WO2022027796A1 - Procédé de fabrication de fibre optique résistante à la flexion et sa fibre optique correspondante - Google Patents

Procédé de fabrication de fibre optique résistante à la flexion et sa fibre optique correspondante Download PDF

Info

Publication number
WO2022027796A1
WO2022027796A1 PCT/CN2020/115769 CN2020115769W WO2022027796A1 WO 2022027796 A1 WO2022027796 A1 WO 2022027796A1 CN 2020115769 W CN2020115769 W CN 2020115769W WO 2022027796 A1 WO2022027796 A1 WO 2022027796A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical fiber
layer
core layer
refractive index
bending
Prior art date
Application number
PCT/CN2020/115769
Other languages
English (en)
Chinese (zh)
Inventor
钟媛
姚艳
王亚玲
冯永明
和联科
郇朝阳
劳雪刚
沈震强
肖华
Original Assignee
江苏亨通光导新材料有限公司
江苏亨通光电股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏亨通光导新材料有限公司, 江苏亨通光电股份有限公司 filed Critical 江苏亨通光导新材料有限公司
Publication of WO2022027796A1 publication Critical patent/WO2022027796A1/fr

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/02Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
    • C03B37/025Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor from reheated softened tubes, rods, fibres or filaments, e.g. drawing fibres from preforms
    • C03B37/027Fibres composed of different sorts of glass, e.g. glass optical fibres
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02004Optical fibres with cladding with or without a coating characterised by the core effective area or mode field radius
    • G02B6/02009Large effective area or mode field radius, e.g. to reduce nonlinear effects in single mode fibres
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02214Optical fibres with cladding with or without a coating tailored to obtain the desired dispersion, e.g. dispersion shifted, dispersion flattened
    • G02B6/02219Characterised by the wavelength dispersion properties in the silica low loss window around 1550 nm, i.e. S, C, L and U bands from 1460-1675 nm
    • G02B6/02266Positive dispersion fibres at 1550 nm
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/036Optical fibres with cladding with or without a coating core or cladding comprising multiple layers
    • G02B6/03616Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference
    • G02B6/03638Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 3 layers only
    • G02B6/0365Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 3 layers only arranged - - +

Definitions

  • the invention relates to the technical field of optical fiber communication, in particular to a method for manufacturing a bending-resistant optical fiber, and the invention also provides a bending-resistant optical fiber.
  • Optical fiber access network is the "last mile" of the information highway, realizing high-speed information transmission and high-quality, high-bandwidth and reliable connections between telecom operators and end users, not only a broadband backbone transmission network. , the user access part is even more critical.
  • the application scenarios of optical fiber access networks are relatively complex, such as buildings, streets, and houses, with many fiber nodes and many tortuous wirings.
  • Optical fibers even need to be placed in crowded pipes or fixed in junction boxes and sockets after many times of bending. In the line terminal equipment with narrow space, this puts forward higher requirements on the bending performance of the optical fiber.
  • the present invention provides a method for manufacturing a bend-resistant optical fiber, and the bend-resistant optical fiber formed by the manufacture is suitable for dense wiring in a narrow indoor environment.
  • a method for manufacturing a bend-resistant optical fiber comprising the following steps:
  • the loose body is prepared by the VAD method.
  • the loose body includes a core layer and an inner cladding layer.
  • the core layer passes through SiCl 4 and GeCl 4 raw materials, and the inner cladding layer passes through SiCl 4 and CF 4 raw materials.
  • the density of the bulk body is 0.24 ⁇ 0.26g/cm 3 , the CF4 material of the inner cladding layer is diffused to the core layer, and the core layer is F-doped;
  • the diameter ratio of the inner cladding layer and the core layer of the first extending mandrel is 2.0-3.0, the relative refractive index difference of the core layer is 0.29%-0.34%, and the inner cladding layer is 0.29%-0.34%.
  • the relative refractive index difference is -0.12% to -0.04%, and the contribution of F to the refractive index of the core layer is -0.08% to -0.03%;
  • the first extension mandrel, the fluorine-doped sleeve, and the synthetic sleeve are pickled. After pickling, the fluorine-doped sleeve is inserted into the synthetic sleeve, and then the first extension mandrel is inserted into the fluorine-doped sleeve to form an assembly.
  • the second extension core rod and the chlorine-free synthetic quartz sleeve are assembled to obtain an optical fiber preform, and the optical fiber preform is drawn to obtain a bending-resistant optical fiber.
  • the wire drawing speed is 2000 m/min, and the wire drawing adopts an annealing process.
  • a bending-resistant optical fiber is characterized in that: it is a core layer, an inner cladding layer, a depressed cladding layer, a barrier layer and an outer cladding layer in order from the center radially outward, the depressed cladding layer is made of fluorine-doped material, and the barrier layer
  • the material of the barrier layer and the outer layer are made of synthetic quartz material, the material of the barrier layer contains chlorine, the material of the outer layer does not contain chlorine, the relative refractive index difference ⁇ 1 of the core layer is 0.29% to 0.34%, and the refractive index of fluorine to the core layer is 0.29% to 0.34%.
  • the contribution is -0.08% to -0.03%, the relative refractive index difference ⁇ 2 of the inner cladding is -0.12% to -0.04%, the relative refractive index difference ⁇ 3 of the depressed cladding is -0.50% to -0.25%, and the relative refractive index difference of the barrier layer is -0.12% to -0.04%.
  • the compressive stress of the core layer is -50Mpa ⁇ -20Mpa;
  • the attenuation coefficient of the fiber at 1550nm is less than or equal to 0.185dB/km;
  • the mode field diameter of the fiber at 1310nm is 8.2 ⁇ 8.8 ⁇ m
  • the cable cut-off wavelength is ⁇ 1260nm
  • the zero dispersion wavelength of the fiber is 1300nm ⁇ 1324nm;
  • the zero dispersion wavelength is 1304nm ⁇ 1324nm;
  • the additional loss of macrobending at 1550nm and 1625nm with 15mm bending radius is less than 0.03dB and 0.1dB respectively
  • the additional macrobending loss of 1550nm and 1625nm in 1 turn is less than 0.03dB and 0.1dB respectively
  • the additional loss of 1550nm and 1625nm in 7.5mm bending radius is less than 0.08dB and 0.25dB respectively
  • the macrobending additional loss at 1550nm and 1625nm is less than 0.15dB and 0.45dB respectively
  • the dispersion at 1550nm is less than or equal to 18ps/(nm ⁇ km)
  • the dispersion at 1625nm is less than or equal to 22ps/(nm ⁇ km)
  • the zero dispersion slope is less than 0.092ps/(nm 2 ⁇ km ).
  • a small amount of doping of the core layer F can be realized under the premise that the core layer does not pass through the CF 4 raw material, and the co-doping of GeO 2 and F in the core layer can effectively reduce the core layer. Viscosity, the viscosity of the core layer and the inner cladding layer are more matched, the defects generated in the optical fiber process are reduced, and the optical fiber attenuation is improved;
  • the synthetic material barrier layer contains a small amount of chlorine, and the setting of the barrier layer can make the fiber sink into the cladding layer. There is a transition in the stress to the outer cladding, which is beneficial to reduce attenuation;
  • Reasonable optical fiber profile structure design makes the fiber core layer subject to compressive stress, which further reduces the GeO 2 doping content of the core layer and further reduces the attenuation;
  • the manufacturing method is simple and suitable for mass production.
  • FIG. 1 is a schematic diagram of the refractive index distribution of the cross-section of the single-mode optical fiber of the present invention. .
  • a method for manufacturing a bend-resistant optical fiber comprising the following steps:
  • the loose body is prepared by the VAD method.
  • the loose body includes a core layer and an inner cladding layer.
  • the core layer passes through SiCl 4 and GeCl 4 raw materials, and the inner cladding layer passes through SiCl 4 and CF 4 raw materials.
  • the density of the bulk body is 0.24 ⁇ 0.26g/cm 3 , the CF4 material of the inner cladding layer is diffused to the core layer, and the core layer is F-doped;
  • the diameter ratio of the inner cladding layer and the core layer of the first extending mandrel is 2.0-3.0, the relative refractive index difference of the core layer is 0.29%-0.34%, and the inner cladding layer is 0.29%-0.34%.
  • the relative refractive index difference is -0.12% to -0.04%, and the contribution of F to the refractive index of the core layer is -0.08% to -0.03%;
  • the first extension mandrel, the fluorine-doped sleeve, and the synthetic sleeve are pickled. After pickling, the fluorine-doped sleeve is inserted into the synthetic sleeve, and then the first extension mandrel is inserted into the fluorine-doped sleeve to form an assembly.
  • the second extension mandrel and the chlorine-free synthetic quartz sleeve are assembled to obtain an optical fiber preform, and the optical fiber preform is drawn to obtain a low-loss bend-insensitive optical fiber, wherein the drawing speed is 2000 m/min, and the drawing adopts annealing craft.
  • a bending-resistant optical fiber the core layer, the inner cladding layer, the sunk cladding layer, the barrier layer and the outer cladding are sequentially arranged radially outward from the center, the sag cladding layer is made of fluorine-doped material, and the barrier layer and the outer cladding are made of synthetic quartz material , the barrier layer material contains chlorine, the outer cladding material does not contain chlorine, the relative refractive index difference ⁇ 1 of the core layer is 0.29% to 0.34%, the contribution of F to the refractive index of the core layer is -0.08% to -0.03%, and the relative refractive index difference of the inner cladding layer is -0.08% to -0.03%.
  • the refractive index difference ⁇ 2 is -0.12% to -0.04%
  • the relative refractive index difference ⁇ 3 of the depressed cladding is -0.50% to -0.25%
  • the relative refractive index difference ⁇ 4 of the barrier layer is 0.01% to 0.03%
  • the compressive stress of the core layer is -50Mpa ⁇ -20Mpa;
  • the attenuation coefficient of the fiber at 1550nm is less than or equal to 0.185dB/km;
  • the mode field diameter of the fiber at 1310nm is 8.2 ⁇ 8.8 ⁇ m
  • the cable cut-off wavelength is ⁇ 1260nm
  • the zero dispersion wavelength of the fiber is 1300 ⁇ 1324nm
  • the additional macrobending losses of 1550nm and 1625nm in one turn are less than 0.1dB and 0.2dB, respectively;
  • the additional losses of 1550nm and 1625nm with a bending radius of 7.5mm are less than 0.4dB and 0.8dB respectively;
  • the zero dispersion slope is less than 0.092ps/ (nm 2 km);
  • the additional loss of macrobending at 1550nm and 1625nm with 15mm bending radius is less than 0.03dB and 0.1dB respectively
  • the additional macrobending loss of 1550nm and 1625nm in 1 turn is less than 0.03dB and 0.1dB respectively
  • the additional loss of 1550nm and 1625nm in 7.5mm bending radius is less than 0.08dB and 0.25dB respectively
  • the macrobending additional loss at 1550nm and 1625nm is less than 0.15dB and 0.45dB respectively
  • the dispersion at 1550nm is less than or equal to 18ps/(nm ⁇ km)
  • the dispersion at 1625nm is less than or equal to 22ps/(nm ⁇ km)
  • the zero dispersion slope is less than 0.092ps/(nm 2 ⁇ km ).
  • the relative refractive index difference ⁇ 1 of the core layer is 0.32%
  • the relative refractive index difference ⁇ 2 of the inner cladding layer is -0.067%
  • the relative refractive index difference ⁇ 3 of the depressed cladding layer is -0.30%
  • the relative refractive index difference of the barrier layer is -0.30%.
  • the relative refractive index difference ⁇ 1 of the core layer is 0.305%
  • the relative refractive index difference ⁇ 2 of the inner cladding layer is -0.042%
  • the relative refractive index difference ⁇ 3 of the depressed cladding layer is -0.45%
  • the relative refractive index difference of the barrier layer is -0.45%.
  • ⁇ c is the outer cladding refractive index
  • the synthetic material barrier layer contains a small amount of chlorine, and the setting of the barrier layer can make the fiber sink into the cladding layer. There is a transition in the stress to the outer cladding, which is beneficial to reduce attenuation;
  • Reasonable optical fiber profile structure design makes the fiber core layer subject to compressive stress, which further reduces the GeO 2 doping content of the core layer and further reduces the attenuation;
  • the manufacturing method is simple and suitable for mass production.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Dispersion Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

La présente invention concerne un procédé de fabrication de fibre optique résistante à la flexion. Une fibre optique résistante à la flexion fabriquée selon le procédé convient à un câblage dense dans un environnement intérieur étroit. Le procédé de fabrication de fibre optique résistante à la flexion comprend les étapes suivantes : S1, préparation d'un corps en vrac à l'aide d'un procédé VAD, le corps en vrac comprenant une couche formant cœur et une couche de placage interne ; S2, après que le dépôt du corps en vrac est achevé, transfert du corps en vrac dans un four de frittage pour la déshydratation et le frittage afin d'obtenir une tige de cœur frittée ; S3, extension de la tige de cœur frittée pour obtenir une première tige de cœur étendue ; S4, réalisation d'un décapage à l'acide sur la première tige de cœur étendue, un manchon dopé au fluor, et un manchon synthétique, insertion du manchon dopé au fluor dans le manchon synthétique après décapage à l'acide, et ensuite insertion de la première tige de cœur étendue dans le manchon dopé au fluor pour former une tige de cœur assemblée ; S5, extension de la tige de cœur assemblée pour obtenir une seconde tige de cœur étendue ; et S6, assemblage de la seconde tige de cœur étendue et d'un manchon en quartz synthétique sans chlore pour obtenir une préforme de fibre optique, et étirage de la préforme de fibre optique pour obtenir la fibre optique résistante à la flexion.
PCT/CN2020/115769 2020-08-06 2020-09-17 Procédé de fabrication de fibre optique résistante à la flexion et sa fibre optique correspondante WO2022027796A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010781833.1A CN111807699A (zh) 2020-08-06 2020-08-06 一种抗弯曲光纤的制造方法及其对应的光纤
CN202010781833.1 2020-08-06

Publications (1)

Publication Number Publication Date
WO2022027796A1 true WO2022027796A1 (fr) 2022-02-10

Family

ID=72863035

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/115769 WO2022027796A1 (fr) 2020-08-06 2020-09-17 Procédé de fabrication de fibre optique résistante à la flexion et sa fibre optique correspondante

Country Status (2)

Country Link
CN (1) CN111807699A (fr)
WO (1) WO2022027796A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116577865A (zh) * 2023-07-14 2023-08-11 江苏永鼎股份有限公司 一种超低损耗弯曲不敏感光纤及光纤产品

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112230331A (zh) * 2020-11-11 2021-01-15 江苏亨通光导新材料有限公司 一种全合成低损耗单模光纤
CN112904474B (zh) * 2021-01-27 2022-03-18 长飞光纤光缆股份有限公司 一种小外径低衰减弯曲不敏感单模光纤
CN115417593A (zh) * 2022-09-20 2022-12-02 中天科技光纤有限公司 光纤预制棒、光纤拉丝装置以及光纤拉丝方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1309624A (zh) * 1998-06-25 2001-08-22 三星电子株式会社 具有oh阻挡层的光纤预制品及其生产方法
JP2003075673A (ja) * 2001-09-06 2003-03-12 Hitachi Cable Ltd 低非線形単一モード光ファイバ
CN105223645A (zh) * 2015-11-03 2016-01-06 江苏亨通光电股份有限公司 一种低损耗光纤及其制作方法
CN107632338A (zh) * 2017-10-31 2018-01-26 江苏亨通光导新材料有限公司 抗弯曲单模光纤及其制作方法
CN107721149A (zh) * 2017-11-01 2018-02-23 江苏亨通光导新材料有限公司 轴向气相沉积法制备超低损耗光纤预制棒及光纤
CN110794509A (zh) * 2019-09-29 2020-02-14 法尔胜泓昇集团有限公司 一种单模光纤及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8538219B2 (en) * 2010-10-29 2013-09-17 Corning Incorporated Large effective area optical fiber with low bend loss

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1309624A (zh) * 1998-06-25 2001-08-22 三星电子株式会社 具有oh阻挡层的光纤预制品及其生产方法
JP2003075673A (ja) * 2001-09-06 2003-03-12 Hitachi Cable Ltd 低非線形単一モード光ファイバ
CN105223645A (zh) * 2015-11-03 2016-01-06 江苏亨通光电股份有限公司 一种低损耗光纤及其制作方法
CN107632338A (zh) * 2017-10-31 2018-01-26 江苏亨通光导新材料有限公司 抗弯曲单模光纤及其制作方法
CN107721149A (zh) * 2017-11-01 2018-02-23 江苏亨通光导新材料有限公司 轴向气相沉积法制备超低损耗光纤预制棒及光纤
CN110794509A (zh) * 2019-09-29 2020-02-14 法尔胜泓昇集团有限公司 一种单模光纤及其制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116577865A (zh) * 2023-07-14 2023-08-11 江苏永鼎股份有限公司 一种超低损耗弯曲不敏感光纤及光纤产品
CN116577865B (zh) * 2023-07-14 2023-10-20 江苏永鼎股份有限公司 一种超低损耗弯曲不敏感光纤及光纤产品

Also Published As

Publication number Publication date
CN111807699A (zh) 2020-10-23

Similar Documents

Publication Publication Date Title
WO2022027796A1 (fr) Procédé de fabrication de fibre optique résistante à la flexion et sa fibre optique correspondante
CN102645699B (zh) 一种低衰减弯曲不敏感单模光纤
CN106772788B (zh) 一种截止波长位移单模光纤
JP6298893B2 (ja) 損失低下を示す、台形コアを有するシングルモードファイバ
WO2013104243A1 (fr) Fibre optique monomodale insensible à la courbure
JP5222752B2 (ja) 光ファイバ
CN109839694B (zh) 一种截止波长位移单模光纤
CN104316994A (zh) 一种低衰减弯曲不敏感单模光纤
JP2021503630A (ja) 2種類以上のハロゲンが共ドープされたコアを有する低損失の光ファイバ
CN107357004B (zh) 一种低衰减单模光纤及其制备方法
CN111458789B (zh) 光纤
CN112904474B (zh) 一种小外径低衰减弯曲不敏感单模光纤
KR20130116009A (ko) 광섬유
WO2016173253A1 (fr) Fibre optique à mode unique insensible à la courbure à atténuation ultra-faible
CN104216044B (zh) 一种低衰耗弯曲不敏感单模光纤
CN105911639A (zh) 一种低衰减单模光纤
JP5799903B2 (ja) シングルモード光ファイバ
CN114325928B (zh) 一种低损耗抗弯曲单模光纤
US10564349B2 (en) Low bend loss optical fiber with graded index core
CN110954985B (zh) 一种超低衰减大有效面积单模光纤
WO2023240881A1 (fr) Fibre optique g.654.e de type terrestre et son procédé de fabrication
TW201405183A (zh) 光纖
US11714228B2 (en) Optical fiber and method of manufacturing optical fiber
CN110824610B (zh) 一种弯曲不敏感单模光纤
US11067744B2 (en) Low bend loss optical fiber with step index core

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20948143

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20948143

Country of ref document: EP

Kind code of ref document: A1