the M secondary carrier parameters, and Z is an integer greater than or equal to 1.
  • the 5G base station reads Z secondary carrier parameters from the supported M secondary carrier parameters, and sends a configuration request containing the Z secondary carrier parameters to the 4G base station, where Z is an integer greater than or equal to 1.
  • Z is an integer greater than or equal to 1.
  • the value of Z is M for the first time, that is, the 5G base station sends a configuration request including M secondary carrier parameters to the 4G base station.
  • Sub-step 1014 whether a response from the 4G base station is received within a preset time period. If yes, go to sub-step 1015; if no, go to sub-step 1017.
  • Sub-step 1015 whether the received response of the 4G base station is a message indicating that the configuration request is processed successfully. If yes, go to sub-step 1019; if not, go to sub-step 1016.
  • Sub-step 1016 whether the received message from the 4G base station indicating that the configuration request processing failed contains the number of carrier parameters supported by the 4G base station. If yes, go to sub-step 1018; if no, go to sub-step 1017.
  • the value of Z this time is smaller than the value of Z last time.
  • Sub-step 1018 obtain the number N1 of carrier parameters supported by the 4G base station.
  • Sub-step 1019 the number N1 of carrier parameters supported by the 4G base station is obtained as Z this time.
  • the 4G base station After the 4G base station receives a configuration request including Z secondary carrier parameters, if the number of carrier parameters supported by the 4G base station is less than Z, the 4G base station cannot process the configuration request, so that the configuration request cannot be sent to the terminal. , at this time, the 4G base station may not respond to the 5G base station, or may respond to the 5G base station with a message indicating that the configuration request processing failed.
  • the 5G base station can set the preset duration according to actual needs.
  • the Z The value of is smaller than the last value of Z, and re-enter step 1013.
  • the 5G base station parses the message indicating that the configuration request processing failed. If the number N1 of carrier parameters supported by the 4G base station is directly obtained, the number N1 of the carrier parameters supported by the 4G base station is directly obtained; if the message indicating the failure of the configuration request processing does not contain the number of carrier parameters supported by the 4G base station, the value of Z is set to be less than The value of Z last time, and re-enter step 1013.
  • the value of Z this time is minus 1 from the value of Z last time, so that the value of Z is taken in turn, so that the adjustment step size of the value of Z is small, and the 4G base station support can be obtained more accurately number of carrier parameters.
  • the value of Z this time is an integer obtained by dividing the value of Z last time by n, where n is an integer greater than or equal to 2.
  • the 4G base station after the 4G base station receives a configuration request containing Z secondary carrier parameters, if the number of carrier parameters supported by the 4G base station is greater than or equal to Z, the 4G base station can process the configuration request, and the 4G base station will contain Z secondary carrier parameters.
  • the configuration request of the secondary carrier parameters is sent to the terminal, and the 5G base station responds with a message indicating that the configuration request is processed successfully; the 5G base station receives the message indicating the successful processing of the configuration request responded by the 4G base station within a preset time period, and obtains the carrier supported by the 4G base station.
  • the number of parameters N1 is Z this time.
  • the message indicating that the configuration request is processed successfully is a configuration success message of Z secondary carrier parameters responded by the 4G base station.
  • the 4G base station receives the configuration request containing Z secondary carrier parameters, if the number of carrier parameters supported by the 4G base station is greater than or equal to Z, the 4G base station can process the configuration request, and the 4G base station will include the configuration of the Z secondary carrier parameters.
  • the request is sent to the terminal, and the terminal configures Z secondary carrier parameters after receiving the configuration request, and responds to the 4G base station with a configuration success message of the Z secondary carrier parameters, and the 4G base station sends the responded Z secondary carrier parameters configuration success message to the 5G base station, the 5G base station receives the configuration success message of Z secondary carrier parameters responded by the 4G base station within the preset time period, and obtains the number N1 of carrier parameters supported by the 4G base station as Z this time.
  • the number of carrier parameters supported by the 4G base station can be accurately obtained by using multiple message interactions.
  • obtaining the number N1 of carrier parameters supported by the 4G base station includes: the 5G base station stores the identifiers of multiple 4G base stations locally. Get the ID of the 4G base station. According to the identifier, query the correspondence between the locally stored identifier of the 5G base station and the number of carrier parameters. If the number of carrier parameters corresponding to the identifier of the 4G base station is queried, obtain the number N1 of carrier parameters supported by the 4G base station; if the 4G base station is not queried. The number of carrier parameters corresponding to the identifier, and the 5G base station uses multiple message interactions to obtain the number of carrier parameters supported by the 4G base station.
  • obtaining the number N1 of carrier parameters supported by the 4G base station includes: the 5G base station stores the identifiers of multiple 4G base stations locally. Get the ID of the 4G base station. The 5G base station sends a request message containing the 4G base station identification to the external network management device, and the external network management device queries the correspondence between the identification and the number of carrier parameters stored locally by the external network management device.
  • the number of carrier parameters corresponding to the identification of the 4G base station is queried, Obtain the number N1 of carrier parameters supported by the 4G base station, and send a message containing the number N1 of carrier parameters supported by the 4G base station to the 5G base station, so that the 5G base station obtains the number N1 of carrier parameters supported by the 4G base station;
  • the identification of the base station corresponds to the number of carrier parameters.
  • the external network management device responds to the query failure message to the 5G base station.
  • the 5G base station uses multiple message interactions to obtain the number of carrier parameters supported by the 4G base station.
  • the corresponding relationship between the identifier stored locally by the external network management device and the number of carrier parameters is manually set in advance. Through such a method, the number N1 of carrier parameters supported by the 4G base station can be obtained quickly.
  • Step 102 a configuration step is performed, and the configuration step includes: sending several secondary carrier parameters among the M secondary carrier parameters supported by the 5G base station to the terminal through the 4G base station; wherein, the number of several secondary carrier parameters is not greater than N1, the configuration step To be executed K times, N1, M, and K are all integers greater than or equal to 1.
  • the 5G base station reads several secondary carrier parameters from the M secondary carrier parameters supported by the 5G base station, sends several secondary carrier parameters to the 4G base station, and the 4G base station sends several secondary carrier parameters to the terminal, wherein,
  • the number of several secondary carrier parameters is not greater than N1
  • the configuration step is performed K times, and N1, M, and K are all integers greater than or equal to 1.
  • the 5G base station sends a configuration request containing several secondary carrier parameters to the 4G base station.
  • the method further includes: repeating the configuration step until all the M secondary carrier parameters are sent to the terminal through the 4G base station.
  • all the carrier parameters supported by the 5G base station can be configured to the terminal, so that the terminal can use more carriers, which can improve the data transmission performance.
  • each time the configuration step is performed several secondary carrier parameters read from the M secondary carrier parameters are not read repeatedly, that is, several secondary carrier parameters that have been read in the last configuration step are performed Parameters are no longer read.
  • the first configuration step is performed, the three secondary carrier parameters A, B, and C are sent to the terminal through the 4G base station, and when the second configuration step is performed, any one of A, B or C is no longer The secondary carrier parameters are sent to the 4G base station.
  • all M secondary carrier parameters supported by the 5G base station can be sent to the terminal quickly.
  • the 5G base station does not execute the configuration step again until the 5G base station receives a message that several secondary carrier parameters are successfully configured by the terminal through the 4G base station.
  • the 5G base station can confirm that the configuration steps performed this time have enabled the terminal to successfully configure several secondary carrier parameters.
  • the number of several secondary carrier parameters is equal to N1, and through this method, all M secondary carrier parameters supported by the 5G base station can be sent to the terminal quickly.
  • the 5G base station before performing the configuration step, sends the main carrier parameters supported by the 5G base station to the terminal through the 4G base station, and the terminal configures the main carrier parameters after receiving the main carrier parameters.
  • the method before the configuration step is performed, further includes: receiving a base station connection request sent by other 4G base stations through the current 4G base station, and obtaining the number N2 of carrier parameters supported by other 4G base stations from the base station connection request; During the configuration step, several of the M sub-carrier parameters supported by the 5G base station are sent to the terminal through the 4G base station; wherein, the number of several sub-carrier parameters is not greater than N1, including: the M sub-carrier parameters supported by the 5G base station are sent to the terminal through the 4G base station; Several secondary carrier parameters in the secondary carrier parameters are sequentially sent to the terminal through the current 4G base station and other 4G base stations; wherein, the number of several secondary carrier parameters is not greater than min[N1, N2].
  • the signal between the terminal and other 4G base stations may become weaker, while the signal between the terminal and the current 4G base station may become stronger.
  • other 4G base stations can sense the signal strength through the terminal measurement report. Therefore, other 4G base stations send a base station connection request containing the number N2 of carrier parameters supported by other 4G base stations to the current 4G base station.
  • the current 4G base station knows that it corresponds to the current 5G base station, so The current 4G base station sends a base station connection request containing the number N2 of carrier parameters supported by other 4G base stations to the current 5G base station, and the current 5G base station obtains the number N2 of carrier parameters supported by other 4G base stations from the base station connection request.
  • the number of carrier parameters sent by the current 5G base station needs to consider the carrier parameters supported by other 4G base stations.
  • the number N2 and the number N1 of carrier parameters supported by the current 4G base station that is, the number of several secondary carrier parameters is not greater than min[N1, N2].
  • the 5G base station obtains the number N1 of carrier parameters supported by the 4G base station; the configuration step is performed, and the configuration step includes: sending several secondary carrier parameters of the M secondary carrier parameters supported by the 5G base station to the terminal through the 4G base station; Wherein, the number of several secondary carrier parameters is not greater than N1, the configuration step is performed K times, and N1, M, and K are all integers greater than or equal to 1. Since the number of several secondary carrier parameters is not greater than the number N1 of carrier parameters supported by the 4G base station, the problem that the 4G base station cannot transmit the carrier parameters can be avoided as much as possible, thereby realizing the configuration of the carrier parameters.
  • the second embodiment of the present application relates to a carrier configuration method, which is applied to a 4G base station.
  • the specific flowchart is shown in FIG. 4 , including:
  • Step 201 Receive a base station handover request including the number N1 of carrier parameters supported by the 4G base station sent by the first 5G base station; wherein, N1 is an integer greater than or equal to 1, and the base station handover request also indicates switching from the first 5G base station to the second. 5G base station.
  • the signal between the terminal and the first 5G base station may become weaker, while the signal between the terminal and the second 5G base station may become stronger.
  • the first 5G base station can report through the terminal measurement. Sensing the change in signal strength, it knows that it needs to switch to the second 5G base station, and other 5G base stations and the current 5G base station communicate with the terminal through the current 4G base station.
  • the first 5G base station sends a base station handover request including the number N1 of carrier parameters supported by the 4G base station to the 4G base station, where N1 is an integer greater than or equal to 1, and the base station handover request also indicates switching from the first 5G base station to the second 5G base station, In this way, after the 4G base station receives the base station switching request, the 4G base station can know the number N1 of carrier parameters supported by itself, and can know that the first 5G base station is to be switched to the second 5G base station.
  • Step 202 Send a base station connection request including the number N1 of carrier parameters supported by the 4G base station to the second 5G base station.
  • Step 203 Receive a configuration request including P carrier parameters sent by the second 5G base station, and send several carrier parameters of the P carrier parameters to the terminal; wherein, the P carrier parameters include at least secondary carrier parameters, and P does not Greater than N1, N1 and P are integers greater than or equal to 1.
  • the 4G base station sends a base station connection request including the number N1 of carrier parameters supported by the 4G base station to the second 5G base station.
  • the second 5G base station can know the number N1 of carrier parameters supported by the 4G base station, and Read P carrier parameters from the M carrier parameters supported by the second 5G base station, the P carrier parameters include at least secondary carrier parameters, and send a configuration request including the P carrier parameters of the second 5G base station to the 4G base station , P is not greater than N1, and P is an integer greater than or equal to 1.
  • the 4G base station After receiving the configuration request of P carrier parameters sent by the second 5G base station, the 4G base station sends a configuration request containing several carrier parameters to the terminal. After receiving the configuration request, the terminal parses the configuration request to obtain several carrier parameters, and performs Configuration of several carrier parameters; at this time, the first 5G base station is successfully handed over to the second 5G base station.
  • the terminal after the terminal successfully configures several carrier parameters, it will also respond to the 4G base station with a number of successful carrier parameter configuration messages. After the 4G base station receives the configuration success message, the 4G base station sends a message to the first 5G base station that the base station has been switched successfully. The message and the content release message notify the first 5G base station that the base station handover has been successfully performed, so that the first 5G base station releases the terminal content.
  • the 4G base station after receiving the response message that the configuration of several carrier parameters is successful, the 4G base station responds to the second 5G base station with the message that the configuration of several carrier parameters is successful.
  • the method further includes: performing a configuration step, where the configuration step includes: sending several carrier parameters from the remaining carrier parameters supported by the second 5G base station to the terminal through the 4G base station; wherein, the number of several carrier parameters Not greater than N1, the configuration step is performed K times, and N1, M, and K are all integers greater than or equal to 1.
  • the configuration steps are repeatedly performed until all the M carrier parameters are sent to the terminal through the 4G base station.
  • the second 5G base station performs the configuration step again only after receiving a configuration success message that the terminal responds to through the 4G base station.
  • P number of carrier parameters are carried at the same time, so that the terminal can obtain the carrier parameters faster, thereby performing the configuration of the carrier parameters faster.
  • the third embodiment of the present application relates to a carrier configuration method, which is applied to the first 4G base station.
  • the specific flowchart is shown in FIG. 5 , including:
  • Step 301 Send a base station connection request including the number N2 of carrier parameters supported by the first 4G base station to the second 5G base station through the second 4G base station.
  • the signal between the terminal and the first 4G base station may become weaker, while the signal between the terminal and the second 4G base station may become stronger.
  • the first 4G base station can report through the terminal measurement. Sensing the change in signal strength and knowing that it is necessary to switch to the second 4G base station, the first 4G base station sends a base station connection request containing the number N2 of carrier parameters supported by the first 4G base station to the second 4G base station, and the second 4G base station knows itself It corresponds to the second 5G base station, so the second 4G base station sends a base station connection request including the number N2 of carrier parameters supported by the first 4G base station to the second 5G base station.
  • the method further includes: the first 4G base station sends a base station handover request to the first 5G base station, and after receiving the base station handover request, the first 5G base station sends a request to the first 4G base station that includes the first 4G base station The number N2 of supported carrier parameters agrees with the base station handover response.
  • Step 302 Receive a configuration request including L carrier parameters sent by the second 5G base station through the second 4G base station, and send several carrier parameters of the L carrier parameters to the terminal; wherein, the L carrier parameters at least include auxiliary parameters.
  • Carrier parameter, L is not greater than N1, and L is an integer greater than or equal to 1.
  • first obtaining the number N2 of carrier parameters supported by the second 4G base station includes: the second 5G base station sends a configuration request including L carrier parameters to the second 4G base station, where L is not greater than N2, and among the L carrier parameters At least the secondary carrier parameters are included. If the second 4G base station responds with a message indicating that the configuration request processing failed, and the message includes the number N1 of carrier parameters supported by the second 4G base station, obtain the number of carrier parameters supported by the second 4G base station.
  • the second 5G base station sends a configuration request including L carrier parameters to the second 4G base station, where L is not greater than min[N1, N2], and the second 4G base station sends the configuration request including L carrier parameters to the first A 4G base station, at this time, the first 4G base station is successfully handed over to the second 4G base station, and the first 5G base station is successfully handed over to the second 5G base station.
  • the first 4G base station sends a configuration request including L carrier parameters to the terminal. After receiving the configuration request, the terminal parses the configuration request to obtain L carrier parameters, and configures the L carrier parameters.
  • the second 5G base station sends a configuration request including L carrier parameters to the second 4G base station, L is not greater than N2, if it receives a message from the second 4G base station indicating that the configuration request processing failed, and the message does not contain the second 4G base station
  • L is not greater than N2
  • the number of supported carrier parameters or, if no response is received from the second 4G base station within the preset time period, set the value of L this time to be less than the value of L last time, and repeat the process to obtain the carriers supported by the second 4G base station
  • the number of parameters is N1 until the second 5G base station obtains a message that the second 4G base station responds and indicates that the configuration request is processed successfully.
  • the second 4G base station sends a configuration request including the current L carrier parameters to the first 4G base station while responding to a message indicating that the configuration request is processed successfully to the second 5G base station.
  • the first 4G base station The handover to the second 4G base station is successful, and the first 5G base station is successfully handed over to the second 5G base station.
  • the first 4G base station includes the configuration request of the L carrier parameters to the terminal. After receiving the configuration request, the terminal parses the configuration request to obtain the L carrier parameters, and configures the L carrier parameters.
  • the message indicating that the configuration request is processed successfully is a configuration success message of L carrier parameters responded by the second 4G base station.
  • the second 4G base station After the second 4G base station receives the configuration request including the L carrier parameters this time, if the number of carrier parameters supported by the second 4G base station is greater than or equal to L, the second 4G base station can process the configuration request, and the second 4G base station can process the configuration request.
  • the base station sends a configuration request including L carrier parameters to the first 4G base station. At this time, the first 4G base station is successfully handed over to the second 4G base station, and the first 5G base station is successfully handed over to the second 5G base station.
  • the first 4G base station sends a configuration request including L carrier parameters to the terminal, the terminal configures the L carrier parameters after receiving the configuration request, and responds to the second 4G base station with a configuration success message of the L carrier parameters, and the second 4G base station configures the L carrier parameters.
  • the number N1 is L for this time.
  • L is not greater than min[N1, N2], and N1 is the number of carrier parameters supported by the second 4G base station pre-stored by the second 5G base station.
  • the second 5G base station knows that it corresponds to the second 4G base station, obtains the identity of the second 4G base station from the local, and queries the correspondence between the locally stored identity of the second 5G base station and the number of carrier parameters, and obtains the support of the second 4G base station.
  • the number of carrier parameters N1 is the number of carrier parameters supported by the second 4G base station pre-stored by the second 5G base station.
  • the second 5G base station needs to communicate with the terminal through the second 4G base station first, and then communicate with the terminal through the first 4G base station, so the number of carrier parameters sent by the second 5G base station needs to consider the support of the first 4G base station at the same time.
  • the number N2 of carrier parameters and the number N1 of carrier parameters supported by the second 4G base station so L is not greater than min[N1, N2], and the L carrier parameters include at least secondary carrier parameters, that is, the second 5G base station to the second
  • the first 4G base station The 4G base station is successfully handed over to the second 4G base station, and the first 5G base station is successfully handed over to the second 5G base station.
  • the first 4G base station sends a configuration request including L carrier parameters to the terminal.
  • the terminal parses the configuration request to obtain L carrier parameters, and configures the L carrier parameters.
  • the method further includes: the first 4G base station sends a base station release request to the first 5G base station, and the first 5G base station responds that the first 4G base station agrees The message released by the base station.
  • the terminal after the terminal successfully configures L carrier parameters, it will also respond to the second 4G base station with a message that L carrier parameters are successfully configured. After the second 4G base station receives the configuration success message, the second 4G base station sends a message to the second The 5G base station sends a configuration successful message.
  • the second 4G base station sends a content release message to the first 4G base station, and the first 4G base station sends the content release message to the first 5G base station, so that the first 5G base station sends the content release message to the first 5G base station. Perform the release of the terminal content.
  • the method further includes: performing a configuration step, where the configuration step includes: sending several carrier parameters of the remaining carrier parameters supported by the second 5G base station to the terminal through the second 4G base station; wherein, the several carrier parameters The number is not greater than N1, the configuration step is performed K times, and N1, M, and K are all integers greater than or equal to 1.
  • the configuration step is repeatedly performed until all the M secondary carrier parameters are sent to the terminal through the second 4G base station.
  • the second 5G base station does not perform the configuration step again until after receiving a configuration success message that the terminal responds to through the second 4G base station.
  • L carrier parameters are carried at the same time, so that the terminal can obtain the carrier parameters quickly, so that the Faster configuration of carrier parameters.
  • the fourth embodiment of the present application relates to a server, as shown in FIG. 6 , comprising at least one processor 402 ; and a memory 401 communicatively connected to the at least one processor; wherein, the memory 401 stores data that can be used by the at least one processor 402
  • the executed instructions, the instructions are executed by the at least one processor 402 to enable the at least one processor 402 to execute the above-described embodiments of the carrier configuration method.
  • the memory 401 and the processor 402 are connected by a bus, and the bus may include any number of interconnected buses and bridges, and the bus connects one or more processors 402 and various circuits of the memory 401 together.
  • the bus may also connect together various other circuits, such as peripherals, voltage regulators, and power management circuits, which are well known in the art and therefore will not be described further herein.
  • the bus interface provides the interface between the bus and the transceiver.
  • a transceiver may be a single element or multiple elements, such as multiple receivers and transmitters, providing a means for communicating with various other devices over a transmission medium.
  • the data processed by the processor 402 is transmitted on the wireless medium through the antenna, and further, the antenna also receives the data and transmits the data to the processor 402 .
  • the processor 402 is responsible for managing the bus and general processing, and may also provide various functions including timing, peripheral interface, voltage regulation, power management, and other control functions. And the memory 401 may be used to store data used by the processor 402 in performing operations.
  • the fifth embodiment of the present application relates to a computer-readable storage medium storing a computer program.
  • the above method embodiments are implemented when the computer program is executed by the processor.
  • the aforementioned storage medium includes: U disk, mobile hard disk, Read-Only Memory (ROM, Read-Only Memory), Random Access Memory (RAM, Random Access Memory), magnetic disk or optical disk and other media that can store program codes .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例涉及通信领域,公开了一种载波配置方法、服务器及存储介质。本申请中,5G基站获取4G基站支持的载波参数的数量N1;执行配置步骤,配置步骤包括:将5G基站支持的M个辅载波参数中的若干个辅载波参数通过4G基站发送至终端;其中,若干个辅载波参数的数量不大于N1,配置步骤被执行K次,N1、M、K均为大于或等于1的整数。

Description

载波配置方法、服务器及存储介质
交叉引用
本申请基于申请号为“202010789419.5”、申请日为2020年08月07日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此以引入方式并入本申请。
技术领域
本申请实施例涉及通信领域,特别涉及一种载波配置方法、服务器及存储介质。
背景技术
在NSA(Non-standalone,非独立组网)不支持5G gNB(gNodeB,5G基站)与UE(User Equipment,终端)直接进行无线信令承载时,需要由4G eNB(evolved NodeB,4G基站)通过X2接口负责UE和5G gNB之间的信令传输,由于5G gNB支持的载波参数的数量最多可达16个,即RRC Reconfiguration(Radio Resource Control Reconfiguration,RRC重配置)消息中最多可以包含16个载波参数,这样的话RRC Reconfiguration消息的长度很长;而4G eNB作为上一代无线基站,由于型号、硬件系统限制以及软件系统限制等原因可能造成无法支持较长长度的RRC Reconfiguration消息的处理,可能造成载波参数传输的失败。
发明内容
本申请实施例提供了一种载波配置方法,应用于5G基站,方法包括:获取4G基站支持的载波参数的数量N1;执行配置步骤,配置步骤包括:将5G基站支持的M个辅载波参数中的若干个辅载波参数通过4G基站发送至终端;其中,若干个辅载波参数的数量不大于N1,配置步骤被执行K次,N1、M、K均为大于或等于1的整数。
本申请实施例提供了一种载波配置方法,应用于4G基站,方法包括:接收第一5G基站发送的包含4G基站支持的载波参数的数量N1的基站切换请求;其中,N1为大于或等于1的整数,基站切换请求还指示从第一5G基站切换至第二5G基站;向第二5G基站发送包含4G基站支持的载波参数的数量N1的基站连接请求;接收第二5G基站发送的包含P个载波参数的配置请求,并将P个载波参数中的若干个载波参数发送至终端;其中,P个载波参数中至少包括辅载波参数,P不大于N1,N1、P为大于或等于1的整数。
本申请实施例提供了一种载波配置方法,应用于第一4G基站,方法包括:通过第二4G基站向第二5G基站发送包含第一4G基站支持的载波参数的数量N2基站连接请求;通过第二4G基站接收第二5G基站发送的包含L个载波参数的配置请求,并将L个载波参数中的若干个载波参数发送至终端;其中,L个载波参数中至少包括辅载波参数,L不大于N2,L为大于或等于1的整数。
本申请实施例还提供了一种服务器,包括:至少一个处理器;以及,与至少一个处理器通信连接的存储器;其中,存储器存储有可被至少一个处理器执行的指令,指令被至少一个处理器执行,以使至少一个处理器能够执行上述载波配置方法。
本申请实施例还提供了一种计算机可读存储介质,存储有计算机程序,计算机程序被处理器执行时实现上述载波配置方法。
附图说明
图1是根据本申请第一实施例中的载波配置方法的流程图;
图2是根据本申请第一实施例中的步骤101的一种具体实现方式的流程图;
图3是根据本申请第一实施例中的步骤101的另一种具体实现方式的流程图;
图4是根据本申请第二实施例中的载波配置方法的流程图;
图5是根据本申请第三实施例中的载波配置方法的流程图;
图6是根据本申请第四实施例中的服务器的结构示意图。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合附图对本申请的各实施例进行详细的阐述。然而,本领域的普通技术人员可以理解,在本申请各实施例中,为了使读者更好地理解本申请而提出了许多技术细节。但是,即使没有这些技术细节和基于以下各实施例的种种变化和修改,也可以实现本申请所要求保护的技术方案。以下各个实施例的划分是为了描述方便,不应对本申请的具体实现方式构成任何限定,各个实施例在不矛盾的前提下可以相互结合相互引用。
在5G(5rd Generation,第五代)网络架构中,5G gNB与4G eNB在NSA进行双连接;其中,5G gNB支持的载波参数的数量最多可达16个。
然而,在NSA不支持5G gNB与UE直接进行无线信令承载时,需要由4G eNB通过X2接口负责UE和5G gNB之间的信令传输,由于5G gNB支持的载波参数的数量最多可达16个,即RRC Reconfiguration消息中最多可以包含16个载波参数,这样的话RRC Reconfiguration消息的长度很长;而4G eNB作为上一代无线基站,由于型号、硬件系统限制以及软件系统限制等原因可能造成无法支持较长长度的RRC Reconfiguration消息的处理,可能造成载波参数传输的失败。
本申请实施例的主要目的在于提出一种载波配置方法、服务器及存储介质,可以尽可能的避免出现4G基站无法传输载波参数的问题,从而实现载波参数的配置。
本申请的第一实施例涉及一种载波配置方法,应用于5G基站。具体流程如图1所示,包括:
步骤101,获取4G基站支持的载波参数的数量N1。
具体地说,若终端需要使用5G基站的载波参数进行数据传输时,终端需要先在本地配置5G基站支持的载波参数,由于5G基站需要通过4G基站与终端进行通信,在5G基站将载波参数发送至终端的过程中,发送的辅载波参数的数量会受到4G基站支持的载波参数的数量的限制,所以5G基站需要先获取4G基站支持的载波参数的数量N1。
在一个例子中,获取4G基站支持的载波参数的数量N1的具体流程图如图2所示,步骤101包括子步骤1011和子步骤1012。
子步骤1011,接收4G基站发送的基站连接请求。
子步骤1012,从基站连接请求中获取4G基站支持的载波参数的数量N1。
具体地说,终端在移动的过程中,终端与其他5G基站之间的信号可能变弱,而与当前5G基站之间的信号可能变强,此时其他5G基站通过终端测量报告可以感知信号强度的变化,从而知道需要向当前5G基站切换,其他5G基站和当前5G基站均通过当前4G基站与终端进行通信。其他5G基站先向4G基站发送包含4G基站支持的载波参数的数量N1的基站切换请求,N1为大于或等于1的整数,且基站切换请求还指示从其他5G基站切换至当前5G基站,所以4G基站接收到基站切换请求后,将包含4G基站支持的载波参数的数量N1的基站连接请求发送给当前5G基站,当前5G基站接收4G基站发送的包含4G基站支持的载波参数的数量N1基站连接请求。5G基站再对基站连接请求进行解析可以获取4G基站支持的载波参数的数量N1。
通过这样的方法,可以从4G基站直接获取到4G基站支持的载波参数的数量N1,可以较快的获取到4G基站支持的载波参数的数量。
在一个例子中,获取4G基站支持的载波参数的数量N1的具体流程图如图3所示,步骤101包括子步骤1013至子步骤1019。
子步骤1013,将包含Z个辅载波参数的配置请求发送给4G基站;其中,Z个辅载波参数从M个辅载波参数中读取,Z为大于或等于1的整数。
具体地说,5G基站从支持的M个辅载波参数中读取Z个辅载波参数,并将包含Z个辅载波参数的配置请求发送给4G基站,Z为大于或等于1的整数。在一个例子中,第一次Z的取值为M,即5G基站将包含M个辅载波参数的配置请求发送给4G基站。通过这样的方法,若4G基站支持的载波参数的数量为M时,由于是从最大的数M开始尝试的,所以可以较准确的获取4G基站支持的载波参数的数量M。
子步骤1014,在预设时长内是否接收到4G基站的回应。若是,进入子步骤1015;若否,进入子步骤1017。
子步骤1015,接收到的4G基站的回应是否为表征配置请求处理成功的消息。若是,进入子步骤1019;若否,进入子步骤1016。
子步骤1016,接收到的4G基站回应的表征配置请求处理失败的消息中是否包含4G基站支持的载波参数的数量。若是,进入子步骤1018;若否,进入子步骤1017。
子步骤1017,令本次Z的取值小于上一次Z的取值。
子步骤1018,获取4G基站支持的载波参数的数量N1。
子步骤1019,获取4G基站支持的载波参数的数量N1为本次Z。
具体地说,4G基站在接收到包含Z个辅载波参数的配置请求后,若4G基站支持的载波参数的数量小于Z,则4G基站无法对配置请求进行处理,从而无法将配置请求发送给终端,此时4G基站可以不回应5G基站,也可以向5G基站回应表征配置请求处理失败的消息。5G基站可以根据实际需要进行预设时长的设定,若5G基站在预设时长内未接收到4G基站的回应,或者接收到4G基站回应的表征配置请求处理失败的消息,则令本次Z的取值小于上一次Z的取值,并重新进入步骤1013。
若5G基站在预设时长内接收到回应,且回应的是表征配置请求处理失败的消息,5G基站对表征配置请求处理失败的消息进行解析,若表征配置请求处理失败的消息中包含4G基站支持的载波参数的数量N1,则直接获取到4G基站支持的载波参数的数量N1;若表征配置请求处理失败的消息中不包含4G基站支持的载波参数的数量,则令本次Z的取值小于上 一次Z的取值,并重新进入步骤1013。
在一个例子中,本次Z的取值为上一次Z的取值减去1,这样依次对Z进行取值,使得Z的取值的调整步长较小,可以较准确的获取4G基站支持的载波参数的数量。
在一个例子中,本次Z的取值为上一次Z的取值除以n得到的整数,n为大于或等于2的整数,通过这样的方法,可以较快的获取4G基站支持的载波参数的数量。
在一个例子中,4G基站在接收到包含Z个辅载波参数的配置请求后,若4G基站支持的载波参数的数量大于或等于Z,4G基站可以对配置请求进行处理,4G基站将包含Z个辅载波参数的配置请求发送给终端,并回应表征配置请求处理成功的消息给5G基站;5G基站在预设时长内接收到4G基站回应的表征配置请求处理成功的消息,获取4G基站支持的载波参数的数量N1为本次Z。
在一个例子中,表征配置请求处理成功的消息为4G基站回应的的Z个辅载波参数的配置成功消息。4G基站在接收到包含Z个辅载波参数的配置请求后,若4G基站支持的载波参数的数量大于或等于Z,4G基站可以对配置请求进行处理,4G基站将包含Z个辅载波参数的配置请求发送给终端,终端在接收到配置请求后配置Z个辅载波参数,并向4G基站回应Z个辅载波参数的配置成功消息,4G基站将回应的Z个辅载波参数的配置成功消息发送给5G基站,5G基站在预设时长内接收到4G基站回应的Z个辅载波参数的配置成功消息,获取4G基站支持的载波参数的数量N1为本次Z。
通过这样的方法,利用多次消息的交互,可以准确的获取4G基站支持的载波参数的数量。
在一个例子中,获取4G基站支持的载波参数的数量N1,包括:5G基站本地存储有多个4G基站的标识,由于5G基站知道与自己连接的4G基站是哪一个,所以5G基站可以从本地获取4G基站的标识。根据标识,查询5G基站本地存储的标识和载波参数的数量的对应关系,若查询到4G基站的标识对应的载波参数的数量,获取4G基站支持的载波参数的数量N1;若未查询到4G基站的标识对应的载波参数的数量,5G基站则利用多次消息的交互,获取4G基站支持的载波参数的数量。
在一个例子中,获取4G基站支持的载波参数的数量N1,包括:5G基站本地存储有多个4G基站的标识,由于5G基站知道与自己连接的4G基站是哪一个,所以5G基站可以从本地获取4G基站的标识。5G基站将包含4G基站标识的请求消息发送给外部网管设备,外部网管设备查询外部网管设备本地存储的标识和载波参数的数量的对应关系,若查询到4G基站的标识对应的载波参数的数量,获取4G基站支持的载波参数的数量N1,并将包含4G基站支持的载波参数的数量N1的消息发送给5G基站,从而使5G基站获取4G基站支持的载波参数的数量N1;若未查询到4G基站的标识对应的载波参数的数量,外部网管设备回应查询失败的消息给5G基站,5G基站则利用多次消息的交互,获取4G基站支持的载波参数的数量。其中,外部网管设备本地存储的标识和载波参数的数量的对应关系是预先通过人工设定的。通过这样的方法,可以较快的获取4G基站支持的载波参数的数量N1。
步骤102,执行配置步骤,配置步骤包括:将5G基站支持的M个辅载波参数中的若干个辅载波参数通过4G基站发送至终端;其中,若干个辅载波参数的数量不大于N1,配置步骤被执行K次,N1、M、K均为大于或等于1的整数。
具体地说,5G基站从5G基站支持的M个辅载波参数中读取若干个辅载波参数,将若干 个辅载波参数发送给4G基站,4G基站将若干个辅载波参数发送给终端,其中,若干个辅载波参数的数量不大于N1,配置步骤被执行K次,N1、M、K均为大于或等于1的整数。
在一个例子中,若干个辅载波参数包含在配置请求的消息中,即5G基站将包含若干个辅载波参数的配置请求发送给4G基站。
在一个例子中,所述方法还包括:重复执行配置步骤,直至M个辅载波参数全部通过4G基站发送至终端。通过这样的方法,可以将5G基站支持的所有的载波参数均配置到终端,使终端可使用的载波更多,可以提高数据传输性能。
在一个例子中,在每次执行配置步骤时,从M个辅载波参数中读取的若干个辅载波参数为不重复读取,即上一次执行配置步骤中已经被读取的若干个辅载波参数不再被读取。例如:在执行第一次配置步骤时,将A、B、C三个辅载波参数通过4G基站发送至终端,在执行第二次配置步骤时,不再将A或B或C中的任意一个辅载波参数发送至4G基站。通过这样的方法,可以较快的实现将5G基站支持的M个辅载波参数全部发送至终端。
在一个例子中,在每次执行配置步骤之后,5G基站在接收到终端通过4G基站回应的若干个辅载波参数配置成功的消息之后,才再次执行配置步骤。通过这样的方法,5G基站可以确认本次执行的配置步骤已经使终端将若干个辅载波参数配置成功。
在一个例子中,若干个辅载波参数的数量等于N1,通过这样的方法,可以较快的实现将5G基站支持的M个辅载波参数全部发送至终端。
在一个例子中,在执行配置步骤之前,5G基站将其支持的主载波参数通过4G基站发送给终端,终端在接收到主载波参数后进行主载波参数的配置。
在一个例子中,在执行配置步骤之前,还包括:接收其他4G基站通过当前4G基站发送的基站连接请求,从基站连接请求中获取其他4G基站支持的载波参数的数量N2;在第一次执行配置步骤时,将5G基站支持的M个辅载波参数中的若干个辅载波参数通过4G基站发送至终端;其中,若干个辅载波参数的数量不大于N1,包括:将5G基站支持的M个辅载波参数中的若干个辅载波参数依次通过当前4G基站和其他4G基站发送至终端;其中,若干个辅载波参数的数量不大于min[N1,N2]。
具体地说,终端在移动的过程中,终端与其他4G基站之间的信号可能变弱,而与当前4G基站之间的信号可能变强,此时其他4G基站通过终端测量报告可以感知信号强度的变化,从而知道需要向当前4G基站切换,所以其他4G基站向当前4G基站发送包含其他4G基站支持的载波参数的数量N2的基站连接请求,当前4G基站知道自身对应的是当前5G基站,所以当前4G基站向当前5G基站发送包含其他4G基站支持的载波参数的数量N2的基站连接请求,当前5G基站从基站连接请求中获取其他4G基站支持的载波参数的数量N2。在第一次执行配置步骤时,由于当前5G基站需要先通过当前4G基站,再通过其他4G基站与终端进行通信,所以当前5G基站发送的载波参数的数量需要同时考虑其他4G基站支持的载波参数的数量N2和当前4G基站支持的载波参数的数量N1,即若干个辅载波参数的数量不大于min[N1,N2]。通过这样的方法,在第一次执行配置步骤时,同时考虑了其他4G基站和当前4G基站支持的载波参数的数量,避免出现其他4G基站或当前4G基站无法传输载波参数的问题,从而实现载波参数的配置。
本实施例中,5G基站获取4G基站支持的载波参数的数量N1;执行配置步骤,配置步骤包括:将5G基站支持的M个辅载波参数中的若干个辅载波参数通过4G基站发送至终端; 其中,若干个辅载波参数的数量不大于N1,配置步骤被执行K次,N1、M、K均为大于或等于1的整数。由于若干个辅载波参数的数量不大于4G基站支持的载波参数的数量N1,可以尽可能地避免出现4G基站无法传输载波参数的问题,从而实现载波参数的配置。
本申请的第二实施例涉及一种载波配置方法,应用于4G基站,具体流程图如图4所示,包括:
步骤201,接收第一5G基站发送的包含4G基站支持的载波参数的数量N1的基站切换请求;其中,N1为大于或等于1的整数,基站切换请求还指示从第一5G基站切换至第二5G基站。
具体地说,终端在移动的过程中,终端与第一5G基站之间的信号可能变弱,而与第二5G基站之间的信号可能变强,此时第一5G基站通过终端测量报告可以感知信号强度的变化,从而知道需要向第二5G基站切换,其他5G基站和当前5G基站均通过当前4G基站与终端进行通信。第一5G基站向4G基站发送包含4G基站支持的载波参数的数量N1的基站切换请求,N1为大于或等于1的整数,且基站切换请求还指示从第一5G基站切换至第二5G基站,这样4G基站在接收到基站切换请求后,4G基站可以知道其自身支持的载波参数的数量N1,且可以知道第一5G基站要切换至第二5G基站。
步骤202,向第二5G基站发送包含4G基站支持的载波参数的数量N1的基站连接请求。
步骤203,接收第二5G基站发送的包含P个载波参数的配置请求,并将P个载波参数中的若干个载波参数发送至终端;其中,P个载波参数中至少包括辅载波参数,P不大于N1,N1、P为大于或等于1的整数。
具体地说,4G基站向第二5G基站发送包含4G基站支持的载波参数的数量N1的基站连接请求,第二5G基站接收到基站连接请求之后可以知道4G基站支持的载波参数的数量N1,并从第二5G基站自身支持的M个载波参数中读取P个载波参数,P个载波参数中至少包括辅载波参数,并将包含第二5G基站的P个载波参数的配置请求发送给4G基站,P不大于N1,P为大于或等于1的整数。
4G基站在接收到第二5G基站发送的P个载波参数的配置请求后,向终端发送包含若干个载波参数的配置请求,终端接收到配置请求后,解析配置请求得到若干个载波参数,并进行若干个载波参数的配置;此时,第一5G基站成功切换至第二5G基站。
在一个例子中,终端成功配置若干个载波参数之后,还会向4G基站回应若干个载波参数配置成功的消息,4G基站接收到配置成功的消息之后,4G基站向第一5G基站发送基站切换成功的消息以及内容释放的消息,通知第一5G基站已经成功进行基站切换,使第一5G基站进行终端内容的释放。
在一个例子中,4G基站接收到回应的若干个载波参数的配置成功的消息之后,向第二5G基站回应若干个载波参数的配置成功的消息。
在一个例子中,方法还包括:执行配置步骤,配置步骤包括:将第二5G基站支持的剩余的个载波参数中的若干个载波参数通过4G基站发送至终端;其中,若干个载波参数的数量不大于N1,配置步骤被执行K次,N1、M、K均为大于或等于1的整数。在一个例子中,重复执行配置步骤,直至M个载波参数全部通过4G基站发送至终端。在一个例子中,第二5G基站在接收到终端通过4G基站回应的配置成功的消息之后,才再次执行配置步骤。
本实施例中,在第一5G基站切换至第二5G基站的过程中,同时携带P个载波参数,这 样可以使终端较快的获得载波参数,从而较快的进行载波参数的配置。
本申请的第三实施例涉及一种载波配置方法,应用于第一4G基站,具体流程图如图5所示,包括:
步骤301,通过第二4G基站向第二5G基站发送包含第一4G基站支持的载波参数的数量N2基站连接请求。
具体地说,终端在移动的过程中,终端与第一4G基站之间的信号可能变弱,而与第二4G基站之间的信号可能变强,此时第一4G基站通过终端测量报告可以感知信号强度的变化,从而知道需要向第二4G基站切换,所以第一4G基站向第二4G基站发送包含第一4G基站支持的载波参数的数量N2的基站连接请求,第二4G基站知道自身对应的是第二5G基站,所以第二4G基站向第二5G基站发送包含第一4G基站支持的载波参数的数量N2的基站连接请求。
在一个例子中,在步骤301之前,还包括:第一4G基站向第一5G基站发送基站切换请求,第一5G基站在接收到基站切换请求后,向第一4G基站发送包含第一4G基站支持的载波参数的数量N2的同意基站切换的应答。
步骤302,通过第二4G基站接收第二5G基站发送的包含L个载波参数的配置请求,并将L个载波参数中的若干个载波参数发送至终端;其中,L个载波参数中至少包括辅载波参数,L不大于N1,L为大于或等于1的整数。
在一个例子中,先获取第二4G基站支持的载波参数的数量N2,包括:第二5G基站向第二4G基站发送包含L个载波参数的配置请求,L不大于N2,L个载波参数中至少包括辅载波参数,若接收到第二4G基站回应的表征配置请求处理失败的消息,且消息中包含第二4G基站支持的载波参数的数量N1,获取第二4G基站支持的载波参数的数量N1;第二5G基站再向第二4G基站发送包含L个载波参数的配置请求,此时L不大于min[N1,N2],第二4G基站将包含L个载波参数的配置请求发送给第一4G基站,此时,第一4G基站成功切换至第二4G基站,第一5G基站成功切换至第二5G基站。第一4G基站向终端发送包含L个载波参数的配置请求,终端接收到配置请求后,解析配置请求得到L个载波参数,并进行L个载波参数的配置。
第二5G基站向第二4G基站发送包含L个载波参数的配置请求,L不大于N2,若接收到第二4G基站回应的表征配置请求处理失败的消息,且消息中不包含第二4G基站支持的载波参数的数量,或者,若在预设时长内未接收到第二4G基站的回应,令本次L的取值小于上一次L的取值,重复执行获取第二4G基站支持的载波参数的数量N1,直至第二5G基站获取到第二4G基站回应的表征配置请求处理成功的消息。在一个例子中,第二4G基站回应表征配置请求处理成功的消息给第二5G基站的同时,将包含本次L个载波参数的配置请求发送给第一4G基站,此时,第一4G基站成功切换至第二4G基站,第一5G基站成功切换至第二5G基站。第一4G基站向终端包含本次L个载波参数的配置请求,终端接收到配置请求后,解析配置请求得到L个载波参数,并进行L个载波参数的配置。在一个例子中,表征配置请求处理成功的消息为第二4G基站回应的L个载波参数的配置成功消息。第二4G基站在接收到包含本次L个载波参数的配置请求后,若第二4G基站支持的载波参数的数量大于或等于L,第二4G基站可以对配置请求进行处理,则第二4G基站将包含L个载波参数的配置请求发送给第一4G基站,此时,第一4G基站成功切换至第二4G基站,第一5G基站成 功切换至第二5G基站。第一4G基站将包含L个载波参数的配置请求发送给终端,终端在接收到配置请求后配置L个载波参数,并向第二4G基站回应L个载波参数的配置成功消息,第二4G基站将回应的L个载波参数的配置成功消息发送给5G基站,5G基站在预设时长内接收到第二4G基站回应的L个辅载波参数的配置成功消息,获取第二4G基站支持的载波参数的数量N1为本次L。
在一个例子中,L不大于min[N1,N2],N1为第二5G基站预先存储的第二4G基站支持的载波参数的数量。第二5G基站知道自身对应的是第二4G基站,从本地获取第二4G基站的标识,并查询第二5G基站本地存储的标识和载波参数的数量的对应关系,获取到第二4G基站支持的载波参数的数量N1。由于在基站切换的过程中,第二5G基站需要先通过第二4G基站,再通过第一4G基站与终端进行通信,所以第二5G基站发送的载波参数的数量需要同时考虑第一4G基站支持的载波参数的数量N2和第二4G基站支持的载波参数的数量N1,所以L不大于min[N1,N2],L个载波参数中至少包括辅载波参数,即,第二5G基站向第二4G基站发送的包含L个载波参数的配置请求;其中,L不大于min[N1,N2],第二4G基站将包含L个载波参数的配置请求发送给第一4G基站,此时,第一4G基站成功切换至第二4G基站,第一5G基站成功切换至第二5G基站。第一4G基站向终端发送包含L个载波参数的配置请求,终端接收到配置请求后,解析配置请求得到L个载波参数,并进行L个载波参数的配置。通过这样的方法,在第一5G基站切换至第二5G基站以及第一4G基站切换至第二4G基站的过程中,当第二5G基站预先存储的所述第二4G基站支持的载波参数的数量时,同时兼顾了第一4G基站和第二4G基站支持的载波参数的数量,实现载波参数的配置。
在一个例子中,在第一4G基站接收到包含L个载波参数的配置请求之后,方法还包括:第一4G基站向第一5G基站发送基站释放请求,第一5G基站回应第一4G基站同意基站释放的消息。
在一个例子中,终端成功配置L个载波参数之后,还会向第二4G基站回应L个载波参数配置成功的消息,第二4G基站接收到配置成功的消息之后,第二4G基站向第二5G基站发送配置成功的消息。
在一个例子中,终端成功配置L个载波参数之后,第二4G基站向第一4G基站发送内容释放的消息,第一4G基站将内容释放的消息发送给第一5G基站,使第一5G基站进行终端内容的释放。
在一个例子中,方法还包括:执行配置步骤,配置步骤包括:将第二5G基站支持的剩余的载波参数中的若干个载波参数通过第二4G基站发送至终端;其中,若干个载波参数的数量不大于N1,配置步骤被执行K次,N1、M、K均为大于或等于1的整数。在一个例子中,重复执行配置步骤,直至M个辅载波参数全部通过第二4G基站发送至终端。在一个例子中,第二5G基站在接收到终端通过第二4G基站回应的配置成功的消息之后,才再次执行配置步骤。
本实施例中,在第一5G基站切换至第二5G基站以及第一4G基站切换至第二4G基站的过程中,同时携带L个载波参数,这样可以使终端较快的获得载波参数,从而较快的进行载波参数的配置。
本申请第四实施例涉及一种服务器,如图6所示,包括至少一个处理器402;以及,与 至少一个处理器通信连接的存储器401;其中,存储器401存储有可被至少一个处理器402执行的指令,指令被至少一个处理器402执行,以使至少一个处理器402能够执行上述载波配置方法的实施例。
其中,存储器401和处理器402采用总线方式连接,总线可以包括任意数量的互联的总线和桥,总线将一个或多个处理器402和存储器401的各种电路连接在一起。总线还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路连接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口在总线和收发机之间提供接口。收发机可以是一个元件,也可以是多个元件,比如多个接收器和发送器,提供用于在传输介质上与各种其他装置通信的单元。经处理器402处理的数据通过天线在无线介质上进行传输,进一步,天线还接收数据并将数据传送给处理器402。
处理器402负责管理总线和通常的处理,还可以提供各种功能,包括定时,外围接口,电压调节、电源管理以及其他控制功能。而存储器401可以被用于存储处理器402在执行操作时所使用的数据。
本申请第五实施例涉及一种计算机可读存储介质,存储有计算机程序。计算机程序被处理器执行时实现上述方法实施例。
即,本领域技术人员可以理解,实现上述实施例方法中的全部或部分步骤是可以通过程序来指令相关的硬件来完成,该程序存储在一个存储介质中,包括若干指令用以使得一个设备(可以是单片机,芯片等)或处理器(processor)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
本领域的普通技术人员可以理解,上述各实施例是实现本申请的具体实施例,而在实际应用中,可以在形式上和细节上对其作各种改变,而不偏离本申请的精神和范围。

Claims (10)

  1. 一种载波配置方法,应用于5G基站,所述方法包括:
    获取4G基站支持的载波参数的数量N1;
    执行配置步骤,所述配置步骤包括:将所述5G基站支持的M个辅载波参数中的若干个辅载波参数通过所述4G基站发送至终端;其中,所述若干个辅载波参数的数量不大于N1,所述配置步骤被执行K次,N1、M、K均为大于或等于1的整数。
  2. 根据权利要求1所述的载波配置方法,其中,所述方法还包括:
    重复执行所述配置步骤,直至所述M个辅载波参数全部通过所述4G基站发送至所述终端。
  3. 根据权利要求1至2中任一所述的载波配置方法,其中,所述获取4G基站支持的载波参数的数量N1,包括:
    接收所述4G基站发送的基站连接请求;
    从所述基站连接请求中获取所述4G基站支持的载波参数的数量N1。
  4. 根据权利要求1至2中任一所述的载波配置方法,其中,所述获取4G基站支持的载波参数的数量N1,包括:
    将包含Z个辅载波参数的配置请求发送给所述4G基站;其中,所述Z个辅载波参数从所述M个辅载波参数中读取,Z为大于或等于1的整数;
    若接收到所述4G基站回应的表征所述配置请求处理失败的消息,且所述消息中包含所述4G基站支持的载波参数的数量N1,获取所述4G基站支持的载波参数的数量N1;
    若接收到所述4G基站回应的表征所述配置请求处理失败的消息,且所述消息中不包含所述4G基站支持的载波参数的数量,或者,若在预设时长内未接收到所述4G基站的回应,令本次Z的取值小于上一次Z的取值,重复执行所述获取4G基站支持的载波参数的数量N1,直至接收到所述4G基站回应的表征所述配置请求处理成功的消息,获取所述4G基站支持的载波参数的数量N1为所述本次Z。
  5. 根据权利要求1至4中任一所述的载波配置方法,其中,在所述执行配置步骤之前,还包括:
    接收其他4G基站通过当前所述4G基站发送的基站连接请求,从所述基站连接请求中获取所述其他4G基站支持的载波参数的数量N2;
    在第一次执行所述配置步骤时,所述将所述5G基站支持的M个辅载波参数中的若干个辅载波参数通过所述4G基站发送至所述终端;其中,所述若干个辅载波参数的数量不大于N1,包括:
    将所述5G基站支持的M个辅载波参数中的若干个辅载波参数依次通过当前所述4G基站和所述其他4G基站发送至终端;其中,所述若干个辅载波参数的数量不大于min[N1,N2]。
  6. 一种载波配置方法,应用于4G基站,所述方法包括:
    接收第一5G基站发送的包含所述4G基站支持的载波参数的数量N1的基站切换请求;其中,N1为大于或等于1的整数,所述基站切换请求还指示从所述第一5G基站切换至第二5G基站;
    向所述第二5G基站发送包含所述4G基站支持的载波参数的数量N1的基站连接请求;
    接收所述第二5G基站发送的包含P个载波参数的配置请求,并将所述P个载波参数中 的若干个载波参数发送至终端;其中,所述P个载波参数中至少包括辅载波参数,P不大于N1,N1、P为大于或等于1的整数。
  7. 一种载波配置方法,应用于第一4G基站,所述方法包括:
    通过第二4G基站向第二5G基站发送包含所述第一4G基站支持的载波参数的数量N2基站连接请求;
    通过所述第二4G基站接收所述第二5G基站发送的包含L个载波参数的配置请求,并将所述L个载波参数中的若干个载波参数发送至终端;其中,所述L个载波参数中至少包括辅载波参数,L不大于N2,L为大于或等于1的整数。
  8. 根据权利要求7所述的载波配置方法,其中,L不大于min[N1,N2],N1为所述第二5G基站预先存储的所述第二4G基站支持的载波参数的数量。
  9. 一种服务器,包括:
    至少一个处理器;以及,
    与所述至少一个处理器通信连接的存储器;其中,
    所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器能够执行如权利要求1至8中任一所述的载波配置方法。
  10. 一种计算机可读存储介质,存储有计算机程序,所述计算机程序被处理器执行时实现权利要求1至8中任一所述的载波配置方法。
PCT/CN2021/110613 2020-08-07 2021-08-04 载波配置方法、服务器及存储介质 WO2022028488A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010789419.5A CN114070520A (zh) 2020-08-07 2020-08-07 载波配置方法、服务器及存储介质
CN202010789419.5 2020-08-07

Publications (1)

Publication Number Publication Date
WO2022028488A1 true WO2022028488A1 (zh) 2022-02-10

Family

ID=80120006

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/110613 WO2022028488A1 (zh) 2020-08-07 2021-08-04 载波配置方法、服务器及存储介质

Country Status (2)

Country Link
CN (1) CN114070520A (zh)
WO (1) WO2022028488A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013022993A1 (en) * 2011-08-09 2013-02-14 Qualcomm Incorporated Supporting operation on dependent carriers in a multi - carrier system
US20190253945A1 (en) * 2018-02-15 2019-08-15 Qualcomm Incorporated Enhanced make-before-break handover
CN111343723A (zh) * 2020-03-04 2020-06-26 宇龙计算机通信科技(深圳)有限公司 数据传输方法及相关设备
CN111386672A (zh) * 2017-11-28 2020-07-07 高通股份有限公司 5g网络中的载波信息信令

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013022993A1 (en) * 2011-08-09 2013-02-14 Qualcomm Incorporated Supporting operation on dependent carriers in a multi - carrier system
CN111386672A (zh) * 2017-11-28 2020-07-07 高通股份有限公司 5g网络中的载波信息信令
US20190253945A1 (en) * 2018-02-15 2019-08-15 Qualcomm Incorporated Enhanced make-before-break handover
CN111343723A (zh) * 2020-03-04 2020-06-26 宇龙计算机通信科技(深圳)有限公司 数据传输方法及相关设备

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HUAWEI, HISILICON: "Further discussion on transmission carrier configuration/deconfiguration delay for SUL", 3GPP DRAFT; R4-1800634, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG4, no. San Diego; 20180122 - 20180126, 15 January 2018 (2018-01-15), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051388259 *
HUAWEI, HISILICON: "On NR dual connectivity", 3GPP DRAFT; R1-1706908, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Hangzhou, China; 20170515 - 20170519, 14 May 2017 (2017-05-14), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051272138 *

Also Published As

Publication number Publication date
CN114070520A (zh) 2022-02-18

Similar Documents

Publication Publication Date Title
CN108464024B (zh) 用于处理无线设备能力的网络节点、无线设备、介质及其方法
US20200396652A1 (en) Method, apparatus, computer program product and computer program for conditional handover
WO2017201741A1 (zh) 一种切换到中继节点的方法、相关设备及系统
TWI754074B (zh) 測量間隔配置方法、裝置、設備、終端及系統
CN116347631A (zh) 一种信息处理方法、装置、设备和存储介质
US11369000B2 (en) Communication method and communications apparatus
CN107370573B (zh) 一种下行数据传输的方法及设备
WO2018228445A1 (zh) 用于小区切换的方法、网络设备和终端设备
TW202021409A (zh) 第五代會話管理處理方法及其使用者設備
CN115428550A (zh) Ran节点、无线电终端及其方法
EP4142376A1 (en) Network access method and communication apparatus
KR101812042B1 (ko) 니어 필드 통신에 기초한 접속 핸드오버 방법 및 대응하는 장치
EP3758404B1 (en) Configuration information acquisition method, apparatus and device, and storage medium and system
US11516852B2 (en) Random access method of communications apparatus, apparatus, and storage medium
EP3709686B1 (en) Data transmission control method and related product
WO2018001297A1 (zh) 数据传输的方法及装置
US11510257B2 (en) Communications method and apparatus
EP4192082A1 (en) Communication method, apparatus and system
WO2019192896A1 (en) Method and apparatus for management of extended mobile device identity information
WO2018000363A1 (zh) 一种传输数据的方法、设备和网络系统
WO2022028488A1 (zh) 载波配置方法、服务器及存储介质
WO2012146132A1 (zh) 一种能力信息发送方法及系统
US11259234B2 (en) Path switching method and related device
CN111757366A (zh) 一种频点配置方法、测量方法、网络设备及终端
WO2024020902A1 (zh) 一种随机接入控制方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21852822

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 23/06/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21852822

Country of ref document: EP

Kind code of ref document: A1