WO2022027152A1 - Polymer coating comprising carvacrol as a natural volatile antimicrobial active agent carried in a polymer vehicle dissolved in organic volatile solvent, and flexible polymer film internally comprising the coating, useful for extending the shelf life of meat products - Google Patents

Polymer coating comprising carvacrol as a natural volatile antimicrobial active agent carried in a polymer vehicle dissolved in organic volatile solvent, and flexible polymer film internally comprising the coating, useful for extending the shelf life of meat products Download PDF

Info

Publication number
WO2022027152A1
WO2022027152A1 PCT/CL2021/050074 CL2021050074W WO2022027152A1 WO 2022027152 A1 WO2022027152 A1 WO 2022027152A1 CL 2021050074 W CL2021050074 W CL 2021050074W WO 2022027152 A1 WO2022027152 A1 WO 2022027152A1
Authority
WO
WIPO (PCT)
Prior art keywords
active agent
volatile
coating
antimicrobial
polymer
Prior art date
Application number
PCT/CL2021/050074
Other languages
Spanish (es)
French (fr)
Inventor
Francisco Javier RODRÍGUEZ MERCADO
María José Alicia GALOTTO LÓPEZ
Abel GUARDA MORAGA
Julio Elías BRUNA BUGUEÑO
Verónica Alejandra GARCÍA MENA
Original Assignee
Universidad De Santiago De Chile
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidad De Santiago De Chile filed Critical Universidad De Santiago De Chile
Publication of WO2022027152A1 publication Critical patent/WO2022027152A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N25/00Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N25/00Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests
    • A01N25/08Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests containing solids as carriers or diluents
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N25/00Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests
    • A01N25/34Shaped forms, e.g. sheets, not provided for in any other sub-group of this main group
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N31/00Biocides, pest repellants or attractants, or plant growth regulators containing organic oxygen or sulfur compounds
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N65/00Biocides, pest repellants or attractants, or plant growth regulators containing material from algae, lichens, bryophyta, multi-cellular fungi or plants, or extracts thereof
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23BPRESERVING, e.g. BY CANNING, MEAT, FISH, EGGS, FRUIT, VEGETABLES, EDIBLE SEEDS; CHEMICAL RIPENING OF FRUIT OR VEGETABLES; THE PRESERVED, RIPENED, OR CANNED PRODUCTS
    • A23B4/00General methods for preserving meat, sausages, fish or fish products
    • A23B4/14Preserving with chemicals not covered by groups A23B4/02 or A23B4/12
    • A23B4/18Preserving with chemicals not covered by groups A23B4/02 or A23B4/12 in the form of liquids or solids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65BMACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
    • B65B55/00Preserving, protecting or purifying packages or package contents in association with packaging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D65/00Wrappers or flexible covers; Packaging materials of special type or form
    • B65D65/38Packaging materials of special type or form
    • B65D65/42Applications of coated or impregnated materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D81/00Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents
    • B65D81/24Adaptations for preventing deterioration or decay of contents; Applications to the container or packaging material of food preservatives, fungicides, pesticides or animal repellants
    • B65D81/28Applications of food preservatives, fungicides, pesticides or animal repellants
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W90/00Enabling technologies or technologies with a potential or indirect contribution to greenhouse gas [GHG] emissions mitigation
    • Y02W90/10Bio-packaging, e.g. packing containers made from renewable resources or bio-plastics

Definitions

  • POLYMERIC COATING INCLUDING CARVACROL AS A NATURAL VOLATILE ANTIMICROBIAL ACTIVE AGENT CARRIED IN A POLYMERIC VEHICLE DISSOLVED IN VOLATILE ORGANIC SOLVENT AND A FLEXIBLE POLYMERIC FILM INTERNALLY INCLUDING SAID COATING, USEFUL TO PROLONG THE SHELF LIFE OF MEAT PRODUCTS.
  • the present invention is related to the transforming industry of polymeric containers for food.
  • it refers to a flexible polymeric film with antimicrobial properties that allows the shelf life of packaged meat products to be extended, and comprises a substrate selected from polystyrene, polylactic acid, polyethylene-vinyl-alcohol, polyamides, polyolefins, celluloses, waxes, paraffins.
  • LDPE monolayer or multilayer low-density polyethylene
  • an inner coating that comprises a polymeric vehicle dissolved in a volatile organic solvent that carries a natural antimicrobial volatile active agent, where said polymeric vehicle dissolved in volatile organic solvent is preferably selected from a synthetic or natural varnish, preferably selected from a heat-sealing lacquer for dairy products, and where said natural antimicrobial volatile active agent is a volatile essential oil, specifically, it is carvacrol, and where said dissolved polymeric vehicle in volatile organic solvent dispersed on the internal faces of the substrate or surface that contacts the food, and said meat product is selected from chopped or cut chicken, pork or turkey meat.
  • LDPE monolayer or multilayer low-density polyethylene
  • An active agent with antimicrobial capacity has the ability to control the growth of microorganisms that cause the deterioration of food products.
  • the mechanism that dominates the food preservation process depends on the physicochemical characteristics of the active agent (food surface contact and container head space).
  • the main mechanism associated with the action of a volatile active agent is the headspace of the packaging.
  • W02015107089A1 (Technological Institute of Packaging, Transport and Logistics ITENE) can be mentioned, which reveals an antimicrobial composition for packaging organic products, comprising the combination of carvacrol, thymol and salicylaldehyde and/or other components and /or excipients with antimicrobial activity; or thymol and salicylaldehyde and/or other components and/or excipients with antimicrobial activity; or carvacrol and salicylaldehyde and/or other components and/or excipients with antimicrobial activity, the concentration of cavacrol being 5-50%; thymol 3-20%; and salicylaldehyde 28-90% by weight based on the total concentration and the organic product being a food.
  • the active formulation for packaging organic product comprises a polymeric matrix and the previous antimicrobial composition, where the polymeric matrix comprises polystyrene, polylactic acid, polyethylene-vinyl-alcohol, polyamides, polyolefins, celluloses, waxes, paraffins or a combination thereof, being the antimicrobial composition interdispersed in the polymeric matrix or is an active cover for the food packaging, the food packaging being a tray, film, bag, pad, among others.
  • a process for preparing said composition comprising dissolving the polymeric matrix in at least one solvent; optionally incorporate at least one plasticizer and/or an anti-fog compound; and incorporate the antimicrobial composition described above, which may be the plasticizer tert-butyl citrate, polyadipate or glycerol, and antifog lauryl compound, which may be sodium sulfate, glycerol or an ethoxy-amine.
  • the surface of the organic product packaging can be covered with the active composition with a corona treatment; or be applied by coating, printing, dipping or spraying and drying, the coating may be applied by roller printing, flexography, inkjet printing or rotogravure.
  • the composition is deposited on the surface of the substrate totally or partially, it extends the useful life of the product susceptible to being colonized by microbes, the product being able to be a meat-based product.
  • CL3698-2015 discloses a degradable film for packaging fruit and vegetables that comprises a polymeric matrix based on polyolefin, which incorporates an antimicrobial active agent (biocide or fungicide) of essential oil or said essential oil , and further incorporates degrading agents, and microencapsulation process of said antimicrobial active agent of essential oil, and method of preparation of the film, where said essential oil is selected from the group consisting of carvacrol, cinnaldehyde, cineol, sabinene, thujaplicin or a mixture thereof or incorporates said essential oil selected from the group consisting of: cinnamon oil, oregano oil, eucalyptus oil, nutmeg oil, honokitiol oil or a mixture thereof, and where said polyolefin-based polymeric matrix is selected from the group consisting of polyethylene (PE), polypropylene (PP), polystyrene (PS) and ethyl vinyl acetate
  • PE polyethylene
  • W02001049121A discloses a meat product container comprising a sheet substrate with a beneficial substance attached, where the substrate of sheet is a shrinkable or clingable plastic wrap film, including the use of a bonding agent.
  • the beneficial substance is an antimicrobial agent, preferably against mold or bacteria.
  • the antimicrobial agent can be a natural antimicrobial agent, preferably an essential oil, which can be selected from linalool, tugineol, eugenol, thymol, citral or carvacrol.
  • the antimicrobial agent may also be an ester of 4-hydroxybenzoic acid or a compound capable of releasing an antimicrobial gas.
  • the antimicrobial agent may be a coating on the sheet.
  • the binding agent may be a lacquer, preferably an acrylic lacquer, or may comprise a polymer, preferably a hydrophilic or lipophilic polymer, where the polymer swells on contact with a release agent, thereby releasing the beneficial substance.
  • the foil may be in contact with the meat product.
  • W02016140781A discloses a packaging material, comprising: a substrate and an antimicrobial composition comprising an antimicrobial active agent and a vehicle, said composition being a hydrogel at temperatures between 2°C and 12°C, and the carrier can be water and at least one polymer of cellulose ether, gelatin, pectin, xanthan gum, guar gum and combinations thereof, in particular it can be water and methylcellulose or water and gelatin.
  • the antimicrobial agent comprises at least one amino acid derivative, an organic acid, a peptide, a quaternary ammonium salt, an amino acid derivative, or combinations thereof, in particular, is selected from cetylpyridinium chloride, lauric arginate, and dimethyloctadecyl[3-(trimethoxysilyl)propyl]ammonium chloride.
  • Said antimicrobial agent may also comprise a bacteriophage and at least one additional antimicrobial agent, and further optionally an antioxidant, a surfactant, a stabilizer, a buffer, a scavenger, and combinations thereof.
  • the substrate can be a polymeric film.
  • the antimicrobial composition is applied to the surface of the substrate prior to packaging, preferably the interior surface of the substrate.
  • the antimicrobial composition is in contact with the product, preferably a meat product.
  • ES2639914T3 discloses a process for obtaining a film that includes the incorporation of antimicrobial agents of natural origin in a polymeric structure through a double extrusion process to the polymeric material, useful in the development of containers intended for to increase the useful life of refrigerated meat, preferably fresh refrigerated salmon, where said process comprises the following stages: (a) mixing the antimicrobial active agent with powdered low-density polyethylene in a first extrusion, to obtain a pellet, (b ) carry out a second extrusion to obtain a film incorporating the pellet obtained in stage (a) in a proportion of 10% on pelletized polyethylene, (c) carry out a three-layer coextrusion for the development of the film on which the agent was incorporated antimicrobial, wherein the active antimicrobial agent is incorporated into the layer of the film that is in direct contact with the salmon, where the intermediate layer and the outer layer provide the structure requirements of the film, without the incorporation of the active agent.
  • CN109688834A (Univ, of Guelph) discloses a volatile compound controlled release composition comprising at least one poly(ethylene glycol) (PEG) polymer and at least one or more volatile compounds selected from a combination of antimicrobials, and further optionally comprising acid polylactide (PLA).
  • PEG poly(ethylene glycol)
  • PPA acid polylactide
  • the volatile compound may be present in a percentage of about 0.01% w/w to about 50% w/w, and is selected from allyl isothiocyanate (AITC), diacetyl, cinnamic acid, thymol, carvacrol and their combinations, preferably a mixture of diacetyl and AITC from 10:1 to 1:1, or a mixture of diacetyl, AITC and cinnamic acid in a 1:4:60 ratio.
  • the volatile compounds are arranged in a vehicle, which can be a fiber spun with electricity .
  • the composition comprises a mixture of polylactic acid (PLA) and poly(epoxy secondary alkane) (PEO), in a PLA to PEO ratio of 7:3.
  • the composition further includes cellulose, which can be selected from ethylcellulose and cellulose acetate.
  • the composition is useful for preserving stored foods selected from fruit and vegetable waters, bakery, bakery, fresh pasta and fresh meat.
  • Figure 1 Antimicrobial activity of each compound against Escherichia coli after 24 h of incubation at 35°C.
  • Control A without compounds
  • Control B with 95% ethanol
  • TX-18 allyl isothiocyanate
  • TX-09 carvacrol
  • TX-07 eugenol
  • TO-08 rosemary extract
  • TX-08 2-nonanone
  • TX -14 cinnamaldehyde
  • TX-06 thymol
  • TO-07 clove extract.
  • Figure 3 Comparative analysis of the in vitro antimicrobial capacity of naturally occurring compounds for Escherichia coli and Staphylococcus aureus.
  • Figures 4A-4G Non-volatile compound C-2 MIC images against Escherichia coli and Staphylococcus aureus.
  • Figure 4A control, Escherichia coli
  • Figure 4B control, Staphylococcus aureus
  • Figure 4C (10 ppm, Escherichia coli)
  • Figure 4D (10 ppm, Staphylococcus aureus)
  • Figure 4E (20 ppm, Escherichia coli
  • Figure 4F (20 ppm, Staphylococcus aureus
  • Figure 4G (30 ppm, Escherichia coli), Figure 4H (30 ppm, Staphylococcus aureus), Figure 4F (40 ppm, Escherichia coli), and Figure 4G (40 ppm, Staphylococcus aureus)
  • Figure 8 Evolution analysis of microbiological quality of chicken samples packaged in active system under refrigeration conditions (4°C).
  • Figure 9 Antimicrobial effect of active films based on BLSC and volatile active agent.
  • Figure 9A 4%, Escherichia coli
  • Figure 9B 4%, Staphylococcus aureus
  • Figure 8C 6%, Escherichia coli
  • Figure 9D 6%, Staphylococcus aureus
  • Figure 9E 8%, Escherichia coli
  • Figure 4F 8%, Staphylococcus aureus).
  • the present flexible polymeric film with antimicrobial properties that allows to extend the useful life of packaged meat products, and comprises a substrate selected from polystyrene, polylactic acid, polyethylene-vinyl-alcohol, polyamides, polyolefins, cellulose, waxes, paraffins or a combination of the same, preferably, low-density polyethylene (LDPE), monolayer or multilayer, with an inner coating that comprises a polymeric vehicle dissolved in a volatile organic solvent that carries a natural antimicrobial volatile active agent, where said polymeric vehicle dissolved in a volatile solvent is selected of a synthetic or natural varnish, preferably selected from a heat sealing lacquer for dairy products, and where said natural antimicrobial volatile active agent is selected from a volatile essential oil, specifically, carvacrol, and where said polymeric vehicle dissolved in a volatile solvent is scattered on the inner faces of the su stratum or surface that contacts the food, and said meat product is selected from chopped or cut chicken, pork or turkey meat.
  • LDPE low-density poly
  • said natural antimicrobial volatile active agent interacts both with the surface of the food and in the environment where it is beneficially maintained in the headspace of the package.
  • the coating is applied by means of a standard method of surface treatment of the substrate ("coating"), preferably selected from lamination or surface printing, and in this way, it does not require special implementations by the packaging transforming industry, it can be applied without modifying its processes. classic industrial.
  • the present active packaging showed, in in vivo tests, to extend the shelf life of packaged chicken meat, under traditional refrigeration conditions for this type of food, that is, 4°C.
  • the active agent (carvacrol) is found in the synthetic varnish (BLSC) in a concentration of 2% to 10% p/p, preferably in concentrations of 2%, 4% and 6% p/p Volatile active agents of both natural origin and synthetic active agents recognized for their antimicrobial capacity were tested.
  • the agent TX-09 (carvacrol) demonstrated a greater antibacterial capacity against bacteria of different types, under in vitro conditions, and compared to a commercial preservative of synthetic origin (C-2, Ethyl lauryl arginate, LAE).
  • the active agents TX-09 and C-2 were used to functionalize a commercial film of low-density polyethylene (LDPE), which is the type of material that is preferably used in the packaging of chicken meat.
  • LDPE low-density polyethylene
  • the incorporation of the active agents was carried out through the coating technique, and using a vehicle selected from a varnish type heat sealing lacquer (BLSC) for dairy products, preferably, and an acrylic resin (AR), preferably, for the dispersion and fixation of the active agent on the LDPE substrate, each varnish having a particular chemical affinity for the active agent it carries.
  • BLSC varnish type heat sealing lacquer
  • AR acrylic resin
  • BLSC/TX-09 and RA/C-2 films showed in vitro antibacterial activity against model microorganisms (E. coli and S. aeurus).
  • Figure 7 shows a side section of the LDPE/BLSC/TX-09 film where it is possible to see the presence of the varnish on the LDPE substrate. Due to the excellent antibacterial behavior, its behavior was evaluated in in vivo tests. For this, chicken samples were packed in containers coated inside with both active films. For the evaluation of the antimicrobial capacity under in vivo conditions, a safety limit was considered for a mesophilic aerobic count (RAM) of 1 x10 7 CFU/g of food. This indicator was used to determine the microbiological shelf life of packaged chicken samples.
  • RAM mesophilic aerobic count
  • the active packaging allows the shelf life of the packaged samples to be increased by 2 days, going from a shelf life of 6 days for the control packaging to 8 days for the active package.
  • the generation of antimicrobial activity could be given by the nature of the active compound, which is characterized by volatilizing, a situation that would favor its action in the head space of the container, thus being able to act on a large part of the surface of the product.
  • the film of the invention increases the shelf life of packaged chicken by 33% and that it differs from known antimicrobial films and packages and many proposed solutions that show antimicrobial activity in in vitro tests but that against a food do not show effectiveness, as happened with the LDPE/RA/C-2 film.
  • Example 1 Efficacy of the natural volatile antimicrobial active agent
  • In vitro radial inhibition against Escherichia coli and Staphylococcus aureus was tested in triplicate by the agar diffusion method (Elgayyar, M., Draughon, F., Goldem, D. and Mount, J. (2001). Antimicrobial Activity of Essential Oils from Plants against Selected Pathogenic and Saprophytic Microorganisms. Journal of Food Protection 64: 1019-1024).
  • TSA sterile Tryptein Soy Agar
  • the minimum inhibitory concentration (MIC) defined as the minimum concentration of active compound at which growth inhibition is observed and the minimum bactericidal concentration (MBC), where there is no growth of microorganisms, were tested.
  • the MIC and CMB of the non-volatile compound were determined in TSB liquid medium against two microorganisms: S. aureus as a model of Gram-positive bacteria and E. coli as a model of Gram-negative bacteria. For this, a stock solution of 1000 ppm in Milli-Q water was initially prepared. Subsequently, serial dilutions were made in sterile tubes with 10 mL of TSB, obtaining a range of concentrations between 10-40 ppm. Sterile Milli Q water was used as a control.
  • Turbidity is an indicator of microbial growth and depending on it, different dilutions were made, 100 pL of the last cloudy tube and the first transparent one were seeded in TSA Petri dishes. They were incubated for 24 h at 37°C in an oven and the colony-forming units (CFU/mL) were counted. All experiments are performed in triplicate. Table 1 and Table 2 show the results obtained for E. coli and S. aureus.
  • BLSC solutions were prepared for application on polyethylene (LDPE) previously subjected to corona treatment.
  • the solutions were applied on commercial LDPE films, which is currently the most widely used in the food packaging industry to wrap chicken meat trays or make bags in bag format.
  • the corona treatment resulted in a minimum surface energy of 40 dynes/cm, which improved the adhesion of the coating.
  • the coatings were prepared using RK Print K303 laboratory equipment. Materials with different concentrations (2%, 4%, 6% w/w) of volatile active agent (carvacrol) were prepared.
  • the BLSC coating was prepared at 35% w/v. Regarding the content of the active compound, this is expressed based on the mass percentage of the polymer present in the coating.
  • Table 3 summarizes the homogeneity and adhesion properties of the coating on the LDPE base film. For these purposes, an evaluation scale was used where Value 1 (+) corresponds to the final product with a whitish opaque and heterogeneous coating, while Value 5 (+++++) corresponds to a uniform, homogeneous and transparent coating. total. The results show a good adhesion and homogeneity for the coating with RA with and without active.
  • Rod No. 2 confers an adequate thickness, only increasing the thickness by 3.5 pm with respect to the base material.
  • the method used allowed evaluating the antimicrobial activity on the surface of different materials such as textile, plastic, metallic or ceramic products.
  • E. coli and S. aureus were used as model strains.
  • Control and tested samples were cut into small square pieces (5 x 5 cm). All samples were inoculated in triplicate, with three additional replicates of the control films, with a suspension of microorganisms ca. 10 5 CFU/ml standardized by dilution in a nutrient broth.
  • the inoculum was covered with a thin, sterile polypropylene film (4 x 4 cm) to prevent evaporation of the sample and loss of viability of the microorganisms.
  • R is the antibacterial activity
  • U0 is the average common logarithm of the number of viable bacteria, in cells/cm 2 , recovered from untreated test samples immediately after inoculation;
  • Ut is the average common logarithm of the number of viable bacteria, in cells/cm 2 , recovered from untreated test samples after 24 h;
  • At is the average common logarithm of the number of viable bacteria, in cells/cm 2 , recovered from the treated test samples after 24 h; when R > 2.0, the sample is considered to have biocidal properties
  • Table 5 shows the results obtained after the analysis. It is possible to appreciate a high antimicrobial capacity against E. coli and S. aureus for the active films with different content of non-volatile active agent C-2.
  • E. coli and S. aureus were selected as models of Gram negative and Gram positive bacteria, respectively.
  • a miniculture is initially prepared, inoculating a small sample extracted with the loop of Henle from the inclined agar tube in a tube with 10 mL of TSB and incubating for 18 h at 37 ° C.
  • Table 6 shows the effect of BLSC-based films and volatile active agent on the growth of E. coli and S. aureus in the vapor phase. An important effect of the active ingredient is observed on concentrations of 6%. Table 6. Effect of volatile active agent content on the growth of E. coli and S. aureus.
  • Figure 9 Shows the antimicrobial effect of active films based on BLSC and volatile active agent.
  • the activity of the coatings in liquid medium against the two model bacteria E. coli and S. aureus was evaluated. For this, 100 pL of each microorganism in exponential phase were inoculated in the tubes previously prepared with 10 mL of TSB, to which 0.2 g of each of the active films developed were added. Subsequently, they were incubated at 37°C for 24 h. Depending on the turbidity of the tubes, signed dilutions were made with peptone water. A volume of 100 pL of each dilution was seeded in Pet ⁇ plates of approximately 15 mL of TSA culture medium, which were subsequently incubated for 24 h. Finally, the colony-forming units (CFU/mL) were counted. The experiments were carried out in triplicate.
  • Table 7 summarizes the results obtained for the active films developed. Unlike the test carried out in the previous section, the films with 2% active compound did not show antimicrobial activity in liquid medium against E. coli, which could be due to the fact that the amount released into the medium was less than the MIC, and in this matter it is necessary to mention that for an antimicrobial to be effective by this methodology, it is essential that there is migration of the agent towards the liquid culture medium. From 4%, an important effect is observed in the growth of E. coli with reductions over 5 logarithmic cycles. On the other hand, in the case of S. aureus, only the percentage of 4% was evaluated, a concentration that showed a reduction of more than 2 logarithmic cycles in the growth of this bacterium. Table 7. Effect of the content of commercial active agent C-2 on the growth of E. coli and S. aureus. Method in liquid medium
  • Table 9 shows the color coordinates L*, a*, b*, of the control without varnish (LDPE), with coating with and without active C-2.
  • L* give an idea of the high transparency of the materials, while the low values of a* and b*, close to zero and very similar to white.
  • the opacity of the developed material was evaluated by calculating the quotient of the absorbance measured at 600 nm and the thickness of the material. The results of this analysis are presented below. As in the case of coloration, it is evident that the application of the varnish, either with or without active ingredients, on polyethylene does not affect this optical property.
  • Table 12 reports the results of the LDPE seal strength test at a seal time of 1.5 s. This time has been reported as achieving a proper seal of LDPE without corona treatment. Above this value, the seal strength does not change significantly when comparisons are made at the same seal pressure and temperature conditions.
  • Average Seal Strength (Fav) was measured as the average of the force applied during the peel path of the seal. This value has a representative meaning for the cases where there are wide conventional seals. It can also be expressed per unit width (b) of the specimen (Fav/b).
  • the maximum seal resistance (Fmax) is the maximum force that the seal resists, and its value was significantly higher in the tests, where there is a very narrow thread-type seal produced with the MULTIVAC vacuum packaging machine (Fmax) . It can also be expressed per unit width (b) of the specimen (Fmax/b).
  • Polyethylene is recognized for being a thermoplastic material with excellent characteristics in terms of its heat sealability. Due to the above, in many materials manufactured with multilayer structure, this material is included to favor the sealing of the container. Therefore, it is important to note that the application of the varnish generates a significant loss in the heat-sealability of the material. Although this could indicate a disadvantage in the applicability of the material, the use of register printing turns out to be an option to make the application of the active varnish on polyethylene feasible.
  • the determination of the oxygen permeability of the film samples was carried out with an OXTRAN 2/20 MOCON equipment. This equipment allows to measure the speed at which oxygen passes through a polymeric material at a pressure of 760 mmHg and 0% RH.
  • the parameter delivered by the equipment is the OTR (Oxygen Transmission Rate) or the oxygen transmission rate. The results of this analysis are presented in Table 13.
  • Example 4 Evaluation of the microbiological evolution of chicken fillets packed in bags made from the active film LDPE/BLSC/TX-09 and LDPE/RA/C-2. Bag Manufacturing
  • the aim is to confirm compliance with the safety limit of 1x10 7 CFU/g of food established in title V of the microbiological criteria, paragraph III, 10.1 of the Food Sanitary Regulations (RSA).
  • a representative sample was taken that was massed (10, 25 or 50 g) and diluted with peptone water (TPA) at 0.1% (90, 225 or 450 mL) inside a digester bag that was homogenized for a maximum of 1 minute in stomacher. Subsequently, serial dilutions are made in sterile tubes with 9 mL of 0.1% APT. Two samples per condition were analyzed and they were seeded in duplicate in each dilution and incubated at 37°C for 48 h, reading plates that had between 25-250 colonies.
  • TPA peptone water
  • Chicken meat (chicken breast fillets) marketed under refrigeration conditions was used, and later, frozen.
  • a mesophilic aerobic count (-RAM-) of chilled chicken meat was carried out, from 3 different samples (M1, M2 and M3), which were analyzed the day of purchase (DO) and 2 days after purchase or until they were outside the safety limit range of 1x10 7 CFU/g of food.
  • the samples were stored in their original container under refrigeration at 4°C. The results of this study are shown in Table 14.
  • the antimicrobial efficacy of the active films was determined based on monitoring the count of mesophilic aerobic microorganisms.
  • the proposed method was carried out inside a LABCONCO model 3970421 flow chamber, analyzing separately the three chicken fillets per bag with technical duplicate for each dilution.
  • the plates were incubated in an Arquimed model ZFD-5090 incubator at 35°C for 7 days or until they were not acceptable from a microbiological or sensory point of view.
  • the concentrations of microorganisms were expressed in CFU/g from the quantification of colonies in a SUNTEX model 570 counter. Shelf life was determined by the acceptability limit for raw poultry meat samples, which is 10 7 CFU/g.
  • Table 16 and Figure 6 show the results obtained after the aforementioned modifications. It is possible to see how the active packaging manages, from a microbiological point of view, to increase the shelf life of chicken meat, at least 3 days more than the other conditions. In addition, from the sensory point of view, the samples were in conditions for sale and consumption, but not the other samples analyzed. Table 16 AMR microbiological results, modified assay Figure 9 shows the evolution of AMR, expressed as CFU/g, during 10 days for chicken samples stored at 4 °C in control containers (LDPE and LDPE/BLSC) and in the active container made with LDPE/BLSC/TX- 09.
  • the active packaging allows the shelf life of the packaged samples to be increased by 2 days, going from a shelf life of 6 days for the control packaging to 8 days for the active package.
  • the generation of the antimicrobial activity would be given by the nature of the active compound, which is characterized by volatilizing, a situation that would favor its action in the head space of the container, thus being able to act in a large part of the product surface.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Plant Pathology (AREA)
  • Agronomy & Crop Science (AREA)
  • Environmental Sciences (AREA)
  • Dentistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Pest Control & Pesticides (AREA)
  • Mechanical Engineering (AREA)
  • Food Science & Technology (AREA)
  • Toxicology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Manufacturing & Machinery (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Mycology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Paints Or Removers (AREA)
  • Food Preservation Except Freezing, Refrigeration, And Drying (AREA)
  • Packages (AREA)
  • Wrappers (AREA)

Abstract

The present invention relates to a flexible polymer film with antimicrobial properties, which allows the shelf life of packaged meat products to be extended. The film comprises a substrate selected from polystyrene, polylactic acid, polyethylene vinyl alcohol, polyamides, polyolefins, celluloses, waxes, paraffins or a combination of same, preferably single-layer or multilayer low-density polyethylene (LDPE), with an internal coating comprising a polymer vehicle dissolved in volatile organic solvent that carries a natural volatile antimicrobial active agent. According to the invention, the polymer vehicle dissolved in volatile organic solvent is preferably selected from a synthetic or natural varnish, preferably selected from a heat-seal lacquer for dairy products; the natural volatile antimicrobial active agent is carvacrol; the polymer vehicle dissolved in volatile organic solvent is dispersed on the internal faces of the substrate or surface that makes contact with the food; and the meat product is selected from chopped or sliced chicken, pork or turkey meat.

Description

RECUBRIMIENTO POLIMÉRICO COMPRENDIENDO CARVACROL COMO AGENTE ACTIVO ANTIMICROBIANO VOLÁTIL NATURAL PORTADO EN UN VEHÍCULO POLIMÉRICO DISUELTO EN SOLVENTE ORGÁNICO VOLÁTIL Y PELÍCULA FLEXIBLE POLIMÉRICA QUE COMPRENDE INTERIORMENTE DICHO RECUBRIMIENTO, ÚTIL PARA PROLONGAR LA VIDA ÚTIL DE PRODUCTOS CÁRNICOS. POLYMERIC COATING INCLUDING CARVACROL AS A NATURAL VOLATILE ANTIMICROBIAL ACTIVE AGENT CARRIED IN A POLYMERIC VEHICLE DISSOLVED IN VOLATILE ORGANIC SOLVENT AND A FLEXIBLE POLYMERIC FILM INTERNALLY INCLUDING SAID COATING, USEFUL TO PROLONG THE SHELF LIFE OF MEAT PRODUCTS.
CAMPO DE LA INVENCION FIELD OF THE INVENTION
La presente invención se relaciona con la industria transformadora de envases poliméricos para alimentos. En particular, se refiere a una película flexible polimérica con propiedades antimicrobianas que permite extender la vida útil de productos cárnicos envasados, y comprende un sustrato seleccionado de poliestireno, poliácido láctico , polietilen-vinil-alcohol, poliamidas, poliolefinas, celulosas, ceras, parafinas o una combinación de los mismos, preferentemente, polietileno de baja densidad (LDPE), monocapa o multicapa, con un recubrimiento interior que comprende un vehículo polimérico disuelto en solvente orgánico volátil que porta un agente activo volátil antimicrobiano natural, donde dicho vehículo polimérico disuelto en solvente orgánico volátil es preferentemente seleccionado de un barniz sintético o natural, preferentemente seleccionado de una laca sellante al calor para producto lácteo, y donde dicho agente activo volátil antimicrobiano natural es un aceite esencial volátil, específicamente, es carvacrol, y donde dicho vehículo polimérico disuelto en solvente orgánico volátil se dispersa en las caras internas del sustrato o superficie que contacta al alimento, y dicho producto cárnico se selecciona de carne trozada o cortada de pollo, cerdo o pavo. The present invention is related to the transforming industry of polymeric containers for food. In particular, it refers to a flexible polymeric film with antimicrobial properties that allows the shelf life of packaged meat products to be extended, and comprises a substrate selected from polystyrene, polylactic acid, polyethylene-vinyl-alcohol, polyamides, polyolefins, celluloses, waxes, paraffins. or a combination thereof, preferably, monolayer or multilayer low-density polyethylene (LDPE), with an inner coating that comprises a polymeric vehicle dissolved in a volatile organic solvent that carries a natural antimicrobial volatile active agent, where said polymeric vehicle dissolved in volatile organic solvent is preferably selected from a synthetic or natural varnish, preferably selected from a heat-sealing lacquer for dairy products, and where said natural antimicrobial volatile active agent is a volatile essential oil, specifically, it is carvacrol, and where said dissolved polymeric vehicle in volatile organic solvent dispersed on the internal faces of the substrate or surface that contacts the food, and said meat product is selected from chopped or cut chicken, pork or turkey meat.
ANTECEDENTES BACKGROUND
Un agente activo con capacidad antimicrobiana tiene la capacidad de controlar el crecimiento de microorganismos que generan el deterioro de productos alimenticios. El mecanismo que domina el proceso de preservación del alimento depende de las características fisicoquímica del agente activo (contacto superficie alimento y espacio cabeza envase). En los envases flexibles poliméricos de productos alimenticios, el principal mecanismo asociado a la acción de un agente activo volátil es el espacio de cabeza del envase. An active agent with antimicrobial capacity has the ability to control the growth of microorganisms that cause the deterioration of food products. The mechanism that dominates the food preservation process depends on the physicochemical characteristics of the active agent (food surface contact and container head space). In flexible polymeric food packaging, the main mechanism associated with the action of a volatile active agent is the headspace of the packaging.
Entre los documentos de patentes relacionados con la invención se puede mencionar W02015107089A1 (Instituto Tecnológico del Embalaje, Transporte y Logística ITENE) que revela una composición antimicrobiana para empacar producto orgánico, que comprende la combinación de carvacrol, timol y salicilaldehido y/u otros componentes y/o excipientes con actividad antimicrobiana; o timol y salicilaldehido y/u otros componentes y/o excipientes con actividad antimicrobiana; o carvacrol y salicilaldehido y/u otros componentes y/o excipientes con actividad antimicrobiana, siendo la concentración de cavacrol 5-50%; timol 3-20%; y salicilaldehido 28-90% en peso en base a la concentración total y siendo el producto orgánico un alimento. La formulación activa para empacar producto orgánico comprende una matriz polimérica y la composición antimicrobiana anterior, donde la matriz polimérica comprende poliestireno, poliácidco láctico, polietilen-vinil-alcohol, poliamidas, poliolefinas, celulosas, ceras, parafinas o una combinación de los mismos, estando la composición antimicrobiana entredispersa en la matriz polimérica o es una cubierta activa para el empaque de alimento, siendo el empaque de alimento una bandeja, película, bolsa, almohadilla, entre otros. También se revela un procedimiento de preparación de dicha composición que comprende disolver la matriz polimérica en al menos un solvente; incorporar opcionalmente, al menos un plastificante y/o un compuesto anti-fog ; e incorporar la composición antimicrobiana antes descrita, pudiendo ser el plastificante tert-butil citrato, poliadipato o glicerol , y compuesto anti-fog lauril pudiendo ser sulfato de sodio, glicerol o una etoxi-amina. La superficie del empaque del producto orgánico puede ser cubierto con la composición activa con un tratamiento de corona; o ser aplicada por recubrimiento, impresión, inmersión o rociado y secado, pudiendo el recubrimiento ser aplicado por impresión de rodillo, flexografía, impresión de inyección a tinta o rotograbado. La composición se deposita sobre la superficie del sustrato total o parcialmente, extiende la vida útil de producto susceptible de ser colonizado por microbios, pudiendo ser el producto, un producto basado en carne. Among the patent documents related to the invention, W02015107089A1 (Technological Institute of Packaging, Transport and Logistics ITENE) can be mentioned, which reveals an antimicrobial composition for packaging organic products, comprising the combination of carvacrol, thymol and salicylaldehyde and/or other components and /or excipients with antimicrobial activity; or thymol and salicylaldehyde and/or other components and/or excipients with antimicrobial activity; or carvacrol and salicylaldehyde and/or other components and/or excipients with antimicrobial activity, the concentration of cavacrol being 5-50%; thymol 3-20%; and salicylaldehyde 28-90% by weight based on the total concentration and the organic product being a food. The active formulation for packaging organic product comprises a polymeric matrix and the previous antimicrobial composition, where the polymeric matrix comprises polystyrene, polylactic acid, polyethylene-vinyl-alcohol, polyamides, polyolefins, celluloses, waxes, paraffins or a combination thereof, being the antimicrobial composition interdispersed in the polymeric matrix or is an active cover for the food packaging, the food packaging being a tray, film, bag, pad, among others. A process for preparing said composition is also disclosed, comprising dissolving the polymeric matrix in at least one solvent; optionally incorporate at least one plasticizer and/or an anti-fog compound; and incorporate the antimicrobial composition described above, which may be the plasticizer tert-butyl citrate, polyadipate or glycerol, and antifog lauryl compound, which may be sodium sulfate, glycerol or an ethoxy-amine. The surface of the organic product packaging can be covered with the active composition with a corona treatment; or be applied by coating, printing, dipping or spraying and drying, the coating may be applied by roller printing, flexography, inkjet printing or rotogravure. The composition is deposited on the surface of the substrate totally or partially, it extends the useful life of the product susceptible to being colonized by microbes, the product being able to be a meat-based product.
CL3698-2015 (Universidad de Santiago de Chile) divulga una película degradable para empaque de frutas y hortalizas que comprende una matriz polimérica en base a poliolef ina, la que incorpora un agente activo antimicrobiano (biocida o fungicida) de aceite esencial o dicho aceite esencial, y además incorpora agentes degradantes, y procedimiento de microencapsulación de dicho agente activo antimicrobiano de aceite esencial, y método de preparación de la película, donde dicho aceite esencial es seleccionado del grupo consistente de carvacrol, cinemaldehido, cineol, sabineno, th ujaplicin o una mezcla de los mismos o incorpora dicho aceite esencial seleccionado del grupo consistente de: aceite de canela, aceite de orégano, aceite de eucalipto, aceite de nuez moscada, aceite de honokitiol o una mezcla de los mismos, y donde dicha matriz polimérica basada en poliolefina se selecciona del grupo consistente de polietileno (PE), polipropileno (PP), poliestireno (PS) y etilvinilacetato (EVA), y donde dicha matriz polimérica incorpora además un agente degradante seleccionado de nanocarbonato de calcio, carbonato de calcio, almidón, celulosa o una mezcla de los mismos, y donde el nanocarbonato de calcio además es un agente de refuerzo, donde dicho agente activo microbiano de aceite esencial o dicho aceite esencial están microencapsulados; procedimiento para microencapsular un agente activo antimicrobiano de aceite esencial; y procedimiento para preparar película. CL3698-2015 (Universidad de Santiago de Chile) discloses a degradable film for packaging fruit and vegetables that comprises a polymeric matrix based on polyolefin, which incorporates an antimicrobial active agent (biocide or fungicide) of essential oil or said essential oil , and further incorporates degrading agents, and microencapsulation process of said antimicrobial active agent of essential oil, and method of preparation of the film, where said essential oil is selected from the group consisting of carvacrol, cinnaldehyde, cineol, sabinene, thujaplicin or a mixture thereof or incorporates said essential oil selected from the group consisting of: cinnamon oil, oregano oil, eucalyptus oil, nutmeg oil, honokitiol oil or a mixture thereof, and where said polyolefin-based polymeric matrix is selected from the group consisting of polyethylene (PE), polypropylene (PP), polystyrene (PS) and ethyl vinyl acetate (EVA), and where said polymeric matrix also incorporates a degrading agent selected from calcium nanocarbonate, calcium carbonate, starch, cellulose or a mixture thereof, and where the calcium nanocarbonate is also a reinforcing agent, where said essential oil microbial active agent or said essential oil is microencapsulated; process for microencapsulating an essential oil antimicrobial active agent; and process for preparing film.
W02001049121A (Meat product packaging) divulga un envase de producto cárneo que comprende un sustrato de lámina con una sustancia benéfica adherida, donde el sustrato de lámina es una película plástica envolvente encogible o adherible, incluyendo el uso de un agente de unión. La sustancia benéfica es un agente antimicrobiano, preferentemente contra moho o bacterias. El agente antimicrobiano puede ser un agente antimicrobiano natural, preferentemente un aceite esencial, que puede ser seleccionado de linalool, tugineol, eugenol, timol, citral o carvacrol. El agente antimicrobiano también puede ser un ester de ácido 4-hidroxibenzoico o un compuesto capaz de liberar un gas antimicrobiano. El agente antimicrobiano puede ser una cubierta de la lámina. El agente de unión puede ser una laca, preferentemente una laca acrílica, o puede comprender un polímero, preferentemente un polímero hidrofílico o lipofílico, donde el polímero se hincha en contacto con un agente de liberación, y con ello, libera la sustancia benéfica. La lamina puede estar en contacto con el producto cárneo. W02001049121A (Meat product packaging) discloses a meat product container comprising a sheet substrate with a beneficial substance attached, where the substrate of sheet is a shrinkable or clingable plastic wrap film, including the use of a bonding agent. The beneficial substance is an antimicrobial agent, preferably against mold or bacteria. The antimicrobial agent can be a natural antimicrobial agent, preferably an essential oil, which can be selected from linalool, tugineol, eugenol, thymol, citral or carvacrol. The antimicrobial agent may also be an ester of 4-hydroxybenzoic acid or a compound capable of releasing an antimicrobial gas. The antimicrobial agent may be a coating on the sheet. The binding agent may be a lacquer, preferably an acrylic lacquer, or may comprise a polymer, preferably a hydrophilic or lipophilic polymer, where the polymer swells on contact with a release agent, thereby releasing the beneficial substance. The foil may be in contact with the meat product.
W02016140781A (Dow Global Technologies LLC) divulga un material para empaque, que comprende: un sustrato y una composición antimicrobiana que comprende un agente activo antimicrobiano y un vehículo, siendo dicha composición un hidrogel a temperaturas entre 2°C y 12°C, y el vehículo puede ser agua y al menos un polímero de eter de celulosa, gelatina, pectina, goma xantano, goma guar y combinaciones de las mismas, en particular puede ser agua y metilcelulosa o agua y gelatina. El agente antimicrobiano comprende al menos un derivado de amino ácido, un ácido orgánico, un péptido, una sal de amonio cuaternario, un derivado de amino ácido o combinaciones de los mismos, en particular, se selecciona de cloruro de cetilpiridinio, arginato láurico, y cloruro de dimetiloctadecil[3-(trimetoxisilil)propil]amonio. Dicho agente antimicrobiano también puede comprender un bacteriófago y al menos un agente antimicrobiano adicional, y además opcionalmente un antioxidante, un surfactante, un estabilizador, un tampón, un barredor y combinaciones de los mismos. El sustrato puede ser una película polimérica. La composición antimicrobiana se aplica a la superficie del sustrato previo a armar el empaque, preferentemente la superficie interior del sustrato. La composición antimicrobiana está en contacto con el producto, preferentemente un producto cárneo. W02016140781A (Dow Global Technologies LLC) discloses a packaging material, comprising: a substrate and an antimicrobial composition comprising an antimicrobial active agent and a vehicle, said composition being a hydrogel at temperatures between 2°C and 12°C, and the carrier can be water and at least one polymer of cellulose ether, gelatin, pectin, xanthan gum, guar gum and combinations thereof, in particular it can be water and methylcellulose or water and gelatin. The antimicrobial agent comprises at least one amino acid derivative, an organic acid, a peptide, a quaternary ammonium salt, an amino acid derivative, or combinations thereof, in particular, is selected from cetylpyridinium chloride, lauric arginate, and dimethyloctadecyl[3-(trimethoxysilyl)propyl]ammonium chloride. Said antimicrobial agent may also comprise a bacteriophage and at least one additional antimicrobial agent, and further optionally an antioxidant, a surfactant, a stabilizer, a buffer, a scavenger, and combinations thereof. The substrate can be a polymeric film. The antimicrobial composition is applied to the surface of the substrate prior to packaging, preferably the interior surface of the substrate. The antimicrobial composition is in contact with the product, preferably a meat product.
ES2639914T3 (Universidad de Santiago de Chile) divulga un proceso para la obtención de un film que comprende la incorporación de agentes antimicrobianos de origen natural en una estructura polimérica a través de un doble proceso de extrusión al material polimérico, útil en el desarrollo de envases destinados a incrementar la vida útil de carne refrigerada, preferentemente de salmón fresco refrigerado, donde dicho proceso comprende las siguientes etapas: (a) mezclar en una primera extrusión el agente activo antimicrobiano con polietileno de baja densidad en polvo, para obtener un pellet, (b) realizar una segunda extrusión para obtener un film incorporando el pellet obtenido en la etapa (a) en proporción de 10% sobre polietileno en pellet, (c) realizar una coextrusión de tres capas para el desarrollo del film sobre el cual se incorporó el agente antimicrobiano, en donde el agente activo antimicrobiano es incorporado en la capa del film que está en contacto directo con el salmón, en donde la capa intermedia y la capa exterior aportan requerimientos de estructura del film, sin la incorporación del agente activo. ES2639914T3 (Universidad de Santiago de Chile) discloses a process for obtaining a film that includes the incorporation of antimicrobial agents of natural origin in a polymeric structure through a double extrusion process to the polymeric material, useful in the development of containers intended for to increase the useful life of refrigerated meat, preferably fresh refrigerated salmon, where said process comprises the following stages: (a) mixing the antimicrobial active agent with powdered low-density polyethylene in a first extrusion, to obtain a pellet, (b ) carry out a second extrusion to obtain a film incorporating the pellet obtained in stage (a) in a proportion of 10% on pelletized polyethylene, (c) carry out a three-layer coextrusion for the development of the film on which the agent was incorporated antimicrobial, wherein the active antimicrobial agent is incorporated into the layer of the film that is in direct contact with the salmon, where the intermediate layer and the outer layer provide the structure requirements of the film, without the incorporation of the active agent.
CN109688834A (Univ, of Guelph) divulga una composición de liberación controlada de compuesto volátil que comprende al menos un polímero de poli(etilenglicol) (PEG) y al menos uno o más compuestos volátiles seleccionado de una combinación de antimicrobianos, y además opcionalmente comprende ácido poliláctico (PLA). El compuesto volátil puede estar presente en un porcentaje de alrededor de 0,01 % p/p a alrededor de 50% p/p, y se selecciona de alil isotiocianato (AITC), diacetilo, ácido cinámico, timol, carvacrol y sus combinaciones, preferentemente una mezcla diacetilo y AITC de 10:1 a 1 :1 , o una mezcla diacetilo, AITC y ácido cinámico en una proporción 1 : 4: 60. Los compuestos volátiles se disponen en un vehículo, que puede ser una fibra de hilado con electricidad. La composición comprende una mezcla de ácido poliláctico (PLA) y poli(alcano secundario epoxi) (PEO), en una proporción PLA a PEO de 7:3. La composición además incluye celulosa, que puede ser seleccionada de etilcelulosa y acetato de celulosa. La composición es útil para preservar alimentos almacenados seleccionados de aguas de fruta y verduras, panadería, panadería, pasta fresca y carne fresca. CN109688834A (Univ, of Guelph) discloses a volatile compound controlled release composition comprising at least one poly(ethylene glycol) (PEG) polymer and at least one or more volatile compounds selected from a combination of antimicrobials, and further optionally comprising acid polylactide (PLA). The volatile compound may be present in a percentage of about 0.01% w/w to about 50% w/w, and is selected from allyl isothiocyanate (AITC), diacetyl, cinnamic acid, thymol, carvacrol and their combinations, preferably a mixture of diacetyl and AITC from 10:1 to 1:1, or a mixture of diacetyl, AITC and cinnamic acid in a 1:4:60 ratio. The volatile compounds are arranged in a vehicle, which can be a fiber spun with electricity . The composition comprises a mixture of polylactic acid (PLA) and poly(epoxy secondary alkane) (PEO), in a PLA to PEO ratio of 7:3. The composition further includes cellulose, which can be selected from ethylcellulose and cellulose acetate. The composition is useful for preserving stored foods selected from fruit and vegetable waters, bakery, bakery, fresh pasta and fresh meat.
BREVE DESCRIPCION DE LAS FIGURAS BRIEF DESCRIPTION OF THE FIGURES
Figura 1 Actividad antimicrobiana de cada compuesto contra Escherichia coli después de 24 h de incubación a 35°C. Control A: sin compuestos, Control B: con etanol 95%, TX-18: alil isotiocianato, TX-09: carvacrol, TX-07: eugenol, TO-08: extracto de romero, TX-08: 2-nonanona, TX-14: cinalmaldehido, TX-06: timol, TO-07: extracto de clavo de olor. Figure 1 Antimicrobial activity of each compound against Escherichia coli after 24 h of incubation at 35°C. Control A: without compounds, Control B: with 95% ethanol, TX-18: allyl isothiocyanate, TX-09: carvacrol, TX-07: eugenol, TO-08: rosemary extract, TX-08: 2-nonanone, TX -14: cinnamaldehyde, TX-06: thymol, TO-07: clove extract.
Figura 2 Actividad antimicrobiana de cada compuesto contra Staphylococcus aureus después de 24 h de incubación a 35°C. TO-08: extracto de romero, TX-18: alil isotiocianato, TX-06: timol, TX-14: cinamaldehído, TO-07: : extracto de clavo de olor, TX-09: carvacrol, TX-08: 2-nonanona, TX-07: eugenol. Figure 2 Antimicrobial activity of each compound against Staphylococcus aureus after 24 h of incubation at 35°C. TO-08: rosemary extract, TX-18: allyl isothiocyanate, TX-06: thymol, TX-14: cinnamaldehyde, TO-07: : clove extract, TX-09: carvacrol, TX-08: 2- nonanone, TX-07: eugenol.
Figura 3 Análisis comparado de capacidad antimicrobiana in vitro de compuestos de origen natural para Escherichia coli y Staphylococcus aureus. Figure 3 Comparative analysis of the in vitro antimicrobial capacity of naturally occurring compounds for Escherichia coli and Staphylococcus aureus.
Figuras 4A-4G Imágenes MIC compuesto no volátil C-2 frente Escherichia coli y Staphylococcus aureus. Figura 4A (control, Escherichia coli), Figura 4B (control, Staphylococcus aureus), Figura 4C (10 ppm, Escherichia coli), Figura 4D (10 ppm, Staphylococcus aureus), Figura 4E (20 ppm, Escherichia coli), Figura 4F (20 ppm, Staphylococcus aureus), Figura 4G (30 ppm, Escherichia coli), Figura 4H (30 ppm, Staphylococcus aureus), Figura 4F (40 ppm, Escherichia coli) y Figura 4G (40 ppm, Staphylococcus aureus) Figures 4A-4G Non-volatile compound C-2 MIC images against Escherichia coli and Staphylococcus aureus. Figure 4A (control, Escherichia coli), Figure 4B (control, Staphylococcus aureus), Figure 4C (10 ppm, Escherichia coli), Figure 4D (10 ppm, Staphylococcus aureus), Figure 4E (20 ppm, Escherichia coli), Figure 4F (20 ppm, Staphylococcus aureus), Figure 4G (30 ppm, Escherichia coli), Figure 4H (30 ppm, Staphylococcus aureus), Figure 4F (40 ppm, Escherichia coli), and Figure 4G (40 ppm, Staphylococcus aureus)
Figura 5 Resultados microbiológicos RAM expresados en UFC/g. Figure 5 RAM microbiological results expressed in CFU/g.
Figura 6 Gráfico seguimiento ensayo vida útil con modificaciones. Figura 7 M ¡orografía de corte transversal de película LDPE/laca sellante al calor de producto lácteo/TX-09 (carvacrol) Figure 6 Graph of useful life test follow-up with modifications. Figure 7 Cross-sectional photograph of LDPE film/dairy product heat sealant lacquer/TX-09 (carvacrol)
Figura 8 Análisis de evolución de calidad microbiológica de muestras de pollo envasadas en sistema activo en condiciones de refrigeración (4°C). Negro: Control LDPE; Gris oscuro: LDPE/BLSC y Gris claro: LDPE/BLSC/TX-09 Figure 8 Evolution analysis of microbiological quality of chicken samples packaged in active system under refrigeration conditions (4°C). Black: LDPE control; Dark Grey: LDPE/BLSC and Light Grey: LDPE/BLSC/TX-09
Figura 9. Efecto antimicrobiano de películas activas basadas en BLSC y agente activo volátil. Figura 9A (4%, Escherichia coli), Figura 9B (4%, Staphylococcus aureus), Figura 8C (6%, Escherichia coli), Figura 9D (6%, Staphylococcus aureus), Figura 9E (8%, Escherichia coli), Figura 4F (8%, Staphylococcus aureus). Figure 9. Antimicrobial effect of active films based on BLSC and volatile active agent. Figure 9A (4%, Escherichia coli), Figure 9B (4%, Staphylococcus aureus), Figure 8C (6%, Escherichia coli), Figure 9D (6%, Staphylococcus aureus), Figure 9E (8%, Escherichia coli), Figure 4F (8%, Staphylococcus aureus).
DESCRIPCIÓN DETALLADA DE LA INVENCIÓN DETAILED DESCRIPTION OF THE INVENTION
La presente película flexible polimérica con propiedades antimicrobianas que permite extender la vida útil de productos cárnicos envasados, y comprende un sustrato seleccionado de poliestireno, poliácido láctico, polietilen-vinil-alcohol , poliamidas, poliolefinas, celulosas, ceras, parafinas o una combinación de los mismos, preferentemente, polietileno de baja densidad (LDPE), monocapa o multicapa, con un recubrimiento interior que comprende un vehículo polimérico disuelto en solvente orgánico volátil que porta un agente activo volátil antimicrobiano natural, donde dicho vehículo polimérico disuelto en un solvente volátil es seleccionado de un barniz sintético o natural, preferentemente seleccionado de una laca sellante al calor para producto lácteo, y donde dicho agente activo volátil antimicrobiano natural se selecciona de un aceite esencial volátil, específicamente, carvacrol, y donde dicho vehículo polimérico diseulto en un solvente volátil se dispersa en las caras internas del sustrato o superficie que contacta al alimento, y dicho producto cárnico se selecciona de carne trozada o cortada de pollo, cerdo o pavo. De esta forma, dicho agente activo volátil antimicrobiano natural interactúa tanto con la superficie del alimento como en el entorno donde se mantiene beneficiosamente en el espacio de cabeza del envase. El recubrimiento se aplica mediante un método estándar de tratamiento superficial de sustrato (“coating”), preferentemete seleccionado de laminación o impresión superficial, y de este modo, no requiere implementaciones especiales por parte de la industria transformadora de envases puede aplicarlo sin modificar sus procesos industriales clásicos. El presente envase activo mostró, en pruebas in vivo, extender la vida útil de carne de pollo envasada, bajo condiciones de refrigeración tradicionales para este tipo de alimento, esto es, 4°C. The present flexible polymeric film with antimicrobial properties that allows to extend the useful life of packaged meat products, and comprises a substrate selected from polystyrene, polylactic acid, polyethylene-vinyl-alcohol, polyamides, polyolefins, cellulose, waxes, paraffins or a combination of the same, preferably, low-density polyethylene (LDPE), monolayer or multilayer, with an inner coating that comprises a polymeric vehicle dissolved in a volatile organic solvent that carries a natural antimicrobial volatile active agent, where said polymeric vehicle dissolved in a volatile solvent is selected of a synthetic or natural varnish, preferably selected from a heat sealing lacquer for dairy products, and where said natural antimicrobial volatile active agent is selected from a volatile essential oil, specifically, carvacrol, and where said polymeric vehicle dissolved in a volatile solvent is scattered on the inner faces of the su stratum or surface that contacts the food, and said meat product is selected from chopped or cut chicken, pork or turkey meat. In this way, said natural antimicrobial volatile active agent interacts both with the surface of the food and in the environment where it is beneficially maintained in the headspace of the package. The coating is applied by means of a standard method of surface treatment of the substrate ("coating"), preferably selected from lamination or surface printing, and in this way, it does not require special implementations by the packaging transforming industry, it can be applied without modifying its processes. classic industrial. The present active packaging showed, in in vivo tests, to extend the shelf life of packaged chicken meat, under traditional refrigeration conditions for this type of food, that is, 4°C.
El agente activo (carvacrol) se encuentra en el barniz sintético (BLSC) en una concentración del 2% al 10% p/p, preferentemente en concentraciones de 2%, 4% y 6% p/p Se ensayaron agentes activos volátiles tanto de origen natural como agentes activos sintéticos reconocidos por su capacidad antimicrobiana. El agente TX-09 (carvacrol) demostró una mayor capacidad antibacteriana frente a bacterias de distinto tipo, en condiciones in vitro, y comparado con un conservante comercial de origen sintético (C-2, Etil lauril arginato, LAE). The active agent (carvacrol) is found in the synthetic varnish (BLSC) in a concentration of 2% to 10% p/p, preferably in concentrations of 2%, 4% and 6% p/p Volatile active agents of both natural origin and synthetic active agents recognized for their antimicrobial capacity were tested. The agent TX-09 (carvacrol) demonstrated a greater antibacterial capacity against bacteria of different types, under in vitro conditions, and compared to a commercial preservative of synthetic origin (C-2, Ethyl lauryl arginate, LAE).
Los agentes activos TX-09 y C-2 fueron empleados para funcionalizar una película comercial de polietileno de baja densidad (LDPE), que es el tipo de material que se usa preferentemente en el envasado de carne de pollo. La incorporación de los agentes activos se realizó a través de la técnica de recubrimiento, y usando un vehículo seleccionado de un barniz tipo laca sellante al calor (BLSC) para producto lácteo, preferentemente, y una resina acrílica (RA), preferentemente, para la dispersión y fijación del agente activo sobre el sustrato de LDPE, presentando cada barniz afinidad química particular por el agente activo que porta. Así, TX-09 fue empleado con barniz tipo laca, mientras que para C-2 se empleó la resina acrílica. The active agents TX-09 and C-2 were used to functionalize a commercial film of low-density polyethylene (LDPE), which is the type of material that is preferably used in the packaging of chicken meat. The incorporation of the active agents was carried out through the coating technique, and using a vehicle selected from a varnish type heat sealing lacquer (BLSC) for dairy products, preferably, and an acrylic resin (AR), preferably, for the dispersion and fixation of the active agent on the LDPE substrate, each varnish having a particular chemical affinity for the active agent it carries. Thus, TX-09 was used with a lacquer-type varnish, while acrylic resin was used for C-2.
Las películas de BLSC/TX-09 y RA/C-2 presentaron actividad antibacteriana in vitro frente a los microorganismos modelos (E. coliy S. aeurus). La Figura 7 muestra un corte lateral de la película LDPE/BLSC/TX-09 en donde es posible apreciar la presencia del barniz sobre el sustrato de LDPE. Debido al excelente comportamiento antibacteriano, se procedió a evaluar su comportamiento en pruebas in vivo para ello, se envasaron muestras de pollo en envases recubiertos interiormente con ambas películas activas. Para la evaluación de la capacidad antimicrobiana en condiciones in vivo se consideró un límite de seguridad para un recuento de aerobios mesófilos (RAM) de 1 x107 UFC/g de alimento. Dicho indicador fue empleado para la determinación de vida útil microbiológica de muestras de pollo envasados. Todas las pruebas se realizaron en condiciones de refrigeración (4°C) durante al menos 10 días en envases fabricados a partir de los materiales desarrollados y los respectivos controles. Es preciso indicar que, en el caso del material activo, recubrimiento LDPE/RA/C-2, no fue posible detectar efecto sobre la vida útil del pollo envasado ya que el peso molecular del agente activo dificultó la migración desde la película hacia el alimento. Por el contrario, los envases elaborados con la película activa LDPE/BLSC/TX-09 mostraron un claro efecto del agente activo en la reducción del RAM durante el tiempo de almacenaje. La Figura 8 muestra la evolución del RAM durante 10 días para muestras de pollo almacenadas a 4°C en envases controles (LDPE y LDPE/BLSC) y en el envase activo fabricado con LDPE/BLSC/TX-09. Tal como muestra la figura 8 es posible establecer que el envase activo permite incrementar en 2 días la vida útil de las muestras envasadas, pasando de una vida útil de 6 días para el envasado control a 8 días para el envase activo. Sin limitarse a una teoría, la generación de la actividad antimicrobiana podría estar dada por la naturaleza del compuesto activo, el cual se caracteriza por volatilizarse, situación que favorecería su actuar en el espacio de cabeza del envase, podiendo con ello, actuar en gran parte de la superficie del producto. BLSC/TX-09 and RA/C-2 films showed in vitro antibacterial activity against model microorganisms (E. coli and S. aeurus). Figure 7 shows a side section of the LDPE/BLSC/TX-09 film where it is possible to see the presence of the varnish on the LDPE substrate. Due to the excellent antibacterial behavior, its behavior was evaluated in in vivo tests. For this, chicken samples were packed in containers coated inside with both active films. For the evaluation of the antimicrobial capacity under in vivo conditions, a safety limit was considered for a mesophilic aerobic count (RAM) of 1 x10 7 CFU/g of food. This indicator was used to determine the microbiological shelf life of packaged chicken samples. All the tests were carried out under refrigeration conditions (4°C) for at least 10 days in containers made from the developed materials and the respective controls. It should be noted that, in the case of the active material, LDPE/RA/C-2 coating, it was not possible to detect an effect on the shelf life of packaged chicken, since the molecular weight of the active agent hindered migration from the film to the food. . On the contrary, the containers made with the active film LDPE/BLSC/TX-09 showed a clear effect of the active agent in the reduction of AMR during the storage time. Figure 8 shows the evolution of AMR during 10 days for chicken samples stored at 4°C in control containers (LDPE and LDPE/BLSC) and in the active container made with LDPE/BLSC/TX-09. As Figure 8 shows, it is possible to establish that the active packaging allows the shelf life of the packaged samples to be increased by 2 days, going from a shelf life of 6 days for the control packaging to 8 days for the active package. Without being limited to a theory, the generation of antimicrobial activity could be given by the nature of the active compound, which is characterized by volatilizing, a situation that would favor its action in the head space of the container, thus being able to act on a large part of the surface of the product.
Los resultados mostraron que la película de la invención aumenta un 33% en el tiempo de vida útil de pollo envasado y que la diferencia de las películas y envases antimicrobianos conocidos y muchas soluciones propuestas que muestran actividad antimicrobiana en pruebas in vitro pero que frente a un alimento no demuestran efectividad, tal como sucedió con la película LDPE/RA/C- 2. The results showed that the film of the invention increases the shelf life of packaged chicken by 33% and that it differs from known antimicrobial films and packages and many proposed solutions that show antimicrobial activity in in vitro tests but that against a food do not show effectiveness, as happened with the LDPE/RA/C-2 film.
Ejemplo 1 : Eficacia del agente activo antimicrobiano volátil natural Example 1: Efficacy of the natural volatile antimicrobial active agent
Se ensayó la actividad antimicrobiana de 8 agentes activos antimicrobianos volátiles naturales permitidos como sustancias o aditivos para ser utilizados en envases en contacto con alimentos. Se ensayó por triplicado, la inhibición radial in vitro contra Escherichia coli y Staphylococcus aureus mediante el método de difusión en agar (Elgayyar, M., Draughon, F., Goldem, D. y Mount, J. (2001 ). Antimicrobial Activity of Essential Oils from Plants against Selected Pathogenic and Saprophytic Microorganisms. Journal of Food Protection 64: 1019-1024). Específicamente, en la base de una placa Petri de 9 cm de diámetro, se vertieron 30 mL de agar Tripteina Soya (TSA) estéril. Una vez gelificado el agar se procedió a sembrar 100 pL de cultivo saturado de cada microorganismo, en concentraciones celulares que fluctúan entre 1 x 108 a 1 x 109 (UFC/mL). Posteriormente se homogeniza en toda la superficie del agar mediante rastrillado. Luego, se adhiere un disco de papel filtro de 6 mm de diámetro al que se le agregaron 5 pL de cada agente activo antimicrobiano volátil natural, con el fin de permitir su difusión en el agar. Todo este procedimiento fue realizado en una la campana de flujo laminar NuAire NU, modelo 425-400E, Massachusetts, USA. Finalmente, las placas fueron incubadas por 24 h a 35°C, condiciones consideradas como óptimas para el crecimiento de las bacterias. Cumpliendo el tiempo de incubación, se procedió a medir el halo de inhibición asociado a cada agente activo antimicrobiano volátil natural en que los halos se presentaron, se midieron los diámetros de estos por sextuplicado para calcular posteriormente, un área de inhibición final. De esta forma, se midió la capacidad de difusión que tiene el agente activo antimicrobiano volátil natural a través del agar, el efecto de liberación del mismo compuesto y la actividad contra el microrganismo (Figura 1 y 2). The antimicrobial activity of 8 natural volatile antimicrobial active agents allowed as substances or additives to be used in food contact packaging was tested. In vitro radial inhibition against Escherichia coli and Staphylococcus aureus was tested in triplicate by the agar diffusion method (Elgayyar, M., Draughon, F., Goldem, D. and Mount, J. (2001). Antimicrobial Activity of Essential Oils from Plants against Selected Pathogenic and Saprophytic Microorganisms. Journal of Food Protection 64: 1019-1024). Specifically, at the base of a 9 cm diameter Petri dish, 30 mL of sterile Tryptein Soy Agar (TSA) was poured. Once the agar gelled, 100 pL of saturated culture of each microorganism was seeded, in cell concentrations that fluctuate between 1 x 10 8 to 1 x 10 9 (CFU/mL). Subsequently, it is homogenized throughout the surface of the agar by raking. Then, a 6 mm diameter filter paper disc is adhered to which 5 pL of each natural volatile antimicrobial active agent is added, in order to allow its diffusion in the agar. All this procedure was performed in a NuAire NU laminar flow hood, model 425-400E, Massachusetts, USA. Finally, the plates were incubated for 24 h at 35°C, conditions considered optimal for bacterial growth. Fulfilling the incubation time, the inhibition halo associated with each natural volatile antimicrobial active agent in which the halos were present was measured, their diameters were measured in sextuplicate to subsequently calculate a final inhibition area. In this way, the diffusion capacity of the natural volatile antimicrobial active agent through the agar, the release effect of the same compound and the activity against the microorganism were measured (Figure 1 and 2).
Ejemplo 2: Concentración Mínima Inhibitoria del control Etil Lauril Arginato (LAE, C-2)Example 2: Minimum Inhibitory Concentration of the control Ethyl Lauryl Arginate (LAE, C-2)
Se ensayó la concentración mínima inhibitoria (CMI) definida como la mínima concentración de compuesto activo a la que se observa inhibición en el crecimiento y la concentración mínima bactericida (CMB), donde no hay crecimiento alguno de los microorganismos. La CMI y CMB del compuesto no volátil, se determinó en medio líquido TSB frente a dos microrganismos: S. aureus como modelo de bacteria Gram positiva y E. coli como modelo de bacteria Gram negativa. Para ello, se preparó inicialmente una disolución stock de 1000 ppm en agua Milli-Q. Posteriormente, se hicieron diluciones seriadas en tubos estériles con 10 mL de TSB obteniéndose un rango de concentraciones comprendidas entre 10-40 ppm. Se empleó agua Milli Q estéril como control. Por otro lado, se tomaron 100 pL de un minicultivo y se inocularon en 10 mL de TSB previamente atemperado, se agitaron vigorosamente y se introdujo en un baño de 37°C en agitación para llevar al microorganismo a fase exponencial de crecimiento. Mediante un Espectrofotómetro UV visible se midió la absorbancia a 595 nm hasta alcanzar un valor de 0,2, correspondiente a la fase exponencial de crecimiento (105 UFC/mL). Una vez alcanzada la fase exponencial, se inoculan 100 pL de cada microorganismo en los tubos previamente preparados con las diferentes concentraciones de activo. Los tubos se incuban en una estufa a 37°C durante 24 h. La turbidez es un indicador del crecimiento microbiano y dependiendo de la misma se realizaron diferentes diluciones, se sembraron 100 pL del último tubo turbio y el primero transparente en placas Petri de TSA. Se incubaron durante 24 h a 37°C en estufa y se procedió al recuento de las unidades formadoras de colonia (UFC/mL). Todos los experimentos se realizan por triplicado. En la Tabla 1 y Tabla 2 se muestran los resultados obtenidos para E. coli y S. aureus. The minimum inhibitory concentration (MIC) defined as the minimum concentration of active compound at which growth inhibition is observed and the minimum bactericidal concentration (MBC), where there is no growth of microorganisms, were tested. The MIC and CMB of the non-volatile compound were determined in TSB liquid medium against two microorganisms: S. aureus as a model of Gram-positive bacteria and E. coli as a model of Gram-negative bacteria. For this, a stock solution of 1000 ppm in Milli-Q water was initially prepared. Subsequently, serial dilutions were made in sterile tubes with 10 mL of TSB, obtaining a range of concentrations between 10-40 ppm. Sterile Milli Q water was used as a control. On the other hand, 100 pL of a miniculture were taken and inoculated in 10 mL of previously tempered TSB, vigorously shaken and introduced into a 37°C stirring bath to bring the microorganism to the exponential phase of growth. Using a visible UV spectrophotometer, the absorbance was measured at 595 nm until reaching a value of 0.2, corresponding to the exponential phase of growth (10 5 CFU/mL). Once the exponential phase is reached, 100 pL of each microorganism are inoculated into the tubes previously prepared with the different concentrations of active. The tubes are incubated in an oven at 37°C for 24 h. Turbidity is an indicator of microbial growth and depending on it, different dilutions were made, 100 pL of the last cloudy tube and the first transparent one were seeded in TSA Petri dishes. They were incubated for 24 h at 37°C in an oven and the colony-forming units (CFU/mL) were counted. All experiments are performed in triplicate. Table 1 and Table 2 show the results obtained for E. coli and S. aureus.
Tabla 1 Inhibición del compuesto no volátil frente a S. aureus
Figure imgf000010_0001
Table 1 Inhibition of the non-volatile compound against S. aureus
Figure imgf000010_0001
Tabla 2 Inhibición del compuesto no volátil frente a E. coli
Figure imgf000010_0002
Table 2 Inhibition of the non-volatile compound against E. coli
Figure imgf000010_0002
Los resultados dan cuenta de elevada acción antimicrobiana del compuesto activo comercial no volátil C-2, tanto para la bacteria Gram positiva como Gram Negativa. Así la concentración de 10 ppm es capaz de inhibir 5 ciclos logarítmicos de S. aureus con respecto al control, mientras que concentraciones mayores logran inhibir completamente su crecimiento. En el caso de E. coli se observa un poder un poco menor, pero bastante aceptable, ya que la mínima concentración reduce casi 5 ciclos logarítmicos respecto al control, logrando una inhibición total a 40 ppm. En la figura 4, se muestran imágenes de las pruebas in vitro de la determinación de la MIC del compuesto no volátil C-2 en sus diferentes concentraciones frente a E. coliy S. Aureus. The results show a high antimicrobial action of the non-volatile commercial active compound C-2, both for Gram-positive and Gram-negative bacteria. So the concentration of 10 ppm is capable of inhibiting 5 logarithmic cycles of S. aureus with respect to the control, while higher concentrations manage to completely inhibit its growth. In the case of E. coli, a slightly lower power is observed, but quite acceptable, since the minimum concentration reduces almost 5 logarithmic cycles with respect to the control, achieving total inhibition at 40 ppm. Figure 4 shows images of the in vitro tests for the determination of the MIC of the non-volatile compound C-2 in its different concentrations against E. coli and S. Aureus.
Ejemplo 3: Elaboración de Recubrimientos Example 3: Preparation of Coatings
Se prepararon disoluciones de BLSC para aplicarlo sobre polietileno (LDPE) sometido previamente a un tratamiento corona. Las disoluciones se aplicaron sobre films de LDPE comercial, siendo el más utilizado actualmente en la industria de envases de alimentos para envolver bandejas carne de pollo o elaborar envases en formato de bolsa. El tratamiento corona resultó en una energía superficial mínima de 40 dinas/cm, lo que mejoró la adherencia del recubrimiento. Los recubrimientos se prepararon utilizando un equipo de laboratorio RK Print K303. Se prepararon materiales con diferentes concentraciones (2%, 4%, 6% p/p) de agente activo volátil (carvacrol). El recubrimiento con BLSC fue preparado al 35% p/v. En cuanto al contenido del compuesto activo, éste se expresa en base al porcentaje en masa del polímero presente en el recubrimiento. BLSC solutions were prepared for application on polyethylene (LDPE) previously subjected to corona treatment. The solutions were applied on commercial LDPE films, which is currently the most widely used in the food packaging industry to wrap chicken meat trays or make bags in bag format. The corona treatment resulted in a minimum surface energy of 40 dynes/cm, which improved the adhesion of the coating. The coatings were prepared using RK Print K303 laboratory equipment. Materials with different concentrations (2%, 4%, 6% w/w) of volatile active agent (carvacrol) were prepared. The BLSC coating was prepared at 35% w/v. Regarding the content of the active compound, this is expressed based on the mass percentage of the polymer present in the coating.
La Tabla 3 resume las propiedades de homogeneidad y adhesión del recubrimiento sobre la película base de LDPE. Para esos fines se utilizó una escala de evaluación donde el Valor 1 (+) corresponde al producto final con un recubrimiento opaco blanquecino y heterogéneo, mientras que el Valor 5 (+++++) corresponde a un recubrimiento uniforme, homogéneo y con transparencia total. Los resultados dan cuenta de una buena adhesión y homogeneidad para el recubrimiento con RA con y sin activo. Table 3 summarizes the homogeneity and adhesion properties of the coating on the LDPE base film. For these purposes, an evaluation scale was used where Value 1 (+) corresponds to the final product with a whitish opaque and heterogeneous coating, while Value 5 (+++++) corresponds to a uniform, homogeneous and transparent coating. total. The results show a good adhesion and homogeneity for the coating with RA with and without active.
Tabla 3. Propiedades de los recubrimientos elaborados
Figure imgf000011_0001
Table 3. Properties of the coatings produced
Figure imgf000011_0001
Además, se realizó un ensayo con diferentes varillas para determinar el espesor de recubrimiento adecuado. En la Tabla 4 se puede observar el tipo de varilla utilizado y el espesor de recubrimiento obtenido. Tabla 4. Resultado del estudio de varilla y espesores
Figure imgf000012_0001
In addition, a test was carried out with different rods to determine the appropriate coating thickness. Table 4 shows the type of rod used and the coating thickness obtained. Table 4. Result of the study of rod and thickness
Figure imgf000012_0001
La varilla N°2 confiere un espesor adecuado, aumentando solo en 3,5 pm el espesor respecto al material base. Rod No. 2 confers an adequate thickness, only increasing the thickness by 3.5 pm with respect to the base material.
Ejemplo 4: Caracterización de los materiales Example 4: Characterization of materials
Capacidad antimicrobiana de los recubrimientos Antimicrobial capacity of coatings
Actividad antimicrobiana por contacto Antimicrobial activity by contact
El método utilizado permitió evaluar la actividad antimicrobiana en la superficie de diferentes materiales como productos textiles, plásticos, metálicos o cerámicos. Se usó E. coliy S. aureus como cepas modelo. El control y las muestras analizadas se cortaron en pequeños pedazos cuadrados (5 x 5 cm). Todas las muestras se inocularon por triplicado, con tres réplicas adicionales de las películas control, con una suspensión de microorganismos ca. 105 UFC/ml estandarizados por dilución en un caldo nutritivo. A continuación, el inoculo se cubrió con una película delgada y estéril de polipropileno (4 x 4 cm) para evitar la evaporación de la muestra y la pérdida de viabilidad de los microrganismos. The method used allowed evaluating the antimicrobial activity on the surface of different materials such as textile, plastic, metallic or ceramic products. E. coli and S. aureus were used as model strains. Control and tested samples were cut into small square pieces (5 x 5 cm). All samples were inoculated in triplicate, with three additional replicates of the control films, with a suspension of microorganisms ca. 10 5 CFU/ml standardized by dilution in a nutrient broth. Next, the inoculum was covered with a thin, sterile polypropylene film (4 x 4 cm) to prevent evaporation of the sample and loss of viability of the microorganisms.
Las muestras se incubaron en un ambiente húmedo durante +24 horas. Después de la incubación, las superficies se transfirieron cuidadosamente a un stomacher, desde donde se realizaron diluciones seriadas y posterior sembrado en placas Peths las cuales se incubaron durante 24 horas. El efecto antimicrobiano se midió comparando la supervivencia de las bacterias en el material activo con la obtenida en un material control. Samples were incubated in a humid environment for +24 hours. After incubation, the surfaces were carefully transferred to a stomacher, from where serial dilutions were made and subsequent seeding in Peths plates, which were incubated for 24 hours. The antimicrobial effect was measured by comparing the survival of the bacteria in the active material with that obtained in a control material.
El valor de la actividad antimicrobiana de las muestras analizadas se determinó con la siguiente fórmula (Ecuación 1 ): The value of the antimicrobial activity of the analyzed samples was determined with the following formula (Equation 1):
R = (Ut - U0) - (At - U0) = Ut - At (Ecuación 1 ) donde R = (Ut - U0) - (At - U0) = Ut - At (Equation 1) where
R = es la actividad antibactehana; R = is the antibacterial activity;
U0 = es el promedio del logaritmo común del número de bacterias viables, en células/cm2, recuperado de las muestras de ensayo no tratadas inmediatamente después de la inoculación; Ut = es el promedio del logaritmo común del número de bacterias viables, en células/cm2, recuperadas de las muestras de ensayo no tratadas después de 24 h; U0 = is the average common logarithm of the number of viable bacteria, in cells/cm 2 , recovered from untreated test samples immediately after inoculation; Ut = is the average common logarithm of the number of viable bacteria, in cells/cm 2 , recovered from untreated test samples after 24 h;
At = es el promedio del logaritmo común del número de bacterias viables, en células/cm2, recuperado de las muestras de prueba tratadas después de 24 h; cuando R > 2,0, se considera que la muestra presenta propiedades biocidas At = is the average common logarithm of the number of viable bacteria, in cells/cm 2 , recovered from the treated test samples after 24 h; when R > 2.0, the sample is considered to have biocidal properties
La Tabla 5 muestra los resultados obtenidos tras el análisis. Es posible apreciar una elevada capacidad antimicrobiana frente a E. coliy S. aureus para las películas activas con distinto contenido de agente activo no volátil C-2. Table 5 shows the results obtained after the analysis. It is possible to appreciate a high antimicrobial capacity against E. coli and S. aureus for the active films with different content of non-volatile active agent C-2.
Tabla 5. Efecto del contenido de agente activo comercial C-2 sobre el crecimiento de E. coliy S. aureus. Método por contacto.
Figure imgf000013_0001
Table 5. Effect of the content of commercial active agent C-2 on the growth of E. coli and S. aureus. contact method.
Figure imgf000013_0001
Actividad antimicrobiana en fase vapor. Antimicrobial activity in the vapor phase.
En primer lugar, se recuperaron las cepas bacterianas a utilizar. En este caso E. coliy S. aureus fueron seleccionadas como modelos de bacterias Gram negativas y Gram positivas respectivamente. Para ello, se prepara inicialmente un minicultivo, inoculando una pequeña muestra extraída con el asa de Henle del tubo de agar inclinado en un tubo con 10 mL de TSB y se incuba durante 18 h a 37 eC. First, the bacterial strains to be used were recovered. In this case E. coli and S. aureus were selected as models of Gram negative and Gram positive bacteria, respectively. For this, a miniculture is initially prepared, inoculating a small sample extracted with the loop of Henle from the inclined agar tube in a tube with 10 mL of TSB and incubating for 18 h at 37 ° C.
Posteriormente se inoculan 100 pL de microorganismos en una concentración de 105 UFC/mL sobre placas de TSA, a continuación, se coloca suavemente en la tapa de la placa Petñ los materiales activos desarrollados y se incuban a 37eC durante 24 h. Transcurrido este tiempo se procedió a la analizar de forma visual el crecimiento de las bacterias. Subsequently, 100 pL of microorganisms are inoculated at a concentration of 10 5 CFU/mL on TSA plates, then the developed active materials are gently placed on the cover of the Petñ plate and incubated at 37 °C for 24 h. After this time, the growth of the bacteria was visually analyzed.
La Tabla 6 muestra el efecto de las películas basadas en BLSC y el agente activo volátil sobre el crecimiento de las E. coliy S. aureus en fase vapor. Se observa un importante efecto del activo sobre concentraciones del 6% . Tabla 6. Efecto del contenido de agente activo volátil sobre el crecimiento de E. coliy S. aureus.Table 6 shows the effect of BLSC-based films and volatile active agent on the growth of E. coli and S. aureus in the vapor phase. An important effect of the active ingredient is observed on concentrations of 6%. Table 6. Effect of volatile active agent content on the growth of E. coli and S. aureus.
Método en fase vapor. Ver Fig. 9
Figure imgf000014_0001
Vapor phase method. See Fig. 9
Figure imgf000014_0001
Figura 9. muestra el efecto antimicrobiana de películas activas basadas en BLSC y agente activo volátil. Figure 9. Shows the antimicrobial effect of active films based on BLSC and volatile active agent.
Actividad antimicrobiana en medio líquido Antimicrobial activity in liquid medium
Se evaluó la actividad de los recubrimientos en medio líquido frente a las dos bacterias modelo E. coliy S. aureus. Para ello, se inocularon 100 pL de cada microrganismo en fase exponencial en los tubos previamente preparados con 10 mL de TSB, a los cuales se le añadieron 0,2 g de cada una de películas activas desarrolladas. Posteriormente, se incubaron a 37°C durante 24 h. En función de la turbidez de los tubos se realizaron diluciones señadas con agua de peptona. Un volumen de 100 pL de cada dilución se sembró en placas Petñ de aproximadamente 15 mL de medio de cultivo TSA, las cuales posteriormente se incubaron durante 24 h. Finalmente, se procedió al recuentro de las unidades formadoras de colonias (UFC/mL). Los experimentos se llevaron a cabo por triplicado. The activity of the coatings in liquid medium against the two model bacteria E. coli and S. aureus was evaluated. For this, 100 pL of each microorganism in exponential phase were inoculated in the tubes previously prepared with 10 mL of TSB, to which 0.2 g of each of the active films developed were added. Subsequently, they were incubated at 37°C for 24 h. Depending on the turbidity of the tubes, signed dilutions were made with peptone water. A volume of 100 pL of each dilution was seeded in Petñ plates of approximately 15 mL of TSA culture medium, which were subsequently incubated for 24 h. Finally, the colony-forming units (CFU/mL) were counted. The experiments were carried out in triplicate.
En la Tabla 7 resume los resultados obtenidos para las películas activas desarrolladas. A diferencia del ensayo realizado en el apartado anterior, las películas con un 2% de compuesto activo no presentaron actividad antimicrobiana en medio líquido frente a E. coli, lo que se podría deber a que la cantidad liberada al medio fue menor que la MIC, y en este asunto es preciso mencionar que para que exista efectividad de un antimicrobiano por esta metodología, es indispensable que exista migración del agente hacia el medio líquido de cultivo. A partir del 4% se observa un importante efecto en el crecimiento de E. coli con reducciones por sobre los 5 ciclos logarítmicos. Por otro lado, en el caso de S. aureus se evaluó solamente el porcentaje de 4%, concentración que mostró una reducción de más de 2 ciclos logarítmicos en el crecimiento de esta bacteria. Tabla 7. Efecto del contenido de agente activo comercial C-2 sobre el crecimiento de E. coliy S. aureus. Método en medio líquido
Figure imgf000015_0001
Table 7 summarizes the results obtained for the active films developed. Unlike the test carried out in the previous section, the films with 2% active compound did not show antimicrobial activity in liquid medium against E. coli, which could be due to the fact that the amount released into the medium was less than the MIC, and in this matter it is necessary to mention that for an antimicrobial to be effective by this methodology, it is essential that there is migration of the agent towards the liquid culture medium. From 4%, an important effect is observed in the growth of E. coli with reductions over 5 logarithmic cycles. On the other hand, in the case of S. aureus, only the percentage of 4% was evaluated, a concentration that showed a reduction of more than 2 logarithmic cycles in the growth of this bacterium. Table 7. Effect of the content of commercial active agent C-2 on the growth of E. coli and S. aureus. Method in liquid medium
Figure imgf000015_0001
Los ensayos posteriores se realizan con la película con 4% de activo comercial (C-2) para las pruebas in vivo con pollo en condiciones de refrigeración. Subsequent tests are carried out with the film with 4% commercial active ingredients (C-2) for in vivo tests with chicken under refrigeration conditions.
Caracterización física de las películas activas Physical characterization of active films
Propiedades mecánicas - tracción/deformación Mechanical properties - tensile/strain
Se realizaron ensayos utilizando una máquina universal de ensayo de tracción Zwick Roell modelo BDO-OC 5HT donde se determinaron los valores de Módulo de Young, Fuerza de Tensión, y Porcentaje de Elongación a la Rotura a través de un ensayo de tracción deformación. Los resultados obtenidos se muestran en la Tabla 8. Estos resultados muestran que la incorporación del barniz sobre la película base de polietileno no afecta de forma significativa las propiedades mecánicas de éste. Tests were carried out using a Zwick Roell model BDO-OC 5HT universal tensile testing machine where the values of Young's Modulus, Tensile Strength, and Percentage of Elongation at Break were determined through a tensile deformation test. The results obtained are shown in Table 8. These results show that the incorporation of the varnish on the base polyethylene film does not significantly affect its mechanical properties.
Tabla 8. Propiedades mecánicas de films recubiertos y control.
Figure imgf000015_0002
Table 8. Mechanical properties of coated films and control.
Figure imgf000015_0002
Propiedades ópticas Optical properties
Color Color
Se evaluó el posible cambio en la coloración tras la aplicación del recubrimiento con y sin el agente activo mediante un colorímetro modelo Konica minolta CR-410. A partir de las coordenadas CIELAB se midió L* correspondiente a la luminosidad (negro (0) - blanco (100)), a* (rojo (+) - verde (-)) y b* (amarillo (+) - azul (-)). Se cortaron probetas de 6 x 6 cm para ello. The possible change in coloration after the application of the coating with and without the active agent was evaluated using a Konica minolta CR-410 model colorimeter. Starting at CIELAB coordinates measured L* corresponding to luminosity (black (0) - white (100)), a* (red (+) - green (-)) and b* (yellow (+) - blue (-)). Specimens of 6 x 6 cm were cut for this.
La Tabla 9 muestra las coordenadas de color L*, a*, b*, del control sin barniz (LDPE), con recubrimiento con y sin activo C-2. Los valores de L* dan una ¡dea de la elevada transparencia de los materiales, mientras que los bajos valores de a* y b*, próximos a cero y muy similares a los blancos. Estos resultados son indicativos de que la aplicación de barniz no afecta la coloración del material base. Table 9 shows the color coordinates L*, a*, b*, of the control without varnish (LDPE), with coating with and without active C-2. The values of L* give an idea of the high transparency of the materials, while the low values of a* and b*, close to zero and very similar to white. These results are indicative that the application of varnish does not affect the coloration of the base material.
Tabla 9. Coordenadas colorimétricas de las películas desarrolladas.
Figure imgf000016_0001
Table 9. Colorimetric coordinates of the developed films.
Figure imgf000016_0001
Opacidad Opacity
Adicionalmente se evaluó la opacidad del material desarrollado mediante el cálculo del cociente de la absorbancia medida a 600 nm y el espesor del material. Los resultados de este análisis son presentados a continuación. Al igual que en el caso de la coloración, se evidencia que la aplicación del barniz ya sea con activo o sin él, sobre el polietileno no afecta esta propiedad óptica. Additionally, the opacity of the developed material was evaluated by calculating the quotient of the absorbance measured at 600 nm and the thickness of the material. The results of this analysis are presented below. As in the case of coloration, it is evident that the application of the varnish, either with or without active ingredients, on polyethylene does not affect this optical property.
Tabla 10. Opacidad de las películas desarrolladas y control.
Figure imgf000016_0002
Table 10. Opacity of developed and control films.
Figure imgf000016_0002
Gramaje Grammage
Se determinó el gramaje del envase recubierto con RA con y sin el compuesto activo comercial C-2. Para ello se cortaron 15 muestras de 6 cm2 de cada condición. Posteriormente se calculó los gramos de material por metro cuadrado. Los resultados de este análisis se presentan en la Tabla 1 1 . Tabla 1 1 . Determinación de gramaje de control de LDPE y material de envase activo.
Figure imgf000017_0001
The basis weight of the RA-coated container with and without the commercial active compound C-2 was determined. For this, 15 samples of 6 cm 2 were cut from each condition. Subsequently, the grams of material per square meter were calculated. The results of this analysis are presented in Table 1 1 . Table 1 1 . Determination of LDPE control grammage and active packaging material.
Figure imgf000017_0001
Se puede observar un aumento del gramaje en aproximadamente 4 g/m2 debido a la aplicación del recubrimiento ya sea con o sin agente activo C-2 y de 9 g/m2 en el caso con TX-09. Este resultado es concordante con el espesor obtenido para las películas recubiertas con el material VT7691 . An increase in grammage of approximately 4 g/m 2 can be observed due to the application of the coating either with or without active agent C-2 and of 9 g/m 2 in the case with TX-09. This result is consistent with the thickness obtained for the films coated with the VT7691 material.
Termosellabilidad heat sealability
La Tabla 12 reporta los resultados del ensayo de fuerza de sello del LDPE a un tiempo de sellado de 1 ,5 s. Este tiempo ha sido reportado como logrando un sellado apropiado de LDPE sin tratamiento corona. Por encima de este valor, la resistencia de sello no cambia significativamente cuando se realizan comparaciones a las mismas condiciones de presión y temperatura de sello. Se midió la Resistencia de sello promedio (Fav) como promedio de la fuerza aplicada durante la trayectoria de peladura del sello. Este valor tiene un significado representativo para los casos donde se tienen sellos convencionales anchos. También puede expresarse por unidad de ancho (b) de la probeta (Fav/b). Por otro lado, la Resistencia máxima de sello (Fmax) es la fuerza máxima que resiste el sello, y su valor fue significativamente mayor en los ensayos, donde se tiene un sello tipo hilo muy angosto producido con la envasadora al vacío MULTIVAC (Fmax). También puede expresarse por unidad de ancho (b) de la probeta (Fmax/b). Table 12 reports the results of the LDPE seal strength test at a seal time of 1.5 s. This time has been reported as achieving a proper seal of LDPE without corona treatment. Above this value, the seal strength does not change significantly when comparisons are made at the same seal pressure and temperature conditions. Average Seal Strength (Fav) was measured as the average of the force applied during the peel path of the seal. This value has a representative meaning for the cases where there are wide conventional seals. It can also be expressed per unit width (b) of the specimen (Fav/b). On the other hand, the maximum seal resistance (Fmax) is the maximum force that the seal resists, and its value was significantly higher in the tests, where there is a very narrow thread-type seal produced with the MULTIVAC vacuum packaging machine (Fmax) . It can also be expressed per unit width (b) of the specimen (Fmax/b).
Tabla 12 Parámetros de sello
Figure imgf000017_0002
Table 12 Seal Parameters
Figure imgf000017_0002
El polietileno es reconocido por ser un material termoplástico de excelentes características en cuanto a su termosellabilidad. Debido a lo anterior, en muchos materiales fabricados con estructura multicapa, este material es incluido para favorecer el sellado del envase. Entonces, es importante notar que la aplicación del barniz genera una pérdida importante en la termosellabilidad del material. Si bien esto podría indicar una desventaja en la aplicabilidad del material, el uso de impresión por registro resulta ser una opción para hacer factible la aplicación del barniz activo sobre el polietileno. Polyethylene is recognized for being a thermoplastic material with excellent characteristics in terms of its heat sealability. Due to the above, in many materials manufactured with multilayer structure, this material is included to favor the sealing of the container. Therefore, it is important to note that the application of the varnish generates a significant loss in the heat-sealability of the material. Although this could indicate a disadvantage in the applicability of the material, the use of register printing turns out to be an option to make the application of the active varnish on polyethylene feasible.
Permeabilidad al oxígeno oxygen permeability
La determinación de la permeabilidad al oxígeno de las muestras de los films se llevó a cabo con un equipo OXTRAN 2/20 MOCON. Este equipo permite medir la velocidad a la que el oxígeno atraviesa un material polimérico a una presión de 760 mmHg y 0% HR. El parámetro es entregado por el equipo es el OTR (Oxigen Transmission Rate) o la Velocidad de transmisión de oxígeno. Los resultados de este análisis se presentan en la Tabla 13. The determination of the oxygen permeability of the film samples was carried out with an OXTRAN 2/20 MOCON equipment. This equipment allows to measure the speed at which oxygen passes through a polymeric material at a pressure of 760 mmHg and 0% RH. The parameter delivered by the equipment is the OTR (Oxygen Transmission Rate) or the oxygen transmission rate. The results of this analysis are presented in Table 13.
Tabla 13. Permeabilidad al oxígeno de las películas desarrolladas.
Figure imgf000018_0001
Table 13. Oxygen permeability of the developed films.
Figure imgf000018_0001
Ejemplo 4: Evaluación de la evolución microbiológica de filetillos de pollo envasados en bolsas fabricadas a partir de la película activa LDPE/BLSC/TX-09 y LDPE/RA/C-2. Fabricación de Bolsas Example 4: Evaluation of the microbiological evolution of chicken fillets packed in bags made from the active film LDPE/BLSC/TX-09 and LDPE/RA/C-2. Bag Manufacturing
A partir de las películas LDPE/BLSC/TX-9 y LDPE/RA/C-2 se elaboraron bolsas de dimensiones 15 x 15 cm. Para la fabricación se procedió a termosellar las películas con una termoselladora Multivac. Es preciso destacar que en ambos casos el barniz con los agentes activos, quedaron en la cara interna de la bolsa para permitir el contacto con el alimento. From the LDPE/BLSC/TX-9 and LDPE/RA/C-2 films, bags with dimensions of 15 x 15 cm were made. For the manufacture, the films were heat sealed with a Multivac heat sealer. It should be noted that in both cases the varnish with the active agents remained on the inside of the bag to allow contact with the food.
Se busca confirmar que se cumpla con el límite de seguridad de 1x107 UFC/g de alimento establecido en el título V de los criterios microbiológicos, párrafo III, 10.1 del Reglamento Sanitario de los Alimentos (RSA). Se tomo una muestra representativa que fue masada (10, 25 o 50 g) y diluida con agua peptonada (APT) al 0,1 % (90, 225 o 450 mL) dentro de una bolsa digestora que fue homogeneizada por máximo 1 minuto en Stomacher. Posteriormente se realizan diluciones seriadas en tubos estériles con 9 mL de APT 0,1 %. Se analizaron 2 muestras por condición y se sembraron por duplicado en cada dilución e incubadas a 37eC por 48 h leyendo placas que estén entre 25-250 colonias. Se uso carne de pollo (filetes de pechuga de pollo) comercializada en condiciones de refrigeración, y posteriormente, congelado. Para la evaluación preliminar de carga microbiológica de muestras comerciales de carne de pollo, se realizó un recuento de aerobios mesófilos (-RAM-) de la carne de pollo refrigerada, desde 3 muestras distintas (M1 , M2 y M3), las que fueron analizadas el día de la compra (DO) y 2 días después de comprado o hasta que estuvieran fuera del rango límite de seguridad de 1x107 UFC/g de alimento. Las muestras fueron almacenadas en su envase original en refrigeración a 4°C. Los resultados de este estudio se muestran en la Tabla 14. The aim is to confirm compliance with the safety limit of 1x10 7 CFU/g of food established in title V of the microbiological criteria, paragraph III, 10.1 of the Food Sanitary Regulations (RSA). A representative sample was taken that was massed (10, 25 or 50 g) and diluted with peptone water (TPA) at 0.1% (90, 225 or 450 mL) inside a digester bag that was homogenized for a maximum of 1 minute in stomacher. Subsequently, serial dilutions are made in sterile tubes with 9 mL of 0.1% APT. Two samples per condition were analyzed and they were seeded in duplicate in each dilution and incubated at 37°C for 48 h, reading plates that had between 25-250 colonies. Chicken meat (chicken breast fillets) marketed under refrigeration conditions was used, and later, frozen. For the preliminary evaluation of the microbiological load of commercial samples of chicken meat, a mesophilic aerobic count (-RAM-) of chilled chicken meat was carried out, from 3 different samples (M1, M2 and M3), which were analyzed the day of purchase (DO) and 2 days after purchase or until they were outside the safety limit range of 1x10 7 CFU/g of food. The samples were stored in their original container under refrigeration at 4°C. The results of this study are shown in Table 14.
Tabla 14 Recuento de aerobios mesófilos (RAM) en muestras comerciales de carne de pollo.
Figure imgf000019_0001
Table 14 Count of mesophilic aerobes (RAM) in commercial samples of chicken meat.
Figure imgf000019_0001
Determinación de RAM AMR determination
La eficacia antimicrobiana de las películas activas fue determinada en base al seguimiento del recuento de microorganismos aerobios mesófilos. El método propuesto se llevó a cabo dentro de una cámara de flujo marca LABCONCO modelo 3970421 analizando por separado los tres filetillos de pollo por bolsa con duplicado técnico para cada dilución. A su vez, las placas fueron incubadas en una estufa de incubación Arquimed modelo ZFD- 5090 a 35°C por 7 días o hasta que, desde un punto de vista microbiológico o sensorial, no fueran aceptables. Las concentraciones de microorganismos fueron expresadas en UFC/g a partir de la cuantificación de colonias en un contador SUNTEX modelo 570. La vida útil fue determinada por el límite de aceptabilidad para muestras de carne de ave crudas que es de 107UFC/g. The antimicrobial efficacy of the active films was determined based on monitoring the count of mesophilic aerobic microorganisms. The proposed method was carried out inside a LABCONCO model 3970421 flow chamber, analyzing separately the three chicken fillets per bag with technical duplicate for each dilution. In turn, the plates were incubated in an Arquimed model ZFD-5090 incubator at 35°C for 7 days or until they were not acceptable from a microbiological or sensory point of view. The concentrations of microorganisms were expressed in CFU/g from the quantification of colonies in a SUNTEX model 570 counter. Shelf life was determined by the acceptability limit for raw poultry meat samples, which is 10 7 CFU/g.
Se realizó un estudio para evaluar la efectividad del recubrimiento desarrollado LDPE/BLSC/TX- 09. Para ello, fueron analizadas 4 sistemas, que incluyeron 3 bolsas de 15x15 cm correspondiente al control de LDPE, al control LDPE/BLSC (sin el compuesto activo) y bolsa activa LDPE/BLSC/TX-09. Adicionalmente fue guardada una bandeja sellada manteniendo las mismas condiciones que las otras muestras para ser analizadas el día de vencimiento que indica el envase. Los resultados expresados en unidades formadoras de colonia por gramo de alimentos (UFC/g) son resumidos en la Tabla 15. Tabla 15. Resultados microbiológicos de RAM en filetillos de pollo ensayo con bolsas (porcentaje activo volátil a vehículo, 8 % p/p)
Figure imgf000020_0001
A study was carried out to evaluate the effectiveness of the developed coating LDPE/BLSC/TX-09. For this, 4 systems were analyzed, which included 3 bags of 15x15 cm corresponding to the LDPE control, the LDPE/BLSC control (without the active compound ) and active bag LDPE/BLSC/TX-09. Additionally, a sealed tray was kept maintaining the same conditions as the other samples to be analyzed on the expiration date indicated on the container. The results expressed in colony-forming units per gram of food (CFU/g) are summarized in Table 15. Table 15. Microbiological results of AMR in chicken fillets test with bags (percentage active volatile to vehicle, 8% w/w)
Figure imgf000020_0001
Al graficar los resultados (Figura 5), es posible apreciar un leve efecto antimicrobiano de la bolsa activa desarrollada en comparación a las otras condiciones evaluadas. No obstante, la muestra desde el punto de vista sensorial es inaceptable, con un fuerte olor a descomposición, situación que da cuenta de que el producto no está apto para consumo. Tras múltiples repeticiones se obtuvieron resultados totalmente heterogéneos, donde no fue posible observar actividad antimicrobiana. When plotting the results (Figure 5), it is possible to appreciate a slight antimicrobial effect of the developed active bag compared to the other conditions evaluated. However, from a sensory point of view, the sample is unacceptable, with a strong odor of decomposition, a situation that shows that the product is not suitable for consumption. After multiple repetitions, totally heterogeneous results were obtained, where it was not possible to observe antimicrobial activity.
La variabilidad de resultados fue un problema que ya se anticipaba, la problemática de no conseguir carne de pollo fresco para realizar los ensayos, sumado con el desconocimiento de cómo ha sido tratado el alimento antes de la puesta en venta en los supermercados, entre otros aspectos, complico aún más la obtención de resultados aceptables y reproducibles con el tiempo. Debido a lo anterior, se tomaron distintas medidas con la finalidad de disminuir factores externos que podrían afectar el estudio, tal como, aplicación de radiación UV a las bolsas previo al envasado del pollo. No obstante, tal como se indicará a continuación, el iniciar el estudio con muestras de pollo congelado ayudó significativamente a la realización de los experimentos. The variability of results was a problem that was already anticipated, the problem of not getting fresh chicken meat to carry out the tests, added to the lack of knowledge of how the food has been treated before it is put up for sale in supermarkets, among other aspects. , further complicate obtaining acceptable and reproducible results over time. Due to the above, different measures were taken in order to reduce external factors that could affect the study, such as the application of UV radiation to the bags prior to packaging the chicken. However, as will be indicated below, starting the study with frozen chicken samples significantly helped to carry out the experiments.
Evaluación de pollo congelado Frozen Chicken Evaluation
En la Tabla 16 y Figura 6 se muestran los resultados obtenidos tras las modificaciones anteriormente mencionadas. Es posible apreciar como el envase activo logra, desde un punto de vista microbiológico, aumentar la vida útil de la carne de pollo, a lo menos 3 días más que las demás condiciones. Además, desde el punto de vista sensorial, las muestras se encontraban en condiciones de venta y consumo, no así las demás muestras analizadas. Tabla 16 Resultados microbiológicos RAM, ensayo modificado
Figure imgf000021_0001
La Figura 9 muestra la evolución del RAM, expresada como UFC/g, durante 10 días para muestras de pollo almacenadas a 4 °C en envases controles (LDPE y LDPE/BLSC) y en el envase activo fabricado con LDPE/BLSC/TX-09. Tal como muestra la figura es posible establecer que el envase activo permite incrementar en 2 días la vida útil de las muestras envasadas, pasando de una vida útil de 6 días para el envasado control a 8 días para el envase activo. La generación de la actividad antimicrobiana estaría dada por la naturaleza del compuesto activo, el cual se caracteriza por volatilizarse, situación que favorecería su actuar en el espacio de cabeza del envase pudiendo con ello actuar en gran parte de la superficie del producto.
Table 16 and Figure 6 show the results obtained after the aforementioned modifications. It is possible to see how the active packaging manages, from a microbiological point of view, to increase the shelf life of chicken meat, at least 3 days more than the other conditions. In addition, from the sensory point of view, the samples were in conditions for sale and consumption, but not the other samples analyzed. Table 16 AMR microbiological results, modified assay
Figure imgf000021_0001
Figure 9 shows the evolution of AMR, expressed as CFU/g, during 10 days for chicken samples stored at 4 °C in control containers (LDPE and LDPE/BLSC) and in the active container made with LDPE/BLSC/TX- 09. As the figure shows, it is possible to establish that the active packaging allows the shelf life of the packaged samples to be increased by 2 days, going from a shelf life of 6 days for the control packaging to 8 days for the active package. The generation of the antimicrobial activity would be given by the nature of the active compound, which is characterized by volatilizing, a situation that would favor its action in the head space of the container, thus being able to act in a large part of the product surface.

Claims

REIVINDICACIONES
1 . Envase polimérico activo con propiedades antimicrobianas que permite extender la vida útil de productos cárnicos seleccionados de carne de pollo, pavo o cerdo, caracterizado porque comprende un sustrato seleccionado de poliestireno, poliácido láctico, polietilen- vinil-alcohol, poliamidas, poliolefinas, celulosas, ceras, parafinas o una combinación de los mismos, de monocapa o multicapa, con un recubrimiento interior que comprende un vehículo polimérico disuelto en un solvente orgánico volátil seleccionado de un barniz sintético o natural, que porta un agente activo volátil antimicrobiano natural, seleccionado de carvacrol one . Active polymeric container with antimicrobial properties that allows to extend the useful life of meat products selected from chicken, turkey or pork meat, characterized in that it comprises a selected substrate of polystyrene, polylactic acid, polyethylene-vinyl-alcohol, polyamides, polyolefins, celluloses, waxes , paraffins or a combination thereof, monolayer or multilayer, with an inner coating comprising a polymeric vehicle dissolved in a volatile organic solvent selected from a synthetic or natural varnish, which carries a natural antimicrobial volatile active agent, selected from carvacrol
2. El envase de la reivindicación 1 caracterizado porque dicho sustrato se selecciona de polietileno de baja densidad (LDPE). 2. The container of claim 1 characterized in that said substrate is selected from low-density polyethylene (LDPE).
3. El envase de la reivindicación 1 caracterizado porque dicho vehículo polimérico disuelto en un solvente orgánico volátil se dispersa en las caras internas del sustrato o superficie que contacta al alimento. 3. The container of claim 1, characterized in that said polymeric vehicle dissolved in a volatile organic solvent is dispersed on the internal faces of the substrate or surface that contacts the food.
4. El envase de la reivindicación 3 caracterizado porque dicho barniz sintético es una laca sellante al calor para producto lácteo. 4. The container of claim 3, characterized in that said synthetic varnish is a heat-sealing lacquer for dairy products.
5. El envase de la reivindicación 1 caracterizado porque dicho producto cárnico se selecciona de carne trozada o cortada de pollo, cerdo o pavo. 5. The container of claim 1, characterized in that said meat product is selected from chopped or cut chicken, pork or turkey meat.
6. El envase de la reivindicación 1 caracterizado porque la relación porcentual del agente activo volátil al vehículo está en el rango de 2 a 10%. 6. The container of claim 1 characterized in that the percentage ratio of the volatile active agent to the vehicle is in the range of 2 to 10%.
7. El envase de la reivindicación 6 caracterizado porque la relación porcentual de dicho agente activo volátil a dicho vehículo polimérico disuelto en solvente orgánico volátil es 4%. 7. The container of claim 6 characterized in that the percentage ratio of said volatile active agent to said polymeric vehicle dissolved in volatile organic solvent is 4%.
PCT/CL2021/050074 2020-08-06 2021-08-05 Polymer coating comprising carvacrol as a natural volatile antimicrobial active agent carried in a polymer vehicle dissolved in organic volatile solvent, and flexible polymer film internally comprising the coating, useful for extending the shelf life of meat products WO2022027152A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CL2046-2020 2020-08-06
CL2020002046A CL2020002046A1 (en) 2020-08-06 2020-08-06 Polymeric coating comprising carvacrol as a natural volatile antimicrobial active agent carried in a polymeric vehicle dissolved in volatile organic solvent and flexible polymeric film that internally comprises said coating, useful to extend the shelf life of meat products

Publications (1)

Publication Number Publication Date
WO2022027152A1 true WO2022027152A1 (en) 2022-02-10

Family

ID=72812089

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CL2021/050074 WO2022027152A1 (en) 2020-08-06 2021-08-05 Polymer coating comprising carvacrol as a natural volatile antimicrobial active agent carried in a polymer vehicle dissolved in organic volatile solvent, and flexible polymer film internally comprising the coating, useful for extending the shelf life of meat products

Country Status (2)

Country Link
CL (1) CL2020002046A1 (en)
WO (1) WO2022027152A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001049121A1 (en) * 2000-01-05 2001-07-12 Ace Three (Uk) Limited Meat product packaging
WO2006000032A1 (en) * 2004-06-29 2006-01-05 Victoria University Antimicrobial packaging material
US20140154426A1 (en) * 2010-12-03 2014-06-05 Universidad De Santiago De Chile Process for Obtaining a Film Comprised of the Incorporation of Naturally-Sourced Antimicrobial Agents in a Polymeric Structure to Develop Packages for Increasing the Shelf Life of Refrigerated Meat, Preferentially Refrigerated Fresh Salmon
WO2017032516A1 (en) * 2015-08-26 2017-03-02 Sabic Global Technologies B.V. Polyolefin composition comprising an antimicrobial additive
WO2021068089A1 (en) * 2019-10-07 2021-04-15 Universidad De Santiago De Chile Active antifungal packaging, polyolefin with a water-soluble polymer coating and synergistic mixture of volatile natural components, carvacrol and allyl-isothiocyanate, useful for extending the useful life of bakery products

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001049121A1 (en) * 2000-01-05 2001-07-12 Ace Three (Uk) Limited Meat product packaging
WO2006000032A1 (en) * 2004-06-29 2006-01-05 Victoria University Antimicrobial packaging material
US20140154426A1 (en) * 2010-12-03 2014-06-05 Universidad De Santiago De Chile Process for Obtaining a Film Comprised of the Incorporation of Naturally-Sourced Antimicrobial Agents in a Polymeric Structure to Develop Packages for Increasing the Shelf Life of Refrigerated Meat, Preferentially Refrigerated Fresh Salmon
WO2017032516A1 (en) * 2015-08-26 2017-03-02 Sabic Global Technologies B.V. Polyolefin composition comprising an antimicrobial additive
WO2021068089A1 (en) * 2019-10-07 2021-04-15 Universidad De Santiago De Chile Active antifungal packaging, polyolefin with a water-soluble polymer coating and synergistic mixture of volatile natural components, carvacrol and allyl-isothiocyanate, useful for extending the useful life of bakery products

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
PELTZER, M. ET AL.: "Migration study of carvacrol as a natural antioxidant in high-density polyethylene for active packaging (2009) Food Additives and Contaminants", FOOD ADDITIVES & CONTAMINANTS: PART A, vol. 26, no. 6, pages 938 - 946, XP055788315, DOI: 10.1080/02652030802712681 *
WU, Y ET AL.: "A Review on Styrene Substitutes in Thermosets and Their Composites", POLYMERS, vol. 1815, no. 11, 5 November 2019 (2019-11-05), pages 1 - 20, XP055903455, DOI: https://doi.org/10.3390/polym11111815 *

Also Published As

Publication number Publication date
CL2020002046A1 (en) 2020-09-25

Similar Documents

Publication Publication Date Title
Pinto et al. Biopolymer hybrid materials: Development, characterization, and food packaging applications
Eskandarabadi et al. Active intelligent packaging film based on ethylene vinyl acetate nanocomposite containing extracted anthocyanin, rosemary extract and ZnO/Fe-MMT nanoparticles
Khaneghah et al. Antimicrobial agents and packaging systems in antimicrobial active food packaging: An overview of approaches and interactions
Requena et al. Eugenol and carvacrol migration from PHBV films and antibacterial action in different food matrices
Pitak et al. Physical and antimicrobial properties of banana flour/chitosan biodegradable and self sealing films used for preserving Fresh-cut vegetables
Singh et al. Antimicrobial seafood packaging: a review
Boyacı et al. Development of flexible antimicrobial zein coatings with essential oils for the inhibition of critical pathogens on the surface of whole fruits: Test of coatings on inoculated melons
Hassan et al. Development and evaluation of pullulan-based composite antimicrobial films (CAF) incorporated with nisin, thymol and lauric arginate to reduce foodborne pathogens associated with muscle foods
CN101687584B (en) Plastic sheet for packaging container
Jaiswal et al. Applications of nanotechnology in food microbiology
Dong et al. Characterization of new active packaging based on PP/LDPE composite films containing attapulgite loaded with Allium sativum essence oil and its application for large yellow croaker (Pseudosciaena crocea) fillets
Souza et al. In vitro bioactivity of novel chitosan bionanocomposites incorporated with different essential oils
Clarke et al. Incorporation of commercially-derived antimicrobials into gelatin-based films and assessment of their antimicrobial activity and impact on physical film properties
Gorrasi et al. Active packaging for table grapes: Evaluation of antimicrobial performances of packaging for shelf life of the grapes under thermal stress
Gao et al. Starch/PBAT blown antimicrobial films based on the synergistic effects of two commercial antimicrobial peptides
RO132659A2 (en) Pla-based active degradable biocomposites for food packaging
WO2019195952A1 (en) Synergic composition for keeping fish and seafood fresh
Settier-Ramírez et al. Antilisterial properties of PVOH-based films embedded with Lactococcus lactis subsp. lactis
CN105960167A (en) Antimicrobial compositions for food packaging consisting of salicylaldehyde and carvacrol, thymol or their mixture
Kardam et al. Retention of cinnamaldehyde in poly (vinyl alcohol) films intended for preservation of faba beans through vapor-phase antimicrobial effect
Wang et al. Visible light-responsive chitosan/sodium alginate/QDs@ ZIF-8 nanocomposite films with antibacterial and ethylene scavenging performance for kiwifruit preservation
Fu et al. Multifunctional cinnamaldehyde-tannic acid nano-emulsion/chitosan composite film for mushroom preservation
CA2702918C (en) Antimicrobial gas generating system
WO2022027152A1 (en) Polymer coating comprising carvacrol as a natural volatile antimicrobial active agent carried in a polymer vehicle dissolved in organic volatile solvent, and flexible polymer film internally comprising the coating, useful for extending the shelf life of meat products
KR20180083156A (en) Freshness preserve composition comprising natural mineral and packing paper using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21853511

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21853511

Country of ref document: EP

Kind code of ref document: A1