WO2022025124A1 - Modified polyethylene terephthalate molded product and method for manufacturing same, and copolymer solution - Google Patents

Modified polyethylene terephthalate molded product and method for manufacturing same, and copolymer solution Download PDF

Info

Publication number
WO2022025124A1
WO2022025124A1 PCT/JP2021/027926 JP2021027926W WO2022025124A1 WO 2022025124 A1 WO2022025124 A1 WO 2022025124A1 JP 2021027926 W JP2021027926 W JP 2021027926W WO 2022025124 A1 WO2022025124 A1 WO 2022025124A1
Authority
WO
WIPO (PCT)
Prior art keywords
molded product
group
block
side chain
solvent
Prior art date
Application number
PCT/JP2021/027926
Other languages
French (fr)
Japanese (ja)
Inventor
滋 八尾
翔 平井
勇気 深野
Original Assignee
学校法人福岡大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人福岡大学 filed Critical 学校法人福岡大学
Priority to JP2022539536A priority Critical patent/JPWO2022025124A1/ja
Publication of WO2022025124A1 publication Critical patent/WO2022025124A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/043Improving the adhesiveness of the coatings per se, e.g. forming primers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers

Definitions

  • the present invention relates to a modified polyethylene terephthalate molded product and a method for producing the same.
  • the present invention also relates to a copolymer solution.
  • PET Polyethylene terephthalate
  • Non-Patent Document 1 and Non-Patent Document 2 are mainly used (for example, Non-Patent Document 1 and Non-Patent Document 2). Such). Due to its nature, plasma treatment and corona treatment cannot be applied to complicated shapes such as a cylinder, and the cost for introducing equipment is very high.
  • the present inventors disclose a method of modifying the surface of a fluororesin, a polyethylene resin, or a polypropylene resin by using a side chain crystalline block copolymer (SCCBC). ..
  • SCCBC side chain crystalline block copolymer
  • Patent Document 1 describes a copolymer having a structural unit derived from the first monomer (A) and a structural unit derived from the second monomer (B), wherein the monomer (A) is the same.
  • Disclosed is a method for modifying a fluororesin using a copolymer, which is any of the monomers selected from the group consisting of the above, and the monomer (B) is a monomer having a functional group.
  • Patent Document 2 includes a substrate whose at least a part is polyethylene and a polymer that modifies the surface of the polyethylene, and the polymer is an acrylate having an alcan chain having a length of 10 or more carbon atoms.
  • a surface modification material is disclosed which is a block copolymer of a monomer containing a second monomer which is a (meth) acrylate having a side chain having a ⁇ CF 2 -structure having 4 or more carbon atoms.
  • Patent Document 3 includes a polypropylene resin molded product having a step of bringing a copolymer solution containing a side chain crystalline block copolymer and a polypropylene resin molded product into contact with each other at a temperature of the copolymer solution of 40 to 120 ° C. The modification method of the above is disclosed.
  • the resin to be modified is a vinyl-based resin
  • the object is to utilize SCBCBC having a structure relatively similar to the resin to be modified in the side chain.
  • the resin of is modified.
  • the SCCBC disclosed in Patent Documents 1 to 3 does not have much similarities to the condensation-based resin such as the PET resin to be modified in the present invention. So far, modifications using SCCBC have not been sufficiently investigated for resins that do not have much similarities to SCCBC.
  • An object of the present invention is to provide a modified polyethylene terephthalate molded product having excellent surface properties and a method for producing the same.
  • the present invention relates to the following invention.
  • It has a contact step of bringing a copolymer solution containing a side chain crystalline block copolymer and a solvent into contact with a polyethylene terephthalate molded product.
  • the side chain crystalline block copolymer is a first polymerization block in which a structural unit having an alkyl group having 8 or more carbon atoms in the side chain is repeated, and a second polymer in which the structural unit has a functional group is repeated.
  • Including polymerization blocks A method for producing a modified polyethylene terephthalate molded product, wherein the solvent comprises the following (i) or (ii). (I) Ester-based solvent having a boiling point of 150 ° C.
  • the ester solvent contains a phthalate ester compound and contains.
  • the phthalate ester compound is selected from the group consisting of dimethyl phthalate, diethyl phthalate, and dioctyl phthalate.
  • ⁇ 4> The production method according to ⁇ 2> or ⁇ 3>, wherein the contact is at 120 ° C. or higher and 200 ° C. or lower.
  • the aprotic polar solvent having a dielectric constant of 30 or more contains dimethyl sulfoxide and / or N-methyl-2-pyrrolidone.
  • the first polymerization block is selected from the group consisting of (meth) acrylate, (meth) acrylamide, vinyl ether, vinyl ester, siloxane, ⁇ -olefin and substituted styrene having an alkyl group having 8 or more carbon atoms.
  • a polyethylene terephthalate molded product and a functional layer containing a side chain crystalline block copolymer formed on at least a part of the surface of the molded product are provided.
  • the side chain crystalline block copolymer is a first polymerization block in which a structural unit having an alkyl group having 8 or more carbon atoms in the side chain is repeated, and a second polymer in which the structural unit has a functional group is repeated.
  • Including polymerization blocks A modified polyethylene terephthalate molded product having a peel strength of 0.5 N / mm or more in the T-type peel test of the functional layer.
  • the modified polyethylene terephthalate polymer described in Crab. ⁇ 13> A copolymer solution containing a side chain crystalline block copolymer and a solvent.
  • the side chain crystalline block copolymer includes a block (A) derived from a (meth) acrylate having an alkyl group having 8 or more carbon atoms and a block (B) having a polar group in the side chain.
  • concentration of the side chain crystalline block copolymer is 0.01 to 2.0% by mass.
  • a modified polyethylene terephthalate molded product having excellent surface characteristics and a method for producing the same are provided.
  • a modified polyethylene terephthalate molded product having good adhesiveness and a method for producing the same are provided.
  • the present invention has a contact step of bringing a copolymer solution containing a side chain crystalline block copolymer and a solvent into contact with a polyethylene terephthalate molded product, and the side chain crystalline block copolymer is formed on the side chain.
  • Production of a modified polyethylene terephthalate molded product comprising a first polymerization block which is a repetition of a structural unit having an alkyl group having 8 or more carbon atoms and a second polymerization block which is a repetition of a structural unit having a functional group. It relates to a method (hereinafter, may be referred to as "a method for producing a modified PET of the present invention").
  • the present inventors make a PET molded product by contacting a copolymer solution containing the side chain crystalline block copolymer (hereinafter, simply referred to as “block copolymer”) and a solvent with the PET molded product. It was found that it can be reformed. By contacting the copolymer solution, the PET surface becomes loose and swells, and the alkyl group having 8 or more carbon atoms in the side chain of the first polymerization block can penetrate into the PET molded product. It is considered that the block copolymer adheres to the block copolymer and the functionality of the block copolymer can be imparted to the PET molded product.
  • block copolymer the side chain crystalline block copolymer
  • the first polymerization block (hereinafter referred to as “block (A)”) is a repeating structural unit having an alkyl group having 8 or more carbon atoms in the side chain.
  • an alkyl group having a length of 8 or more carbon atoms in the side chain is directly bonded to the main chain portion of the block (A), or a linking group (ester bond, amide bond, ether bond, benzene). They are connected via a ring, etc.).
  • This block (A) becomes a portion showing side chain crystallinity due to the alkyl group of the side chain. It is presumed that this side chain crystalline site interacts with the PET molded product.
  • the adhesiveness between the block copolymer and the PET molded product can be adjusted according to the number of carbon atoms and the structure of the side chain of the block (A).
  • the alkyl group having 8 or more carbon atoms in the side chain of the block (A) preferably has 10 or more carbon atoms, more preferably 12 or more, and even more preferably 14 or more. Further, the alkyl group is preferably a linear alkyl group.
  • the upper limit thereof can be appropriately set as long as it can be polymerized as a copolymer and the adhesiveness with the PET molded product can be maintained.
  • the number of carbon atoms is preferably 50 or less, more preferably 40 or less. Further, the number of carbon atoms may be 30 or less or 25 or less. If the number of carbon atoms of the alkyl group is too large, it may not be possible to obtain an appropriate three-dimensional structure as a copolymer, or it may be difficult to set the polymerization conditions.
  • alkyl group having 8 or more carbon atoms include a decyl group, a dodecyl group, a tridecyl group, a tetradecyl group, a hexadecyl group, an octadecyl group (stearyl group), a docosyl group (behenyl group) and the like.
  • the degree of polymerization of the block (A) is 2 or more.
  • the degree of polymerization of the block (A) may be appropriately selected depending on the structure of the block copolymer and the like within a range in which the adhesiveness with the PET molded product can be maintained.
  • the degree of polymerization of the block (A) is preferably 7 or more, and may be 8 or more or 10 or more.
  • the degree of polymerization of the block (A) is preferably 1,000 or less, and may be 800 or less, 500 or less, 300 or less, 100 or less, 50 or less, 30 or less, or 20 or less.
  • the molecular weight corresponding to the block (A) is preferably 3,000 or more. When the molecular weight corresponding to the block (A) is 3,000 or more, it can be more firmly adhered to the PET molded product.
  • the molecular weight corresponding to the block (A) may be 4,000 or more or 5,000 or more. Further, it may be 20,000 or less, 15,000 or less, 10,000 or less, or 8,000 or less.
  • molecular weights are values "Mw: weight average molecular weight” that can be obtained in terms of polystyrene from the results obtained by GPC.
  • the reforming copolymer may be difficult to dissolve in a solvent and it may be difficult to measure the molecular weight.
  • each molecular weight can be calculated by a method such as elemental analysis, IR, or NMR.
  • the first polymerization block (block (A)) is composed of (meth) acrylate, (meth) acrylamide, vinyl ether, vinyl ester, siloxane, ⁇ -olefin and substituted styrene having an alkyl group having 8 or more carbon atoms in the side chain. It is preferably a polymer of any of the monomers selected from the group (hereinafter referred to as “monomer (a)”). That is, it is preferable that the block copolymer contains the structural unit (A) derived from the monomer (a).
  • the monomer (a) a commercially available one or an appropriately synthesized one can be used.
  • the (meth) acrylate having an alkyl group having 8 or more carbon atoms a (meth) acrylate obtained by reacting a (meth) acrylate with an alcohol having 8 or more carbon atoms can be used.
  • alkyl (meth) acrylamide having an alkyl group having 8 or more carbon atoms alkyl (meth) acrylamide obtained by reacting (meth) acrylate with an alkylamine having 8 or more carbon atoms can be used.
  • an alkyl vinyl ether obtained by reacting a methyl vinyl ether with an alcohol having 8 or more carbon atoms can be used.
  • a carboxylic acid vinyl ester obtained by reacting vinyl acetate with an aliphatic carboxylic acid having 9 or more carbon atoms can be used.
  • ⁇ -olefin having an alkyl group having 8 or more carbon atoms an ⁇ -olefin obtained by decarbonylation of an aliphatic carboxylic acid having 11 or more carbon atoms can be used.
  • an alkyl styrene obtained by reacting a Grignard reagent of styrene halide with an alkyl halide having 8 or more carbon atoms can be used.
  • (meth) acrylate means both acrylate and methacrylate.
  • (meth) acrylamide means both acrylamide and metaacrylamide.
  • the monomer (a) include dodecyl acrylate (lauryl acrylate), dodecyl methacrylate (lauryl methacrylate), octadecyl acrylate (stearyl acrylate), octadecyl methacrylate (stearyl methacrylate), docosyl acrylate (behenyl acrylate), and docosyl methacrylate. (Behenyl methacrylate) and the like.
  • Examples thereof include vinyl, vinyl stearate, 1-tridecene, 1-pentadecene, 4-n-octylstyrene and the like.
  • the monomer (a) is preferably a (meth) acrylate or ⁇ -olefin monomer having an alkyl group having 8 or more carbon atoms in the side chain, and an alkyl having 8 or more carbon atoms in the side chain. More preferably, it is a (meth) acrylate having a group.
  • the block (A) has 8 or more carbon atoms from the viewpoints of easy availability of the monomer (a), easy control of polymerization conditions, and easy interaction between alkyl groups having 8 or more carbon atoms.
  • a (meth) acrylate having an alkyl group having a length of 8 or more, or a polymer of an ⁇ -olefin having an alkyl group having a length of 8 or more carbon atoms is preferable.
  • the block (A) is preferably represented by the following general formula (A-1) or (A-2), and more preferably represented by the general formula (A-1).
  • Ra1 represents a hydrogen atom or a methyl group.
  • Ra2 represents an alkyl group having 8 or more carbon atoms.
  • R a2 is preferably a linear alkyl group.
  • the number of carbon atoms of the alkyl group represented by Ra2 is preferably 10 or more, more preferably 12 or more, and even more preferably 14 or more.
  • the upper limit can be 50 or less, 40 or less, 30 or less, 28 or less, 25 or less, and the like.
  • m is an integer of 2 or more.
  • the m is preferably 7 or more, preferably 8 or more, or 10 or more.
  • m is preferably 1,000 or less, and may be 800 or less, 500 or less, 300 or less, 100 or less, 50 or less, 30 or less, or 20 or less.
  • the second polymerization block (hereinafter referred to as "block (B)") is a repetition of a structural unit having a functional group. This block (B) is a part that exhibits functionality according to the purpose of modification.
  • the functional group imparts functionality to the PET molded product by being present in large numbers in the block copolymer even after the copolymerization.
  • the functionality imparted to the PET molded body mainly includes adhesiveness, hydrophilicity, dyeability, ion conductivity, metal adsorption ability, metal supporting property, plating adhesion and the like.
  • the functional group possessed by the block (B) means a group capable of imparting these functionalities.
  • the functional group is appropriately selected in consideration of the function to be imparted and the ease of polymerization of the copolymer, and may have two or more functional groups in the constituent unit of the block (B).
  • the functional group in the side chain portion of the block (B) is directly bonded to the main chain portion of the block (B), or has a linking group (ester bond, amide bond, ether bond, benzene ring, etc.). They are connected through.
  • the structure of the main chain is not particularly limited because the portion of the block (B) that becomes the main chain has little effect on the modification.
  • the degree of polymerization of the block (B) is an integer of 2 or more.
  • the degree of polymerization of the block (B) is appropriately determined according to the structure of the block copolymer.
  • the degree of polymerization of the block (B) is preferably 2 to 1,000. In order to exert a more stable reforming effect, it is more preferably 5 or more or 10 or more. Further, it may be 20 or more, 30 or more, and 40 or more.
  • the degree of polymerization of the block (B) may be 800 or less, 500 or less, 300 or less, 100 or less, or 60 or less.
  • the molecular weight corresponding to the block (B) is preferably 500 or more. When the molecular weight corresponding to the block (B) is 500 or more, a copolymer having further excellent adhesiveness to other materials can be obtained.
  • the molecular weight corresponding to the block (B) is preferably 1,000 or more, more preferably 5,000 or more, and even more preferably 10,000 or more. Further, it may be 20,000 or less, 15,000 or less, or 12,000 or less.
  • the functional group of the block (B) is preferably a polar group.
  • the polar group refers to a group of polar atomic groups that, when present in a polymer using a monomer having the group, form a structure showing polarity in the polymer. Having a polar group is excellent in that the characteristics of the obtained modified PET molded product are significantly different from those of a normal PET molded product (PET molded product before modification). In particular, when the block (B) contains a polar group, a modified PET molded product having excellent adhesiveness to other materials can be obtained.
  • Typical polar groups include an amino group, an ammonium group, a carboxyl group, a hydroxyl group, a sulfonic acid group, an alkoxy group, an oxylanyl group, an oxyalkylene group, a carbonyl group, an ether group, a sulfonyl group, an ester group and an amide group. Be done.
  • the block (B) preferably has a polar group in the side chain, and is preferably a repeating structural unit having an amino group in the side chain. Further, the block (B) is preferably a repeating structural unit having an oxyalkylene group in the side chain. Further, the block (B) is preferably a repeating structural unit having a carboxyl group in the side chain.
  • block (B) is any monomer selected from the group consisting of (meth) acrylate, (meth) acrylamide, vinyl ether, vinyl ester, siloxane, ⁇ -olefin and substituted styrene having a polar group in the side chain. It can be a polymer (hereinafter referred to as "monomer (b)"). That is, the block copolymer can include the structural unit (B) derived from the monomer (b). Further, the block (B) may be a (meth) acrylic acid polymer.
  • the monomer (b) a commercially available one or an appropriately synthesized one can be used.
  • the block (B) can be a polymer of a monomer having an amino group.
  • the monomer (b) is a monomer having an amino group, and a monomer having an amino group in its side chain is preferable.
  • the amino group may be unsubstituted or has a substituent.
  • substituent of the amino group include an alkyl group, and the alkyl group can be an unsubstituted alkyl group or a substituted alkyl group such as a carboxyalkyl group (-R-COOH).
  • the amino group is a general formula "-NR x1 R x2 (where R x1 and R x2 are independently hydrogen atoms, alkyl groups having 1 to 4 carbon atoms, or carboxyalkyl groups having 1 to 4 carbon atoms). It is preferable that it is a group represented by.
  • amino groups examples include -NH 2 , -N (CH 3 ) 2 , -N (C 2 H 5 ) 2 , -NH (tert-C 4 H 9 ), and -N (CH 2 COOH) 2 . Can be mentioned.
  • the block (B) can be a polymer of a monomer having an oxyalkylene group.
  • the monomer (b) can be a monomer having an oxyalkylene group, and a monomer having an oxyalkylene group in its side chain is preferable.
  • the oxyalkylene group is a divalent group represented by "-(C p H 2p -O)-" (p is an integer of 1 or more).
  • p is an integer of 1 or more.
  • the monomer (b) has an oxyalkylene group, it preferably has a group represented by the following general formula (Y).
  • p is an integer of 1 to 5
  • q is an integer of 2 to 10
  • R y1 is a hydrogen atom or an alkyl group having 1 to 5 carbon atoms. More preferably, p is an integer of 1 to 2, q is an integer of 2 to 10, and R y1 is a hydrogen atom or an alkyl group having 1 to 2 carbon atoms.
  • the monomer (b) are 2- (Dimethylamino) ethyl Methacrylate, DMAEMA, 2- (Dimethylamino) ethyl Acrylate, DMAEA. , 2- (Diethylamino) ethyl methacrylate (2- (Diethylamino) ethyl Methacrylate, DEAEMA), 2- (diethylamino) ethyl acrylate (2- (Diethylamino) ethyl Acrylate, DEAEA), 2- (tert-butylamino) ethyl methacrylate ( 2- (tert-Butylamino) ethyl Methacrylate, TBAEMA), N, N-dimethylacrylamide (N, N-Dimethylacrylamide, DMAA), N, N-dimethylaminopropylacrylamide (N, N-Dimethylaminopropyl Acrylamide, DMAPAA), and N , N-dieth
  • N- [3- (dimethylamino) propyl] acrylamide N- [2- (dimethylamino) ethyl] acrylamide, N- [2- (diethylamino) ethyl] acrylamide, 2- (vinyloxy) ethaneamine, 3-amino.
  • ⁇ -Propen (allylamine), N, N-diethylallylamine, N-allyl-N-tert-butylamine, 3-amino-2-methyl-1-propene (2-methylallylamine), N, N-dimethylallylamine, N, N-dimethylallylamine, 4-aminostyrene, 3-aminostyrene, N, N-dimethyl-4-vinylbenzene-1-amine, 4- (aminomethyl) styrene, 4- [N- (methylaminoethyl) Aminomethyl] Examples thereof include monomers having an amino group such as styrene and N, N-dimethylvinylbenzylamine.
  • examples thereof include monomers having an oxyalkylene group.
  • Diethylen Glycol Monoethyl Ether Acrylate, DEEA Diethylen Glycol Monoethyl Ether Acrylate
  • Examples thereof include monomers having an oxyalkylene group such as ethylene glycol monovinyl ether, diethylene glycol monovinyl ether, and tetraethylene glycol methyl vinyl ether.
  • the monomer having a sulfonic acid group examples include vinyl sulfonic acid, 2- (methacryloyloxy) ethanesulfonic acid, ATBS (Acrylamide Tertiary Butyl Sulfonic Acid), and ATBSNa which is a sodium salt thereof.
  • the monomer having a hydroxyl group or a carboxy group examples include acrylic acid, a sodium salt thereof, 2-hydroxyethyl acrylate, and 2-hydroxyethyl methacrylate.
  • the block (B) may have a structure in which a polymer of a monomer having a reactive group such as an oxylanyl group in the side chain (hereinafter referred to as “monomer (b1)”) reacts with an amine. can.
  • the monomer (b1) examples include glycidyl acrylate and glycidyl methacrylate.
  • the block (B) can have, for example, the structures of the following general formulas (B-1) to (B-4).
  • R b1 represents a hydrogen atom or a methyl group.
  • RL represents a single bond or an alkylene group, and is preferably a single bond or an alkylene group having 1 to 4 carbon atoms.
  • the alkylene group may be unsubstituted or may have a substituent.
  • Examples of the alkylene group having a substituent include a hydroxy group and an alkylene group substituted with a hydroxyalkyl group.
  • R b2 is a hydrogen atom, an alkyl group, an amino group, an ammonium group, a carboxyl group, a hydroxyl group, a sulfonic acid group, an alkoxy group, an oxylanyl group and the above general formula ( Represents any one selected from the group consisting of groups represented by Y).
  • R b2 is preferably any one selected from the group consisting of a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, an amino group, and a group represented by the above general formula (Y), preferably a hydrogen atom and an amino. It is more preferable that the group is selected from the group consisting of a group and a group represented by the above general formula (Y).
  • the preferred amino group and the mode of the group represented by the general formula (Y) are as described above.
  • R b3 represents a hydrogen atom or an alkyl group, and a hydrogen atom or an alkyl group having 1 to 5 carbon atoms is preferable, and a hydrogen atom or an alkyl group having 1 to 3 carbon atoms is more preferable.
  • n is an integer of 2 or more. n is preferably 8 or more, and may be 10 or more, 20 or more, 30 or more, or 40 or more. Further, n is preferably 1,000 or less, and may be 800 or less, 500 or less, 300 or less, 100 or less, or 60 or less.
  • the block (B) represented by the general formula (B-1) can be, for example, a polymerized aminoalkyl (meth) acrylate.
  • a polymerized aminoalkyl (meth) acrylate a commercially available one or one obtained by reacting (meth) acrylate with an alkanolamine can be used.
  • the block (B) represented by the general formula (B-1) can be, for example, a polymer of a polyalkylene glycol mono (meth) acrylate or an alkoxypolyalkylene glycol mono (meth) acrylate.
  • Polyalkylene glycol mono (meth) acrylates and alkoxypolyalkylene glycol mono (meth) acrylates are commercially available or obtained by reacting (meth) acrylate with polyalkylene glycol or polyalkylene glycol monoalkyl ether. Etc. can be used.
  • the block (B) represented by the general formula (B-2) can be, for example, a polymer of alkyl (meth) acrylamide or aminoalkyl (meth) acrylamide.
  • alkyl (meth) acrylamide commercially available ones, those obtained by reacting (meth) acrylate with an alkylamine, and the like can be used.
  • aminoalkyl (meth) acrylamide commercially available ones, those obtained by reacting (meth) acrylate with alkylenediamine, and the like can be used.
  • the block (B) represented by the general formula (B-3) can be, for example, a polymer of aminoalkyl vinyl ether.
  • aminoalkyl vinyl ether commercially available ones, those obtained by reacting methyl vinyl ether with alkanolamine, and the like can be used.
  • the block (B) represented by the general formula (B-3) can be, for example, a polymer of polyalkylene glycol monovinyl ether or alkoxypolyalkylene glycol monovinyl ether.
  • polyalkylene glycol monovinyl ether and the alkoxypolyalkylene glycol monovinyl ether commercially available ones, those obtained by reacting methyl vinyl ether with polyalkylene glycol or polyalkylene glycol monoalkyl ether, and the like can be used.
  • the block (B) represented by the general formula (B-4) can be, for example, a polymer of an aminocarboxylic acid vinyl ester.
  • an aminocarboxylic acid vinyl ester a commercially available one or one obtained by reacting vinyl acetate with an aminoalkylcarboxylic acid can be used.
  • block (B) can have the structures of the following general formulas (B-5) to (B-7).
  • R b4 represents a hydrogen atom or a methyl group.
  • RL represents a single bond or an alkylene group, and is preferably a single bond or an alkylene group having 1 to 4 carbon atoms.
  • the alkylene group may be unsubstituted or may have a substituent.
  • Examples of the alkylene group having a substituent include a hydroxy group and an alkylene group substituted with a hydroxyalkyl group.
  • R b5 is represented by an amino group, an ammonium group, a carboxyl group, a hydroxyl group, a sulfonic acid group, an alkoxy group, an oxylanyl group, and a general formula (Y).
  • R b5 is preferably any one selected from the group consisting of an amino group and a group represented by the above general formula (Y), and more preferably an amino group.
  • the preferred amino group and the mode of the group represented by the general formula (Y) are as described above.
  • n is an integer of 2 or more. n may be 5 or more, 10 or more, 20 or more, 30 or more, and 40 or more. Further, n is preferably 1,000 or less, and may be 800 or less, 500 or less, 300 or less, 100 or less, or 60 or less.
  • the block (B) represented by the general formula (B-6) can be, for example, a polymerized allylamine.
  • allylamine a commercially available product or a product obtained by reacting allyl alcohol with ammonia or an alkylamine can be used.
  • the block (B) represented by the general formula (B-6) can be, for example, a polymer of polyalkylene glycol monoallyl ether or alkoxypolyalkylene glycol monoallyl ether.
  • polyalkylene glycol monoallyl ether and the alkoxypolyalkylene glycol monoallyl ether commercially available ones or those obtained by reacting allyl halide with polyalkylene glycol or polyalkylene glycol monoalkyl ether can be used. can.
  • the block (B) represented by the general formula (B-7) can be, for example, a polymer of aminostyrene or aminoalkylstyrene.
  • aminoalkylstyrene a commercially available product, a product obtained by reacting a vinylbenzyl halide with an alkylamine, or the like can be used.
  • the block (B) represented by the general formula (B-7) can be, for example, a polymer of polyalkylene glycol monovinylbenzyl ether or alkoxypolyalkylene glycol monovinylbenzyl ether.
  • polyalkylene glycol monovinylbenzyl ether and the alkoxypolyalkylene glycol monovinylbenzyl ether commercially available ones, those obtained by reacting a vinylbenzyl halide with polyalkylene glycol or polyalkylene glycol monoalkyl ether, and the like can be used. can.
  • the block (B) is preferably a general formula (B-1) or a general formula (B-2), and is preferably a general formula, from the viewpoint of easy availability of a monomer as a raw material and easy control of polymerization conditions. (B-1) is more preferable.
  • the side chain crystalline block copolymer has a first polymerization block (block (A)) having an alkyl group having 8 or more carbon atoms in the side chain and a second polymerization block (block (B)) having a functional group. ) And.
  • block copolymer By forming a block copolymer, it becomes easy for each function to be fully exhibited.
  • This block copolymer may be composed of a block (A) and a block (B), and may further contain other structural units as long as the object of the present invention is not impaired.
  • the side-chain crystalline block copolymer is preferably composed substantially of the block (A) and the block (B), and in the side-chain crystalline block copolymer, the block (A) and the block (A) and the block (B).
  • the total content of B) can be 95% by mass or more, 98% by mass or more, and the like.
  • the block copolymer may be any of a diblock copolymer, a triblock copolymer and the like.
  • the side chain crystalline block copolymer preferably has a block (A) having a molecular weight of 3,000 or more and a block (B) having a molecular weight of 500 or more.
  • the PET molded product and the block copolymer can be stably adhered to each other.
  • the block (A) has a molecular weight of 5,000 or more
  • the block (B) has a molecular weight of 1,000 or more
  • the block (A) has a molecular weight of 5,000 or more.
  • the molecular weight of the block (B) is 5,000 or more.
  • the side chain crystalline block copolymer is more preferably the following (p1) to (p3).
  • (P1) A block copolymer (p2) containing a block (A) derived from a (meth) acrylate having an alkyl group having 8 or more carbon atoms and a block (B) derived from a (meth) acrylate having an amino group.
  • Block copolymer (p3) A block copolymer containing a block (A) derived from a (meth) acrylate having an alkyl group having 8 or more carbon atoms and a block (B) derived from (meth) acrylic acid.
  • One of the preferred block copolymers is a block copolymer containing the block (A) represented by the general formula (A-1) and the block (B) represented by the general formula (B-1). Is. By using such a block copolymer, the block (A) and the PET molded product are firmly adhered to each other, and the function of the block (B) can be easily expressed.
  • block copolymer for example, the following can be used.
  • the polymerization method of the block copolymer is not particularly limited, and it is possible to polymerize by a known technique such as various living polymerization methods (radicals, anions, cations).
  • a living radical polymerization method an NMP method, an ATRP method, a RAFT method and the like can be used.
  • the monomer (a) is mixed with the polymerization solvent together with the initiator to prepare the monomer (a) mixed solution, and the monomer (a) mixed solution preparation step is performed.
  • the monomer (a) mixed solution prepared in this mixed solution preparation step is appropriately stirred in a reactor at an appropriate polymerization temperature (for example, about 90 to 120 ° C.), and a living radical is subjected to a nitrogen atmosphere or the like.
  • the monomer (a) polymerization step based on the polymerization mechanism of the initiator such as polymerization is carried out to obtain the monomer (a) polymer.
  • a monomer (b) polymerization step is performed in which the monomer (b) is mixed with the solution in which the monomer (a) polymer is mixed, and the monomer (b) is further polymerized by a radical or the like in the solution.
  • a block copolymer containing the block (A) derived from the monomer (a) and the block (B) derived from the monomer (b) can be obtained.
  • the order in which the monomer (a) and the monomer (b) are polymerized can also be changed according to the type of the monomer to be polymerized, the molecular weight, the polymerization conditions of each, and the like.
  • a monomer (a) and a monomer (b1) having a reactive group such as an oxylanyl group on its side chain are polymerized to synthesize a precursor polymer, and then reacted with an amine or the like to form a block copolymer. You may get it.
  • the monomer (a) is mixed with the polymerization solvent together with the initiator, and at an appropriate polymerization temperature (for example, about 90 to 120 ° C.), the nitrogen atmosphere and the like are appropriately stirred in the reactor.
  • an appropriate polymerization temperature for example, about 90 to 120 ° C.
  • a monomer (a) polymerization step based on the polymerization mechanism of the initiator such as living radical polymerization is carried out to obtain a monomer (a) block polymer.
  • the monomer (b1) for example, (meth) acrylate, (meth) acrylamide having an oxylanyl group, vinyl ether, vinyl ester, siloxane, ⁇ -olefin and substitution is added.
  • Any monomer selected from the group consisting of styrene) is mixed, and a monomer (b1) polymerization step is performed in which the monomer (b1) is further polymerized by a radical or the like in the solution.
  • a solution in which the precursor polymer having the block (A) derived from the monomer (a) and the block (B1) derived from the monomer (b1) is mixed is obtained.
  • the oxylanyl group reacts with iminodiacetic acid and has an amine structure derived from iminodiacetic acid (a structure having an amino group substituted with a carboxyalkyl group in the side chain).
  • a block copolymer (for example, the above-mentioned (IX) copolymer) is obtained.
  • Block copolymer solution In the present invention, a copolymer solution in which a side chain crystalline block copolymer is dissolved in a solvent is used. By using the copolymer solution, it is possible to adjust the viscosity and concentration to an arbitrary value, and it becomes easy to impart desired functionality such as adhesiveness to a desired range of the PET molded product.
  • the block copolymer solution is a concept that includes not only a uniform solution in which the block copolymer is completely dissolved in a solvent, but also a suspension / dispersion solution.
  • the block copolymer can be used as a suspension or a dispersion liquid in which the block copolymer is dispersed or suspended in the solvent. good.
  • solvent for the copolymer solution examples include ester solvents such as butyl acetate, octyl acetate, methyl benzoate, ethyl benzoate, octyl benzoate, dimethyl phthalate, diethyl phthalate, and dioctyl phthalate; N-methyl-2- Amid solvents such as pyrrolidone, N, N-dimethylacetamide, N, N-dimethylformamide; ether solvents such as tetrahydrofuran, dimethoxyethane, cyclopentylmethyl ether, diethylene glycol methyl ether, anisole, methylanisole; methylisobutylketone, cyclohexanone, Examples thereof include a ketone solvent such as acetophenone; a sulfoxide solvent such as dimethyl sulfoxide; a nitrile solvent such as acetonitrile; and an aprotonic solvents such as buty
  • Examples of the solvent for the copolymer solution include protonic solvents such as ethanol, isopropyl alcohol, butanol, ethylene glycol, glycerin, 2-methoxyethanol and 2-ethoxyethanol.
  • an aromatic hydrocarbon solvent such as toluene, xylene (o-xylene, m-xylene, p-xylene, and a mixture thereof), mecitylene, ethylbenzene, cyclohexylbenzene, etc.; Halogenized aromatic hydrocarbon compounds such as chlorobenzene, dichlorobenzene, trichlorobenzene, bromobenzene and fluorobenzene; aliphatic hydrocarbon solvents such as pentane, hexane, octane, decane, cyclohexane and decalin; trichloromethane, tetrachloromethane, Halogenated aliphatic hydrocarbon solvents such as dichloroethane, trichloroethylene, tetrachloroethylene, chlorobutane and tribromomethane; non-polar solvents such as ether solvents such as dio
  • solvent only one kind or two or more kinds of solvents can be appropriately mixed and used.
  • the solvent of the copolymer solution preferably contains an aprotic polar solvent, and more preferably an ester solvent or an aprotic polar solvent having a dielectric constant of 30 or more.
  • the solvent of the copolymer solution is more preferably (i) an ester solvent having a boiling point of 150 ° C. or higher at 1 atm, or (ii) an aprotic polar solvent having a dielectric constant of 30 or higher.
  • the "dielectric constant” means the relative permittivity.
  • values described in documents such as “Solvent Handbook”, “Chemical Handbook”, “Solvent Pocket Book”, “CRC HANDBOOK OF CHEMISTRY and PHYSICS 88TH EDITION” can be appropriately adopted.
  • the measured value it can be a value measured at 20 to 25 ° C. using a commercially available dielectric constant meter.
  • the ester solvent or the aprotic polar solvent having a dielectric constant of 30 or more may be used alone or as a mixed solvent with other solvents. When used as a mixed solvent, these solvents are preferably the main solvent, and the total volume of the solvents preferably occupies 50% by volume or more of the ester solvent or the aprotic polar solvent having a dielectric constant of 30 or more. It may occupy 70% by volume or more, 80% by volume or more, 90% by volume or more, and 95% by volume or more.
  • ester-based solvent is an aliphatic ester compound (butyl acetate, octyl acetate, etc.), an aromatic ester compound (methyl benzoate, ethyl benzoate, octyl benzoate, etc., benzoate ester, dimethyl phthalate, phthalate, etc.) It may be a phthalate ester compound such as diethyl acid or dioctyl phthalate), but an aromatic ester compound is preferable, and a phthalate ester compound is more preferable.
  • the ester solvent has a boiling point of 80 ° C. or higher at 1 atm. Is preferable, and more preferably 100 ° C. or higher, 120 ° C. or higher, 150 ° C. or higher, 200 ° C. or higher, and 220 ° C. in that order.
  • reflux may be performed in order to suppress changes in the liquid volume and concentration of the copolymer solution due to volatilization.
  • the boiling point of the ester solvent is preferably in the above range. On the other hand, it is not necessary to set an upper limit of the boiling point.
  • Examples of the aprotic polar solvent having a dielectric constant of 30 or more include N-methyl-2-pyrrolidone (32), N, N-dimethylacetamide (38), and N. , N-dimethylformamide (38) and other amide solvents; dimethylsulfoxide (47) and other sulfoxide solvents; acetonitrile (37) and other nitrile solvents; hexamethylphosphate triamide (31) and other phosphate amide solvents. And so on. Of these, sulfoxide-based solvents and / or amide-based solvents are preferable, and dimethyl sulfoxide and / or N-methyl-2-pyrrolidone are more preferable.
  • the concentration of the block copolymer in the copolymer solution can be appropriately set according to the type and modification temperature of the block copolymer, the adhesion amount and adhesion film thickness of the copolymer, the purpose of modification, and the like.
  • the concentration of the block copolymer in the copolymer solution is preferably 0.01 to 2.0% by mass.
  • the lower limit of the concentration of the block copolymer is preferably 0.02% by mass or more, more preferably 0.05% by mass or more. If the concentration of the block copolymer is too low, the modifying effect on the PET molded product may be insufficient.
  • the upper limit of the concentration of the block copolymer is preferably 1.5% by mass or less, more preferably 1.0% by mass or less.
  • the concentration of the block copolymer may be 0.8% by mass or less, 0.6% by mass or less, or 0.5% by mass or less. Even if the concentration of the block copolymer is increased, the modifying effect on the PET molded product may be saturated. Further, if the concentration of the block copolymer is too high, micelle formation due to self-assembly of the block copolymer itself may occur, and the modification effect may not be sufficiently exhibited.
  • the block (A) derived from the above and the block (B) having a polar group in the side chain are contained, and the concentration of the side chain crystalline block copolymer is 0.01 to 2.0% by mass, and the solvent is used.
  • a solution containing the following (i) or (ii) can be mentioned.
  • ii) Aprotic polar solvent having a dielectric constant of 30 or higher.
  • the copolymer solution for modifying polyethylene terephthalate includes a block (A) derived from a (meth) acrylate having an alkyl group having 8 or more carbon atoms and a block (B) having a polar group in the side chain.
  • a solution containing a block copolymer and a solvent, the solvent containing an ester solvent having a boiling point of 150 ° C. or higher at 1 atm, and a block copolymer concentration of 0.01 to 2.0% by mass (hereinafter, "co-polymer”). It may be described as “polymer solution (L1)").
  • the copolymer solution (L1) By using the copolymer solution (L1), the polyethylene terephthalate molded product and the block copolymer can be adhered more firmly.
  • the solvent is preferably an ester solvent containing an aromatic ester compound and having a boiling point of 220 ° C. or higher at 1 atm, and preferably an ester solvent containing a phthalate ester compound. More preferred.
  • the block copolymer is represented by a block (A) derived from a (meth) acrylate having an alkyl group having 8 or more carbon atoms, an amino group, and the above general formula (Y). It is preferably a block copolymer containing a block (B) having a group or a carboxyl group in the side chain. Further, the block copolymer is a block (A) derived from a (meth) acrylate having an alkyl group having 8 or more carbon atoms, a (meth) acrylate having an amino group, and a group represented by the above general formula (Y). It is more preferable that it is a block copolymer containing a (meth) acrylate having a (meth) acrylate or a block (B) derived from (meth) acrylic acid.
  • the copolymer solution for modifying polyethylene terephthalate includes a block (A) derived from a (meth) acrylate having an alkyl group having 8 or more carbon atoms and a block (B) having a polar group in the side chain.
  • the copolymer solution (L2) By using the copolymer solution (L2), the polyethylene terephthalate molded product and the block copolymer can be adhered more firmly.
  • the solvent is preferably an aprotic polar solvent containing a sulfoxide solvent and / or an amide solvent and having a dielectric constant of 30 or more, and dimethyl sulfoxide and / or N-methyl-. More preferably, it is an aprotic polar solvent containing 2-pyrrolidone and having a dielectric constant of 30 or more.
  • the block copolymer is represented by a block (A) derived from a (meth) acrylate having an alkyl group having 8 or more carbon atoms, an amino group, and the above general formula (Y). It is preferably a block copolymer containing a block (B) having a group or a carboxyl group in the side chain. Further, the block copolymer is a block (A) derived from a (meth) acrylate having an alkyl group having 8 or more carbon atoms, a (meth) acrylate having an amino group, and a group represented by the above general formula (Y). It is more preferable that it is a block copolymer containing a (meth) acrylate having a (meth) acrylate or a block (B) derived from (meth) acrylic acid.
  • the polyethylene terephthalate (PET) molded product is a molded product containing polyethylene terephthalate as a main component (for example, containing 50% by mass or more), and includes polyethylene terephthalate, a copolymer thereof, a mixture of polyethylene terephthalate and another resin, and the like. It is molded into an arbitrary shape.
  • This molded product may appropriately contain a functionalizing agent such as a molding aid, a pigment, and an ultraviolet absorber.
  • the molding form of the PET molded body is not particularly limited, and examples thereof include molded bodies such as films, plates, particles, fibers, and porous materials.
  • the base material to be modified is a porous material, not only the surface corresponding to the surface layer of the molded product but also the inside of the PET molded product such as inside the pores.
  • the copolymer solution can be infiltrated to modify the entire porous material.
  • the method for producing a modified PET molded product of the present invention includes a step of bringing a polyethylene terephthalate molded product into contact with a copolymer solution containing a side chain crystalline block copolymer and a solvent.
  • the contact method between the copolymer solution and the PET molded body is not particularly limited as long as it can form a functional layer containing the block copolymer in the portion of the PET molded body to be modified.
  • a method capable of contacting the copolymer solution with the portion of the PET molded body to be modified may be appropriately selected, and the contact method may be used. Examples include dip coating, spin coating, applicator coating, slit coating, die coating, bar coating, screen printing, inkjet printing, gravure printing, spray coating, and pouring. Since the copolymer solution can be easily controlled at a predetermined temperature, one of the preferred contact methods is a method of immersing the PET molded product in the copolymer solution.
  • the temperature (modification temperature) at which the block copolymer and the PET molded product are brought into contact with each other can be appropriately determined according to the type of solvent in the copolymer solution, the shape of the PET molded product, the contact time, and the like.
  • the reforming temperature is preferably 80 ° C. or higher, more preferably 100 ° C. or higher, 120 ° C. or higher, and 130 ° C. or higher in that order.
  • the ester solvent has a dielectric constant of about 5 to 10, and the surface of the PET molded product is not easily eroded at about room temperature, and the modification may take a long time or the modification effect may be insufficient.
  • the reforming temperature By setting the reforming temperature to 80 ° C. or higher, loosening and swelling of the surface of the PET molded product are likely to occur, and the block copolymer and the PET molded product are likely to interact with each other, so that the reforming effect is more efficient and higher. Can be obtained.
  • the reforming temperature is preferably 200 ° C. or lower, more preferably 190 ° C. or lower, 180 ° C. or lower, and 170 ° C. or lower in that order. If the reforming temperature is too high, depending on the shape of the PET molded body or the like, the PET molded body itself may be thermally deteriorated or deformed, and the strength of the PET molded body itself may decrease. Even when the reforming temperature is high, the influence of the temperature may be limited by shortening the contact time, and reforming may be performed.
  • the ester solvent contains an ester solvent having a boiling point of 150 ° C. or higher at 1 atm
  • the copolymer solution and PET molding are carried out in the above range of 80 ° C. to 200 ° C. (particularly 120 ° C. to 200 ° C.). It is preferable to bring it into contact with the body.
  • ester solvent contains a phthalate ester compound
  • the reforming temperature is preferably 120 ° C. or lower, in the order of 100 ° C. or lower, 90 ° C. or lower, 80 ° C. or lower, 70 ° C. or lower. Is more preferable. Since the aprotic polar solvent having a dielectric constant of 30 or more easily erodes the surface of the PET molded body, the higher the reforming temperature, the more likely the strength of the PET molded body itself to decrease. Although the contact time may be shortened to minimize the influence of temperature and the PET molded product itself may be modified while suppressing a decrease in strength, it is necessary to control the temperature and time more accurately. The operation may be complicated.
  • the reforming temperature is preferably 20 ° C. or higher, more preferably 25 ° C. or higher, and more preferably 30 ° C. or higher. If the reforming temperature is too low, the surface of the PET molded product is less likely to loosen or swell, and the block copolymer and the PET molded product are less likely to interact with each other. Therefore, the lower the reforming temperature, the less the reforming effect. It tends to be enough.
  • the copolymer solution and the PET molded product can be used in the above range of 20 ° C to 120 ° C. It is preferable to bring them into contact with each other.
  • the copolymer solution may be brought into contact with the PET molded product at a predetermined temperature in advance.
  • the reforming temperature is about room temperature (25 ° C.) or higher
  • the PET molded product may be brought into contact with the copolymer solution at about room temperature and then heated to raise the temperature to a predetermined temperature.
  • the copolymer solution may be quickly removed after contacting at a predetermined temperature, or cooling or slow cooling may be performed while the copolymer solution and the PET molded product are in contact with each other.
  • the treatment time for contacting the copolymer solution and the PET molded body can be appropriately determined according to the contact method, the composition of the copolymer solution, the shape of the PET molded body, and the like.
  • the immersion time is 1 second or more when the reaction between the block copolymer and the PET molded product is increased by raising the reforming temperature. It may be relatively short, such as 10 seconds or more and 30 seconds or more.
  • the immersion time may be 1 minute or more or 5 minutes or more.
  • the immersion time may be long, 60 minutes or less, or 40 minutes or less as long as the PET molded product is not deformed.
  • the modification effect may be 30 minutes or less or 20 minutes or less depending on the conditions such as the modification temperature.
  • the contact step After the contact step is completed, it may be used as it is as a modified PET molded product, or it may be further processed and used.
  • a solvent removing step of removing the solvent of the coating film of the copolymer solution provided on the PET molded product may be performed.
  • a method for removing the solvent it may be dried at around room temperature in a well-ventilated environment, or may be appropriately subjected to vacuum drying, heat drying, or the like. These drying methods may be used in combination. Further, it may be dried after washing with a solvent having a lower boiling point that is compatible with the solvent of the copolymer solution.
  • the present invention has a polyethylene terephthalate molded body and a functional layer containing a side chain crystalline block copolymer formed on at least a part of the surface of the molded body, and the side chain crystalline block copolymer is formed.
  • the first polymerization block which is a repetition of the structural unit in which the side chain crystalline block copolymer has an alkyl group having 8 or more carbon atoms in the side chain
  • the second which is a repetition of the structural unit having a functional group. It relates to a modified polyethylene terephthalate molded product (hereinafter, may be referred to as “modified PET molded product of the present invention”) including a polymerization block.
  • the modified PET molded product of the present invention has a functional layer containing a block copolymer on at least a part of the surface of the PET molded product, the functionality of the block copolymer is imparted.
  • the modified PET molded product of the present invention can be obtained, for example, by the above-mentioned method for producing the modified PET molded product of the present invention.
  • the PET molded product, the side chain crystalline block copolymer, and the like constituting the PET molded product of the present invention are the same as those used in the method for producing the modified PET molded product of the present invention, and the preferred embodiments are also the same. ..
  • the PET molded product can be a molded product such as a film, a plate, particles, fibers, or a porous material.
  • the functional groups of the block (B) of the block copolymer include an amino group, an ammonium group, a carboxyl group, a hydroxyl group, a sulfonic acid group, an alkoxy group, an oxylanyl group, an oxyalkylene group, a carbonyl group and an ether group.
  • a polar group such as a sulfonyl group, an ester group and an amide group. It is known that having a polar group on the surface can exhibit functionality such as hydrophilicity and adhesiveness.
  • the block copolymer and the PET molded body are strongly strengthened. It can be adhered to form a modified PET molded product having excellent functionality such as hydrophilicity, adhesiveness, dyeability, and metal ion adsorption.
  • the modified PET molded body has an amino group on the surface.
  • the modified PET molded body has an oxyalkylene group on the surface. This makes it possible to obtain a modified PET molded product having functionality such as hydrophilicity and adhesiveness.
  • the modified PET molded body has a carboxyl group on the surface. This makes it possible to obtain a modified PET molded product having functionality such as adhesiveness.
  • the functional machine of the block (B) of the block copolymer is preferably selected from the group consisting of an amino group, an ammonium group, a carboxyl group, a hydroxyl group, a sulfonic acid group, and an oxylanyl group, and an amino group and a carboxyl group are preferable.
  • an oxyalkylene group is more preferable.
  • the block copolymer preferably contains a block (B) having an amino group, a carboxyl group or an oxyalkylene group in the side chain, and is more preferably the following (p1) to (p3). preferable.
  • (P1) A block copolymer (p2) containing a block (A) derived from a (meth) acrylate having an alkyl group having 8 or more carbon atoms and a block (B) derived from a (meth) acrylate having an amino group.
  • Block Polymer (p3) A block copolymer containing a block (A) derived from a (meth) acrylate having an alkyl group having 8 or more carbon atoms and a block (B) derived from (meth) acrylic acid.
  • the block copolymer constituting the modified PET molded product preferably has a block (A) having a molecular weight of 3,000 or more and a block (B) having a molecular weight of 500 or more.
  • the PET molded product and the block copolymer can be stably adhered to each other.
  • the block (A) has a molecular weight of 5,000 or more
  • the block (B) has a molecular weight of 1,000 or more
  • the block (A) has a molecular weight of 5,000 or more.
  • the molecular weight of the block (B) is 5,000 or more.
  • the functional layer containing the side-chain crystalline block copolymer may be formed at a site where the functionality of the side-chain crystalline block copolymer is required, depending on the use of the modified PET molded product of the present invention. The range can be adjusted as appropriate.
  • the functional layer may be formed on the entire surface of the PET molded product, or may be formed on the surface of the PET molded product in a layered shape, a mottled shape, a striped shape, or the like. Further, if the PET molded product is a porous material such as a porous film, a functional layer may be formed not only on the surface but also in the pores.
  • the molded product of the present invention can be confirmed by a method such as component analysis of each layer by FT-IR or the like, or component analysis of the cut surface.
  • the functional layer may contain components other than the block copolymer.
  • the functional layer may contain a solvent.
  • the modified PET molded product of the present invention can be produced by the method for producing the modified PET molded product of the present invention, and in the production thereof, the copolymer solution and the PET molded product are brought into contact with each other. .. After the contact between the copolymer solution and the PET molded body, the solvent of the copolymerized solution provided in the PET molded body may be used without being removed, or even if the solvent is removed, the solvent may not be completely removed and remains.
  • the modified PET molded product of the present invention can be a molded product having excellent adhesiveness, and the peel strength on the surface of the functional layer is 0.1 N / mm or more, 0.5 N / mm or more, 0. It is also possible to make a molded product of .7 N / mm or more and 1.0 N / mm or more.
  • the peel strength can be calculated by a T-type peel test described later, and can be calculated as a value obtained by dividing the maximum test force by the length in the width direction of the test piece. Further, the reforming temperature or the like may be adjusted so that a molded product having a peel strength of 5.0 N / mm or less or 3.0 N / mm or less on the surface of the functional layer may be used.
  • the modified PET molded product of the present invention has the characteristics of a side chain crystalline block copolymer. This can be used for conventional applications of PET molded products, and it is expected that the applications will be expanded by utilizing the modified properties thereof.
  • the functionality based on the block (B) of the block copolymer can be sufficiently obtained. It is considered difficult to express.
  • the PET molded product and the block copolymer can be strongly adhered to each other, and a modified PET molded product having excellent surface characteristics based on the block (B) can be obtained. can.
  • One of the preferred modified PET molded products of the present invention has a polyethylene terephthalate molded product and a functional layer containing a side chain crystalline block copolymer formed on at least a part of the surface of the molded product.
  • the side chain crystalline block copolymer is selected from the group consisting of (meth) acrylate, (meth) acrylamide, vinyl ether, vinyl ester, siloxane, ⁇ -olefin and substituted styrene having an alkyl group having 8 or more carbon atoms.
  • first polymerization block (block (A) which is a polymer of any of the monomers and a second polymerization block (block (B)) which is a repetition of a structural unit having a polar group in the side chain.
  • block (B) a modified PET molded product
  • M1 modified PET molded product
  • the peel strength of the functional layer is preferably 0.7 N / mm or more, more preferably 1.0 N / mm or more.
  • the strength of adhesion between the PET molded body and the block copolymer can be used as an index of the surface state of the modified molded body after the good solvent of the block copolymer and the modified molded body are brought into contact with each other. ..
  • the block copolymer even after the modified PET molded product is brought into contact with a good solvent of the block copolymer, the block copolymer is not detached and the portion containing the block copolymer is contained. It can remain on the surface.
  • the block copolymer did not desorb and the portion containing the block copolymer remained on the surface. Can be.
  • the test was conducted in a constant temperature and humidity chamber at 25 ° C., 1 atm and 50% humidity.
  • the non-adhesive portions of the test pieces were arranged in the T-shape, and each of them was gripped by the gripping tool of the test device and pulled in the direction of separation at 10 mm / min to measure the adhesive force.
  • the test was performed 3 to 8 times under each condition.
  • the peel strength [N / mm] is a value obtained by dividing the maximum test force [N] by the width [mm] of the test piece. As shown in FIG. 1 (b), the result of 12.5 mm immediately after the start of each peeling test was cut out, and the maximum test force was obtained from the remaining result. The peel strength was calculated using this maximum test force. Further, when the test piece started to break immediately after the start of the test (Stroke was within 0 to 12.5 mm) due to strong adhesion, the peel strength was calculated using the maximum test force calculated from all the data. The peel strength was calculated as the average of all the tests regardless of the presence or absence of breakage of the modified PET film itself during the peel test.
  • FIGS. 3 to 10 The evaluation results of the adhesiveness of the modified film are shown in FIGS. 3 to 10.
  • the white column means that the modified PET film itself was not destroyed during the peeling test, and all the test pieces were peeled off
  • the black column means that the modified PET film itself was peeled off during the peeling test. It means that the test piece destroyed by is also included. Details of the modification conditions and evaluation results of each modified film will be described later.
  • STA Stearyl acrylate
  • TSAEMA 2- (tert-butylamino) ethyl methacrylate
  • the Mw (weight average molecular weight g / mol) of STA was 8,000
  • the TBAEMA (weight average molecular weight g / mol) was 8,000. rice field.
  • PET molded product As a PET molded product, a PET film (Lumirror (registered trademark) T60, film thickness 250 ⁇ m, manufactured by Toray Industries, Inc.) was cut out with a width of 12.5 mm and a length of 100 mm and used. The cut PET film was washed with acetone, dried and used.
  • Limirror registered trademark
  • T60 film thickness 250 ⁇ m, manufactured by Toray Industries, Inc.
  • Examples 1 to 5 Comparative Example 1 to Comparative Example 4
  • the PET film was immersed in the warmed solution (s1) for 10 minutes. Then, the PET film taken out from the solution (s1) was immersed in butyl acetate at 25 ° C. and washed with stirring for 1 minute. Then, it was air-dried for one day to obtain a modified PET film.
  • the temperature of the solution (reform temperature) in each example is as shown in Table 2.
  • the PET film was used as it was without modification. Further, the treatment was carried out using the solution or solvent shown in Table 2 under the modification conditions shown in Table 2 to obtain comparative PET films of Comparative Examples 2 to 4.
  • FIG. 2 shows the measurement results of the IR spectrum on the surface of the modified PET film obtained in Example 5. Since the peak appeared near 3000 cm -1 , the presence of SCCBC could be confirmed on the PET surface.
  • the adhesive strength was greatly improved as compared with the unmodified PET.
  • 1 out of 7 samples, at 140 ° C, 3 out of 8 samples, and at 160 ° C, 7 out of 8 samples showed breakage of the PET film itself, confirming that the adhesiveness was very excellent.
  • Examples 3-A to 3-E Examples 4-A to 4-D
  • Modified PET films of Examples 3-A to 3-E were obtained in the same manner as in Example 3 except that the immersion time was changed to the time shown in Table 3. Further, modified PET films of Examples 4-A to 4-D were obtained in the same manner as in Example 4 except that the immersion time was changed to the time shown in Table 4.
  • the adhesive strength improved as the immersion time became longer, and the number of samples destroyed by the PET film itself tended to increase in the peeling test.
  • the PET film itself was destroyed in 1 out of 5 samples by immersion for 30 minutes.
  • the PET film itself was destroyed in 3 out of 5 samples by soaking for 1 hour.
  • the PET film itself was destroyed in 2 out of 5 samples by immersion for 1 minute and 5 minutes.
  • the PET film itself was destroyed in 4 out of 5 samples by the immersion time of 30 minutes.
  • the PET film itself was destroyed in 3 out of 8 samples. Further, the higher the reforming temperature, the higher the reforming effect was obtained in a shorter time.
  • Examples 5-A to 5-C Modified PET films of Examples 5-A to 5-C were obtained in the same manner as in Example 5 except that the copolymer solution was changed to the solution shown in Table 5.
  • Examples 5-a to 5-d Modified PET of Examples 5-a to 5-d in the same manner as in Example 5 except that the cleaning conditions with butyl acetate after removing the PET film from the SCCBC solution were changed to the conditions shown in Table 6. I got a film.
  • Examples 7-A to 7-F The PET film was immersed in the warmed solution (s6) (STA-TBAEMA, NMP) for 10 minutes. Then, the PET film taken out from the solution (s6) was immersed in butyl acetate at 25 ° C. and washed with stirring for 1 minute. Then, it was dried to obtain a modified PET film.
  • the temperature (reform temperature) and drying conditions of the solution in each example are as shown in Table 7. Further, in Comparative Example 5, treatment was performed using NMP (solvent only) instead of SCCBC under the reforming temperature and drying conditions shown in Table 7.
  • Example 8-A to 8-C The PET film was immersed in the warmed solution (s7) (STA-TBAEMA, DMSO) for 10 minutes. Then, the PET film taken out from the solution (s7) was immersed in butyl acetate at 25 ° C. and washed with stirring for 1 minute. Then, it was dried to obtain a modified PET film.
  • the temperature (reform temperature) and drying conditions of the solution in each example are as shown in Table 8. Further, in Comparative Example 6, DMSO (solvent only) was used instead of SCCBC, and the treatment was performed at the reforming temperature and the drying conditions shown in Table 8.
  • the peeling test was performed 5 times using the modified PET film of Examples 8-A to 8-C and the comparative PET film of Comparative Example 6 to evaluate the adhesiveness.
  • 10 and 8 show the results of the evaluation of the adhesiveness of Examples 8-A to 8-C, Comparative Examples 1 and 6.
  • PET modified with the solution STA-TBAEMA, DMSO
  • PET treated with DMSO solvent only
  • the adhesive strength was improved as compared with Comparative Example 6). All of the modified PET films (Examples 8-A to 8-C) showed breakage of the PET film itself, and it was confirmed that the adhesiveness was very excellent.
  • DMSO has improved adhesive strength when modified at a lower temperature than diethyl phthalate.

Abstract

Provided is a method for manufacturing a modified polyethylene terephthalate molded product having excellent surface characteristics. A method for manufacturing a modified polyethylene terephthalate molded product having a contact step for bringing a polyethylene terephthalate molded product and a copolymer solution containing a side chain crystalline block copolymer and a solvent into contact with each other. The side chain crystalline block copolymer includes a first polymerization block, which is a repetition of constituent units having an alkyl group having 8 or more carbon atoms in a side chain, and a second polymerization block, which is a repetition of constituent units having a functional group. The solvent has (i) an ester-based solvent having a boiling point at 1 atm of 150°C or above or (ii) an aprotic polar solvent having permittivity of 30 or above.

Description

改質ポリエチレンテレフタレート成形体およびその製造方法、ならびに共重合体溶液Modified polyethylene terephthalate molded product and its production method, and copolymer solution
 本発明は、改質ポリエチレンテレフタレート成形体およびその製造方法に関するものである。また、本発明は、共重合体溶液に関するものである。 The present invention relates to a modified polyethylene terephthalate molded product and a method for producing the same. The present invention also relates to a copolymer solution.
 ポリエチレンテレフタレート(Polyethylene terephthalate:PET)は、絶縁性、耐薬品性、耐摩耗性等に優れていることから、繊維やボルト、シート等に広く使用されているプラスチックである。一方で、接着性や親水性、染色性等に乏しいプラスチックである。 Polyethylene terephthalate (PET) is a plastic widely used for fibers, bolts, sheets, etc. because it has excellent insulation, chemical resistance, abrasion resistance, and the like. On the other hand, it is a plastic having poor adhesiveness, hydrophilicity, dyeability and the like.
 現在、PETの接着性や親水性、染色性等を向上させるための改質方法として、プラズマ処理やコロナ処理などの手法が主に用いられている(例えば、非特許文献1、非特許文献2など)。プラズマ処理やコロナ処理は、その性質上、円筒形等の複雑な形状に対して適用することができず、また、設備導入のためのコストが非常に高いこと等も課題となっている。 Currently, as a modification method for improving the adhesiveness, hydrophilicity, dyeability, etc. of PET, methods such as plasma treatment and corona treatment are mainly used (for example, Non-Patent Document 1 and Non-Patent Document 2). Such). Due to its nature, plasma treatment and corona treatment cannot be applied to complicated shapes such as a cylinder, and the cost for introducing equipment is very high.
 一方、本発明者らは、側鎖結晶性ブロック共重合体(Side Chain Crystalline Block Copolymer:SCCBC)を利用して、フッ素樹脂やポリエチレン樹脂、ポリプロピレン樹脂の表面を改質する方法を開示している。 On the other hand, the present inventors disclose a method of modifying the surface of a fluororesin, a polyethylene resin, or a polypropylene resin by using a side chain crystalline block copolymer (SCCBC). ..
 例えば、特許文献1には、第1のモノマー(A)由来の構造単位と、第2のモノマー(B)由来の構造単位とを有する共重合体であって、前記モノマー(A)が、その側鎖に式(a1)~(a5)からなる群から選択されるいずれかのフッ素化アルキル基を有する、(メタ)アクリレート、(メタ)アクリルアミド、ビニルエーテル、ビニルエステル、シロキサン、αオレフィンおよび置換スチレンからなる群より選ばれるいずれかのモノマーであり、前記モノマー(B)が、機能性基を有するモノマーであることを特徴とする共重合体を用いるフッ素樹脂の改質方法が開示されている。 For example, Patent Document 1 describes a copolymer having a structural unit derived from the first monomer (A) and a structural unit derived from the second monomer (B), wherein the monomer (A) is the same. (Meta) acrylate, (meth) acrylamide, vinyl ether, vinyl ester, siloxane, α-olefin and substituted styrene having any fluorinated alkyl group selected from the group consisting of the formulas (a1) to (a5) on the side chain. Disclosed is a method for modifying a fluororesin using a copolymer, which is any of the monomers selected from the group consisting of the above, and the monomer (B) is a monomer having a functional group.
 特許文献2には、少なくとも一部がポリエチレンである基材と、前記ポリエチレンの表面を修飾するポリマーと、を備え、前記ポリマーは、炭素数10以上の長さのアルカン鎖を持つアクリレートである第1のモノマー、及び3級アミンのアクリレートである第2のモノマーを含むモノマーのブロック共重合体、あるいは炭素数10以上の長さのアルカン鎖を持つ(メタ)アクリレートである第1のモノマー、及び炭素数4以上の-CF2-構造の側鎖を持つ(メタ)アクリレートである第2のモノマーを含むモノマーのブロック共重合体であることを特徴とする表面修飾材料が開示されている。 Patent Document 2 includes a substrate whose at least a part is polyethylene and a polymer that modifies the surface of the polyethylene, and the polymer is an acrylate having an alcan chain having a length of 10 or more carbon atoms. A block copolymer of a monomer containing a monomer 1 and a second monomer which is an acrylate of a tertiary amine, or a first monomer which is a (meth) acrylate having an alcan chain having a length of 10 or more carbon atoms, and A surface modification material is disclosed which is a block copolymer of a monomer containing a second monomer which is a (meth) acrylate having a side chain having a −CF 2 -structure having 4 or more carbon atoms.
 特許文献3には、側鎖結晶性ブロック共重合体を含む共重合体溶液と、ポリプロピレン樹脂成形体とを、前記共重体溶液の温度を40~120℃で接触させる工程を有するポリプロピレン樹脂成形体の改質方法が開示されている。 Patent Document 3 includes a polypropylene resin molded product having a step of bringing a copolymer solution containing a side chain crystalline block copolymer and a polypropylene resin molded product into contact with each other at a temperature of the copolymer solution of 40 to 120 ° C. The modification method of the above is disclosed.
特開2016-079389号公報Japanese Unexamined Patent Publication No. 2016-079389 特開2015-229725号公報JP-A-2015-229725 特開2019-137779号公報Japanese Unexamined Patent Publication No. 2019-137779
 上記の通り、PETの接着性や親水性、染色性等を向上させるためには、PETを改質する必要がある。しかしながら、従来の手法では、改質できる形状に制限があったり、特殊な設備が必要であったりした。そのため、良好な接着性等を有する改質ポリエチレンテレフタレート成形体を得るために、簡便にPET表面を改質する方法が求められていた。 As mentioned above, in order to improve the adhesiveness, hydrophilicity, dyeability, etc. of PET, it is necessary to modify PET. However, with the conventional method, there are restrictions on the shapes that can be modified, and special equipment is required. Therefore, in order to obtain a modified polyethylene terephthalate molded product having good adhesiveness and the like, there has been a demand for a method for easily modifying the PET surface.
 また、特許文献1~3に開示された方法は、改質対象の樹脂がビニル系の樹脂であり、改質対象の樹脂と比較的類似の構造を側鎖に有するSCCBCを利用して、対象の樹脂を改質している。
 しかし、特許文献1~3に開示されたSCCBCは、本発明において改質対象となるPET樹脂のような縮合系の樹脂とは大きな類似点をもたない。これまで、SCCBCと大きな類似点をもたない樹脂については、SCCBCを利用した改質は十分に検討されていなかった。
Further, in the methods disclosed in Patent Documents 1 to 3, the resin to be modified is a vinyl-based resin, and the object is to utilize SCBCBC having a structure relatively similar to the resin to be modified in the side chain. The resin of is modified.
However, the SCCBC disclosed in Patent Documents 1 to 3 does not have much similarities to the condensation-based resin such as the PET resin to be modified in the present invention. So far, modifications using SCCBC have not been sufficiently investigated for resins that do not have much similarities to SCCBC.
 本発明の目的は、優れた表面特性を有する改質ポリエチレンテレフタレート成形体およびその製造方法を提供することである。 An object of the present invention is to provide a modified polyethylene terephthalate molded product having excellent surface properties and a method for producing the same.
 本発明者は、上記課題を解決すべく鋭意研究を重ねた結果、下記の発明が上記目的に合致することを見出し、本発明に至った。 As a result of diligent research to solve the above problems, the present inventor has found that the following invention meets the above object, and has reached the present invention.
 すなわち、本発明は、以下の発明に係るものである。
 <1> 側鎖結晶性ブロック共重合体及び溶媒を含む共重合体溶液と、ポリエチレンテレフタレート成形体とを接触させる接触工程を有し、
 前記側鎖結晶性ブロック共重合体が、側鎖に炭素数8以上のアルキル基を有する構成単位の繰り返しである第1の重合ブロックと、機能性基を有する構成単位の繰り返しである第2の重合ブロックとを含み、
 前記溶媒が、下記(i)または(ii)を含む、改質ポリエチレンテレフタレート成形体の製造方法。
(i)1atmにおける沸点が150℃以上のエステル系溶媒
(ii)誘電率が30以上の非プロトン性極性溶媒
 <2> 前記エステル溶媒が、フタル酸エステル化合物を含み、
 前記接触工程において、前記共重合体溶液と、前記ポリエチレンテレフタレート成形体とを80℃以上で接触させる、前記<1>に記載の改質ポリエチレンテレフタレート成形体の製造方法。
 <3> 前記フタル酸エステル化合物が、フタル酸ジメチル、フタル酸ジエチル、およびフタル酸ジオクチルからなる群から選択されるいずれかである、前記<2>に記載の製造方法。
 <4> 前記接触が、120℃以上200℃以下で接触させるものである、前記<2>または<3>に記載の製造方法。
 <5> 前記誘電率が30以上の非プロトン性極性溶媒が、ジメチルスルホキシド及び/又はN-メチル-2-ピロリドンを含み、
 前記接触工程において、前記共重合体溶液と、前記ポリエチレンテレフタレート成形体とを20℃以上120℃以下で接触させる、前記<1>に記載の改質ポリエチレンテレフタレート成形体の製造方法。
 <6> 前記第1の重合ブロックが、炭素数8以上のアルキル基を有する、(メタ)アクリレート、(メタ)アクリルアミド、ビニルエーテル、ビニルエステル、シロキサン、α-オレフィン及び置換スチレンからなる群から選択されるいずれかのモノマーの重合体である、前記<1>から<5>のいずれかに記載の製造方法。
 <7> 前記第2の重合ブロックが、側鎖に極性基を有する構成単位の繰り返しである、前記<1>から<6>のいずれかに記載の製造方法。
 <8> ポリエチレンテレフタレート成形体と、前記成形体の表面の少なくとも一部に形成された側鎖結晶性ブロック共重合体を含む機能層とを有し、
 前記側鎖結晶性ブロック共重合体が、側鎖に炭素数8以上のアルキル基を有する構成単位の繰り返しである第1の重合ブロックと、機能性基を有する構成単位の繰り返しである第2の重合ブロックとを含み、
 前記機能層のT型剥離試験による剥離強度が、0.5N/mm以上である、改質ポリエチレンテレフタレート成形体。
 <9> 前記第2の重合ブロックが、側鎖に極性基を有する構成単位の繰り返しである、前記<8>に記載の改質ポリエチレンテレフタレート成形体。
 <10> 前記第2の重合ブロックが、アミノ基、カルボキシル基またはオキシアルキレン基を側鎖に有する構成単位の繰り返しである、前記<8>または<9>のいずれかに記載の改質ポリエチレンテレフタレート成形体。
 <11> 前記第1の重合ブロックの重量平均分子量が、5,000以上であり、
 前記第2の重合ブロックの重量平均分子量が、5,000以上である、前記<8>から<10>のいずれかに記載の改質ポリエチレンテレフタレート成形体。
 <12> 前記側鎖結晶性ブロック共重合体の良溶媒と接触させた後も、前記側鎖結晶性ブロック共重合体を含む部位が表面に残存する、前記<8>から<11>のいずれかに記載の改質ポリエチレンテレフタレート成形体。
 <13> 側鎖結晶性ブロック共重合体及び溶媒を含む共重合体溶液であり、
 前記側鎖結晶性ブロック共重合体が、炭素数8以上のアルキル基を有する(メタ)アクリレートに由来するブロック(A)と、側鎖に極性基を有するブロック(B)とを含み、
 前記側鎖結晶性ブロック共重合体の濃度が0.01~2.0質量%であり、
 前記溶媒が下記(i)または(ii)を含む、共重合体溶液。
(i)1atmにおける沸点が150℃以上のエステル系溶媒
(ii)誘電率が30以上の非プロトン性極性溶媒
That is, the present invention relates to the following invention.
<1> It has a contact step of bringing a copolymer solution containing a side chain crystalline block copolymer and a solvent into contact with a polyethylene terephthalate molded product.
The side chain crystalline block copolymer is a first polymerization block in which a structural unit having an alkyl group having 8 or more carbon atoms in the side chain is repeated, and a second polymer in which the structural unit has a functional group is repeated. Including polymerization blocks
A method for producing a modified polyethylene terephthalate molded product, wherein the solvent comprises the following (i) or (ii).
(I) Ester-based solvent having a boiling point of 150 ° C. or higher at 1 atm (ii) Aprotonic polar solvent having a dielectric constant of 30 or higher <2> The ester solvent contains a phthalate ester compound and contains.
The method for producing a modified polyethylene terephthalate molded product according to <1>, wherein in the contact step, the copolymer solution and the polyethylene terephthalate molded product are brought into contact with each other at 80 ° C. or higher.
<3> The production method according to <2>, wherein the phthalate ester compound is selected from the group consisting of dimethyl phthalate, diethyl phthalate, and dioctyl phthalate.
<4> The production method according to <2> or <3>, wherein the contact is at 120 ° C. or higher and 200 ° C. or lower.
<5> The aprotic polar solvent having a dielectric constant of 30 or more contains dimethyl sulfoxide and / or N-methyl-2-pyrrolidone.
The method for producing a modified polyethylene terephthalate molded product according to <1>, wherein in the contact step, the copolymer solution and the polyethylene terephthalate molded product are brought into contact with each other at 20 ° C. or higher and 120 ° C. or lower.
<6> The first polymerization block is selected from the group consisting of (meth) acrylate, (meth) acrylamide, vinyl ether, vinyl ester, siloxane, α-olefin and substituted styrene having an alkyl group having 8 or more carbon atoms. The production method according to any one of <1> to <5>, which is a polymer of any of the monomers.
<7> The production method according to any one of <1> to <6>, wherein the second polymerization block is a repetition of a structural unit having a polar group in a side chain.
<8> A polyethylene terephthalate molded product and a functional layer containing a side chain crystalline block copolymer formed on at least a part of the surface of the molded product are provided.
The side chain crystalline block copolymer is a first polymerization block in which a structural unit having an alkyl group having 8 or more carbon atoms in the side chain is repeated, and a second polymer in which the structural unit has a functional group is repeated. Including polymerization blocks
A modified polyethylene terephthalate molded product having a peel strength of 0.5 N / mm or more in the T-type peel test of the functional layer.
<9> The modified polyethylene terephthalate molded product according to <8>, wherein the second polymerization block is a repetition of a structural unit having a polar group in the side chain.
<10> The modified polyethylene terephthalate according to any one of <8> or <9>, wherein the second polymerization block is a repetition of a structural unit having an amino group, a carboxyl group or an oxyalkylene group in the side chain. Molded body.
<11> The weight average molecular weight of the first polymerization block is 5,000 or more.
The modified polyethylene terephthalate molded product according to any one of <8> to <10>, wherein the weight average molecular weight of the second polymerization block is 5,000 or more.
<12> Any of the above <8> to <11>, wherein the portion containing the side chain crystalline block copolymer remains on the surface even after contacting with a good solvent of the side chain crystalline block copolymer. The modified polyethylene terephthalate polymer described in Crab.
<13> A copolymer solution containing a side chain crystalline block copolymer and a solvent.
The side chain crystalline block copolymer includes a block (A) derived from a (meth) acrylate having an alkyl group having 8 or more carbon atoms and a block (B) having a polar group in the side chain.
The concentration of the side chain crystalline block copolymer is 0.01 to 2.0% by mass.
A copolymer solution in which the solvent comprises the following (i) or (ii).
(I) Ester-based solvent having a boiling point of 150 ° C. or higher at 1 atm (ii) Aprotic polar solvent having a dielectric constant of 30 or higher.
 本発明によれば、優れた表面特性を有する改質ポリエチレンテレフタレート成形体およびその製造方法が提供される。例えば、本発明によれば、良好な接着性を有する改質ポリエチレンテレフタレート成形体およびその製造方法が提供される。 According to the present invention, a modified polyethylene terephthalate molded product having excellent surface characteristics and a method for producing the same are provided. For example, according to the present invention, there is provided a modified polyethylene terephthalate molded product having good adhesiveness and a method for producing the same.
本発明の実施例の剥離試験に用いた試験片およびデータの算出方法を説明するための図である。It is a figure for demonstrating the test piece used for the peeling test of the Example of this invention, and the calculation method of data. 本発明の実施例に係る改質PETフィルムのFT-IR分析結果を示す図である。It is a figure which shows the FT-IR analysis result of the modified PET film which concerns on Example of this invention. 共重合体溶液(STA-TBAEMA,DEP)を用いて異なる改質温度で改質した改質PETフィルムの接着性の評価結果を示す図である。It is a figure which shows the evaluation result of the adhesiveness of the modified PET film modified by the copolymer solution (STA-TBAEMA, DEP) at different modification temperatures. フタル酸ジエチルのみ又は共重合体溶液(STA-TBAEMA,DEP)を用いて改質した改質PETフィルムの接着性の評価結果を示す図である。It is a figure which shows the evaluation result of the adhesiveness of the modified PET film modified using only diethyl phthalate or a copolymer solution (STA-TBAEMA, DEP). 共重合体溶液(STA-TBAEMA,DEP)を用いて異なる浸漬時間で改質した改質PETフィルムの接着性の評価結果を示す図である。It is a figure which shows the evaluation result of the adhesiveness of the modified PET film modified by the copolymer solution (STA-TBAEMA, DEP) at different immersion times. 共重合体溶液(STA-TBAEMA,DEP)を用いて異なる浸漬時間で改質した改質PETフィルムの接着性の評価結果を示す図である。It is a figure which shows the evaluation result of the adhesiveness of the modified PET film modified by the copolymer solution (STA-TBAEMA, DEP) at different immersion times. SCCBC濃度の異なる共重合体溶液(STA-TBAEMA,DEP)を用いて改質した改質PETフィルムの接着性の評価結果を示す図である。It is a figure which shows the evaluation result of the adhesiveness of the modified PET film modified by using the copolymer solution (STA-TBAEMA, DEP) with different SCCBC concentrations. 共重合体溶液(STA-TBAEMA,DEP)、異なる酢酸ブチルの洗浄条件で改質した改質PETフィルムの接着性の評価結果を示す図である。It is a figure which shows the evaluation result of the adhesiveness of the modified PET film modified under the washing conditions of a copolymer solution (STA-TBAEMA, DEP) and different butyl acetate. 共重合体溶液(STA-TBAEMA,NMP)を用いて異なる改質温度で改質した改質PETフィルムの接着性の評価結果を示す図である。It is a figure which shows the evaluation result of the adhesiveness of the modified PET film modified by the copolymer solution (STA-TBAEMA, NMP) at different modification temperatures. 共重合体溶液(STA-TBAEMA,DMSO)を用いて異なる改質温度で改質した改質PETフィルムの接着性の評価結果を示す図である。It is a figure which shows the evaluation result of the adhesiveness of the modified PET film modified by the copolymer solution (STA-TBAEMA, DMSO) at different modification temperatures.
 以下に本発明の実施の形態を詳細に説明するが、以下に記載する構成要件の説明は、本発明の実施態様の一例(代表例)であり、本発明はその要旨を変更しない限り、以下の内容に限定されない。なお、本明細書において「~」という表現を用いる場合、その前後の数値又は物性値を含む表現として用いるものとする。 Hereinafter, embodiments of the present invention will be described in detail, but the description of the constituent elements described below is an example (representative example) of the embodiments of the present invention, and the present invention is described below unless the gist thereof is changed. It is not limited to the contents of. In addition, when the expression "-" is used in this specification, it shall be used as an expression including numerical values or physical property values before and after the expression.
<改質ポリエチレンテレフタレート成形体の製造方法>
 本発明は、側鎖結晶性ブロック共重合体及び溶媒を含む共重合体溶液と、ポリエチレンテレフタレート成形体とを接触させる接触工程を有し、前記側鎖結晶性ブロック共重合体が、側鎖に炭素数8以上のアルキル基を有する構成単位の繰り返しである第1の重合ブロックと、機能性基を有する構成単位の繰り返しである第2の重合ブロックとを含む、改質ポリエチレンテレフタレート成形体の製造方法(以下、「本発明の改質PETの製造方法」という場合がある)に関するものである。
<Manufacturing method of modified polyethylene terephthalate molded product>
The present invention has a contact step of bringing a copolymer solution containing a side chain crystalline block copolymer and a solvent into contact with a polyethylene terephthalate molded product, and the side chain crystalline block copolymer is formed on the side chain. Production of a modified polyethylene terephthalate molded product comprising a first polymerization block which is a repetition of a structural unit having an alkyl group having 8 or more carbon atoms and a second polymerization block which is a repetition of a structural unit having a functional group. It relates to a method (hereinafter, may be referred to as "a method for producing a modified PET of the present invention").
 本発明者らは、前記側鎖結晶性ブロック共重合体(以下、単に「ブロック共重合体」という)と溶媒を含む共重合体溶液を、PET成形体と接触させることで、PET成形体を改質できることを見出した。共重合体溶液を接触させることで、PET表面が緩みや膨潤を起こし、第1の重合ブロックの側鎖の炭素数8以上のアルキル基をPETの内部に侵入させることができるため、PET成形体とブロック共重合体とが接着し、ブロック共重合体の機能性がPET成形体に付与できると考えられる。 The present inventors make a PET molded product by contacting a copolymer solution containing the side chain crystalline block copolymer (hereinafter, simply referred to as “block copolymer”) and a solvent with the PET molded product. It was found that it can be reformed. By contacting the copolymer solution, the PET surface becomes loose and swells, and the alkyl group having 8 or more carbon atoms in the side chain of the first polymerization block can penetrate into the PET molded product. It is considered that the block copolymer adheres to the block copolymer and the functionality of the block copolymer can be imparted to the PET molded product.
[第1の重合ブロック]
 第1の重合ブロック(以下、「ブロック(A)」という)は、側鎖に炭素数8以上のアルキル基を有する構成単位の繰り返しである。ブロック(A)は、側鎖の炭素数8以上の長さのアルキル基が、ブロック(A)の主鎖となる部分に直接結合、または、連結基(エステル結合、アミド結合、エーテル結合、ベンゼン環等)を介して結合している。このブロック(A)が、その側鎖のアルキル基により側鎖結晶性を示す部分となる。この側鎖結晶性の部位が、PET成形体と相互作用していると推察される。ブロック(A)の側鎖の炭素数や構造に応じて、ブロック共重合体とPET成形体との接着性を調整することができる。
[First polymerization block]
The first polymerization block (hereinafter referred to as “block (A)”) is a repeating structural unit having an alkyl group having 8 or more carbon atoms in the side chain. In the block (A), an alkyl group having a length of 8 or more carbon atoms in the side chain is directly bonded to the main chain portion of the block (A), or a linking group (ester bond, amide bond, ether bond, benzene). They are connected via a ring, etc.). This block (A) becomes a portion showing side chain crystallinity due to the alkyl group of the side chain. It is presumed that this side chain crystalline site interacts with the PET molded product. The adhesiveness between the block copolymer and the PET molded product can be adjusted according to the number of carbon atoms and the structure of the side chain of the block (A).
 ブロック(A)の側鎖の炭素数8以上のアルキル基は、炭素数10以上が好ましく、12以上がより好ましく、14以上がさらに好ましい。また、アルキル基は、直鎖状のアルキル基であることが好ましい。一方、その上限は、共重合体として重合することができ、PET成形体との接着性を維持することができる範囲で適宜設定することができる。具体的な上限としては、現実的には、炭素数50以下が好ましく、40以下がより好ましい。また、炭素数は30以下や25以下としてもよい。アルキル基の炭素数が大きすぎると共重合体として適当な立体構造がとれなかったり、重合条件の設定が難しくなったりする場合がある。 The alkyl group having 8 or more carbon atoms in the side chain of the block (A) preferably has 10 or more carbon atoms, more preferably 12 or more, and even more preferably 14 or more. Further, the alkyl group is preferably a linear alkyl group. On the other hand, the upper limit thereof can be appropriately set as long as it can be polymerized as a copolymer and the adhesiveness with the PET molded product can be maintained. As a specific upper limit, in reality, the number of carbon atoms is preferably 50 or less, more preferably 40 or less. Further, the number of carbon atoms may be 30 or less or 25 or less. If the number of carbon atoms of the alkyl group is too large, it may not be possible to obtain an appropriate three-dimensional structure as a copolymer, or it may be difficult to set the polymerization conditions.
 炭素数8以上のアルキル基としては、具体的には、デシル基、ドデシル基、トリデシル基、テトラデシル基、ヘキサデシル基、オクタデシル基(ステアリル基)、ドコシル基(ベヘニル基)等が挙げられる。 Specific examples of the alkyl group having 8 or more carbon atoms include a decyl group, a dodecyl group, a tridecyl group, a tetradecyl group, a hexadecyl group, an octadecyl group (stearyl group), a docosyl group (behenyl group) and the like.
 ブロック(A)の重合度は、2以上である。ブロック(A)の重合度は、ブロック共重合体の構造等に応じて、PET成形体との接着性が維持できる範囲で適宜選択すればよい。PET成形体との接着性を向上させるためには、ブロック(A)の重合度は、7以上が好ましく、8以上や10以上としてもよい。また、ブロック(A)の重合度は、1,000以下であることが好ましく、800以下や、500以下、300以下、100以下、50以下、30以下、20以下としてもよい。 The degree of polymerization of the block (A) is 2 or more. The degree of polymerization of the block (A) may be appropriately selected depending on the structure of the block copolymer and the like within a range in which the adhesiveness with the PET molded product can be maintained. In order to improve the adhesiveness with the PET molded product, the degree of polymerization of the block (A) is preferably 7 or more, and may be 8 or more or 10 or more. The degree of polymerization of the block (A) is preferably 1,000 or less, and may be 800 or less, 500 or less, 300 or less, 100 or less, 50 or less, 30 or less, or 20 or less.
 ブロック(A)に対応する分子量は、3,000以上であることが好ましい。ブロック(A)に対応する分子量が3,000以上であることで、PET成形体に、より強固に接着することができる。ブロック(A)に対応する分子量は、4,000以上や5,000以上としてもよい。また、20,000以下や15,000以下、10,000以下、8,000以下としてもよい。 The molecular weight corresponding to the block (A) is preferably 3,000 or more. When the molecular weight corresponding to the block (A) is 3,000 or more, it can be more firmly adhered to the PET molded product. The molecular weight corresponding to the block (A) may be 4,000 or more or 5,000 or more. Further, it may be 20,000 or less, 15,000 or less, 10,000 or less, or 8,000 or less.
 なお、これらの分子量は、GPCにより得られる結果から、ポリスチレン換算で求めることができる値「Mw:重量平均分子量」である。また、改質用共重合体が溶媒に溶けにくく分子量を測定しにくい場合がある。そのような場合には、元素分析、IR、NMRなどの手法により各々の分子量を算出することができる。 Note that these molecular weights are values "Mw: weight average molecular weight" that can be obtained in terms of polystyrene from the results obtained by GPC. In addition, the reforming copolymer may be difficult to dissolve in a solvent and it may be difficult to measure the molecular weight. In such a case, each molecular weight can be calculated by a method such as elemental analysis, IR, or NMR.
 第1の重合ブロック(ブロック(A))は、側鎖に炭素数8以上のアルキル基を有する、(メタ)アクリレート、(メタ)アクリルアミド、ビニルエーテル、ビニルエステル、シロキサン、α-オレフィン及び置換スチレンからなる群から選択されるいずれかのモノマー(以下、「モノマー(a)」という)の重合体であることが好ましい。つまり、ブロック共重合体は、モノマー(a)に由来する構成単位(A)を含むことが好ましい。 The first polymerization block (block (A)) is composed of (meth) acrylate, (meth) acrylamide, vinyl ether, vinyl ester, siloxane, α-olefin and substituted styrene having an alkyl group having 8 or more carbon atoms in the side chain. It is preferably a polymer of any of the monomers selected from the group (hereinafter referred to as “monomer (a)”). That is, it is preferable that the block copolymer contains the structural unit (A) derived from the monomer (a).
 モノマー(a)は、市販されているものや、適宜合成したものを用いることができる。 As the monomer (a), a commercially available one or an appropriately synthesized one can be used.
 炭素数8以上のアルキル基を有する、(メタ)アクリレートは、(メタ)アクリレートと炭素数8以上のアルコールを反応させて得られる(メタ)アクリレートなどを用いることができる。 As the (meth) acrylate having an alkyl group having 8 or more carbon atoms, a (meth) acrylate obtained by reacting a (meth) acrylate with an alcohol having 8 or more carbon atoms can be used.
 炭素数8以上のアルキル基を有する、(メタ)アクリルアミドは、(メタ)アクリレートと炭素数8以上のアルキルアミンを反応させて得られるアルキル(メタ)アクリルアミドなどを用いることができる。 As the (meth) acrylamide having an alkyl group having 8 or more carbon atoms, alkyl (meth) acrylamide obtained by reacting (meth) acrylate with an alkylamine having 8 or more carbon atoms can be used.
 炭素数8以上のアルキル基を有する、ビニルエーテルは、メチルビニルエーテルと炭素数8以上のアルコールを反応させて得られるアルキルビニルエーテルなどを用いることができる。 As the vinyl ether having an alkyl group having 8 or more carbon atoms, an alkyl vinyl ether obtained by reacting a methyl vinyl ether with an alcohol having 8 or more carbon atoms can be used.
 炭素数8以上のアルキル基を有する、ビニルエステルは、酢酸ビニルと炭素数9以上の脂肪族カルボン酸を反応させて得られるカルボン酸ビニルエステルなどを用いることができる。 As the vinyl ester having an alkyl group having 8 or more carbon atoms, a carboxylic acid vinyl ester obtained by reacting vinyl acetate with an aliphatic carboxylic acid having 9 or more carbon atoms can be used.
 炭素数8以上のアルキル基を有する、α-オレフィンは、炭素数11以上の脂肪族カルボン酸の脱カルボニル化により得られるα-オレフィンなどを用いることができる。 As the α-olefin having an alkyl group having 8 or more carbon atoms, an α-olefin obtained by decarbonylation of an aliphatic carboxylic acid having 11 or more carbon atoms can be used.
 炭素数8以上のアルキル基を有する、置換スチレンは、ハロゲン化スチレンのグリニャール試薬と炭素数8以上のハロゲン化アルキルを反応させて得られるアルキルスチレンなどを用いることができる。 As the substituted styrene having an alkyl group having 8 or more carbon atoms, an alkyl styrene obtained by reacting a Grignard reagent of styrene halide with an alkyl halide having 8 or more carbon atoms can be used.
 なお、ここで、本願において、「(メタ)アクリレート」とは、アクリレート及びメタアクリレートの両者を意味する。同様に、「(メタ)アクリルアミド」とは、アクリルアミド及びメタアクリルアミドの両者を意味する。 Here, in the present application, "(meth) acrylate" means both acrylate and methacrylate. Similarly, "(meth) acrylamide" means both acrylamide and metaacrylamide.
 モノマー(a)を具体的に例示すると、ドデシルアクリレート(ラウリルアクリレート)、ドデシルメタクリレート(ラウリルメタクリレート)、オクタデシルアクリレート(ステアリルアクリレート)、オクタデシルメタクリレート(ステアリルメタクリレート)、ドコシルアクリレート(ベヘニルアクリレート)、ドコシルメタクリレート(ベヘニルメタクリレート)等が挙げられる。 Specific examples of the monomer (a) include dodecyl acrylate (lauryl acrylate), dodecyl methacrylate (lauryl methacrylate), octadecyl acrylate (stearyl acrylate), octadecyl methacrylate (stearyl methacrylate), docosyl acrylate (behenyl acrylate), and docosyl methacrylate. (Behenyl methacrylate) and the like.
 また、N-tert-オクチルアクリルアミド、N-ドデシルアクリルアミド、N-ドデシルメタクリルアミド、N-オクタデシルアクリルアミド、2-エチルヘキシルビニルエーテル、ドデシルビニルエーテル、オクタデシルビニルエーテル、デカン酸ビニル、ラウリン酸ビニル、ミリスチン酸ビニル、パルミチン酸ビニル、ステアリン酸ビニル、1-トリデセン、1-ペンタデセン、4-n-オクチルスチレン等が挙げられる。 In addition, N-tert-octylacrylamide, N-dodecylacrylamide, N-dodecylmethacrylamide, N-octadecylacrylamide, 2-ethylhexyl vinyl ether, dodecyl vinyl ether, octadecyl vinyl ether, vinyl decanoate, vinyl laurate, vinyl myristate, palmitic acid. Examples thereof include vinyl, vinyl stearate, 1-tridecene, 1-pentadecene, 4-n-octylstyrene and the like.
 モノマー(a)は、側鎖に炭素数8以上の長さのアルキル基を有する、(メタ)アクリレートまたはα-オレフィンのモノマーであることが好ましく、側鎖に炭素数8以上の長さのアルキル基を有する、(メタ)アクリレートであることがより好ましい。 The monomer (a) is preferably a (meth) acrylate or α-olefin monomer having an alkyl group having 8 or more carbon atoms in the side chain, and an alkyl having 8 or more carbon atoms in the side chain. More preferably, it is a (meth) acrylate having a group.
 モノマー(a)の入手のしやすさや、重合条件の制御のしやすさ、炭素数8以上のアルキル基同士の相互作用のしやすさなどの観点から、ブロック(A)は、炭素数8以上の長さのアルキル基を有する(メタ)アクリレート、または、炭素数8以上の長さのアルキル基を有するα-オレフィンの重合体が好ましい。 The block (A) has 8 or more carbon atoms from the viewpoints of easy availability of the monomer (a), easy control of polymerization conditions, and easy interaction between alkyl groups having 8 or more carbon atoms. A (meth) acrylate having an alkyl group having a length of 8 or more, or a polymer of an α-olefin having an alkyl group having a length of 8 or more carbon atoms is preferable.
 具体的には、ブロック(A)は、以下の一般式(A-1)または(A-2)で表されることが好ましく、一般式(A-1)で表されることがより好ましい。 Specifically, the block (A) is preferably represented by the following general formula (A-1) or (A-2), and more preferably represented by the general formula (A-1).
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 一般式(A-1)および(A-2)において、Ra1は、水素原子またはメチル基を表す。 In the general formulas (A-1) and (A-2), Ra1 represents a hydrogen atom or a methyl group.
 一般式(A-1)および(A-2)において、Ra2は、炭素数8以上のアルキル基を表す。上記の通り、Ra2は直鎖状のアルキル基であることが好ましい。また、Ra2で表されるアルキル基の炭素数は、10以上が好ましく、12以上がより好ましく、14以上がさらに好ましい。また、その上限は、50以下や40以下、30以下、28以下、25以下などにすることができる。 In the general formulas (A-1) and (A-2), Ra2 represents an alkyl group having 8 or more carbon atoms. As described above, R a2 is preferably a linear alkyl group. The number of carbon atoms of the alkyl group represented by Ra2 is preferably 10 or more, more preferably 12 or more, and even more preferably 14 or more. The upper limit can be 50 or less, 40 or less, 30 or less, 28 or less, 25 or less, and the like.
 一般式(A-1)および(A-2)において、mは、2以上の整数である。mは、7以上が好ましく、8以上や10以上であることが好ましい。また、mは、1,000以下であることが好ましく、800以下や、500以下、300以下、100以下、50以下、30以下、20以下としてもよい。 In the general formulas (A-1) and (A-2), m is an integer of 2 or more. The m is preferably 7 or more, preferably 8 or more, or 10 or more. Further, m is preferably 1,000 or less, and may be 800 or less, 500 or less, 300 or less, 100 or less, 50 or less, 30 or less, or 20 or less.
 [第2の重合ブロック]
 第2の重合ブロック(以下、「ブロック(B)」という)は、機能性基を有する構成単位の繰り返しである。このブロック(B)が改質目的に応じた機能性を発揮する部分となる。
[Second polymerization block]
The second polymerization block (hereinafter referred to as "block (B)") is a repetition of a structural unit having a functional group. This block (B) is a part that exhibits functionality according to the purpose of modification.
 ここで、機能性基とは、共重合後もブロック共重合体内に多数存在することで、PET成形体に機能性を付与するものである。PET成形体に付与される機能性としては、主に、接着性や親水性、染色性、イオン伝導性、金属吸着能、金属担持特性、メッキ密着性などが挙げられる。ブロック(B)が有する機能性基とは、これらの機能性を付与できる基をいう。機能性基は、付与したい機能や、共重合体の重合しやすさを鑑み適宜選択され、ブロック(B)の構成単位中に2以上の機能性基を有してもよい。 Here, the functional group imparts functionality to the PET molded product by being present in large numbers in the block copolymer even after the copolymerization. The functionality imparted to the PET molded body mainly includes adhesiveness, hydrophilicity, dyeability, ion conductivity, metal adsorption ability, metal supporting property, plating adhesion and the like. The functional group possessed by the block (B) means a group capable of imparting these functionalities. The functional group is appropriately selected in consideration of the function to be imparted and the ease of polymerization of the copolymer, and may have two or more functional groups in the constituent unit of the block (B).
 PET成形体の表面に機能性基に由来する機能性が発現しやすく、改質効果が大きいため、ブロック(B)の側鎖となる部分に機能性基を有するものが好ましい。このとき、側鎖の機能性基(特に、極性基)は、ブロック(B)の主鎖となる部分に直接結合、または、連結基(エステル結合、アミド結合、エーテル結合、ベンゼン環等)を介して結合している。この場合、ブロック(B)の主鎖となる部分が改質に与える影響は少ないため主鎖の構造は特に限定されない。 Since the functionality derived from the functional group is likely to be exhibited on the surface of the PET molded product and the modification effect is large, it is preferable to have the functional group in the side chain portion of the block (B). At this time, the functional group (particularly, the polar group) of the side chain is directly bonded to the main chain portion of the block (B), or has a linking group (ester bond, amide bond, ether bond, benzene ring, etc.). They are connected through. In this case, the structure of the main chain is not particularly limited because the portion of the block (B) that becomes the main chain has little effect on the modification.
 ブロック(B)の重合度は2以上の整数である。ブロック(B)の重合度は、ブロック共重合体の構造に応じて適宜決定される。ブロック(B)の重合度は、2~1,000であることが好ましい。より安定した改質効果を発揮するためには、5以上や、10以上とすることがより好ましい。また、20以上、30以上、40以上としてもよい。また、ブロック(B)の重合度は、800以下や、500以下、300以下、100以下、60以下としてもよい。 The degree of polymerization of the block (B) is an integer of 2 or more. The degree of polymerization of the block (B) is appropriately determined according to the structure of the block copolymer. The degree of polymerization of the block (B) is preferably 2 to 1,000. In order to exert a more stable reforming effect, it is more preferably 5 or more or 10 or more. Further, it may be 20 or more, 30 or more, and 40 or more. The degree of polymerization of the block (B) may be 800 or less, 500 or less, 300 or less, 100 or less, or 60 or less.
 ブロック(B)に対応する分子量は、500以上であることが好ましい。ブロック(B)に対応する分子量が500以上であることで、他の材料との接着性にさらに優れた共重合体とすることができる。ブロック(B)に対応する分子量は、1,000以上であることが好ましく、5,000以上であることがより好ましく、10,000以上がさらに好ましい。また、20,000以下や15,000以下、12,000以下としてもよい。 The molecular weight corresponding to the block (B) is preferably 500 or more. When the molecular weight corresponding to the block (B) is 500 or more, a copolymer having further excellent adhesiveness to other materials can be obtained. The molecular weight corresponding to the block (B) is preferably 1,000 or more, more preferably 5,000 or more, and even more preferably 10,000 or more. Further, it may be 20,000 or less, 15,000 or less, or 12,000 or less.
 ブロック(B)が有する機能性基は、極性基であることが好ましい。極性基とは、極性のある原子団であり、その基を有するモノマーを用いた重合体に存在することで、重合体内に極性を示す構造を形成するものを指す。
 極性基を有することで、得られる改質PET成形体の特性が、通常のPET成形体(改質前のPET成形体)と著しく異なるものとなる点から優れている。特に、ブロック(B)が極性基を含むことで、他の材料との接着性に優れた改質PET成形体を得ることができる。
The functional group of the block (B) is preferably a polar group. The polar group refers to a group of polar atomic groups that, when present in a polymer using a monomer having the group, form a structure showing polarity in the polymer.
Having a polar group is excellent in that the characteristics of the obtained modified PET molded product are significantly different from those of a normal PET molded product (PET molded product before modification). In particular, when the block (B) contains a polar group, a modified PET molded product having excellent adhesiveness to other materials can be obtained.
 代表的な極性基としては、アミノ基、アンモニウム基、カルボキシル基、水酸基、スルホン酸基、アルコキシ基、オキシラニル基、オキシアルキレン基、カルボニル基、エーテル基、スルホニル基、エステル基、アミド基などが挙げられる。 Typical polar groups include an amino group, an ammonium group, a carboxyl group, a hydroxyl group, a sulfonic acid group, an alkoxy group, an oxylanyl group, an oxyalkylene group, a carbonyl group, an ether group, a sulfonyl group, an ester group and an amide group. Be done.
 ブロック(B)は側鎖に極性基を有することが好ましく、側鎖にアミノ基を有する構成単位の繰り返しであることが好ましい。また、ブロック(B)は、側鎖にオキシアルキレン基を有する構成単位の繰り返しであることが好ましい。また、ブロック(B)は、側鎖にカルボキシル基を有する構成単位の繰り返しであることが好ましい。 The block (B) preferably has a polar group in the side chain, and is preferably a repeating structural unit having an amino group in the side chain. Further, the block (B) is preferably a repeating structural unit having an oxyalkylene group in the side chain. Further, the block (B) is preferably a repeating structural unit having a carboxyl group in the side chain.
 例えば、ブロック(B)は、側鎖に極性基を有する、(メタ)アクリレート、(メタ)アクリルアミド、ビニルエーテル、ビニルエステル、シロキサン、α-オレフィン及び置換スチレンからなる群から選択されるいずれかのモノマー(以下、「モノマー(b)」という)の重合体とすることができる。つまり、ブロック共重合体は、モノマー(b)に由来する構成単位(B)を含むものとできる。また、ブロック(B)は、(メタ)アクリル酸重合体であってもよい。 For example, block (B) is any monomer selected from the group consisting of (meth) acrylate, (meth) acrylamide, vinyl ether, vinyl ester, siloxane, α-olefin and substituted styrene having a polar group in the side chain. It can be a polymer (hereinafter referred to as "monomer (b)"). That is, the block copolymer can include the structural unit (B) derived from the monomer (b). Further, the block (B) may be a (meth) acrylic acid polymer.
 モノマー(b)は、市販されているものや、適宜合成したものを用いることができる。 As the monomer (b), a commercially available one or an appropriately synthesized one can be used.
 ブロック(B)は、アミノ基を有するモノマーの重合体とすることができる。このとき、モノマー(b)は、アミノ基を有するモノマーであり、その側鎖にアミノ基を有するモノマーが好ましい。 The block (B) can be a polymer of a monomer having an amino group. At this time, the monomer (b) is a monomer having an amino group, and a monomer having an amino group in its side chain is preferable.
 ここで、アミノ基は、無置換であっても置換基を有してもよい。アミノ基の置換基としては、アルキル基が挙げられ、アルキル基は、無置換のアルキル基やカルボキシアルキル基(-R-COOH)などの置換アルキル基とできる。
 アミノ基は、一般式「-NRx1x2(ただし、Rx1およびRx2はそれぞれ独立に、水素原子、炭素数1~4のアルキル基、又は炭素数1~4のカルボキシアルキル基である)」で表される基であることが好ましい。このようなアミノ基としては、-NH2、-N(CH32、-N(C252、-NH(tert-C49)、-N(CH2COOH)2などが挙げられる。
Here, the amino group may be unsubstituted or has a substituent. Examples of the substituent of the amino group include an alkyl group, and the alkyl group can be an unsubstituted alkyl group or a substituted alkyl group such as a carboxyalkyl group (-R-COOH).
The amino group is a general formula "-NR x1 R x2 (where R x1 and R x2 are independently hydrogen atoms, alkyl groups having 1 to 4 carbon atoms, or carboxyalkyl groups having 1 to 4 carbon atoms). It is preferable that it is a group represented by. Examples of such amino groups include -NH 2 , -N (CH 3 ) 2 , -N (C 2 H 5 ) 2 , -NH (tert-C 4 H 9 ), and -N (CH 2 COOH) 2 . Can be mentioned.
 また、ブロック(B)は、オキシアルキレン基を有するモノマーの重合体とすることができる。このとき、モノマー(b)は、オキシアルキレン基を有するモノマーとでき、その側鎖にオキシアルキレン基を有するモノマーが好ましい。 Further, the block (B) can be a polymer of a monomer having an oxyalkylene group. At this time, the monomer (b) can be a monomer having an oxyalkylene group, and a monomer having an oxyalkylene group in its side chain is preferable.
 オキシアルキレン基は、「-(Cp2p-O)-」(pは1以上の整数である)で表される2価の基である。モノマー(b)がオキシアルキレン基を有する場合、以下の一般式(Y)で表される基を有することが好ましい。 The oxyalkylene group is a divalent group represented by "-(C p H 2p -O)-" (p is an integer of 1 or more). When the monomer (b) has an oxyalkylene group, it preferably has a group represented by the following general formula (Y).
 -(Cp2p-O)q-Ry1  ・・・・(Y)
(一般式(Y)において、pは1~10の整数、qは1~10の整数、Ry1は水素原子または炭素数1~10のアルキル基を表す。)
-(C p H 2p -O) q -R y1 ... (Y)
(In the general formula (Y), p is an integer of 1 to 10, q is an integer of 1 to 10, and R y1 is a hydrogen atom or an alkyl group having 1 to 10 carbon atoms.)
 より好ましくは、一般式(Y)において、pが1~5の整数、qが2~10の整数、Ry1が水素原子または炭素数1~5のアルキル基である。さらに好ましくは、pが1~2の整数、qが2~10の整数、Ry1が水素原子または炭素数1~2のアルキル基である。 More preferably, in the general formula (Y), p is an integer of 1 to 5, q is an integer of 2 to 10, and R y1 is a hydrogen atom or an alkyl group having 1 to 5 carbon atoms. More preferably, p is an integer of 1 to 2, q is an integer of 2 to 10, and R y1 is a hydrogen atom or an alkyl group having 1 to 2 carbon atoms.
 モノマー(b)を具体的に例示すると、2-(ジメチルアミノ)エチルメタクリレート(2-(Dimethylamino) ethyl Methacrylate、DMAEMA)、2-(ジメチルアミノ)エチルアクリレート(2-(Dimethylamino) ethyl Acrylate、DMAEA)、2-(ジエチルアミノ)エチルメタクリレート(2-(Diethylamino) ethyl Methacrylate、DEAEMA)、2-(ジエチルアミノ)エチルアクリレート(2-(Diethylamino) ethyl Acrylate、DEAEA)、2-(tert-ブチルアミノ)エチルメタクリレート(2-(tert- Butylamino) ethyl Methacrylate、TBAEMA)、N、N-ジメチルアクリルアミド(N、N-Dimethylacrylamide、DMAA)、N、N-ジメチルアミノプロピルアクリルアミド(N、N-Dimethylaminopropyl Acrylamide、DMAPAA)、及びN、N-ジエチルアクリルアミド(N、N-Diethylacrylamide、DEAA)等のアミノ基を有するモノマーが挙げられる。 Specific examples of the monomer (b) are 2- (Dimethylamino) ethyl Methacrylate, DMAEMA, 2- (Dimethylamino) ethyl Acrylate, DMAEA. , 2- (Diethylamino) ethyl methacrylate (2- (Diethylamino) ethyl Methacrylate, DEAEMA), 2- (diethylamino) ethyl acrylate (2- (Diethylamino) ethyl Acrylate, DEAEA), 2- (tert-butylamino) ethyl methacrylate ( 2- (tert-Butylamino) ethyl Methacrylate, TBAEMA), N, N-dimethylacrylamide (N, N-Dimethylacrylamide, DMAA), N, N-dimethylaminopropylacrylamide (N, N-Dimethylaminopropyl Acrylamide, DMAPAA), and N , N-diethylacrylamide, DEAA and other monomers having an amino group.
 また、N-[3-(ジメチルアミノ)プロピル]アクリルアミド、N-[2-(ジメチルアミノ)エチル]アクリルアミド、N-[2-(ジエチルアミノ)エチル]アクリルアミド、2-(ビニルオキシ)エタンアミン、3-アミノ-1-プロペン(アリルアミン)、N,N-ジエチルアリルアミン、N-アリル-N-tert-ブチルアミン、3-アミノ-2-メチル-1-プロペン(2-メチルアリルアミン)、N,N-ジメチルアリルアミン、N,N-ジメチルアリルアミン、4-アミノスチレン、3-アミノスチレン、N,N-ジメチル-4-ビニルベンゼン-1-アミン、4-(アミノメチル)スチレン、4-[N-(メチルアミノエチル)アミノメチル]スチレン、N,N-ジメチルビニルベンジルアミン等のアミノ基を有するモノマーが挙げられる。 In addition, N- [3- (dimethylamino) propyl] acrylamide, N- [2- (dimethylamino) ethyl] acrylamide, N- [2- (diethylamino) ethyl] acrylamide, 2- (vinyloxy) ethaneamine, 3-amino. -1-Propen (allylamine), N, N-diethylallylamine, N-allyl-N-tert-butylamine, 3-amino-2-methyl-1-propene (2-methylallylamine), N, N-dimethylallylamine, N, N-dimethylallylamine, 4-aminostyrene, 3-aminostyrene, N, N-dimethyl-4-vinylbenzene-1-amine, 4- (aminomethyl) styrene, 4- [N- (methylaminoethyl) Aminomethyl] Examples thereof include monomers having an amino group such as styrene and N, N-dimethylvinylbenzylamine.
 また、モノマー(b)として、メトキシ-ポリエチレングリコール-アクリレート(CH2=CH(CO)O(CH2-CH2-O-)qCH3)(q=2~10)、エトキシ-ポリエチレングリコール-アクリレート(CH2=CH(CO)O(CH2-CH2-O-)q25)(p=2,q=2~10)、ポリエチレングリコール-モノアクリレート(CH2=CH(CO)O(CH2-CH2-O-)qH)(q=2~10)などのオキシアルキレン基を有するモノマーが挙げられる。より具体的には、ジ(エチレングリコール)エチルエーテルアクリレート(CH2=CH(CO)O(CH2-CH2-O-)225、Diethylen Glycol Monoethyl Ether Acrylate、DEEA)や、デカ(エチレングリコール)エチルエーテルアクリレート(CH2=CH(CO)O(CH2-CH2-O-)1025)等のオキシアルキレン基を有するモノマーが挙げられる。 Further, as the monomer (b), methoxy-polyethylene glycol-acrylate (CH 2 = CH (CO) O (CH 2 -CH 2 -O-) q CH 3 ) (q = 2 to 10), ethoxy-polyethylene glycol- Acrylate (CH 2 = CH (CO) O (CH 2 -CH 2 -O-) q C 2 H 5 ) (p = 2, q = 2-10), polyethylene glycol-monoacrylate (CH 2 = CH (CO) ) O (CH 2 -CH 2 -O-) q H) (q = 2 to 10) and the like, examples thereof include monomers having an oxyalkylene group. More specifically, di (ethylene glycol) ethyl ether acrylate (CH 2 = CH (CO) O (CH 2 -CH 2 -O-) 2 C 2 H 5 , Diethylen Glycol Monoethyl Ether Acrylate, DEEA) and deca Examples thereof include monomers having an oxyalkylene group such as (ethylene glycol) ethyl ether acrylate (CH 2 = CH (CO) O (CH 2 -CH 2 -O-) 10 C 2 H 5 ).
 また、エチレングリコールモノビニルエーテル、ジエチレングリコールモノビニルエーテル、テトラエチレングリコールメチルビニルエーテル等のオキシアルキレン基を有するモノマーが挙げられる。 Examples thereof include monomers having an oxyalkylene group such as ethylene glycol monovinyl ether, diethylene glycol monovinyl ether, and tetraethylene glycol methyl vinyl ether.
 また、スルホン酸基を有するモノマーとしては、例えば、ビニルスルホン酸や、2-(メタクリロイルオキシ)エタンスルホン酸、ATBS(Acrylamide Tertiary Butyl Sulfonic Acid)、そのナトリウム塩であるATBSNaなどが挙げられる。水酸基やカルボキシ基を有するモノマーとしては、アクリル酸やそのナトリウム塩、アクリル酸2-ヒドロキシエチル、メタクリル酸2-ヒドロキシエチルなどが挙げられる。
 また、ブロック(B)は、オキシラニル基等の反応性基を側鎖に有するモノマー(以下、「モノマー(b1)」という)の重合体と、アミンとが反応した構造を有するものとすることができる。
Examples of the monomer having a sulfonic acid group include vinyl sulfonic acid, 2- (methacryloyloxy) ethanesulfonic acid, ATBS (Acrylamide Tertiary Butyl Sulfonic Acid), and ATBSNa which is a sodium salt thereof. Examples of the monomer having a hydroxyl group or a carboxy group include acrylic acid, a sodium salt thereof, 2-hydroxyethyl acrylate, and 2-hydroxyethyl methacrylate.
Further, the block (B) may have a structure in which a polymer of a monomer having a reactive group such as an oxylanyl group in the side chain (hereinafter referred to as “monomer (b1)”) reacts with an amine. can.
 モノマー(b1)を具体的に例示すると、グリシジルアクリレートやグリシジルメタクリレート等が挙げられる。 Specific examples of the monomer (b1) include glycidyl acrylate and glycidyl methacrylate.
 ブロック(B)は、例えば、下記一般式(B-1)~(B-4)の構造とすることができる。 The block (B) can have, for example, the structures of the following general formulas (B-1) to (B-4).
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 一般式(B-1)~(B-4)において、Rb1は、水素原子またはメチル基を表す。 In the general formulas (B-1) to (B-4), R b1 represents a hydrogen atom or a methyl group.
 一般式(B-1)~(B-4)において、RLは、単結合またはアルキレン基を表し、単結合または炭素数1~4のアルキレン基であることが好ましい。 In the general formulas (B-1) to (B-4), RL represents a single bond or an alkylene group, and is preferably a single bond or an alkylene group having 1 to 4 carbon atoms.
 アルキレン基は、無置換であっても置換基を有してもよい。置換基を有するアルキレン基としては、例えば、ヒドロキシ基やヒドロキシアルキル基で置換されたアルキレン基などが挙げられる。 The alkylene group may be unsubstituted or may have a substituent. Examples of the alkylene group having a substituent include a hydroxy group and an alkylene group substituted with a hydroxyalkyl group.
 一般式(B-1)~(B-4)において、Rb2は、水素原子、アルキル基、アミノ基、アンモニウム基、カルボキシル基、水酸基、スルホン酸基、アルコキシ基、オキシラニル基および上記一般式(Y)で表される基からなる群から選択されるいずれかを表す。
 Rb2は、水素原子、炭素数1~5のアルキル基、アミノ基、および上記一般式(Y)で表される基からなる群から選択されるいずれかであることが好ましく、水素原子、アミノ基、および上記一般式(Y)で表される基からなる群から選択されるいずれかであることがより好ましい。
 なお、好ましいアミノ基および一般式(Y)で表される基の態様は上記の通りである。
In the general formulas (B-1) to (B-4), R b2 is a hydrogen atom, an alkyl group, an amino group, an ammonium group, a carboxyl group, a hydroxyl group, a sulfonic acid group, an alkoxy group, an oxylanyl group and the above general formula ( Represents any one selected from the group consisting of groups represented by Y).
R b2 is preferably any one selected from the group consisting of a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, an amino group, and a group represented by the above general formula (Y), preferably a hydrogen atom and an amino. It is more preferable that the group is selected from the group consisting of a group and a group represented by the above general formula (Y).
The preferred amino group and the mode of the group represented by the general formula (Y) are as described above.
 一般式(B-2)において、Rb3は、水素原子またはアルキル基を表し、水素原子または炭素数1~5のアルキル基が好ましく、水素原子または炭素数1~3のアルキル基がより好ましい。 In the general formula (B-2), R b3 represents a hydrogen atom or an alkyl group, and a hydrogen atom or an alkyl group having 1 to 5 carbon atoms is preferable, and a hydrogen atom or an alkyl group having 1 to 3 carbon atoms is more preferable.
 一般式(B-1)~(B-4)において、nは、2以上の整数である。nは、8以上が好ましく、10以上や、20以上、30以上、40以上としてもよい。また、nは、1,000以下であることが好ましく、800以下や、500以下、300以下、100以下、60以下としてもよい。 In the general formulas (B-1) to (B-4), n is an integer of 2 or more. n is preferably 8 or more, and may be 10 or more, 20 or more, 30 or more, or 40 or more. Further, n is preferably 1,000 or less, and may be 800 or less, 500 or less, 300 or less, 100 or less, or 60 or less.
 一般式(B-1)で表されるブロック(B)は、例えば、アミノアルキル(メタ)アクリレートを重合したものとすることができる。アミノアルキル(メタ)アクリレートは、市販されているものや、(メタ)アクリレートとアルカノールアミンを反応させて得られるものなどを用いることができる。 The block (B) represented by the general formula (B-1) can be, for example, a polymerized aminoalkyl (meth) acrylate. As the aminoalkyl (meth) acrylate, a commercially available one or one obtained by reacting (meth) acrylate with an alkanolamine can be used.
 また、一般式(B-1)で表されるブロック(B)は、例えば、ポリアルキレングリコールモノ(メタ)アクリレートや、アルコキシポリアルキレングリコールモノ(メタ)アクリレートを重合したものとすることができる。ポリアルキレングリコールモノ(メタ)アクリレートや、アルコキシポリアルキレングリコールモノ(メタ)アクリレートは、市販されているものや、(メタ)アクリレートとポリアルキレングリコールまたはポリアルキレングリコールモノアルキルエーテルを反応させて得られるものなどを用いることができる。 Further, the block (B) represented by the general formula (B-1) can be, for example, a polymer of a polyalkylene glycol mono (meth) acrylate or an alkoxypolyalkylene glycol mono (meth) acrylate. Polyalkylene glycol mono (meth) acrylates and alkoxypolyalkylene glycol mono (meth) acrylates are commercially available or obtained by reacting (meth) acrylate with polyalkylene glycol or polyalkylene glycol monoalkyl ether. Etc. can be used.
 一般式(B-2)で表されるブロック(B)は、例えば、アルキル(メタ)アクリルアミドや、アミノアルキル(メタ)アクリルアミドを重合したものとすることができる。アルキル(メタ)アクリルアミドは、市販されているものや、(メタ)アクリレートとアルキルアミンを反応させて得られるものなどを用いることができる。アミノアルキル(メタ)アクリルアミドは、市販されているものや、(メタ)アクリレートとアルキレンジアミンを反応させて得られるものなどを用いることができる。 The block (B) represented by the general formula (B-2) can be, for example, a polymer of alkyl (meth) acrylamide or aminoalkyl (meth) acrylamide. As the alkyl (meth) acrylamide, commercially available ones, those obtained by reacting (meth) acrylate with an alkylamine, and the like can be used. As the aminoalkyl (meth) acrylamide, commercially available ones, those obtained by reacting (meth) acrylate with alkylenediamine, and the like can be used.
 一般式(B-3)で表されるブロック(B)は、例えば、アミノアルキルビニルエーテルを重合したものとすることができる。アミノアルキルビニルエーテルは、市販されているものや、メチルビニルエーテルとアルカノールアミンを反応させて得られるものなどを用いることができる。 The block (B) represented by the general formula (B-3) can be, for example, a polymer of aminoalkyl vinyl ether. As the aminoalkyl vinyl ether, commercially available ones, those obtained by reacting methyl vinyl ether with alkanolamine, and the like can be used.
 また、一般式(B-3)で表されるブロック(B)は、例えば、ポリアルキレングリコールモノビニルエーテルや、アルコキシポリアルキレングリコールモノビニルエーテルを重合したものとすることができる。ポリアルキレングリコールモノビニルエーテルや、アルコキシポリアルキレングリコールモノビニルエーテルは、市販されているものや、メチルビニルエーテルとポリアルキレングリコールまたはポリアルキレングリコールモノアルキルエーテルを反応させて得られるものなどを用いることができる。 Further, the block (B) represented by the general formula (B-3) can be, for example, a polymer of polyalkylene glycol monovinyl ether or alkoxypolyalkylene glycol monovinyl ether. As the polyalkylene glycol monovinyl ether and the alkoxypolyalkylene glycol monovinyl ether, commercially available ones, those obtained by reacting methyl vinyl ether with polyalkylene glycol or polyalkylene glycol monoalkyl ether, and the like can be used.
 一般式(B-4)で表されるブロック(B)は、例えば、アミノカルボン酸ビニルエステルを重合したものとすることができる。アミノカルボン酸ビニルエステルは、市販されているものや、酢酸ビニルとアミノアルキルカルボン酸を反応させて得られるものなどを用いることができる。 The block (B) represented by the general formula (B-4) can be, for example, a polymer of an aminocarboxylic acid vinyl ester. As the aminocarboxylic acid vinyl ester, a commercially available one or one obtained by reacting vinyl acetate with an aminoalkylcarboxylic acid can be used.
 また、ブロック(B)は、下記一般式(B-5)~(B-7)の構造とすることができる。 Further, the block (B) can have the structures of the following general formulas (B-5) to (B-7).
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 一般式(B-5)~(B-7)において、Rb4は、水素原子またはメチル基を表す。 In the general formulas (B-5) to (B-7), R b4 represents a hydrogen atom or a methyl group.
 一般式(B-5)~(B-7)において、RLは、単結合またはアルキレン基を表し、単結合または炭素数1~4のアルキレン基であることが好ましい。 In the general formulas (B-5) to (B-7), RL represents a single bond or an alkylene group, and is preferably a single bond or an alkylene group having 1 to 4 carbon atoms.
 アルキレン基は、無置換であっても置換基を有してもよい。置換基を有するアルキレン基としては、例えば、ヒドロキシ基やヒドロキシアルキル基で置換されたアルキレン基などが挙げられる。 The alkylene group may be unsubstituted or may have a substituent. Examples of the alkylene group having a substituent include a hydroxy group and an alkylene group substituted with a hydroxyalkyl group.
 一般式(B-5)~(B-7)において、Rb5は、アミノ基、アンモニウム基、カルボキシル基、水酸基、スルホン酸基、アルコキシ基、オキシラニル基、および一般式(Y)で表される基からなる群から選択されるいずれかを表す。
 Rb5は、アミノ基、および上記一般式(Y)で表される基からなる群から選択されるいずれかであることが好ましく、アミノ基であることがさらに好ましい。なお、好ましいアミノ基および一般式(Y)で表される基の態様は上記の通りである。
In the general formulas (B-5) to (B-7), R b5 is represented by an amino group, an ammonium group, a carboxyl group, a hydroxyl group, a sulfonic acid group, an alkoxy group, an oxylanyl group, and a general formula (Y). Represents one selected from the group consisting of groups.
R b5 is preferably any one selected from the group consisting of an amino group and a group represented by the above general formula (Y), and more preferably an amino group. The preferred amino group and the mode of the group represented by the general formula (Y) are as described above.
 一般式(B-5)~(B-7)において、nは、2以上の整数である。nは、5以上や、10以上、20以上、30以上、40以上としてもよい。また、nは、1,000以下であることが好ましく、800以下や、500以下、300以下、100以下、60以下としてもよい。 In the general formulas (B-5) to (B-7), n is an integer of 2 or more. n may be 5 or more, 10 or more, 20 or more, 30 or more, and 40 or more. Further, n is preferably 1,000 or less, and may be 800 or less, 500 or less, 300 or less, 100 or less, or 60 or less.
 一般式(B-6)で表されるブロック(B)は、例えば、アリルアミンを重合したものとすることができる。アリルアミンは、市販されているものや、アリルアルコールとアンモニアやアルキルアミンを反応させて得られるものなどを用いることができる。 The block (B) represented by the general formula (B-6) can be, for example, a polymerized allylamine. As the allylamine, a commercially available product or a product obtained by reacting allyl alcohol with ammonia or an alkylamine can be used.
 また、一般式(B-6)で表されるブロック(B)は、例えば、ポリアルキレングリコールモノアリルエーテルや、アルコキシポリアルキレングリコールモノアリルエーテルを重合したものとすることができる。ポリアルキレングリコールモノアリルエーテルや、アルコキシポリアルキレングリコールモノアリルエーテルは、市販されているものや、ハロゲン化アリルとポリアルキレングリコールまたはポリアルキレングリコールモノアルキルエーテルを反応させて得られるものなどを用いることができる。 Further, the block (B) represented by the general formula (B-6) can be, for example, a polymer of polyalkylene glycol monoallyl ether or alkoxypolyalkylene glycol monoallyl ether. As the polyalkylene glycol monoallyl ether and the alkoxypolyalkylene glycol monoallyl ether, commercially available ones or those obtained by reacting allyl halide with polyalkylene glycol or polyalkylene glycol monoalkyl ether can be used. can.
 一般式(B-7)で表されるブロック(B)は、例えば、アミノスチレンや、アミノアルキルスチレンを重合したものとすることができる。アミノアルキルスチレンは、市販されているもの、ビニルベンジルハロゲン化物とアルキルアミンを反応させて得られるものなどを用いることができる。 The block (B) represented by the general formula (B-7) can be, for example, a polymer of aminostyrene or aminoalkylstyrene. As the aminoalkylstyrene, a commercially available product, a product obtained by reacting a vinylbenzyl halide with an alkylamine, or the like can be used.
 一般式(B-7)で表されるブロック(B)は、例えば、ポリアルキレングリコールモノビニルベンジルエーテルや、アルコキシポリアルキレングリコールモノビニルベンジルエーテルを重合したものとすることができる。ポリアルキレングリコールモノビニルベンジルエーテルや、アルコキシポリアルキレングリコールモノビニルベンジルエーテルは、市販されているもの、ビニルベンジルハロゲン化物とポリアルキレングリコールまたはポリアルキレングリコールモノアルキルエーテルを反応させて得られるものなどを用いることができる。 The block (B) represented by the general formula (B-7) can be, for example, a polymer of polyalkylene glycol monovinylbenzyl ether or alkoxypolyalkylene glycol monovinylbenzyl ether. As the polyalkylene glycol monovinylbenzyl ether and the alkoxypolyalkylene glycol monovinylbenzyl ether, commercially available ones, those obtained by reacting a vinylbenzyl halide with polyalkylene glycol or polyalkylene glycol monoalkyl ether, and the like can be used. can.
 ブロック(B)は、原料となるモノマーの入手のしやすさや、重合条件の制御のしやすさから、一般式(B-1)または一般式(B-2)であることが好ましく、一般式(B-1)であることがより好ましい。 The block (B) is preferably a general formula (B-1) or a general formula (B-2), and is preferably a general formula, from the viewpoint of easy availability of a monomer as a raw material and easy control of polymerization conditions. (B-1) is more preferable.
[側鎖結晶性ブロック共重合体]
 側鎖結晶性ブロック共重合体は、側鎖に炭素数8以上のアルキル基を有する第1の重合ブロック(ブロック(A))と、機能性基を有する第2の重合ブロック(ブロック(B))とを含む。
 ブロック共重合体を形成することで、それぞれの機能が十分に発揮されやすくなる。
 このブロック共重合体は、ブロック(A)とブロック(B)とからなるものであってもよく、本発明の目的を損なわない範囲でさらにその他の構成単位を含んでいてもよい。側鎖結晶性ブロック共重合体は、実質的にブロック(A)及びブロック(B)から構成されるものであることが好ましく、側鎖結晶性ブロック共重合体において、ブロック(A)とブロック(B)の合計の含有量が95質量%以上や98質量%以上などとすることができる。また、ブロック共重合体は、ジブロック共重合体やトリブロック共重合体等のいずれであってもよい。
[Side chain crystalline block copolymer]
The side chain crystalline block copolymer has a first polymerization block (block (A)) having an alkyl group having 8 or more carbon atoms in the side chain and a second polymerization block (block (B)) having a functional group. ) And.
By forming a block copolymer, it becomes easy for each function to be fully exhibited.
This block copolymer may be composed of a block (A) and a block (B), and may further contain other structural units as long as the object of the present invention is not impaired. The side-chain crystalline block copolymer is preferably composed substantially of the block (A) and the block (B), and in the side-chain crystalline block copolymer, the block (A) and the block (A) and the block (B). The total content of B) can be 95% by mass or more, 98% by mass or more, and the like. Further, the block copolymer may be any of a diblock copolymer, a triblock copolymer and the like.
 側鎖結晶性ブロック共重体は、ブロック(A)の分子量が3,000以上であり、ブロック(B)の分子量が500以上であることが好ましい。このような分子量を有することで、PET成形体とブロック共重合体とが安定して接着できる。ブロック共重合体は、ブロック(A)の分子量が5,000以上であり、ブロック(B)の分子量が1,000以上であることがより好ましく、ブロック(A)の分子量が5,000以上であり、ブロック(B)の分子量が5,000以上であることがさらに好ましい。 The side chain crystalline block copolymer preferably has a block (A) having a molecular weight of 3,000 or more and a block (B) having a molecular weight of 500 or more. By having such a molecular weight, the PET molded product and the block copolymer can be stably adhered to each other. It is more preferable that the block (A) has a molecular weight of 5,000 or more, the block (B) has a molecular weight of 1,000 or more, and the block (A) has a molecular weight of 5,000 or more. It is more preferable that the molecular weight of the block (B) is 5,000 or more.
 側鎖結晶性ブロック共重合体は、下記(p1)~(p3)であることがより好ましい。
(p1)炭素数8以上のアルキル基を有する(メタ)アクリレートに由来するブロック(A)と、アミノ基を有する(メタ)アクリレートに由来するブロック(B)とを含むブロック共重合体
(p2)炭素数8以上のアルキル基を有する(メタ)アクリレートに由来するブロック(A)と、上記一般式(Y)で表される基を有する(メタ)アクリレートに由来するブロック(B)とを含むブロック共重合体
(p3)炭素数8以上のアルキル基を有する(メタ)アクリレートに由来するブロック(A)と、(メタ)アクリル酸に由来するブロック(B)とを含むブロック共重合体
The side chain crystalline block copolymer is more preferably the following (p1) to (p3).
(P1) A block copolymer (p2) containing a block (A) derived from a (meth) acrylate having an alkyl group having 8 or more carbon atoms and a block (B) derived from a (meth) acrylate having an amino group. A block containing a block (A) derived from a (meth) acrylate having an alkyl group having 8 or more carbon atoms and a block (B) derived from a (meth) acrylate having a group represented by the above general formula (Y). Block copolymer (p3) A block copolymer containing a block (A) derived from a (meth) acrylate having an alkyl group having 8 or more carbon atoms and a block (B) derived from (meth) acrylic acid.
 好ましいブロック共重合体のひとつは、上記一般式(A-1)で表されるブロック(A)と、上記一般式(B-1)で表されるブロック(B)とを含むブロック共重合体である。このようなブロック共重合体を用いることで、ブロック(A)とPET成形体とが強固に接着し、ブロック(B)による機能を強く発現させやすいものとなる。 One of the preferred block copolymers is a block copolymer containing the block (A) represented by the general formula (A-1) and the block (B) represented by the general formula (B-1). Is. By using such a block copolymer, the block (A) and the PET molded product are firmly adhered to each other, and the function of the block (B) can be easily expressed.
 より具体的には、ブロック共重合体として、例えば、以下のものを用いることができる。 More specifically, as the block copolymer, for example, the following can be used.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 ブロック共重合体の重合方法は、特に限定されず、各種リビング重合法(ラジカル、アニオン、カチオン)等の公知の技術により重合することが可能である。リビングラジカル重合法としては、NMP法やATRP法、RAFT法などを用いることができる。 The polymerization method of the block copolymer is not particularly limited, and it is possible to polymerize by a known technique such as various living polymerization methods (radicals, anions, cations). As the living radical polymerization method, an NMP method, an ATRP method, a RAFT method and the like can be used.
 例えば、モノマー(a)を重合溶媒に開始剤と共に混合して、モノマー(a)混合溶液を調製するモノマー(a)混合溶液調製工程を行う。次に、この混合溶液調製工程で調製されたモノマー(a)混合溶液を、適当な重合温度(例えば約90~120℃)で、リアクター内で適宜撹拌しながら、窒素雰囲気等の下でリビングラジカル重合等の開始剤の重合機構に基づくモノマー(a)重合工程を行い、モノマー(a)重合体を得る。さらに、このモノマー(a)重合体を混合させている溶液に、モノマー(b)を混合して、溶液中のラジカル等によってさらにモノマー(b)を重合させるモノマー(b)重合工程を行う。これにより、モノマー(a)に由来するブロック(A)とモノマー(b)に由来するブロック(B)を含むブロック共重合体を得ることができる。モノマー(a)とモノマー(b)との重合を行う順序は、重合させようとするモノマー種や分子量、それぞれの重合条件等に応じて変更することもできる。 For example, the monomer (a) is mixed with the polymerization solvent together with the initiator to prepare the monomer (a) mixed solution, and the monomer (a) mixed solution preparation step is performed. Next, the monomer (a) mixed solution prepared in this mixed solution preparation step is appropriately stirred in a reactor at an appropriate polymerization temperature (for example, about 90 to 120 ° C.), and a living radical is subjected to a nitrogen atmosphere or the like. The monomer (a) polymerization step based on the polymerization mechanism of the initiator such as polymerization is carried out to obtain the monomer (a) polymer. Further, a monomer (b) polymerization step is performed in which the monomer (b) is mixed with the solution in which the monomer (a) polymer is mixed, and the monomer (b) is further polymerized by a radical or the like in the solution. Thereby, a block copolymer containing the block (A) derived from the monomer (a) and the block (B) derived from the monomer (b) can be obtained. The order in which the monomer (a) and the monomer (b) are polymerized can also be changed according to the type of the monomer to be polymerized, the molecular weight, the polymerization conditions of each, and the like.
 その他のモノマーを含むときには、第3のモノマーとして、モノマー(a)およびモノマー(b)に添加して重合させればよい。 When other monomers are contained, they may be added to the monomers (a) and the monomers (b) and polymerized as the third monomer.
 また、モノマー(a)と、その側鎖にオキシラニル基等の反応性基を有するモノマー(b1)とを重合させて前駆体ポリマーを合成した後、アミン等と反応させて、ブロック共重合体を得てもよい。 Further, a monomer (a) and a monomer (b1) having a reactive group such as an oxylanyl group on its side chain are polymerized to synthesize a precursor polymer, and then reacted with an amine or the like to form a block copolymer. You may get it.
 具体的には、上記と同様に、モノマー(a)を重合溶媒に開始剤と共に混合して、適当な重合温度(例えば約90~120℃)で、リアクター内で適宜撹拌しながら、窒素雰囲気等の下でリビングラジカル重合等の開始剤の重合機構に基づくモノマー(a)重合工程を行い、モノマー(a)ブロック重合体を得る。このモノマー(a)ブロック重合体を混合させている溶液に、モノマー(b1)(例えば、オキシラニル基を有する、(メタ)アクリレート、(メタ)アクリルアミド、ビニルエーテル、ビニルエステル、シロキサン、α-オレフィン及び置換スチレンからなる群より選ばれるいずれかのモノマー)を混合して、溶液中のラジカル等によってさらにモノマー(b1)を重合させるモノマー(b1)重合工程を行う。これにより、モノマー(a)に由来するブロック(A)とモノマー(b1)に由来するブロック(B1)を有する前駆体ポリマーが混合した溶液が得られる。次いで、この前駆体ポリマーにイミノ二酢酸を反応させると、オキシラニル基とイミノ二酢酸とが反応し、イミノ二酢酸由来のアミンの構造を有する(カルボキシアルキル基置換のアミノ基を側鎖に有する構造)ブロック共重合体(例えば、上記(IX)の共重合体)が得られる。 Specifically, in the same manner as described above, the monomer (a) is mixed with the polymerization solvent together with the initiator, and at an appropriate polymerization temperature (for example, about 90 to 120 ° C.), the nitrogen atmosphere and the like are appropriately stirred in the reactor. Under the above, a monomer (a) polymerization step based on the polymerization mechanism of the initiator such as living radical polymerization is carried out to obtain a monomer (a) block polymer. In the solution in which the monomer (a) block polymer is mixed, the monomer (b1) (for example, (meth) acrylate, (meth) acrylamide having an oxylanyl group, vinyl ether, vinyl ester, siloxane, α-olefin and substitution is added. Any monomer selected from the group consisting of styrene) is mixed, and a monomer (b1) polymerization step is performed in which the monomer (b1) is further polymerized by a radical or the like in the solution. As a result, a solution in which the precursor polymer having the block (A) derived from the monomer (a) and the block (B1) derived from the monomer (b1) is mixed is obtained. Next, when iminodiacetic acid is reacted with this precursor polymer, the oxylanyl group reacts with iminodiacetic acid and has an amine structure derived from iminodiacetic acid (a structure having an amino group substituted with a carboxyalkyl group in the side chain). ) A block copolymer (for example, the above-mentioned (IX) copolymer) is obtained.
[ブロック共重合体溶液]
 本発明においては、側鎖結晶性ブロック共重合体を溶媒に溶解させた共重合体溶液を用いる。共重合体溶液を用いることで、任意の粘度や濃度に調整することができ、PET成形体の所望の範囲に、接着性等の所望の機能性を付与しやすくなる。
[Block copolymer solution]
In the present invention, a copolymer solution in which a side chain crystalline block copolymer is dissolved in a solvent is used. By using the copolymer solution, it is possible to adjust the viscosity and concentration to an arbitrary value, and it becomes easy to impart desired functionality such as adhesiveness to a desired range of the PET molded product.
 なお、本願において、ブロック共重合体溶液は、ブロック共重合体が溶媒に完全に溶解した均一溶液だけでなく、懸濁液・分散液も含む概念である。ブロック共重合体の構造によっては、溶媒に完全にブロック共重合体を溶解させることが困難な場合もあるため、ブロック共重合体が溶媒に分散・懸濁した、懸濁液や分散液としてもよい。 In the present application, the block copolymer solution is a concept that includes not only a uniform solution in which the block copolymer is completely dissolved in a solvent, but also a suspension / dispersion solution. Depending on the structure of the block copolymer, it may be difficult to completely dissolve the block copolymer in the solvent. Therefore, the block copolymer can be used as a suspension or a dispersion liquid in which the block copolymer is dispersed or suspended in the solvent. good.
(溶媒)
 共重合体溶液の溶媒としては、酢酸ブチル、酢酸オクチル、安息香酸メチル、安息香酸エチル、安息香酸オクチル、フタル酸ジメチル、フタル酸ジエチル、フタル酸ジオクチルなどのエステル系溶媒;N-メチル-2-ピロリドン、N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミドなどのアミド系溶媒;テトラヒドロフラン、ジメトキシエタン、シクロペンチルメチルエーテル、ジエチレングリコールメチルエーテル、アニソール、メチルアニソールなどのエーテル系溶媒;メチルイソブチルケトン、シクロヘキサノン、アセトフェノンなどのケトン系溶媒;ジメチルスルホキシドなどのスルホキシド系溶媒;アセトニトリルなどのニトリル系溶媒;ヘキサメチルリン酸トリアミドなどのリン酸アミド系溶媒などの非プロトン性極性溶媒が挙げられる。
(solvent)
Examples of the solvent for the copolymer solution include ester solvents such as butyl acetate, octyl acetate, methyl benzoate, ethyl benzoate, octyl benzoate, dimethyl phthalate, diethyl phthalate, and dioctyl phthalate; N-methyl-2- Amid solvents such as pyrrolidone, N, N-dimethylacetamide, N, N-dimethylformamide; ether solvents such as tetrahydrofuran, dimethoxyethane, cyclopentylmethyl ether, diethylene glycol methyl ether, anisole, methylanisole; methylisobutylketone, cyclohexanone, Examples thereof include a ketone solvent such as acetophenone; a sulfoxide solvent such as dimethyl sulfoxide; a nitrile solvent such as acetonitrile; and an aprotonic polar solvent such as a phosphate amide solvent such as hexamethylphosphate triamide.
 また、共重合体溶液の溶媒としては、エタノール、イソプロピルアルコール、ブタノール、エチレングリコール、グリセリン、2-メトキシエタノール、2-エトキシエタノールなどのプロトン性溶媒が挙げられる。 Examples of the solvent for the copolymer solution include protonic solvents such as ethanol, isopropyl alcohol, butanol, ethylene glycol, glycerin, 2-methoxyethanol and 2-ethoxyethanol.
 また、共重合体溶液の溶媒としては、トルエン、キシレン(o-キシレン、m-キシレン、p-キシレン、及びこれらの混合物)、メシチレン、エチルベンゼン、シクロへキシルベンゼンなどの芳香族炭化水素系溶媒;クロロベンゼン、ジクロロベンゼン、トリクロロベンゼン、ブロモベンゼン、フルオロベンゼンなどのハロゲン化芳香族炭化水素化合物;ペンタンやヘキサン、オクタン、デカン、シクロヘキサン、デカリンなどの脂肪族炭化水素系溶媒;トリクロロメタン、テトラクロロメタン、ジクロロエタン、トリクロロエチレン、テトラクロロエチレン、クロロブタン、トリブロモメタンなどのハロゲン化脂肪族炭化水素系溶媒;ジオキサン、ジエチルエーテルなどのエーテル系溶媒などの非極性溶媒が挙げられる。 Further, as the solvent of the copolymer solution, an aromatic hydrocarbon solvent such as toluene, xylene (o-xylene, m-xylene, p-xylene, and a mixture thereof), mecitylene, ethylbenzene, cyclohexylbenzene, etc.; Halogenized aromatic hydrocarbon compounds such as chlorobenzene, dichlorobenzene, trichlorobenzene, bromobenzene and fluorobenzene; aliphatic hydrocarbon solvents such as pentane, hexane, octane, decane, cyclohexane and decalin; trichloromethane, tetrachloromethane, Halogenated aliphatic hydrocarbon solvents such as dichloroethane, trichloroethylene, tetrachloroethylene, chlorobutane and tribromomethane; non-polar solvents such as ether solvents such as dioxane and diethyl ether can be mentioned.
 溶媒は1種のみ、あるいは2種以上の溶媒を適宜混合して用いることができる。 As the solvent, only one kind or two or more kinds of solvents can be appropriately mixed and used.
 共重合体溶液の溶媒は、特に、非プロトン性極性溶媒を含むことが好ましく、エステル系溶媒又は誘電率が30以上の非プロトン性極性溶媒を含むことがより好ましい。共重合体溶液の溶媒は、(i)1atmにおける沸点が150℃以上のエステル系溶媒、又は、(ii)誘電率が30以上の非プロトン性極性溶媒がさらに好ましい。 The solvent of the copolymer solution preferably contains an aprotic polar solvent, and more preferably an ester solvent or an aprotic polar solvent having a dielectric constant of 30 or more. The solvent of the copolymer solution is more preferably (i) an ester solvent having a boiling point of 150 ° C. or higher at 1 atm, or (ii) an aprotic polar solvent having a dielectric constant of 30 or higher.
 このような溶媒を用いることで、より高い改質効果が得られる。なお、本願において、「誘電率」は、比誘電率を意味する。溶媒の誘電率は、「溶剤ハンドブック」や、「化学便覧」、「溶媒ポケットブック」、「CRC HANDBOOK OF CHEMISTRY and PHYSICS 88TH EDITION」などの文献に記載の値を適宜採用することができる。また、測定した値を用いる場合には、市販の誘電率計を用いて20~25℃で測定した値とすることができる。 By using such a solvent, a higher modification effect can be obtained. In the present application, the "dielectric constant" means the relative permittivity. As the dielectric constant of the solvent, values described in documents such as "Solvent Handbook", "Chemical Handbook", "Solvent Pocket Book", "CRC HANDBOOK OF CHEMISTRY and PHYSICS 88TH EDITION" can be appropriately adopted. When the measured value is used, it can be a value measured at 20 to 25 ° C. using a commercially available dielectric constant meter.
 エステル系溶媒又は誘電率が30以上の非プロトン性極性溶媒は、単独で用いてもよく、その他の溶媒との混合溶媒としてもよい。混合溶媒とするとき、これらの溶媒は、主たる溶媒とすることが好ましく、溶媒の全体積において、エステル系溶媒又は誘電率が30以上の非プロトン性極性溶媒を50体積%以上占めることが好ましく、70体積%以上や、80体積%以上、90体積%以上、95体積%以上占めるものとしてもよい。 The ester solvent or the aprotic polar solvent having a dielectric constant of 30 or more may be used alone or as a mixed solvent with other solvents. When used as a mixed solvent, these solvents are preferably the main solvent, and the total volume of the solvents preferably occupies 50% by volume or more of the ester solvent or the aprotic polar solvent having a dielectric constant of 30 or more. It may occupy 70% by volume or more, 80% by volume or more, 90% by volume or more, and 95% by volume or more.
 エステル系溶媒は、脂肪族エステル化合物(酢酸ブチル、酢酸オクチルなど)であっても、芳香族エステル化合物(安息香酸メチル、安息香酸エチル、安息香酸オクチルなどの安息香酸エステルや、フタル酸ジメチル、フタル酸ジエチル、フタル酸ジオクチルなどのフタル酸エステル化合物)であってもよいが、芳香族エステル化合物が好ましく、フタル酸エステル化合物であることがより好ましい。 Even if the ester-based solvent is an aliphatic ester compound (butyl acetate, octyl acetate, etc.), an aromatic ester compound (methyl benzoate, ethyl benzoate, octyl benzoate, etc., benzoate ester, dimethyl phthalate, phthalate, etc.) It may be a phthalate ester compound such as diethyl acid or dioctyl phthalate), but an aromatic ester compound is preferable, and a phthalate ester compound is more preferable.
 また、後述するように、エステル系溶媒を用いる場合、PET成形体との接触時に加熱することでより高い改質効果が得られることから、エステル系溶媒は、1atmにおける沸点が80℃以上のものが好ましく、100℃以上、120℃以上、150℃以上、200℃以上、220℃の順でより好ましい。共重合体溶液とPET成形体との接触時の温度よりもエステル系溶媒の沸点が低い場合、揮発による共重合体溶液の液量変化や濃度変化を抑制するために還流させてもよいが、沸点の低い溶媒を用いると共重合体溶液とPET成形体とを目的の温度で接触させることが困難であったり、還流機能を向上させる必要が生じ操作性が低下したりする場合がある。このため、エステル系溶媒の沸点は、上記の範囲が好ましい。一方、沸点の上限は特に設ける必要はない。 Further, as will be described later, when an ester solvent is used, a higher modification effect can be obtained by heating the PET molded product at the time of contact. Therefore, the ester solvent has a boiling point of 80 ° C. or higher at 1 atm. Is preferable, and more preferably 100 ° C. or higher, 120 ° C. or higher, 150 ° C. or higher, 200 ° C. or higher, and 220 ° C. in that order. When the boiling point of the ester solvent is lower than the temperature at the time of contact between the copolymer solution and the PET molded product, reflux may be performed in order to suppress changes in the liquid volume and concentration of the copolymer solution due to volatilization. If a solvent having a low boiling point is used, it may be difficult to bring the copolymer solution and the PET molded product into contact with each other at a target temperature, or it may be necessary to improve the reflux function and the operability may be deteriorated. Therefore, the boiling point of the ester solvent is preferably in the above range. On the other hand, it is not necessary to set an upper limit of the boiling point.
 誘電率が30以上の非プロトン性極性溶媒(以下、括弧内の数字は誘電率を表す。)としては、N-メチル-2-ピロリドン(32)、N,N-ジメチルアセトアミド(38)、N,N-ジメチルホルムアミド(38)などのアミド系溶媒;ジメチルスルホキシド(47)などのスルホキシド系溶媒;アセトニトリル(37)などのニトリル系溶媒;ヘキサメチルリン酸トリアミド(31)などのリン酸アミド系溶媒などが挙げられる。
 中でも、スルホキシド系溶媒及び/又はアミド系溶媒が好ましく、ジメチルスルホキシド及び/又はN-メチル-2-ピロリドンがより好ましい。
Examples of the aprotic polar solvent having a dielectric constant of 30 or more (hereinafter, the numbers in parentheses indicate the dielectric constant) include N-methyl-2-pyrrolidone (32), N, N-dimethylacetamide (38), and N. , N-dimethylformamide (38) and other amide solvents; dimethylsulfoxide (47) and other sulfoxide solvents; acetonitrile (37) and other nitrile solvents; hexamethylphosphate triamide (31) and other phosphate amide solvents. And so on.
Of these, sulfoxide-based solvents and / or amide-based solvents are preferable, and dimethyl sulfoxide and / or N-methyl-2-pyrrolidone are more preferable.
(濃度)
 共重合体溶液中のブロック共重合体の濃度は、ブロック共重合体の種類や改質温度、共重合体の接着量や接着膜厚、改質目的等に応じて適宜設定することができる。共重合体溶液中のブロック共重合体の濃度は、0.01~2.0質量%であることが好ましい。ブロック共重合体の濃度の下限は、0.02質量%以上が好ましく、0.05質量%以上がより好ましい。ブロック共重合体の濃度が低すぎる場合、PET成形体に対する改質効果が不足する場合がある。ブロック共重合体の濃度の上限は、1.5質量%以下が好ましく、1.0質量%以下がより好ましい。0.8質量%以下や0.6質量%以下、0.5質量%以下とすることもできる。ブロック共重合体の濃度を高くしてもPET成形体に対する改質効果は飽和する場合がある。またブロック共重合体の濃度が高すぎると、ブロック共重合体自体の自己集合によるミセル化が生じてしまい改質効果を十分に発揮できない場合がある。
(concentration)
The concentration of the block copolymer in the copolymer solution can be appropriately set according to the type and modification temperature of the block copolymer, the adhesion amount and adhesion film thickness of the copolymer, the purpose of modification, and the like. The concentration of the block copolymer in the copolymer solution is preferably 0.01 to 2.0% by mass. The lower limit of the concentration of the block copolymer is preferably 0.02% by mass or more, more preferably 0.05% by mass or more. If the concentration of the block copolymer is too low, the modifying effect on the PET molded product may be insufficient. The upper limit of the concentration of the block copolymer is preferably 1.5% by mass or less, more preferably 1.0% by mass or less. It may be 0.8% by mass or less, 0.6% by mass or less, or 0.5% by mass or less. Even if the concentration of the block copolymer is increased, the modifying effect on the PET molded product may be saturated. Further, if the concentration of the block copolymer is too high, micelle formation due to self-assembly of the block copolymer itself may occur, and the modification effect may not be sufficiently exhibited.
 ポリエチレンテレフタレート改質用の共重合体溶液として、側鎖結晶性ブロック共重合体と溶媒とを含み、前記側鎖結晶性ブロック共重合体が、炭素数8以上のアルキル基を有する(メタ)アクリレートに由来するブロック(A)と、側鎖に極性基を有するブロック(B)とを含み、前記側鎖結晶性ブロック共重合体の濃度が0.01~2.0質量%であり、前記溶媒が、下記(i)または(ii)を含む溶液が挙げられる。
(i)1atmにおける沸点が150℃以上のエステル系溶媒
(ii)誘電率が30以上の非プロトン性極性溶媒
A (meth) acrylate containing a side chain crystalline block copolymer and a solvent as a copolymer solution for modifying polyethylene terephthalate, and the side chain crystalline block copolymer has an alkyl group having 8 or more carbon atoms. The block (A) derived from the above and the block (B) having a polar group in the side chain are contained, and the concentration of the side chain crystalline block copolymer is 0.01 to 2.0% by mass, and the solvent is used. However, a solution containing the following (i) or (ii) can be mentioned.
(I) Ester-based solvent having a boiling point of 150 ° C. or higher at 1 atm (ii) Aprotic polar solvent having a dielectric constant of 30 or higher.
 例えば、ポリエチレンテレフタレート改質用の共重合体溶液として、炭素数8以上のアルキル基を有する(メタ)アクリレートに由来するブロック(A)と、側鎖に極性基を有するブロック(B)とを含むブロック共重合体と溶媒とを含み、溶媒が1atmにおける沸点が150℃以上のエステル系溶媒を含み、ブロック共重合体の濃度が0.01~2.0質量%である溶液(以下、「共重合体溶液(L1)」と記載する場合がある。)を用いることができる。 For example, the copolymer solution for modifying polyethylene terephthalate includes a block (A) derived from a (meth) acrylate having an alkyl group having 8 or more carbon atoms and a block (B) having a polar group in the side chain. A solution containing a block copolymer and a solvent, the solvent containing an ester solvent having a boiling point of 150 ° C. or higher at 1 atm, and a block copolymer concentration of 0.01 to 2.0% by mass (hereinafter, "co-polymer"). It may be described as "polymer solution (L1)").
 共重合体溶液(L1)を用いることで、ポリエチレンテレフタレート成形体とブロック共重合体とをより強固に接着させることができる。 By using the copolymer solution (L1), the polyethylene terephthalate molded product and the block copolymer can be adhered more firmly.
 共重合体溶液(L1)において、溶媒は、芳香族エステル化合物を含む、1atmにおける沸点が220℃以上のエステル系溶媒であることが好ましく、フタル酸エステル化合物を含む、エステル系溶媒であることがより好ましい。 In the copolymer solution (L1), the solvent is preferably an ester solvent containing an aromatic ester compound and having a boiling point of 220 ° C. or higher at 1 atm, and preferably an ester solvent containing a phthalate ester compound. More preferred.
 共重合体溶液(L1)において、ブロック共重合体は、炭素数8以上のアルキル基を有する(メタ)アクリレートに由来するブロック(A)と、アミノ基、上記一般式(Y)で表される基、又はカルボキシル基を側鎖に有するブロック(B)とを含むブロック共重合体であることが好ましい。また、ブロック共重合体は、炭素数8以上のアルキル基を有する(メタ)アクリレートに由来するブロック(A)と、アミノ基を有する(メタ)アクリレート、上記一般式(Y)で表される基を有する(メタ)アクリレート、又は(メタ)アクリル酸に由来するブロック(B)とを含むブロック共重合体であることがより好ましい。 In the block copolymer solution (L1), the block copolymer is represented by a block (A) derived from a (meth) acrylate having an alkyl group having 8 or more carbon atoms, an amino group, and the above general formula (Y). It is preferably a block copolymer containing a block (B) having a group or a carboxyl group in the side chain. Further, the block copolymer is a block (A) derived from a (meth) acrylate having an alkyl group having 8 or more carbon atoms, a (meth) acrylate having an amino group, and a group represented by the above general formula (Y). It is more preferable that it is a block copolymer containing a (meth) acrylate having a (meth) acrylate or a block (B) derived from (meth) acrylic acid.
 また、ポリエチレンテレフタレート改質用の共重合体溶液として、炭素数8以上のアルキル基を有する(メタ)アクリレートに由来するブロック(A)と、側鎖に極性基を有するブロック(B)とを含むブロック共重合体と溶媒とを含み、溶媒が、誘電率が30以上の非プロトン性極性溶媒を含み、ブロック共重合体の濃度が0.01~2.0質量%である溶液(以下、「共重合体溶液(L2)」と記載する場合がある。)を用いることができる。 Further, the copolymer solution for modifying polyethylene terephthalate includes a block (A) derived from a (meth) acrylate having an alkyl group having 8 or more carbon atoms and a block (B) having a polar group in the side chain. A solution containing a block copolymer and a solvent, wherein the solvent contains an aprotonic polar solvent having a dielectric constant of 30 or more, and the concentration of the block polymer is 0.01 to 2.0% by mass (hereinafter, "" It may be described as "copolymer solution (L2)").
 共重合体溶液(L2)を用いることで、ポリエチレンテレフタレート成形体とブロック共重合体とをより強固に接着させることができる。 By using the copolymer solution (L2), the polyethylene terephthalate molded product and the block copolymer can be adhered more firmly.
 共重合体溶液(L2)において、溶媒は、スルホキシド系溶媒及び/又はアミド系溶媒を含む、誘電率が30以上の非プロトン性極性溶媒であることが好ましく、ジメチルスルホキシド及び/又はN-メチル-2-ピロリドンを含む、誘電率が30以上の非プロトン性極性溶媒であることがより好ましい。 In the copolymer solution (L2), the solvent is preferably an aprotic polar solvent containing a sulfoxide solvent and / or an amide solvent and having a dielectric constant of 30 or more, and dimethyl sulfoxide and / or N-methyl-. More preferably, it is an aprotic polar solvent containing 2-pyrrolidone and having a dielectric constant of 30 or more.
 共重合体溶液(L2)において、ブロック共重合体は、炭素数8以上のアルキル基を有する(メタ)アクリレートに由来するブロック(A)と、アミノ基、上記一般式(Y)で表される基、又はカルボキシル基を側鎖に有するブロック(B)とを含むブロック共重合体であることが好ましい。また、ブロック共重合体は、炭素数8以上のアルキル基を有する(メタ)アクリレートに由来するブロック(A)と、アミノ基を有する(メタ)アクリレート、上記一般式(Y)で表される基を有する(メタ)アクリレート、又は(メタ)アクリル酸に由来するブロック(B)とを含むブロック共重合体であることがより好ましい。 In the block copolymer solution (L2), the block copolymer is represented by a block (A) derived from a (meth) acrylate having an alkyl group having 8 or more carbon atoms, an amino group, and the above general formula (Y). It is preferably a block copolymer containing a block (B) having a group or a carboxyl group in the side chain. Further, the block copolymer is a block (A) derived from a (meth) acrylate having an alkyl group having 8 or more carbon atoms, a (meth) acrylate having an amino group, and a group represented by the above general formula (Y). It is more preferable that it is a block copolymer containing a (meth) acrylate having a (meth) acrylate or a block (B) derived from (meth) acrylic acid.
[ポリエチレンテレフタレート(PET)成形体]
 ポリエチレンテレフタレート(PET)成形体は、ポリエチレンテレフタレートを主たる成分として含む(例えば、50質量%以上含有する)成形体であり、ポリエチレンテレフタレートやその共重合体、ポリエチレンテレフタレートと他の樹脂との混合物などが任意の形状に成形加工されたものである。この成形体は、適宜、成形助剤や顔料、紫外線吸収剤等の機能性付与剤を含んだものであってもよい。
[Polyethylene terephthalate (PET) molded product]
The polyethylene terephthalate (PET) molded product is a molded product containing polyethylene terephthalate as a main component (for example, containing 50% by mass or more), and includes polyethylene terephthalate, a copolymer thereof, a mixture of polyethylene terephthalate and another resin, and the like. It is molded into an arbitrary shape. This molded product may appropriately contain a functionalizing agent such as a molding aid, a pigment, and an ultraviolet absorber.
 また、PET成形体の成形形態としては、特に限定されず、例えば、フィルム、板、粒子、繊維、多孔質材料などの成形体が挙げられる。本発明の改質PET成形体の製造方法では、改質対象の基材が多孔質材料であっても、成形体の表層にあたる表面のみではなく、さらに孔内など、PET成形体の内部にも共重合体溶液を浸透させて多孔質材料の全体を改質することができる。 Further, the molding form of the PET molded body is not particularly limited, and examples thereof include molded bodies such as films, plates, particles, fibers, and porous materials. In the method for producing a modified PET molded product of the present invention, even if the base material to be modified is a porous material, not only the surface corresponding to the surface layer of the molded product but also the inside of the PET molded product such as inside the pores. The copolymer solution can be infiltrated to modify the entire porous material.
[接触工程]
 本発明の改質PET成形体の製造方法は、側鎖結晶性ブロック共重合体及び溶媒を含む共重合体溶液と、ポリエチレンテレフタレート成形体とを接触させる工程を有する。
[Contact process]
The method for producing a modified PET molded product of the present invention includes a step of bringing a polyethylene terephthalate molded product into contact with a copolymer solution containing a side chain crystalline block copolymer and a solvent.
 共重合体溶液とPET成形体との接触方法は、PET成形体の改質しようとする部分にブロック共重合体を含む機能層を形成することができるものであれば特に限定されない。PET成形体の形状や改質しようとする範囲等に応じて、共重合体溶液とPET成形体の改質しようとする部分とを接触させることができる方法を適宜選択すればよく、接触方法としては、ディップコート、スピンコート、アプリケーター塗布、スリットコート、ダイコート、バーコート、スクリーン印刷、インクジェット印刷、グラビア印刷、スプレーコート、かけ流しなどの手法が挙げられる。共重合体溶液を所定の温度で管理しやすいことから、好適な接触方法のひとつは、PET成形体を共重合体溶液へ浸漬させる方法である。 The contact method between the copolymer solution and the PET molded body is not particularly limited as long as it can form a functional layer containing the block copolymer in the portion of the PET molded body to be modified. Depending on the shape of the PET molded body, the range to be modified, etc., a method capable of contacting the copolymer solution with the portion of the PET molded body to be modified may be appropriately selected, and the contact method may be used. Examples include dip coating, spin coating, applicator coating, slit coating, die coating, bar coating, screen printing, inkjet printing, gravure printing, spray coating, and pouring. Since the copolymer solution can be easily controlled at a predetermined temperature, one of the preferred contact methods is a method of immersing the PET molded product in the copolymer solution.
 ブロック共重合体とPET成形体とを接触させる温度(改質温度)は、共重合体溶液の溶媒の種類やPET成形体の形状、接触時間等に応じて適宜決定できる。 The temperature (modification temperature) at which the block copolymer and the PET molded product are brought into contact with each other can be appropriately determined according to the type of solvent in the copolymer solution, the shape of the PET molded product, the contact time, and the like.
 共重合体溶液の溶媒が、エステル系溶媒を含む場合、改質温度は、80℃以上が好ましく、100℃以上、120℃以上、130℃以上の順でより好ましい。エステル系溶媒は、誘電率が5~10程度であり、常温程度ではPET成形体の表面は侵食されにくく、改質に時間がかかる場合や改質効果が不十分となる場合がある。改質温度を80℃以上とすることで、PET成形体の表面の緩みや膨潤が起こりやすくなり、ブロック共重合体とPET成形体とが相互作用しやすくなるため、効率的により高い改質効果を得ることができる。また、共重合体溶液の溶媒が、エステル系溶媒を含む場合、改質温度は、200℃以下が好ましく、190℃以下、180℃以下、170℃以下の順でより好ましい。改質温度が高すぎると、PET成形体の形状等によっては、PET成形体自体が熱劣化したり、変形等が生じたりして、PET成形体自体の強度が低下するおそれがある。なお、改質温度が高い場合であっても、接触時間を短時間化することで温度の影響を限定的にし、改質してもよい。 When the solvent of the copolymer solution contains an ester solvent, the reforming temperature is preferably 80 ° C. or higher, more preferably 100 ° C. or higher, 120 ° C. or higher, and 130 ° C. or higher in that order. The ester solvent has a dielectric constant of about 5 to 10, and the surface of the PET molded product is not easily eroded at about room temperature, and the modification may take a long time or the modification effect may be insufficient. By setting the reforming temperature to 80 ° C. or higher, loosening and swelling of the surface of the PET molded product are likely to occur, and the block copolymer and the PET molded product are likely to interact with each other, so that the reforming effect is more efficient and higher. Can be obtained. When the solvent of the copolymer solution contains an ester solvent, the reforming temperature is preferably 200 ° C. or lower, more preferably 190 ° C. or lower, 180 ° C. or lower, and 170 ° C. or lower in that order. If the reforming temperature is too high, depending on the shape of the PET molded body or the like, the PET molded body itself may be thermally deteriorated or deformed, and the strength of the PET molded body itself may decrease. Even when the reforming temperature is high, the influence of the temperature may be limited by shortening the contact time, and reforming may be performed.
 エステル系溶媒が、(i)1atmにおける沸点が150℃以上のエステル系溶媒を含む場合、上記の80℃~200℃(特に、120℃~200℃)の範囲で、共重合体溶液とPET成形体とを接触させることが好ましい。 (I) When the ester solvent contains an ester solvent having a boiling point of 150 ° C. or higher at 1 atm, the copolymer solution and PET molding are carried out in the above range of 80 ° C. to 200 ° C. (particularly 120 ° C. to 200 ° C.). It is preferable to bring it into contact with the body.
 特に、エステル系溶媒が、フタル酸エステル化合物を含む場合、上記の80℃~200℃(特に、120℃~200℃)の範囲で、共重合体溶液とPET成形体とを接触させることが好ましい。 In particular, when the ester solvent contains a phthalate ester compound, it is preferable to bring the copolymer solution into contact with the PET molded product in the above range of 80 ° C. to 200 ° C. (particularly, 120 ° C. to 200 ° C.). ..
 共重合体溶液の溶媒が、誘電率30以上の非プロトン性極性溶媒を含む場合、改質温度は、120℃以下が好ましく、100℃以下、90℃以下、80℃以下、70℃以下の順でより好ましい。誘電率が30以上の非プロトン性極性溶媒は、PET成形体の表面を侵食しやすいため、改質温度が高いほどPET成形体自体の強度がより低下しやすい。接触時間を短時間化することで温度の影響を最小限にしてPET成形体自体の強度の低下を抑制しつつ改質してもよいが、温度や時間の制御をより正確に行う必要があるなど操作が複雑になる場合がある。120℃以下とすることで、より簡単な操作で、PET成形体自体の強度の低下を抑制しつつ改質することができる。また、共重合体溶液の溶媒が、誘電率30以上の非プロトン性極性溶媒を含む場合、改質温度は、20℃以上が好ましく、25℃以上、30℃以上の順でより好ましい。改質温度が低すぎると、PET成形体の表面の緩みや膨潤が起こりにくくなり、ブロック共重合体とPET成形体とが相互作用しにくくなるため、改質温度が低いほど改質効果が不十分となりやすい。 When the solvent of the copolymer solution contains an aprotic polar solvent having a dielectric constant of 30 or more, the reforming temperature is preferably 120 ° C. or lower, in the order of 100 ° C. or lower, 90 ° C. or lower, 80 ° C. or lower, 70 ° C. or lower. Is more preferable. Since the aprotic polar solvent having a dielectric constant of 30 or more easily erodes the surface of the PET molded body, the higher the reforming temperature, the more likely the strength of the PET molded body itself to decrease. Although the contact time may be shortened to minimize the influence of temperature and the PET molded product itself may be modified while suppressing a decrease in strength, it is necessary to control the temperature and time more accurately. The operation may be complicated. By setting the temperature to 120 ° C. or lower, it is possible to modify the PET molded product itself while suppressing a decrease in strength with a simpler operation. When the solvent of the copolymer solution contains an aprotic polar solvent having a dielectric constant of 30 or more, the reforming temperature is preferably 20 ° C. or higher, more preferably 25 ° C. or higher, and more preferably 30 ° C. or higher. If the reforming temperature is too low, the surface of the PET molded product is less likely to loosen or swell, and the block copolymer and the PET molded product are less likely to interact with each other. Therefore, the lower the reforming temperature, the less the reforming effect. It tends to be enough.
 特に、誘電率30以上の非プロトン性極性溶媒が、ジメチルスルホキシド及び/又はN-メチル-2-ピロリドンを含む場合、上記の20℃~120℃の範囲で、共重合体溶液とPET成形体とを接触させることが好ましい。 In particular, when the aprotic polar solvent having a dielectric constant of 30 or more contains dimethyl sulfoxide and / or N-methyl-2-pyrrolidone, the copolymer solution and the PET molded product can be used in the above range of 20 ° C to 120 ° C. It is preferable to bring them into contact with each other.
 上記所定の温度での接触にあたっては、予め共重合体溶液を所定の温度にしてからPET成形体と接触させてよい。また、改質温度が常温(25℃)程度以上の場合、常温程度の共重合体溶液にPET成形体を接触させてから加熱し、所定の温度に昇温してもよい。また、所定の温度で接触させた後に速やかに共重合体溶液を除去してもよいし、共重合体溶液とPET成形体とを接触させたまま冷却や徐冷をしてもよい。 For contact at the above-mentioned predetermined temperature, the copolymer solution may be brought into contact with the PET molded product at a predetermined temperature in advance. When the reforming temperature is about room temperature (25 ° C.) or higher, the PET molded product may be brought into contact with the copolymer solution at about room temperature and then heated to raise the temperature to a predetermined temperature. Further, the copolymer solution may be quickly removed after contacting at a predetermined temperature, or cooling or slow cooling may be performed while the copolymer solution and the PET molded product are in contact with each other.
 共重合体溶液とPET成形体とを接触させる処理時間は、その接触方法や共重合体溶液の組成、PET成形体の形状等に応じて適宜決定することができる。例えば、PET成形体を共重合体溶液に浸漬させる方法において、改質温度を高めるなどブロック共重合体とPET成形体との反応性を高めた状態で行う場合には、浸漬時間は1秒以上や10秒以上、30秒以上と比較的短めにしてもよい。また、機能層を十分に形成させるために、浸漬時間は1分以上や5分以上としてもよい。PET成形体の変形等が生じない範囲であれば、浸漬時間は長くてもよく、60分以下や40分以下としてもよい。また、ブロック共重合体とPET成形体の接触は、ある一定時間以上となると改質効果は飽和するため、改質温度などの条件に応じて、30分以下や20分以下としてもよい。 The treatment time for contacting the copolymer solution and the PET molded body can be appropriately determined according to the contact method, the composition of the copolymer solution, the shape of the PET molded body, and the like. For example, in the method of immersing the PET molded product in the copolymer solution, the immersion time is 1 second or more when the reaction between the block copolymer and the PET molded product is increased by raising the reforming temperature. It may be relatively short, such as 10 seconds or more and 30 seconds or more. Further, in order to sufficiently form the functional layer, the immersion time may be 1 minute or more or 5 minutes or more. The immersion time may be long, 60 minutes or less, or 40 minutes or less as long as the PET molded product is not deformed. Further, since the contact between the block copolymer and the PET molded product is saturated after a certain period of time, the modification effect may be 30 minutes or less or 20 minutes or less depending on the conditions such as the modification temperature.
 接触工程を終えた後、そのまま改質PET成形体として利用してもよいし、さらに処理して利用してもよい。 After the contact step is completed, it may be used as it is as a modified PET molded product, or it may be further processed and used.
 接触工程の後は、その改質PET成形体の用途等に応じて、PET成形体に設けられた共重合体溶液の塗膜の溶媒を除去する溶媒除去工程を有してもよいし、そのまま更なる処理を施してもよい。
 溶媒を除去する方法としては、通気性のよい環境下、常温付近で乾燥してもよいし、適宜減圧乾燥や加熱乾燥等を行ってもよい。これらの乾燥方法は併用してもよい。
 また、共重合体溶液の溶媒と相溶する、より低沸点の溶媒などで洗浄した後、乾燥を行ってもよい。
After the contact step, there may be a solvent removing step of removing the solvent of the coating film of the copolymer solution provided on the PET molded product, depending on the use of the modified PET molded product, or as it is. Further processing may be performed.
As a method for removing the solvent, it may be dried at around room temperature in a well-ventilated environment, or may be appropriately subjected to vacuum drying, heat drying, or the like. These drying methods may be used in combination.
Further, it may be dried after washing with a solvent having a lower boiling point that is compatible with the solvent of the copolymer solution.
<改質ポリエチレンテレフタレート成形体>
 本発明は、ポリエチレンテレフタレート成形体と、前記成形体の表面の少なくとも一部に形成された側鎖結晶性ブロック共重合体を含む機能層とを有し、前記側鎖結晶性ブロック共重合体が、前記側鎖結晶性ブロック共重合体が側鎖に炭素数8以上のアルキル基を有する構成単位の繰り返しである第1の重合ブロックと、機能性基を有する構成単位の繰り返しである第2の重合ブロックとを含む、改質ポリエチレンテレフタレート成形体(以下、「本発明の改質PET成形体」という場合がある。)に関するものである。
<Modified polyethylene terephthalate molded product>
The present invention has a polyethylene terephthalate molded body and a functional layer containing a side chain crystalline block copolymer formed on at least a part of the surface of the molded body, and the side chain crystalline block copolymer is formed. The first polymerization block, which is a repetition of the structural unit in which the side chain crystalline block copolymer has an alkyl group having 8 or more carbon atoms in the side chain, and the second, which is a repetition of the structural unit having a functional group. It relates to a modified polyethylene terephthalate molded product (hereinafter, may be referred to as “modified PET molded product of the present invention”) including a polymerization block.
 本発明の改質PET成形体は、PET成形体の表面の少なくとも一部に、ブロック共重合体を含む機能層を有するため、ブロック共重合体による機能性が付与されたものとなる。 Since the modified PET molded product of the present invention has a functional layer containing a block copolymer on at least a part of the surface of the PET molded product, the functionality of the block copolymer is imparted.
 本発明の改質PET成形体は、例えば、上記の本発明の改質PET成形体の製造方法により得ることができる。本発明のPET成形体を構成するPET成形体や側鎖結晶性ブロック共重合体などは、本発明の改質PET成形体の製造方法で用いられるものと同様であり、好ましい態様も同様である。 The modified PET molded product of the present invention can be obtained, for example, by the above-mentioned method for producing the modified PET molded product of the present invention. The PET molded product, the side chain crystalline block copolymer, and the like constituting the PET molded product of the present invention are the same as those used in the method for producing the modified PET molded product of the present invention, and the preferred embodiments are also the same. ..
 PET成形体は、上記の通り、フィルム、板、粒子、繊維、多孔質材料などの成形体とすることができる。 As described above, the PET molded product can be a molded product such as a film, a plate, particles, fibers, or a porous material.
 ブロック共重合体のブロック(B)の機能性基としては、上記の通り、アミノ基、アンモニウム基、カルボキシル基、水酸基、スルホン酸基、アルコキシ基、オキシラニル基、オキシアルキレン基、カルボニル基、エーテル基、スルホニル基、エステル基、アミド基などの極性基が挙げられる。表面に極性基を有することで、親水性や接着性などの機能性を発揮できることが知られている。本発明の製造方法を利用して、前述のような極性基を有するブロック(B)を含むブロック共重合体をPET成形体の表面に修飾することで、ブロック共重合体とPET成形体が強く接着し、親水性、接着性、染色性、金属イオン吸着性などの機能性に優れる改質PET成形体とできる。 As described above, the functional groups of the block (B) of the block copolymer include an amino group, an ammonium group, a carboxyl group, a hydroxyl group, a sulfonic acid group, an alkoxy group, an oxylanyl group, an oxyalkylene group, a carbonyl group and an ether group. , A polar group such as a sulfonyl group, an ester group and an amide group. It is known that having a polar group on the surface can exhibit functionality such as hydrophilicity and adhesiveness. By using the production method of the present invention to modify the surface of the PET molded body with the block copolymer containing the block (B) having the polar group as described above, the block copolymer and the PET molded body are strongly strengthened. It can be adhered to form a modified PET molded product having excellent functionality such as hydrophilicity, adhesiveness, dyeability, and metal ion adsorption.
 具体的には、アミノ基を有するブロック(B)を含むブロック共重合体をPET成形体の表面に修飾することで、改質PET成形体は表面にアミノ基を有するものとなる。これにより、親水性、接着性、染色性、金属イオン吸着性などの機能性を有する改質PET成形体とできる。 Specifically, by modifying the surface of the PET molded body with a block copolymer containing the block (B) having an amino group, the modified PET molded body has an amino group on the surface. This makes it possible to obtain a modified PET molded product having functionality such as hydrophilicity, adhesiveness, dyeability, and metal ion adsorption.
 オキシアルキレン基を有するブロック(B)を含むブロック共重合体をPET成形体の表面に修飾することで、改質PET成形体は表面にオキシアルキレン基を有するものとなる。これにより、親水性、接着性などの機能性を有する改質PET成形体とできる。 By modifying the surface of the PET molded body with a block copolymer containing the block (B) having an oxyalkylene group, the modified PET molded body has an oxyalkylene group on the surface. This makes it possible to obtain a modified PET molded product having functionality such as hydrophilicity and adhesiveness.
 カルボキシル基を有するブロック(B)を含むブロック共重合体をPET成形体の表面に修飾することで、改質PET成形体は表面にカルボキシル基を有するものとなる。これにより、接着性などの機能性を有する改質PET成形体とできる。 By modifying the surface of the PET molded body with the block copolymer containing the block (B) having a carboxyl group, the modified PET molded body has a carboxyl group on the surface. This makes it possible to obtain a modified PET molded product having functionality such as adhesiveness.
 ブロック共重合体のブロック(B)の機能性機は、アミノ基、アンモニウム基、カルボキシル基、水酸基、スルホン酸基、およびオキシラニル基からなる群から選択されるいずれかが好ましく、アミノ基、カルボキシル基またはオキシアルキレン基がより好ましい。 The functional machine of the block (B) of the block copolymer is preferably selected from the group consisting of an amino group, an ammonium group, a carboxyl group, a hydroxyl group, a sulfonic acid group, and an oxylanyl group, and an amino group and a carboxyl group are preferable. Alternatively, an oxyalkylene group is more preferable.
 改質PET成形体において、ブロック共重合体は、アミノ基、カルボキシル基またはオキシアルキレン基を側鎖に有するブロック(B)を含むものが好ましく、下記(p1)~(p3)であることがより好ましい。
(p1)炭素数8以上のアルキル基を有する(メタ)アクリレートに由来するブロック(A)と、アミノ基を有する(メタ)アクリレート、に由来するブロック(B)とを含むブロック共重合体
(p2)炭素数8以上のアルキル基を有する(メタ)アクリレートに由来するブロック(A)と、上記一般式(Y)で表される基を有する(メタ)アクリレートに由来するブロック(B)とを含むブロック共重合体
(p3)炭素数8以上のアルキル基を有する(メタ)アクリレートに由来するブロック(A)と、(メタ)アクリル酸に由来するブロック(B)とを含むブロック共重合体
In the modified PET molded product, the block copolymer preferably contains a block (B) having an amino group, a carboxyl group or an oxyalkylene group in the side chain, and is more preferably the following (p1) to (p3). preferable.
(P1) A block copolymer (p2) containing a block (A) derived from a (meth) acrylate having an alkyl group having 8 or more carbon atoms and a block (B) derived from a (meth) acrylate having an amino group. ) A block (A) derived from a (meth) acrylate having an alkyl group having 8 or more carbon atoms and a block (B) derived from a (meth) acrylate having a group represented by the above general formula (Y). Block Polymer (p3) A block copolymer containing a block (A) derived from a (meth) acrylate having an alkyl group having 8 or more carbon atoms and a block (B) derived from (meth) acrylic acid.
 改質PET成形体を構成するブロック共重体は、ブロック(A)の分子量が3,000以上であり、ブロック(B)の分子量が500以上であることが好ましい。このような分子量を有することで、PET成形体とブロック共重合体とが安定して密着できる。ブロック共重合体は、ブロック(A)の分子量が5,000以上であり、ブロック(B)の分子量が1,000以上であることがより好ましく、ブロック(A)の分子量が5,000以上であり、ブロック(B)の分子量が5,000以上であることがさらに好ましい。 The block copolymer constituting the modified PET molded product preferably has a block (A) having a molecular weight of 3,000 or more and a block (B) having a molecular weight of 500 or more. By having such a molecular weight, the PET molded product and the block copolymer can be stably adhered to each other. It is more preferable that the block (A) has a molecular weight of 5,000 or more, the block (B) has a molecular weight of 1,000 or more, and the block (A) has a molecular weight of 5,000 or more. It is more preferable that the molecular weight of the block (B) is 5,000 or more.
 側鎖結晶性ブロック共重合体を含む機能層は、側鎖結晶性ブロック共重合体による機能性が求められる部位に形成されていればよく、本発明の改質PET成形体の用途等に応じて適宜調整される範囲とすることができる。機能層は、PET成形体の表面全体に形成されていてよく、PET成形体の表面に層状や斑状、縞状等となるように形成されてもよい。また、PET成形体が、多孔膜等の多孔質材料であれば、表面だけでなく、孔内にも機能層が形成されてもよい。 The functional layer containing the side-chain crystalline block copolymer may be formed at a site where the functionality of the side-chain crystalline block copolymer is required, depending on the use of the modified PET molded product of the present invention. The range can be adjusted as appropriate. The functional layer may be formed on the entire surface of the PET molded product, or may be formed on the surface of the PET molded product in a layered shape, a mottled shape, a striped shape, or the like. Further, if the PET molded product is a porous material such as a porous film, a functional layer may be formed not only on the surface but also in the pores.
 本発明の成形体であることは、各層をFT-IRなどで成分分析したり、切断面の成分分析を行うなどの手法で確認することができる。 The molded product of the present invention can be confirmed by a method such as component analysis of each layer by FT-IR or the like, or component analysis of the cut surface.
 本発明の改質PET成形体は、機能層がブロック共重合体以外の成分を含んでよい。例えば、機能層は、溶媒を含んでもよい。上記の通り、本発明の改質PET成形体は本発明の改質PET成形体の製造方法により製造することができ、その製造にあっては、共重合体溶液とPET成形体とを接触させる。共重合体溶液とPET成形体との接触後にPET成形体に設けられた共重合溶液の溶媒を除去せず用いたり、溶媒除去を行っても完全に溶媒が除去されず残存する場合がある。 In the modified PET molded product of the present invention, the functional layer may contain components other than the block copolymer. For example, the functional layer may contain a solvent. As described above, the modified PET molded product of the present invention can be produced by the method for producing the modified PET molded product of the present invention, and in the production thereof, the copolymer solution and the PET molded product are brought into contact with each other. .. After the contact between the copolymer solution and the PET molded body, the solvent of the copolymerized solution provided in the PET molded body may be used without being removed, or even if the solvent is removed, the solvent may not be completely removed and remains.
 例えば、本発明の改質PET成形体は、優れた接着性を有する成形体とすることができ、機能層の面における剥離強度が0.1N/mm以上や、0.5N/mm以上、0.7N/mm以上、1.0N/mm以上の成形体とすることもできる。剥離強度は後述するT型剥離試験により算出することができ、最大試験力を試験片の幅方向の長さで除した値として算出できる。また、改質温度等を調製し、機能層の面における剥離強度が5.0N/mm以下や3.0N/mm以下の成形体などにしてもよい。 For example, the modified PET molded product of the present invention can be a molded product having excellent adhesiveness, and the peel strength on the surface of the functional layer is 0.1 N / mm or more, 0.5 N / mm or more, 0. It is also possible to make a molded product of .7 N / mm or more and 1.0 N / mm or more. The peel strength can be calculated by a T-type peel test described later, and can be calculated as a value obtained by dividing the maximum test force by the length in the width direction of the test piece. Further, the reforming temperature or the like may be adjusted so that a molded product having a peel strength of 5.0 N / mm or less or 3.0 N / mm or less on the surface of the functional layer may be used.
 本発明の改質PET成形体は、側鎖結晶性ブロック共重合体の特性を有するものとなる。これは、PET成形体の従来の用途にも利用できるし、その改質された特性を利用した用途の拡大も期待される。 The modified PET molded product of the present invention has the characteristics of a side chain crystalline block copolymer. This can be used for conventional applications of PET molded products, and it is expected that the applications will be expanded by utilizing the modified properties thereof.
 また、ブロック共重合体を用いてPET成形体の表面を修飾しても、ブロック共重合体とPET成形体の接着が弱い場合、ブロック共重合体のブロック(B)に基づく機能性を十分に発現させることは困難と考えられる。本発明の製造方法を利用することで、PET成形体とブロック共重合体とを強く接着させることができ、ブロック(B)に基づく、優れた表面特性を有する改質PET成形体とすることができる。 Further, even if the surface of the PET molded body is modified with the block copolymer, if the adhesion between the block copolymer and the PET molded body is weak, the functionality based on the block (B) of the block copolymer can be sufficiently obtained. It is considered difficult to express. By using the production method of the present invention, the PET molded product and the block copolymer can be strongly adhered to each other, and a modified PET molded product having excellent surface characteristics based on the block (B) can be obtained. can.
 PET成形体とブロック共重合体との接着の強さは、剥離強度を指標とすることができる。本発明の好ましい改質PET成形体のひとつは、ポリエチレンテレフタレート成形体と、前記成形体の表面の少なくとも一部に形成された側鎖結晶性ブロック共重合体を含む機能層とを有し、前記側鎖結晶性ブロック共重合体が、炭素数8以上のアルキル基を有する、(メタ)アクリレート、(メタ)アクリルアミド、ビニルエーテル、ビニルエステル、シロキサン、α-オレフィン及び置換スチレンからなる群から選択されるいずれかのモノマーの重合体である第1の重合ブロック(ブロック(A))と、側鎖に極性基を有する構成単位の繰り返しである第2の重合ブロック(ブロック(B))とを含み、前記機能層の剥離強度が0.5N/mm以上である改質PET成形体(以下、改質成形体(M1)と記載する場合がある。)である。  The adhesive strength between the PET molded product and the block copolymer can be indexed by the peel strength. One of the preferred modified PET molded products of the present invention has a polyethylene terephthalate molded product and a functional layer containing a side chain crystalline block copolymer formed on at least a part of the surface of the molded product. The side chain crystalline block copolymer is selected from the group consisting of (meth) acrylate, (meth) acrylamide, vinyl ether, vinyl ester, siloxane, α-olefin and substituted styrene having an alkyl group having 8 or more carbon atoms. It contains a first polymerization block (block (A)) which is a polymer of any of the monomers and a second polymerization block (block (B)) which is a repetition of a structural unit having a polar group in the side chain. It is a modified PET molded product (hereinafter, may be referred to as a modified PET molded product (M1)) having a peeling strength of the functional layer of 0.5 N / mm or more. It was
 改質成形体(M1)のような構成であれば、ブロック共重合体のブロック(B)に基づく機能性を十分に発現できるものとなる。改質成形体(M1)において、機能層の剥離強度は、0.7N/mm以上が好ましく、1.0N/mm以上がより好ましい。 If the structure is similar to that of the modified molded product (M1), the functionality based on the block (B) of the block copolymer can be sufficiently exhibited. In the modified molded product (M1), the peel strength of the functional layer is preferably 0.7 N / mm or more, more preferably 1.0 N / mm or more.
 また、PET成形体とブロック共重合体との接着の強さは、ブロック共重合体の良溶媒と改質成形体を接触させた後の改質成形体の表面状態を指標とすることができる。本発明の改質PET成形体は、当該改質PET成形体を、ブロック共重合体の良溶媒と接触させた後も、ブロック共重合体が脱離せずに、ブロック共重合体を含む部位が表面に残存するものとすることができる。例えば、当該改質PET成形体を、55℃の酢酸ブチルと接触(例えば、1分接触)させた後も、ブロック共重合体が脱離せずに、ブロック共重合体を含む部位が表面に残存するものとすることができる。 Further, the strength of adhesion between the PET molded body and the block copolymer can be used as an index of the surface state of the modified molded body after the good solvent of the block copolymer and the modified molded body are brought into contact with each other. .. In the modified PET molded product of the present invention, even after the modified PET molded product is brought into contact with a good solvent of the block copolymer, the block copolymer is not detached and the portion containing the block copolymer is contained. It can remain on the surface. For example, even after the modified PET molded product was brought into contact with butyl acetate at 55 ° C. (for example, contact for 1 minute), the block copolymer did not desorb and the portion containing the block copolymer remained on the surface. Can be.
 以下、実施例により本発明を更に詳細に説明するが、本発明は、その要旨を変更しない限り以下の実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail by way of examples, but the present invention is not limited to the following examples unless the gist thereof is changed.
<評価>
 ゲル浸透クロマトグラフィー(GPC)測定には、HLC-8320GPC,EcoSEC(東ソー株式会社製)を用いた。
 IRスペクトルの測定には、Spectrum Two(株式会社パーキンエルマージャパン製)を用いた。
<Evaluation>
For gel permeation chromatography (GPC) measurement, HLC-8320GPC, EcoSEC (manufactured by Tosoh Corporation) was used.
A Spectrum Two (manufactured by PerkinElmer Japan Co., Ltd.) was used for the measurement of the IR spectrum.
<改質PETフィルムの接着性の評価>
 JIS K6854-3(1999)に準じて、T型剥離試験を行い、剥離強度を算出し、接着性を評価した。試験装置は、株式会社島津製作所製の小型卓上試験機EZ-testEZ-LXを用いた。試験片は、同条件で改質したPETフィルム(改質PETフィルム)2枚を、シアノアクリレート系接着剤(製品名:アロンアルファ(登録商標)201、東亞合成株式会社製)を用いて貼り合わせたもの(幅12.5mm、接着部の長さ75mm、非接着部の長さ25mm)を用いた(図1(a)参照)。
<Evaluation of adhesiveness of modified PET film>
A T-type peeling test was performed according to JIS K6854-3 (1999), the peeling strength was calculated, and the adhesiveness was evaluated. As the test apparatus, a small desktop tester EZ-test EZ-LX manufactured by Shimadzu Corporation was used. As the test piece, two PET films (modified PET films) modified under the same conditions were bonded together using a cyanoacrylate adhesive (product name: Aron Alpha (registered trademark) 201, manufactured by Toagosei Co., Ltd.). (Width 12.5 mm, adhesive portion length 75 mm, non-adhesive portion length 25 mm) were used (see FIG. 1 (a)).
(剥離試験)
 試験は25℃、1気圧、湿度50%の恒温恒湿室内で行った。試験片の非接着部をT字方向に配置し、それぞれを試験装置の把持具に把持させて10mm/minで離隔する方向に引っ張り、接着力を測定した。各条件で3~8回の試験を行った。
(Peeling test)
The test was conducted in a constant temperature and humidity chamber at 25 ° C., 1 atm and 50% humidity. The non-adhesive portions of the test pieces were arranged in the T-shape, and each of them was gripped by the gripping tool of the test device and pulled in the direction of separation at 10 mm / min to measure the adhesive force. The test was performed 3 to 8 times under each condition.
 剥離強度[N/mm]は、最大試験力[N]を試験片の幅[mm]で除した値である。図1(b)に示すように、各剥離試験開始直後の12.5mmの結果を切り取り、残った結果から最大試験力を求めた。この最大試験力を用いて剥離強度を算出した。また、強固な接着により試験片が試験開始直後(Strokeが0~12.5mm以内)に破断し始めた場合、全データから算出した最大試験力を用いて剥離強度を算出した。剥離強度は、剥離試験中の改質PETフィルム自体の破壊の有無にかかわらず全試験数の平均として算出した。 The peel strength [N / mm] is a value obtained by dividing the maximum test force [N] by the width [mm] of the test piece. As shown in FIG. 1 (b), the result of 12.5 mm immediately after the start of each peeling test was cut out, and the maximum test force was obtained from the remaining result. The peel strength was calculated using this maximum test force. Further, when the test piece started to break immediately after the start of the test (Stroke was within 0 to 12.5 mm) due to strong adhesion, the peel strength was calculated using the maximum test force calculated from all the data. The peel strength was calculated as the average of all the tests regardless of the presence or absence of breakage of the modified PET film itself during the peel test.
 改質フィルムの接着性の評価結果を図3~図10に示す。図3~図10において、白色カラムは、剥離試験中に改質PETフィルム自体が破壊せずに、試験片がすべて剥離したことを意味し、黒色カラムは、剥離試験中に改質PETフィルム自体が破壊した試験片も含むことを意味する。各改質フィルムの改質条件や評価結果の詳細は後述する。 The evaluation results of the adhesiveness of the modified film are shown in FIGS. 3 to 10. In FIGS. 3 to 10, the white column means that the modified PET film itself was not destroyed during the peeling test, and all the test pieces were peeled off, and the black column means that the modified PET film itself was peeled off during the peeling test. It means that the test piece destroyed by is also included. Details of the modification conditions and evaluation results of each modified film will be described later.
<側鎖結晶性ブロック共重合体(SCCBC)の製造>
[試薬]
 モノマー(a)として、ステアリルアクリレート(STA)を用い、モノマー(b)として、2-(tert-ブチルアミノ)エチルメタクリレート(TBAEMA)を用いた。これらのモノマーはInhibitor remover(Sigma-Ardrich社製)を用いて安定剤を除去してから使用した。
 重合開始剤としてBlocBuilder(登録商標)MA(Arkema社製)を用いた。
<Manufacturing of side chain crystalline block copolymer (SCCBC)>
[reagent]
Stearyl acrylate (STA) was used as the monomer (a), and 2- (tert-butylamino) ethyl methacrylate (TBAEMA) was used as the monomer (b). These monomers were used after removing the stabilizer using an inhibitor remover (manufactured by Sigma-Ardrich).
BlocBuilder (registered trademark) MA (manufactured by Arkema) was used as a polymerization initiator.
[製造]
 下記重合スキームに従い、リビングラジカル重合(NMP法)により、ステアリルアクリレートと2-(tert-ブチルアミノ)エチルメタクリレートとを重合させた。重合を停止した後にメタノールにて再沈殿を行い真空乾燥させブロック共重合体(1)(STA-TBAEMA)を得た。
[Manufacturing]
According to the following polymerization scheme, stearyl acrylate and 2- (tert-butylamino) ethyl methacrylate were polymerized by living radical polymerization (NMP method). After the polymerization was stopped, it was reprecipitated with methanol and vacuum dried to obtain a block copolymer (1) (STA-TBAEMA).
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 得られたブロック共重合体(1)のIRスペクトルを測定したところ、エステルのC=O由来の吸収ピーク、STAのアルキル鎖のC-H伸縮振動由来の吸収ピーク、TBAEMAのC-H伸縮振動由来の吸収ピークが観測された一方で、ビニル結合由来の吸収ピークは観測されなかった。このことから、ブロック共重合体の重合に成功していると判断できた。 When the IR spectrum of the obtained block copolymer (1) was measured, the absorption peak derived from C = O of the ester, the absorption peak derived from the CH stretching vibration of the alkyl chain of STA, and the CH stretching vibration of TBAEMA were measured. Absorption peaks derived from vinyl bonds were observed, while absorption peaks derived from vinyl bonds were not observed. From this, it was judged that the block copolymer was successfully polymerized.
 また、GPCから、ブロック共重合体(1)の分子量を見積もったところ、STAのMw(重量平均分子量g/mol)は8,000、TBAEMA(重量平均分子量g/mol)は8,000であった。 Further, when the molecular weight of the block copolymer (1) was estimated from GPC, the Mw (weight average molecular weight g / mol) of STA was 8,000, and the TBAEMA (weight average molecular weight g / mol) was 8,000. rice field.
<改質PETフィルムの製造>
[PET成形体の準備]
 PET成形体として、PETフィルム(ルミラー(登録商標)T60,膜厚250μm,東レ株式会社製)を、幅12.5mm、長さ100mmで切り出して用いた。
 切り出したPETフィルムは、アセトンで洗浄し、乾燥させて用いた。
<Manufacturing of modified PET film>
[Preparation of PET molded product]
As a PET molded product, a PET film (Lumirror (registered trademark) T60, film thickness 250 μm, manufactured by Toray Industries, Inc.) was cut out with a width of 12.5 mm and a length of 100 mm and used.
The cut PET film was washed with acetone, dried and used.
[共重合体溶液(SCCBC溶液)の調製]
 表1に示す通り、ブロック共重合体(1)を溶媒に溶解させて、表1に示す組成の溶液(S1)~(S7)を得た。
[Preparation of copolymer solution (SCCBC solution)]
As shown in Table 1, the block copolymer (1) was dissolved in a solvent to obtain solutions (S1) to (S7) having the compositions shown in Table 1.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
[実施例1~実施例5,比較例1~比較例4]
 加温した溶液(s1)に、PETフィルムを10分間浸漬させた。次いで、溶液(s1)から取り出したPETフィルムを25℃の酢酸ブチルに浸漬し、1分間撹拌洗浄した。その後、1日風乾させ、改質PETフィルムを得た。
 各実施例における溶液の温度(改質温度)は、表2に示す通りである。
 比較例1は、PETフィルムを改質せずにそのまま用いた。また、表2に示す溶液または溶媒を用いて、表2に示す改質条件で処理を行い、比較例2~比較例4の比較PETフィルムを得た。
[Examples 1 to 5, Comparative Example 1 to Comparative Example 4]
The PET film was immersed in the warmed solution (s1) for 10 minutes. Then, the PET film taken out from the solution (s1) was immersed in butyl acetate at 25 ° C. and washed with stirring for 1 minute. Then, it was air-dried for one day to obtain a modified PET film.
The temperature of the solution (reform temperature) in each example is as shown in Table 2.
In Comparative Example 1, the PET film was used as it was without modification. Further, the treatment was carried out using the solution or solvent shown in Table 2 under the modification conditions shown in Table 2 to obtain comparative PET films of Comparative Examples 2 to 4.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
(PETフィルム上のSCCBCの確認)
 図2に、実施例5で得られた改質PETフィルムの表面のIRスペクトルの測定結果を示す。3000cm-1付近にピークが現れていることから、PET表面上にSCCBCの存在を確認することができた。
(Confirmation of SCCBC on PET film)
FIG. 2 shows the measurement results of the IR spectrum on the surface of the modified PET film obtained in Example 5. Since the peak appeared near 3000 cm -1 , the presence of SCCBC could be confirmed on the PET surface.
(温度依存性)
 実施例1~実施例5の改質PETフィルム,比較例1~比較例4の比較PETフィルムを用いて剥離試験を行い、接着性を評価した。なお、実施例1~実施例3は剥離試験を7回行い、実施例4、実施例5は剥離試験を8回行い、比較例1~比較例4は剥離試験を5回行い、それぞれ平均の剥離強度を算出した。
 図3及び表2に、実施例1~実施例5,比較例1,比較例2の接着性の評価の結果を示す。
 図3及び表2に示すように、80℃で溶液(s1)(STA-TBAEMA,DEP)を用いて改質したPET(実施例1)は、未改質PET(比較例1)よりも接着力(剥離強度)が向上した。また、改質温度を上げるにつれて、未改質PETに比べて接着力が大きく向上した。100℃では7サンプル中1サンプル、140℃では8サンプル中3サンプル、160℃では8サンプル中7サンプルでPETフィルム自体の破断が見られ、接着性に非常に優れることが確認できた。
(Temperature dependence)
A peeling test was performed using the modified PET films of Examples 1 to 5 and the comparative PET films of Comparative Examples 1 to 4, and the adhesiveness was evaluated. In addition, the peeling test was performed 7 times in Examples 1 to 3, the peeling test was performed 8 times in Examples 4 and 5, and the peeling test was performed 5 times in Comparative Examples 1 to 4, and each of them averaged. The peel strength was calculated.
3 and 2 show the results of the evaluation of the adhesiveness of Examples 1 to 5, Comparative Example 1 and Comparative Example 2.
As shown in FIGS. 3 and 2, PET modified with the solution (s1) (STA-TBAEMA, DEP) at 80 ° C. (Example 1) adheres more than unmodified PET (Comparative Example 1). The force (peeling strength) has improved. Further, as the reforming temperature was raised, the adhesive strength was greatly improved as compared with the unmodified PET. At 100 ° C, 1 out of 7 samples, at 140 ° C, 3 out of 8 samples, and at 160 ° C, 7 out of 8 samples showed breakage of the PET film itself, confirming that the adhesiveness was very excellent.
(溶媒の影響)
 図4及び表2に、実施例4,実施例5,比較例3,比較例4の接着性の評価の結果を示す。
 図4に示すように、溶液(s1)(STA-TBAEMA,DEP)に浸漬させた実施例4,5では、比較例1の未改質PETよりも接着力が向上した。一方、フタル酸ジエチルのみに浸漬させた比較例3,比較例4では接着力の向上は見られず、比較例1の未改質PETの接着力と同等であった。このことから、接着力の向上はSCCBCによるものであると確認できた。
(Effect of solvent)
4 and 2 show the results of the evaluation of the adhesiveness of Example 4, Example 5, Comparative Example 3 and Comparative Example 4.
As shown in FIG. 4, in Examples 4 and 5 immersed in the solution (s1) (STA-TBAEMA, DEP), the adhesive strength was improved as compared with the unmodified PET of Comparative Example 1. On the other hand, in Comparative Examples 3 and 4 immersed only in diethyl phthalate, no improvement in the adhesive strength was observed, which was equivalent to the adhesive strength of the unmodified PET of Comparative Example 1. From this, it was confirmed that the improvement of the adhesive strength was due to SCCBC.
[実施例3-A~実施例3-E,実施例4-A~実施例4-D]
 浸漬時間を表3に示す時間に変更した以外は、実施例3と同様にして、実施例3-A~実施例3-Eの改質PETフィルムを得た。
 また、浸漬時間を表4に示す時間に変更した以外は、実施例4と同様にして、実施例4-A~実施例4-Dの改質PETフィルムを得た。
[Examples 3-A to 3-E, Examples 4-A to 4-D]
Modified PET films of Examples 3-A to 3-E were obtained in the same manner as in Example 3 except that the immersion time was changed to the time shown in Table 3.
Further, modified PET films of Examples 4-A to 4-D were obtained in the same manner as in Example 4 except that the immersion time was changed to the time shown in Table 4.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
(浸漬時間の依存性)
 実施例3-A~実施例3-Eの改質PETフィルムを用いて剥離試験を5回行い、接着性を評価した。図5及び表3に、実施例3,実施例3-A~実施例3-Eの接着性の評価の結果を示す。
 また、実施例4-A~実施例4-Dの改質PETフィルムを用いて剥離試験を5回行い、接着性を評価した。図6及び表4に、実施例4,実施例4-A~実施例4-Dの接着性の評価の結果を示す。
(Dependence of immersion time)
The peeling test was performed 5 times using the modified PET films of Examples 3-A to 3-E, and the adhesiveness was evaluated. 5 and 3 show the results of the evaluation of the adhesiveness of Examples 3 and 3-A to 3-E.
Moreover, the peeling test was performed 5 times using the modified PET films of Examples 4-A to 4-D, and the adhesiveness was evaluated. 6 and 4 show the results of the evaluation of the adhesiveness of Examples 4 and 4-A to 4-D.
 図5、図6に示すように、浸漬時間が長くなるにつれて接着力が向上し、剥離試験においてPETフィルム自体が破壊するサンプル数が増加する傾向が見られた。120℃では30分の浸漬によって5サンプル中1サンプルでPETフィルム自体が破壊した。1時間の浸漬によって5サンプル中3サンプルでPETフィルム自体が破壊した。140℃では1分および5分の浸漬によって5サンプル中2サンプルでPETフィルム自体が破壊した。30分の浸漬時間によって5サンプル中4サンプルでPETフィルム自体が破壊した。なお、140℃10分の浸漬では、上記の通り、8サンプル中3サンプルでPETフィルム自体が破壊した。また、改質温度が高いほど、より短時間で高い改質効果が得られた。 As shown in FIGS. 5 and 6, the adhesive strength improved as the immersion time became longer, and the number of samples destroyed by the PET film itself tended to increase in the peeling test. At 120 ° C., the PET film itself was destroyed in 1 out of 5 samples by immersion for 30 minutes. The PET film itself was destroyed in 3 out of 5 samples by soaking for 1 hour. At 140 ° C., the PET film itself was destroyed in 2 out of 5 samples by immersion for 1 minute and 5 minutes. The PET film itself was destroyed in 4 out of 5 samples by the immersion time of 30 minutes. In addition, in the immersion at 140 ° C. for 10 minutes, as described above, the PET film itself was destroyed in 3 out of 8 samples. Further, the higher the reforming temperature, the higher the reforming effect was obtained in a shorter time.
[実施例5-A~実施例5-C]
 共重合体溶液を表5に示す溶液に変更した以外は、実施例5と同様にして、実施例5-A~実施例5-Cの改質PETフィルムを得た。
[Examples 5-A to 5-C]
Modified PET films of Examples 5-A to 5-C were obtained in the same manner as in Example 5 except that the copolymer solution was changed to the solution shown in Table 5.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
(共重合体溶液の濃度の依存性)
 実施例5-A~実施例5-Cの改質PETフィルムを用いて剥離試験を5回行い、接着性を評価した。図7及び表5に、実施例5,実施例5-A~実施例5-Cの接着性の評価の結果を示す。
 図7に示すように、SCCBCの濃度にかかわらず、いずれの場合でも、未改質のPETに比べて接着力が向上した。SCCBCの濃度0.01wt%(実施例5-A)では5サンプル中1サンプルで、SCCBCの濃度0.5wt%(実施例5-B)およびSCCBCの濃度1.0wt%(実施例5-C)では5サンプル中5サンプル全てにおいて、PETフィルム自体が破壊した。
(Dependence on the concentration of the copolymer solution)
The peeling test was performed 5 times using the modified PET films of Examples 5-A to 5-C, and the adhesiveness was evaluated. 7 and 5 show the results of the evaluation of the adhesiveness of Examples 5 and 5-A to 5-C.
As shown in FIG. 7, the adhesive strength was improved as compared with the unmodified PET in any case regardless of the concentration of SCCBC. At a concentration of SCCBC of 0.01 wt% (Example 5-A), 1 sample out of 5 samples had a concentration of SCCBC of 0.5 wt% (Example 5-B) and a concentration of SCCBC of 1.0 wt% (Example 5-C). ), The PET film itself was destroyed in all 5 samples out of 5 samples.
[実施例5-a~実施例5-d]
 SCCBC溶液からPETフィルムを取り出した後の酢酸ブチルによる洗浄条件を表6に示す条件に変更した以外は、実施例5と同様にして、実施例5-a~実施例5-dの改質PETフィルムを得た。
[Examples 5-a to 5-d]
Modified PET of Examples 5-a to 5-d in the same manner as in Example 5 except that the cleaning conditions with butyl acetate after removing the PET film from the SCCBC solution were changed to the conditions shown in Table 6. I got a film.
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
(改質後の酢酸ブチルでの洗浄の影響)
 実施例5-a~実施例5-dの改質PETフィルムを用いて剥離試験を3回行い、接着性を評価した。図8及び表6に、実施例5,実施例5-a~実施例5-dの接着性の評価の結果を示す。
 図8に示す通り、いずれの場合も接着力に大きな変化は見られなかった。また、実施例5-a~実施例5-dでは3サンプル中3サンプル全てでPETフィルム自体が破壊した。したがって、室温程度であれば酢酸ブチルでの洗浄は改質PETフィルムの接着力に影響がほとんどないことがわかった。
(Effect of washing with butyl acetate after modification)
The peeling test was performed three times using the modified PET films of Examples 5-a to 5-d, and the adhesiveness was evaluated. 8 and 6 show the results of the evaluation of the adhesiveness of Examples 5 and 5-a to 5-d.
As shown in FIG. 8, no significant change was observed in the adhesive strength in any of the cases. Further, in Examples 5-a to 5-d, the PET film itself was destroyed in all 3 samples out of 3 samples. Therefore, it was found that washing with butyl acetate had almost no effect on the adhesive strength of the modified PET film at about room temperature.
[参考例6]
 120℃に加温した溶液(s5)(STA-TBAEMA,キシレン)に、PETフィルムを10分間浸漬させた。溶液(s5)からPETフィルムを取出し、1日風乾させ、改質PETフィルムを得た。
 参考例6の改質PETフィルムを用いて剥離試験を5回行い、接着性を評価したところ、剥離強度は0.13[N/mm]であった。キシレンの沸点は140℃程度であるため、120℃以上に加熱することが難しく、キシレンに比べると、より高温での処理が行いやすいフタル酸ジエチルを用いた方が改質効果の向上が期待できる。
[Reference Example 6]
The PET film was immersed in a solution (s5) (STA-TBAEMA, xylene) heated to 120 ° C. for 10 minutes. The PET film was taken out from the solution (s5) and air-dried for one day to obtain a modified PET film.
When the peeling test was performed 5 times using the modified PET film of Reference Example 6 and the adhesiveness was evaluated, the peeling strength was 0.13 [N / mm]. Since the boiling point of xylene is about 140 ° C, it is difficult to heat it to 120 ° C or higher, and it is expected that the modification effect will be improved by using diethyl phthalate, which is easier to treat at a higher temperature than xylene. ..
[実施例7-A~実施例7-F]
 加温した溶液(s6)(STA-TBAEMA,NMP)に、PETフィルムを10分間浸漬させた。次いで、溶液(s6)から取り出したPETフィルムを25℃の酢酸ブチルに浸漬し、1分間撹拌洗浄した。その後、乾燥させ、改質PETフィルムを得た。
 各実施例での溶液の温度(改質温度)及び乾燥条件は、表7に示す通りである。
 また、比較例5は、SCCBCの代わりにNMP(溶媒のみ)を用いて、表7に示す改質温度及び乾燥条件で処理を行った。
[Examples 7-A to 7-F]
The PET film was immersed in the warmed solution (s6) (STA-TBAEMA, NMP) for 10 minutes. Then, the PET film taken out from the solution (s6) was immersed in butyl acetate at 25 ° C. and washed with stirring for 1 minute. Then, it was dried to obtain a modified PET film.
The temperature (reform temperature) and drying conditions of the solution in each example are as shown in Table 7.
Further, in Comparative Example 5, treatment was performed using NMP (solvent only) instead of SCCBC under the reforming temperature and drying conditions shown in Table 7.
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
 実施例7-A~実施例7-Fの改質PETフィルムを用いて剥離試験を5回行い、接着性を評価した。図9及び表7に、実施例7-A~実施例7-F,比較例1,比較例5の接着性の評価の結果を示す。
 図9及び表7に示すように、溶液(s6)(STA-TBAEMA,NMP)を用いて改質したPETは、未改質PET(比較例1)及びNMP(溶媒のみ)で処理したPET(比較例5)よりも接着力(剥離強度)が向上した。いずれの改質PETフィルム(実施例7-A~実施例7-F)もPETフィルム自体の破断が見られ、接着性に非常に優れることが確認できた。NMPはフタル酸ジエチルに比べて低温で改質した場合に、接着力が向上した。
The peeling test was performed 5 times using the modified PET films of Examples 7-A to 7-F, and the adhesiveness was evaluated. 9 and 7 show the results of the evaluation of the adhesiveness of Examples 7-A to 7-F, Comparative Examples 1 and 5.
As shown in FIGS. 9 and 7, PET modified with the solution (s6) (STA-TBAEMA, NMP) was treated with unmodified PET (Comparative Example 1) and PET treated with NMP (solvent only) (PET (solvent only). The adhesive strength (peeling strength) was improved as compared with Comparative Example 5). All of the modified PET films (Examples 7-A to 7-F) showed breakage of the PET film itself, and it was confirmed that the adhesiveness was very excellent. NMP has improved adhesive strength when modified at a lower temperature than diethyl phthalate.
[実施例8-A~実施例8-C]
 加温した溶液(s7)(STA-TBAEMA,DMSO)に、PETフィルムを10分間浸漬させた。次いで、溶液(s7)から取り出したPETフィルムを25℃の酢酸ブチルに浸漬し、1分間撹拌洗浄した。その後、乾燥させ、改質PETフィルムを得た。
 各実施例での溶液の温度(改質温度)及び乾燥条件は、表8に示す通りである。
 また、比較例6は、SCCBCの代わりにDMSO(溶媒のみ)を用いて、表8に示す改質温度及び乾燥条件で処理を行った。
[Examples 8-A to 8-C]
The PET film was immersed in the warmed solution (s7) (STA-TBAEMA, DMSO) for 10 minutes. Then, the PET film taken out from the solution (s7) was immersed in butyl acetate at 25 ° C. and washed with stirring for 1 minute. Then, it was dried to obtain a modified PET film.
The temperature (reform temperature) and drying conditions of the solution in each example are as shown in Table 8.
Further, in Comparative Example 6, DMSO (solvent only) was used instead of SCCBC, and the treatment was performed at the reforming temperature and the drying conditions shown in Table 8.
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
 実施例8-A~実施例8-Cの改質PETフィルム,比較例6の比較PETフィルムを用いて剥離試験を5回行い、接着性を評価した。図10及び表8に、実施例8-A~実施例8-C,比較例1,比較例6の接着性の評価の結果を示す。
 図10及び表8に示すように、溶液(s7)(STA-TBAEMA,DMSO)を用いて改質したPETは、未改質PET(比較例1)及びDMSO(溶媒のみ)で処理したPET(比較例6)よりも接着力(剥離強度)が向上した。いずれの改質PETフィルム(実施例8-A~実施例8-C)もPETフィルム自体の破断が見られ、接着性に非常に優れることが確認できた。DMSOはフタル酸ジエチルに比べて低温で改質した場合に、接着力が向上した。
The peeling test was performed 5 times using the modified PET film of Examples 8-A to 8-C and the comparative PET film of Comparative Example 6 to evaluate the adhesiveness. 10 and 8 show the results of the evaluation of the adhesiveness of Examples 8-A to 8-C, Comparative Examples 1 and 6.
As shown in FIGS. 10 and 8, PET modified with the solution (s7) (STA-TBAEMA, DMSO) was treated with unmodified PET (Comparative Example 1) and PET treated with DMSO (solvent only) (PET (solvent only). The adhesive strength (peeling strength) was improved as compared with Comparative Example 6). All of the modified PET films (Examples 8-A to 8-C) showed breakage of the PET film itself, and it was confirmed that the adhesiveness was very excellent. DMSO has improved adhesive strength when modified at a lower temperature than diethyl phthalate.
 本発明によれば、側鎖結晶性ブロック共重合体の特性を利用して、ポリエチレンテレフタレートに接着性等を付与することができ、ポリエチレンテレフタレートの新たな用途での応用が期待できる。 According to the present invention, it is possible to impart adhesiveness to polyethylene terephthalate by utilizing the characteristics of the side chain crystalline block copolymer, and it is expected that polyethylene terephthalate will be applied in new applications.

Claims (13)

  1.  側鎖結晶性ブロック共重合体及び溶媒を含む共重合体溶液と、ポリエチレンテレフタレート成形体とを接触させる接触工程を有し、
     前記側鎖結晶性ブロック共重合体が、側鎖に炭素数8以上のアルキル基を有する構成単位の繰り返しである第1の重合ブロックと、機能性基を有する構成単位の繰り返しである第2の重合ブロックとを含み、
     前記溶媒が、下記(i)または(ii)を含む、改質ポリエチレンテレフタレート成形体の製造方法。
    (i)1atmにおける沸点が150℃以上のエステル系溶媒
    (ii)誘電率が30以上の非プロトン性極性溶媒
    It has a contact step of bringing a copolymer solution containing a side chain crystalline block copolymer and a solvent into contact with a polyethylene terephthalate molded product.
    The side chain crystalline block copolymer is a first polymerization block in which a structural unit having an alkyl group having 8 or more carbon atoms in the side chain is repeated, and a second polymer in which the structural unit has a functional group is repeated. Including polymerization blocks
    A method for producing a modified polyethylene terephthalate molded product, wherein the solvent comprises the following (i) or (ii).
    (I) Ester-based solvent having a boiling point of 150 ° C. or higher at 1 atm (ii) Aprotic polar solvent having a dielectric constant of 30 or higher.
  2.  前記エステル溶媒が、フタル酸エステル化合物を含み、
     前記接触工程において、前記共重合体溶液と、前記ポリエチレンテレフタレート成形体とを80℃以上で接触させる、請求項1に記載の改質ポリエチレンテレフタレート成形体の製造方法。
    The ester solvent contains a phthalate ester compound and contains
    The method for producing a modified polyethylene terephthalate molded product according to claim 1, wherein in the contact step, the copolymer solution and the polyethylene terephthalate molded product are brought into contact with each other at 80 ° C. or higher.
  3.  前記フタル酸エステル化合物が、フタル酸ジメチル、フタル酸ジエチル、およびフタル酸ジオクチルからなる群から選択されるいずれかである、請求項2に記載の製造方法。 The production method according to claim 2, wherein the phthalate ester compound is selected from the group consisting of dimethyl phthalate, diethyl phthalate, and dioctyl phthalate.
  4.  前記接触が、120℃以上200℃以下で接触させるものである、請求項2または3に記載の製造方法。 The manufacturing method according to claim 2 or 3, wherein the contact is at 120 ° C. or higher and 200 ° C. or lower.
  5.  前記誘電率が30以上の非プロトン性極性溶媒が、ジメチルスルホキシド及び/又はN-メチル-2-ピロリドンを含み、
     前記接触工程において、前記共重合体溶液と、前記ポリエチレンテレフタレート成形体とを20℃以上120℃以下で接触させる、請求項1に記載の改質ポリエチレンテレフタレート成形体の製造方法。
    The aprotic polar solvent having a dielectric constant of 30 or more contains dimethyl sulfoxide and / or N-methyl-2-pyrrolidone.
    The method for producing a modified polyethylene terephthalate molded product according to claim 1, wherein in the contact step, the copolymer solution and the polyethylene terephthalate molded product are brought into contact with each other at 20 ° C. or higher and 120 ° C. or lower.
  6.  前記第1の重合ブロックが、炭素数8以上のアルキル基を有する、(メタ)アクリレート、(メタ)アクリルアミド、ビニルエーテル、ビニルエステル、シロキサン、α-オレフィン及び置換スチレンからなる群から選択されるいずれかのモノマーの重合体である、請求項1~5のいずれかに記載の製造方法。 The first polymerization block is selected from the group consisting of (meth) acrylate, (meth) acrylamide, vinyl ether, vinyl ester, siloxane, α-olefin and substituted styrene having an alkyl group having 8 or more carbon atoms. The production method according to any one of claims 1 to 5, which is a polymer of the monomer of.
  7.  前記第2の重合ブロックが、側鎖に極性基を有する構成単位の繰り返しである、請求項1~6のいずれかに記載の製造方法。 The production method according to any one of claims 1 to 6, wherein the second polymerization block is a repetition of a structural unit having a polar group in the side chain.
  8.  ポリエチレンテレフタレート成形体と、前記成形体の表面の少なくとも一部に形成された側鎖結晶性ブロック共重合体を含む機能層とを有し、
     前記側鎖結晶性ブロック共重合体が、側鎖に炭素数8以上のアルキル基を有する構成単位の繰り返しである第1の重合ブロックと、機能性基を有する構成単位の繰り返しである第2の重合ブロックとを含み、
     前記機能層のT型剥離試験による剥離強度が、0.5N/mm以上である、
    改質ポリエチレンテレフタレート成形体。
    It has a polyethylene terephthalate molded product and a functional layer containing a side chain crystalline block copolymer formed on at least a part of the surface of the molded product.
    The side chain crystalline block copolymer is a first polymerization block in which a structural unit having an alkyl group having 8 or more carbon atoms in the side chain is repeated, and a second polymer in which the structural unit has a functional group is repeated. Including polymerization blocks
    The peel strength of the functional layer in the T-type peel test is 0.5 N / mm or more.
    Modified polyethylene terephthalate molded product.
  9.  前記第2の重合ブロックが、側鎖に極性基を有する構成単位の繰り返しである、請求項8に記載の改質ポリエチレンテレフタレート成形体。 The modified polyethylene terephthalate molded product according to claim 8, wherein the second polymerization block is a repetition of a structural unit having a polar group in the side chain.
  10.  前記第2の重合ブロックが、アミノ基、カルボキシル基またはオキシアルキレン基を側鎖に有する構成単位の繰り返しである、請求項8または9のいずれかに記載の改質ポリエチレンテレフタレート成形体。 The modified polyethylene terephthalate molded product according to any one of claims 8 or 9, wherein the second polymerization block is a repetition of a structural unit having an amino group, a carboxyl group or an oxyalkylene group in a side chain.
  11.  前記第1の重合ブロックの重量平均分子量が、5,000以上であり、
     前記第2の重合ブロックの重量平均分子量が、5,000以上である、請求項8~10のいずれかに記載の改質ポリエチレンテレフタレート成形体。
    The weight average molecular weight of the first polymerization block is 5,000 or more, and the weight average molecular weight is 5,000 or more.
    The modified polyethylene terephthalate molded product according to any one of claims 8 to 10, wherein the second polymerization block has a weight average molecular weight of 5,000 or more.
  12.  前記側鎖結晶性ブロック共重合体の良溶媒と接触させた後も、前記側鎖結晶性ブロック共重合体を含む部位が表面に残存する、請求項8~11のいずれかに記載の改質ポリエチレンテレフタレート成形体。 The modification according to any one of claims 8 to 11, wherein the site containing the side chain crystalline block copolymer remains on the surface even after contact with a good solvent of the side chain crystalline block copolymer. Polyethylene terephthalate polymer.
  13.  側鎖結晶性ブロック共重合体及び溶媒を含む共重合体溶液であり、
     前記側鎖結晶性ブロック共重合体が、炭素数8以上のアルキル基を有する(メタ)アクリレートに由来するブロック(A)と、側鎖に極性基を有するブロック(B)とを含み、
     前記側鎖結晶性ブロック共重合体の濃度が0.01~2.0質量%であり、
     前記溶媒が下記(i)または(ii)を含む、共重合体溶液。
    (i)1atmにおける沸点が150℃以上のエステル系溶媒
    (ii)誘電率が30以上の非プロトン性極性溶媒
    A copolymer solution containing a side chain crystalline block copolymer and a solvent.
    The side chain crystalline block copolymer includes a block (A) derived from a (meth) acrylate having an alkyl group having 8 or more carbon atoms and a block (B) having a polar group in the side chain.
    The concentration of the side chain crystalline block copolymer is 0.01 to 2.0% by mass.
    A copolymer solution in which the solvent comprises the following (i) or (ii).
    (I) Ester-based solvent having a boiling point of 150 ° C. or higher at 1 atm (ii) Aprotic polar solvent having a dielectric constant of 30 or higher.
PCT/JP2021/027926 2020-07-29 2021-07-28 Modified polyethylene terephthalate molded product and method for manufacturing same, and copolymer solution WO2022025124A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022539536A JPWO2022025124A1 (en) 2020-07-29 2021-07-28

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020128273 2020-07-29
JP2020-128273 2020-07-29

Publications (1)

Publication Number Publication Date
WO2022025124A1 true WO2022025124A1 (en) 2022-02-03

Family

ID=80035708

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/027926 WO2022025124A1 (en) 2020-07-29 2021-07-28 Modified polyethylene terephthalate molded product and method for manufacturing same, and copolymer solution

Country Status (2)

Country Link
JP (1) JPWO2022025124A1 (en)
WO (1) WO2022025124A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60226535A (en) * 1984-04-24 1985-11-11 Mitsubishi Kasei Vinyl Co Production of molded resin article having hydrophylic surface
JPS6198746A (en) * 1984-10-22 1986-05-17 Mitsubishi Monsanto Chem Co Production of molded article of resin with surface made hydrophilic
JP2009545642A (en) * 2006-08-03 2009-12-24 チバ ホールディング インコーポレーテッド Composition for improving surface wettability
WO2012098750A1 (en) * 2011-01-21 2012-07-26 株式会社岐阜セラツク製造所 Dispersing agent, dispersion, method for adjusting viscosity of dispersion, mobile device, surface treatment agent, electrolyte, separator, and rechargeable lithium ion battery
JP2015229725A (en) * 2014-06-05 2015-12-21 学校法人福岡大学 Surface-modified material, composition for surface modification, and restoration method
JP2019137779A (en) * 2018-02-09 2019-08-22 学校法人福岡大学 Modification method of polypropylene resin molded body, modified polypropylene resin molded body, and manufacturing method therefor
JP2021038293A (en) * 2019-09-02 2021-03-11 昭和電工マテリアルズ株式会社 Method for modifying surface of resin member, surface modifier, and method for producing wiring board

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60226535A (en) * 1984-04-24 1985-11-11 Mitsubishi Kasei Vinyl Co Production of molded resin article having hydrophylic surface
JPS6198746A (en) * 1984-10-22 1986-05-17 Mitsubishi Monsanto Chem Co Production of molded article of resin with surface made hydrophilic
JP2009545642A (en) * 2006-08-03 2009-12-24 チバ ホールディング インコーポレーテッド Composition for improving surface wettability
WO2012098750A1 (en) * 2011-01-21 2012-07-26 株式会社岐阜セラツク製造所 Dispersing agent, dispersion, method for adjusting viscosity of dispersion, mobile device, surface treatment agent, electrolyte, separator, and rechargeable lithium ion battery
JP2015229725A (en) * 2014-06-05 2015-12-21 学校法人福岡大学 Surface-modified material, composition for surface modification, and restoration method
JP2019137779A (en) * 2018-02-09 2019-08-22 学校法人福岡大学 Modification method of polypropylene resin molded body, modified polypropylene resin molded body, and manufacturing method therefor
JP2021038293A (en) * 2019-09-02 2021-03-11 昭和電工マテリアルズ株式会社 Method for modifying surface of resin member, surface modifier, and method for producing wiring board

Also Published As

Publication number Publication date
JPWO2022025124A1 (en) 2022-02-03

Similar Documents

Publication Publication Date Title
Wang et al. New Insights into RAFT Dispersion Polymerization‐Induced Self‐Assembly: From Monomer Library, Morphological Control, and Stability to Driving Forces
Hansen et al. Fluoropolymer materials and architectures prepared by controlled radical polymerizations
JP2019178339A (en) Neutral layer polymers, methods of manufacture thereof and articles comprising the same
Zapsas et al. Poly (vinylidene fluoride)-based complex macromolecular architectures: From synthesis to properties and applications
JP6613339B2 (en) Copolymer formulations for induced self-assembly, methods for making the same, and articles containing the same
Sun et al. Polymer brush-functionalized surfaces with unique reversible double-stimulus responsive wettability
Venault et al. A zwitterionic zP (4VP-r-ODA) copolymer for providing polypropylene membranes with improved hemocompatibility
Chen et al. Surface‐initiated atom transfer radical polymerization grafting of poly (2, 2, 2‐trifluoroethyl methacrylate) from flat silicon wafer surfaces
JP2010070753A (en) Organic-inorganic composite and method for producing the same
Demirci et al. Stimuli‐responsive diblock copolymer brushes via combination of “click chemistry” and living radical polymerization
Rao et al. Self-assembly of an interacting binary blend of diblock copolymers in thin films: a potential route to porous materials with reactive nanochannel chemistry
Bousquet et al. Structured multistimuli‐responsive functional polymer surfaces obtained by interfacial diffusion of amphiphilic block copolymers
WO2022025124A1 (en) Modified polyethylene terephthalate molded product and method for manufacturing same, and copolymer solution
US9097979B2 (en) Block copolymer-based mask structures for the growth of nanopatterned polymer brushes
JP7083483B2 (en) Modification method of polypropylene resin molded article, modified polypropylene resin molded article and its manufacturing method
Chen et al. BA‐MMA‐POMA copolymer latexes prepared by using HMPS polymerizable emulsifier
JP6608160B2 (en) Polymer gel and method for producing the same
Zhang et al. Facile fabrication of hybrid nanoparticles surface grafted with multi‐responsive polymer brushes via block copolymer micellization and self‐catalyzed core gelation
TWI510511B (en) Polymer, preparation method thereof, composition and film comprising the same
Fang et al. The role of synthetic P (MMA‐co‐MAH) as compatibilizer in the preparation of chlorinated polyethylene/polysodium acrylate water‐swelling rubber
Qu et al. Fabrication of Adsorption‐Type Hierarchical Functional Films by Using a Facile Swollen Based Breath Figure Method
Sunitha et al. Comb polymer network of polydimethylsiloxane with a novolac stem: Synthesis via click coupling and surface morphology architecturing by solvents
Yang et al. Properties of poly (vinyl chloride) blended with an emulsion copolymer of N‐cyclohexylmaleimide and methyl methacrylate
JP7470419B2 (en) Non-covalently bonded nanocarbon-polymer hybrid compositions
Zhang et al. Synthesis and dielectric properties of novel liquid crystalline triblock copolymers with cyanobiphenyl moieties and poly (n‐butyl acrylate) segments

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21849958

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2022539536

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21849958

Country of ref document: EP

Kind code of ref document: A1