WO2022028052A1 - 一种实现电流快速响应的芯片控制方法 - Google Patents
一种实现电流快速响应的芯片控制方法 Download PDFInfo
- Publication number
- WO2022028052A1 WO2022028052A1 PCT/CN2021/096208 CN2021096208W WO2022028052A1 WO 2022028052 A1 WO2022028052 A1 WO 2022028052A1 CN 2021096208 W CN2021096208 W CN 2021096208W WO 2022028052 A1 WO2022028052 A1 WO 2022028052A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- current
- chip
- time
- control mode
- control method
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05F—SYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
- G05F1/00—Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
- G05F1/10—Regulating voltage or current
- G05F1/46—Regulating voltage or current wherein the variable actually regulated by the final control device is dc
- G05F1/56—Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices
- G05F1/565—Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices sensing a condition of the system or its load in addition to means responsive to deviations in the output of the system, e.g. current, voltage, power factor
- G05F1/569—Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices sensing a condition of the system or its load in addition to means responsive to deviations in the output of the system, e.g. current, voltage, power factor for protection
- G05F1/573—Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices sensing a condition of the system or its load in addition to means responsive to deviations in the output of the system, e.g. current, voltage, power factor for protection with overcurrent detector
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05F—SYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
- G05F1/00—Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
- G05F1/10—Regulating voltage or current
- G05F1/46—Regulating voltage or current wherein the variable actually regulated by the final control device is dc
- G05F1/56—Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices
- G05F1/575—Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices characterised by the feedback circuit
Definitions
- the invention relates to a chip control method for realizing fast current response, and belongs to the technical field of chip design.
- COT Constant-On-Time
- PWM Pulse Width Modulation
- the loop control part is built into the chip, and the peripheral design is simple, and the stable output of the voltage can be guaranteed without designing a complex loop.
- the turn-on time of the on-cycle remains the same, the on-cycle time will be relatively small when the voltage difference between the output and input is too large.
- the overshoot will be relatively large, and the output voltage will drop and rise significantly, which does not meet the working requirements of some load equipment.
- the purpose of the present invention is to propose a chip control method that realizes rapid current response, effectively solves the load extraction requirement when the back end changes dynamically, and keeps the voltage stable.
- a chip control method for realizing rapid current response comprising the following steps: step 1, connecting the valley value current change signal of the chip inductance to the controller; step 2, detecting the valley value The change of the current, calculate the change slope K 1 of the valley current; step 3, determine the preset value K 0 , the preset value K 0 is determined by the control mode and inductance of the chip; step 4, compare and determine the change slope K 1 and The preset value K 0 determines the chip control mode; in step 5, continuous loop detection is performed in the next cycle, and the above judgment is repeated.
- the step of determining the chip control mode by comparing and judging the change slope K 1 and the preset value K 0 includes: if K 1 ⁇ K 0 , judging that the control mode of the chip can meet the requirements at this time, and there is no need to switch; 1 >K 0 , at the same time (I 1 I 2 ) ⁇ I ocp *0.6, where I ocp is the overcurrent protection current, then the control of the chip reaches the limit at this time, and the control mode is switched to the preset control mode.
- the preset control mode is: when K 1 is positive, increase the turn-on time of the upper MOS (Metal Oxide Semiconductor, metal-oxide semiconductor field effect transistor), and transmit enough energy in a short time, Meet the pull load requirements of the backend.
- MOS Metal Oxide Semiconductor, metal-oxide semiconductor field effect transistor
- the turn-on time is set as follows: when it is detected that the control mode needs to be switched for the first time, the turn-on time of the upper MOS is changed from t to 2t, and the turn-on time of the lower MOS is changed to the original minimum value.
- each cycle of the control mode is continuously detected.
- the on-time of the upper MOS is changed from 2t to 3t. After that, the on-time is fixed at 3t until the regulation process is completed.
- the upper MOS is controlled to be turned on, the lower MOS is turned off, and the signals at the feedback terminal are compared at the same time.
- the present invention has the following advantages compared with the prior art:
- the present invention provides a chip control method for realizing rapid current response.
- the valley current change signal of the inductor is connected to the controller, and the control mode is switched on and on by detecting the change of the current.
- the output voltage can be quickly adjusted to keep the output voltage stable and avoid triggering the over-current protection of the chip. Cost of production.
- FIG. 1 is a flowchart of an embodiment of a chip control method for realizing rapid current response according to the present invention.
- K 1 ⁇ K 0 it is judged that the control mode of the chip can meet the requirements at this time, and there is no need to switch; if K 1 >K 0 , and (I 1 I 2 ) ⁇ I ocp *0.6, I ocp is the overcurrent protection current, and When the control of the chip reaches the limit, it is necessary to switch the control mode and switch the control mode to the preset control mode.
- the control mode of the control mode is as follows: when K 1 is positive, the turn-on time of the upper MOS is increased, so that it can transmit enough energy in a short period of time to ensure that it can meet the pulling demand of the back end.
- the setting method of the turn-on time is as follows: when it is detected that the control mode needs to be switched for the first time, the turn-on time of the upper MOS is changed from t to 2t, and the turn-on time of the lower MOS is changed to the original minimum value; Each cycle of the mode is continuously detected. When 2 cycles have passed, it is detected that the output voltage is not smaller than the previous cycle, and the on-time of the upper MOS is changed from 2t to 3t. After that, the on-time is fixed at 3t, until the control process is completed.
- the invention provides a chip control method for realizing fast current response.
- the valley current change signal of the inductor is connected to the controller, and the opening and conduction of the control mode are adjusted by detecting the change of the current.
- the output voltage can be quickly adjusted to keep the output voltage stable and avoid triggering the overcurrent protection of the chip. cost.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Automation & Control Theory (AREA)
- Dc-Dc Converters (AREA)
- Emergency Protection Circuit Devices (AREA)
- Control Of Voltage And Current In General (AREA)
Abstract
一种实现电流快速响应的芯片控制方法,包括如下步骤,步骤一,将芯片电感的谷值电流变化信号接入控制器中;步骤二,检测谷值电流的变化,计算谷值电流的变化斜率K 1;步骤三,确定预设值K 0,所述预设值K 0由芯片的控制模式及电感确定;步骤四,比较判断变化斜率K 1与预设值K 0大小,确定芯片控制模式;步骤五,进行下一周期持续循环检测,重复上述判断;本发明在进行电流动态响应时,将电感的谷值电流变化信号接入控制器中,通过检测电流的变化来切换控制模式的开启与导通,实现电流动态变化时,对输出电压的迅速调整,避免触发芯片的过流保护,有效解决后端动态变化时的抽载需求,保持电压稳定;无需额外的设计电路,降低生产成本。
Description
本申请要求于2020年08月06日提交中国专利局、申请号为202010783888.6、发明名称为“一种实现电流快速响应的芯片控制方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本发明涉及一种实现电流快速响应的芯片控制方法,属于芯片设计技术领域。
伴随云计算应用的发展,对存储、网络传输等性能要求逐步增高,因此,针对这些部件的要求也越来越高。各个芯片厂商一般是通过提高芯片的电流大小来提高其性能。但,为了降低芯片的功耗,一般是通过提高芯片制程、降低输入电压等的方式实现。因此,对供电设计及电源完整性带来了很高的挑战。
对于POL(Power On Load,电力负荷)供电芯片的设计,目前主流厂商(如:德州仪器、MPS(Monolithic Power Systems,芯源系统)等)一般采用COT的架构来设计。所谓COT,即Constant-On-Time(恒定时间),控制PWM(Pulse Width Modulation,脉冲宽度调制)波中开启时间不变,通过调节关闭时间,从而来实现输出电压的控制。
COT控制模式主要有如下优点:
(1)将环路控制部分做到芯片内部,外围采用设计简单,无需设计复杂的环路即可保证电压的稳定输出。
(2)无比例积分(控制)环节,减少了运放的放置,因此无比例积分(控制)延迟及运放延迟,使系统的响应速度极快,在电压存在波动时可以迅速反应,使输出电压保持一个相对稳定的范围。
但,因为导通周期的开启时间保持不变,在输出与输入的压 差过大时,导通周期的时间会比较小。在输出做动态拉载时,过冲的会比较大,输出电压有明显的跌落与上升,不满足部分负载设备的工作要求。
发明内容
针对上述存在的技术问题,本发明的目的是:提出了一种实现电流快速响应的芯片控制方法,有效解决后端动态变化时的抽载需求,保持电压稳定。
本发明的技术解决方案是这样实现的:一种实现电流快速响应的芯片控制方法,包括如下步骤,步骤一,将芯片电感的谷值电流变化信号接入控制器中;步骤二,检测谷值电流的变化,计算谷值电流的变化斜率K
1;步骤三,确定预设值K
0,所述预设值K
0由芯片的控制模式及电感确定;步骤四,比较判断变化斜率K
1与预设值K
0大小,确定芯片控制模式;步骤五,进行下一周期持续循环检测,重复上述判断。
优选的,所述谷值电流的变化斜率K
1的计算公式为:K
1=(I
2-I
1)/T,T=T
2-T
1,其中,I
1为T
1时刻的谷值电流,I
2为T
2时刻的谷值电流,T为PWM控制的周期。
优选的,比较判断所述变化斜率K
1与预设值K
0大小,确定芯片控制模式的步骤包括:若K
1≤K
0,判断此时芯片的控制模式可以满足需求,无需切换;若K
1>K
0,同时(I
1I
2)<I
ocp*0.6,其中,I
ocp为过流保护电流,则此时芯片的控制达到极限,将控制模式切换至预设的控制模式。
优选的,所述预设的控制模式为:当K
1为正时,加大上MOS(Metal Oxide Semiconductor,金属-氧化物半导体场效应晶体管)的开启时间,在短时间内传输足够的能量,满足后端的拉载需求。
优选的,所述开启时间的设置方式为:第一次检测到需要切换控制模式时,将上MOS的导通时间由t改为2t,同时下MOS的开启时间变为原来的最小值。
优选的,对所述控制模式的每个周期持续进行检测,当经过2个周期时,检测到输出电压还没有比上一周期的小时,将上MOS的导通时间由2t改为3t,其后,导通时间固定在3t,直到完成此次调控过程。
优选的,当电流的变化量低于设置的过流保护电流I
ocp的60%时,判断此时后端抽载需求的动态变化结束,控制上MOS开启,下MOS关闭,同时比较反馈端的信号。
由于上述技术方案的运用,本发明与现有技术相比具有下列优点:
本发明的一种实现电流快速响应的芯片控制方法,在进行电流动态响应时,将电感的谷值电流变化信号接入控制器中,通过检测电流的变化来切换控制模式的开启与导通,实现电流动态变化时,对输出电压的迅速调整,保持输出电压稳定,避免触发芯片的过流保护,可有效解决后端动态变化时的抽载需求,保持电压稳定;无需额外的设计电路,降低生产成本。
下面结合附图对本发明技术方案作进一步说明:
附图1为本发明的一种实现电流快速响应的芯片控制方法的实施例流程图。
下面结合附图来说明本发明。
如附图1所示为本发明所述的一种实现电流快速响应的芯片控制方法,包括如下步骤,步骤一,将芯片电感的谷值电流变化信号接入控制器中;步骤二,检测谷值电流的变化,计算谷值电流的变化斜率K
1;步骤三,确定预设值K
0,所述预设值K
0由芯片的控制模式及电感确定;步骤四,比较判断变化斜率K
1与预设值 K
0大小,确定芯片控制模式;步骤五,进行下一周期持续循环检测,重复上述判断;所述谷值电流通过侦测方法进行监控;当有电流流过下MOS(金属-氧化物半导体场效应晶体管)时,选取T
1与T
2时间检测谷值电流,分别为I
1与I
2,计算电流的变化斜率K
1=(I
2-I
1)/T,T=T
2-T
1,其中,I
1为T
1时刻的谷值电流,I
2为T
2时刻的谷值电流,T为PWM控制的周期,判断与K
1预设值K
0的大小,判断其是否处于过流:
若K
1≤K
0,判断此时芯片的控制模式可以满足需求,无需切换;若K
1>K
0,同时(I
1I
2)<I
ocp*0.6,I
ocp为过流保护电流,此时芯片的控制达到极限,需要切换控制模式,将控制模式切换至预设的控制模式。
所述控制模式的控制方式为:当K
1为正时,加大上MOS的开启时间,让其能够在短时间内传输足够的能量,保证其可以满足后端的拉载需求。
所述开启时间的设置方式为:第一次检测到需要切换控制模式时,将上MOS的导通时间由t改为2t,同时下MOS的开启时间变为原来的最小值;对所述控制模式的每个周期持续进行检测,当经过2个周期时,检测到输出电压还没有比上一周期的小时,将上MOS的导通时间由2t改为3t,其后,导通时间固定在3t,直到完成此次调控过程。
当电流的变化率K
1低于设置过流保护电流的60%时,判断此时后端在正常工作,控制上MOS开启,下MOS关闭,同时比较反馈端的信号;若反馈端的信号大于等于正常值或电流达到设置过流保护电流的60%时,此时后端抽载需求的动态变化结束,切换至正常的工作模式。
本发明的一种实现电流快速响应的芯片控制方法,在进行电流动态响应时,将电感的谷值电流变化信号接入控制器中,通过检测电流的变化来调整控制模式的开启与导通,实现电流动态变化时,对输出电压的迅速调整,保持输出电压稳定,避免触发芯 片的过流保护,可有效解决后端动态变化时的抽载需求,保持电压稳定;无需额外的设计,降低生产成本。
上述实施例只为说明本发明的技术构思及特点,其目的在于让熟悉此项技术的人士能够了解本发明的内容并加以实施,并不能以此限制本发明的保护范围,凡根据本发明精神实质所作的等效变化或修饰,都应涵盖在本发明的保护范围内。
Claims (8)
- 一种实现电流快速响应的芯片控制方法,其特征在于:包括如下步骤,步骤一,将芯片电感的谷值电流变化信号接入控制器中;步骤二,检测谷值电流的变化,计算谷值电流的变化斜率K 1;步骤三,确定预设值K 0,所述预设值K 0由芯片的控制模式及电感确定;步骤四,比较判断变化斜率K 1与预设值K 0大小,确定芯片控制模式;步骤五,进行下一周期持续循环检测,重复上述判断。
- 如权利要求1所述的一种实现电流快速响应的芯片控制方法,其特征在于:所述谷值电流的变化斜率K 1的计算公式为:K 1=(I 2-I 1)/T,T=T 2-T 1,其中,I 1为T 1时刻的谷值电流,I 2为T 2时刻的谷值电流,T为PWM控制的周期。
- 如权利要求2所述的一种实现电流快速响应的芯片控制方法,其特征在于:比较判断所述变化斜率K 1与预设值K 0大小,确定芯片控制模式的步骤包括:若K 1≤K 0,判断此时芯片的控制模式可以满足需求,无需切换;若K 1>K 0,同时(I 1I 2)<I ocp*0.6,其中,I ocp为过流保护电流,则此时芯片的控制达到极限,将控制模式切换至预设的控制模式。
- 如权利要求3所述的一种实现电流快速响应的芯片控制方法,其特征在于:所述预设的控制模式为:当K 1为正时,加大上MOS的开启时间,在短时间内传输足够的能量,满足后端的拉载需求。
- 如权利要求4所述的一种实现电流快速响应的芯片控制方法,其特征在于:所述开启时间的设置方式为:第一次检测到需要切换控制模式时,将上MOS的导通时间由t改为2t,同时下MOS的开启时间变为原来的最小值。
- 如权利要求5所述的一种实现电流快速响应的芯片控制方法,其特征在于:对所述控制模式的每个周期持续进行检测,当经过2个周期时,检测到输出电压还没有比上一周期的小时,将上MOS的导通时间由2t改为3t,其后,导通时间固定在3t,直到完成此次调控过程。
- 如权利要求3所述的一种实现电流快速响应的芯片控制方法,其特征在于:当电流的变化量低于设置的过流保护电流I ocp的60%时,判断此时后端正常工作,控制上MOS开启,下MOS关闭,同时比较反馈端的信号。
- 如权利要求7所述的一种实现电流快速响应的芯片控制方法,其特征在于:若反馈端的信号大于等于正常值或电流达到设置的过流保护电流I ocp的60%时,此时后端抽载需求的动态变化结束,切换至正常的工作模式。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010783888.6 | 2020-08-06 | ||
CN202010783888.6A CN112051883B (zh) | 2020-08-06 | 2020-08-06 | 一种实现电流快速响应的芯片控制方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022028052A1 true WO2022028052A1 (zh) | 2022-02-10 |
Family
ID=73602195
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2021/096208 WO2022028052A1 (zh) | 2020-08-06 | 2021-05-27 | 一种实现电流快速响应的芯片控制方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN112051883B (zh) |
WO (1) | WO2022028052A1 (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112051883B (zh) * | 2020-08-06 | 2022-11-29 | 苏州浪潮智能科技有限公司 | 一种实现电流快速响应的芯片控制方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102104334A (zh) * | 2009-12-18 | 2011-06-22 | 凌特公司 | 谷值电流模式控制的dc至dc转换器的ccm和dcm之间的干净转换 |
US20140375332A1 (en) * | 2013-06-25 | 2014-12-25 | Stmicroelectronics International N.V. | Method of valley inductance current polarity detection in a pulse width modulated circuit with an inductive charge |
CN105244848A (zh) * | 2015-10-30 | 2016-01-13 | 杰华特微电子(杭州)有限公司 | 过压保护方法及电路 |
CN111262434A (zh) * | 2020-02-20 | 2020-06-09 | 上海南芯半导体科技有限公司 | 一种升降压dc-dc转换器及控制方法 |
CN112051883A (zh) * | 2020-08-06 | 2020-12-08 | 苏州浪潮智能科技有限公司 | 一种实现电流快速响应的芯片控制方法 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105704866B (zh) * | 2016-04-26 | 2017-11-07 | 杰华特微电子(杭州)有限公司 | 控制电路及控制方法 |
CN106300925B (zh) * | 2016-08-26 | 2018-07-17 | 杰华特微电子(杭州)有限公司 | Ac-dc电路的驱动控制电路、方法及其系统 |
CN206164359U (zh) * | 2016-09-09 | 2017-05-10 | 杰华特微电子(杭州)有限公司 | 一种ac/dc转换电路及其控制模块 |
CN106230249B (zh) * | 2016-09-09 | 2018-12-14 | 杰华特微电子(杭州)有限公司 | 一种ac/dc转换电路的控制方法及控制模块 |
CN108631271B (zh) * | 2017-10-16 | 2020-01-07 | 西安矽力杰半导体技术有限公司 | 过流保护控制电路 |
CN108512422B (zh) * | 2018-05-18 | 2020-09-25 | 西北工业大学 | 一种固定导通时间控制的降压型dc-dc转换器 |
CN109889045B (zh) * | 2019-04-15 | 2021-06-29 | 南京融芯微电子有限公司 | 一种谷底电流控制的dc/dc转换器在轻载时抑制电流过冲的方法 |
-
2020
- 2020-08-06 CN CN202010783888.6A patent/CN112051883B/zh active Active
-
2021
- 2021-05-27 WO PCT/CN2021/096208 patent/WO2022028052A1/zh active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102104334A (zh) * | 2009-12-18 | 2011-06-22 | 凌特公司 | 谷值电流模式控制的dc至dc转换器的ccm和dcm之间的干净转换 |
US20140375332A1 (en) * | 2013-06-25 | 2014-12-25 | Stmicroelectronics International N.V. | Method of valley inductance current polarity detection in a pulse width modulated circuit with an inductive charge |
CN105244848A (zh) * | 2015-10-30 | 2016-01-13 | 杰华特微电子(杭州)有限公司 | 过压保护方法及电路 |
CN111262434A (zh) * | 2020-02-20 | 2020-06-09 | 上海南芯半导体科技有限公司 | 一种升降压dc-dc转换器及控制方法 |
CN112051883A (zh) * | 2020-08-06 | 2020-12-08 | 苏州浪潮智能科技有限公司 | 一种实现电流快速响应的芯片控制方法 |
Also Published As
Publication number | Publication date |
---|---|
CN112051883B (zh) | 2022-11-29 |
CN112051883A (zh) | 2020-12-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109004839B (zh) | 一种提高开关电源重载切轻载动态响应的控制方法 | |
WO2017028500A1 (zh) | 一种提高开关电源动态响应的控制方法 | |
TWI504120B (zh) | 返馳式轉換器、控制返馳式轉換器的控制器和方法 | |
WO2020015391A1 (zh) | 一种提高开关电源输出精度的控制方法 | |
TWI327421B (en) | Method for stabling voltage, pulse frequency modulating circuit and power supply using the same | |
WO2023020168A1 (zh) | 级联变换器及其控制方法 | |
WO2022028052A1 (zh) | 一种实现电流快速响应的芯片控制方法 | |
CN112953242B (zh) | 一种瞬时过功率控制方法及电路 | |
CN111342436B (zh) | 一种浪涌电流抑制电路与方法 | |
CN103023314B (zh) | 升降压开关电源及其控制器 | |
CN111564973A (zh) | 一种dc-dc适配电源及其转换控制方法 | |
CN117833652A (zh) | 一种自适应脉冲序列控制的降压转换器及其控制方法 | |
CN101291106B (zh) | 调整占空比的取样方法 | |
CN209488469U (zh) | 比较器型的单边调整器和调整系统 | |
TWI539731B (zh) | 電壓轉換控制器、電壓轉換電路以及電壓轉換控制方法 | |
TWI524645B (zh) | 電壓轉換控制器、電壓轉換電路以及電壓轉換控制方法 | |
US11575321B2 (en) | Systems and methods for automatic determination of state of switches in power converters | |
WO2021218271A1 (zh) | 电源变换器启动控制方法、装置和电源变换器启动系统 | |
CN201562223U (zh) | 服务器系统 | |
CN114865922A (zh) | 一种控制方式平滑切换的有源箝位反激变换器 | |
CN211530997U (zh) | 调节电路和buck电路 | |
CN205105097U (zh) | 一种升压电路 | |
CN203014675U (zh) | 升降压开关电源及其控制器 | |
TW201414160A (zh) | 電源轉換器及其操作方法 | |
CN102931830A (zh) | 电感充电时间的控制电路、方法、芯片以及开关电源 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21854305 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21854305 Country of ref document: EP Kind code of ref document: A1 |