WO2022025488A1 - Hydrogel complex comprising gelatin and synthetic polymer and production method thereof - Google Patents

Hydrogel complex comprising gelatin and synthetic polymer and production method thereof Download PDF

Info

Publication number
WO2022025488A1
WO2022025488A1 PCT/KR2021/009045 KR2021009045W WO2022025488A1 WO 2022025488 A1 WO2022025488 A1 WO 2022025488A1 KR 2021009045 W KR2021009045 W KR 2021009045W WO 2022025488 A1 WO2022025488 A1 WO 2022025488A1
Authority
WO
WIPO (PCT)
Prior art keywords
gelatin
hydrogel
complex
synthetic polymer
reaction
Prior art date
Application number
PCT/KR2021/009045
Other languages
French (fr)
Korean (ko)
Inventor
이재영
박중건
Original Assignee
광주과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 광주과학기술원 filed Critical 광주과학기술원
Publication of WO2022025488A1 publication Critical patent/WO2022025488A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/075Macromolecular gels
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0025Crosslinking or vulcanising agents; including accelerators
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/07Aldehydes; Ketones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/15Heterocyclic compounds having oxygen in the ring
    • C08K5/151Heterocyclic compounds having oxygen in the ring having one oxygen atom in the ring
    • C08K5/1515Three-membered rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/29Compounds containing one or more carbon-to-nitrogen double bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L89/00Compositions of proteins; Compositions of derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2300/00Characterised by the use of unspecified polymers
    • C08J2300/14Water soluble or water swellable polymers, e.g. aqueous gels
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00

Definitions

  • the present invention relates to a hydrogel complex and a method for preparing the same, and more particularly, to a hydrogel complex comprising gelatin and a synthetic polymer, and a method for preparing the same.
  • Hydrogels are widely used in biomedical engineering applications, cosmetics, and food due to their hydrophilic properties and high water content. In particular, it is used as a transplant and a cell culture material because of its similarity to the soft tissue of the living body. Hydrogels do not dissolve in water and retain their shape due to crosslinking by various chemical, physical, and ionic bonds of hydrophilic polymers, and are characterized by ductility.
  • natural polymers such as proteins such as gelatin, collagen, hyaluronic acid, cellulose derivatives, alginic acid and chitosan, nucleic acids such as DNA, and natural polymers such as lipids are used in the manufacture of hydrogels, and polyethylene glycol (Polyethylene glycol, PEG ), polyacrylic acid, polyacrylamide, polyvinyl alcohol, poly methyl methacrylate (PMMA), poly hydroxyethyl methacrylate (PHEMA), and other synthetic polymers are being used.
  • PEG polyethylene glycol
  • PMMA polymethyl methacrylate
  • PHEMA poly hydroxyethyl methacrylate
  • Synthetic polymers have a problem that bioactivity is low compared to natural polymers, and natural polymers have weak physical properties, which limits their use. Accordingly, various complexes and manufacturing technologies to improve the physical properties of the hard gel are being developed.
  • a hydrogel composite composed of two or more hydrophilic polymers has the advantage of being able to impart the properties of individual polymers constituting it to some extent, but there is a limitation that the simply prepared composite does not sufficiently contribute to the improvement of its physical properties.
  • Gelatin obtained through hydrolysis from animal tissues (skin, etc.) is widely used due to its excellent biocompatibility, degradability, and cell/tissue action.
  • Gelatin undergoes physical crosslinking at low temperatures to form a gel state having a certain shape, but exhibits a property of reversibly dissolving into a sol state when the temperature is increased. Accordingly, when used at room temperature or higher due to a simple mixing or crosslinking reaction of gelatin and other polymers, the properties of the material still show limitations.
  • Non-Patent Document 1 Ahmed A. Haroun et al., International Journal of Biological Macromolecules, 46 (2010), 310-316.
  • the inventors of the present invention overcame the problem of low mechanical properties when using a single synthetic polymer or gelatin hydrogel alone, and studied to improve the physical properties of a hydrogel obtained by mixing gelatin and polymer, the physical network of gelatin In the case of realizing a stable double network structure of gelatin and polymer complex by simultaneously or secondary inducing polymerization of synthetic polymers, hydrogel complexes exhibiting excellent mechanical (physical) and biological properties can be prepared. found
  • the present invention is a hydrogel complex (compoiste) containing gelatin and a synthetic polymer and a method for producing the hydrogel complex comprising the step of implementing a stable double network structure of the gelatin and polymer complex.
  • hydrogel complex comprising gelatin and a synthetic polymer.
  • the gelatin may be included in an amount of 30 to 500 mg/ml based on the hydrogel complex.
  • the synthetic polymer may be at least one selected from the group consisting of polyacrylamide, polyethylene glycol diacrylate, polyhydroxyethyl methacrylate, polyvinyl alcohol and polymethyl methacrylate, and the synthetic polymer may be included in an amount of 1 to 30% (v/v) based on the hydrogel complex.
  • step (a) dissolving gelatin and a synthetic polymer monomer in water to obtain a hydrogel pre-solution; (b) adding a thermal initiator to the hydrogel pre-solution obtained in step (a) and performing a first reaction at a low temperature to obtain a first reactant in which a gelatin network is formed; And (c) a second reaction of the first reactant of step (b) at a temperature above room temperature to obtain a second reactant in which thermally initiated polymerization is formed, a method for producing a hydrogel complex comprising gelatin and synthetic polymer provided
  • the gelatin of step (a) may be dissolved at a concentration of 30 ⁇ 500 mg / ml.
  • the synthetic polymer monomer of step (a) is at least one selected from the group consisting of polyacrylamide, polyethylene glycol diacrylate, polyhydroxyethyl methacrylate, polyvinyl alcohol and polymethyl methacrylate. It may be a monomer, and the synthetic polymer monomer may be dissolved in 1 to 30% (v/v).
  • the thermal initiator of step (b) may be at least one selected from the group consisting of ammonium persulfate, potassium persulfate and iron chloride, and the thermal initiator is added in an amount of 0.01 to 2% (v/v).
  • the thermal initiator is added in an amount of 0.01 to 2% (v/v).
  • At least one selected from the group consisting of a catalyst, a crosslinking agent, an adduct and a pore former may be additionally added in step (b).
  • the catalyst may be at least one selected from the group consisting of thymid, triethylamine, and butylamine, and the catalyst may be added in an amount of 0.01 to 2% (v/v).
  • the crosslinking agent is glutaraldehyde, formaldehyde, 1,4-butanediol diglycidyl ether (BDDE) and 1-ethyl-3-(3-dimethylamino) It may be at least one selected from the group consisting of propyl) carbodiimide (1-ethyl-3-(3-dimethyl aminopropyl) carbodiimide, EDC), and the crosslinking agent may be added in an amount of 0.01 to 1% (v/v). .
  • the low temperature of step (b) may be 0 ⁇ 10 °C.
  • the first reaction of step (b) may be performed for 1 to 200 minutes.
  • the temperature above room temperature in step (c) may be 15 ⁇ 60 °C.
  • the second reaction of step (c) may be performed for 1 to 200 minutes.
  • the gelatin/polymer hydrogel composite prepared so that the physical bonding of the gelatin network and the crosslinking of the polymer exist double exhibits excellent mechanical properties that cannot be obtained by a simple combination of gelatin and synthetic polymer.
  • the improved physical properties of elasticity and ductility and biological properties it is possible to solve the problems of hydrogels with weak physical properties and increase the interaction with cells/tissues by gelatin, which has been widely used in the past. It has been found that it can be utilized as an improved substitute for hydrogels.
  • the hydrogel complex comprising gelatin and synthetic polymer of the present invention and the method for preparing the hydrogel complex implementing the double network structure of the gelatin and polymer complex are tissue engineering scaffolds, human implants (inserts) in the field of hydrogel complexes. , cell cultures, pharmaceuticals, food, packaging, cosmetics, etc. can be usefully used as a biocompatible hydrophilic polymer.
  • 1 is an initial mixed aqueous solution (methyl methacrylate 5.11 (v/v)% and hydroxyethyl methacrylate 23.5 (v/v)%, pentaerythritol tetraacrylate 0.31 (v/v)% dissolved in DMF; Gelatin 100 mg/ml) as a graph measuring the elastic modulus displayed when the temperature changes according to the gelatin concentration, and the modulus means the elastic modulus, and indicates the degree of gelatin network formation.
  • Figure 2 is a graph measuring the change in modulus (Pa) according to the temperature change (conversion from 37 °C to 4 °C) of a mixed aqueous solution containing various concentrations of gelatin (50, 100, 150, 200 mg / ml) and monomers to be.
  • 3 is a graph measuring a change in modulus according to a temperature change (conversion from 5°C to 25°C) of a mixed aqueous solution containing PEGDA (polyethylene glycol diacrylate) having different gelatin concentrations.
  • PEGDA polyethylene glycol diacrylate
  • FIG. 4 is a graph showing the modulus of a hydrogel composite obtained by polymerizing a solution containing gelatin, acrylamide monomer, bisacrylamide, and a thermal initiator under 5 °C conditions, 25 °C conditions, and 5 °C to 25 °C conditions. .
  • FIG. 5 is a CD spectral spectrum of a gelatin hydrogel complex, in which a mixture containing gelatin, acrylamide monomer, bisacrylamide and a thermal initiator was mixed at 5 ° C. for 40 minutes (5 ° C.), 25 ° C. for 40 minutes (25 ° C.); The CD spectral spectrum of the sample was measured after polymerization at 5° C. for 20 minutes and at 25° C. for 20 minutes (5° C. & 25° C.). Absorbance at around 230 nm is an indicator of gelatin network formation, indicating the degree of formation of a triple helix structure of gelatin.
  • FIG. 6 is a graph showing the modulus of a hydrogel complex obtained by polymerizing a solution containing gelatin, polyethylene glycol diacrylate and a thermal initiator at 5 °C conditions, 25 °C conditions, and 5 °C to 25 °C conditions.
  • These are the modulus measurement results of the hydrogel complex obtained by forming a secondary network structure while the gelatin mixture reaction solution was adjusted to the same conditions other than temperature and time [I) 5°C/40min, II) 25°C/40min, III) 5° C./10 min + 25° C./30 min, IV) 5° C./20 min + 25° C./20 min, V) 5° C./30 min + 25° C./10 min].
  • hydrogel 7 is a hydrogel obtained by polymerizing a solution containing gelatin, polyhydroxyethyl methacrylate, polyethylene glycol-4-acrylate and a thermal initiator at 5 ° C., 25 ° C., and 5 ° C. to 25 ° C. It is a graph showing the modulus of the gel complex.
  • control group 9 is a polymer without gelatin (control group 1) and gelatin with and without fixation;
  • Kean hydrogel complex (control group 2) and a solution containing gelatin, acrylamide monomer, bisacrylamide, thermal initiator and chemical crosslinking agent were polymerized for 40 minutes while changing from 5 °C to 25 °C, a chemical crosslinking agent (glutaraldehyde) ) is a graph showing the modulus of the hydrogel complex obtained by changing the initial concentration of 0.1%, 0.2%, 0.3%.
  • the present invention provides a hydrogel complex comprising gelatin and a synthetic polymer.
  • the hydrogel complex of the present invention is composed of gelatin and a synthetic polymer, and optionally a thermal initiator, and consists of a primarily formed gelatin network and a secondary polymerized polymeric bond.
  • the hydrogel complex of the present invention including a chemical crosslinking agent, consists of a gelatin network formed through a stabilization process by chemical crosslinking after the primary gelatin network is formed.
  • the structure of the hydrogel composite of the present invention is shown in Scheme 1 below.
  • the gelatin may be included in an amount of 30 to 500 mg/ml based on the hydrogel complex, preferably 50 to 200 mg/ml.
  • the synthetic polymer may be at least one selected from the group consisting of polyacrylamide, polyethylene glycol diacrylate, polyhydroxyethyl methacrylate, polyvinyl alcohol, and polymethyl methacrylate.
  • the synthetic polymer may be included in an amount of 1 to 30% (v/v), preferably 5 to 25% (v/v), based on the hydrogel complex.
  • the present invention comprises the steps of (a) dissolving gelatin and a synthetic polymer monomer in water to obtain a hydrogel pre-solution; (b) adding a thermal initiator to the hydrogel pre-solution obtained in step (a) and performing a first reaction at a low temperature to obtain a first reactant in which a gelatin network is formed; And (c) a second reaction of the first reactant of step (b) at a temperature above room temperature to obtain a second reactant in which thermally initiated polymerization is formed.
  • a method for producing a hydrogel complex comprising gelatin and a synthetic polymer to provide.
  • the preparation method of the present invention comprises a step of dissolving gelatin and a synthetic polymer monomer in water to obtain a hydrogel pre-solution [ie, step (a)].
  • gelatin should be prepared at a type and concentration of gelatin to form a physical cross-link and network in the mixed solution state before the reaction, and may be dissolved at a concentration of 30 to 500 mg/ml, preferably 50 It can be dissolved at ⁇ 200 mg/ml.
  • the synthetic polymer monomer of step (a) is at least one selected from the group consisting of polyacrylamide, polyethylene glycol diacrylate, polyhydroxyethyl methacrylate, polyvinyl alcohol and polymethyl methacrylate. It may be a monomer.
  • the synthetic polymer monomer may be dissolved in 1 to 30% (v/v).
  • the preparation method of the present invention includes a step of obtaining a first reactant in which a gelatin network is formed by adding a thermal initiator to the hydrogel pre-solution obtained in step (a) and performing a first reaction at a low temperature [ie, step (b)].
  • Step (b) is a step of forming a gelatin network primarily at a low temperature.
  • the thermal initiator of step (b) may be at least one selected from the group consisting of ammonium persulfate, potassium persulfate and iron oxide chloride.
  • the thermal initiator may be added in an amount of 0.01 to 2% (v/v), preferably 0.1 to 1.5% (v/v).
  • At least one selected from the group consisting of a catalyst, a crosslinking agent, an adduct and a pore former may be additionally added in step (b).
  • the catalyst may be at least one selected from the group consisting of thymid, triethylamine, and butylamine.
  • the catalyst may be added in an amount of 0.01 to 2% (v/v), preferably 0.05 to 1% (v/v).
  • the crosslinking agent is 1 selected from the group consisting of glutaraldehyde, formaldehyde, 1,4-butanediol diglycidyl ether and 1-ethyl-3-(3-dimethylaminopropyl) carbodimide. may be more than one species.
  • the crosslinking agent may be added in an amount of 0.01 to 1% (v/v), preferably 0.05 to 0.5% (v/v), and most preferably 0.1 to 0.3% (v/v).
  • the low temperature of step (b) is possible as long as it is a low temperature at which a gelatin network is formed, for example, it may be 0 ⁇ 10 °C, preferably 3 ⁇ 6 °C, but is not limited thereto. .
  • the first reaction of step (b) may be carried out for a time during which the gelatin network formation reaction takes place, for example, it may be carried out for 1 to 200 minutes, preferably for 10 to 30 minutes. , but not limited thereto.
  • the preparation method of the present invention includes the step of obtaining a second reactant in which thermally initiated polymerization is formed by subjecting the first reactant of step (b) to a second reaction at a temperature above room temperature [ie, step (c)].
  • Step (c) is a step in which the polymerization reaction of the synthetic polymer is performed after the gelatin network is formed.
  • the polymerization reaction of the synthetic polymer is carried out by the thermal initiator added in step (b) when the temperature of the reactant is raised from a low temperature to a temperature above room temperature.
  • the polymerization temperature and time of the second reaction in step (c) are set to prevent a large loss of the physically formed gelatin network.
  • the temperature above room temperature may be 15 ⁇ 60 °C, preferably 20 ⁇ 38 °C.
  • the second reaction which is a polymerization reaction, may be performed for a time during which the polymerization reaction of the synthetic polymer takes place, for example, may be performed for 1 to 200 minutes, preferably for 10 to 30 minutes, but is not limited thereto. does not
  • the hydrogel prepared from the mold is removed and unreacted products and reaction by-products are washed and removed.
  • Hydrogel pre-solution was prepared by dissolving acrylamide 8% (v/v), bisacrylamide 0.28% (v/v) and gelatin 100 mg/ml in water. After that, 0.4 % (w/v) of ammonium persulfate as a thermal initiator and 0.2 % (v/v) of thymid as a catalyst are added, stirred quickly, and put the prepared solution in a mold maintained at 5 ° C. made it After 20 minutes, the mold containing the solution was moved to 25° C. and the reaction was allowed to proceed for 20 minutes. Thereafter, the prepared hydrogel was removed from the mold and washed in tertiary distilled water to obtain a double cross-linked hydrogel.
  • Hydrogel pre-solution was prepared by dissolving acrylamide 8% (v/v), bisacrylamide 0.28% (v/v) and gelatin 100 mg/ml in water. After that, 0.2% (v/v) of glutaraldehyde (GA), a crosslinking fixing agent, is added together with 0.4% (w/v) of ammonium persulfate as a thermal initiator and 0.2% (v/v) of thymid as a catalyst, followed by rapid stirring. The prepared solution was put into a mold maintained at 5 °C to proceed with the reaction. After 20 minutes, the mold containing the solution was moved to 25 °C and the rest of the reaction was allowed to proceed for 20 minutes. Thereafter, the prepared hydrogel was removed from the mold and washed in tertiary distilled water to obtain a double cross-linked hydrogel.
  • G glutaraldehyde
  • the hydrogel pre-solution was prepared by dissolving 5% (v/v) of polyethylene glycol diacrylate (Polyehtylene glycol diacrylate, molecular weight 700 Da) and 100 mg/ml of gelatin in water. Thereafter, 0.18% (w/v) of ammonium persulfate as a thermal initiator and 0.05% (v/v) of thymid as a catalyst were added, and after rapid stirring, the prepared solution was put into a mold maintained at 5° C. to proceed with the reaction. After 20 minutes, the mold containing the solution was moved to 25 °C and the rest of the reaction was allowed to proceed for 20 minutes. Thereafter, the prepared hydrogel was removed from the mold and washed in tertiary distilled water to obtain a double cross-linked hydrogel.
  • polyethylene glycol diacrylate Polyehtylene glycol diacrylate, molecular weight 700 Da
  • Hydrogel pre-solution was prepared by dissolving hydroxyethyl methacrylate 20% (v/v), ethylene glycol dimethacrylate 0.5% (v/v) and gelatin 100 mg/ml in water. Thereafter, 1% (w/v) of ammonium persulfate as a thermal initiator and 0.69% (v/v) of thymid as a catalyst were added, and the solution was put into a mold maintained at 5° C. after rapid stirring to proceed with the reaction. After 30 minutes, the mold containing the solution was moved to 25 °C and the rest of the reaction was allowed to proceed for 10 minutes. Thereafter, the prepared hydrogel was removed from the mold and washed in tertiary distilled water to obtain a double cross-linked hydrogel.
  • Hydrogel pre-solution was prepared by dissolving methyl methacrylate 10% (v/v), bisacrylamide 0.5% (v/v) and gelatin 100 mg/ml in water. Thereafter, 1.5% (w/v) of ammonium persulfate as a thermal initiator and 0.5% (v/v) of thymid as a catalyst were added, stirred quickly, and the prepared solution was put into a mold maintained at 5° C. to proceed with the reaction. After 30 minutes, the mold containing the solution was moved to 25 °C and the rest of the reaction was allowed to proceed for 10 minutes. Thereafter, the prepared hydrogel was removed from the mold and washed in tertiary distilled water to obtain a double cross-linked hydrogel.
  • Hydrogel pre-solution consisted of 5.11 (v/v) % methyl methacrylate and 23.5 (v/v) % hydroxy ethyl methacrylate, 0.41 (v/v) % ethylene glycol diacrylate, gelatin It was prepared by dissolving 100 mg/ml in water. Thereafter, 1.37 (w/v) % of ammonium persulfate as a thermal initiator and 0.69 (v/v) % of thymid as a catalyst were added, and the solution was put into a mold maintained at 5°C after rapid stirring, and the reaction proceeded. After 20 minutes, the mold containing the solution was moved to 25 °C and the reaction was carried out for 20 minutes. Thereafter, the prepared hydrogel was removed from the mold and washed in tertiary distilled water to obtain a double cross-linked hydrogel.
  • the prepared gel was measured using a rheometer at a temperature of 25 °C and a strain rate.
  • the elastic modulus was calculated using the shear modulus and the 1 Hz value in the frequency range from 0.1 to 10 Hz under the condition of 0.5%.
  • the triple helix structure of gelatin in the hydrogel was measured in the wavelength range of 190-240 nm at 25°C using CD spectroscopy.
  • the triple helical structure of gelatin and the degree of gelatin network formation were confirmed by values near the 230 nm wavelength band in the CD spectral spectrum of the sample.
  • the modulus means the modulus of elasticity, and indicates the degree of formation of the gelatin network.
  • FIG. 1 when gelatin was moved to a low temperature at a concentration of 50 mg/mL or more in a solution containing a monomer, a physical network was formed, and the modulus was increased. At this time, the temperature and time at which the gelatin network was formed were different according to the concentration of gelatin.
  • FIG. 2 shows the modulus (Pa) according to the temperature change (conversion from 37 °C to 4 °C) of a mixed aqueous solution containing various concentrations of gelatin (50, 100, 150, 100 mg/ml) and acrylamide monomer (10%) change is shown.
  • the modulus greatly increased within minutes, and then it was shown that the modulus continued to increase gradually.
  • FIG. 4 shows (a) a gelatin concentration of 50 mg/ml or (b) a mixed reaction solution having a gelatin concentration of 100 mg/ml and a solution containing acrylamide monomer, bisacrylamide, and a thermal initiator at 5 ° C. conditions, 25 ° C. conditions, and Modulus measurement results of the hydrogel composite obtained by polymerization under the conditions of changing from 5 °C to 25 °C are shown. As shown in FIG. 4 , it can be seen that the physical properties of the finally obtained hydrogel composite vary depending on the low temperature and room temperature reaction temperature.
  • the method of inducing polymer polymerization after the gelatin network formation condition improves the physical properties of the complex than the method of inducing the polymer polymerization condition on the gelatin network formation condition. That is, compared to the gelatin/polyacrylamide complex prepared by polymerization at low temperature (5 °C) and room temperature (25 °C) for 40 minutes, after reacting at low temperature (5 °C) for a predetermined time, the remaining time at room temperature (25 °C) The reaction time was the same for 40 minutes, but the mechanical properties of the composite prepared by changing the reaction temperature to 5 °C and 25 °C were found to be excellent.
  • FIG. 5 is a CD spectral spectrum of the gelatin hydrogel complex, in which a mixture containing gelatin, acrylamide monomer, bisacrylamide and a thermal initiator was mixed at 5 ° C. for 40 minutes (5 ° C.), 25 ° C. for 40 minutes (25 ° C.), The results of measuring the CD spectral spectrum of the sample after polymerization at 5°C for 20 minutes and at 25°C for 20 minutes (5°C & 25°C) are shown.
  • Absorbance at around 230 nm is an indicator of gelatin network formation, indicating the degree of formation of a triple helix structure of gelatin. As shown in FIG.
  • the gelatin network of the gelatin complex hydrogel was polymerized at 5 °C for 40 minutes (5 °C), at 5 °C for 20 minutes and at 25 °C for 20 minutes (5 °C & 25 °C). It can be seen that it is stably formed and maintained.
  • FIG. 6 shows the modulus of the hydrogel composite obtained by polymerizing a solution containing gelatin, polyethylene glycol diacrylate and a thermal initiator at 5 ° C., 25 ° C., and 5 ° C. to 25 ° C. The modulus is shown
  • FIG. A hydrogel complex obtained by polymerizing a solution containing gelatin, polyhydroxyethyl methacrylate, polyethylene glycol-4-acrylate and a thermal initiator under 5 °C conditions, 25 °C conditions, and 5 °C to 25 °C conditions. The modulus of is shown.
  • control group 9 shows a polymer without gelatin (control group 1), a hydrogel complex containing gelatin and not immobilized (control group 2), and a solution containing gelatin, acrylamide monomer, bisacrylamide, a thermal initiator and a chemical crosslinking agent at 5 ° C.
  • the modulus of the hydrogel complex obtained by changing the initial concentration of the chemical crosslinking agent (glutaraldehyde) to 0.1%, 0.2%, and 0.3% under the conditions of polymerization for 40 minutes at 25 °C is shown.
  • the mechanical strength of the finally obtained hydrogel composite is increased when a crosslinking agent capable of stabilizing the initial gelatin structure is added when the reaction temperature and time of low and room temperature are changed.

Abstract

The present invention provides a hydrogel complex comprising gelatin and a synthetic polymer, and a method for producing the hydrogel complex implementing a double network structure of gelatin and a polymer complex. The hydrogel complex produced by the method for producing a hydrogel complex implementing a double network structure of gelatin and a polymer complex of the present invention can exhibit improved physical properties of excellent elasticity and ductility and biological properties at the same time, thereby solving the problems of existing hydrogels having weak physical properties and increasing the interaction with cells/tissue by means of gelatin. Therefore, the hydrogel complex of the present invention can be helpfully used as a biocompatible hydrophilic polymer for a tissue engineering scaffold, a human implant (implantation), a cell culture, a pharmaceutical, a food, a packaging material, a cosmetic, etc. in the field of hydrogel complexes.

Description

젤라틴 및 합성고분자를 포함하는 하이드로젤 복합체 및 이의 제조방법Hydrogel complex comprising gelatin and synthetic polymer and method for preparing the same
본 발명은 하이드로젤 복합체 및 이의 제조방법에 관한 것으로, 더욱 상세하게는 젤라틴 및 합성고분자를 포함하는 하이드로젤 복합체 및 이의 제조방법에 관한 것이다.The present invention relates to a hydrogel complex and a method for preparing the same, and more particularly, to a hydrogel complex comprising gelatin and a synthetic polymer, and a method for preparing the same.
하이드로젤(hydrogel)은 친수성 특성과 높은 수분 함유 특성으로 의공학적 응용, 화장품, 식품으로 널리 활용되고 있다. 특히, 생체의 연성조직과 특성이 유사하여 이식체 및 세포배양체로 이용되고 있다. 하이드로젤은 친수성 고분자의 다양한 화학적, 물리적, 이온적 결합에 의한 가교로 인해 물에 용해되지 않고 형체를 유지하며, 연성을 나타내는 특징이 있다. Hydrogels are widely used in biomedical engineering applications, cosmetics, and food due to their hydrophilic properties and high water content. In particular, it is used as a transplant and a cell culture material because of its similarity to the soft tissue of the living body. Hydrogels do not dissolve in water and retain their shape due to crosslinking by various chemical, physical, and ionic bonds of hydrophilic polymers, and are characterized by ductility.
이에, 하이드로젤 제조에 젤라틴, 콜라겐과 같은 단백질, 히알루론산, 셀룰로오즈 유도체, 알긴산, 키토산 등의 다당류 고분자, DNA와 같은 핵산, 지질 등의 천연고분자가 활용되고 있으며, 폴리에틸렌 글리콜 (Poly ethylene glycon, PEG), 폴리아크릴산 (Poly acrylic acid), 폴리아크릴 아미드 (Poly acrylamide), 폴리비닐 알콜 (Poly vinyl alcohol), PMMA(Poly methyl methacrylate), PHEMA(Poly hydroxyethyl methacrylate) 등의 다양한 합성고분자가 이용되고 있다. Accordingly, natural polymers such as proteins such as gelatin, collagen, hyaluronic acid, cellulose derivatives, alginic acid and chitosan, nucleic acids such as DNA, and natural polymers such as lipids are used in the manufacture of hydrogels, and polyethylene glycol (Polyethylene glycol, PEG ), polyacrylic acid, polyacrylamide, polyvinyl alcohol, poly methyl methacrylate (PMMA), poly hydroxyethyl methacrylate (PHEMA), and other synthetic polymers are being used.
합성고분자는 천연고분자에 비하여 생체활성이 낮다는 문제점이 있으며, 천연고분자는 물성이 약하여 사용에 한계가 있다는 문제점이 있다. 이에, 하드로젤의 물리적 성질을 향상시키고자 하는 다양한 복합체 및 제조 기술이 개발되고 있다. Synthetic polymers have a problem that bioactivity is low compared to natural polymers, and natural polymers have weak physical properties, which limits their use. Accordingly, various complexes and manufacturing technologies to improve the physical properties of the hard gel are being developed.
2개 이상의 친수성 고분자로 구성된 하이드로젤 복합체는 이를 구성하는 개별 고분자의 특성을 어느 정도 부여할 수 있다는 장점이 있지만, 단순하게 제조된 복합체는 이의 물성의 향상에 충분히 기여하지 못하는 제한이 존재한다.A hydrogel composite composed of two or more hydrophilic polymers has the advantage of being able to impart the properties of individual polymers constituting it to some extent, but there is a limitation that the simply prepared composite does not sufficiently contribute to the improvement of its physical properties.
동물조직(피부 등)에서 가수분해 과정을 거쳐 얻어지는 젤라틴은 우수한 생체적합성, 분해성, 세포/조직 작용으로 널리 활용되고 있다. 젤라틴은 저온에서는 물리적 가교를 이루어 일정한 형태를 갖는 젤 상태가 되지만, 온도가 증가하면 가역적으로 졸 상태로 용해되는 특성을 나타낸다. 이에, 젤라틴과 다른 고분자의 단순한 혼합 또는 가교 반응으로 상온 이상에서 활용시에는 물질의 특성이 여전히 한계를 나타낸다.Gelatin obtained through hydrolysis from animal tissues (skin, etc.) is widely used due to its excellent biocompatibility, degradability, and cell/tissue action. Gelatin undergoes physical crosslinking at low temperatures to form a gel state having a certain shape, but exhibits a property of reversibly dissolving into a sol state when the temperature is increased. Accordingly, when used at room temperature or higher due to a simple mixing or crosslinking reaction of gelatin and other polymers, the properties of the material still show limitations.
[선행기술문헌][Prior art literature]
[비특허문헌][Non-patent literature]
(비특허문헌 1) Ahmed A. Haroun et al., International Journal of Biological Macromolecules, 46 (2010), 310-316.(Non-Patent Document 1) Ahmed A. Haroun et al., International Journal of Biological Macromolecules, 46 (2010), 310-316.
본 발명의 발명자들은 기존의 단일 합성고분자 또는 젤라틴 수화젤의 단독 사용 시 낮은 기계적 물성의 문제점을 극복하고, 젤라틴과 고분자의 혼합으로 얻어지는 수화젤의 물성을 향상시키기 위하여 연구하던 중, 젤라틴의 물리적 네트워크를 구현하고, 동시 또는 이차적으로 합성고분자의 중합을 유도함으로써, 젤라틴과 고분자 복합체의 안정적인 이중 네트워크 구조를 구현하는 경우에, 우수한 기계적(물리적) 특성 및 생물학적 특성을 나타내는 하이드로젤 복합체를 제조할수 있다는 것을 발견하였다.The inventors of the present invention overcame the problem of low mechanical properties when using a single synthetic polymer or gelatin hydrogel alone, and studied to improve the physical properties of a hydrogel obtained by mixing gelatin and polymer, the physical network of gelatin In the case of realizing a stable double network structure of gelatin and polymer complex by simultaneously or secondary inducing polymerization of synthetic polymers, hydrogel complexes exhibiting excellent mechanical (physical) and biological properties can be prepared. found
따라서, 본 발명은 젤라틴(gelatin) 및 합성고분자(synthetic polymer)를 포함하는 하이드로젤 복합체(compoiste) 및 젤라틴과 고분자 복합체의 안정적인 이중 네트워크 구조를 구현하는 단계를 포함하는 상기 하이드로젤 복합체의 제조방법을 제공하는 것을 목적으로 한다.Therefore, the present invention is a hydrogel complex (compoiste) containing gelatin and a synthetic polymer and a method for producing the hydrogel complex comprising the step of implementing a stable double network structure of the gelatin and polymer complex. intended to provide
본 발명의 일 측면에 따라, 젤라틴 및 합성고분자를 포함하는 하이드로젤 복합체가 제공된다.According to one aspect of the present invention, there is provided a hydrogel complex comprising gelatin and a synthetic polymer.
일 구현예에서, 상기 젤라틴은 하이드로젤 복합체 기준으로 30 ~ 500 mg/ml로 포함될 수 있다.In one embodiment, the gelatin may be included in an amount of 30 to 500 mg/ml based on the hydrogel complex.
일 구현예에서, 상기 합성고분자는 폴리아크릴아마이드, 폴리에틸렌글리콜 디아크릴레이트, 폴리히드록시에틸 메타크릴레이트, 폴리비닐 알콜 및 폴리메틸 메타크릴레이트로 이루어진 군으로부터 선택된 1종 이상일 수 있으며, 상기 합성고분자는 하이드로젤 복합체 기준으로 1 ~ 30 %(v/v)로 포함될 수 있다.In one embodiment, the synthetic polymer may be at least one selected from the group consisting of polyacrylamide, polyethylene glycol diacrylate, polyhydroxyethyl methacrylate, polyvinyl alcohol and polymethyl methacrylate, and the synthetic polymer may be included in an amount of 1 to 30% (v/v) based on the hydrogel complex.
본 발명의 다른 측면에 따라, (a) 젤라틴 및 합성고분자 단량체를 물에 용해시켜 하이드로젤 사전 용액을 얻는 단계; (b) 단계(a)에서 얻은 하이드로젤 사전 용액에 열 개시제를 첨가하여 저온에서 제1 반응시켜 젤라틴 네트워크가 형성된 제1 반응물을 얻는 단계; 및 (c) 단계(b)의 제1 반응물을 상온 이상의 온도에서 제2 반응시켜 열 개시 중합이 형성된 제2 반응물을 얻는 단계를 포함하는, 젤라틴 및 합성고분자를 포함하는 하이드로젤 복합체의 제조방법이 제공된다.According to another aspect of the present invention, (a) dissolving gelatin and a synthetic polymer monomer in water to obtain a hydrogel pre-solution; (b) adding a thermal initiator to the hydrogel pre-solution obtained in step (a) and performing a first reaction at a low temperature to obtain a first reactant in which a gelatin network is formed; And (c) a second reaction of the first reactant of step (b) at a temperature above room temperature to obtain a second reactant in which thermally initiated polymerization is formed, a method for producing a hydrogel complex comprising gelatin and synthetic polymer provided
일 구현예에서, 단계(a)의 상기 젤라틴은 30 ~ 500 mg/ml의 농도로 용해될 수 있다.In one embodiment, the gelatin of step (a) may be dissolved at a concentration of 30 ~ 500 mg / ml.
일 구현예에서, 단계(a)의 상기 합성고분자 단량체는 폴리아크릴아마이드, 폴리에틸렌글리콜 디아크릴레이트, 폴리히드록시에틸 메타크릴레이트, 폴리비닐 알콜 및 폴리메틸 메타크릴레이트로 이루어진 군으로부터 선택된 1종 이상의 단량체일 수 있으며, 상기 합성고분자 단량체는 1 ~ 30 %(v/v)로 용해될 수 있다.In one embodiment, the synthetic polymer monomer of step (a) is at least one selected from the group consisting of polyacrylamide, polyethylene glycol diacrylate, polyhydroxyethyl methacrylate, polyvinyl alcohol and polymethyl methacrylate. It may be a monomer, and the synthetic polymer monomer may be dissolved in 1 to 30% (v/v).
일 구현예에서, 단계(b)의 상기 열 개시제는 암모늄퍼설페이트, 포타슘퍼설페이트 및 염화산화철로 이루어진 군으로부터 선택된 1종 이상일 수 있으며, 상기 열 개시제는 0.01 ~ 2 %(v/v)로 첨가될 수 있다.In one embodiment, the thermal initiator of step (b) may be at least one selected from the group consisting of ammonium persulfate, potassium persulfate and iron chloride, and the thermal initiator is added in an amount of 0.01 to 2% (v/v). can be
일 구현예에서, 상기 하이드로젤 복합체의 제조방법은 단계(b)에서 촉매제, 가교제, 부가고형물 및 기공형성제로 이루어진 군으로부터 선택된 1종 이상을 추가로 첨가할 수 있다.In one embodiment, in the method for preparing the hydrogel complex, at least one selected from the group consisting of a catalyst, a crosslinking agent, an adduct and a pore former may be additionally added in step (b).
일 구현예에서, 상기 촉매제는 티미드, 트리에틸아민 및 부틸아민으로 이루어진 군으로부터 선택된 1종 이상일 수 있으며, 상기 촉매제는 0.01 ~ 2%(v/v)로 첨가될 수 있다.In one embodiment, the catalyst may be at least one selected from the group consisting of thymid, triethylamine, and butylamine, and the catalyst may be added in an amount of 0.01 to 2% (v/v).
일 구현예에서, 상기 가교제는 글루타알데하이드, 포름알데하이드, 1,4-부탄다이올 다이글리시딜 에테르(1,4-butanediol diglycidyl ether, BDDE) 및 1-에틸-3-(3-디메틸아미노프로필)카르보디마이드(1-ethyl-3-(3-dimethyl aminopropyl)carbodiimide, EDC)로 이루어진 군으로부터 선택된 1종 이상일 수 있으며, 상기 가교제는 0.01 ~ 1 %(v/v)로 첨가될 수 있다.In one embodiment, the crosslinking agent is glutaraldehyde, formaldehyde, 1,4-butanediol diglycidyl ether (BDDE) and 1-ethyl-3-(3-dimethylamino) It may be at least one selected from the group consisting of propyl) carbodiimide (1-ethyl-3-(3-dimethyl aminopropyl) carbodiimide, EDC), and the crosslinking agent may be added in an amount of 0.01 to 1% (v/v). .
일 구현예에서, 단계(b)의 상기 저온은 0 ~ 10 ℃일 수 있다.In one embodiment, the low temperature of step (b) may be 0 ~ 10 ℃.
일 구현예에서, 단계(b)의 상기 제1 반응은 1 ~ 200 분 동안 수행될 수 있다.In one embodiment, the first reaction of step (b) may be performed for 1 to 200 minutes.
일 구현예에서, 단계(c)의 상기 상온 이상의 온도는 15 ~ 60 ℃일 수 있다.In one embodiment, the temperature above room temperature in step (c) may be 15 ~ 60 ℃.
일 구현예에서, 단계(c)의 상기 제2 반응은 1 ~ 200 분 동안 수행될 수 있다.In one embodiment, the second reaction of step (c) may be performed for 1 to 200 minutes.
본 발명에 의해, 젤라틴 네트워크의 물리적 결합과 고분자의 가교결합이 이중으로 존재하도록 제조된 젤라틴/고분자 하이드로젤 복합체는 젤라틴과 합성고분자의 단순한 조합에 의해서는 얻어질 수 없는 우수한 기계적 특성을 나타내어, 우수한 탄성, 연성의 향상된 물리적 특성과 생물학적 특성을 동시에 나타냄으로써, 기존의 약한 물성의 하이드로젤의 문제점을 해결하고, 젤라틴에 의한 세포/조직과의 상호작용을 증가시킬 수 있어, 기존에 광범위하게 사용되고 있는 하이드로젤의 향상된 대체제로서 활용될 수 있다는 것이 밝혀졌다.According to the present invention, the gelatin/polymer hydrogel composite prepared so that the physical bonding of the gelatin network and the crosslinking of the polymer exist double, exhibits excellent mechanical properties that cannot be obtained by a simple combination of gelatin and synthetic polymer. By simultaneously displaying the improved physical properties of elasticity and ductility and biological properties, it is possible to solve the problems of hydrogels with weak physical properties and increase the interaction with cells/tissues by gelatin, which has been widely used in the past. It has been found that it can be utilized as an improved substitute for hydrogels.
따라서, 본 발명의 젤라틴 및 합성고분자를 포함하는 하이드로젤 복합체 및 젤라틴과 고분자 복합체의 이중 네트워크 구조를 구현하는 상기 하이드로젤 복합체의 제조방법은 하이드로젤 복합체 분야에서 조직공학용 지지체, 인체 이식물(삽입물), 세포 배양체, 의약품, 식품, 포장제, 화장품 등의 생체친화적 친수성 고분자로서 유용하게 사용될 수 있다.Therefore, the hydrogel complex comprising gelatin and synthetic polymer of the present invention and the method for preparing the hydrogel complex implementing the double network structure of the gelatin and polymer complex are tissue engineering scaffolds, human implants (inserts) in the field of hydrogel complexes. , cell cultures, pharmaceuticals, food, packaging, cosmetics, etc. can be usefully used as a biocompatible hydrophilic polymer.
도 1은 초기 혼합수용액(메틸 메타크릴레이트 5.11 (v/v) %와 하이드록시 에틸 메타크릴레이트 23.5 (v/v) %, DMF에 녹인 펜타 에리트 리톨 테트라아크릴 레이트 0.31 (v/v) %, 젤라틴 100 mg/ml)에서 젤라틴 농도에 따라 온도 변화시 나타내는 탄성 모듈러스(Elastic modulus)를 측정한 그래프로서, 모듈러스는 탄성계수를 의미하며, 젤라틴 네트워크 형성 정도를 나타낸다.1 is an initial mixed aqueous solution (methyl methacrylate 5.11 (v/v)% and hydroxyethyl methacrylate 23.5 (v/v)%, pentaerythritol tetraacrylate 0.31 (v/v)% dissolved in DMF; Gelatin 100 mg/ml) as a graph measuring the elastic modulus displayed when the temperature changes according to the gelatin concentration, and the modulus means the elastic modulus, and indicates the degree of gelatin network formation.
도 2는 다양한 농도의 젤라틴(50, 100, 150, 200 mg/ml) 및 단량체를 포함하는 혼합수용액의 온도 변화(37 ℃에서 4 ℃로 전환)에 따른 모듈러스(Pa)의 변화를 측정한 그래프이다.Figure 2 is a graph measuring the change in modulus (Pa) according to the temperature change (conversion from 37 ℃ to 4 ℃) of a mixed aqueous solution containing various concentrations of gelatin (50, 100, 150, 200 mg / ml) and monomers to be.
도 3은 젤라틴 농도가 다른 PEGDA(Polyethylene glycol diacrylate)를 포함하는 혼합수용액의 온도 변화(5 ℃에서 25 ℃로 전환)에 따른 모듈러스의 변화를 측정한 그래프이다.3 is a graph measuring a change in modulus according to a temperature change (conversion from 5°C to 25°C) of a mixed aqueous solution containing PEGDA (polyethylene glycol diacrylate) having different gelatin concentrations.
도 4는 젤라틴, 아크릴아마이드 단량체, 비스아크릴아마이드 및 열 개시제를 포함한 용액을 5 ℃ 조건, 25 ℃ 조건, 및 5 ℃에서 25 ℃로 변화시키는 조건에서 중합하여 얻어진 하이드로젤 복합체의 모듈러스를 나타낸 그래프이다. (a) 젤라틴 농도 50 mg/ml 및 (b) 젤라틴 농도 100 mg/ml의 혼합반응액을 온도 및 시간 외에 다른 조건은 동일하게 조절한 상태에서 이차 네트워크 구조를 형성하여 얻어진 하이드로젤 복합체의 모듈러스 측정 결과이다 [Ⅰ) 5℃/40분, Ⅱ) 25℃/40분,Ⅲ) 5℃/10분 + 25℃/30분, Ⅳ) 5℃/20분 + 25℃/20분, Ⅴ) 5℃/30분 + 25℃/10분].4 is a graph showing the modulus of a hydrogel composite obtained by polymerizing a solution containing gelatin, acrylamide monomer, bisacrylamide, and a thermal initiator under 5 °C conditions, 25 °C conditions, and 5 °C to 25 °C conditions. . Modulus measurement of the hydrogel complex obtained by forming a secondary network structure with (a) a gelatin concentration of 50 mg/ml and (b) a mixed reaction solution having a gelatin concentration of 100 mg/ml under the same conditions other than temperature and time Result [I) 5℃/40min, II) 25℃/40min, III) 5℃/10min + 25℃/30min, IV) 5℃/20min + 25℃/20min, V) 5 °C/30 min + 25 °C/10 min].
도 5는 젤라틴 하이드로젤 복합체의 CD 분광스펙트럼으로서, 젤라틴, 아크릴아마이드 단량체, 비스아크릴아마이드 및 열 개시제가 포함된 혼합액을 5 ℃에서 40분(5 ℃), 25 ℃에서 40분(25 ℃), 5 ℃에서 20분 및 25 ℃에서 20분(5 ℃ & 25℃) 중합 후 시료의 CD 분광스펙트럼을 측정한 것이다. 230 nm 내외에서의 흡광도는 젤라틴의 삼중나선구조의 형성 정도를 나타내는 젤라틴 네트워크 형성의 지표이다.5 is a CD spectral spectrum of a gelatin hydrogel complex, in which a mixture containing gelatin, acrylamide monomer, bisacrylamide and a thermal initiator was mixed at 5 ° C. for 40 minutes (5 ° C.), 25 ° C. for 40 minutes (25 ° C.); The CD spectral spectrum of the sample was measured after polymerization at 5° C. for 20 minutes and at 25° C. for 20 minutes (5° C. & 25° C.). Absorbance at around 230 nm is an indicator of gelatin network formation, indicating the degree of formation of a triple helix structure of gelatin.
도 6은 젤라틴, 폴리에틸렌글리콜 디아크릴레이트 및 열 개시제를 포함한 용액을 5 ℃ 조건, 25 ℃ 조건, 및 5 ℃에서 25 ℃로 변화시키는 조건에서 중합하여 얻어진 하이드로젤 복합체의 모듈러스를 나타낸 그래프이다. 젤라틴 혼합반응액을 온도 및 시간 외에 다른 조건은 동일하게 조절한 상태에서 이차 네트워크 구조를 형성하여 얻어진 하이드로젤 복합체의 모듈러스 측정 결과이다 [Ⅰ) 5℃/40분, Ⅱ) 25℃/40분, Ⅲ) 5℃/10분 + 25℃/30분, Ⅳ) 5℃/20분 + 25℃/20분, V) 5℃/30분 + 25℃/10분].6 is a graph showing the modulus of a hydrogel complex obtained by polymerizing a solution containing gelatin, polyethylene glycol diacrylate and a thermal initiator at 5 °C conditions, 25 °C conditions, and 5 °C to 25 °C conditions. These are the modulus measurement results of the hydrogel complex obtained by forming a secondary network structure while the gelatin mixture reaction solution was adjusted to the same conditions other than temperature and time [I) 5℃/40min, Ⅱ) 25℃/40min, III) 5° C./10 min + 25° C./30 min, IV) 5° C./20 min + 25° C./20 min, V) 5° C./30 min + 25° C./10 min].
도 7은 젤라틴, 폴리히드록시에틸메타크릴레이트, 폴리에틸렌글리콜-4-아크릴레이트 및 열 개시제를 포함한 용액을 5 ℃ 조건, 25 ℃ 조건, 및 5 ℃에서 25 ℃로 변화시키는 조건에서 중합하여 얻어진 하이드로젤 복합체의 모듈러스를 나타낸 그래프이다. 젤라틴 혼합반응액을 온도 및 시간 외에 다른 조건은 동일하게 조절한 상태에서 이차 네트워크 구조를 형성하여 얻어진 하이드로젤 복합체의 모듈러스 측정 결과이다 [Ⅰ) 5℃/40분, Ⅱ) 25℃/40분, Ⅲ) 5℃/10분 + 25℃/30분, Ⅳ) 5 ℃/20분 + 25℃/20분, V) 5℃/30분 + 25℃/10분].7 is a hydrogel obtained by polymerizing a solution containing gelatin, polyhydroxyethyl methacrylate, polyethylene glycol-4-acrylate and a thermal initiator at 5 ° C., 25 ° C., and 5 ° C. to 25 ° C. It is a graph showing the modulus of the gel complex. These are the modulus measurement results of the hydrogel complex obtained by forming a secondary network structure while the gelatin mixture reaction solution was adjusted to the same conditions other than temperature and time [I) 5℃/40min, Ⅱ) 25℃/40min, III) 5° C./10 min + 25° C./30 min, IV) 5° C./20 min + 25° C./20 min, V) 5° C./30 min + 25° C./10 min].
도 8은 젤라틴, 폴리메틸메타크릴레이드, 폴리히드록시에틸메타크릴레이트, 폴리에틸렌글리콜-디아크릴레이트 및 열 개시제를 포함한 용액을 5 ℃ 조건, 25 ℃ 조건, 및 5 ℃에서 25 ℃로 변화시키는 조건에서 중합하여 얻어진 하이드로젤 복합체의 모듈러스를 나타낸 그래프이다. 젤라틴 혼합반응액을 온도 및 시간 외에 다른 조건은 동일하게 조절한 상태에서 이차 네트워크 구조를 형성하여 얻어진 하이드로젤 복합체의 모듈러스 측정 결과이다 [Ⅰ) 5℃/40분, Ⅱ) 25℃/40분, Ⅲ) 5℃/10분 + 25℃/30분, Ⅳ) 5℃/20분 + 25℃/20분, V) 5℃/30분 + 25℃/10분].8 shows a solution containing gelatin, polymethyl methacrylate, polyhydroxyethyl methacrylate, polyethylene glycol-diacrylate, and a thermal initiator at 5 ° C., 25 ° C., and 5 ° C. to 25 ° C. It is a graph showing the modulus of the hydrogel composite obtained by polymerization. These are the modulus measurement results of the hydrogel complex obtained by forming a secondary network structure while the gelatin mixture reaction solution was adjusted to the same conditions other than temperature and time [I) 5℃/40min, Ⅱ) 25℃/40min, III) 5° C./10 min + 25° C./30 min, IV) 5° C./20 min + 25° C./20 min, V) 5° C./30 min + 25° C./10 min].
도 9는 젤라틴을 미포함한 중합체(대조군 1) 및 젤라틴을 포함하고 미고정시9 is a polymer without gelatin (control group 1) and gelatin with and without fixation;
킨 하이드로젤 복합체(대조군 2)와, 젤라틴, 아크릴아마이드 단량체, 비스아크릴아마이드, 열 개시제 및 화학가교제를 포함한 용액을 5 ℃에서 25 ℃로 변화시키며 40분간 중합시키는 조건에서, 화학적 가교제(글루타르알데히드)의 초기 농도를 0.1%, 0.2%, 0.3%로 변화하여 얻어진 하이드로젤 복합체의 모듈러스를 나타낸 그래프이다.Kean hydrogel complex (control group 2) and a solution containing gelatin, acrylamide monomer, bisacrylamide, thermal initiator and chemical crosslinking agent were polymerized for 40 minutes while changing from 5 ℃ to 25 ℃, a chemical crosslinking agent (glutaraldehyde) ) is a graph showing the modulus of the hydrogel complex obtained by changing the initial concentration of 0.1%, 0.2%, 0.3%.
본 발명은 젤라틴 및 합성고분자를 포함하는 하이드로젤 복합체를 제공한다. The present invention provides a hydrogel complex comprising gelatin and a synthetic polymer.
본 발명의 하이드로젤 복합체는 젤라틴 및 합성고분자를 포함하여 구성되고, 선택적으로 열 개시제를 포함하여 구성되며, 1차적으로 형성된 젤라틴 네트워크와 2차적으로 형성된 고분자 중합 결합으로 이루어져 있다. The hydrogel complex of the present invention is composed of gelatin and a synthetic polymer, and optionally a thermal initiator, and consists of a primarily formed gelatin network and a secondary polymerized polymeric bond.
또한, 본 발명의 하이드로젤 복합체는 화학적 가교제를 포함하여, 1차적 젤라틴 네트워크 형성 이후에 화학적 가교에 의한 안정화 과정을 거쳐 형성된 젤라틴 네트워크로 이루어져 있다. 본 발명의 하이드로젤 복합체의 구조를 하기 모식도 1에 나타내었다.In addition, the hydrogel complex of the present invention, including a chemical crosslinking agent, consists of a gelatin network formed through a stabilization process by chemical crosslinking after the primary gelatin network is formed. The structure of the hydrogel composite of the present invention is shown in Scheme 1 below.
<모식도 1><Schematic diagram 1>
일 구현예에서, 상기 젤라틴은 하이드로젤 복합체 기준으로 30 ~ 500 mg/ml로 포함될 수 있으며, 바람직하게는 50 ~ 200 mg/ml로 포함될 수 있다.In one embodiment, the gelatin may be included in an amount of 30 to 500 mg/ml based on the hydrogel complex, preferably 50 to 200 mg/ml.
일 구현예에서, 상기 합성고분자는 폴리아크릴아마이드, 폴리에틸렌글리콜 디아크릴레이트, 폴리히드록시에틸 메타크릴레이트, 폴리비닐 알콜 및 폴리메틸 메타크릴레이트로 이루어진 군으로부터 선택된 1종 이상일 수 있다. 상기 합성고분자는 하이드로젤 복합체 기준으로 1 ~ 30 %(v/v)로 포함될 수 있으며, 바람직하게는 5 ~ 25 %(v/v)로 포함될 수 있다.In one embodiment, the synthetic polymer may be at least one selected from the group consisting of polyacrylamide, polyethylene glycol diacrylate, polyhydroxyethyl methacrylate, polyvinyl alcohol, and polymethyl methacrylate. The synthetic polymer may be included in an amount of 1 to 30% (v/v), preferably 5 to 25% (v/v), based on the hydrogel complex.
또한, 본 발명은 (a) 젤라틴 및 합성고분자 단량체를 물에 용해시켜 하이드로젤 사전 용액을 얻는 단계; (b) 단계(a)에서 얻은 하이드로젤 사전 용액에 열 개시제를 첨가하여 저온에서 제1 반응시켜 젤라틴 네트워크가 형성된 제1 반응물을 얻는 단계; 및 (c) 단계(b)의 제1 반응물을 상온 이상의 온도에서 제2 반응시켜 열 개시 중합이 형성된 제2 반응물을 얻는 단계를 포함하는, 젤라틴 및 합성고분자를 포함하는 하이드로젤 복합체의 제조방법을 제공한다. In addition, the present invention comprises the steps of (a) dissolving gelatin and a synthetic polymer monomer in water to obtain a hydrogel pre-solution; (b) adding a thermal initiator to the hydrogel pre-solution obtained in step (a) and performing a first reaction at a low temperature to obtain a first reactant in which a gelatin network is formed; And (c) a second reaction of the first reactant of step (b) at a temperature above room temperature to obtain a second reactant in which thermally initiated polymerization is formed. A method for producing a hydrogel complex comprising gelatin and a synthetic polymer to provide.
본 발명의 젤라틴 및 합성고분자를 포함하는 하이드로젤 복합체의 제조방법을 나타내는 과정을 하기 모식도 2에 나타내었다.The process showing the method for preparing a hydrogel complex comprising gelatin and synthetic polymer of the present invention is shown in Scheme 2 below.
<모식도 2><Schematic diagram 2>
본 발명의 제조방법은 젤라틴 및 합성고분자 단량체를 물에 용해시켜 하이드로젤 사전 용액을 얻는 단계[즉, 단계(a)]를 포함한다. 단계(a)에서, 젤라틴은 반응전 혼합액 상태에서 물리적 가교 및 네트워크를 형성할 수 있도록 젤라틴의 종류와 농도로 제조되어야 하고, 30 ~ 500 mg/ml의 농도로 용해될 수 있으며, 바람직하게는 50 ~ 200 mg/ml로 용해될 수 있다.The preparation method of the present invention comprises a step of dissolving gelatin and a synthetic polymer monomer in water to obtain a hydrogel pre-solution [ie, step (a)]. In step (a), gelatin should be prepared at a type and concentration of gelatin to form a physical cross-link and network in the mixed solution state before the reaction, and may be dissolved at a concentration of 30 to 500 mg/ml, preferably 50 It can be dissolved at ~ 200 mg/ml.
일 구현예에서, 단계(a)의 상기 합성고분자 단량체는 폴리아크릴아마이드, 폴리에틸렌글리콜 디아크릴레이트, 폴리히드록시에틸 메타크릴레이트, 폴리비닐 알콜 및 폴리메틸 메타크릴레이트로 이루어진 군으로부터 선택된 1종 이상의 단량체일 수 있다.In one embodiment, the synthetic polymer monomer of step (a) is at least one selected from the group consisting of polyacrylamide, polyethylene glycol diacrylate, polyhydroxyethyl methacrylate, polyvinyl alcohol and polymethyl methacrylate. It may be a monomer.
또한, 상기 합성고분자 단량체는 1 ~ 30 %(v/v)로 용해될 수 있다.In addition, the synthetic polymer monomer may be dissolved in 1 to 30% (v/v).
본 발명의 제조방법은 단계(a)에서 얻은 하이드로젤 사전 용액에 열 개시제를 첨가하여 저온에서 제1 반응시켜 젤라틴 네트워크가 형성된 제1 반응물을 얻는 단계[즉, 단계(b)]를 포함한다. 단계(b)는 저온에서 1차적으로 젤라틴 네트워크를 형성하는 단계이다.The preparation method of the present invention includes a step of obtaining a first reactant in which a gelatin network is formed by adding a thermal initiator to the hydrogel pre-solution obtained in step (a) and performing a first reaction at a low temperature [ie, step (b)]. Step (b) is a step of forming a gelatin network primarily at a low temperature.
일 구현예에서, 단계(b)의 상기 열 개시제는 암모늄퍼설페이트, 포타슘퍼설페이트 및 산화염화철로 이루어진 군으로부터 선택된 1종 이상일 수 있다.In one embodiment, the thermal initiator of step (b) may be at least one selected from the group consisting of ammonium persulfate, potassium persulfate and iron oxide chloride.
상기 열 개시제는 0.01 ~ 2 %(v/v)로 첨가될 수 있으며, 바람직하게는 0.1 ~ 1.5%(v/v)로 첨가될 수 있다.The thermal initiator may be added in an amount of 0.01 to 2% (v/v), preferably 0.1 to 1.5% (v/v).
일 구현예에서, 상기 하이드로젤 복합체의 제조방법은 단계(b)에서 촉매제, 가교제, 부가고형물 및 기공형성제로 이루어진 군으로부터 선택된 1종 이상을 추가로 첨가할 수 있다.In one embodiment, in the method for preparing the hydrogel complex, at least one selected from the group consisting of a catalyst, a crosslinking agent, an adduct and a pore former may be additionally added in step (b).
일 구현예에서, 상기 촉매제는 티미드, 트리에틸아민 및 부틸아민으로 이루어진 군으로부터 선택된 1종 이상일 수 있다. 상기 촉매제는 0.01 ~ 2 %(v/v)로 첨가될 수 있으며, 바람직하게는 0.05 ~ 1 %(v/v)로 첨가될 수 있다.In one embodiment, the catalyst may be at least one selected from the group consisting of thymid, triethylamine, and butylamine. The catalyst may be added in an amount of 0.01 to 2% (v/v), preferably 0.05 to 1% (v/v).
일 구현예에서, 상기 가교제는 글루타알데하이드, 포름알데하이드, 1,4-부탄다이올 다이글리시딜 에테르 및 1-에틸-3-(3-디메틸아미노프로필) 카르보디마이드로 이루어진 군으로부터 선택된 1종 이상일 수 있다. 상기 가교제는 0.01 ~ 1 %(v/v)로 첨가될 수 있으며, 바람직하게는 0.05 ~ 0.5 %(v/v), 가장 바람직하게는 0.1 ~ 0.3 %(v/v)로 첨가될 수 있다.In one embodiment, the crosslinking agent is 1 selected from the group consisting of glutaraldehyde, formaldehyde, 1,4-butanediol diglycidyl ether and 1-ethyl-3-(3-dimethylaminopropyl) carbodimide. may be more than one species. The crosslinking agent may be added in an amount of 0.01 to 1% (v/v), preferably 0.05 to 0.5% (v/v), and most preferably 0.1 to 0.3% (v/v).
일 구현예에서, 단계(b)의 상기 저온은 젤라틴 네트워크가 형성되는 저온이라면 가능하며, 예를 들어, 0 ~ 10 ℃일 수 있으며, 바람직하게는 3 ~ 6 ℃일 수 있으나, 이에 제한되지 않는다.In one embodiment, the low temperature of step (b) is possible as long as it is a low temperature at which a gelatin network is formed, for example, it may be 0 ~ 10 ℃, preferably 3 ~ 6 ℃, but is not limited thereto. .
일 구현예에서, 단계(b)의 상기 제1 반응은 젤라틴 네트워크 형성 반응이 이루어지는 시간 동안 수행될 수 있으며, 예를 들어, 1 ~ 200 분 동안, 바람직하게는 10 ~ 30 분 동안 수행될 수 있으나, 이에 제한되지 않는다.In one embodiment, the first reaction of step (b) may be carried out for a time during which the gelatin network formation reaction takes place, for example, it may be carried out for 1 to 200 minutes, preferably for 10 to 30 minutes. , but not limited thereto.
본 발명의 제조방법은 단계(b)의 제1 반응물을 상온 이상의 온도에서 제2 반응시켜 열 개시 중합이 형성된 제2 반응물을 얻는 단계[즉, 단계(c)]를 포함한다. 단계(c)는 젤라틴 네트워크가 형성된 이후에 합성고분자의 중합 반응이 이루어지는 단계이다. 상기 합성고분자의 중합 반응은 반응물의 온도를 저온에서 상온 이상의 온도로 올리면 단계(b)에서 첨가된 열 개시제에 의하여 수행된다.The preparation method of the present invention includes the step of obtaining a second reactant in which thermally initiated polymerization is formed by subjecting the first reactant of step (b) to a second reaction at a temperature above room temperature [ie, step (c)]. Step (c) is a step in which the polymerization reaction of the synthetic polymer is performed after the gelatin network is formed. The polymerization reaction of the synthetic polymer is carried out by the thermal initiator added in step (b) when the temperature of the reactant is raised from a low temperature to a temperature above room temperature.
단계(c)의 상기 제2 반응의 중합 온도와 시간은 물리적으로 형성된 젤라틴 네트워가 크게 손실되는 것을 방지하도록 설정한다. 예를 들어, 상기 상온 이상의 온도는 15 ~ 60 ℃, 바람직하게는 20 ~ 38 ℃일 수 있다. 또한, 중합 반응인 상기 제2 반응은 합성고분자의 중합 반응이 이루어지는 시간 동안 수행될 수 있으며, 예를 들어, 1 ~ 200 분 동안, 바람직하게는 10 ~ 30 분 동안 수행될 수 있으나, 이에 제한되지 않는다.The polymerization temperature and time of the second reaction in step (c) are set to prevent a large loss of the physically formed gelatin network. For example, the temperature above room temperature may be 15 ~ 60 ℃, preferably 20 ~ 38 ℃. In addition, the second reaction, which is a polymerization reaction, may be performed for a time during which the polymerization reaction of the synthetic polymer takes place, for example, may be performed for 1 to 200 minutes, preferably for 10 to 30 minutes, but is not limited thereto. does not
중합 반응인 상기 제2 반응이 완료된 후에는 최종적으로, 몰드에서 제조된 하이드로젤을 빼내어 미반응물 및 반응 부산물을 세척하여 제거한다.After the second reaction, which is a polymerization reaction, is completed, finally, the hydrogel prepared from the mold is removed and unreacted products and reaction by-products are washed and removed.
이하, 본 발명을 실시예를 통하여 더욱 상세히 설명한다. 그러나, 하기 실시예는 본 발명을 예시하기 위한 것으로, 본 발명의 범위가 이에 제한되는 것은 아니다.Hereinafter, the present invention will be described in more detail through examples. However, the following examples are intended to illustrate the present invention, and the scope of the present invention is not limited thereto.
<실시예><Example>
1. 하이드로젤 복합체의 제조1. Preparation of hydrogel complexes
(1) Gelatin PAAm(Poly(acrylamide)) 젤 (비가교)의 제조(1) Preparation of Gelatin PAAm (Poly(acrylamide)) gel (non-crosslinked)
하이드로젤 사전 용액 (pre-solution)은 아크릴아마이드 8 %(v/v), 비스아크릴아마이드 0.28 %(v/v) 및 젤라틴 100 mg/ml를 물에 녹여 제조하였다. 이후 열 개시제인 암모늄퍼설페이트 0.4 %(w/v) 및 촉매제인 티미드(tetramethylethylenediamine) 0.2 %(v/v)를 투입하고 빠르게 교반 후 5 ℃로 유지된 몰드에 제조된 용액을 넣어 반응을 진행시켰다. 20분 후 용액이 포함된 몰드를 25 ℃로 옮겨 20분간 반응을 진행시켰다. 이후 몰드에서 제조된 하이드로젤을 빼내어 3차 증류수에서 세척하여 이중가교 하이드로젤을 수득하였다.Hydrogel pre-solution was prepared by dissolving acrylamide 8% (v/v), bisacrylamide 0.28% (v/v) and gelatin 100 mg/ml in water. After that, 0.4 % (w/v) of ammonium persulfate as a thermal initiator and 0.2 % (v/v) of thymid as a catalyst are added, stirred quickly, and put the prepared solution in a mold maintained at 5 ° C. made it After 20 minutes, the mold containing the solution was moved to 25° C. and the reaction was allowed to proceed for 20 minutes. Thereafter, the prepared hydrogel was removed from the mold and washed in tertiary distilled water to obtain a double cross-linked hydrogel.
(2) Gelatin PAAm 젤 (GA 가교)의 제조(2) Preparation of Gelatin PAAm gel (GA cross-linked)
하이드로젤 사전 용액 (pre-solution)은 아크릴아마이드 8 %(v/v), 비스아크릴아마이드 0.28 %(v/v) 및 젤라틴 100 mg/ml를 물에 녹여 제조하였다. 이후 열 개시제인 암모늄퍼설페이트 0.4 %(w/v) 및 촉매제인 티미드 0.2 %(v/v)와 함께 가교 고정제인 글루타알데하이드(GA) 0.2 %(v/v)를 투입하고 빠르게 교반 후 5 ℃로 유지된 몰드에 제조된 용액을 넣어 반응을 진행시켰다. 20분 후 용액이 포함된 몰드를 25 ℃로 옮겨 20분간 나머지 반응을 진행시켰다. 이후 몰드에서 제조된 하이드로젤을 빼내어 3차 증류수에서 세척하여 이중가교 하이드로젤을 수득하였다.Hydrogel pre-solution was prepared by dissolving acrylamide 8% (v/v), bisacrylamide 0.28% (v/v) and gelatin 100 mg/ml in water. After that, 0.2% (v/v) of glutaraldehyde (GA), a crosslinking fixing agent, is added together with 0.4% (w/v) of ammonium persulfate as a thermal initiator and 0.2% (v/v) of thymid as a catalyst, followed by rapid stirring. The prepared solution was put into a mold maintained at 5 °C to proceed with the reaction. After 20 minutes, the mold containing the solution was moved to 25 °C and the rest of the reaction was allowed to proceed for 20 minutes. Thereafter, the prepared hydrogel was removed from the mold and washed in tertiary distilled water to obtain a double cross-linked hydrogel.
(3) Gelatin PEGDA 젤 (비가교)의 제조(3) Preparation of Gelatin PEGDA gel (non-crosslinked)
하이드로젤 사전 용액 (pre-solution)은 폴리에틸렌 글리콜 디아크릴레이트 (Polyehtylene glycol diacrylate, 분자량 700 Da) 5 %(v/v)와 젤라틴 100 mg/ml를 물에 녹여 제조하였다. 이후 열 개시제인 암모늄퍼설페이트 0.18 %(w/v), 촉매제인 티미드 0.05 %(v/v)를 투입하고 빠르게 교반 후 5 ℃로 유지된 몰드에 제조된 용액을 넣어 반응을 진행시켰다. 20분 후 용액이 포함된 몰드를 25 ℃로 옮겨 20분간 나머지 반응을 진행시켰다. 이후 몰드에서 제조된 하이드로젤을 빼내어 3차 증류수에서 세척하여 이중가교 하이드로젤을 수득하였다.The hydrogel pre-solution was prepared by dissolving 5% (v/v) of polyethylene glycol diacrylate (Polyehtylene glycol diacrylate, molecular weight 700 Da) and 100 mg/ml of gelatin in water. Thereafter, 0.18% (w/v) of ammonium persulfate as a thermal initiator and 0.05% (v/v) of thymid as a catalyst were added, and after rapid stirring, the prepared solution was put into a mold maintained at 5° C. to proceed with the reaction. After 20 minutes, the mold containing the solution was moved to 25 °C and the rest of the reaction was allowed to proceed for 20 minutes. Thereafter, the prepared hydrogel was removed from the mold and washed in tertiary distilled water to obtain a double cross-linked hydrogel.
(4) Gelatin PHEMA 젤 (비가교)의 제조(4) Preparation of Gelatin PHEMA gel (non-crosslinked)
하이드로젤 사전 용액 (pre-solution)은 하이드록시 에틸 메타크릴레이트 20 %(v/v), 에틸렌 글리콜 디메타아킬레이트 0.5 %(v/v) 및 젤라틴 100 mg/ml를 물에 녹여 제조하였다. 이후 열 개시제인 암모늄퍼설페이트 1 %(w/v), 촉매제인 티미드 0.69 %(v/v)를 투입하고 빠르게 교반 후 5 ℃로 유지된 몰드에 제조된 용액을 넣어 반응을 진행시켰다. 30분 후 용액이 포함된 몰드를 25 ℃로 옮겨 10분간 나머지 반응을 진행시켰다. 이후 몰드에서 제조된 하이드로젤을 빼내어 3차 증류수에서 세척하여 이중가교 하이드로젤을 수득하였다.Hydrogel pre-solution was prepared by dissolving hydroxyethyl methacrylate 20% (v/v), ethylene glycol dimethacrylate 0.5% (v/v) and gelatin 100 mg/ml in water. Thereafter, 1% (w/v) of ammonium persulfate as a thermal initiator and 0.69% (v/v) of thymid as a catalyst were added, and the solution was put into a mold maintained at 5° C. after rapid stirring to proceed with the reaction. After 30 minutes, the mold containing the solution was moved to 25 °C and the rest of the reaction was allowed to proceed for 10 minutes. Thereafter, the prepared hydrogel was removed from the mold and washed in tertiary distilled water to obtain a double cross-linked hydrogel.
(5) Gelatin PMMA 젤 (비가교)의 제조(5) Preparation of Gelatin PMMA gel (non-crosslinked)
하이드로젤 사전 용액 (pre-solution)은 메틸 메타크릴레이트 10 %(v/v), 비스아크릴아마이드 0.5 %(v/v) 및 젤라틴 100 mg/ml를 물에 녹여 제조하였다. 이후 열 개시제인 암모늄퍼설페이트 1.5 %(w/v), 촉매제인 티미드 0.5 %(v/v)를 투입하고 빠르게 교반 후 5 ℃로 유지된 몰드에 제조된 용액을 넣어 반응을 진행시켰다. 30분 후 용액이 포함된 몰드를 25 ℃로 옮겨 10분간 나머지 반응을 진행시켰다. 이후 몰드에서 제조된 하이드로젤을 빼내어 3차 증류수에서 세척하여 이중가교 하이드로젤을 수득하였다.Hydrogel pre-solution was prepared by dissolving methyl methacrylate 10% (v/v), bisacrylamide 0.5% (v/v) and gelatin 100 mg/ml in water. Thereafter, 1.5% (w/v) of ammonium persulfate as a thermal initiator and 0.5% (v/v) of thymid as a catalyst were added, stirred quickly, and the prepared solution was put into a mold maintained at 5° C. to proceed with the reaction. After 30 minutes, the mold containing the solution was moved to 25 °C and the rest of the reaction was allowed to proceed for 10 minutes. Thereafter, the prepared hydrogel was removed from the mold and washed in tertiary distilled water to obtain a double cross-linked hydrogel.
(6) Gelatin PMMA/PMEHA 젤 (비가교)의 제조(6) Preparation of Gelatin PMMA/PMEHA gel (non-crosslinked)
하이드로젤 사전 용액 (pre-solution)은 메틸 메타크릴레이트 5.11 (v/v) %와 히드록시 에틸 메타크릴레이트 23.5 (v/v) %, 에틸렌 글리콜 디아크릴레이트 0.41 (v/v) %, 젤라틴 100 mg/ml를 물에 녹여 제조되었다. 이후 열 개시제인 암모늄퍼설페이트 1.37 (w/v) %, 촉매제인 티미드 0.69 (v/v) %를 투입하고 빠르게 교반 후 5 도씨로 유지된 몰드에 제조된 용액을 넣어 반응이 진행되었다. 20분 후 솔루션이 포함된 몰드를 25 도씨로 옮겨 20분간 반응을 진행했다. 이후 몰드에서 제조된 하이드로젤을 빼내어 3차 증류수에서 세척을 하여 이중가교 하이드로젤을 수득하였다.Hydrogel pre-solution consisted of 5.11 (v/v) % methyl methacrylate and 23.5 (v/v) % hydroxy ethyl methacrylate, 0.41 (v/v) % ethylene glycol diacrylate, gelatin It was prepared by dissolving 100 mg/ml in water. Thereafter, 1.37 (w/v) % of ammonium persulfate as a thermal initiator and 0.69 (v/v) % of thymid as a catalyst were added, and the solution was put into a mold maintained at 5°C after rapid stirring, and the reaction proceeded. After 20 minutes, the mold containing the solution was moved to 25 °C and the reaction was carried out for 20 minutes. Thereafter, the prepared hydrogel was removed from the mold and washed in tertiary distilled water to obtain a double cross-linked hydrogel.
2. 제조된 하이드로젤 복합체의 특성 평가2. Characterization of the prepared hydrogel composite
(1) 탄성 모듈러스(Elastic modulus) 측정(1) Elastic modulus measurement
제조된 젤은 레오미터(rheometer)를 사용하여 온도 25 ℃, 변형률The prepared gel was measured using a rheometer at a temperature of 25 °C and a strain rate.
0.5%의 조건에 0.1에서 10 Hz 까지 주파수 범위에서 Shear 모듈러스와 1 Hz값을 이용하여 탄성 모듈러서를 통해 계산하였다.The elastic modulus was calculated using the shear modulus and the 1 Hz value in the frequency range from 0.1 to 10 Hz under the condition of 0.5%.
(2) CD 분광스펙트럼 측정(2) CD spectral spectrum measurement
하이드로젤내 젤라틴의 삼중 나선구조를 CD 분광스펙트럼를 사용하여 25℃에서 190-240 nm의 파장대 범위에서 측정하였다. 시료의 CD 분광스펙트럼에서 230 nm 파장대 부근에서 값으로 젤라틴의 삼중 나선 구조 및 젤라틴 네트워크 형성 정도를 확인하였다. The triple helix structure of gelatin in the hydrogel was measured in the wavelength range of 190-240 nm at 25°C using CD spectroscopy. The triple helical structure of gelatin and the degree of gelatin network formation were confirmed by values near the 230 nm wavelength band in the CD spectral spectrum of the sample.
3. 결과3. Results
도 1에 초기 혼합수용액(아크릴 아미드 단량체 10%, 젤라틴)에서 젤라틴 농도에 따라 온도 변화시 나타내는 탄성 모듈러스(Elastic modulus)를 측정한 결과가 나타나 있다. 모듈러스는 탄성계수를 의미하며, 젤라틴 네트워크 형성 정도를 나타낸다. 도 1에 나타난 바와 같이, 단량체를 포함한 용액에서 젤라틴이 50 mg/mL 이상의 농도에서 저온으로 이동시 물리적 네트워크를 형성하여 모듈러스(modulus)가 증가하는 것으로 나타났다. 이 때에 젤라틴의 농도에 따라 젤라틴 네트워크가 형성되는 온도와 시간이 다르게 나타났다.1 shows the results of measuring the elastic modulus displayed when the temperature changes according to the gelatin concentration in the initial mixed aqueous solution (acrylamide monomer 10%, gelatin). The modulus means the modulus of elasticity, and indicates the degree of formation of the gelatin network. As shown in FIG. 1 , when gelatin was moved to a low temperature at a concentration of 50 mg/mL or more in a solution containing a monomer, a physical network was formed, and the modulus was increased. At this time, the temperature and time at which the gelatin network was formed were different according to the concentration of gelatin.
도 2에는 다양한 농도의 젤라틴(50, 100, 150, 100 mg/ml) 및 아크릴 아미드 단량체(10%)를 포함하는 혼합수용액의 온도 변화(37 ℃에서 4 ℃로 전환)에 따른 모듈러스(Pa)의 변화가 나타나 있다. 도 2에 나타난 바와 같이, 4 ℃로 온도를 변경하면 수분 내에서 모듈러스가 크게 증가하며, 이후 지속적으로 완만히 증가함을 보였다.2 shows the modulus (Pa) according to the temperature change (conversion from 37 ℃ to 4 ℃) of a mixed aqueous solution containing various concentrations of gelatin (50, 100, 150, 100 mg/ml) and acrylamide monomer (10%) change is shown. As shown in FIG. 2 , when the temperature was changed to 4° C., the modulus greatly increased within minutes, and then it was shown that the modulus continued to increase gradually.
도 3에는 다양한 농도의 젤라틴(50, 100, 150 mg/ml) 및 10% PEGDA(Polyethylene glycol diacrylate)를 포함하는 혼합수용액의 온도 변화(5 ℃에서 25 ℃로 전환)에 따른 모듈러스의 변화가 나타나 있다.3 shows the change in modulus according to the temperature change (conversion from 5 ℃ to 25 ℃) of a mixed aqueous solution containing various concentrations of gelatin (50, 100, 150 mg/ml) and 10% PEGDA (polyethylene glycol diacrylate). have.
도 4에는 (a) 젤라틴 농도 50 mg/ml 또는 (b) 젤라틴 농도 100 mg/ml의 혼합반응액과 아크릴아마이드 단량체, 비스아크릴아마이드 및 열 개시제를 포함한 용액을 5 ℃ 조건, 25 ℃ 조건, 및 5 ℃에서 25 ℃로 변화시키는 조건에서 중합하여 얻어진 하이드로젤 복합체의 모듈러스 측정 결과가 나타나 있다. 도 4에 나타난 바와 같이, 저온과 상온 반응 온도에 따라서 최종적으로 얻어진 하이드로젤 복합체의 물성이 달라짐을 알 수 있다. 이에 따라, 젤라틴 네트워크 형성 조건 이후 고분자 중합을 유도하는 방법이, 고분자 중합 이후 젤라틴 네트워크 형성 조건으로 유도하는 방법보다 복합체의 물성을 향상시킨다는 것을 알 수 있다. 즉, 저온(5 ℃)과 상온(25 ℃)에서 40분간 중합하여 제조된 젤라틴/폴리아크릴아마이드 복합체에 비하여, 저온(5 ℃)에서 초기 일정 시간 동안 반응시킨 후 상온(25 ℃)에서 나머지 시간 동안 반응시켜 반응 시간은 동일하게 40분 동안 진행하였으나 5 ℃ 및 25 ℃로 반응 온도를 변화시켜 제조한 복합체의 기계적 특성이 우수한 것으로 나타났다. 젤라틴의 초기 농도가 50 mg/ml과 100 mg/ml에서 모두 이러한 이중네트워크에 기반한 물성 향상이 나타났다. 젤라틴의 농도가 과도하게 높아지면, 이차 고분자 열중합의 효율이 감소하여, 동일 조성에서 최종 복합체의 물성이 낮을 수 있다.4 shows (a) a gelatin concentration of 50 mg/ml or (b) a mixed reaction solution having a gelatin concentration of 100 mg/ml and a solution containing acrylamide monomer, bisacrylamide, and a thermal initiator at 5 ° C. conditions, 25 ° C. conditions, and Modulus measurement results of the hydrogel composite obtained by polymerization under the conditions of changing from 5 ℃ to 25 ℃ are shown. As shown in FIG. 4 , it can be seen that the physical properties of the finally obtained hydrogel composite vary depending on the low temperature and room temperature reaction temperature. Accordingly, it can be seen that the method of inducing polymer polymerization after the gelatin network formation condition improves the physical properties of the complex than the method of inducing the polymer polymerization condition on the gelatin network formation condition. That is, compared to the gelatin/polyacrylamide complex prepared by polymerization at low temperature (5 ℃) and room temperature (25 ℃) for 40 minutes, after reacting at low temperature (5 ℃) for a predetermined time, the remaining time at room temperature (25 ℃) The reaction time was the same for 40 minutes, but the mechanical properties of the composite prepared by changing the reaction temperature to 5 °C and 25 °C were found to be excellent. At the initial concentration of gelatin of 50 mg/ml and 100 mg/ml, physical properties improvement based on this double network was shown. When the concentration of gelatin is excessively high, the efficiency of secondary polymer thermal polymerization is reduced, and the physical properties of the final composite in the same composition may be low.
도 5에는 젤라틴 하이드로젤 복합체의 CD 분광스펙트럼으로서, 젤라틴, 아크릴아마이드 단량체, 비스아크릴아마이드 및 열 개시제가 포함된 혼합액을 5 ℃에서 40분(5 ℃), 25 ℃에서 40분(25 ℃), 5 ℃에서 20분 및 25 ℃에서 20분(5 ℃ & 25 ℃) 중합 후 시료의 CD 분광스펙트럼을 측정한 결과가 나타나 있다. 230 nm 내외에서의 흡광도는 젤라틴의 삼중나선구조의 형성 정도를 나타내는 젤라틴 네트워크 형성의 지표이다. 도 5에 나타난 바와 같이, 5 ℃에서 40분(5 ℃) 중합한 경우 및 5 ℃에서 20분 및 25 ℃에서 20분(5 ℃ & 25 ℃) 중합한 경우에 젤라틴 복합 수화젤의 젤라틴 네트워크가 안정적으로 형성, 유지된다는 것을 알 수 있다.5 is a CD spectral spectrum of the gelatin hydrogel complex, in which a mixture containing gelatin, acrylamide monomer, bisacrylamide and a thermal initiator was mixed at 5 ° C. for 40 minutes (5 ° C.), 25 ° C. for 40 minutes (25 ° C.), The results of measuring the CD spectral spectrum of the sample after polymerization at 5°C for 20 minutes and at 25°C for 20 minutes (5°C & 25°C) are shown. Absorbance at around 230 nm is an indicator of gelatin network formation, indicating the degree of formation of a triple helix structure of gelatin. As shown in FIG. 5, the gelatin network of the gelatin complex hydrogel was polymerized at 5 °C for 40 minutes (5 °C), at 5 °C for 20 minutes and at 25 °C for 20 minutes (5 °C & 25 °C). It can be seen that it is stably formed and maintained.
도 6에 젤라틴, 폴리에틸렌글리콜 디아크릴레이트 및 열 개시제를 포함한 용액을 5 ℃ 조건, 25 ℃ 조건, 및 5 ℃에서 25 ℃로 변화시키는 조건에서 중합하여 얻어진 하이드로젤 복합체의 모듈러스가 나타나 있고, 도 7에 젤라틴, 폴리히드록시에틸메타크릴레이트, 폴리에틸렌글리콜-4-아크릴레이트 및 열 개시제를 포함한 용액을 5 ℃ 조건, 25 ℃ 조건, 및 5 ℃에서 25 ℃로 변화시키는 조건에서 중합하여 얻어진 하이드로젤 복합체의 모듈러스가 나타나 있다. 도 8에 젤라틴, 폴리 메틸 메타크릴레이트, 폴리히드록시에틸메타크릴레이트, 폴리에틸렌글리콜-디아크릴레이트 및 열 개시제를 포함한 용액을 5 ℃ 조건, 25 ℃ 조건, 및 5 ℃에서 25 ℃로 변화시키는 조건에서 중합하여 얻어진 하이드로젤 복합체의 모듈러스가 나타나 있다. 고분자 단량체로서 폴리에틸렌글리콜 디아크릴레이트를 사용한 경우와 폴리히드록시에틸메타크릴레이트를 사용한 경우와 폴리 메틸메타크릴레이트/폴리히드록시에틸메카크릴레이트에도 모두 저온 (5 ℃)에서 초기 일정 시간 동안 반응시킨 후 상온 (25 ℃)에서 나머지 시간 동안 반응시키는 경우에 제조된 복합체의 기계적 특성이 우수한 것으로 나타났다. 6 shows the modulus of the hydrogel composite obtained by polymerizing a solution containing gelatin, polyethylene glycol diacrylate and a thermal initiator at 5 ° C., 25 ° C., and 5 ° C. to 25 ° C. The modulus is shown, FIG. A hydrogel complex obtained by polymerizing a solution containing gelatin, polyhydroxyethyl methacrylate, polyethylene glycol-4-acrylate and a thermal initiator under 5 °C conditions, 25 °C conditions, and 5 °C to 25 °C conditions. The modulus of is shown. In FIG. 8, a solution containing gelatin, polymethyl methacrylate, polyhydroxyethyl methacrylate, polyethylene glycol-diacrylate, and a thermal initiator was changed from 5 °C to 25 °C, and from 5 °C to 25 °C. The modulus of the hydrogel composite obtained by polymerization is shown. Polyethylene glycol diacrylate, polyhydroxyethyl methacrylate, and polymethyl methacrylate/polyhydroxyethyl methacrylate were all reacted at a low temperature (5 ° C.) for an initial period of time as the polymer monomer. After the reaction at room temperature (25 ℃) for the remaining time, it was found that the mechanical properties of the prepared composite were excellent.
도 9에는 젤라틴을 미포함한 중합체(대조군 1) 및 젤라틴을 포함하고 미고정시킨 하이드로젤 복합체(대조군 2)와, 젤라틴, 아크릴아마이드 단량체, 비스아크릴아마이드, 열 개시제 및 화학가교제를 포함한 용액을 5 ℃에서 25 ℃로 변화시키며 40분간 중합시키는 조건에서, 화학적 가교제(글루타르알데히드)의 초기 농도를 0.1%, 0.2%, 0.3%로 변화하여 얻어진 하이드로젤 복합체의 모듈러스가 나타나 있다. 도 8에 나타난 바와 같이, 저온과 상온 반응 온도와 시간의 변화시, 초기 젤라틴 구조를 안정화할 수 있는 가교제를 첨가하면 최종적으로 얻어진 하이드로젤 복합체의 기계적 강도가 증가한다는 것을 알 수 있다.9 shows a polymer without gelatin (control group 1), a hydrogel complex containing gelatin and not immobilized (control group 2), and a solution containing gelatin, acrylamide monomer, bisacrylamide, a thermal initiator and a chemical crosslinking agent at 5 ° C. The modulus of the hydrogel complex obtained by changing the initial concentration of the chemical crosslinking agent (glutaraldehyde) to 0.1%, 0.2%, and 0.3% under the conditions of polymerization for 40 minutes at 25 °C is shown. As shown in FIG. 8 , it can be seen that the mechanical strength of the finally obtained hydrogel composite is increased when a crosslinking agent capable of stabilizing the initial gelatin structure is added when the reaction temperature and time of low and room temperature are changed.

Claims (19)

  1. 젤라틴 및 합성고분자를 포함하는 하이드로젤 복합체.A hydrogel complex comprising gelatin and synthetic polymers.
  2. 제1항에 있어서, 상기 젤라틴이 하이드로젤 복합체 기준으로 30 ~ 500 mg/ml로 포함되는 것을 특징으로 하는 하이드로젤 복합체.The hydrogel complex according to claim 1, wherein the gelatin is contained in an amount of 30 to 500 mg/ml based on the hydrogel complex.
  3. 제1항에 있어서, 상기 합성고분자가 폴리아크릴아마이드, 폴리에틸렌글리콜 디아크릴레이트, 폴리히드록시에틸 메타크릴레이트, 폴리비닐 알콜 및 폴리메틸 메타크릴레이트로 이루어진 군으로부터 선택된 1종 이상인 것을 특징으로 하는 하이드로젤 복합체.According to claim 1, wherein the synthetic polymer is polyacrylamide, polyethylene glycol diacrylate, polyhydroxyethyl methacrylate, polyvinyl alcohol and polymethyl methacrylate, characterized in that at least one selected from the group consisting of hydro gel complex.
  4. 제1항에 있어서, 상기 합성고분자가 하이드로젤 복합체 기준으로 1 ~ 30 %(v/v)로 포함되는 것을 특징으로 하는 하이드로젤 복합체.The hydrogel complex according to claim 1, wherein the synthetic polymer is included in an amount of 1 to 30% (v/v) based on the hydrogel complex.
  5. (a) 젤라틴 및 합성고분자 단량체를 물에 용해시켜 하이드로젤 사전 용액을 얻는 단계;(a) dissolving gelatin and synthetic polymer monomers in water to obtain a hydrogel pre-solution;
    (b) 단계(a)에서 얻은 하이드로젤 사전 용액에 열 개시제를 첨가하여 저온에서 제1 반응시켜 젤라틴 네트워크가 형성된 제1 반응물을 얻는 단계; 및(b) adding a thermal initiator to the hydrogel pre-solution obtained in step (a) and performing a first reaction at a low temperature to obtain a first reactant in which a gelatin network is formed; and
    (c) 단계(b)의 제1 반응물을 상온 이상의 온도에서 제2 반응시켜 열 개시 중합이 형성된 제2 반응물을 얻는 단계(c) subjecting the first reactant of step (b) to a second reaction at a temperature above room temperature to obtain a second reactant in which thermally initiated polymerization is formed
    를 포함하는, 젤라틴 및 합성고분자를 포함하는 하이드로젤 복합체의 제조방A method for producing a hydrogel complex comprising gelatin and synthetic polymers, including
    법.law.
  6. 제5항에 있어서, 단계(a)의 상기 젤라틴이 30 ~ 500 mg/ml의 농도로 용해되는 것을 특징으로 하는 하이드로젤 복합체의 제조방법.The method according to claim 5, wherein the gelatin of step (a) is dissolved at a concentration of 30 to 500 mg/ml.
  7. 제5항에 있어서, 단계(a)의 상기 합성고분자 단량체가 폴리아크릴아마이드, 폴리에틸렌글리콜 디아크릴레이트, 폴리히드록시에틸 메타크릴레이트, 폴리비닐 알콜 및 폴리메틸 메타크릴레이트로 이루어진 군으로부터 선택된 1종 이상의 단량체인 것을 특징으로 하는 하이드로젤 복합체의 제조방법.The method of claim 5, wherein the synthetic polymer monomer of step (a) is one selected from the group consisting of polyacrylamide, polyethylene glycol diacrylate, polyhydroxyethyl methacrylate, polyvinyl alcohol and polymethyl methacrylate. Method for producing a hydrogel complex, characterized in that the above monomer.
  8. 제5항에 있어서, 단계(a)의 상기 합성고분자 단량체가 1 ~ 30 %(v/v)로 용해되는 것을 특징으로 하는 하이드로젤 복합체의 제조방법.The method of claim 5, wherein the synthetic polymer monomer of step (a) is dissolved in 1 to 30% (v/v).
  9. 제5항에 있어서, 단계(b)의 상기 열 개시제가 암모늄퍼설페이트, 포타슘퍼설페이트 및 산화염화철로 이루어진 군으로부터 선택된 1종 이상인 것을 특징으로 하는 하이드로젤 복합체의 제조방법.The method of claim 5, wherein the thermal initiator of step (b) is at least one selected from the group consisting of ammonium persulfate, potassium persulfate and iron oxide chloride.
  10. 제5항에 있어서, 단계(b)의 상기 열 개시제가 0.01 ~ 2 %(v/v)로 첨가되는 것을 특징으로 하는 하이드로젤 복합체의 제조방법.The method of claim 5, wherein the thermal initiator of step (b) is added in an amount of 0.01 to 2% (v/v).
  11. 제5항에 있어서, 단계(b)에서 촉매제, 가교제, 부가고형물 및 기공형성제로 이루어진 군으로부터 선택된 1종 이상을 추가로 첨가하는 것을 특징으로 하는 하이드로젤 복합체의 제조방법.[Claim 6] The method of claim 5, wherein at least one selected from the group consisting of a catalyst, a crosslinking agent, an additive solid and a pore former is additionally added in step (b).
  12. 제11항에 있어서, 상기 촉매제가 티미드, 트리에틸아민 및 부틸아민로 이루어진 군으로부터 선택된 1종 이상인 것을 특징으로 하는 하이드로젤 복합체의 제조방법.The method of claim 11, wherein the catalyst is at least one selected from the group consisting of thymid, triethylamine and butylamine.
  13. 제11항에 있어서, 상기 촉매제가 0.01 ~ 2 %(v/v)로 첨가되는 것을 특징으로 하는 하이드로젤 복합체의 제조방법.The method of claim 11, wherein the catalyst is added in an amount of 0.01 to 2% (v/v).
  14. 제11항에 있어서, 상기 가교제가 글루타알데하이드, 포름알데하이드, 1,4-부탄다이올 다이글리시딜 에테르 및 1-에틸-3-(3-디메틸아미노프로필) 카르보디마이드로 이루어진 군으로부터 선택된 1종 이상인 것을 특징으로 하는 하이드로젤 복합체의 제조방법.12. The method of claim 11, wherein the crosslinking agent is selected from the group consisting of glutaraldehyde, formaldehyde, 1,4-butanediol diglycidyl ether and 1-ethyl-3-(3-dimethylaminopropyl) carbodimide. A method for producing a hydrogel complex, characterized in that at least one type.
  15. 제11항에 있어서, 상기 가교제가 0.01 ~ 1 %(v/v)로 첨가되는 것을 특징으로 하는 하이드로젤 복합체의 제조방법.The method of claim 11, wherein the crosslinking agent is added in an amount of 0.01 to 1% (v/v).
  16. 제5항에 있어서, 단계(b)의 상기 저온이 0 ~ 10 ℃인 것을 특징으로 하는 하이드로젤 복합체의 제조방법.The method of claim 5, wherein the low temperature of step (b) is 0 to 10 °C.
  17. 제5항에 있어서, 단계(b)의 상기 제1 반응이 1 ~ 200 분 동안 수행되는 것을 특징으로 하는 하이드로젤 복합체의 제조방법.The method of claim 5, wherein the first reaction of step (b) is performed for 1 to 200 minutes.
  18. 제5항에 있어서, 단계(c)의 상기 상온 이상의 온도가 15 ~ 60 ℃인 것을 특징으로 하는 하이드로젤 복합체의 제조방법.The method of claim 5, wherein the temperature above room temperature in step (c) is 15 to 60 °C.
  19. 제5항에 있어서, 단계(c)의 상기 제2 반응이 1 ~ 200 분 동안 수행되는 것을 특징으로 하는 하이드로젤 복합체의 제조방법.The method of claim 5, wherein the second reaction of step (c) is performed for 1 to 200 minutes.
PCT/KR2021/009045 2020-07-28 2021-07-14 Hydrogel complex comprising gelatin and synthetic polymer and production method thereof WO2022025488A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2020-0093910 2020-07-28
KR1020200093910A KR102440646B1 (en) 2020-07-28 2020-07-28 Hydrogel composite comprising gelatin and synthetic polymer, and process for preparing the same

Publications (1)

Publication Number Publication Date
WO2022025488A1 true WO2022025488A1 (en) 2022-02-03

Family

ID=80035697

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/009045 WO2022025488A1 (en) 2020-07-28 2021-07-14 Hydrogel complex comprising gelatin and synthetic polymer and production method thereof

Country Status (2)

Country Link
KR (1) KR102440646B1 (en)
WO (1) WO2022025488A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114702691A (en) * 2022-03-29 2022-07-05 浙江大学杭州国际科创中心 Ion-responsive and biological antifouling hydrogel and preparation method and application thereof
CN115252885A (en) * 2022-07-26 2022-11-01 湖北大学 Hydrogel dressing crosslinked by multiple hydrogen bonds and preparation and application thereof
CN115317661A (en) * 2022-08-29 2022-11-11 北京化工大学常州先进材料研究院 Natural polymer composite hydrogel dressing
CN115948013A (en) * 2022-09-01 2023-04-11 浙江省医疗器械检验研究院(国家食品药品监督管理局杭州医疗器械质量监督检验中心) Quick-gelling hydrogel and preparation method and application thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6960617B2 (en) * 2002-04-22 2005-11-01 Purdue Research Foundation Hydrogels having enhanced elasticity and mechanical strength properties
CN104448161A (en) * 2014-12-05 2015-03-25 四川大学 Organic composite hydrogel cross-linked by modified gelatin nano-microsphere and preparation method of organic composite hydrogel
JP2019509138A (en) * 2016-03-22 2019-04-04 プレジデント アンド フェローズ オブ ハーバード カレッジ Biocompatible adhesive and method of use thereof
CN109851725A (en) * 2018-12-29 2019-06-07 华南理工大学 The gelatin-compounded hydrogel of nano-cellulose-polyacrylamide-, preparation method and application

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6960617B2 (en) * 2002-04-22 2005-11-01 Purdue Research Foundation Hydrogels having enhanced elasticity and mechanical strength properties
CN104448161A (en) * 2014-12-05 2015-03-25 四川大学 Organic composite hydrogel cross-linked by modified gelatin nano-microsphere and preparation method of organic composite hydrogel
JP2019509138A (en) * 2016-03-22 2019-04-04 プレジデント アンド フェローズ オブ ハーバード カレッジ Biocompatible adhesive and method of use thereof
CN109851725A (en) * 2018-12-29 2019-06-07 华南理工大学 The gelatin-compounded hydrogel of nano-cellulose-polyacrylamide-, preparation method and application

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YAN XIAOQIANG, CHEN QIANG, ZHU LIN, CHEN HONG, WEI DANDAN, CHEN FENG, TANG ZIQING, YANG JIA, ZHENG JIE: "High strength and self-healable gelatin/polyacrylamide double network hydrogels", JOURNAL OF MATERIALS CHEMISTRY. B, ROYAL SOCIETY OF CHEMISTRY, GB, vol. 5, no. 37, 1 January 2017 (2017-01-01), GB , pages 7683 - 7691, XP055890698, ISSN: 2050-750X, DOI: 10.1039/C7TB01780D *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114702691A (en) * 2022-03-29 2022-07-05 浙江大学杭州国际科创中心 Ion-responsive and biological antifouling hydrogel and preparation method and application thereof
CN114702691B (en) * 2022-03-29 2023-11-17 浙江大学杭州国际科创中心 Ion-responsive and biological antifouling hydrogel as well as preparation method and application thereof
CN115252885A (en) * 2022-07-26 2022-11-01 湖北大学 Hydrogel dressing crosslinked by multiple hydrogen bonds and preparation and application thereof
CN115252885B (en) * 2022-07-26 2023-08-22 湖北大学 Hydrogel dressing crosslinked by multiple hydrogen bonds and preparation and application thereof
CN115317661A (en) * 2022-08-29 2022-11-11 北京化工大学常州先进材料研究院 Natural polymer composite hydrogel dressing
CN115948013A (en) * 2022-09-01 2023-04-11 浙江省医疗器械检验研究院(国家食品药品监督管理局杭州医疗器械质量监督检验中心) Quick-gelling hydrogel and preparation method and application thereof
CN115948013B (en) * 2022-09-01 2023-11-14 浙江省医疗器械检验研究院(国家食品药品监督管理局杭州医疗器械质量监督检验中心) Quick glue gel and preparation method and application thereof

Also Published As

Publication number Publication date
KR20220014164A (en) 2022-02-04
KR102440646B1 (en) 2022-09-06

Similar Documents

Publication Publication Date Title
WO2022025488A1 (en) Hydrogel complex comprising gelatin and synthetic polymer and production method thereof
DE3034554C2 (en) Contact lens made from a cross-linked copolymer of polysiloxane and acrylic or methacrylic acid esters
AU2007296939B2 (en) Hyaluronic acid derivatives obtained via &#34;click chemistry&#34; crosslinking
CN110343352A (en) Based on calper calcium peroxide/polymerization produce oxygen particle double cross-linked hydrogels and preparation method thereof
CN108478867A (en) Injectable macromolecule hydrogel, preparation method based on acylhydrazone key and macromolecule hydrogel injection
CN102325814A (en) Be used for the preparation of the biodegradable hydrogel of biomedical applications
CN113599507A (en) Preparation method of glucose-triggered active oxygen response injection type composite hydrogel
CN112812329B (en) Hydrogel of sulfhydryl modified high molecular compound, preparation method and application thereof
CN112375191A (en) Block copolymer, preparation method and application thereof
CN108525003A (en) Based on the double cross of acylhydrazone key and hydrophobe self assembly connection hybridized hydrogel, preparation method and skin histology wound repair agent
WO1996003147A1 (en) Synthesis of chemical gels from polyelectrolyte polysaccharides by gamma-irradiation
CN108641092B (en) Preparation method of supramolecular polymer composite micelle based on hydrogen bond
GB2168357A (en) X-ray contrast polymeric hydrogel particles
CN115887772A (en) Gelatin/sodium alginate hydrogel-based 3D printing biological ink and application thereof
CN113980294A (en) Sodium alginate-based conductive self-healing hydrogel and preparation method and application thereof
CN109280129B (en) Injectable hydrogel polymer based on salt response under physiological conditions and preparation method thereof
CN112480389B (en) Low-oxygen responsive injectable hydrogel and preparation method thereof
CN108623729A (en) Hydrogel based on dissaving polymer and its application
CN108676179A (en) A kind of polyethylene glycols chemistry hydrogel and preparation method thereof based on enzyme crosslinking
US3876594A (en) Method for producing of articles from hydrophilic polymers appropriate for repeated or long-term contact with living tissue or mucous membrane
CN107778506B (en) Degradable film material, preparation method and application thereof
CN111040095A (en) Preparation method and application of hydrogel fiber
CN113145030B (en) Supramolecular hydrogel and preparation method thereof
Geever et al. Effect of photoinitiator concentration on the properties of polyethylene glycol based hydrogels for potential regenerative medicine applications
CN114015074B (en) Carboxymethyl chitosan/polyacrylamide injectable self-healing hydrogel and preparation method and application thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21849167

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 05.06.2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21849167

Country of ref document: EP

Kind code of ref document: A1