WO2022027832A1 - 一种水平轴风力发电机组叶片疲劳降载装置及方法 - Google Patents

一种水平轴风力发电机组叶片疲劳降载装置及方法 Download PDF

Info

Publication number
WO2022027832A1
WO2022027832A1 PCT/CN2020/122623 CN2020122623W WO2022027832A1 WO 2022027832 A1 WO2022027832 A1 WO 2022027832A1 CN 2020122623 W CN2020122623 W CN 2020122623W WO 2022027832 A1 WO2022027832 A1 WO 2022027832A1
Authority
WO
WIPO (PCT)
Prior art keywords
slider
blade
fatigue load
restoring force
horizontal axis
Prior art date
Application number
PCT/CN2020/122623
Other languages
English (en)
French (fr)
Inventor
郑磊
任革学
许世森
郭小江
丁坤
王茂华
陈晓路
史绍平
屠劲林
梁思超
冯笑丹
Original Assignee
中国华能集团清洁能源技术研究院有限公司
华能集团技术创新中心有限公司
华能新能源股份有限公司
华能国际电力股份有限公司江苏清洁能源分公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国华能集团清洁能源技术研究院有限公司, 华能集团技术创新中心有限公司, 华能新能源股份有限公司, 华能国际电力股份有限公司江苏清洁能源分公司 filed Critical 中国华能集团清洁能源技术研究院有限公司
Priority to DE212020000565.6U priority Critical patent/DE212020000565U1/de
Publication of WO2022027832A1 publication Critical patent/WO2022027832A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D1/00Wind motors with rotation axis substantially parallel to the air flow entering the rotor 
    • F03D1/06Rotors
    • F03D1/065Rotors characterised by their construction elements
    • F03D1/0675Rotors characterised by their construction elements of the blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D13/00Assembly, mounting or commissioning of wind motors; Arrangements specially adapted for transporting wind motor components
    • F03D13/20Arrangements for mounting or supporting wind motors; Masts or towers for wind motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D80/00Details, components or accessories not provided for in groups F03D1/00 - F03D17/00
    • F03D80/70Bearing or lubricating arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/30Control parameters, e.g. input parameters
    • F05B2270/331Mechanical loads
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/728Onshore wind turbines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the invention relates to load reduction of wind turbine blades, in particular to a fatigue load reduction device and method for horizontal axis wind turbine blades.
  • the unit load is divided into ultimate load and fatigue load.
  • reducing the ultimate load can be achieved by adjusting the aerodynamic shape and/or structural stiffness of the blade, and the control strategy of the unit, which needs to be iteratively completed in the design stage of the complete machine and blade.
  • the effect that can be obtained by using the method of molding product transformation is very limited.
  • reducing fatigue load can also be achieved by adding structural damping, dynamic vibration absorption devices, etc., which can be modified after the design is completed.
  • the main structure of the wind turbine blade does not include a device that can independently realize the load reduction function, and the relevant patent applications are very few.
  • the technical solutions that can be found include the following situations:
  • Load sensors are mounted on key parts of the unit to monitor the unit load. Define limit loads, safety factors, load trigger flags. When the load is triggered, take corresponding control to reduce the ultimate load of the unit.
  • a prestressed cable is installed inside the blade. After the cable amplifies the blade vibration through the movable pulley block, it drives the eddy current to dampen rotation, thereby dissipating energy and reducing blade vibration.
  • Patents 1) and 2) both use the control system to adjust and reduce the blade load.
  • the determination of the control strategy has a significant impact on the degree of load reduction.
  • the relevant research and development process belongs to the technical core and needs to be jointly developed with the complete machine and blade design, and the cycle is long.
  • Patent 3) is to reduce the blade load by increasing the structural damping dissipation, which needs to be implemented in the blade production stage, and the safety of the relevant connection positions needs to be checked separately.
  • the purpose of the present invention is to provide a device and method for reducing fatigue load of horizontal axis wind turbine blades, which solves the defects of long cycle and low efficiency in the existing means for reducing the load of the unit.
  • the invention provides a blade fatigue load reduction device for a horizontal axis wind turbine, comprising a blade fatigue load reduction device body, and the blade fatigue load reduction device body is installed between the blade root flange and the pitch bearing flange;
  • the fatigue load reducing device body includes a casing structure and a sliding block restoring force system, wherein the sliding block restoring force system is provided with multiple groups, and is uniformly distributed in the inner cavity of the casing structure along the circumferential direction;
  • the shell structure includes a first shell structure and a second shell structure, the second shell structure is sleeved on the first shell structure;
  • the sliding block restoring force system is composed of a sliding block and a restoring force providing component, the sliding block is arranged in the space formed between the first casing structure and the second casing structure, and the movement direction of the sliding block is along the The radial direction of the space is arranged; the sliding block is connected to the inner side wall of the housing structure through the restoring force providing assembly;
  • the upper and lower surfaces of the slider are respectively in contact with the inner surfaces of the first housing structure and the second housing structure.
  • the first casing structure includes an inner cylinder and a top cover, wherein the top cover is a ring structure, mounted on the top of the inner cylinder, and the central axes of the two are coincident as the top of the casing structure;
  • the second shell structure includes an outer cylinder and a bottom cover, wherein the bottom cover is a ring structure, mounted on the bottom of the outer cylinder, and the central axes of the two coincide, serving as the bottom of the shell structure;
  • the outer cylinder is sleeved on the inner cylinder, and the central axes of the two are coincident.
  • the slider has a wedge-shaped structure, and the inner surface of the top cover and the inner surface of the bottom cover form the same wedge-shaped angle as the slider.
  • the blade root, the blade root flange, the top cover, the bottom cover, the pitch bearing flange, and the pitch bearing are connected by pre-tightening high-strength bolts.
  • the restoring force providing component is a spring
  • the spring is radially arranged along the end face, one end is connected to the side wall of the housing structure, and the other end is connected to the slider, so that an elastic interaction force is generated between the two.
  • the restoring force providing component is a magnetic element
  • the magnetic element is respectively installed on the side wall of the housing structure and the slider, so that a magnetic interaction force is generated between the two.
  • the restoring force providing assembly includes a spring and a magnetic element, wherein the spring is radially arranged along the end face, one end is connected to the side wall of the housing structure, and one end is connected to the slider; the magnetic element is provided with two , respectively installed on the side wall of the shell structure and the slider, so that elastic and magnetic interaction force is generated between the slider and the shell structure.
  • a method for reducing fatigue load of blades of a horizontal axis wind turbine based on the described device for reducing fatigue load of blades of a horizontal axis wind turbine, comprising the following steps:
  • the slider slides radially to the side with a larger gap or a side with a smaller gap, and is always in close contact with the inner surface of the first shell structure and the second shell structure, and then passes through the sliding block.
  • the friction damping effect realizes the dissipation of the kinetic energy of the system.
  • the first-order natural frequency of the restoring force system of each slider is consistent with the frequency of the blade fatigue vibration that causes the blade root at its position to deform significantly.
  • the invention provides a device and method for reducing the fatigue load of the blade of the horizontal axis wind turbine, which utilizes the characteristics of the fatigue vibration of the blade of the horizontal axis wind turbine, adopts the slider restoring force system to dynamically absorb the low-order natural frequency vibration kinetic energy of the blade, and effectively reduces the vibration of the blade of the horizontal axis wind turbine.
  • the kinetic energy is dissipated, so as to reduce the fatigue load of the blade; the research and development of the device can be realized independently without intervening in the design of the whole machine and the blade; the installation of the device does not need to intervene in the production of the blade, and does not affect the safety of the blade itself.
  • Fig. 1 is the assembly schematic diagram of the fatigue load reducing device involved in the present invention
  • FIG. 2 is a schematic structural diagram of the fatigue load reducing device involved in the present invention.
  • a blade fatigue load reduction device for a horizontal axis wind turbine generator set provided by the present invention includes a blade fatigue load reduction device body 3 , and the blade fatigue load reduction device body 3 is installed on the blade root flange 2 and the transformer. Between the paddle bearing flanges 4.
  • the blade fatigue load reducing device body 3 includes an inner cylinder 301 , a top cover 302 , a slider 303 , a bottom cover 304 , a restoring force providing component 305 and an outer cylinder 306 , wherein the inner cylinder 301 and The outer cylinders 306 are nested together and arranged coaxially.
  • a gap is provided between the inner cylinder 301 and the outer cylinder 306 .
  • the top of the inner cylinder 301 is provided with a top cover 302, and the top cover is a ring structure; the top cover 302 is installed on the top of the inner cylinder 301, and the central axes of the two are coincident to form a first shell structure, as a the top of the shell structure.
  • the bottom of the outer cylinder 306 is provided with a bottom cover 304, the bottom cover is a ring structure; the bottom cover 304 is installed on the bottom of the outer cylinder 306, and the central axes of the two coincide, forming a second shell structure as a shell bottom of the body structure.
  • the second shell structure is sleeved on the first shell structure to form an integral shell structure.
  • the outer cylinder 306 is sleeved on the inner cylinder 301 .
  • the housing structure is arranged between the blade root flange 2 and the pitch bearing flange 4 .
  • the slider restoring force system is provided in multiple groups, which are uniformly arranged in the inner cavity formed between the second casing structure and the first casing structure along the circumferential direction.
  • the sliding block restoring force system is composed of a sliding block 303 and a restoring force providing component 305 , and the sliding block 303 is connected to the inner side wall of the outer cylinder 306 through the restoring force providing component 305 .
  • the slider 303 is a wedge-shaped structure.
  • the inner surface of the top cover 302 and the inner surface of the bottom cover 304 form the same wedge-shaped angle as the slider 303.
  • the upper surface of the slider 303 is matched with the inner surface of the top cover 302.
  • the lower surface of the slider 303 is matched with the inner surface of the bottom cover 304 .
  • the blade root 1 , the blade root flange 2 , the top cover 302 , the bottom cover 304 , the pitch bearing flange 4 , and the pitch bearing 5 are connected by pre-tightening high-strength bolts.
  • a set of sliding block restoring force system is arranged between two adjacent connecting bolts.
  • the restoring force providing component 305 is a spring and/or a magnetic element; the spring is radially arranged along the end face, one end is connected to the side wall of the housing structure, and the other end is connected to the slider 303, so that elastic interaction occurs between the two.
  • the magnetic element is installed on the side wall of the housing structure and the slider 303 respectively, so that a magnetic interaction force is generated between the two.
  • the loads transmitted by the blade root connection are mainly radial bending moment and spanwise axial force, and the load distribution of downward pressing or upward pulling and the deformation relative to the pitch bearing are formed in the local area of the blade root end face.
  • the blade fatigue load reducing device When the local area of the blade root is pressed down/pulled up relative to the pitch bearing, it is transmitted to the blade fatigue load reducing device, which will drive the top of the shell structure to move down/up relative to the bottom, so that the top cover of the shell structure and the The relative distance of the bottom cover is reduced/increased, so that under the action of the restoring force generated by the restoring force providing component, the slider will slide radially to the side with the larger gap or the side with the smaller gap, and always stick to the inner surface of the top cover and the inner surface of the top cover.
  • the inner surface of the bottom cover The inner surface of the bottom cover.
  • the fatigue load (radial bending moment and spanwise axial force) at the blade root position oscillates positively and negatively with time, and the deformation of the connecting structure drives the slider in the blade fatigue load reducing device to slide radially near its equilibrium position.
  • the slider is subjected to sliding friction and dissipates the kinetic energy of the system, so it can accelerate the attenuation of blade fatigue vibration and reduce the blade fatigue load. This effect can not only reduce the fatigue load of the blade root position, but also reduce the fatigue load of the blade itself.
  • the structure of the inner cylinder/outer cylinder is a rotational axis symmetrical structure. Its function is to maintain the shape of the load-reducing device; provide positioning and force application points for the restoring force components; form a sealing protection for the internal mechanism.
  • the structure of the top cover/bottom cover is a rotational axis symmetrical structure, with bolt holes for blade root connections; the outer surface of the top cover is parallel to the outer surface of the bottom cover, and the inner surface of the top cover and the inner surface of the bottom cover form a certain angle, and the angle is Equal to the number of slider wedge angles. Its function is to transmit the deformation and load of the blade root/pitch bearing side.
  • the structure of the slider is a wedge-shaped structure.
  • the top surface of the slider is in full contact with the inner surface of the top cover, and the bottom surface of the slider is in full contact with the inner surface of the bottom cover.
  • the number can be determined according to the design requirements, and the two adjacent ones are evenly distributed in the circumferential direction of the end face. In the middle of the bolt; slide along the radial direction of the end face, and the movement process does not interfere with the connecting bolt. Its role is to dissipate the kinetic energy of the system through sliding friction.
  • the structural form of the restoring force providing component is to provide restoring force by means of spring/magnetic pole interaction; the number corresponds to the slider, one end is connected/one pole is fixed to the inner cylinder/outer cylinder, and one end is connected/one pole is fixed to the slider. Its function is to provide restoring force for the sliding of the slider.
  • the blade is a slender variable-section beam structure, and its high-order natural frequency vibration corresponds to higher structural damping and faster system kinetic energy dissipation. Therefore, the fatigue vibration response of the blade is usually formed by the superposition of low-order natural frequency vibration.
  • the blade fatigue load reduction device dissipates the system kinetic energy corresponding to the low-order natural frequency vibration of the blade, which can effectively reduce the blade fatigue load.
  • the low-order natural frequency vibration of the blade mainly includes the vibration in the swing direction and the vibration in the sway direction.
  • the load distribution in the blade root area and the deformation relative to the pitch bearing will be more significant than other directions, and it is easier to excite the The slider slides radially within the circumferential angle range.
  • the radial sliding of the slider that is, the vibration of the slider restoring force system
  • the radial sliding of the slider is formed by the vibration excitation of the blade.
  • the first-order natural frequency value of the slider restoring force system is equal to the vibration frequency of the corresponding excitation source, the absorption and The dissipation effect is the most obvious. Therefore, the first-order natural frequency value of the slider restoring force system in the corresponding direction can be designed according to the different low-order natural frequency vibrations of the blade, which can simultaneously dissipate the kinetic energy of the system corresponding to the multi-order natural frequency vibration of the blade, thereby effectively reducing the blade. fatigue load.
  • the device and method effectively realize the fatigue load reduction of the blades of the horizontal axis wind turbine.
  • the invention utilizes the characteristics of the fatigue vibration of the blade of the horizontal axis wind turbine, adopts the slider restoring force system to dynamically absorb the low-order natural frequency vibration kinetic energy of the blade, and effectively dissipates the kinetic energy of the system, thereby realizing the reduction of the blade fatigue load, and has the following characteristics:
  • the device can effectively reduce the fatigue load of the blade.
  • the application does not need to modify the control strategy of the whole machine or independently develop the control system, and the research and development does not need to intervene in the design of the whole machine and the blade, saving time and cost.
  • the device can realize the system kinetic energy dissipation corresponding to the multi-order natural frequency vibration of the blade, which is equivalent to increasing the damping of the system structure in multiple dimensions and improving the effect of reducing the fatigue load of the blade.
  • the device adopts the dynamic absorption vibration kinetic energy method, which can not only reduce the fatigue load of the blade root position, but also reduce the fatigue load of the blade itself. It is also beneficial to reduce the fatigue load of other key parts on the power transmission path of the wind turbine.
  • the device can increase the relative deformation between the top cover and the bottom cover under load conditions, ensuring that the top cover and the blade root (flange), the bottom cover and the pitch bearing (flange). ) better contact of the end face, reduce the load of the blade root connecting bolt, weaken the nonlinear deformation of the blade root connecting bolt, and improve the safety of the connecting structure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Wind Motors (AREA)

Abstract

一种水平轴风力发电机组叶片疲劳降载装置及方法,包括叶片疲劳降载装置本体(3),叶片疲劳降载装置本体安装在叶根法兰(2)和变桨轴承法兰(4)之间;疲劳降载装置本体包括壳体结构和滑块回复力系统,存在多组滑块回复力系统沿端面圆周方向均匀布置在壳体结构中、相邻两根连接螺栓之间;滑块回复力系统由滑块(303)和回复力提供组件(305)组成,每个滑块通过回复力提供组件分别连接在壳体结构的侧壁上;壳体结构的顶部内表面与滑块的上表面相接触,壳体结构的底部内表面与滑块的下表面相接触。该装置的研发,无需介入整机、叶片设计环节,可独立实现;该装置的安装,无需介入叶片生产环节,不影响叶片自身的安全性。

Description

一种水平轴风力发电机组叶片疲劳降载装置及方法 技术领域
本发明涉及风力发电机组叶片降载,特别涉及一种水平轴风力发电机组叶片疲劳降载装置及方法。
背景技术
随着水平轴风力发电机组单机容量大型化、轻量化的发展趋势不断推进,机组设计制造技术进展显著,叶片长度增加、机组功率增大、部件重量减轻、关键部位安全裕度降低,结构也逐渐展现出非线性特性。叶片作为机组载荷的主要来源,其自身以及传递的载荷下降会给部件结构优化提供更大的空间,对于机组服役期满的延寿评估、技改后的功率提升都会产生显著影响,是机械系统精细化设计中的重要方面。
机组载荷分为极限载荷和疲劳载荷。通常情况下,降低极限载荷可以通过调整叶片气动外形和/或结构刚度、机组控制策略等方法得以实现,需要在整机、叶片设计阶段迭代完成。鉴于现有设计优化技术的成熟,采用成型产品改造的方法,可以获得的效果十分有限。而降低疲劳载荷除使用上述方法外,还可以通过增加结构阻尼、动力吸振装置等方法实现,能够在设计完成后加以改造。
现在风力发电机组叶片主体结构中并未包含独立可实现降载功能的装置,相关专利应用非常少。能够查到的技术方案包含以下几种情况:
1)通过机组控制策略调整降低载荷
在机组关键部位贴装载荷传感器,监控机组载荷。定义极限载荷、安全因子、载荷触发标志。当载荷触发时,采取相应的控制,降低机组极限载荷。
发明名称:风力发电机组基于叶根载荷与塔架载荷的降载控制方法(公开号CN108180111A)
2)通过叶片阻尼控制调整降低载荷
采集叶片振动加速度值,与预设参考值进行比较,调整叶片减振控制系统的阻尼,减小叶片振动。
发明名称:一种风力发电机组叶片减振控制方法及系统(公开号CN104033334A)
3)通过增加叶片阻尼耗散降低载荷
在叶片内部安装预应力缆绳,缆绳将叶片振动通过动滑轮组放大后,带动电涡流阻尼旋转,从而耗散能量,减小叶片振动。
发明名称:一种大型风电叶片预应力索多向减振装置及连接方法(公开号CN109058049B)
专利1)和2)都是利用控制系统调整降低叶片载荷,控制策略的确定对于载荷降低程度影响显著,相关研发过程属于技术核心,需要同整机、叶片设计联合开发,周期较长。专利3)是利用增加结构阻尼耗散降低叶片载荷,需要在叶片生产阶段实施技改,相关连接位置的安全性需单独校核。
发明内容
本发明的目的在于提供一种水平轴风力发电机组叶片疲劳降载装置及方法,解决了现有降低机组载荷所采用的手段存在周期长、效率低的缺陷。
为了达到上述目的,本发明采用的技术方案是:
本发明提供的一种水平轴风力发电机组叶片疲劳降载装置,包括叶片疲劳降载装置本体,所述叶片疲劳降载装置本体安装在叶根法兰和变桨轴承法兰之间;
所述疲劳降载装置本体包括壳体结构和滑块回复力系统,其中,所述滑块回复力系统设置有多组,且沿圆周方向均布在壳体结构的内腔中;
所述壳体结构包括第一壳体结构和第二壳体结构,所述第二壳体结构套装在第一壳体结构上;
所述滑块回复力系统由滑块和回复力提供组件组成,所述滑块布置在第一壳体结构和第二 壳体结构之间形成的空间内,所述滑块的运动方向沿所述空间的径向方向布置;所述滑块通过回复力提供组件连接在壳体结构的内侧壁上;
同时,所述滑块的上、下表面分别与第一壳体结构以及第二壳体结构的内表面相接触。
优选地,所述第一壳体结构包括内筒和顶盖,其中,所述顶盖为圆环结构,安装在内筒的顶部,且两者中轴线重合,作为壳体结构的顶部;
所述第二壳体结构包括外筒和底盖,其中,所述底盖为圆环结构,安装在外筒的底部,且两者中轴线重合,作为壳体结构的底部;
所述外筒套装在内筒上,且两者中轴线重合。
优选地,所述滑块为楔形结构,所述顶盖内表面与底盖内表面形成同滑块相同的楔形角度。
优选地,所述叶根、叶根法兰、顶盖、底盖、变桨轴承法兰、变桨轴承之间通过预紧力高强螺栓连接。
优选地,所述回复力提供组件为弹簧,弹簧沿端面径向布置,一端连接在壳体结构的侧壁上,一端连接在滑块上,使二者之间产生弹性相互作用力。
优选地,所述回复力提供组件为磁性元件,所述磁性元件分别安装在壳体结构的侧壁上和滑块上,使二者之间产生磁性相互作用力。
优选地,所述回复力提供组件包括弹簧和磁性元件,其中,弹簧沿端面径向布置,一端连接在壳体结构的侧壁上,一端连接在滑块上;所述磁性元件设置有两个,分别安装在壳体结构的侧壁上和滑块上,使滑块和壳体结构之间产生弹性及磁性相互作用力。
一种水平轴风力发电机组叶片疲劳降载方法,基于所述的一种水平轴风力发电机组叶片疲劳降载装置,包括以下步骤:
当叶根局部区域相对于变桨轴承向下压或向上拉时,传递到叶片疲劳降载装置上,会带动壳体结构的顶部相对于底部向下或向上运动,使得第一壳体结构和第二壳体结构之间的相对距 离缩小或增大;
滑块在回复力提供组件产生的回复力作用下,产生向间隙较大侧或间隙较小侧的径向滑动,始终贴紧第一壳体结构以及第二壳体结构的内表面,进而通过摩擦阻尼作用实现系统动能的耗散。
优选地,所述每个滑块回复力系统的一阶固有频率,与使其所在位置叶根变形显著的叶片疲劳振动的频率一致。
与现有技术相比,本发明的有益效果是:
本发明提供的一种水平轴风力发电机组叶片疲劳降载装置及方法,利用水平轴风力发电机组叶片疲劳振动特点,采用滑块回复力系统动力学吸收叶片低阶固有频率振动动能,有效对系统动能形成耗散,从而实现叶片疲劳载荷的降低;该装置的研发,无需介入整机、叶片设计环节,可独立实现;该装置的安装,无需介入叶片生产环节,不影响叶片自身的安全性。
附图说明
图1是本发明涉及的疲劳降载装置装配示意图;
图2是本发明涉及的疲劳降载装置结构示意图。
具体实施方式
下面结合附图,对本发明进一步详细说明。
如图1所示,本发明提供的一种水平轴风力发电机组叶片疲劳降载装置,包括叶片疲劳降载装置本体3,所述叶片疲劳降载装置本体3安装在叶根法兰2和变桨轴承法兰4之间。
如图2所示,所述叶片疲劳降载装置本体3包括内筒301、顶盖302、滑块303、底盖304、回复力提供组件305和外筒306,其中,所述内筒301和外筒306套装在一起,且同轴布置。
所述内筒301和外筒306之间设置有间隙。
所述内筒301的顶部设置有顶盖302,所述顶盖为圆环结构;所述顶盖302安装在内筒301 的顶部,且两者中轴线重合,形成第一壳体结构,作为壳体结构的顶部。
所述外筒306的底部设置有底盖304,所述底盖为圆环结构;所述底盖304安装在外筒306的底部,且两者中轴线重合,形成第二壳体结构,作为壳体结构的底部。
所述第二壳体结构套装在第一壳体结构上,组成整体式的壳体结构。
所述外筒306套装在内筒301上。
所述壳体结构布置在叶根法兰2和变桨轴承法兰4之间。
所述滑块回复力系统设置有多组,沿圆周方向均匀布置在第二壳体结构和在第一壳体结构之间形成的内腔中。
所述滑块回复力系统由滑块303和回复力提供组件305组成,所述滑块303通过回复力提供组件305连接在外筒306的内侧壁上。
所述滑块303为楔形结构,所述顶盖302内表面与底盖304内表面形成同滑块303相同的楔形角度,所述滑块303上表面与顶盖302内表面相配合,所述滑块303下表面与底盖304内表面相配合。
所述叶根1、叶根法兰2、顶盖302、底盖304、变桨轴承法兰4、变桨轴承5之间通过预紧力高强螺栓连接。
两根相邻的连接螺栓之间布置有一组滑块回复力系统。
所述回复力提供组件305为弹簧和/或磁性元件;弹簧沿端面径向布置,一端连接在壳体结构的侧壁上,一端连接在滑块303上,使二者之间产生弹性相互作用力;磁性元件分别安装在壳体结构的侧壁上和滑块303上,使二者之间产生磁性相互作用力。
本发明的工作过程:
叶根连接传递的载荷主要是径向弯矩和展向轴力,在叶根端面局部区域形成向下压或者向上拉的载荷分布以及相对于变桨轴承的变形。
当叶根局部区域相对于变桨轴承向下压/向上拉时,传递到叶片疲劳降载装置上,会带动壳体结构的顶部相对于底部向下/向上运动,使得壳体结构顶盖和底盖的相对距离缩小/增大,从而滑块在回复力提供组件产生的回复力作用下,会产生向间隙较大侧或间隙较小侧的径向滑动,始终贴紧顶盖内表面与底盖内表面。
叶根位置的疲劳载荷(径向弯矩和展向轴力)都随时间正负振荡,连接结构的变形带动叶片疲劳降载装置中的滑块在其平衡位置附近径向滑动。滑块受到滑动摩擦力作用,耗散系统动能,故可以加速叶片疲劳振动衰减,起到降低叶片疲劳载荷的作用。该作用不仅可以降低叶根位置疲劳载荷,也可以降低叶片本身疲劳载荷。
内筒/外筒的结构形式为回转轴对称结构。其作用是维持降载装置外形;为回复力提供组件提供定位和施力点;对内部机构形成密封保护。
顶盖/底盖的结构形式为回转轴对称结构,带有叶根连接螺栓孔;顶盖外表面与底盖外表面平行,顶盖内表面与底盖内表面呈一定夹角,夹角度数等于滑块楔角度数。其作用是传递叶根/变桨轴承侧变形、载荷。
滑块的结构形式为楔形结构,滑块顶面与顶盖内表面全接触,滑块底面与底盖内表面全接触;数量可根据设计要求确定,均匀分布在端面圆周方向相邻两根连接螺栓中间;沿端面径向方向滑动,运动过程不与连接螺栓发生干涉。其作用是通过滑动摩擦耗散系统动能。
回复力提供组件的结构形式为采用弹簧/磁极相互作用的方式提供回复力;数量与滑块对应,一端连接/一极固定在内筒/外筒,一端连接/一极固定在滑块。其作用是为滑块滑动提供回复力。
本发明涉及的风力发电机组叶片疲劳降载装置技术要求会影响叶片疲劳载荷降低的效果,因而需作为发明的一部分,描述如下:
叶片作为细长变截面梁结构,其高阶固有频率振动对应的结构阻尼较高、系统动能耗散较 快,故通常叶片疲劳振动响应都是由低阶固有频率振动叠加而成的。叶片疲劳降载装置针对叶片低阶固有频率振动对应的系统动能形成耗散,可有效降低叶片疲劳载荷。
叶片低阶固有频率振动主要包含挥舞方向振动和摆振方向振动。对于挥舞方向/摆振方向振动,在以相应方向为中心的一定周向角度范围区间内,叶根区域载荷分布以及相对于变桨轴承的变形会比其它方向更为显著,更容易激励起该周向角度范围区间内的滑块径向滑动。
滑块径向滑动,即滑块回复力系统振动,是由叶片振动激励形成的,当滑块回复力系统的一阶固有频率值等于对应激励源的振动频率时,对于相应系统动能的吸收和耗散效果最明显。故可以根据叶片不同低阶固有频率振动设计对应方向的滑块回复力系统的一阶固有频率值,起到同时对叶片多阶固有频率振动对应的系统动能形成耗散的作用,从而有效降低叶片疲劳载荷。
该装置及方法有效实现了水平轴风力发电机组叶片疲劳降载。
有益效果:
本发明利用水平轴风力发电机组叶片疲劳振动特点,采用滑块回复力系统动力学吸收叶片低阶固有频率振动动能,有效对系统动能形成耗散,从而实现叶片疲劳载荷的降低,具有如下特点:
1、该装置可有效实现叶片疲劳载荷降低,应用无需修改整机控制策略或独立研发控制系统,研发无需介入整机、叶片设计环节,节约时间和成本。
2、该装置安装无需介入叶片生产环节,不影响叶片自身的安全性。
3、该装置可实现叶片多阶固有频率振动对应的系统动能耗散,相当于多维度增加系统结构阻尼,提高叶片疲劳载荷降低效果。
4、该装置采用动力学吸收振动动能方法,不仅可以降低叶根位置疲劳载荷,也可以降低叶片本身疲劳载荷,对于风力发电机组传力路径上的其它关键部位疲劳载荷的降低也有益处。
5、通过滑块的径向滑运,该装置在承载情况下可以增大顶盖与底盖间的相对变形,保证 顶盖与叶根(法兰)、底盖与变桨轴承(法兰)端面更好地接触,降低叶根连接螺栓承受载荷,减弱叶根连接螺栓非线性变形,提高连接结构的安全性。

Claims (9)

  1. 一种水平轴风力发电机组叶片疲劳降载装置,其特征在于,包括叶片疲劳降载装置本体(3),所述叶片疲劳降载装置本体(3)安装在叶根法兰(2)和变桨轴承法兰(4)之间;
    所述疲劳降载装置本体(3)包括壳体结构和滑块回复力系统,其中,所述滑块回复力系统设置有多组,且沿圆周方向均布在壳体结构的内腔中;
    所述壳体结构包括第一壳体结构和第二壳体结构,所述第二壳体结构套装在第一壳体结构上;
    所述滑块回复力系统由滑块(303)和回复力提供组件(305)组成,所述滑块(303)布置在第一壳体结构和第二壳体结构之间形成的空间内,所述滑块(303)的运动方向沿所述空间的径向方向布置;所述滑块(303)通过回复力提供组件(305)连接在壳体结构的内侧壁上;
    同时,所述滑块(303)的上、下表面分别与第一壳体结构以及第二壳体结构的内表面相接触。
  2. 根据权利要求1所述的一种水平轴风力发电机组叶片疲劳降载装置,其特征在于,所述第一壳体结构包括内筒(301)和顶盖(302),其中,所述顶盖(302)为圆环结构,安装在内筒(301)的顶部,且两者中轴线重合,作为壳体结构的顶部;
    所述第二壳体结构包括外筒(306)和底盖(304),其中,所述底盖(304)为圆环结构,安装在外筒(306)的底部,且两者中轴线重合,作为壳体结构的底部;
    所述外筒(306)套装在内筒(301)上,且两者中轴线重合。
  3. 根据权利要求2所述的一种水平轴风力发电机组叶片疲劳降载装置,其特征在于,所述滑块(303)为楔形结构,所述顶盖(302)内表面与底盖(304)内表面形成同滑块(303)相同的楔形角度。
  4. 根据权利要求2所述的一种水平轴风力发电机组叶片疲劳降载装置,其特征在于,所述叶根(1)、叶根法兰(2)、顶盖(302)、底盖(304)、变桨轴承法兰(4)、变桨轴承(5) 之间通过预紧力高强螺栓连接。
  5. 根据权利要求1所述的一种水平轴风力发电机组叶片疲劳降载装置,其特征在于,所述回复力提供组件(305)为弹簧,弹簧沿端面径向布置,一端连接在壳体结构的侧壁上,一端连接在滑块(303)上,使滑块(303)和壳体结构之间产生弹性相互作用力。
  6. 根据权利要求1所述的一种水平轴风力发电机组叶片疲劳降载装置,其特征在于,所述回复力提供组件(305)为磁性元件,所述磁性元件设置有两个,分别安装在壳体结构的侧壁上和滑块(303)上,使滑块(303)和壳体结构之间产生磁性相互作用力。
  7. 根据权利要求1所述的一种水平轴风力发电机组叶片疲劳降载装置,其特征在于,所述回复力提供组件(305)包括弹簧和磁性元件,其中,弹簧沿端面径向布置,一端连接在壳体结构的侧壁上,一端连接在滑块(303)上;所述磁性元件设置有两个,分别安装在壳体结构的侧壁上和滑块(303)上,使滑块(303)和壳体结构之间产生弹性及磁性相互作用力。
  8. 一种水平轴风力发电机组叶片疲劳降载方法,其特征在于,基于权利要求1-7中任一项所述的一种水平轴风力发电机组叶片疲劳降载装置,包括以下步骤:
    当叶根局部区域相对于变桨轴承向下压或向上拉时,传递到叶片疲劳降载装置(3)上,会带动壳体结构的顶部相对于底部向下或向上运动,使得第一壳体结构和第二壳体结构之间的相对距离缩小或增大;
    滑块(303)在回复力提供组件(305)产生的回复力作用下,产生向间隙较大侧或间隙较小侧的径向滑动,始终贴紧第一壳体结构以及第二壳体结构的内表面,进而通过摩擦阻尼作用实现系统动能的耗散。
  9. 根据权利要求8所述的一种水平轴风力发电机组叶片疲劳降载方法,其特征在于,所述每个滑块回复力系统的一阶固有频率,与使其所在位置叶根变形显著的叶片疲劳振动的频率一致。
PCT/CN2020/122623 2020-08-05 2020-10-22 一种水平轴风力发电机组叶片疲劳降载装置及方法 WO2022027832A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE212020000565.6U DE212020000565U1 (de) 2020-08-05 2020-10-22 Vorrichtung zur Reduzierung der Ermüdungslast der Rotorblätter von Windkraftanlagen mit horizontaler Achse

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010778737.1A CN111810354A (zh) 2020-08-05 2020-08-05 一种水平轴风力发电机组叶片疲劳降载装置及方法
CN202010778737.1 2020-08-05

Publications (1)

Publication Number Publication Date
WO2022027832A1 true WO2022027832A1 (zh) 2022-02-10

Family

ID=72863656

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/122623 WO2022027832A1 (zh) 2020-08-05 2020-10-22 一种水平轴风力发电机组叶片疲劳降载装置及方法

Country Status (2)

Country Link
CN (1) CN111810354A (zh)
WO (1) WO2022027832A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4909703A (en) * 1988-12-02 1990-03-20 Jacobs Paul R Motion damping apparatus for wind driven propellers
CN106930907A (zh) * 2017-04-27 2017-07-07 湘电风能有限公司 一种风力涡轮机变桨轴承降载装置
CN206753815U (zh) * 2017-02-23 2017-12-15 安徽蜂鸟电机有限公司 一种具有过速保护装置的风力发电机
CN108488032A (zh) * 2018-04-08 2018-09-04 王从相 一种风力发电风轮装置
CN208268001U (zh) * 2018-03-28 2018-12-21 咸宁祥天空气能电力有限公司 一种风力发电用的风车助力装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4848599B2 (ja) * 2001-07-16 2011-12-28 オイレス工業株式会社 免震構造物の固定装置
RU2409762C2 (ru) * 2007-03-29 2011-01-20 Абдулла Сиражутдинович АЛИЕВ Ветроэнергетическое устройство
CN210032186U (zh) * 2019-05-08 2020-02-07 安徽三宝钢结构股份有限公司 一种抗震复合钢承板
CN110374801B (zh) * 2019-07-02 2024-04-05 中国大唐集团新能源科学技术研究院有限公司 叶根独立变桨装置
CN213063828U (zh) * 2020-08-05 2021-04-27 中国华能集团清洁能源技术研究院有限公司 一种水平轴风力发电机组叶片疲劳降载装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4909703A (en) * 1988-12-02 1990-03-20 Jacobs Paul R Motion damping apparatus for wind driven propellers
CN206753815U (zh) * 2017-02-23 2017-12-15 安徽蜂鸟电机有限公司 一种具有过速保护装置的风力发电机
CN106930907A (zh) * 2017-04-27 2017-07-07 湘电风能有限公司 一种风力涡轮机变桨轴承降载装置
CN208268001U (zh) * 2018-03-28 2018-12-21 咸宁祥天空气能电力有限公司 一种风力发电用的风车助力装置
CN108488032A (zh) * 2018-04-08 2018-09-04 王从相 一种风力发电风轮装置

Also Published As

Publication number Publication date
CN111810354A (zh) 2020-10-23

Similar Documents

Publication Publication Date Title
CN110835963B (zh) 一种基于偏航的风力发电结构振动控制调谐质量阻尼器
AU2012100203A4 (en) Multiple Generator Wind Turbines with Rotary Blade Cage
CN104234929B (zh) 一种控制风力机叶片载荷与变形的装置
CN113267315A (zh) 一种低速风洞直驱式阵风发生装置
US20230193875A1 (en) Damping integrated device, damper and wind turbine
CN111287916B (zh) 一种用于风机的调谐碰撞惯容质量阻尼装置
CN111779637A (zh) 一种用于大型风电机塔架内部的单摆式减振装置
CN201874758U (zh) 风力发电机组抗振主机座
CN213063828U (zh) 一种水平轴风力发电机组叶片疲劳降载装置
WO2022027832A1 (zh) 一种水平轴风力发电机组叶片疲劳降载装置及方法
CN105003635B (zh) 用于齿轮箱的支撑装置及安装方法和维护方法
CN204704076U (zh) 一种风机塔筒内平台
CN215059134U (zh) 用于风机塔架减振的预应力环形调谐质量阻尼器安装结构
CN101315113B (zh) 带有径向限位装置的粘滞阻尼器
CN112160881A (zh) 一种风力发电装置及其安装方法
CN202790280U (zh) 一种变浆柜的减震器
CN202274041U (zh) 风力发电机组齿轮箱扭矩臂减振机构
CN104912734A (zh) 一种可防失速的垂直轴风力机
CN113309813B (zh) 一种抑制桥梁涡激振动的半主动吸振消能控制系统
CN109296099B (zh) 一种用于高耸结构的低频二自由度摆式tmd振动控制装置
CN113090445B (zh) 一种水平轴风力发电机组叶片结构加阻装置及方法
CN214273870U (zh) 一种风力发电装置
CN219388061U (zh) 一种风力发电机的支撑机构
CN218913059U (zh) 一种风力发电机阻尼装置
CN220767690U (zh) 一种中承式摩擦阻尼器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20948146

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20948146

Country of ref document: EP

Kind code of ref document: A1