WO2022028351A1 - Enhancements to differential cqi reporting in mobile communications - Google Patents

Enhancements to differential cqi reporting in mobile communications Download PDF

Info

Publication number
WO2022028351A1
WO2022028351A1 PCT/CN2021/109987 CN2021109987W WO2022028351A1 WO 2022028351 A1 WO2022028351 A1 WO 2022028351A1 CN 2021109987 W CN2021109987 W CN 2021109987W WO 2022028351 A1 WO2022028351 A1 WO 2022028351A1
Authority
WO
WIPO (PCT)
Prior art keywords
cqi
channel quality
differential
value
values
Prior art date
Application number
PCT/CN2021/109987
Other languages
French (fr)
Inventor
Waseem Hazim Ozan OZAN
Abdellatif Salah
Lung-Sheng Tsai
Mohammed S Aleabe AL-IMARI
Original Assignee
Mediatek Singapore Pte. Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mediatek Singapore Pte. Ltd. filed Critical Mediatek Singapore Pte. Ltd.
Publication of WO2022028351A1 publication Critical patent/WO2022028351A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0015Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the adaptation strategy
    • H04L1/0016Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the adaptation strategy involving special memory structures, e.g. look-up tables
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0026Transmission of channel quality indication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0028Formatting
    • H04L1/0029Reduction of the amount of signalling, e.g. retention of useful signalling or differential signalling

Definitions

  • the present disclosure is generally related to mobile communications and, more particularly, to enhancements to differential channel quality indicator (CQI) in mobile communications.
  • CQI differential channel quality indicator
  • the CQI-Format Indicator In wireless communications, such as mobile communications under the 3 rd Generation Partnership Project (3GPP) specification (s) for 5 th Generation (5G) New Radio (NR) , the CQI-Format Indicator, from the Report Frequency Configuration, indicates whether a user equipment (UE) is to report a single (wideband (WB) ) or multiple (subband (SB) ) CQI. Moreover, the CQI-Reporting Band indicates a contiguous or non-contiguous subset of subbands in the bandwidth part (BWP) for which CSI is to be reported. The choice determines the number of subbands (subbands3 for 3 subbands, subbands4 for 4 subbands, and so on) .
  • This field is absent if there are less than 24 physical resource blocks (PRBs) (with no subband) and present otherwise.
  • the 3GPP standard specifies the use of differential CQI (D-CQI) values for subband reporting.
  • An objective of the present disclosure is to propose solutions or schemes that address the issue (s) described herein. More specifically, various schemes proposed in the present disclosure are believed to provide solutions that provide enhancements to differential CQI in mobile communications.
  • a method may involve generating a channel quality report using a 3-bit differential CQI table. The method may also involve transmitting the channel quality report to a network.
  • an apparatus may include a transceiver and a processor coupled to the transceiver.
  • the transceiver may be configured to communicate wirelessly.
  • the processor may be configured to generate a channel quality report using a 3-bit differential CQI table.
  • the processor may be also configured to transmit, via the transceiver, the channel quality report to a network.
  • LTE Long-Term Evolution
  • NB-IoT Narrow Band Internet of Things
  • IIoT Industrial Internet of Things
  • V2X vehicle-to-everything
  • NTN non-terrestrial network
  • FIG. 1 is a diagram of an example network environment in which various proposed schemes in accordance with the present disclosure may be implemented.
  • FIG. 2 is a diagram of an example design under a proposed scheme in accordance with the present disclosure.
  • FIG. 3 is a diagram of an example design under a proposed scheme in accordance with the present disclosure.
  • FIG. 4 is a diagram of an example design under a proposed scheme in accordance with the present disclosure.
  • FIG. 5 is a diagram of an example design under a proposed scheme in accordance with the present disclosure.
  • FIG. 6 is a diagram of an example design under a proposed scheme in accordance with the present disclosure.
  • FIG. 7 is a diagram of an example design under a proposed scheme in accordance with the present disclosure.
  • FIG. 8 is a diagram of an example design under a proposed scheme in accordance with the present disclosure.
  • FIG. 9 is a diagram of an example design under a proposed scheme in accordance with the present disclosure.
  • FIG. 10 is a diagram of an example design under a proposed scheme in accordance with the present disclosure.
  • FIG. 11 is a diagram of an example design under a proposed scheme in accordance with the present disclosure.
  • FIG. 12 is a block diagram of an example communication apparatus and an example network apparatus in accordance with an implementation of the present disclosure.
  • FIG. 13 is a flowchart of an example process in accordance with an implementation of the present disclosure.
  • Implementations in accordance with the present disclosure relate to various techniques, methods, schemes and/or solutions pertaining to enhancements to differential CQI in mobile communications.
  • a number of possible solutions may be implemented separately or jointly. That is, although these possible solutions may be described below separately, two or more of these possible solutions may be implemented in one combination or another.
  • FIG. 1 illustrates an example network environment 100 in which various solutions and schemes in accordance with the present disclosure may be implemented.
  • network environment 100 may involve a UE 110 in wireless communication with a wireless network 120 (e.g., a 5G NR mobile network or another type of network such as an NTN) .
  • UE 110 may be in wireless communication with wireless network 120 via a base station or network node 125 (e.g., an eNB, gNB or transmit-receive point (TRP) ) .
  • UE 110 and wireless network 120 via network node 125 may implement various schemes pertaining to enhancements to differential CQI in mobile communications, as described below.
  • the current existing CQI offset values cover 78%for a first configuration (Config-1) of 72 PRBs with subband of 4 PRB sizes, with the 22%being lost information, which is the summation of the lost information in the negative differential CQI of 19%and the positive differential CQI of 3%.
  • the current existing CQI offset values cover 82%for a second configuration (Config-2) of 144 PRBs with subband of 8 PRB sizes, with 16%of the lost information being in the negative differential CQI and 2% of the lost information being in the positive differential CQI.
  • the current existing CQI offset values cover 87%for a third configuration (Config-3) of 274 PRBs with subband of 16 PRB sizes, with 11%of the lost information being in the negative differential CQI and 2% of the lost information being in the positive differential CQI.
  • Config-3 a third configuration
  • such inaccurate CQI reporting in the negative region of differential CQI can lead to lower system reliability (e.g., ifnetwork node 125 considers the differential CQI of ⁇ -1 as-1) and reduced spectral efficiency (e.g., if network node 125 considers the differential CQI of ⁇ -1 as-2, -3 or-4) .
  • various proposed schemes described below aim to provide a new design of differential CQI tables that capture the statistics in a better way.
  • a mapping between differential CQI values and offset values for a CQI table may be changed to capture the statistics in the negative region of differential CQI (e.g., the negative values of CQI offset) , as shown in FIG. 2.
  • Part (A) of FIG. 2 illustrates a table (herein interchangeably referred to as “Table-A” ) associated with Config-1, Config-2 and Config-3 in the computer simulation mentioned above.
  • Part (B) of FIG. 2 illustrates an example design 200 of a two-bit differential CQI table (herein interchangeably referred to as “Table-B” and “Reversed Mapping D-CQI table” ) under the proposed scheme.
  • RRC radio resource control
  • the Reversed Mapping D-CQI table may be configured or otherwise applied per CQI table or per block error ratio (BLER) target or per signal-to-noise ratio (SNR) range.
  • BLER block error ratio
  • SNR signal-to-noise ratio
  • UE 110 may use Table-A; and for another CQI table (e.g., CQI Table-3 associated with Config-3) , UE 110 may use Table-B.
  • a BLER target of 0.1 UE 110 may use Table-A; and for a BLER target of 0.00001, UE 110 may use Table-B.
  • the Reversed Mapping D-CQI table may be configured or otherwise applied per CQI report (e.g., RRC information element (IE) for CQI reporting) or per serving cell index or per CSI resources.
  • the selection of the differential CQI table (e.g., Table-A or Table-B) may be for each CSI-ReportingConfig IE.
  • the Reversed Mapping D-CQI table may be configured or otherwise applied based on report configuration type (e.g., periodic, semi-periodic on physical uplink control channel (PUCCH) or physical uplink shared channel (PUSCH) ) , or a periodic) or per triggering mechanism.
  • report configuration type e.g., periodic, semi-periodic on physical uplink control channel (PUCCH) or physical uplink shared channel (PUSCH)
  • the Reversed Mapping D-CQI table may be configured or otherwise applied per rank indicator (RI) , port index, precoding matrix indicator (PMI) , and/or code type. For example, for rank higher than 4, UE 110 may use Table-B; otherwise, UE 110 may use Table-A. Additionally, under the proposed scheme, the Reversed Mapping D-CQI table may be configured or otherwise applied based on open or closed-loop multiple-input-multiple-output (MIMO) transmission or report quantity.
  • MIMO multiple-input-multiple-output
  • the Reversed Mapping D-CQI table may be configured or otherwise applied according to the numerology (e.g., bandwidth per subcarrier) . Additionally, under the proposed scheme, the Reversed Mapping D-CQI table may be configured or otherwise applied based on CSI-reporting Band, contiguous or non-contiguous.
  • the Reversed Mapping D-CQI table may be applied according to a triggering downlink control information (DCI) signaling such as an uplink (UL) or downlink (DL) DCI triggering a periodic CSI reporting.
  • DCI downlink control information
  • the Reversed Mapping D-CQI table may be triggered according to a specific radio network temporary identifier (RNTI) such as cell RNTI (C-RNTI) , modulation coding scheme cell RNTI (MCS-C-RNTI) and so on, a specific search space, a different DCI format/size (e.g., DCI formats 0_2 and 1_2) , or the priority bit-field.
  • RNTI radio network temporary identifier
  • C-RNTI cell RNTI
  • MCS-C-RNTI modulation coding scheme cell RNTI
  • the Reversed Mapping D-CQI table may be applied according to the reported wideband CQI (WB-CQI) .
  • WB-CQI wideband CQI
  • the Reversed Mapping D-CQI table may be used for a specific range of WB-CQIs (e.g., low CQIs) .
  • UE 110 may be configured with multiple tables (e.g., the Reversed Mapping D-CQI table and one or more other tables) and network node 125 may signal UE 110 dynamically which table is to be used (e.g., a dedicated signal or DCI bit-field being used to select the table) .
  • a mapping between differential CQI values and offset values for a CQI table may be changed to capture the statistics of the large variation in CQI offset values in the negative and positive regions/offsets of CQI, as shown in FIG. 3.
  • Part (A) of FIG. 3 illustrates Table-A associated with Config-1, Config-2 and Config-3 in the computer simulation mentioned above.
  • Part (B) of FIG. 3 illustrates an example design 300 of a two-bit differential CQI table (herein interchangeably referred to as “Table-C” and “Two-Step Mapping D-CQI table” ) under the proposed scheme.
  • the Two-Step Mapping D-CQI table may be configured or otherwise applied per CQI table or per BLER target or per SNR range.
  • UE 110 may use Table-A; and for another CQI table (e.g., CQI Table-3 associated with Config-3) , UE 110 may use Table-C.
  • UE 110 may use Table-A; and for a BLER target of 0.00001, UE 110 may use Table-C.
  • the Two-Step Mapping D-CQI table may be configured or otherwise applied per CQI report (e.g., RRC IE for CQI reporting) or per serving cell index or per CSI resources.
  • the selection of the differential CQI table (e.g., Table-A or Table-C) may be for each CSI-ReportingConfig IE.
  • the Two-Step Mapping D-CQI table may be configured or otherwise applied based on report configuration type (e.g., periodic, semi-periodic on PUCCH or PUSCH) , or a periodic) or per triggering mechanism.
  • the Two-Step Mapping D-CQI table may be configured or otherwise applied per RI, port index, PMI, and/or code type. For example, for rank higher than 4, UE 110 may use Table-C; otherwise, UE 110 may use Table-A.
  • the Two-Step Mapping D-CQI table may be configured or otherwise applied based on open or closed-loop MIMO transmission or report quantity.
  • the Two-Step Mapping D-CQI table may be configured or otherwise applied according to the numerology (e.g., bandwidth per subcarrier) .
  • the Two-Step Mapping D-CQI table may be configured or otherwise applied based on CSI-reporting Band, contiguous or non-contiguous.
  • the two offset steps may be limited to some differential values. For instance, some differential values may have two offset steps while some other differential values may have one offset step. Additionally, in the design of the Two-Step Mapping D-CQI table, different numbers of offset steps may be associated to some differential values. For instance, finer resolution may be used around the WB-CQI while coarser resolution may be used farther.
  • the design of the Two-Step Mapping D-CQI table may be applied according to a triggering DCI signaling such as an UL or DL DCI triggering a periodic CSI reporting.
  • the Two-Step Mapping D-CQI table may be triggered according to a specific RNTI such as C-RNTI, MCS-C-RNTI and so on, a specific search space, a different DCI format/size (e.g., DCI formats 0_2 and 1_2) , or the priority bit-field.
  • the Two-Step Mapping D-CQI table may be applied according to the reported WB-CQI.
  • the Two-Step Mapping D-CQI table may be used for a specific range of WB-CQIs (e.g., low CQIs) .
  • UE 110 may be configured with multiple tables (e.g., the Two-Step Mapping D-CQI table and one or more other tables) and network node 125 may signal UE 110 dynamically which table is to be used (e.g., a dedicated signal or DCI bit -field being used to select the table) .
  • a mapping between differential CQI values and offset values for a CQI table may be changed from using 2 bits to report partial differential CQI values to using 3 bits to report the differential CQI values, as shown in FIG. 4.
  • the proposed CQI mapping may capture the statistics and, accordingly, the accuracy may be close to that of the actual CQI value for each subband.
  • Part (A) of FIG. 4 illustrates Table-A associated with Config-1, Config-2 and Config-3 in the computer simulation mentioned above.
  • FIG. 4 illustrates an example design 400 of a three-bit differential CQI table (herein interchangeably referred to as “Table-D” and “Three-Bit Mapping D-CQI table” ) under the proposed scheme.
  • the Three-Bit Mapping D-CQI table may be configured by higher-layer parameter (s) (e.g., via RRC signaling) .
  • the Three-Bit Mapping D-CQI table may be configured or otherwise applied based on the configured BWP size or subband size or the number of used subbands per BWP.
  • UE 110 may use Table-D; and for BWP>72 PRBs, UE 110 may use Table-A.
  • the Three-Bit Mapping D-CQI table may be configured or otherwise applied per CQI table or per BLER target or per SNR range.
  • UE 110 may use Table-A; and for another CQI table (e.g., CQI Table-3 associated with Config-3) , UE 110 may use Table-D.
  • UE 110 may use Table-A; and for a BLER target of 0.00001, UE 110 may use Table-D.
  • the Three-Bit Mapping D-CQI table may be configured or otherwise applied per CQI report (e.g., RRC IE for CQI reporting) or per serving cell index or per CSI resources.
  • the selection of the differential CQI table (e.g., Table-A or Table-D) may be for each CSI-ReportingConfig IE.
  • the Three-Bit Mapping D-CQI table may be configured or otherwise applied based on report configuration type (e.g., periodic, semi-periodic on PUCCH or PUSCH) , or a periodic) or per triggering mechanism.
  • the Three-Bit Mapping D-CQI table may be configured or otherwise applied per RI, port index, PMI, and/or code type. For example, for rank higher than 4, UE 110 may use Table-A; otherwise, UE 110 may use Table-D.
  • the Three-Bit Mapping D-CQI table may be configured or otherwise applied based on open or closed-loop MIMO transmission or report quantity.
  • the Three-Bit Mapping D-CQI table may be configured or otherwise applied according to the numerology (e.g., bandwidth per subcarrier) .
  • the Three-Bit Mapping D-CQI table may be configured or otherwise applied based on CSI-reporting Band, contiguous or non-contiguous.
  • the design of the Three-Bit Mapping D-CQI table may be applied according to a triggering DCI signaling such as an UL or DL DCI triggering a periodic CSI reporting.
  • the Three-Bit Mapping D-CQI table may be triggered according to a specific RNTI such as C-RNTI, MCS-C-RNTI and so on, a specific search space, a different DCI format/size (e.g., DCI formats 0_2 and 1_2) , or the priority bit-field.
  • the Three-Bit Mapping D-CQI table may be applied according to the reported WB-CQI.
  • the Three-Bit Mapping D-CQI table may be used for a specific range of WB-CQIs (e.g., low CQIs) .
  • UE 110 may be configured with multiple tables (e.g., the Three-Bit Mapping D-CQI table and one or more other tables) and network node 125 may signal UE 110 dynamically which table is to be used (e.g., a dedicated signal or DCI bit -field being used to select the table) .
  • a mapping between differential CQI values and offset values for a CQI table may be changed to capture the statistics of the large variation in CQI offset values in the negative and positive regions/offsets of CQI, as shown in FIG. 5.
  • Part (A) of FIG. 5 illustrates Table-A associated with Config-1, Config-2 and Config-3 in the computer simulation mentioned above.
  • Part (B) of FIG. 5 illustrates an example design 500 of a two-bit differential CQI table (herein interchangeably referred to as “Table-E” and “Negative-Based Mapping D-CQI table” ) under the proposed scheme.
  • the Negative-Based Mapping D-CQI table may be configured or otherwise applied per CQI table or per BLER target or per SNR range.
  • UE 110 may use Table-A; and for another CQI table (e.g., CQI Table-3 associated with Config-3) , UE 110 may use Table-E.
  • UE 110 may use Table-A; and for a BLER target of 0.00001, UE 110 may use Table-E.
  • the Negative-Based Mapping D-CQI table may be configured or otherwise applied per CQI report (e.g., RRC IE for CQI reporting) or per serving cell index or per CSI resources.
  • the selection of the differential CQI table (e.g., Table-A or Table-E) may be for each CSI-ReportingConfig IE.
  • the Negative-Based Mapping D-CQI table may be configured or otherwise applied based on report configuration type (e.g., periodic, semi-periodic on PUCCH or PUSCH) , or a periodic) or per triggering mechanism.
  • the Negative-Based Mapping D-CQI table may be configured or otherwise applied per RI, port index, PMI, and/or code type. For example, for rank higher than 4, UE 110 may use Table-E; otherwise, UE 110 may use Table-A.
  • the Negative-Based Mapping D-CQI table may be configured or otherwise applied based on open or closed-loop MIMO transmission or report quantity.
  • the Negative-Based Mapping D-CQI table may be configured or otherwise applied according to the numerology (e.g., bandwidth per subcarrier) .
  • the Negative-Based Mapping D-CQI table may be configured or otherwise applied based on CSI-reporting Band, contiguous or non-contiguous.
  • the design of the Three-Bit Mapping D-CQI table may be applied according to a triggering DCI signaling such as an UL or DL DCI triggering a periodic CSI reporting.
  • the Negative-Based Mapping D-CQI table may be triggered according to a specific RNTI such as C-RNTI, MCS-C-RNTI and so on, a specific search space, a different DCI format/size (e.g., DCI formats 0_2 and 1_2) , or the priority bit-field.
  • the Negative-Based Mapping D-CQI table may be applied according to the reported WB-CQI.
  • the Negative-Based Mapping D-CQI table may be used for a specific range of WB-CQIs (e.g., low CQIs) .
  • UE 110 may be configured with multiple tables (e.g., the Negative-Based Mapping D-CQI table and one or more other tables) and network node 125 may signal UE 110 dynamically which table is to be used (e.g., a dedicated signal or DCI bit-field being used to select the table) .
  • UE 110 may be configured with multiple mapping D-CQI tables, such as some or all of Table-A, Table-B, Table-C, Table-D and Table-E.
  • the mapping D-CQI tables may be configured by higher-layer parameter (s) (e.g., via RRC signaling) .
  • some or all of the multiple mapping D-CQI tables may be configured or otherwise applied based on the configured BWP size or subband size or the number of used subbands per BWP. For example, for BWP ⁇ 72 PRBs, UE 110 may use Table-D; and for BWP>72 PRBs, UE 110 may use Table-C.
  • CQI Table-1 associated with Config-1
  • UE 110 may use Table-B
  • CQI Table-3 associated with Config-3
  • UE 110 may use Table-D.
  • UE 110 may use Table-C; and for a BLER target of 0.000
  • some or all of the multiple mapping D-CQI tables may be configured or otherwise applied per CQI report (e.g., RRC IE for CQI reporting) or per serving cell index or per CSI resources.
  • the selection of the differential CQI table (e.g., Table-A, Table-B, Table-C, Table-D or Table-E) may be for each CSI-ReportingConfig IE.
  • some or all of the multiple mapping D-CQI tables may be configured or otherwise applied based on report configuration type (e.g., periodic, semi-periodic on PUCCH or PUSCH) , or a periodic) or per triggering mechanism.
  • UE 110 may use Table-D; and for a periodic reporting, UE 110 may use Table -B.
  • some or all of the multiple mapping D-CQI tables may be configured or otherwise applied per RI, port index, PMI, and/or code type. For example, for rank higher than 4, UE 110 may use Table-D; otherwise, UE 110 may use Table-A.
  • some or all of the multiple mapping D-CQI tables may be configured or otherwise applied based on open or closed-loop MIMO transmission or report quantity.
  • some or all of the multiple mapping D-CQI tables may be configured or otherwise applied according to the numerology (e.g., bandwidth per subcarrier) .
  • some or all of the multiple mapping D-CQI tables may be configured or otherwise applied based on CSI-reporting Band, contiguous or non-contiguous.
  • the D-CQI may cover 8 CQI offset values relative to a wideband CQI.
  • the D-CQI values (6 and 7) in the 3-bit table for the CQI offset values (-3 and ⁇ -4, respectively) may be not used.
  • a 3-bit differential CQI table e.g., Table-E described above.
  • One option may involve shifting the 3-bit D-CQI table (e.g., applicable for CQI values at lower/higher edges) .
  • Another option may involve extrapolating (extending) the 3-bit CQI table for subbands (e.g., applicable for CQI values at lower/higher edges) .
  • Yet another option may involve interpolating and extrapolating the 3-bit CQI table for subbands (e.g., applicable for CQI values at lower/higher edges) . Still another option may involve interpolating (finer) the 3-bit CQI table for subbands (e.g., applicable for all CQI values) .
  • the table for CQI offset may be shifted towards the low CQI offset values.
  • the table for CQI offset may be shifted towards the high CQI offset values.
  • the new proposed table may herein be interchangeably referred to as the “Shifted Three-Bit D-CQI table. ”
  • FIG. 6 illustrates an example design 600 of a shifted three-bit differential CQI table (denoted as “Shifted Three-Bit D-CQI table” in FIG. 6) under the proposed scheme.
  • the Shifted Three-Bit D-CQI table may be configured or otherwise applied according to the wideband CQI values. For example, the CQI offset may be shifted towards the high CQI values.
  • the Shifted Three-Bit D-CQI table may be configured by higher layer parameter (s) (e.g., via RRC signaling) . Moreover, the Shifted Three-Bit D-CQI table may be configured or otherwise applied based on the configured BWP size or subband size or the number of used subbands per BWP.
  • the Shifted Three-Bit D-CQI table may be configured or otherwise applied per CQI table or per BLER target or per SNR range. Additionally, under the proposed scheme, the Shifted Three-Bit D-CQI table may be configured or otherwise applied per CQI report (e.g., RRC IE for CQI reporting) or per service cell index or per CSI resources. Moreover, under the proposed scheme, the Shifted Three-Bit D-CQI table may be configured or otherwise applied based on report configuration type (e.g., per periodic, semi-periodic on PUCCH or PUSCH, or a periodic) or per triggering mechanism.
  • report configuration type e.g., per periodic, semi-periodic on PUCCH or PUSCH, or a periodic
  • the Shifted Three-Bit D-CQI table may be configured or otherwise applied per RI, port index, PMI, and/or code type. Additionally, under the proposed scheme, the Shifted Three -Bit D-CQI table may be configured or otherwise applied based on open or closed-loop MIMO transmission or report quantity. Additionally, under the proposed scheme, the Shifted Three-Bit D-CQI table may be configured or otherwise applied according to the numerology (e.g., bandwidth per subcarrier) . Additionally, under the proposed scheme, the Shifted Three-Bit D-CQI table may be configured or otherwise applied based on CSI-reporting Band, contiguous or non-contiguous.
  • the numerology e.g., bandwidth per subcarrier
  • CQI tables different from those used for wideband CQI may be used for subband CQIs.
  • new CQI tables may be used for subband CQIs while keeping the existing CQI table (s) for wideband reporting.
  • the subband CQI tables may be designed to capture CQI values beyond (outside) the existing CQI tables, while the existing wideband CQI table (s) are kept for wideband reporting.
  • a new subband CQI table may herein be interchangeably referred to as a “Extrapolated Subband CQI table. ”
  • One table type may be used for reporting lower CQI values (covering lower signal-to-interference-and-noise ratio (SINR) values compared to the existing CQI table) .
  • This may be achieved by adding new CQI values for the subband CQI (SB-CQI) tables in the negative region (e.g., CQI values that are lower than the smallest CQI value of the WB-CQI table (s) ) .
  • new negative CQI values may be added in the subband CQI table.
  • Another table type may be used for reporting higher CQI values (covering higher SINR values compared to the existing CQI table) .
  • new positive CQI values may be added in the subband CQI table.
  • the new Extrapolated Subband CQI tables shown in FIG. 7 and FIG. 8 may be generated considering using an existing low-spectral density table (e.g., Table-3 in the 3GPP standards) for WB-CQI.
  • new Extrapolated Subband CQI tables may be introduced or generated when other CQI tables are used for WB-CQI.
  • a similar approach may be used to introduce new Extrapolated Subband CQI tables when using the CQI-Table-1 and CQI-Table-2 from the 3GPP standards for WB-CQI.
  • the Extrapolated Subband CQI tables may be configured by higher-layer parameter (s) (e.g., via RRC signaling) . Additionally, under the proposed scheme, the Extrapolated Subband CQI tables may be configured or otherwise applied based on the configured BWP size or subband size or the number of used subbands per BWP. Moreover, under the proposed scheme, the Extrapolated Subband CQI tables may be configured or otherwise applied per CQI table or per BLER target or per SNR range. Additionally, under the proposed scheme, the Extrapolated Subband CQI tables may be configured or otherwise applied per CQI report (e.g., RRC IE for CQI reporting) or per service cell index or per CSI resources.
  • CQI report e.g., RRC IE for CQI reporting
  • the Extrapolated Subband CQI tables may be configured or otherwise applied based on report configuration type (e.g., per periodic, semi-periodic on PUCCH or PUSCH, or a periodic) or per triggering mechanism. Furthermore, under the proposed scheme, the Extrapolated Subband CQI tables may be configured or otherwise applied per RI, port index, PMI, and/or code type. Additionally, under the proposed scheme, the Extrapolated Subband CQI tables may be configured or otherwise applied based on open or closed-loop MIMO transmission or report quantity. Additionally, under the proposed scheme, the Extrapolated Subband CQI tables may be configured or otherwise applied according to the numerology (e.g., bandwidth per subcarrier) . Additionally, under the proposed scheme, the Extrapolated Subband CQI tables may be configured or otherwise applied based on CSI-reporting Band, contiguous or non-contiguous.
  • report configuration type e.g., per periodic, semi-periodic on PUCCH or PUSCH, or a periodic
  • CQI tables different from those used for wideband CQI may be used for subband CQIs.
  • new CQI tables may be used for subband CQIs while keeping the existing CQI table (s) for wideband reporting.
  • the subband CQI tables may be designed to capture finer CQI values inserted between the existing CQI tables.
  • a new subband CQI table may herein be interchangeably referred to as an “Interpolated Subband CQI table.
  • the new additional CQI values in the new tables may have finer points, as there are new CQI values inserted between existing CQI values to allow finer subband CQI reporting.
  • the new tables may be used for reporting fine CQI values (compared to the existing CQI table) . This may be achieved by adding new CQI values in the CQI subband tables which are surrounded by wideband CQI values. For instance, new fine (interpolated) CQI values may be added in the subband CQI table (s) .
  • the Interpolated Subband CQI table may be configured by higher-layer parameter (s) (e.g., via RRC signaling) . Additionally, under the proposed scheme, the Interpolated Subband CQI table may be configured or otherwise applied based on the configured BWP size or subband size or the number of used subbands per BWP. Moreover, under the proposed scheme, the Interpolated Subband CQI table may be configured or otherwise applied per CQI table or per BLER target or per SNR range. Additionally, under the proposed scheme, the Interpolated Subband CQI table may be configured or otherwise applied per CQI report (e.g., RRC IE for CQI reporting) or per service cell index or per CSI resources.
  • CQI report e.g., RRC IE for CQI reporting
  • the Interpolated Subband CQI table may be configured or otherwise applied based on report configuration type (e.g., per periodic, semi-periodic on PUCCH or PUSCH, or a periodic) or per triggering mechanism. Furthermore, under the proposed scheme, the Interpolated Subband CQI table may be configured or otherwise applied per RI, port index, PMI, and/or code type. Additionally, under the proposed scheme, the Interpolated Subband CQI table may be configured or otherwise applied based on open or closed-loop MIMO transmission or report quantity. Additionally, under the proposed scheme, the Interpolated Subband CQI table may be configured or otherwise applied according to the numerology (e.g., bandwidth per subcarrier) . Additionally, under the proposed scheme, the Interpolated Subband CQI table may be configured or otherwise applied based on CSI-reporting Band, contiguous or non-contiguous.
  • report configuration type e.g., per periodic, semi-periodic on PUCCH or PUSCH, or a periodic
  • CQI tables different from those used for wideband CQI may be used for subband CQIs.
  • new CQI tables may be used for subband CQIs while keeping the existing CQI table (s) for wideband reporting.
  • the subband CQI tables may be designed to capture more CQI values compared to the existing wideband CQI table (s) , as the new subband CQI tables may have CQI values that are (i) finer (interpolated) and (ii) outside (extrapolated) the existing CQI tables.
  • new CQI values may be inserted between existing CQI values (interpolated) at the high and low edges of the CQI tables.
  • new CQI values may be inserted outside the existing CQI values (extrapolated) at the high and low edges of the CQI tables.
  • a new subband CQI table under the nineth proposed scheme may herein be interchangeably referred to as an “Interpolated and Extrapolated Subband CQI table. ”
  • One table type may be used for reporting fine and outer CQI value to the low end in CQI tables (compared to the existing CQI table) . This may be achieved by adding new CQI values in the subband CQI tables in the negative region. For instance, new fine and extrapolated CQI values may be added in the subband CQI tables in the negative region.
  • Another table type may be used for reporting fine and outer CQI values to the high end in CQI tables (compared to the existing CQI table) . This may be achieved by adding new CQI values in the CQI subband tables in the positive region. For instance, new fine and extrapolated CQI values may be added in the subband CQI table in the positive region.
  • the new Interpolated and Extrapolated Subband CQI tables shown in FIG. 10 and FIG. 11 may be generated considering using an existing low-spectral density table (e.g., Table-3 in the 3GPP standards) for WB-CQI.
  • new Interpolated and Extrapolated Subband CQI tables may be introduced or generated when other CQI tables are used for WB-CQI.
  • a similar approach may be used to introduce new Interpolated and Extrapolated Subband CQI tables when using the CQI-Table-1 and CQI-Table-2 from the 3GPP standards for WB-CQI.
  • the Interpolated and Extrapolated Subband CQI tables may be configured by higher-layer parameter (s) (e.g., via RRC signaling) . Additionally, under the proposed scheme, the Interpolated and Extrapolated Subband CQI tables may be configured or otherwise applied based on the configured BWP size or subband size or the number of used subbands per BWP. Moreover, under the proposed scheme, the Interpolated and Extrapolated Subband CQI tables may be configured or otherwise applied per CQI table or per BLER target or per SNR range.
  • the Interpolated and Extrapolated Subband CQI tables may be configured or otherwise applied per CQI report (e.g., RRC IE for CQI reporting) or per service cell index or per CSI resources.
  • the Interpolated and Extrapolated Subband CQI tables may be configured or otherwise applied based on report configuration type (e.g., per periodic, semi-periodic on PUCCH or PUSCH, or a periodic) or per triggering mechanism.
  • the Interpolated and Extrapolated Subband CQI tables may be configured or otherwise applied per RI, port index, PMI, and/or code type.
  • the Interpolated and Extrapolated Subband CQI tables may be configured or otherwise applied based on open or closed-loop MIMO transmission or report quantity. Additionally, under the proposed scheme, the Interpolated and Extrapolated Subband CQI tables may be configured or otherwise applied according to the numerology (e.g., bandwidth per subcarrier) . Additionally, under the proposed scheme, the Interpolated and Extrapolated Subband CQI tables may be configured or otherwise applied based on CSI-reporting Band, contiguous or non-contiguous.
  • the numerology e.g., bandwidth per subcarrier
  • UE 110 may be configured with multiple subband CQI tables, such as some or all of those described above in the sixth, seventh, eighth and nineth proposed schemes and shown in FIG. 7 ⁇ FIG. 11. For instance, UE 110 may use a 2-bit D-CQI table for subband CQI reporting. Moreover, some or all of the subband CQI tables proposed herein may be applied in combination with one or more of the differential D-CQI tables described herein.
  • UE 110 may use a 3-bit D-CQI table for the negative end/edge of SB-CQI tables, while UE 110 may use a 2-bit D-CQI table for the CQI reporting of the positive end of the SB-CQI tables.
  • FIG. 12 illustrates an example communication system 1200 having at least an example apparatus 1210 and an example apparatus 1220 in accordance with an implementation of the present disclosure.
  • apparatus 1210 and apparatus 1220 may perform various functions to implement schemes, techniques, processes and methods described herein pertaining to enhancements to differential CQI in mobile communications, including the various schemes described above with respect to various proposed designs, concepts, schemes, systems and methods described above, including network environment 100, as well as processes described below.
  • Each of apparatus 1210and apparatus 1220 may be a part of an electronic apparatus, which may be a network apparatus or a UE (e.g., UE 110) , such as a portable or mobile apparatus, a wearable apparatus, a vehicular device or a vehicle, a wireless communication apparatus or a computing apparatus.
  • a network apparatus e.g., UE 110
  • UE e.g., UE 110
  • each of apparatus 1210and apparatus 1220 may be implemented in a smartphone, a smartwatch, a personal digital assistant, an electronic control unit (ECU) in a vehicle, a digital camera, or a computing equipment such as a tablet computer, a laptop computer or a notebook computer.
  • ECU electronice control unit
  • Each of apparatus 1210and apparatus 1220 may also be a part of a machine type apparatus, which may be an IoT apparatus such as an immobile or a stationary apparatus, a home apparatus, a roadside unit (RSU) , a wire communication apparatus or a computing apparatus.
  • IoT apparatus such as an immobile or a stationary apparatus, a home apparatus, a roadside unit (RSU) , a wire communication apparatus or a computing apparatus.
  • each of apparatus 1210and apparatus 1220 may be implemented in a smart thermostat, a smart fridge, a smart door lock, a wireless speaker or a home control center.
  • apparatus 1210 and/or apparatus 1220 may be implemented in an eNodeB in an LTE, LTE-Advanced or LTE-Advanced Pro network or in a gNB or TRP in a 5G network, an NR network or an IoT network.
  • each of apparatus 1210and apparatus 1220 may be implemented in the form of one or more integrated-circuit (IC) chips such as, for example and without limitation, one or more single-core processors, one or more multi-core processors, one or more complex-instruction-set-computing (CISC) processors, or one or more reduced-instruction-set-computing (RISC) processors.
  • IC integrated-circuit
  • CISC complex-instruction-set-computing
  • RISC reduced-instruction-set-computing
  • each of apparatus 1210and apparatus 1220 may be implemented in or as a network apparatus or a UE.
  • Each of apparatus 1210and apparatus 1220 may include at least some of those components shown in FIG. 12 such as a processor 1212 and a processor 1222, respectively, for example.
  • Each of apparatus 1210and apparatus 1220 may further include one or more other components not pertinent to the proposed scheme of the present disclosure (e.g., internal power supply, display device and/or user interface device) , and, thus, such component (s) of apparatus 1210 and apparatus 1220 are neither shown in FIG. 12 nor described below in the interest of simplicity and brevity.
  • components not pertinent to the proposed scheme of the present disclosure e.g., internal power supply, display device and/or user interface device
  • each of processor 1212 and processor 1222 may be implemented in the form of one or more single-core processors, one or more multi-core processors, or one or more CISC or RISC processors. That is, even though a singular term “a processor” is used herein to refer to processor 1212 and processor 1222, each of processor 1212 and processor 1222 may include multiple processors in some implementations and a single processor in other implementations in accordance with the present disclosure.
  • each of processor 1212 and processor 1222 may be implemented in the form of hardware (and, optionally, firmware) with electronic components including, for example and without limitation, one or more transistors, one or more diodes, one or more capacitors, one or more resistors, one or more inductors, one or more memristors and/or one or more varactors that are configured and arranged to achieve specific purposes in accordance with the present disclosure.
  • each of processor 1212 and processor 1222 is a special-purpose machine specifically designed, arranged and configured to perform specific tasks including those pertaining to enhancements to differential CQI in mobile communications in accordance with various implementations of the present disclosure.
  • apparatus 1210 may also include a transceiver 1216 coupled to processor 1212.
  • Transceiver 1216 may be capable of wirelessly transmitting and receiving data.
  • transceiver 1216 may be capable of wirelessly communicating with different types of wireless networks of different radio access technologies (RATs) .
  • RATs radio access technologies
  • transceiver 1216 may be equipped with a plurality of antenna ports (not shown) such as, for example, four antenna ports. That is,transceiver 1216 may be equipped with multiple transmit antennas and multiple receive antennas for multiple-input multiple-output (MIMO) wireless communications.
  • apparatus 1220 may also include a transceiver 1226 coupled to processor 1222.
  • Transceiver 1226 may include a transceiver capable of wirelessly transmitting and receiving data.
  • transceiver 1226 may be capable of wirelessly communicating with different types of UEs/wireless networks of different RATs.
  • transceiver 1226 may be equipped with a plurality of antenna ports (not shown) such as, for example, four antenna ports. That is, transceiver 1226 may be equipped with multiple transmit antennas and multiple receive antennas for MIMO wireless communications.
  • apparatus 1210 may further include a memory 1214coupled to processor 1212 and capable of being accessed by processor 1212 and storing data therein.
  • apparatus 1220 may further include a memory 1224coupled to processor 1222 and capable of being accessed by processor 1222 and storing data therein.
  • RAM random-access memory
  • DRAM dynamic RAM
  • SRAM static RAM
  • T-RAM thyristor RAM
  • Z-RAM zero-capacitor RAM
  • each of memory 1214 and memory 1224 may include a type of read-only memory (ROM) such as mask ROM, programmable ROM (PROM) , erasable programmable ROM (EPROM) and/or electrically erasable programmable ROM (EEPROM) .
  • ROM read-only memory
  • PROM programmable ROM
  • EPROM erasable programmable ROM
  • EEPROM electrically erasable programmable ROM
  • each of memory 1214 and memory 1224 may include a type of non -volatile random-access memory (NVRAM) such as flash memory, solid-state memory, ferroelectric RAM (FeRAM) , magneto resistive RAM (MRAM) and/or phase-change memory.
  • NVRAM non -volatile random-access memory
  • Each of apparatus 1210 and apparatus 1220 may be a communication entity capable of communicating with each other using various proposed schemes in accordance with the present disclosure.
  • a description of capabilities of apparatus 1210, as a UE (e.g., UE 110) , and apparatus 1220, as a network node (e.g., network node 125) of a wireless network (e.g., network 120 as a 5G/NR mobile network) is provided below.
  • processor 1212 of apparatus 1210 may generate a channel quality report using a 3-bit differential CQI table. Moreover, processor 1212 may transmit, via transceiver 1216, the channel quality report to a network (e.g., network 120 via apparatus 1220 apparatus as network node 125) .
  • a network e.g., network 120 via apparatus 1220 apparatus as network node 125
  • the 3-bit differential CQI table may indicate a mapping between a plurality of differential CQI values and a plurality of offset values comprising: (a) a differential CQI value of 0 mapped to a corresponding CQI offset value of 0; (b) a differential CQI value of 1 mapped to a corresponding CQI offset value of 1; (c) a differential CQI value of 2 mapped to a corresponding CQI offset value of 2; (d) a differential CQI value of 3 mapped to a corresponding CQI offset values of ⁇ 3; (e) a differential CQI value of 4 mapped to a corresponding CQI offset value of-1; (f) a differential CQI value of 5 mapped to a corresponding CQI offset value of-2; (g) a differential CQI value of 6 mapped to a corresponding CQI offset value of-3; and (h) a differential CQI value of 7 mapped to a corresponding CQI
  • processor 1212 may determine whether to generate the channel quality report using the 3-bit differential CQI table based on a BWP size, a subband size, or a number of used subbands per BWP.
  • processor 1212 may determine whether to generate the channel quality report using the 3-bit differential CQI table based on a CQI table, a BLER target, or a SNR range.
  • processor 1212 may determine whether to generate the channel quality report using the 3-bit differential CQI table based on a CQI report, a serving cell index, or a CSI resource.
  • processor 1212 may determine whether to generate the channel quality report using the 3-bit differential CQI table based on a triggering mechanism or a report configuration type which is periodic, semi-periodic on PUCCH or PUSCH, or a periodic.
  • processor 1212 may determine whether to generate the channel quality report using the 3-bit differential CQI table based on a RI, a port index, a PMI, or a code type.
  • processor 1212 may determine whether to generate the channel quality report using the 3-bit differential CQI table based on an open-loop or closed-loop MIMO transmission.
  • processor 1212 may determine whether to generate the channel quality report using the 3-bit differential CQI table according to a numerology.
  • processor 1212 may determine whether to generate the channel quality report using the 3-bit differential CQI table according to a contiguous or non-contiguous CSI reporting band.
  • processor 1212 may determine whether to generate the channel quality report using the 3-bit differential CQI table which is shifted. For instance, the 3-bit differential CQI table may be shifted towards low CQI offset values for high wideband CQI values of 13, 14 and 15. Alternatively, the 3-bit differential CQI table may be shifted towards high CQI offset values for low wideband CQI values of 1, 2 and 3.
  • the 3-bit differential CQI table may indicate a mapping between a plurality of differential CQI values and a plurality of offset values comprising: (a) a differential CQI value of 0 mapped to a corresponding CQI offset value of 0; (b) a differential CQI value of 1 mapped to a corresponding CQI offset value of 1; (c) a differential CQI value of 2 mapped to a corresponding CQI offset value of-1; (d) a differential CQI value of 3 mapped to a corresponding CQI offset value of-2; (e) a differential CQI value of 4 mapped to a corresponding CQI offset value of-3; (f) a differential CQI value of 5 mapped to a corresponding CQI offset value of-4; (g) a differential CQI value of 6 mapped to a corresponding CQI offset value of-5; and (h) a differential CQI value of 7 mapped to a corresponding CQI offset
  • processor 1212 may generate the channel quality report using a subband CQI table for subband CQIs and using a wideband CQI table for wideband reporting.
  • processor 1212 may report one or more extrapolated CQI values inserted in a negative region of the subband CQI table where one or more respective negative CQI values are lower than a smallest CQI value of the wideband CQI table.
  • processor 1212 may report one or more other extrapolated CQI values inserted in a positive region of the subband CQI table where one or more respective positive CQI values are higher than a largest CQI value of the wideband CQI table.
  • processor 1212 may report one or more interpolated CQI values inserted in the subband CQI table and surrounded by wideband CQI values.
  • processor 1212 may report one or more interpolated and extrapolated CQI values inserted in a negative region of the subband CQI table where one or more respective negative CQI values are lower than a smallest CQI value of the wideband CQI table.
  • processor 1212 may report one or more other interpolated and extrapolated CQI values inserted in a positive region of the subband CQI table where one or more respective positive CQI values are higher than a largest CQI value of the wideband CQI table.
  • processor 1212 may receive, via transceiver 1216, from the network a higher-layer signal (e.g., RRC signaling) that configures the 3-bit differential CQI table.
  • a higher-layer signal e.g., RRC signaling
  • FIG. 13 illustrates an example process 1300 in accordance with an implementation of the present disclosure.
  • Process 1300 may represent an aspect of implementing various proposed designs, concepts, schemes, systems and methods described above, whether partially or entirely, including those pertaining to those described above. More specifically, process 1300 may represent an aspect of the proposed concepts and schemes pertaining to enhancements to differential CQI in mobile communications.
  • Process 1300 may include one or more operations, actions, or functions as illustrated by one or more of blocks 1310 and 1320. Although illustrated as discrete blocks, various blocks of process 1300 may be divided into additional blocks, combined into fewer blocks, or eliminated, depending on the desired implementation. Moreover, the blocks/sub-blocks of process 1300 may be executed in the order shown in FIG. 13 or, alternatively in a different order.
  • Process 1300 may be implemented by or in apparatus 1210and apparatus 1220 as well as any variations thereof. Solely for illustrative purposes and without limiting the scope, process 1300 is described below in the context of apparatus 1210 as a UE (e.g., UE 110) and apparatus 1220 as a communication entity such as a network node or base station (e.g., network node 125) of a wireless network (e.g., wireless network 120) . Process 1300 may begin at block 1310.
  • a UE e.g., UE 110
  • apparatus 1220 as a communication entity such as a network node or base station (e.g., network node 125) of a wireless network (e.g., wireless network 120) .
  • Process 1300 may begin at block 1310.
  • process 1300 may involve processor 1212 of apparatus 1210 generating a channel quality report using a 3-bit differential CQI table. Process 1300 may proceed from 1310 to 1320.
  • process 1300 may involve processor 1212 transmitting, via transceiver 1216, the channel quality report to a network (e.g., network 120 via apparatus 1220 apparatus as network node 125) .
  • a network e.g., network 120 via apparatus 1220 apparatus as network node 125
  • the 3-bit differential CQI table may indicate a mapping between a plurality of differential CQI values and a plurality of offset values comprising: (a) a differential CQI value of 0 mapped to a corresponding CQI offset value of 0; (b) a differential CQI value of 1 mapped to a corresponding CQI offset value of 1; (c) a differential CQI value of 2 mapped to a corresponding CQI offset value of 2; (d) a differential CQI value of 3 mapped to a corresponding CQI offset values of ⁇ 3; (e) a differential CQI value of 4 mapped to a corresponding CQI offset value of-1; (f) a differential CQI value of 5 mapped to a corresponding CQI offset value of-2; (g) a differential CQI value of 6 mapped to a corresponding CQI offset value of-3; and (h) a differential CQI value of 7 mapped to a corresponding CQI
  • process 1300 may involve processor 1212 determining whether to generate the channel quality report using the 3-bit differential CQI table based on a BWP size, a subband size, or a number of used subbands per BWP.
  • process 1300 may involve processor 1212 determining whether to generate the channel quality report using the 3-bit differential CQI table based on a CQI table, a BLER target, or a SNR range.
  • process 1300 may involve processor 1212 determining whether to generate the channel quality report using the 3-bit differential CQI table based on a CQI report, a serving cell index, or a CSI resource.
  • process 1300 may involve processor 1212 determining whether to generate the channel quality report using the 3-bit differential CQI table based on a triggering mechanism or a report configuration type which is periodic, semi-periodic on PUCCH or PUSCH, or a periodic.
  • process 1300 may involve processor 1212 determining whether to generate the channel quality report using the 3-bit differential CQI table based on a RI, a port index, a PMI, or a code type.
  • process 1300 may involve processor 1212 determining whether to generate the channel quality report using the 3-bit differential CQI table based on an open-loop or closed-loop MIMO transmission.
  • process 1300 may involve processor 1212 determining whether to generate the channel quality report using the 3-bit differential CQI table according to a numerology.
  • process 1300 may involve processor 1212 determining whether to generate the channel quality report using the 3-bit differential CQI table according to a contiguous or non-contiguous CSI reporting band.
  • process 1300 may involve processor 1212 determining whether to generate the channel quality report using the 3-bit differential CQI table which is shifted. For instance, the 3-bit differential CQI table may be shifted towards low CQI offset values for high wideband CQI values of 13, 14 and 15. Alternatively, the 3-bit differential CQI table may be shifted towards high CQI offset values for low wideband CQI values of 1, 2 and 3.
  • the 3-bit differential CQI table may indicate a mapping between a plurality of differential CQI values and a plurality of offset values comprising: (a) a differential CQI value of 0 mapped to a corresponding CQI offset value of 0; (b) a differential CQI value of 1 mapped to a corresponding CQI offset value of 1; (c) a differential CQI value of 2 mapped to a corresponding CQI offset value of-1; (d) a differential CQI value of 3 mapped to a corresponding CQI offset value of-2; (e) a differential CQI value of 4 mapped to a corresponding CQI offset value of-3; (f) a differential CQI value of 5 mapped to a corresponding CQI offset value of-4; (g) a differential CQI value of 6 mapped to a corresponding CQI offset value of-5; and (h) a differential CQI value of 7 mapped to a corresponding CQI offset
  • process 1300 may involve processor 1212 generating the channel quality report using a subband CQI table for subband CQIs and using a wideband CQI table for wideband reporting.
  • process 1300 may involve processor 1212 reporting one or more extrapolated CQI values inserted in a negative region of the subband CQI table where one or more respective negative CQI values are lower than a smallest CQI value of the wideband CQI table.
  • process 1300 may involve processor 1212reporting one or more other extrapolated CQI values inserted in a positive region of the subband CQI table where one or more respective positive CQI values are higher than a largest CQI value of the wideband CQI table.
  • process 1300 may involve processor 1212 reporting one or more interpolated CQI values inserted in the subband CQI table and surrounded by wideband CQI values.
  • process 1300 may involve processor 1212 reporting one or more interpolated and extrapolated CQI values inserted in a negative region of the subband CQI table where one or more respective negative CQI values are lower than a smallest CQI value of the wideband CQI table.
  • process 1300 may involve processor 1212reporting one or more other interpolated and extrapolated CQI values inserted in a positive region of the subband CQI table where one or more respective positive CQI values are higher than a largest CQI value of the wideband CQI table.
  • process 1300 may further involve processor 1212 receiving, via transceiver 1216, from the network a higher-layer signal (e.g., RRC signaling) that configures the 3-bit differential CQI table.
  • a higher-layer signal e.g., RRC signaling
  • any two components so associated can also be viewed as being “operably connected” , or “operably coupled” , to each other to achieve the desired functionality, and any two components capable of being so associated can also be viewed as being “operably couplable” , to each other to achieve the desired functionality.
  • operably couplable include but are not limited to physically mateable and/or physically interacting components and/or wirelessly interactable and/or wirelessly interacting components and/or logically interacting and/or logically interactable components.

Abstract

Various examples pertaining to enhancements to differential channel quality indicator (CQI) in mobile communications are described. An apparatus, implementable in a user equipment (UE), generates a channel quality report using a 3-bit differential CQI table. The apparatus then transmit the channel quality report to a network.

Description

ENHANCEMENTS TO DIFFERENTIAL CQI REPORTING IN MOBILE COMMUNICATIONS
CROSS REFERENCE TO RELATED PATENT APPLICATION (S)
The present disclosure is part of a non-provisional application claiming the priority benefit of U.S. Patent Application Nos. 63/060, 734 and 63/087, 362, filed 04 August 2020 and 05 October 2020, respectively, the contents of which being incorporated by reference in their entirety.
TECHNICAL FIELD
The present disclosure is generally related to mobile communications and, more particularly, to enhancements to differential channel quality indicator (CQI) in mobile communications.
BACKGROUND
Unless otherwise indicated herein, approaches described in this section are not prior art to the claims listed below and are not admitted as prior art by inclusion in this section.
In wireless communications, such as mobile communications under the 3 rd Generation Partnership Project (3GPP) specification (s) for 5 th Generation (5G) New Radio (NR) , the CQI-Format Indicator, from the Report Frequency Configuration, indicates whether a user equipment (UE) is to report a single (wideband (WB) ) or multiple (subband (SB) ) CQI. Moreover, the CQI-Reporting Band indicates a contiguous or non-contiguous subset of subbands in the bandwidth part (BWP) for which CSI is to be reported. The choice determines the number of subbands (subbands3 for 3 subbands, subbands4 for 4 subbands, and so on) . This field is absent if there are less than 24 physical resource blocks (PRBs) (with no subband) and present otherwise. The number of subbands can be at least 3 (e.g., 24 PRBs, subband size=8) . A BWP can include up to 19 subbands (e.g., 72/4=18, 144/8=18, plus 1 in case BWP is not aligned with the subband boundaries) . Also, different BWP sizes have different subband sizes.
Furthermore, with respect to CQI-Reporting Band, the wideband would create a signaling payload size of 4 x 2=8 bits ifa single CQI value is signaled with two codewords when reporting a rank higher than 4. The 19 subbands would create a signaling payload size of 19 x 4 x 2=152 bits if the actual CQI of each subband is signaled with two codewords when reporting a rank higher than 4. The 3GPP standard specifies the use of differential CQI (D-CQI) values for subband reporting. The differential CQI values require only 2 bits and hence the signaling payload size is reduced by a factor of 2 to 19 x 2 x 2=76 bits. Differential subband CQI values are defined relative to wideband CQI as follows: Differential subband CQI=subband CQI–wideband CQI.
However, there are some drawbacks associated with current differential CQI reporting design. The current differential CQI values cover a small range of CQI offset values, [0, 1, ≥2, ≤-1] . Therefore, very low differential CQI value (s) cannot be reported, as there is information loss of 11~19%for the reported CQI offset value, depending on the configuration. Thus, it is essential to design new differential CQI tables to achieve better performance. Moreover, there is also an issue with differential CQI in that ifthe wideband CQI  (WB-CQI) is close to the ends or edges of the CQI table (lower end/edge of higher end/edge) , the differential CQI values cannot be fully utilized. Therefore, there is a need for a solution of enhancements to differential CQI in mobile communications.
SUMMARY
The following summary is illustrative only and is not intended to be limiting in any way. That is, the following summary is provided to introduce concepts, highlights, benefits and advantages of the novel and non-obvious techniques described herein. Select implementations are further described below in the detailed description. Thus, the following summary is not intended to identify essential features of the claimed subject matter, nor is it intended for use in determining the scope of the claimed subject matter.
An objective of the present disclosure is to propose solutions or schemes that address the issue (s) described herein. More specifically, various schemes proposed in the present disclosure are believed to provide solutions that provide enhancements to differential CQI in mobile communications.
In one aspect, a method may involve generating a channel quality report using a 3-bit differential CQI table. The method may also involve transmitting the channel quality report to a network.
In another aspect, an apparatus may include a transceiver and a processor coupled to the transceiver. The transceiver may be configured to communicate wirelessly. The processor may be configured to generate a channel quality report using a 3-bit differential CQI table. The processor may be also configured to transmit, via the transceiver, the channel quality report to a network.
It is noteworthy that, although description provided herein may be in the context of certain radio access technologies, networks and network topologies such as 5G/NR mobile communications, the proposed concepts, schemes and any variation (s) /derivative (s) thereof may be implemented in, for and by other types of radio access technologies, networks and network topologies such as, for example and without limitation, Long-Term Evolution (LTE) , LTE-Advanced, LTE-Advanced Pro, Internet-of-Things (IoT) , Narrow Band Internet of Things (NB-IoT) , Industrial Internet of Things (IIoT) , vehicle-to-everything (V2X) , and non-terrestrial network (NTN) communications. Thus, the scope of the present disclosure is not limited to the examples described herein.
BRIEF DESCRIPTION OF THE DRAWINGS
The accompanying drawings are included to provide a further understanding of the disclosure and are incorporated in and constitute a part of the present disclosure. The drawings illustrate implementations of the disclosure and, together with the description, serve to explain the principles of the disclosure. It is appreciable that the drawings are not necessarily in scale as some components may be shown to be out of proportion than the size in actual implementation in order to clearly illustrate the concept of the present disclosure.
FIG. 1 is a diagram of an example network environment in which various proposed schemes in accordance with the present disclosure may be implemented.
FIG. 2 is a diagram of an example design under a proposed scheme in accordance with the present disclosure.
FIG. 3 is a diagram of an example design under a proposed scheme in accordance with the present disclosure.
FIG. 4 is a diagram of an example design under a proposed scheme in accordance with the present disclosure.
FIG. 5 is a diagram of an example design under a proposed scheme in accordance with the present disclosure.
FIG. 6 is a diagram of an example design under a proposed scheme in accordance with the present disclosure.
FIG. 7 is a diagram of an example design under a proposed scheme in accordance with the present disclosure.
FIG. 8 is a diagram of an example design under a proposed scheme in accordance with the present disclosure.
FIG. 9 is a diagram of an example design under a proposed scheme in accordance with the present disclosure.
FIG. 10 is a diagram of an example design under a proposed scheme in accordance with the present disclosure.
FIG. 11 is a diagram of an example design under a proposed scheme in accordance with the present disclosure.
FIG. 12 is a block diagram of an example communication apparatus and an example network apparatus in accordance with an implementation of the present disclosure.
FIG. 13 is a flowchart of an example process in accordance with an implementation of the present disclosure.
DETAILED DESCRIPTION OF PREFERRED IMPLEMENTATIONS
Detailed embodiments and implementations of the claimed subject matters are disclosed herein. However, it shall be understood that the disclosed embodiments and implementations are merely illustrative of the claimed subject matters which may be embodied in various forms. The present disclosure may, however, be embodied in many different forms and should not be construed as limited to the exemplary embodiments and implementations set forth herein. Rather, these exemplary embodiments and implementations are provided so that description of the present disclosure is thorough and complete and will fully convey the scope of the present disclosure to those skilled in the art. In the description below, details of well-known features and techniques may be omitted to avoid unnecessarily obscuring the presented embodiments and implementations.
Overview
Implementations in accordance with the present disclosure relate to various techniques, methods, schemes and/or solutions pertaining to enhancements to differential CQI in mobile communications. According to the present disclosure, a number of possible solutions may be implemented separately or jointly. That is, although these possible solutions may be described below separately, two or more of these possible solutions may be implemented in one combination or another.
FIG. 1 illustrates an example network environment 100 in which various solutions and schemes in accordance with the present disclosure may be implemented. Referring to FIG. 1, network environment 100 may involve a UE 110 in wireless communication with a wireless network 120 (e.g., a 5G NR mobile network or another type of network such as an NTN) . UE 110 may be in wireless communication with wireless network 120 via a base station or network node 125 (e.g., an eNB, gNB or transmit-receive point (TRP) ) . In network environment 100, UE 110 and wireless network 120 (via network node 125) may implement various schemes pertaining to enhancements to differential CQI in mobile communications, as described below.
As mentioned above, current differential CQI values cover a small range of CQI offset values, [0, 1, ≥2, ≤-1] . Therefore, very low differential CQI value (s) cannot be reported, as there is information loss of 11~19%for the reported CQI offset value, depending on the configuration. For example, if a measured CQI offset value at UE 110 is-3 or beyond, the reported negative CQI value would always be≤-1, and as a result UE 110 would not be able to report the correct CQI offset value and network node 125 would not be able to make a reliable decision accordingly. As another example, if a measured CQI offset value at UE 110 is-3, network node 125 would be informed with a CQI offset value equal to-1 and hence network node 125 would not be able to know what the exact CQI offset value measured at UE 110 is.
From the performance evaluation using a computer simulation by the inventors, the current existing CQI offset values cover 78%for a first configuration (Config-1) of 72 PRBs with subband of 4 PRB sizes, with the 22%being lost information, which is the summation of the lost information in the negative differential CQI of 19%and the positive differential CQI of 3%. Moreover, from the computer simulation, the current existing CQI offset values cover 82%for a second configuration (Config-2) of 144 PRBs with subband of 8 PRB sizes, with 16%of the lost information being in the negative differential CQI and 2% of the lost information being in the positive differential CQI. Furthermore, from the computer simulation, the current existing CQI offset values cover 87%for a third configuration (Config-3) of 274 PRBs with subband of 16 PRB sizes, with 11%of the lost information being in the negative differential CQI and 2% of the lost information being in the positive differential CQI. As can be seen, such inaccurate CQI reporting in the negative region of differential CQI can lead to lower system reliability (e.g., ifnetwork node 125 considers the differential CQI of≤-1 as-1) and reduced spectral efficiency (e.g., if network node 125 considers the differential CQI of≤-1 as-2, -3 or-4) . Accordingly, various proposed schemes described below aim to provide a new design of differential CQI tables that capture the statistics in a better way.
Under a first proposed scheme in accordance with the present disclosure, a mapping between differential CQI values and offset values for a CQI table may be changed to capture the statistics in the negative region of differential CQI (e.g., the negative values of CQI offset) , as shown in FIG. 2. Part (A) of FIG. 2 illustrates a table (herein interchangeably referred to as “Table-A” ) associated with Config-1, Config-2 and Config-3 in the computer simulation mentioned above. Part (B) of FIG. 2 illustrates an example design 200 of a two-bit differential CQI table (herein interchangeably referred to as “Table-B” and “Reversed Mapping D-CQI table” ) under the proposed scheme. Under the proposed scheme, the Reversed Mapping D-CQI table may be configured by higher-layer parameter (s) (e.g., via radio resource control (RRC) signaling) . Additionally, under the proposed scheme, the Reversed Mapping D-CQI table may be configured or otherwise applied based on the configured BWP size or subband size or the number of used subbands per BWP. For example, for BWP≤72 PRBs, UE 110 may use Table-B; and for BWP>72 PRBs, UE 110 may use Table-A.  As another example, for BWP≤72 PRBs and subband=4 PRBs, UE 110 may use Table-B; and for subband=8 PRBs, UE 110 may use Table-A. Still additionally, under the proposed scheme, the Reversed Mapping D-CQI table may be configured or otherwise applied per CQI table or per block error ratio (BLER) target or per signal-to-noise ratio (SNR) range. For example, for one CQI table (e.g., CQI Table-1 associated with Config-1) , UE 110 may use Table-A; and for another CQI table (e.g., CQI Table-3 associated with Config-3) , UE 110 may use Table-B. As another example, for a BLER target of 0.1, UE 110 may use Table-A; and for a BLER target of 0.00001, UE 110 may use Table-B.
Under the first proposed scheme, the Reversed Mapping D-CQI table may be configured or otherwise applied per CQI report (e.g., RRC information element (IE) for CQI reporting) or per serving cell index or per CSI resources. The selection of the differential CQI table (e.g., Table-A or Table-B) may be for each CSI-ReportingConfig IE. Additionally, under the proposed scheme, the Reversed Mapping D-CQI table may be configured or otherwise applied based on report configuration type (e.g., periodic, semi-periodic on physical uplink control channel (PUCCH) or physical uplink shared channel (PUSCH) ) , or a periodic) or per triggering mechanism. For example, for periodic reporting, UE 110 may use Table-B; and for a periodic reporting, UE 110 may use Table-A. Still additionally, under the proposed scheme, the Reversed Mapping D-CQI table may be configured or otherwise applied per rank indicator (RI) , port index, precoding matrix indicator (PMI) , and/or code type. For example, for rank higher than 4, UE 110 may use Table-B; otherwise, UE 110 may use Table-A. Additionally, under the proposed scheme, the Reversed Mapping D-CQI table may be configured or otherwise applied based on open or closed-loop multiple-input-multiple-output (MIMO) transmission or report quantity. Additionally, under the proposed scheme, the Reversed Mapping D-CQI table may be configured or otherwise applied according to the numerology (e.g., bandwidth per subcarrier) . Additionally, under the proposed scheme, the Reversed Mapping D-CQI table may be configured or otherwise applied based on CSI-reporting Band, contiguous or non-contiguous.
Under the first proposed scheme, the Reversed Mapping D-CQI table may be applied according to a triggering downlink control information (DCI) signaling such as an uplink (UL) or downlink (DL) DCI triggering a periodic CSI reporting. The Reversed Mapping D-CQI table may be triggered according to a specific radio network temporary identifier (RNTI) such as cell RNTI (C-RNTI) , modulation coding scheme cell RNTI (MCS-C-RNTI) and so on, a specific search space, a different DCI format/size (e.g., DCI formats 0_2 and 1_2) , or the priority bit-field. Additionally, under the proposed scheme, the Reversed Mapping D-CQI table may be applied according to the reported wideband CQI (WB-CQI) . For example, the Reversed Mapping D-CQI table may be used for a specific range of WB-CQIs (e.g., low CQIs) . Additionally, under the proposed scheme, UE 110 may be configured with multiple tables (e.g., the Reversed Mapping D-CQI table and one or more other tables) and network node 125 may signal UE 110 dynamically which table is to be used (e.g., a dedicated signal or DCI bit-field being used to select the table) .
Under a second proposed scheme in accordance with the present disclosure, a mapping between differential CQI values and offset values for a CQI table may be changed to capture the statistics of the large variation in CQI offset values in the negative and positive regions/offsets of CQI, as shown in FIG. 3. Part (A) of FIG. 3 illustrates Table-A associated with Config-1, Config-2 and Config-3 in the computer simulation mentioned above. Part (B) of FIG. 3 illustrates an example design 300 of a two-bit differential CQI table (herein interchangeably referred to as “Table-C” and “Two-Step Mapping D-CQI table” ) under the proposed  scheme. Under the proposed scheme, the Two-Step Mapping D-CQI table may be configured by higher-layer parameter (s) (e.g., via RRC signaling) . Additionally, under the proposed scheme, the Two-Step Mapping D-CQI table may be configured or otherwise applied based on the configured BWP size or subband size or the number of used subbands per BWP. For example, for BWP≤72 PRBs, UE 110 may use Table-C; and for BWP>72 PRBs, UE 110 may use Table-A. As another example, for BWP≤72 PRBs and subband=4 PRBs, UE 110 may use Table-C; and for subband=8 PRBs, UE 110 may use Table-A. Still additionally, under the proposed scheme, the Two-Step Mapping D-CQI table may be configured or otherwise applied per CQI table or per BLER target or per SNR range. For example, for one CQI table (e.g., CQI Table-1 associated with Config-1) , UE 110 may use Table-A; and for another CQI table (e.g., CQI Table-3 associated with Config-3) , UE 110 may use Table-C. As another example, for a BLER target of 0.1, UE 110 may use Table-A; and for a BLER target of 0.00001, UE 110 may use Table-C.
Under the second proposed scheme, the Two-Step Mapping D-CQI table may be configured or otherwise applied per CQI report (e.g., RRC IE for CQI reporting) or per serving cell index or per CSI resources. The selection of the differential CQI table (e.g., Table-A or Table-C) may be for each CSI-ReportingConfig IE. Additionally, under the proposed scheme, the Two-Step Mapping D-CQI table may be configured or otherwise applied based on report configuration type (e.g., periodic, semi-periodic on PUCCH or PUSCH) , or a periodic) or per triggering mechanism. For example, for periodic reporting, UE 110 may use Table-C; and for a periodic reporting, UE 110 may use Table-A. Still additionally, under the proposed scheme, the Two-Step Mapping D-CQI table may be configured or otherwise applied per RI, port index, PMI, and/or code type. For example, for rank higher than 4, UE 110 may use Table-C; otherwise, UE 110 may use Table-A. Additionally, under the proposed scheme, the Two-Step Mapping D-CQI table may be configured or otherwise applied based on open or closed-loop MIMO transmission or report quantity. Additionally, under the proposed scheme, the Two-Step Mapping D-CQI table may be configured or otherwise applied according to the numerology (e.g., bandwidth per subcarrier) . Additionally, under the proposed scheme, the Two-Step Mapping D-CQI table may be configured or otherwise applied based on CSI-reporting Band, contiguous or non-contiguous.
Under the second proposed scheme, in the design of the Two-Step Mapping D-CQI table, the two offset steps may be limited to some differential values. For instance, some differential values may have two offset steps while some other differential values may have one offset step. Additionally, in the design of the Two-Step Mapping D-CQI table, different numbers of offset steps may be associated to some differential values. For instance, finer resolution may be used around the WB-CQI while coarser resolution may be used farther.
Under the second proposed scheme, the design of the Two-Step Mapping D-CQI table may be applied according to a triggering DCI signaling such as an UL or DL DCI triggering a periodic CSI reporting. The Two-Step Mapping D-CQI table may be triggered according to a specific RNTI such as C-RNTI, MCS-C-RNTI and so on, a specific search space, a different DCI format/size (e.g., DCI formats 0_2 and 1_2) , or the priority bit-field. Additionally, under the proposed scheme, the Two-Step Mapping D-CQI table may be applied according to the reported WB-CQI. For example, the Two-Step Mapping D-CQI table may be used for a specific range of WB-CQIs (e.g., low CQIs) . Additionally, under the proposed scheme, UE 110 may be configured with multiple tables (e.g., the Two-Step Mapping D-CQI table and one or more other tables) and  network node 125 may signal UE 110 dynamically which table is to be used (e.g., a dedicated signal or DCI bit -field being used to select the table) .
Under a third proposed scheme in accordance with the present disclosure, a mapping between differential CQI values and offset values for a CQI table may be changed from using 2 bits to report partial differential CQI values to using 3 bits to report the differential CQI values, as shown in FIG. 4. The proposed CQI mapping may capture the statistics and, accordingly, the accuracy may be close to that of the actual CQI value for each subband. Part (A) of FIG. 4 illustrates Table-A associated with Config-1, Config-2 and Config-3 in the computer simulation mentioned above. Part (B) of FIG. 4 illustrates an example design 400 of a three-bit differential CQI table (herein interchangeably referred to as “Table-D” and “Three-Bit Mapping D-CQI table” ) under the proposed scheme. Under the proposed scheme, the Three-Bit Mapping D-CQI table may be configured by higher-layer parameter (s) (e.g., via RRC signaling) . Additionally, under the proposed scheme, the Three-Bit Mapping D-CQI table may be configured or otherwise applied based on the configured BWP size or subband size or the number of used subbands per BWP. For example, for BWP≤72 PRBs, UE 110 may use Table-D; and for BWP>72 PRBs, UE 110 may use Table-A. As another example, for BWP≤72 PRBs and subband=4 PRBs, UE 110 may use Table-D; and for subband=8 PRBs, UE 110 may use Table-A. Still additionally, under the proposed scheme, the Three-Bit Mapping D-CQI table may be configured or otherwise applied per CQI table or per BLER target or per SNR range. For example, for one CQI table (e.g., CQI Table-1 associated with Config-1) , UE 110 may use Table-A; and for another CQI table (e.g., CQI Table-3 associated with Config-3) , UE 110 may use Table-D. As another example, for a BLER target of 0.1, UE 110 may use Table-A; and for a BLER target of 0.00001, UE 110 may use Table-D.
Under the third proposed scheme, the Three-Bit Mapping D-CQI table may be configured or otherwise applied per CQI report (e.g., RRC IE for CQI reporting) or per serving cell index or per CSI resources. The selection of the differential CQI table (e.g., Table-A or Table-D) may be for each CSI-ReportingConfig IE. Additionally, under the proposed scheme, the Three-Bit Mapping D-CQI table may be configured or otherwise applied based on report configuration type (e.g., periodic, semi-periodic on PUCCH or PUSCH) , or a periodic) or per triggering mechanism. For example, for periodic reporting, UE 110 may use Table-A; and for a periodic reporting, UE 110 may use Table-D. Still additionally, under the proposed scheme, the Three-Bit Mapping D-CQI table may be configured or otherwise applied per RI, port index, PMI, and/or code type. For example, for rank higher than 4, UE 110 may use Table-A; otherwise, UE 110 may use Table-D. Additionally, under the proposed scheme, the Three-Bit Mapping D-CQI table may be configured or otherwise applied based on open or closed-loop MIMO transmission or report quantity. Additionally, under the proposed scheme, the Three-Bit Mapping D-CQI table may be configured or otherwise applied according to the numerology (e.g., bandwidth per subcarrier) . Additionally, under the proposed scheme, the Three-Bit Mapping D-CQI table may be configured or otherwise applied based on CSI-reporting Band, contiguous or non-contiguous.
Under the third proposed scheme, the design of the Three-Bit Mapping D-CQI table may be applied according to a triggering DCI signaling such as an UL or DL DCI triggering a periodic CSI reporting. The Three-Bit Mapping D-CQI table may be triggered according to a specific RNTI such as C-RNTI, MCS-C-RNTI and so on, a specific search space, a different DCI format/size (e.g., DCI formats 0_2 and 1_2) , or the priority bit-field. Additionally, under the proposed scheme, the Three-Bit Mapping D-CQI table may be  applied according to the reported WB-CQI. For example, the Three-Bit Mapping D-CQI table may be used for a specific range of WB-CQIs (e.g., low CQIs) . Additionally, under the proposed scheme, UE 110 may be configured with multiple tables (e.g., the Three-Bit Mapping D-CQI table and one or more other tables) and network node 125 may signal UE 110 dynamically which table is to be used (e.g., a dedicated signal or DCI bit -field being used to select the table) .
Under a fourth proposed scheme in accordance with the present disclosure, a mapping between differential CQI values and offset values for a CQI table may be changed to capture the statistics of the large variation in CQI offset values in the negative and positive regions/offsets of CQI, as shown in FIG. 5. Part (A) of FIG. 5 illustrates Table-A associated with Config-1, Config-2 and Config-3 in the computer simulation mentioned above. Part (B) of FIG. 5 illustrates an example design 500 of a two-bit differential CQI table (herein interchangeably referred to as “Table-E” and “Negative-Based Mapping D-CQI table” ) under the proposed scheme. Under the proposed scheme, the Negative-Based Mapping D-CQI table may be configured by higher-layer parameter (s) (e.g., via RRC signaling) . Additionally, under the proposed scheme, the Negative -Based Mapping D-CQI table may be configured or otherwise applied based on the configured BWP size or subband size or the number of used subbands per BWP. For example, for BWP≤72 PRBs, UE 110 may use Table-E; and for BWP>72 PRBs, UE 110 may use Table-A. As another example, for BWP≤72 PRBs and subband=4 PRBs, UE 110 may use Table-E; and for subband=8 PRBs, UE 110 may use Table-A. Still additionally, under the proposed scheme, the Negative-Based Mapping D-CQI table may be configured or otherwise applied per CQI table or per BLER target or per SNR range. For example, for one CQI table (e.g., CQI Table-1 associated with Config-1) , UE 110 may use Table-A; and for another CQI table (e.g., CQI Table-3 associated with Config-3) , UE 110 may use Table-E. As another example, for a BLER target of 0.1, UE 110 may use Table-A; and for a BLER target of 0.00001, UE 110 may use Table-E.
Under the fourth proposed scheme, the Negative-Based Mapping D-CQI table may be configured or otherwise applied per CQI report (e.g., RRC IE for CQI reporting) or per serving cell index or per CSI resources. The selection of the differential CQI table (e.g., Table-A or Table-E) may be for each CSI-ReportingConfig IE. Additionally, under the proposed scheme, the Negative-Based Mapping D-CQI table may be configured or otherwise applied based on report configuration type (e.g., periodic, semi-periodic on PUCCH or PUSCH) , or a periodic) or per triggering mechanism. For example, for periodic reporting, UE 110 may use Table-E; and for a periodic reporting, UE 110 may use Table-A. Still additionally, under the proposed scheme, the Negative-Based Mapping D-CQI table may be configured or otherwise applied per RI, port index, PMI, and/or code type. For example, for rank higher than 4, UE 110 may use Table-E; otherwise, UE 110 may use Table-A. Additionally, under the proposed scheme, the Negative-Based Mapping D-CQI table may be configured or otherwise applied based on open or closed-loop MIMO transmission or report quantity. Additionally, under the proposed scheme, the Negative-Based Mapping D-CQI table may be configured or otherwise applied according to the numerology (e.g., bandwidth per subcarrier) . Additionally, under the proposed scheme, the Negative-Based Mapping D-CQI table may be configured or otherwise applied based on CSI-reporting Band, contiguous or non-contiguous.
Under the fourth proposed scheme, the design of the Three-Bit Mapping D-CQI table may be applied according to a triggering DCI signaling such as an UL or DL DCI triggering a periodic CSI reporting. The Negative-Based Mapping D-CQI table may be triggered according to a specific RNTI such as C-RNTI,  MCS-C-RNTI and so on, a specific search space, a different DCI format/size (e.g., DCI formats 0_2 and 1_2) , or the priority bit-field. Additionally, under the proposed scheme, the Negative-Based Mapping D-CQI table may be applied according to the reported WB-CQI. For example, the Negative-Based Mapping D-CQI table may be used for a specific range of WB-CQIs (e.g., low CQIs) . Additionally, under the proposed scheme, UE 110 may be configured with multiple tables (e.g., the Negative-Based Mapping D-CQI table and one or more other tables) and network node 125 may signal UE 110 dynamically which table is to be used (e.g., a dedicated signal or DCI bit-field being used to select the table) .
Under a fifth proposed scheme in accordance with the present disclosure, UE 110 may be configured with multiple mapping D-CQI tables, such as some or all of Table-A, Table-B, Table-C, Table-D and Table-E. Under the proposed scheme, the mapping D-CQI tables may be configured by higher-layer parameter (s) (e.g., via RRC signaling) . Additionally, under the proposed scheme, some or all of the multiple mapping D-CQI tables may be configured or otherwise applied based on the configured BWP size or subband size or the number of used subbands per BWP. For example, for BWP≤72 PRBs, UE 110 may use Table-D; and for BWP>72 PRBs, UE 110 may use Table-C. As another example, for BWP≤72 PRBs and subband=4 PRBs, UE 110 may use Table-D; and for subband=8 PRBs, UE 110 may use Table-A. Still additionally, under the proposed scheme, some or all of the multiple mapping D-CQI tables may be configured or otherwise applied per CQI table or per BLER target or per SNR range. For example, for one CQI table (e.g., CQI Table-1 associated with Config-1) , UE 110 may use Table-B; and for another CQI table (e.g., CQI Table-3 associated with Config-3) , UE 110 may use Table-D. As another example, for a BLER target of 0.1, UE 110 may use Table-C; and for a BLER target of 0.00001, UE 110 may use Table-D.
Under the fifth proposed scheme, some or all of the multiple mapping D-CQI tables may be configured or otherwise applied per CQI report (e.g., RRC IE for CQI reporting) or per serving cell index or per CSI resources. The selection of the differential CQI table (e.g., Table-A, Table-B, Table-C, Table-D or Table-E) may be for each CSI-ReportingConfig IE. Additionally, under the proposed scheme, some or all of the multiple mapping D-CQI tables may be configured or otherwise applied based on report configuration type (e.g., periodic, semi-periodic on PUCCH or PUSCH) , or a periodic) or per triggering mechanism. For example, for periodic reporting, UE 110 may use Table-D; and for a periodic reporting, UE 110 may use Table -B. Still additionally, under the proposed scheme, some or all of the multiple mapping D-CQI tables may be configured or otherwise applied per RI, port index, PMI, and/or code type. For example, for rank higher than 4, UE 110 may use Table-D; otherwise, UE 110 may use Table-A. Additionally, under the proposed scheme, some or all of the multiple mapping D-CQI tables may be configured or otherwise applied based on open or closed-loop MIMO transmission or report quantity. Additionally, under the proposed scheme, some or all of the multiple mapping D-CQI tables may be configured or otherwise applied according to the numerology (e.g., bandwidth per subcarrier) . Additionally, under the proposed scheme, some or all of the multiple mapping D-CQI tables may be configured or otherwise applied based on CSI-reporting Band, contiguous or non-contiguous.
It is noteworthy that one issue with the D-CQI is that, ifthe WB-CQI is close to the lower end or higher end of the CQI table, the D-CQI values cannot be fully utilized. Taking a 3-bit differential CQI table as an example, the reported D-CQI may cover 8 CQI offset values relative to a wideband CQI. For wideband CQI=1, 2 and 3, the low D-CQI values may be not fully utilized. Similarly, for the wideband CQI=13, 14  and 15, the high D-CQI values may be not fully utilized. For example, in case of a wideband CQI=2, the D-CQI values (6 and 7) in the 3-bit table for the CQI offset values (-3 and≤-4, respectively) may be not used. Accordingly, under various proposed schemes described below, one or more of several options may be undertaken to fully utilize a 3-bit differential CQI table (e.g., Table-E described above) . One option may involve shifting the 3-bit D-CQI table (e.g., applicable for CQI values at lower/higher edges) . Another option may involve extrapolating (extending) the 3-bit CQI table for subbands (e.g., applicable for CQI values at lower/higher edges) . Yet another option may involve interpolating and extrapolating the 3-bit CQI table for subbands (e.g., applicable for CQI values at lower/higher edges) . Still another option may involve interpolating (finer) the 3-bit CQI table for subbands (e.g., applicable for all CQI values) .
Under a sixth proposed scheme in accordance with the present disclosure with respect to shifting the 3-bit D-CQI table, for the high wideband CQI values of 13, 14 and 15, the table for CQI offset may be shifted towards the low CQI offset values. Similarly, for low wideband CQI values of 1, 2 and 3, the table for CQI offset may be shifted towards the high CQI offset values. The new proposed table may herein be interchangeably referred to as the “Shifted Three-Bit D-CQI table. ” Under the proposed scheme, the Shifted Three-Bit D-CQI table may be configured, obtained or otherwise applied according to the high wideband CQI =13, 14 and 15. For example, for a wideband CQI value equal to 14, the CQI values in the Shifted Three-Bit D-CQI table may be shifted to be as that shown in FIG. 6. FIG. 6 illustrates an example design 600 of a shifted three-bit differential CQI table (denoted as “Shifted Three-Bit D-CQI table” in FIG. 6) under the proposed scheme. Additionally, for low wideband CQI values equal to 1, 2 and 3, the Shifted Three-Bit D-CQI table may be configured or otherwise applied according to the wideband CQI values. For example, the CQI offset may be shifted towards the high CQI values. Additionally, the Shifted Three-Bit D-CQI table may be configured by higher layer parameter (s) (e.g., via RRC signaling) . Moreover, the Shifted Three-Bit D-CQI table may be configured or otherwise applied based on the configured BWP size or subband size or the number of used subbands per BWP.
Under the sixth proposed scheme, the Shifted Three-Bit D-CQI table may be configured or otherwise applied per CQI table or per BLER target or per SNR range. Additionally, under the proposed scheme, the Shifted Three-Bit D-CQI table may be configured or otherwise applied per CQI report (e.g., RRC IE for CQI reporting) or per service cell index or per CSI resources. Moreover, under the proposed scheme, the Shifted Three-Bit D-CQI table may be configured or otherwise applied based on report configuration type (e.g., per periodic, semi-periodic on PUCCH or PUSCH, or a periodic) or per triggering mechanism. Furthermore, under the proposed scheme, the Shifted Three-Bit D-CQI table may be configured or otherwise applied per RI, port index, PMI, and/or code type. Additionally, under the proposed scheme, the Shifted Three -Bit D-CQI table may be configured or otherwise applied based on open or closed-loop MIMO transmission or report quantity. Additionally, under the proposed scheme, the Shifted Three-Bit D-CQI table may be configured or otherwise applied according to the numerology (e.g., bandwidth per subcarrier) . Additionally, under the proposed scheme, the Shifted Three-Bit D-CQI table may be configured or otherwise applied based on CSI-reporting Band, contiguous or non-contiguous.
Under a seventh proposed scheme in accordance with the present disclosure with respect to extrapolating or extending the 3-bit D-CQI table for subbands, CQI tables different from those used for wideband CQI may be used for subband CQIs. For instance, new CQI tables may be used for subband CQIs  while keeping the existing CQI table (s) for wideband reporting. For high and low wideband CQI values, the subband CQI tables may be designed to capture CQI values beyond (outside) the existing CQI tables, while the existing wideband CQI table (s) are kept for wideband reporting. Thus, a new subband CQI table may herein be interchangeably referred to as a “Extrapolated Subband CQI table. ”
Under the seventh proposed scheme, there may be two new table types. One table type may be used for reporting lower CQI values (covering lower signal-to-interference-and-noise ratio (SINR) values compared to the existing CQI table) . This may be achieved by adding new CQI values for the subband CQI (SB-CQI) tables in the negative region (e.g., CQI values that are lower than the smallest CQI value of the WB-CQI table (s) ) . For instance, new negative CQI values may be added in the subband CQI table. Another table type may be used for reporting higher CQI values (covering higher SINR values compared to the existing CQI table) . This may be achieved by adding new CQI values in the CQI subband tables in the positive region (e.g., CQI values that are larger than the largest CQI value of the WB-CQI table (s) ) . For instance, new positive CQI values may be added in the subband CQI table.
Under the seventh proposed scheme, new Extrapolated Subband CQI tables may be used when the wideband CQI=13, 14 and 15. FIG. 7 illustrates an example design 700 of Extrapolated Subband CQI tables for CQI=13, 14 and 15. Entries in the tables in bold italics font indicate wideband CQI values. Shaded entries in the tables in bold font indicate inserted subband CQI values. Moreover, under the seventh proposed scheme, new Extrapolated Subband CQI tables may be used when the wideband CQI=1, 2 and 3. FIG. 8 illustrates an example design 800 of Extrapolated Subband CQI tables for CQI=1, 2 and 3. Entries in the tables in bold italics font indicate wideband CQI values. Shaded entries in the tables in bold font indicate inserted subband CQI values.
Under the seventh proposed scheme, the new Extrapolated Subband CQI tables shown in FIG. 7 and FIG. 8 may be generated considering using an existing low-spectral density table (e.g., Table-3 in the 3GPP standards) for WB-CQI. In a similar approach, new Extrapolated Subband CQI tables may be introduced or generated when other CQI tables are used for WB-CQI. For instance, a similar approach may be used to introduce new Extrapolated Subband CQI tables when using the CQI-Table-1 and CQI-Table-2 from the 3GPP standards for WB-CQI.
Under the seventh proposed scheme, the Extrapolated Subband CQI tables may be configured by higher-layer parameter (s) (e.g., via RRC signaling) . Additionally, under the proposed scheme, the Extrapolated Subband CQI tables may be configured or otherwise applied based on the configured BWP size or subband size or the number of used subbands per BWP. Moreover, under the proposed scheme, the Extrapolated Subband CQI tables may be configured or otherwise applied per CQI table or per BLER target or per SNR range. Additionally, under the proposed scheme, the Extrapolated Subband CQI tables may be configured or otherwise applied per CQI report (e.g., RRC IE for CQI reporting) or per service cell index or per CSI resources. Moreover, under the proposed scheme, the Extrapolated Subband CQI tables may be configured or otherwise applied based on report configuration type (e.g., per periodic, semi-periodic on PUCCH or PUSCH, or a periodic) or per triggering mechanism. Furthermore, under the proposed scheme, the Extrapolated Subband CQI tables may be configured or otherwise applied per RI, port index, PMI, and/or code type. Additionally, under the proposed scheme, the Extrapolated Subband CQI tables may be configured or otherwise applied based on open or closed-loop MIMO transmission or report quantity. Additionally, under  the proposed scheme, the Extrapolated Subband CQI tables may be configured or otherwise applied according to the numerology (e.g., bandwidth per subcarrier) . Additionally, under the proposed scheme, the Extrapolated Subband CQI tables may be configured or otherwise applied based on CSI-reporting Band, contiguous or non-contiguous.
Under an eighth proposed scheme in accordance with the present disclosure with respect to interpolating the 3-bit CQI table for subbands, CQI tables different from those used for wideband CQI may be used for subband CQIs. For instance, new CQI tables may be used for subband CQIs while keeping the existing CQI table (s) for wideband reporting. For all the wideband values in the CQI table, the subband CQI tables may be designed to capture finer CQI values inserted between the existing CQI tables. Thus, a new subband CQI table may herein be interchangeably referred to as an “Interpolated Subband CQI table. ” Under the proposed scheme, the new additional CQI values in the new tables may have finer points, as there are new CQI values inserted between existing CQI values to allow finer subband CQI reporting. The new tables may be used for reporting fine CQI values (compared to the existing CQI table) . This may be achieved by adding new CQI values in the CQI subband tables which are surrounded by wideband CQI values. For instance, new fine (interpolated) CQI values may be added in the subband CQI table (s) . FIG. 9 illustrates an example design 900 of a new Interpolated Subband CQI table for CQI=10. Entries in the table in bold italics font indicate wideband CQI values. Shaded entries in the table in bold font indicate inserted subband CQI values.
Under the eighth proposed scheme, the Interpolated Subband CQI table may be configured by higher-layer parameter (s) (e.g., via RRC signaling) . Additionally, under the proposed scheme, the Interpolated Subband CQI table may be configured or otherwise applied based on the configured BWP size or subband size or the number of used subbands per BWP. Moreover, under the proposed scheme, the Interpolated Subband CQI table may be configured or otherwise applied per CQI table or per BLER target or per SNR range. Additionally, under the proposed scheme, the Interpolated Subband CQI table may be configured or otherwise applied per CQI report (e.g., RRC IE for CQI reporting) or per service cell index or per CSI resources. Moreover, under the proposed scheme, the Interpolated Subband CQI table may be configured or otherwise applied based on report configuration type (e.g., per periodic, semi-periodic on PUCCH or PUSCH, or a periodic) or per triggering mechanism. Furthermore, under the proposed scheme, the Interpolated Subband CQI table may be configured or otherwise applied per RI, port index, PMI, and/or code type. Additionally, under the proposed scheme, the Interpolated Subband CQI table may be configured or otherwise applied based on open or closed-loop MIMO transmission or report quantity. Additionally, under the proposed scheme, the Interpolated Subband CQI table may be configured or otherwise applied according to the numerology (e.g., bandwidth per subcarrier) . Additionally, under the proposed scheme, the Interpolated Subband CQI table may be configured or otherwise applied based on CSI-reporting Band, contiguous or non-contiguous.
Under a nineth proposed scheme in accordance with the present disclosure with respect to interpolating and extrapolating the 3-bit CQI table for subbands, CQI tables different from those used for wideband CQI may be used for subband CQIs. For instance, new CQI tables may be used for subband CQIs while keeping the existing CQI table (s) for wideband reporting. For high and low wideband CQI values, the subband CQI tables may be designed to capture more CQI values compared to the existing wideband CQI table (s) , as the new subband CQI tables may have CQI values that are (i) finer (interpolated) and (ii) outside (extrapolated) the existing CQI tables. Thus, new CQI values may be inserted between existing CQI values  (interpolated) at the high and low edges of the CQI tables. Moreover, new CQI values may be inserted outside the existing CQI values (extrapolated) at the high and low edges of the CQI tables. Thus, a new subband CQI table under the nineth proposed scheme may herein be interchangeably referred to as an “Interpolated and Extrapolated Subband CQI table. ”
Under the nineth proposed scheme, there may be two new table types. One table type may be used for reporting fine and outer CQI value to the low end in CQI tables (compared to the existing CQI table) . This may be achieved by adding new CQI values in the subband CQI tables in the negative region. For instance, new fine and extrapolated CQI values may be added in the subband CQI tables in the negative region. Another table type may be used for reporting fine and outer CQI values to the high end in CQI tables (compared to the existing CQI table) . This may be achieved by adding new CQI values in the CQI subband tables in the positive region. For instance, new fine and extrapolated CQI values may be added in the subband CQI table in the positive region.
Under the nineth proposed scheme, new Interpolated and Extrapolated Subband CQI tables may be used when the wideband CQI=13, 14 and 15. FIG. 10 illustrates an example design 1000 of Interpolated and Extrapolated Subband CQI tables for CQI=13, 14 and 15. Entries in the tables in bold italics font indicate wideband CQI values. Shaded entries in the tables in bold font indicate inserted subband CQI values. Moreover, under the seventh proposed scheme, new Interpolated and Extrapolated Subband CQI tables may be used when the wideband CQI=1, 2 and 3. FIG. 11 illustrates an example design 800 of Interpolated and Extrapolated Subband CQI tables for CQI=1, 2 and 3. Entries in the tables in bold italics font indicate wideband CQI values. Shaded entries in the tables in bold font indicate inserted subband CQI values.
Under the nineth proposed scheme, the new Interpolated and Extrapolated Subband CQI tables shown in FIG. 10 and FIG. 11 may be generated considering using an existing low-spectral density table (e.g., Table-3 in the 3GPP standards) for WB-CQI. In a similar approach, new Interpolated and Extrapolated Subband CQI tables may be introduced or generated when other CQI tables are used for WB-CQI. For instance, a similar approach may be used to introduce new Interpolated and Extrapolated Subband CQI tables when using the CQI-Table-1 and CQI-Table-2 from the 3GPP standards for WB-CQI.
Under the nineth proposed scheme, the Interpolated and Extrapolated Subband CQI tables may be configured by higher-layer parameter (s) (e.g., via RRC signaling) . Additionally, under the proposed scheme, the Interpolated and Extrapolated Subband CQI tables may be configured or otherwise applied based on the configured BWP size or subband size or the number of used subbands per BWP. Moreover, under the proposed scheme, the Interpolated and Extrapolated Subband CQI tables may be configured or otherwise applied per CQI table or per BLER target or per SNR range. Additionally, under the proposed scheme, the Interpolated and Extrapolated Subband CQI tables may be configured or otherwise applied per CQI report (e.g., RRC IE for CQI reporting) or per service cell index or per CSI resources. Moreover, under the proposed scheme, the Interpolated and Extrapolated Subband CQI tables may be configured or otherwise applied based on report configuration type (e.g., per periodic, semi-periodic on PUCCH or PUSCH, or a periodic) or per triggering mechanism. Furthermore, under the proposed scheme, the Interpolated and Extrapolated Subband CQI tables may be configured or otherwise applied per RI, port index, PMI, and/or code type. Additionally, under the proposed scheme, the Interpolated and Extrapolated Subband CQI tables may be configured or otherwise applied based on open or closed-loop MIMO transmission or report quantity. Additionally, under  the proposed scheme, the Interpolated and Extrapolated Subband CQI tables may be configured or otherwise applied according to the numerology (e.g., bandwidth per subcarrier) . Additionally, under the proposed scheme, the Interpolated and Extrapolated Subband CQI tables may be configured or otherwise applied based on CSI-reporting Band, contiguous or non-contiguous.
Under a tenth proposed scheme in accordance with the present disclosure, UE 110 may be configured with multiple subband CQI tables, such as some or all of those described above in the sixth, seventh, eighth and nineth proposed schemes and shown in FIG. 7~FIG. 11. For instance, UE 110 may use a 2-bit D-CQI table for subband CQI reporting. Moreover, some or all of the subband CQI tables proposed herein may be applied in combination with one or more of the differential D-CQI tables described herein. For instance, UE 110 may use a 3-bit D-CQI table for the negative end/edge of SB-CQI tables, while UE 110 may use a 2-bit D-CQI table for the CQI reporting of the positive end of the SB-CQI tables.
Illustrative Implementations
FIG. 12 illustrates an example communication system 1200 having at least an example apparatus 1210 and an example apparatus 1220 in accordance with an implementation of the present disclosure. Each of apparatus 1210 and apparatus 1220 may perform various functions to implement schemes, techniques, processes and methods described herein pertaining to enhancements to differential CQI in mobile communications, including the various schemes described above with respect to various proposed designs, concepts, schemes, systems and methods described above, including network environment 100, as well as processes described below.
Each of apparatus 1210and apparatus 1220 may be a part of an electronic apparatus, which may be a network apparatus or a UE (e.g., UE 110) , such as a portable or mobile apparatus, a wearable apparatus, a vehicular device or a vehicle, a wireless communication apparatus or a computing apparatus. For instance, each of apparatus 1210and apparatus 1220 may be implemented in a smartphone, a smartwatch, a personal digital assistant, an electronic control unit (ECU) in a vehicle, a digital camera, or a computing equipment such as a tablet computer, a laptop computer or a notebook computer. Each of apparatus 1210and apparatus 1220 may also be a part of a machine type apparatus, which may be an IoT apparatus such as an immobile or a stationary apparatus, a home apparatus, a roadside unit (RSU) , a wire communication apparatus or a computing apparatus. For instance, each of apparatus 1210and apparatus 1220 may be implemented in a smart thermostat, a smart fridge, a smart door lock, a wireless speaker or a home control center. When implemented in or as a network apparatus, apparatus 1210 and/or apparatus 1220 may be implemented in an eNodeB in an LTE, LTE-Advanced or LTE-Advanced Pro network or in a gNB or TRP in a 5G network, an NR network or an IoT network.
In some implementations, each of apparatus 1210and apparatus 1220 may be implemented in the form of one or more integrated-circuit (IC) chips such as, for example and without limitation, one or more single-core processors, one or more multi-core processors, one or more complex-instruction-set-computing (CISC) processors, or one or more reduced-instruction-set-computing (RISC) processors. In the various schemes described above, each of apparatus 1210and apparatus 1220 may be implemented in or as a network apparatus or a UE. Each of apparatus 1210and apparatus 1220 may include at least some of those components shown in FIG. 12 such as a processor 1212 and a processor 1222, respectively, for example. Each of apparatus 1210and apparatus 1220 may further include one or more other components not pertinent to the proposed  scheme of the present disclosure (e.g., internal power supply, display device and/or user interface device) , and, thus, such component (s) of apparatus 1210 and apparatus 1220 are neither shown in FIG. 12 nor described below in the interest of simplicity and brevity.
In one aspect, each of processor 1212 and processor 1222 may be implemented in the form of one or more single-core processors, one or more multi-core processors, or one or more CISC or RISC processors. That is, even though a singular term “a processor” is used herein to refer to processor 1212 and processor 1222, each of processor 1212 and processor 1222 may include multiple processors in some implementations and a single processor in other implementations in accordance with the present disclosure. In another aspect, each of processor 1212 and processor 1222 may be implemented in the form of hardware (and, optionally, firmware) with electronic components including, for example and without limitation, one or more transistors, one or more diodes, one or more capacitors, one or more resistors, one or more inductors, one or more memristors and/or one or more varactors that are configured and arranged to achieve specific purposes in accordance with the present disclosure. In other words, in at least some implementations, each of processor 1212 and processor 1222 is a special-purpose machine specifically designed, arranged and configured to perform specific tasks including those pertaining to enhancements to differential CQI in mobile communications in accordance with various implementations of the present disclosure.
In some implementations, apparatus 1210 may also include a transceiver 1216 coupled to processor 1212. Transceiver 1216 may be capable of wirelessly transmitting and receiving data. In some implementations, transceiver 1216 may be capable of wirelessly communicating with different types of wireless networks of different radio access technologies (RATs) . In some implementations, transceiver 1216 may be equipped with a plurality of antenna ports (not shown) such as, for example, four antenna ports. That is,transceiver 1216 may be equipped with multiple transmit antennas and multiple receive antennas for multiple-input multiple-output (MIMO) wireless communications. In some implementations, apparatus 1220 may also include a transceiver 1226 coupled to processor 1222. Transceiver 1226 may include a transceiver capable of wirelessly transmitting and receiving data. In some implementations, transceiver 1226 may be capable of wirelessly communicating with different types of UEs/wireless networks of different RATs. In some implementations, transceiver 1226 may be equipped with a plurality of antenna ports (not shown) such as, for example, four antenna ports. That is, transceiver 1226 may be equipped with multiple transmit antennas and multiple receive antennas for MIMO wireless communications.
In some implementations, apparatus 1210 may further include a memory 1214coupled to processor 1212 and capable of being accessed by processor 1212 and storing data therein. In some implementations, apparatus 1220 may further include a memory 1224coupled to processor 1222 and capable of being accessed by processor 1222 and storing data therein. Each of memory 1214 and memory 1224 may include a type of random-access memory (RAM) such as dynamic RAM (DRAM) , static RAM (SRAM) , thyristor RAM (T-RAM) and/or zero-capacitor RAM (Z-RAM) . Alternatively, or additionally, each of memory 1214 and memory 1224 may include a type of read-only memory (ROM) such as mask ROM, programmable ROM (PROM) , erasable programmable ROM (EPROM) and/or electrically erasable programmable ROM (EEPROM) . Alternatively, or additionally, each of memory 1214 and memory 1224 may include a type of non -volatile random-access memory (NVRAM) such as flash memory, solid-state memory, ferroelectric RAM (FeRAM) , magneto resistive RAM (MRAM) and/or phase-change memory.
Each of apparatus 1210 and apparatus 1220 may be a communication entity capable of communicating with each other using various proposed schemes in accordance with the present disclosure. For illustrative purposes and without limitation, a description of capabilities of apparatus 1210, as a UE (e.g., UE 110) , and apparatus 1220, as a network node (e.g., network node 125) of a wireless network (e.g., network 120 as a 5G/NR mobile network) , is provided below.
Under various proposed schemes in accordance with the present disclosure pertaining to enhancements to differential CQI in mobile communications, processor 1212 of apparatus 1210, implemented in or as UE 110, may generate a channel quality report using a 3-bit differential CQI table. Moreover, processor 1212 may transmit, via transceiver 1216, the channel quality report to a network (e.g., network 120 via apparatus 1220 apparatus as network node 125) .
In some implementations, the 3-bit differential CQI table may indicate a mapping between a plurality of differential CQI values and a plurality of offset values comprising: (a) a differential CQI value of 0 mapped to a corresponding CQI offset value of 0; (b) a differential CQI value of 1 mapped to a corresponding CQI offset value of 1; (c) a differential CQI value of 2 mapped to a corresponding CQI offset value of 2; (d) a differential CQI value of 3 mapped to a corresponding CQI offset values of≥3; (e) a differential CQI value of 4 mapped to a corresponding CQI offset value of-1; (f) a differential CQI value of 5 mapped to a corresponding CQI offset value of-2; (g) a differential CQI value of 6 mapped to a corresponding CQI offset value of-3; and (h) a differential CQI value of 7 mapped to a corresponding CQI offset values of≤-4.
In some implementations, in generating the channel quality report, processor 1212 may determine whether to generate the channel quality report using the 3-bit differential CQI table based on a BWP size, a subband size, or a number of used subbands per BWP.
In some implementations, in generating the channel quality report, processor 1212 may determine whether to generate the channel quality report using the 3-bit differential CQI table based on a CQI table, a BLER target, or a SNR range.
In some implementations, in generating the channel quality report, processor 1212 may determine whether to generate the channel quality report using the 3-bit differential CQI table based on a CQI report, a serving cell index, or a CSI resource.
In some implementations, in generating the channel quality report, processor 1212 may determine whether to generate the channel quality report using the 3-bit differential CQI table based on a triggering mechanism or a report configuration type which is periodic, semi-periodic on PUCCH or PUSCH, or a periodic.
In some implementations, in generating the channel quality report, processor 1212 may determine whether to generate the channel quality report using the 3-bit differential CQI table based on a RI, a port index, a PMI, or a code type.
In some implementations, in generating the channel quality report, processor 1212 may determine whether to generate the channel quality report using the 3-bit differential CQI table based on an open-loop or closed-loop MIMO transmission.
In some implementations, in generating the channel quality report, processor 1212 may determine whether to generate the channel quality report using the 3-bit differential CQI table according to a numerology.
In some implementations, in generating the channel quality report, processor 1212 may determine  whether to generate the channel quality report using the 3-bit differential CQI table according to a contiguous or non-contiguous CSI reporting band.
In some implementations, in generating the channel quality report, processor 1212 may determine whether to generate the channel quality report using the 3-bit differential CQI table which is shifted. For instance, the 3-bit differential CQI table may be shifted towards low CQI offset values for high wideband CQI values of 13, 14 and 15. Alternatively, the 3-bit differential CQI table may be shifted towards high CQI offset values for low wideband CQI values of 1, 2 and 3.
In some implementations, the 3-bit differential CQI table may indicate a mapping between a plurality of differential CQI values and a plurality of offset values comprising: (a) a differential CQI value of 0 mapped to a corresponding CQI offset value of 0; (b) a differential CQI value of 1 mapped to a corresponding CQI offset value of 1; (c) a differential CQI value of 2 mapped to a corresponding CQI offset value of-1; (d) a differential CQI value of 3 mapped to a corresponding CQI offset value of-2; (e) a differential CQI value of 4 mapped to a corresponding CQI offset value of-3; (f) a differential CQI value of 5 mapped to a corresponding CQI offset value of-4; (g) a differential CQI value of 6 mapped to a corresponding CQI offset value of-5; and (h) a differential CQI value of 7 mapped to a corresponding CQI offset values of≤-6.
In some implementations, in generating the channel quality report, processor 1212 may generate the channel quality report using a subband CQI table for subband CQIs and using a wideband CQI table for wideband reporting.
In some implementations, in transmitting the channel quality report, processor 1212 may report one or more extrapolated CQI values inserted in a negative region of the subband CQI table where one or more respective negative CQI values are lower than a smallest CQI value of the wideband CQI table. Alternatively, processor 1212 may report one or more other extrapolated CQI values inserted in a positive region of the subband CQI table where one or more respective positive CQI values are higher than a largest CQI value of the wideband CQI table.
In some implementations, in transmitting the channel quality report, processor 1212 may report one or more interpolated CQI values inserted in the subband CQI table and surrounded by wideband CQI values.
In some implementations, in transmitting the channel quality report, processor 1212 may report one or more interpolated and extrapolated CQI values inserted in a negative region of the subband CQI table where one or more respective negative CQI values are lower than a smallest CQI value of the wideband CQI table. Alternatively, processor 1212 may report one or more other interpolated and extrapolated CQI values inserted in a positive region of the subband CQI table where one or more respective positive CQI values are higher than a largest CQI value of the wideband CQI table.
In some implementations, processor 1212 may receive, via transceiver 1216, from the network a higher-layer signal (e.g., RRC signaling) that configures the 3-bit differential CQI table.
Illustrative Processes
FIG. 13 illustrates an example process 1300 in accordance with an implementation of the present disclosure. Process 1300 may represent an aspect of implementing various proposed designs, concepts, schemes, systems and methods described above, whether partially or entirely, including those pertaining to those described above. More specifically, process 1300 may represent an aspect of the proposed concepts and  schemes pertaining to enhancements to differential CQI in mobile communications. Process 1300 may include one or more operations, actions, or functions as illustrated by one or more of blocks 1310 and 1320. Although illustrated as discrete blocks, various blocks of process 1300 may be divided into additional blocks, combined into fewer blocks, or eliminated, depending on the desired implementation. Moreover, the blocks/sub-blocks of process 1300 may be executed in the order shown in FIG. 13 or, alternatively in a different order. Furthermore, one or more of the blocks/sub-blocks of process 1300 may be executed iteratively. Process 1300 may be implemented by or in apparatus 1210and apparatus 1220 as well as any variations thereof. Solely for illustrative purposes and without limiting the scope, process 1300 is described below in the context of apparatus 1210 as a UE (e.g., UE 110) and apparatus 1220 as a communication entity such as a network node or base station (e.g., network node 125) of a wireless network (e.g., wireless network 120) . Process 1300 may begin at block 1310.
At 1310, process 1300 may involve processor 1212 of apparatus 1210 generating a channel quality report using a 3-bit differential CQI table. Process 1300 may proceed from 1310 to 1320.
At 1320, process 1300 may involve processor 1212 transmitting, via transceiver 1216, the channel quality report to a network (e.g., network 120 via apparatus 1220 apparatus as network node 125) .
In some implementations, the 3-bit differential CQI table may indicate a mapping between a plurality of differential CQI values and a plurality of offset values comprising: (a) a differential CQI value of 0 mapped to a corresponding CQI offset value of 0; (b) a differential CQI value of 1 mapped to a corresponding CQI offset value of 1; (c) a differential CQI value of 2 mapped to a corresponding CQI offset value of 2; (d) a differential CQI value of 3 mapped to a corresponding CQI offset values of≥3; (e) a differential CQI value of 4 mapped to a corresponding CQI offset value of-1; (f) a differential CQI value of 5 mapped to a corresponding CQI offset value of-2; (g) a differential CQI value of 6 mapped to a corresponding CQI offset value of-3; and (h) a differential CQI value of 7 mapped to a corresponding CQI offset values of≤-4.
In some implementations, in generating the channel quality report, process 1300 may involve processor 1212 determining whether to generate the channel quality report using the 3-bit differential CQI table based on a BWP size, a subband size, or a number of used subbands per BWP.
In some implementations, in generating the channel quality report, process 1300 may involve processor 1212 determining whether to generate the channel quality report using the 3-bit differential CQI table based on a CQI table, a BLER target, or a SNR range.
In some implementations, in generating the channel quality report, process 1300 may involve processor 1212 determining whether to generate the channel quality report using the 3-bit differential CQI table based on a CQI report, a serving cell index, or a CSI resource.
In some implementations, in generating the channel quality report, process 1300 may involve processor 1212 determining whether to generate the channel quality report using the 3-bit differential CQI table based on a triggering mechanism or a report configuration type which is periodic, semi-periodic on PUCCH or PUSCH, or a periodic.
In some implementations, in generating the channel quality report, process 1300 may involve processor 1212 determining whether to generate the channel quality report using the 3-bit differential CQI table based on a RI, a port index, a PMI, or a code type.
In some implementations, in generating the channel quality report, process 1300 may involve  processor 1212 determining whether to generate the channel quality report using the 3-bit differential CQI table based on an open-loop or closed-loop MIMO transmission.
In some implementations, in generating the channel quality report, process 1300 may involve processor 1212 determining whether to generate the channel quality report using the 3-bit differential CQI table according to a numerology.
In some implementations, in generating the channel quality report, process 1300 may involve processor 1212 determining whether to generate the channel quality report using the 3-bit differential CQI table according to a contiguous or non-contiguous CSI reporting band.
In some implementations, in generating the channel quality report, process 1300 may involve processor 1212 determining whether to generate the channel quality report using the 3-bit differential CQI table which is shifted. For instance, the 3-bit differential CQI table may be shifted towards low CQI offset values for high wideband CQI values of 13, 14 and 15. Alternatively, the 3-bit differential CQI table may be shifted towards high CQI offset values for low wideband CQI values of 1, 2 and 3.
In some implementations, the 3-bit differential CQI table may indicate a mapping between a plurality of differential CQI values and a plurality of offset values comprising: (a) a differential CQI value of 0 mapped to a corresponding CQI offset value of 0; (b) a differential CQI value of 1 mapped to a corresponding CQI offset value of 1; (c) a differential CQI value of 2 mapped to a corresponding CQI offset value of-1; (d) a differential CQI value of 3 mapped to a corresponding CQI offset value of-2; (e) a differential CQI value of 4 mapped to a corresponding CQI offset value of-3; (f) a differential CQI value of 5 mapped to a corresponding CQI offset value of-4; (g) a differential CQI value of 6 mapped to a corresponding CQI offset value of-5; and (h) a differential CQI value of 7 mapped to a corresponding CQI offset values of≤-6.
In some implementations, in generating the channel quality report, process 1300 may involve processor 1212 generating the channel quality report using a subband CQI table for subband CQIs and using a wideband CQI table for wideband reporting.
In some implementations, in transmitting the channel quality report, process 1300 may involve processor 1212 reporting one or more extrapolated CQI values inserted in a negative region of the subband CQI table where one or more respective negative CQI values are lower than a smallest CQI value of the wideband CQI table. Alternatively, process 1300 may involve processor 1212reporting one or more other extrapolated CQI values inserted in a positive region of the subband CQI table where one or more respective positive CQI values are higher than a largest CQI value of the wideband CQI table.
In some implementations, in transmitting the channel quality report, process 1300 may involve processor 1212 reporting one or more interpolated CQI values inserted in the subband CQI table and surrounded by wideband CQI values.
In some implementations, in transmitting the channel quality report, process 1300 may involve processor 1212 reporting one or more interpolated and extrapolated CQI values inserted in a negative region of the subband CQI table where one or more respective negative CQI values are lower than a smallest CQI value of the wideband CQI table. Alternatively, process 1300 may involve processor 1212reporting one or more other interpolated and extrapolated CQI values inserted in a positive region of the subband CQI table where one or more respective positive CQI values are higher than a largest CQI value of the wideband CQI table.
In some implementations, process 1300 may further involve processor 1212 receiving, via  transceiver 1216, from the network a higher-layer signal (e.g., RRC signaling) that configures the 3-bit differential CQI table.
Additional Notes
The herein-described subject matter sometimes illustrates different components contained within, or connected with, different other components. It is to be understood that such depicted architectures are merely examples, and that in fact many other architectures can be implemented which achieve the same functionality. In a conceptual sense, any arrangement of components to achieve the same functionality is effectively "associated" such that the desired functionality is achieved. Hence, any two components herein combined to achieve a particular functionality can be seen as "associated with" each other such that the desired functionality is achieved, irrespective of architectures or intermedial components. Likewise, any two components so associated can also be viewed as being "operably connected" , or "operably coupled" , to each other to achieve the desired functionality, and any two components capable of being so associated can also be viewed as being "operably couplable" , to each other to achieve the desired functionality. Specific examples of operably couplable include but are not limited to physically mateable and/or physically interacting components and/or wirelessly interactable and/or wirelessly interacting components and/or logically interacting and/or logically interactable components.
Further, with respect to the use of substantially any plural and/or singular terms herein, those having skill in the art can translate from the plural to the singular and/or from the singular to the plural as is appropriate to the context and/or application. The various singular/plural permutations may be expressly set forth herein for sake of clarity.
Moreover, it will be understood by those skilled in the art that, in general, terms used herein, and especially in the appended claims, e.g., bodies of the appended claims, are generally intended as “open” terms, e.g., the term “including” should be interpreted as “including but not limited to, ” the term “having” should be interpreted as “having at least, ” the term “includes” should be interpreted as “includes but is not limited to, ” etc. It will be further understood by those within the art that if a specific number of an introduced claim recitation is intended, such an intent will be explicitly recited in the claim, and in the absence of such recitation no such intent is present. For example, as an aid to understanding, the following appended claims may contain usage of the introductory phrases "at least one" and "one or more" to introduce claim recitations. However, the use of such phrases should not be construed to imply that the introduction of a claim recitation by the indefinite articles "a" or "an" limits any particular claim containing such introduced claim recitation to implementations containing only one such recitation, even when the same claim includes the introductory phrases "one or more" or "at least one" and indefinite articles such as "a" or "an, " e.g., “a” and/or “an” should be interpreted to mean “at least one” or “one or more; ” the same holds true for the use of definite articles used to introduce claim recitations. In addition, even if a specific number of an introduced claim recitation is explicitly recited, those skilled in the art will recognize that such recitation should be interpreted to mean at least the recited number, e.g., the bare recitation of "two recitations, " without other modifiers, means at least two recitations, or two or more recitations. Furthermore, in those instances where a convention analogous to “at least one of A, B, and C, etc. ” is used, in general such a construction is intended in the sense one having skill in the art would understand the convention, e.g., “a system having at least one of A, B, and C” would include but not be limited to systems that have A alone, B alone, C alone, A and B together, A and C together,  B and C together, and/or A, B, and C together, etc. In those instances where a convention analogous to “at least one of A, B, or C, etc. ” is used, in general such a construction is intended in the sense one having skill in the art would understand the convention, e.g., “a system having at least one of A, B, or C” would include but not be limited to systems that have A alone, B alone, C alone, A and B together, A and C together, B and C together, and/or A, B, and C together, etc. It will be further understood by those within the art that virtually any disjunctive word and/or phrase presenting two or more alternative terms, whether in the description, claims, or drawings, should be understood to contemplate the possibilities of including one of the terms, either of the terms, or both terms. For example, the phrase “A or B” will be understood to include the possibilities of “A” or “B” or “A and B. ”
From the foregoing, it will be appreciated that various implementations of the present disclosure have been described herein for purposes of illustration, and that various modifications may be made without departing from the scope and spirit of the present disclosure. Accordingly, the various implementations disclosed herein are not intended to be limiting, with the true scope and spirit being indicated by the following claims.

Claims (20)

  1. A method, comprising:
    generating a channel quality report using a 3-bit differential channel quality indicator (CQI) table; and
    transmitting the channel quality report to a network.
  2. The method of Claim 1, wherein the 3-bit differential CQI table indicates a mapping between a plurality of differential CQI values and a plurality of offset values comprising:
    a differential CQI value of 0 mapped to a corresponding CQI offset value of 0;
    a differential CQI value of 1 mapped to a corresponding CQI offset value of 1;
    a differential CQI value of 2 mapped to a corresponding CQI offset value of 2;
    a differential CQI value of 3 mapped to a corresponding CQI offset values of≥3;
    a differential CQI value of 4 mapped to a corresponding CQI offset value of -1;
    a differential CQI value of 5 mapped to a corresponding CQI offset value of -2;
    a differential CQI value of 6 mapped to a corresponding CQI offset value of -3; and
    a differential CQI value of 7 mapped to a corresponding CQI offset values of≤-4.
  3. The method of Claim 1, wherein the generating of the channel quality report comprises determining whether to generate the channel quality report using the 3-bit differential CQI table based on a bandwidth part (BWP) size, a subband size, or a number of used subbands per BWP.
  4. The method of Claim 1, wherein the generating of the channel quality report comprises determining whether to generate the channel quality report using the 3-bit differential CQI table based on a CQI table, a block error ratio (BLER) target, or a signal-to-noise ratio (SNR) range.
  5. The method of Claim 1, wherein the generating of the channel quality report comprises determining whether to generate the channel quality report using the 3-bit differential CQI table based on a CQI report, a serving cell index, or a CSI resource.
  6. The method of Claim 1, wherein the generating of the channel quality report comprises determining whether to generate the channel quality report using the 3-bit differential CQI table based on a triggering mechanism or a report configuration type which is periodic, semi-periodic on physical uplink control channel (PUCCH) or physical uplink shared channel (PUSCH) , or a periodic.
  7. The method of Claim 1, wherein the generating of the channel quality report comprises determining whether to generate the channel quality report using the 3-bit differential CQI table based on a rank indicator (RI) , a port index, a precoding matrix indicator (PMI) , or a code type.
  8. The method of Claim 1, wherein the generating of the channel quality report comprises determining whether to generate the channel quality report using the 3-bit differential CQI table based on an open-loop or closed-loop multiple-input-multiple-output (MIMO) transmission.
  9. The method of Claim 1, wherein the generating of the channel quality report comprises determining whether to generate the channel quality report using the 3-bit differential CQI table according to a numerology.
  10. The method of Claim 1, wherein the generating of the channel quality report comprises determining whether to generate the channel quality report using the 3-bit differential CQI table according to a contiguous or non-contiguous CSI reporting band.
  11. The method of Claim 1, wherein the generating of the channel quality report comprises determining  whether to generate the channel quality report using the 3-bit differential CQI table which is shifted, wherein the 3-bit differential CQI table is shifted towards low CQI offset values for high wideband CQI values of 13, 14 and 15, and wherein the 3-bit differential CQI table is shifted towards high CQI offset values for low wideband CQI values of 1, 2 and 3.
  12. The method of Claim 1, wherein the 3-bit differential CQI table indicates a mapping between a plurality of differential CQI values and a plurality of offset values comprising:
    a differential CQI value of 0 mapped to a corresponding CQI offset value of 0;
    a differential CQI value of 1 mapped to a corresponding CQI offset value of 1;
    a differential CQI value of 2 mapped to a corresponding CQI offset value of -1;
    a differential CQI value of 3 mapped to a corresponding CQI offset value of -2;
    a differential CQI value of 4 mapped to a corresponding CQI offset value of -3;
    a differential CQI value of 5 mapped to a corresponding CQI offset value of -4;
    a differential CQI value of 6 mapped to a corresponding CQI offset value of -5; and
    a differential CQI value of 7 mapped to a corresponding CQI offset values of≤-6.
  13. The method of Claim 1, wherein the generating of the channel quality report comprises generating the channel quality report using a subband CQI table for subband CQIs and using a wideband CQI table for wideband reporting.
  14. The method of Claim 13, wherein the transmitting of the channel quality report comprises:
    reporting one or more extrapolated CQI values inserted in a negative region of the subband CQI table where one or more respective negative CQI values are lower than a smallest CQI value of the wideband CQI table; or
    reporting one or more other extrapolated CQI values inserted in a positive region of the subband CQI table where one or more respective positive CQI values are higher than a largest CQI value of the wideband CQI table.
  15. The method of Claim 13, wherein the transmitting of the channel quality report comprises reporting one or more interpolated CQI values inserted in the subband CQI table and surrounded by wideband CQI values.
  16. The method of Claim 13, wherein the transmitting of the channel quality report comprises:
    reporting one or more interpolated and extrapolated CQI values inserted in a negative region of the subband CQI table where one or more respective negative CQI values are lower than a smallest CQI value of the wideband CQI table; or
    reporting one or more other interpolated and extrapolated CQI values inserted in a positive region of the subband CQI table where one or more respective positive CQI values are higher than a largest CQI value of the wideband CQI table.
  17. The method of Claim 1, further comprising:
    receiving from the network a radio resource control (RRC) signaling that configures the 3-bit differential CQI table.
  18. An apparatus, comprising:
    a transceiver configured to communicate wirelessly; and
    a processor coupled to the transceiver and configured to perform operations comprising:
    generating a channel quality report using a 3-bit differential channel quality indicator (CQI) table; and
    transmitting, via the transceiver, the channel quality report to a network.
  19. The apparatus of Claim 18, wherein the 3-bit differential CQI table indicates a mapping between a plurality of differential CQI values and a plurality of offset values comprising:
    a differential CQI value of 0 mapped to a corresponding CQI offset value of 0;
    a differential CQI value of 1 mapped to a corresponding CQI offset value of 1;
    a differential CQI value of 2 mapped to a corresponding CQI offset value of 2;
    a differential CQI value of 3 mapped to a corresponding CQI offset values of≥3;
    a differential CQI value of 4 mapped to a corresponding CQI offset value of -1;
    a differential CQI value of 5 mapped to a corresponding CQI offset value of -2;
    a differential CQI value of 6 mapped to a corresponding CQI offset value of -3; and
    a differential CQI value of 7 mapped to a corresponding CQI offset values of≤-4.
  20. The apparatus of Claim 18, wherein, in generating the channel quality report, the processor is configured to determine whether to generate the channel quality report using the 3-bit differential CQI table based on at least one of:
    a bandwidth part (BWP) size, a subband size, or a number of used subbands per BWP;
    a CQI table, a block error ratio (BLER) target, or a signal-to-noise ratio (SNR) range;
    a CQI report, a serving cell index, or a CSI resource;
    a triggering mechanism or a report configuration type which is periodic, semi-periodic on physical uplink control channel (PUCCH) or physical uplink shared channel (PUSCH) , or a periodic;
    a rank indicator (RI) , a port index, a precoding matrix indicator (PMI) , or a code type;
    an open-loop or closed-loop multiple-input-multiple-output (MIMO) transmission;
    a numerology; and
    a contiguous or non-contiguous CSI reporting band.
PCT/CN2021/109987 2020-08-04 2021-08-02 Enhancements to differential cqi reporting in mobile communications WO2022028351A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US202063060734P 2020-08-04 2020-08-04
US63/060,734 2020-08-04
US202063087362P 2020-10-05 2020-10-05
US63/087,362 2020-10-05

Publications (1)

Publication Number Publication Date
WO2022028351A1 true WO2022028351A1 (en) 2022-02-10

Family

ID=80117009

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/109987 WO2022028351A1 (en) 2020-08-04 2021-08-02 Enhancements to differential cqi reporting in mobile communications

Country Status (1)

Country Link
WO (1) WO2022028351A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024072015A1 (en) * 2022-09-29 2024-04-04 엘지전자 주식회사 Method and device for transmitting and receiving signal in wireless communication system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101087481A (en) * 2006-06-02 2007-12-12 阿尔卡特朗讯 Channel quality reporting in an orthogonal frequency division multiplexing system
US20180220399A1 (en) * 2015-07-31 2018-08-02 Intel Corporation Channel quality index (cqi) reporting for superposition transmissions schemes

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101087481A (en) * 2006-06-02 2007-12-12 阿尔卡特朗讯 Channel quality reporting in an orthogonal frequency division multiplexing system
US20180220399A1 (en) * 2015-07-31 2018-08-02 Intel Corporation Channel quality index (cqi) reporting for superposition transmissions schemes

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
AT&T: "Remaining issues in CQI and MCS", 3GPP DRAFT; R1-1802594 REMAINING ISSUES IN CQI AND MCS SELECTION, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Athens, Greece; 20180226 - 20180302, 17 February 2018 (2018-02-17), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051398034 *
HUAWEI, HISILICON: "CQI feedback overhead reduction in short TTI", 3GPP DRAFT; R1-164867, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Nanjing, China; 20160523 - 20160527, 14 May 2016 (2016-05-14), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051089892 *
MOTOROLA: "Overhead Analysis and Resource Assignment for Uplink CQI Feedback Channel and TP", 3GPP DRAFT; R1-060881_CQIOVHD, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Athens, Greece; 20060321, 21 March 2006 (2006-03-21), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP050101790 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024072015A1 (en) * 2022-09-29 2024-04-04 엘지전자 주식회사 Method and device for transmitting and receiving signal in wireless communication system

Similar Documents

Publication Publication Date Title
CN110086744B (en) Terminal device and base station device
EP2497199B1 (en) Method and apparatus for hierarchical codebook design in wireless communication
EP3731446B1 (en) Method for transmitting uplink data and terminal device
US11575543B2 (en) Method for uplink data transmission, terminal device and network device
CN112236966A (en) Wireless communication method, terminal equipment and network equipment
US20160323912A1 (en) Terminal device and base station device
KR102374244B1 (en) Method and apparatus for transmitting an uplink control channel
EP3695671B1 (en) Flexible signaling of capability of ue processing time in wireless communications
WO2021007768A1 (en) Resource management for reporting signal-to-interference-plus-noise ratio
US20220393737A1 (en) Communication method and communication apparatus
WO2018186777A1 (en) Methods and apparatus for precoding control in a wireless communication network
WO2022028351A1 (en) Enhancements to differential cqi reporting in mobile communications
US11290906B2 (en) Channel measurement method
US11563467B2 (en) Precoding-matched CSI feedback in mobile communications
US20220124536A1 (en) Reporting Of Best Wideband CQI In Mobile Communications
US20220131638A1 (en) Enhancements For CQI Reporting In Mobile Communications
WO2024032335A1 (en) Uplink power control for dynamic tdd and subband full duplex
US20240015542A1 (en) Flexible Interruption For L1 Measurement In Mobile Communications
WO2024001665A1 (en) Methods for reverse ue-ue cli measurement in non-overlapping subband-fullduplex deployment
WO2022133709A1 (en) Method and apparatus for physical uplink shared channel (pusch) transmission
CN116939839A (en) Transmission processing method, network device, terminal, device and storage medium
CN116633384A (en) Information transmission method, device and storage medium
CN117674928A (en) Precoding matrix indicator PMI correction method and device, electronic equipment and storage medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21852224

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21852224

Country of ref document: EP

Kind code of ref document: A1