WO2022024991A1 - Abnormality detection device, abnormality detection method, and abnormality detection program - Google Patents

Abnormality detection device, abnormality detection method, and abnormality detection program Download PDF

Info

Publication number
WO2022024991A1
WO2022024991A1 PCT/JP2021/027536 JP2021027536W WO2022024991A1 WO 2022024991 A1 WO2022024991 A1 WO 2022024991A1 JP 2021027536 W JP2021027536 W JP 2021027536W WO 2022024991 A1 WO2022024991 A1 WO 2022024991A1
Authority
WO
WIPO (PCT)
Prior art keywords
state
data
abnormality detection
abnormality
inputting
Prior art date
Application number
PCT/JP2021/027536
Other languages
French (fr)
Japanese (ja)
Inventor
敦 森部
樹楠 張
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2022024991A1 publication Critical patent/WO2022024991A1/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N99/00Subject matter not provided for in other groups of this subclass

Definitions

  • the present disclosure relates to anomaly detection devices, methods and programs for detecting anomalies using a competitive neural network.
  • Patent Document 1 describes the presence or absence of abnormalities even when the normal state varies depending on the number of rotations, deterioration over time, date and time, season, etc. by learning the actual sensor observation values evenly using a competitive neural network. An abnormality monitoring device for proper diagnosis is described.
  • This disclosure improves the accuracy of abnormality detection.
  • One aspect of the present disclosure is an abnormality detection device including a data acquisition unit, a normal model generation unit, an abnormality degree calculation unit, and a determination unit.
  • the data acquisition unit is configured to acquire the learning target data and the monitoring target data of the abnormality detection target, which is the target for detecting the abnormality.
  • the normal model generator represents the learning target data, the first state observation value obtained by inputting the training target data into the state observer representing the state of the system of the abnormality detection target, and the latent state of the abnormality detection target. It is configured to generate a normal model by inputting data composed of a first latent state value obtained by inputting training target data into a qualitative soft sensor into a competitive neural network.
  • the anomaly degree calculation unit has the monitored data, the second state observed value obtained by inputting the monitored data into the state observer, and the second latent value obtained by inputting the monitored data into the qualitative soft sensor. By comparing the data composed of the state values with the normal model, it is configured to calculate the degree of abnormality indicating the degree of abnormality of the abnormality detection target.
  • the determination unit is configured to determine whether the abnormality detection target is normal or abnormal based on the abnormality degree calculated by the abnormality degree calculation unit.
  • the anomaly detection device of the present disclosure configured in this way adds the first latent state value to the training target data and the first state observation value to generate a normal model, and adds the second state observation value to the monitoring target data and the second state observation value. Calculate the degree of anomaly by adding the latent state value.
  • the abnormality detection device of the present disclosure can detect the abnormality by the normal model learned including the state of the abnormality detection target, and can improve the abnormality detection accuracy.
  • the abnormality detection device 1 of the present embodiment is mounted on a vehicle and includes a control device 2, a communication device 3, a data storage device 4, and a display device 5, as shown in FIG.
  • the control device 2 is an electronic control device mainly composed of a microcomputer equipped with a CPU 11, ROM 12, RAM 13, and the like.
  • Various functions of the microcomputer are realized by the CPU 11 executing a program stored in a non-transitional substantive recording medium.
  • ROM 12 corresponds to a non-transitional substantive recording medium in which a program is stored.
  • the method corresponding to the program is executed.
  • a part or all of the functions executed by the CPU 11 may be configured in terms of hardware by one or a plurality of ICs or the like.
  • the number of microcomputers constituting the control device 2 may be one or a plurality.
  • the communication device 3 is connected to a plurality of ECUs via a communication line so as to be capable of data communication, and transmits / receives data according to the CAN communication protocol.
  • the plurality of ECUs connected to the communication device 3 are an engine ECU that performs engine control, a brake ECU that performs brake control, a steering ECU that performs steering control, and the like.
  • CAN is an abbreviation for Controller Area Network. CAN is a registered trademark.
  • the data storage device 4 is a device for storing various data, and is, for example, a hard disk drive in this embodiment.
  • the display device 5 displays various images on the display screen based on the instruction from the control device 2.
  • the control device 2 has a data acquisition unit 101, a state observer generation unit 104, a normal model generation unit 106, and an abnormality degree calculation unit as a configuration of functions realized by the CPU 11 executing a program. It includes 108, a determination unit 109, a factor analysis unit 110, and a display unit 111.
  • the method for realizing these elements constituting the control device 2 is not limited to software, and a part or all of the elements may be realized by using one or a plurality of hardware.
  • the electronic circuit may be realized by a digital circuit including a large number of logic circuits, an analog circuit, or a combination thereof.
  • the data storage device 4 includes a learning target data storage unit 102, a monitoring target data storage unit 103, a state observer information storage unit 105, and a normal model parameter storage unit 107.
  • the data acquisition unit 101 acquires learning target data and monitoring target data from various sensors directly or indirectly connected to the abnormality detection device 1.
  • Various sensors include sensors mounted on vehicles and sensors connected to various vehicle electronic control devices.
  • Examples of the sensor mounted on the vehicle include a thermometer, a hygrometer, and a GPS.
  • Examples of the sensor connected to the vehicle electronic control device include an engine rotation sensor, a turbine rotation sensor, an oxygen sensor, an air-fuel ratio sensor, and the like.
  • the data acquisition unit 101 may indirectly acquire the learning target data and the monitoring target data via the network.
  • the data acquisition unit 101 may acquire the learning target data and the monitoring target data by downloading from the database via the network.
  • the learning target data and the monitoring target data are data related to at least one of the vehicle failure and the vehicle failure mechanism, and include data related to the vehicle and data related to the driving environment.
  • the learning target data is data when the vehicle is in a normal state.
  • the monitored data is data including both the case where the vehicle is in a normal state and the case where the vehicle is in an abnormal state.
  • the learning target data storage unit 102 stores the learning target data acquired by the data acquisition unit 101.
  • the monitoring target data storage unit 103 stores the monitoring target data acquired by the data acquisition unit 101.
  • the state observer generation unit 104 acquires a variable configuration and uses the variables included in the acquired variable configuration to generate a state observer for each vehicle system.
  • the state observer is also called an observer or a soft sensor.
  • the variables correspond to the learning target data and the monitoring target data acquired by the data acquisition unit 101.
  • the system is formed by grouping the control devices and sensors constituting the vehicle for each function of the vehicle. Examples of the vehicle system include a drive system, an air-fuel ratio system, an air system, an ignition system, a fuel system, and a throttle system.
  • the state observer generator 104 may acquire a variable configuration necessary or useful for the state observer to express the function and failure mechanism of the vehicle based on the knowledge of the setter.
  • the variable configuration is one variable used to construct the state observer, or a combination of a plurality of variables used to construct the state observer.
  • the state observer generation unit 104 generates a state observer by linearly combining the variables included in the acquired variable configuration, for example, as shown in the equation (1).
  • a p X p in the equation (1) is the p-th state observer.
  • xpi is the i-th variable in the p-th state observer.
  • a pi is the i-th coefficient in the p-th state observer. That is, a pi is a coefficient of the variable x pi .
  • i is an integer from 1 to n.
  • the state observer generation unit 104 sets the initial value of the coefficient a pi to a random value and combines the variables x pi to generate the initial state of the state observer.
  • the state observer reflects the function of the device to be detected by the abnormality detection device 1 or the failure mechanism of the device.
  • the driving of the vehicle and the air-fuel ratio of the vehicle are included.
  • the device failure mechanism is a mechanism that causes a device failure. "Reflecting the failure mechanism of the equipment” means that the state observation value output from the state observer changes according to the function of the equipment or the failure mechanism of the equipment.
  • variables included in the variable configuration of the state observer are factors of the function of the equipment to be detected by the abnormality detection device 1 or factors of the failure mechanism of the equipment. For example, if the equipment failure mechanism is engine overheating, engine temperature is a direct factor in causing overheating. Further, the engine speed and the amount of the coolant are direct factors that cause the temperature rise of the engine, that is, indirect factors that cause overheating.
  • a state observer (hereinafter referred to as a drive system state observer) in which the drive system of a vehicle is a function of an apparatus is generated with the engine rotation speed and the turbine rotation speed as variables.
  • the drive system state observer a 1 X 1 which is the first state observer, sets the engine rotation speed and the turbine rotation speed as variables x 11 and variables x 12 , respectively, as shown in the equation (2).
  • a state observer having the air-fuel ratio system of the vehicle as a function of the device (hereinafter referred to as an air-fuel ratio system state observer) is generated with the oxygen sensor voltage and the air-fuel ratio sensor current as variables. ..
  • the air-fuel ratio system state observer a 2 X 2 which is the second state observer, changes the oxygen sensor voltage and the air-fuel ratio sensor current into variables x 21 and variables x, respectively, as shown in the equation (3).
  • it is generated by a linear coupling using the coefficients a 21 and the coefficients a 22 .
  • the state observer may be generated by using variables other than the above-mentioned variables. Further, the number of variables to be combined is not limited to two, and may be three or more. Further, the number of state observers to be generated is not limited to two, and may be one or three or more.
  • linearly connecting variables was given, but the present invention is not limited to this, and may be composed of non-linear coupling.
  • the present invention is not limited to this, and may be composed of non-linear coupling.
  • a sigmoid function is used, it is composed of non-linear coupling.
  • the state observer generator 104 generates a qualitative soft sensor, which will be described later.
  • quantitative data refers to data that cannot be directly measured numerically, and is a type of data to which a nominal scale and an ordinal scale belong.
  • the state observer information storage unit 105 stores the coefficients and variable configurations of the state observer and the qualitative soft sensor generated by the state observer generation unit 104.
  • the abnormality detection device 1 may include a state observer generation unit 104 when generating a state observer. That is, even if the anomaly detection device 1 generates a state observer and stores the variable configuration and coefficient of the state observer in the state observer information storage unit 105, the state observer generation unit 104 is separated from the anomaly detection device 1. good.
  • the normal model generation unit 106 reads out the learning target data from the learning target data storage unit 102, and reads out the variable configurations and coefficients of the state observer and the qualitative soft sensor from the state observer information storage unit 105. Then, the normal model generation unit 106 calculates the first state observation value by applying the training target data to the variables constituting the state observer for each state observer. Further, the normal model generation unit 106 calculates the first latent state value by applying the learning target data to the variables constituting the qualitative soft sensor for each qualitative soft sensor.
  • the normal model generation unit 106 substitutes the engine rotation speed and the turbine rotation speed acquired as learning target data into the equation (2), and uses the values obtained by substituting the values obtained by substituting the values obtained by substituting the engine rotation speed and the turbine rotation speed into the first state observation of the drive system state observer a 1 X 1 . Use as a value. Further, the normal model generation unit 106 substitutes the oxygen sensor voltage and the air fuel ratio sensor current acquired as the learning target data into the equation (3), and uses the values obtained by substituting the values obtained by substituting the values obtained by substituting the values obtained by substituting the oxygen sensor voltage and the air fuel ratio sensor current into the first state of the air fuel ratio system state observer a2 X 2 . Use as an observed value.
  • the normal model generation unit 106 combines the first state observed value, the first latent state value, and the learning target data.
  • the normal model generator 106 may include engine speed, turbine speed, first state observed value of drive system state observer a 1 X 1 , oxygen sensor voltage, air fuel ratio sensor current, air fuel ratio system state observer a 2 .
  • the seven data of the first state observed value of X2 and the first latent state value are combined.
  • the combination of the first state observed value, the first latent state value, and the training target data should be such that the first state observed value, the first latent state value, and the training target data can be input to the competitive neural network at the same time. Just do it.
  • the normal model generation unit 106 learns the normal surface as a normal model by inputting the combined data into the competitive neural network.
  • a competitive neural network is a network having two layers, an input layer and an output layer, and is composed of a plurality of input layer neurons and a plurality of output layer neurons fully connected to the input layer neurons. ing. The weight data of each output layer neuron corresponds to the normal plane.
  • the initial values given to the competitive neural network are, for example, evenly sampled or randomly sampled or randomly when there are multiple combinations of data attribute attributes to be input, such as vehicle type, measurement season, day and night, customized specifications, and age. It is desirable to sample. This makes it possible to accelerate the convergence of the weight vectors of neurons on the map of the competitive neural network during learning.
  • the degree of abnormality which is the difference between the learning target data, the first state observed value and the first latent state value, and the neuron weight data of the winning unit, which are input to the competitive neural network.
  • the threshold value is calculated using the set of differences. For example, a constant multiple of the 99.9% quantile of a set of differences (or absolute values of differences) is used as the threshold.
  • the normal model parameter storage unit 107 stores learned parameters representing the normal surface learned by the normal model generation unit 106. Further, the normal model parameter storage unit 107 stores the threshold value calculated by the normal model generation unit 106.
  • the abnormality degree calculation unit 108 reads the monitored data from the monitored data storage unit 103, and reads the variable configurations and coefficients of the state observer and the qualitative soft sensor from the state observer information storage unit 105. Then, the abnormality degree calculation unit 108 calculates the second state observation value by applying the monitored data to the variables constituting the state observer for each state observer. Further, the abnormality degree calculation unit 108 calculates the second latent state value by applying the monitored data to the variables constituting the qualitative soft sensor for each qualitative soft sensor.
  • the anomaly degree calculation unit 108 substitutes the engine rotation speed and the turbine rotation speed acquired as monitoring target data into the equation (2) and obtains the values obtained by observing the second state of the drive system state observer a 1 X 1 . Use as a value. Further, the abnormality degree calculation unit 108 substitutes the oxygen sensor voltage and the air fuel ratio sensor current acquired as the monitored data into the equation (3), and uses the values obtained by substituting the values obtained by substituting the values obtained by substituting the values obtained by substituting the oxygen sensor voltage and the air fuel ratio sensor current into the second state of the air fuel ratio system state observer a2 X 2 . Use as an observed value.
  • the abnormality degree calculation unit 108 combines the second state observed value, the second latent state value, and the monitored data.
  • the abnormality degree calculation unit 108 includes the engine speed, the turbine speed, the second state observed value of the drive system state observer a 1 X 1 , the oxygen sensor voltage, the air fuel ratio sensor current, and the air fuel ratio system state observer a 2 .
  • the 7 data of the 2nd state observed value of X2 and the 2nd latent state value are combined.
  • the combination of the second state observed value, the second latent state value, and the monitored data should be such that the second state observed value, the second latent state value, and the monitored data can be input to the competitive neural network at the same time. Just do it.
  • the abnormality degree calculation unit 108 reads learned parameters such as the normal surface (that is, neuron weight data) from the normal model parameter storage unit 107. Then, the abnormality degree calculation unit 108 calculates the distance between the monitored data, the second state observed value and the second latent state value and the normal surface as the abnormality degree by inputting the combined data into the competitive neural network. ..
  • the determination unit 109 determines whether the vehicle is normal or abnormal based on the threshold value read from the normal model parameter storage unit 107 and the abnormality degree calculated by the abnormality degree calculation unit 108.
  • the factor analysis unit 110 uses the second state observed value, the second state observed value, and the monitored data that caused the determination of the abnormality. Identify the cause of the anomaly.
  • the display unit 111 displays information for identifying the cause of the abnormality on the display screen of the display device 5.
  • the learning process is a process that is repeatedly executed during the operation of the control device 2.
  • the CPU 11 When the learning process is executed, the CPU 11 first acquires learning target data from various sensors in S10, as shown in FIG.
  • the CPU 11 performs a distribution conversion to bring the learning target data acquired in S10 closer to a normal distribution.
  • distribution transformations include the B Cincinnatix-C Cincinnatix transformation and the Johnson transformation.
  • the distribution conversion may improve the determination accuracy in the determination unit 109.
  • the CPU 11 stores the learning target data after the distribution conversion in the learning target data storage unit 102.
  • the CPU 11 executes a qualitative soft sensor generation process in S40.
  • the procedure of the qualitative soft sensor generation process will be described.
  • the CPU 11 When the qualitative soft sensor generation process is executed, the CPU 11 first generates a co-occurrence matrix in S210 as shown in FIG.
  • the co-occurrence matrix is composed of a plurality of flags indicating changes in the state of the equipment mounted on the vehicle (hereinafter referred to as in-vehicle equipment).
  • the co-occurrence matrix CM1 is composed of flag A, flag B, flag C and flag D.
  • the state of the in-vehicle device includes on / off of the headlamp, gear of the transmission (for example, 1st speed, 2nd speed, 3rd speed, etc.), on / off of the ventilation of the car air conditioner, and the amount of ventilation of the car air conditioner (for example, weak). Medium, strong, etc.).
  • Flags D “1”, “2”, and “3” indicate “weak”, “medium”, and “strong” in the air volume of the car air conditioner, respectively.
  • the flags D1, the flag D2, and the flag D3 may be used instead of the flag D.
  • the flag D1 is a flag set when the air volume of the car air conditioner is "weak”.
  • the flag D2 is a flag set when the air volume of the car air conditioner is "medium”.
  • the flag D3 is a flag set when the air volume of the car air conditioner is "strong”.
  • the rising edge from 0 to 1 in the flag or the rising edge from 1 to 0 in the flag may be counted.
  • a co-occurrence matrix may be generated by using a time window or the like.
  • the CPU 11 When the generation of the co-occurrence matrix is completed, the CPU 11 generates a variance-covariance matrix based on the cosine similarity for the co-occurrence matrix generated in S210 in S220 as shown in FIG.
  • the CPU 11 may generate a variance-covariance matrix based on mutual information, or may generate a variance-covariance matrix without preprocessing.
  • the CPU 11 generates a coefficient (for example, a singular value) in a normal state by performing SVD on the variance-covariance matrix generated in S220 in S230.
  • SVD is an abbreviation for Singular Value Decomposition.
  • the CPU 11 may generate the coefficient in the normal state by using vari / promax rotation, Word2Vec, or the like instead of SVD.
  • the CPU 11 performs dimension reduction in S240 based on the contribution rate calculated by the SVD of S230. Then, the CPU 11 generates a qualitative soft sensor in S250 using the eigenvector obtained by the dimension reduction in S240.
  • the qualitative soft sensor is formed by, for example, a linear combination of a plurality of flags.
  • the qualitative soft sensor QS1 indicating the first latent state is formed by a linear combination of the flag A and the flag B.
  • the qualitative soft sensor QS2 indicating the second latent state is formed by a linear combination of the flag C, the flag D1 and the flag D2.
  • the first latent state indicates, for example, that the vehicle is before warming up
  • the second latent state indicates, for example, that the vehicle is after warming up.
  • the CPU 11 stores the coefficient and variable configuration of the qualitative soft sensor generated in S250 in the state observer information storage unit 105 in S260, and qualitatively.
  • the soft sensor generation process is terminated.
  • the CPU 11 executes the state observer generation process in S50 as shown in FIG.
  • the procedure of the state observer generation process will be described.
  • the CPU 11 When the state observer generation process is executed, the CPU 11 first acquires the variable configuration in S310 as shown in FIG.
  • the CPU 11 generates a state observer in S320 by linearly combining the variables included in the acquired variable configuration, for example, as shown in the equation (1).
  • the CPU 11 determines in S330 whether or not the number of state observers generated in S320 is one. Here, when the number of state observers is one, the CPU 11 shifts to S370.
  • the CPU 11 determines in S340 whether or not the number of state observers generated in S320 is two.
  • the CPU 11 maximizes the correlation between the two generated state observers in S350, and shifts to S270.
  • one state observer is referred to as a first state observer
  • the other state observer is referred to as a second state observer.
  • the CPU 11 has the coefficient of the first state observer and the coefficient of the second state observer so that the correlation coefficient ⁇ shown in the equation (4) is maximized under the constraint conditions shown in the equation (5).
  • Equation (5) is a constraint of Lagrange's undetermined multiplier method.
  • n and m are the number of the state observer, and V is the variance.
  • the molecule of equation (4) is the sample covariance of the first state observer and the second state observer, and the denominator of equation (4) is the square root of the sample dispersion of the first state observer and the second state observer. It is the product of the square root of the sample variance.
  • the CPU 11 maximizes the correlation between the three or more state observers generated in S320 in S360 and shifts to S370. For example, when the first state observer, the second state observer, and the third state observer are generated in S320, the sum of the correlations between the two state observers is maximized as shown in FIG. It is desirable to make it.
  • equation (6) is used to maximize the sum of the correlations between the two state observers.
  • N is the total number of state observers.
  • g is a function representing the sum, and the inside of the parentheses of g is the object of the sum. Even if there are four or more state observers, maximization is performed in the same manner as in the case of three.
  • the "sum" may include the sum in the calculation such as the sum of squares and the sum of absolute values, in addition to the simple sum.
  • the CPU 11 After shifting to S370, the CPU 11 stores the coefficients and variable configurations of the state observer generated by the processes of S320 to S360 in the state observer information storage unit 105, and ends the state observer generation process.
  • the CPU 11 reads out the training target data, the variable configuration and the coefficient in S60 as shown in FIG. 5, and for each state observer, for the variables constituting the state observer.
  • the first state observation value is calculated by applying the training target data.
  • the CPU 11 reads out the training target data, the variable configuration, and the coefficient in S70, applies the training target data to the variables constituting the qualitative soft sensor for each qualitative soft sensor, and obtains the first latent state value. calculate.
  • the CPU 11 combines the learning target data acquired in S10, the first state observed value calculated in S60, and the first latent state value calculated in S70.
  • the CPU 11 learns the normal surface as a normal model by inputting the data combined in S80 into the competitive neural network.
  • the initialized normal plane PL1 is a SOM in which neurons are arranged in a two-dimensional grid pattern.
  • SOM is an abbreviation for Self-Organizing Map.
  • Each neuron is composed of learning target data, a first state observed value, and a first latent state value.
  • each neuron has engine speed, turbine speed, first state observer of drive system state observer a 1 X 1 , oxygen sensor voltage, air fuel ratio sensor current, air fuel ratio system state observer a 2 X 2 . It is composed of seven data, the first state observed value and the first latent state value.
  • each data constituting the neuron is referred to as neuron weight data.
  • the CPU 11 stores the learned parameters representing the normal surface learned in S90 in the normal model parameter storage unit 107 in S100, and ends the learning process.
  • the monitoring process is a process that is repeatedly executed after the learning of the normal surface is completed.
  • the CPU 11 When the monitoring process is executed, the CPU 11 first acquires monitoring target data from various sensors in S410, as shown in FIG.
  • the CPU 11 performs distribution conversion in S420 to bring the monitored data acquired in S410 closer to a normal distribution.
  • the CPU 11 stores the monitored data after the distribution conversion in the monitored data storage unit 103.
  • the CPU 11 reads out the monitored data, the variable configuration, and the coefficient in S440, applies the monitored data to the variables constituting the state observer for each state observer, and calculates the second state observed value. do.
  • the CPU 11 reads out the monitored data, the variable configuration and the coefficient in S450, applies the monitored data to the variables constituting the qualitative soft sensor for each qualitative soft sensor, and sets the second latent state value. calculate.
  • the CPU 11 combines the monitored data acquired in S410 in S460, the second state observed value calculated in S440, and the second latent state value calculated in S450.
  • the combined monitored data, the second state observed value, and the second latent state value are collectively referred to as verification data.
  • the CPU 11 acquires the learned parameters from the normal model parameter storage unit 107 in S470.
  • the CPU 11 executes the abnormality degree calculation process in S480.
  • the procedure of the abnormality degree calculation process will be described.
  • the CPU 11 When the abnormality degree calculation process is executed, the CPU 11 first sets the value of the loop counter l to 1 in S610, as shown in FIG.
  • the CPU 11 first calculates the Euclidean distance d k, l, i, j between the verification data Z k at the monitoring time point k and the neurons Wi, j constituting the normal plane.
  • i is a number indicating the lateral position of the neuron on the normal plane, and is an integer of 1 to N.
  • N indicates the horizontal size of the normal surface.
  • j is a number indicating the vertical position of the neuron on the normal plane, and is an integer of 1 to M.
  • M indicates the vertical size of the normal surface.
  • the verification data Z k is composed of X data as shown in the equation (7).
  • the neurons Wi and j are composed of X weight data.
  • the CPU 11 sets the minimum Euclidean distance d k, l from the Euclidean distances d k, l, i, j calculated in all the neurons Wi , j in S620.
  • the CPU 11 calculates in S630 the cosine similarity cos ⁇ k, l between the verification data Z k and the neurons W'k , l closest to the verification data Z k .
  • the CPU 11 calculates in S640 the product of the minimum Euclidean distance d k, l and the cosine similarity cos ⁇ k, l as the abnormality degree c k, l .
  • the CPU 11 determines in S650 whether or not the value of the loop counter l exceeds the preset end determination value L (for example, 10). Here, if the value of the loop counter l does not exceed the end determination value L, the CPU 11 increments (that is, adds 1) the loop counter l in S660. Further, in S670, the CPU 11 removes the neurons W'k , l closest to the verification data Z k from the neurons Wi , j constituting the normal plane, and shifts to S620.
  • L for example, 10
  • the CPU 11 determines the abnormality in S490 and ends the monitoring process, as shown in FIG. Specifically, the CPU 11 reads a threshold value from the normal model parameter storage unit 107, and determines whether or not the total abnormality degree ck calculated in S680 is equal to or less than the threshold value. When the total abnormality degree c k is equal to or less than the threshold value, the CPU 11 determines that the vehicle is normal. When the total abnormality degree c k exceeds the threshold value, the CPU 11 determines that the vehicle is abnormal.
  • the abnormality detection device 1 configured in this way includes a data acquisition unit 101, a normal model generation unit 106, an abnormality degree calculation unit 108, and a determination unit 109.
  • the data acquisition unit 101 acquires the learning target data and the monitoring target data of the vehicle.
  • the normal model generation unit 106 generates a normal model by inputting data composed of learning target data, a first state observed value, and a first latent state value into a competitive neural network.
  • the first state observation value is obtained by inputting the learning target data into the state observer representing the state of the system possessed by the vehicle.
  • the first latent state value is obtained by inputting the learning target data into the qualitative soft sensor representing the latent state of the vehicle.
  • the abnormality degree calculation unit 108 calculates the degree of abnormality indicating the degree of abnormality of the vehicle by comparing the data composed of the monitored data, the second state observed value, and the second latent state value with the normal model. do.
  • the second state observation value is obtained by inputting the monitored data into the state observer.
  • the second latent state value is obtained by inputting the monitored data into the qualitative soft sensor.
  • the determination unit 109 determines whether the vehicle is normal or abnormal based on the abnormality degree calculated by the abnormality degree calculation unit 108.
  • the abnormality detection device 1 adds the first latent state value to the training target data and the first state observed value to generate a normal model, and adds the second latent state value to the monitored data and the second state observed value. To calculate the degree of abnormality. As a result, the abnormality detection device 1 can detect the abnormality by the normal model learned including the state of the vehicle, and can improve the abnormality detection accuracy.
  • the abnormality detection device 1 can visualize from what kind of data background the abnormality occurred at each monitoring time point and perform factor analysis.
  • the abnormality detection device 1 can perform factor analysis in consideration of the fact that the values of the first latent state and the second latent state are not 0 at the monitoring time point t1 and the monitoring time point t2.
  • the qualitative soft sensor is generated by combining a plurality of flags indicating the states of the components (for example, headlamps, transmissions, car air conditioners) constituting the vehicle.
  • the anomaly detection device 1 can generate a variable representing a latent state by dimensional compression, and can acquire a variable representing a data state robust to noise and the like.
  • the vehicle corresponds to the abnormality detection target
  • S10 and S410 correspond to the processing as the data acquisition procedure
  • S90 corresponds to the processing as the normal model generation procedure
  • S480 corresponds to the abnormality degree calculation procedure.
  • S490 corresponds to the process as the determination procedure.
  • the abnormality detection device 1 of the second embodiment is different from the first embodiment in that the learning process and the monitoring process are changed.
  • the learning process of the second embodiment is different from the first embodiment in that the processes of S45 and S75 are added and the processes of S85 and S95 are executed instead of S80 and S90.
  • the CPU 11 when the processing of S40 is completed, the CPU 11 generates a Mahalanobis distance calculation parameter in S45. Specifically, the CPU 11 calculates the sample mean and the sample covariance matrix as the Mahalanobis distance calculation parameters for each state observer with the training target data corresponding to the variables constituting the state observer. For example, in the drive train state observer, the Mahalanobis distance calculation parameter is calculated with the engine speed and the turbine speed as variables. The sample average is calculated by Eq. (9). The sample covariance matrix is calculated by Eq. (10). X (n) in the equations (9) and (10) is a variable constituting the state observer. N in the equations (9) and (10) is the number of data to be learned.
  • the CPU 11 calculates the first index by the equation (11) in S75 using the learning target data acquired in S10.
  • the left side of the equation (11) is the first index.
  • the right side of the equation (11) is an equation for calculating the Mahalanobis distance.
  • the CPU 11 When the processing of S75 is completed, the CPU 11 has the learning target data acquired in S10 in S85, the first state observed value calculated in S60, the first latent state value calculated in S70, and the first latent state value calculated in S75. Combine with 1 index.
  • the CPU 11 learns the normal surface as a normal model by inputting the data combined in S85 into the competitive neural network, and shifts to S100.
  • the monitoring process of the second embodiment is different from the first embodiment in that the process of S455 is added and the process of S465 is executed instead of S460.
  • the CPU 11 calculates the second index by the equation (11) using the monitored data acquired in S410 in S455.
  • the CPU 11 combines the monitored data acquired in S410 in S465, the second state observed value calculated in S440, the second latent state value calculated in S450, and the second index calculated in S455. , S470.
  • the combined monitored data, the second state observed value, the second latent state value, and the second index are collectively referred to as verification data.
  • the terming chart TC1 of FIG. 16 shows the time change of the intake air amount and the load value, which are variables constituting the state observer of the vehicle air system.
  • the terming chart TC1 shows the time change of the intake air amount and the load value acquired as the learning target data in the period T1, and shows the time change of the intake air amount and the load value acquired as the monitoring target data in the period T2. show.
  • region R3 the load value is constant while the intake air amount is low. This is a sticking abnormality of the load value. In the regions other than the regions R1, R2 and R3, there is a positive correlation between the intake air amount and the load value. This is normal.
  • Graphs GR1 and GR2 show the distribution of the intake air amount and the load value in the terming chart TC1 with the vertical axis as the intake air amount and the horizontal axis as the intake air amount.
  • a plurality of points in the region R4 in the graphs GR1 and GR2 correspond to the data in the regions R1 and R2 in the terming chart TC1.
  • the plurality of points in the region R5 in the graphs GR1 and GR2 correspond to the data in the region R3 in the terming chart TC1.
  • the plurality of points other than the regions R4 and R5 in the graphs GR1 and GR2 correspond to the data other than the regions R1, R2 and R3 in the terming chart TC1.
  • the plurality of ellipses in Graph GR1 are equidistant lines of Mahalanobis distance.
  • the plurality of circles in the graph GR2 are equidistant lines of the Euclidean distance.
  • the initialized normal plane PL3 is a SOM in which neurons are arranged in a two-dimensional grid pattern.
  • Each neuron is composed of learning target data, a first state observed value, a first latent state value, and a first index.
  • each neuron has engine speed, turbine speed, first state observer of drive system state observer a 1 X 1 , oxygen sensor voltage, air fuel ratio sensor current, air fuel ratio system state observer a 2 X 2 . It is composed of eight data, a first state observed value, a first latent state value, and a first index.
  • the region R6 in FIG. 18 is a region determined to be normal. The relationship between the intake air amount and the load value is checked by the index, but the exception condition is set by SOM.
  • the normal model generation unit 106 calculates the first index, and uses the learning target data, the first state observation value, the first latent state value, and the first index.
  • a normal model is generated by inputting the constructed data into the competitive neural network.
  • the first index represents a change in the relationship between a plurality of variables constituting the state observer and is obtained by inputting learning target data.
  • the anomaly degree calculation unit 108 calculates the second index, and compares the data composed of the monitored data, the second state observed value, the second latent state value, and the second index with the normal model. Calculate the degree of anomaly.
  • the second index is obtained by inputting monitored data representing changes in the relationships of a plurality of variables constituting the state observer.
  • the anomaly detection device 1 can detect anomalies using a normal model learned including the relationships of a plurality of variables constituting the state observer, and can improve the anomaly detection accuracy.
  • the first and second indicators are Mahalanobis distances.
  • the anomaly detection device 1 can detect the relationship change that was difficult to detect by the Euclidean distance standard.
  • the index may become large even if it is normal.
  • the neuron learn the index when the linear relationship collapses at normal times together with other values using a competitive neural network, it is possible to judge including other values even if the index is high. Species error can be deterred.
  • the abnormality detection device 1 of the third embodiment is different from the first embodiment in that the learning process is changed.
  • the learning process of the third embodiment is different from the first embodiment in that the process of S35 is added.
  • the CPU 11 When the parameter setting process is executed, the CPU 11 first executes the clustering coefficient setting process described later in S710, as shown in FIG. 20.
  • the CPU 11 executes the regularization coefficient setting process described later in S720. Further, the CPU 11 executes the map size setting process described later in S730 to end the parameter setting process.
  • the CPU 11 When the clustering coefficient setting process is executed, the CPU 11 first performs stratified classification by external factors in S810 as shown in FIG. 21.
  • the stratified classification based on external factors is to set the first search range, which will be described later, according to the conditions of the vehicle.
  • a condition of the vehicle for example, a vehicle speed can be mentioned.
  • the CPU 11 defines the range of normal data of the clustering coefficient in S820.
  • DBSCAN is an abbreviation for Density-Based Spatial Clustering of Applications with Noise and is a clustering algorithm. DBSCAN is performed to remove outliers in teacher data. There are two DBSCAN clustering coefficients, the neighborhood search radius ⁇ and the minimum number of neighborhood points minpts. The first search range is set by the neighborhood search radius ⁇ and the minimum number of neighborhood points minpts, respectively.
  • the CPU 11 searches for the optimum solution having the neighborhood search radius ⁇ and the minimum number of neighborhood points minpts within the first search range set in S830. Specifically, the CPU 11 uses the learning target data acquired in S10 to train the normal model while changing the neighborhood search radius ⁇ and the minimum neighborhood score minpts within the first search range, and calculates the total abnormality degree. Then, the neighborhood search radius ⁇ and the minimum number of neighborhood points minpts that minimize the total anomaly are determined as the optimum solution.
  • Cross-validation is used in learning the normal model and calculating the degree of abnormality. Cross-validation can suppress overfitting and ensure generalization accuracy.
  • the grid search is used in the search of the clustering coefficient.
  • the CPU 11 In the search for the optimum solution in S840, for example, as shown in the graph GR3 of FIG. 22, the CPU 11 first sets a plurality of set values x0, x1, x2, x3, x4 in the first search range SR1. Then, the CPU 11 calculates the total abnormality degree for each of the set values x0, x1, x2, x3, x4, and sets the set value at which the total abnormality degree is the minimum as the optimum solution. In the graph GR3, the set value x2 is the optimum solution.
  • the CPU 11 sets a second search range narrower than the first search range in the vicinity of the optimum solution searched in S840 in S850.
  • the CPU 11 searches for the optimum solution having the neighborhood search radius ⁇ and the minimum number of neighborhood points minpts within the second search range set in S850. Specifically, the CPU 11 uses the learning target data acquired in S10 to learn the normal model while changing the neighborhood search radius ⁇ and the minimum neighborhood score minpts within the second search range, and calculates the total abnormality degree. Then, the neighborhood search radius ⁇ and the minimum number of neighborhood points minpts that minimize the total anomaly are determined as the optimum solution.
  • the CPU 11 In the search for the optimum solution in S860, for example, as shown in the graph GR4 of FIG. 22, the CPU 11 first has a plurality of set values (x2-2a), (x2-a), x2 in the second search range SR2. Set (x2 + a) and (x2 + 2a). Then, the CPU 11 calculates the total abnormality degree for each of the set values (x2-2a), (x2-a), x2, (x2 + a), and (x2 + 2a), and sets the setting value that minimizes the total abnormality degree as the optimum solution. do. In the graph GR4, the set value (x2-2a) is the optimum solution.
  • the CPU 11 sets the optimum solution searched in S860 in S870 to the clustering coefficient (that is, the neighborhood search radius ⁇ and the minimum number of neighborhood points minpts), and clusters.
  • the coefficient setting process ends.
  • the CPU 11 executes the regularization coefficient setting process in S720 as shown in FIG. 20.
  • the regularization coefficient setting process is the same as the clustering coefficient setting process except that the optimum solution of the regularization coefficient is searched instead of the clustering coefficient, so detailed explanation is omitted. That is, in the regularization coefficient setting process, the CPU 11 first sets the first search range and searches for the optimum solution of the regularization coefficient within the first search range. Further, the CPU 11 sets a second search range narrower than the first search range in the vicinity of the optimum solution, and searches for the optimum solution of the regularization coefficient within the second search range. Then, the CPU 11 sets the optimum solution searched within the second search range as the regularization coefficient.
  • the regularization coefficient is the coefficient of the regularization term used in RGCCA to calculate the coefficient of the state observer.
  • RGCCA is an abbreviation for Regularized Generalized Canonical Correlation Analysis.
  • the CPU 11 executes the map size setting process in S730 and ends the parameter setting process.
  • the map size setting process is the same as the clustering coefficient setting process except that it searches for the optimum solution for the horizontal size and vertical size of the normal surface instead of the clustering coefficient, so detailed explanation is omitted. That is, in the map size setting process, the CPU 11 first sets the first search range and searches for the optimum solution of the horizontal size and the vertical size of the normal surface within the first search range. Further, the CPU 11 sets a second search range narrower than the first search range in the vicinity of the optimum solution, and searches for the optimum solution of the horizontal size and the vertical size of the normal surface within the second search range. Then, the CPU 11 sets the optimum solution searched within the second search range to the horizontal size and the vertical size of the normal surface.
  • the anomaly detection device 1 configured in this way has an optimum solution (hereinafter, parameter) within a preset first search range for the clustering coefficient, regularization coefficient, and map size (hereinafter referred to as parameters) used to generate a normal model.
  • the first optimum solution is searched.
  • the anomaly detection device 1 searches for the optimum solution of the parameter (hereinafter referred to as the second optimum solution) within the second search range including the searched first optimum solution and set to be narrower than the first search range. ..
  • the anomaly detection device 1 roughly searches for the first optimum solution within the first search range, and then finely searches for the second optimum solution within the second search range to determine the optimum solution for the parameter. Therefore, the amount of calculation for searching for the optimum solution can be reduced.
  • the anomaly detection device 1 searches for the optimum solution in the order of the clustering coefficient, the regularization coefficient, and the map size.
  • the order of clustering coefficient, regularization coefficient, and map size has the greatest effect on the accuracy of the normal model. As a result, the abnormality detection device 1 can suppress a decrease in the accuracy of the normal model.
  • S830 and S840 correspond to the processing as the first search unit and the first search procedure
  • S850 and S860 correspond to the processing as the second search unit and the second search procedure.
  • the abnormality detection device 1 shows a mode of detecting an abnormality of a vehicle.
  • the anomaly detection device 1 may detect anomalies in transportation equipment, farm tool equipment, construction equipment, and the like.
  • the mode in which the abnormality detection device 1 is mounted on the vehicle is shown.
  • the abnormality detection device 1 does not have to be mounted on the vehicle.
  • the abnormality detection device 1 may be installed outside the vehicle and may be connected to the connected ECU of the vehicle by wire or wirelessly.
  • Mode 4 In the above embodiment, a mode is shown in which the normal surface is learned as a normal model by combining the training target data, the first state observed value, and the first latent state value and inputting them into the competitive neural network.
  • the latent state value may be included in the variables constituting the state observer.
  • a normal model is generated by combining the training target data and the first state observation value calculated including the latent state value and inputting them into the competitive neural network.
  • the control device 2 and its method described in the present disclosure are provided by a dedicated computer provided by configuring a processor and memory programmed to perform one or more functions embodied by a computer program. It may be realized. Alternatively, the control device 2 and its method described in the present disclosure may be realized by a dedicated computer provided by configuring a processor with one or more dedicated hardware logic circuits. Alternatively, the control device 2 and its method described in the present disclosure are a combination of a processor and memory programmed to perform one or more functions and a processor configured by one or more hardware logic circuits. It may be realized by one or more dedicated computers configured by.
  • the computer program may also be stored on a computer-readable non-transitional tangible recording medium as an instruction executed by the computer.
  • the method for realizing the functions of each part included in the control device 2 does not necessarily include software, and all the functions may be realized by using one or a plurality of hardware.
  • a plurality of functions possessed by one component in the above embodiment may be realized by a plurality of components, or one function possessed by one component may be realized by a plurality of components. Further, a plurality of functions possessed by the plurality of components may be realized by one component, or one function realized by the plurality of components may be realized by one component. Further, a part of the configuration of the above embodiment may be omitted. Further, at least a part of the configuration of the above embodiment may be added or replaced with the configuration of the other above embodiment.
  • the present disclosure can also be realized in various forms such as a medium and an abnormality detection method.

Abstract

A normal model generation unit (106) generates a normal model by inputting, to a competitive neural network, data consisting of data to be learned, a first state observation value, and a first latent state value. The first state observation value and the first latent state value are obtained by inputting the data to be learned to a state observer and a qualitative soft sensor, respectively. An abnormality level calculation unit (108) calculates an abnormality level by comparing data consisting of data to be monitored, a second state observation value, and a second latent state value with the normal model. The second state observation value and the second latent state value are obtained by inputting the data to be monitored to a state observer and a qualitative soft sensor, respectively.

Description

異常検出装置、異常検出方法および異常検出プログラムAnomaly detection device, anomaly detection method and anomaly detection program 関連出願の相互参照Cross-reference of related applications
 本国際出願は、2020年7月31日に日本国特許庁に出願された日本国特許出願第2020-130838号に基づく優先権を主張するものであり、日本国特許出願第2020-130838号の全内容を参照により本国際出願に援用する。 This international application claims priority based on Japanese Patent Application No. 2020-13038 filed with the Japan Patent Office on July 31, 2020, and Japanese Patent Application No. 2020-13038. The entire contents are referred to in this international application.
 本開示は、競合型ニューラルネットワークを用いて異常を検出する異常検出装置、方法およびプログラムに関する。 The present disclosure relates to anomaly detection devices, methods and programs for detecting anomalies using a competitive neural network.
 近年、機械学習を用いて各種機器の異常を検出する手法が提案されている。特許文献1には、競合型ニューラルネットワークを用いて実センサ観測値を万遍なく学習させることにより、回転数、経年劣化、日時および季節等によって正常状態にばらつきがある場合でも、異常の有無を適切に診断する異常監視装置が記載されている。 In recent years, a method of detecting abnormalities in various devices using machine learning has been proposed. Patent Document 1 describes the presence or absence of abnormalities even when the normal state varies depending on the number of rotations, deterioration over time, date and time, season, etc. by learning the actual sensor observation values evenly using a competitive neural network. An abnormality monitoring device for proper diagnosis is described.
特開2007-198918号公報Japanese Unexamined Patent Publication No. 2007-198918
 発明者の詳細な検討の結果、実センサの観測値から読み取れる情報および特徴から異常を検出する場合において、異常であるにも関わらず正常と判定してしまう誤判定が発生することがあるという課題が見出された。 As a result of the inventor's detailed examination, when an abnormality is detected from the information and features that can be read from the observed values of the actual sensor, there is a problem that an erroneous judgment may occur in which the abnormality is determined to be normal even though it is an abnormality. Was found.
 本開示は、異常検出精度を向上させる。 This disclosure improves the accuracy of abnormality detection.
 本開示の一態様は、データ取得部と、正常モデル生成部と、異常度算出部と、判定部とを備える異常検出装置である。 One aspect of the present disclosure is an abnormality detection device including a data acquisition unit, a normal model generation unit, an abnormality degree calculation unit, and a determination unit.
 データ取得部は、異常を検出する対象である異常検出対象の学習対象データおよび監視対象データを取得するように構成される。 The data acquisition unit is configured to acquire the learning target data and the monitoring target data of the abnormality detection target, which is the target for detecting the abnormality.
 正常モデル生成部は、学習対象データと、異常検出対象が有する系統の状態を表す状態観測器に学習対象データを入力することによって得られる第1状態観測値と、異常検出対象の潜在状態を表す質的ソフトセンサに学習対象データを入力することによって得られる第1潜在状態値とにより構成されるデータを競合型ニューラルネットワークに入力することにより正常モデルを生成するように構成される。 The normal model generator represents the learning target data, the first state observation value obtained by inputting the training target data into the state observer representing the state of the system of the abnormality detection target, and the latent state of the abnormality detection target. It is configured to generate a normal model by inputting data composed of a first latent state value obtained by inputting training target data into a qualitative soft sensor into a competitive neural network.
 異常度算出部は、監視対象データと、状態観測器に監視対象データを入力することによって得られる第2状態観測値と、質的ソフトセンサに監視対象データを入力することによって得られる第2潜在状態値とにより構成されるデータを正常モデルと比較することにより、異常検出対象の異常の度合いを示す異常度を算出するように構成される。 The anomaly degree calculation unit has the monitored data, the second state observed value obtained by inputting the monitored data into the state observer, and the second latent value obtained by inputting the monitored data into the qualitative soft sensor. By comparing the data composed of the state values with the normal model, it is configured to calculate the degree of abnormality indicating the degree of abnormality of the abnormality detection target.
 判定部は、異常度算出部により算出された異常度に基づいて、異常検出対象が正常であるか異常であるかを判定するように構成される。 The determination unit is configured to determine whether the abnormality detection target is normal or abnormal based on the abnormality degree calculated by the abnormality degree calculation unit.
 このように構成された本開示の異常検出装置は、学習対象データおよび第1状態観測値に第1潜在状態値を加えて正常モデルを生成し、監視対象データおよび第2状態観測値に第2潜在状態値を加えて異常度を算出する。これにより、本開示の異常検出装置は、異常検出対象の状態を含めて学習した正常モデルにより異常を検出することができ、異常検出精度を向上させることができる。 The anomaly detection device of the present disclosure configured in this way adds the first latent state value to the training target data and the first state observation value to generate a normal model, and adds the second state observation value to the monitoring target data and the second state observation value. Calculate the degree of anomaly by adding the latent state value. Thereby, the abnormality detection device of the present disclosure can detect the abnormality by the normal model learned including the state of the abnormality detection target, and can improve the abnormality detection accuracy.
異常検出装置の構成を示すブロック図である。It is a block diagram which shows the structure of an abnormality detection apparatus. 異常検出装置の機能的な構成を示す機能ブロック図である。It is a functional block diagram which shows the functional configuration of an abnormality detection apparatus. 駆動系状態観測器の構成を示す図である。It is a figure which shows the structure of the drive system state observer. 空燃比系状態観測器の構成を示す図である。It is a figure which shows the structure of the air-fuel ratio system state observer. 第1実施形態の学習処理を示すフローチャートである。It is a flowchart which shows the learning process of 1st Embodiment. 質的ソフトセンサ生成処理を示すフローチャートである。It is a flowchart which shows the qualitative soft sensor generation processing. 質的ソフトセンサの生成方法を説明する図である。It is a figure explaining the generation method of a qualitative soft sensor. 状態観測器生成処理を示すフローチャートである。It is a flowchart which shows the state observer generation process. 状態観測器間の相関の最大化を説明する図である。It is a figure explaining the maximization of the correlation between state observers. 第1実施形態の正常面を示す図である。It is a figure which shows the normal surface of 1st Embodiment. 第1実施形態の監視処理を示すフローチャートである。It is a flowchart which shows the monitoring process of 1st Embodiment. 異常度算出処理を示すフローチャートである。It is a flowchart which shows the abnormality degree calculation process. 異常度、第1潜在状態および第2潜在状態のタイミングチャートである。It is a timing chart of the anomaly degree, the first latent state and the second latent state. 第2実施形態の学習処理を示すフローチャートである。It is a flowchart which shows the learning process of 2nd Embodiment. 第2実施形態の監視処理を示すフローチャートである。It is a flowchart which shows the monitoring process of 2nd Embodiment. 吸入空気量および負荷量のタイミングチャートと、吸入空気量および負荷量を軸とするグラフである。It is a timing chart of the intake air amount and the load amount, and the graph about the intake air amount and the load amount as an axis. 第2実施形態の正常面を示す図である。It is a figure which shows the normal surface of the 2nd Embodiment. 第2実施形態の異常判定方法を説明する図である。It is a figure explaining the abnormality determination method of 2nd Embodiment. 第3実施形態の学習処理を示すフローチャートである。It is a flowchart which shows the learning process of 3rd Embodiment. パラメータ設定処理を示すフローチャートである。It is a flowchart which shows the parameter setting process. クラスタリング係数設定処理を示すフローチャートである。It is a flowchart which shows the clustering coefficient setting process. 最適解を探索する方法を説明する図である。It is a figure explaining the method of searching for the optimum solution. 異常度が正値と負値との両方で表現されることを示す図である。It is a figure which shows that an abnormality degree is expressed by both a positive value and a negative value. 潜在状態値を含む駆動系状態観測器の構成を示す図である。It is a figure which shows the structure of the drive system state observer including the latent state value.
 [第1実施形態]
 以下に本開示の第1実施形態を図面とともに説明する。
[First Embodiment]
The first embodiment of the present disclosure will be described below together with the drawings.
 本実施形態の異常検出装置1は、車両に搭載され、図1に示すように、制御装置2と、通信装置3と、データ記憶装置4と、表示装置5とを備える。 The abnormality detection device 1 of the present embodiment is mounted on a vehicle and includes a control device 2, a communication device 3, a data storage device 4, and a display device 5, as shown in FIG.
 制御装置2は、CPU11、ROM12およびRAM13等を備えたマイクロコンピュータを中心に構成された電子制御装置である。マイクロコンピュータの各種機能は、CPU11が非遷移的実体的記録媒体に格納されたプログラムを実行することにより実現される。この例では、ROM12が、プログラムを格納した非遷移的実体的記録媒体に該当する。また、このプログラムの実行により、プログラムに対応する方法が実行される。なお、CPU11が実行する機能の一部または全部を、一つあるいは複数のIC等によりハードウェア的に構成してもよい。また、制御装置2を構成するマイクロコンピュータの数は1つでも複数でもよい。 The control device 2 is an electronic control device mainly composed of a microcomputer equipped with a CPU 11, ROM 12, RAM 13, and the like. Various functions of the microcomputer are realized by the CPU 11 executing a program stored in a non-transitional substantive recording medium. In this example, ROM 12 corresponds to a non-transitional substantive recording medium in which a program is stored. Also, by executing this program, the method corresponding to the program is executed. In addition, a part or all of the functions executed by the CPU 11 may be configured in terms of hardware by one or a plurality of ICs or the like. Further, the number of microcomputers constituting the control device 2 may be one or a plurality.
 通信装置3は、通信線を介して複数のECUとの間でデータ通信可能に接続されており、CAN通信プロトコルに従ってデータの送受信を行う。通信装置3に接続されている複数のECUは、具体的には、エンジン制御を行うエンジンECU、ブレーキ制御を行うブレーキECU、ステアリング制御を行うステアリングECU等である。CANは、Controller Area Networkの略である。CANは登録商標である。 The communication device 3 is connected to a plurality of ECUs via a communication line so as to be capable of data communication, and transmits / receives data according to the CAN communication protocol. Specifically, the plurality of ECUs connected to the communication device 3 are an engine ECU that performs engine control, a brake ECU that performs brake control, a steering ECU that performs steering control, and the like. CAN is an abbreviation for Controller Area Network. CAN is a registered trademark.
 データ記憶装置4は、各種データを記憶するための装置であり、本実施形態では例えばハードディスクドライブである。 The data storage device 4 is a device for storing various data, and is, for example, a hard disk drive in this embodiment.
 表示装置5は、制御装置2からの指示に基づいて、表示画面に各種画像を表示する。 The display device 5 displays various images on the display screen based on the instruction from the control device 2.
 制御装置2は、CPU11がプログラムを実行することで実現される機能の構成として、図2に示すように、データ取得部101、状態観測器生成部104、正常モデル生成部106、異常度算出部108、判定部109、要因分析部110および表示部111を備える。制御装置2を構成するこれらの要素を実現する手法はソフトウェアに限るものではなく、その一部又は全部の要素について、一つあるいは複数のハードウェアを用いて実現してもよい。例えば、上記機能がハードウェアである電子回路によって実現される場合、その電子回路は多数の論理回路を含むデジタル回路、又はアナログ回路、あるいはこれらの組合せによって実現してもよい。 As shown in FIG. 2, the control device 2 has a data acquisition unit 101, a state observer generation unit 104, a normal model generation unit 106, and an abnormality degree calculation unit as a configuration of functions realized by the CPU 11 executing a program. It includes 108, a determination unit 109, a factor analysis unit 110, and a display unit 111. The method for realizing these elements constituting the control device 2 is not limited to software, and a part or all of the elements may be realized by using one or a plurality of hardware. For example, when the above function is realized by an electronic circuit which is hardware, the electronic circuit may be realized by a digital circuit including a large number of logic circuits, an analog circuit, or a combination thereof.
 またデータ記憶装置4は、学習対象データ記憶部102、監視対象データ記憶部103、状態観測器情報記憶部105および正常モデルパラメータ記憶部107を備える。 Further, the data storage device 4 includes a learning target data storage unit 102, a monitoring target data storage unit 103, a state observer information storage unit 105, and a normal model parameter storage unit 107.
 データ取得部101は、異常検出装置1に直接または間接的に接続された各種センサから、学習対象データおよび監視対象データを取得する。 The data acquisition unit 101 acquires learning target data and monitoring target data from various sensors directly or indirectly connected to the abnormality detection device 1.
 各種センサは、車両に搭載されたセンサ、および、各種の車両電子制御装置に接続されたセンサなどである。車両に搭載されたセンサとしては、温度計、湿度計およびGPSなどが挙げられる。車両電子制御装置に接続されたセンサとしては、エンジン回転センサ、タービン回転センサ、酸素センサおよび空燃比センサなどが挙げられる。 Various sensors include sensors mounted on vehicles and sensors connected to various vehicle electronic control devices. Examples of the sensor mounted on the vehicle include a thermometer, a hygrometer, and a GPS. Examples of the sensor connected to the vehicle electronic control device include an engine rotation sensor, a turbine rotation sensor, an oxygen sensor, an air-fuel ratio sensor, and the like.
 なお、データ取得部101は、ネットワークを介して、学習対象データおよび監視対象データを間接的に取得してもよい。例えば、データ取得部101は、ネットワークを介してデータベースからダウンロードすることにより、学習対象データおよび監視対象データを取得してもよい。 The data acquisition unit 101 may indirectly acquire the learning target data and the monitoring target data via the network. For example, the data acquisition unit 101 may acquire the learning target data and the monitoring target data by downloading from the database via the network.
 学習対象データおよび監視対象データは、車両の故障と車両の故障メカニズムとの少なくとも一方に関するデータであり、車両に関するデータと走行環境に関するデータとを含む。但し、学習対象データは、車両が正常状態である場合のデータである。監視対象データは、車両が正常状態である場合と、車両が異常状態である場合との両方を含むデータである。 The learning target data and the monitoring target data are data related to at least one of the vehicle failure and the vehicle failure mechanism, and include data related to the vehicle and data related to the driving environment. However, the learning target data is data when the vehicle is in a normal state. The monitored data is data including both the case where the vehicle is in a normal state and the case where the vehicle is in an abnormal state.
 学習対象データ記憶部102は、データ取得部101が取得した学習対象データを記憶する。 The learning target data storage unit 102 stores the learning target data acquired by the data acquisition unit 101.
 監視対象データ記憶部103は、データ取得部101が取得した監視対象データを記憶する。 The monitoring target data storage unit 103 stores the monitoring target data acquired by the data acquisition unit 101.
 状態観測器生成部104は、変数構成を取得し、取得した変数構成に含まれる変数を用いて、車両の系統ごとに状態観測器を生成する。 The state observer generation unit 104 acquires a variable configuration and uses the variables included in the acquired variable configuration to generate a state observer for each vehicle system.
 状態観測器は、オブザーバまたはソフトセンサともいう。変数は、データ取得部101が取得する学習対象データおよび監視対象データに対応する。系統は、車両を構成する制御装置およびセンサ等を車両の機能毎にまとめることにより形成されている。車両の系統として、例えば、駆動系、空燃比系、空気系、点火系、燃料系およびスロットル系などが挙げられる。 The state observer is also called an observer or a soft sensor. The variables correspond to the learning target data and the monitoring target data acquired by the data acquisition unit 101. The system is formed by grouping the control devices and sensors constituting the vehicle for each function of the vehicle. Examples of the vehicle system include a drive system, an air-fuel ratio system, an air system, an ignition system, a fuel system, and a throttle system.
 状態観測器生成部104は、設定者の知見に基づき、状態観測器が車両の機能および故障メカニズムを表現するために必要または有益な変数構成を取得するようにしてもよい。変数構成は、状態観測器を構成するために用いられる1つの変数、または、状態観測器を構成するために用いられる複数の変数の組み合わせである。 The state observer generator 104 may acquire a variable configuration necessary or useful for the state observer to express the function and failure mechanism of the vehicle based on the knowledge of the setter. The variable configuration is one variable used to construct the state observer, or a combination of a plurality of variables used to construct the state observer.
 状態観測器生成部104は、例えば式(1)に示すように、取得した変数構成に含まれる変数を線形結合することにより、状態観測器を生成する。式(1)のaは、p番目の状態観測器である。xpiは、p番目の状態観測器におけるi番目の変数である。apiは、p番目の状態観測器におけるi番目の係数である。すなわち、apiは、変数xpiの係数である。iは、1からnまでの整数である。なお、状態観測器生成部104は、係数apiの初期値をランダムな値とし、変数xpiを結合して状態観測器の初期状態を生成する。 The state observer generation unit 104 generates a state observer by linearly combining the variables included in the acquired variable configuration, for example, as shown in the equation (1). A p X p in the equation (1) is the p-th state observer. xpi is the i-th variable in the p-th state observer. a pi is the i-th coefficient in the p-th state observer. That is, a pi is a coefficient of the variable x pi . i is an integer from 1 to n. The state observer generation unit 104 sets the initial value of the coefficient a pi to a random value and combines the variables x pi to generate the initial state of the state observer.
Figure JPOXMLDOC01-appb-M000001
 
 状態観測器は、異常検出装置1の検出対象となる機器の機能、または、機器の故障メカニズムを反映していることが望ましい。本実施形態では、機器の機能の例として、車両の駆動と、車両の空燃比とを含む。
Figure JPOXMLDOC01-appb-M000001

It is desirable that the state observer reflects the function of the device to be detected by the abnormality detection device 1 or the failure mechanism of the device. In this embodiment, as an example of the function of the device, the driving of the vehicle and the air-fuel ratio of the vehicle are included.
 機器の故障メカニズムとは、機器の故障が生じる仕組みである。「機器の故障メカニズムを反映している」とは、機器の機能または機器の故障メカニズムに応じて、状態観測器から出力される状態観測値が変化することである。 The device failure mechanism is a mechanism that causes a device failure. "Reflecting the failure mechanism of the equipment" means that the state observation value output from the state observer changes according to the function of the equipment or the failure mechanism of the equipment.
 状態観測器の変数構成に含まれる変数は、異常検出装置1の検出対象となる機器の機能の因子、または機器の故障メカニズムの因子であることが望ましい。例えば、機器の故障メカニズムがエンジンのオーバーヒートの場合には、エンジンの温度が、オーバーヒートを引き起こす直接的な因子である。また、エンジンの回転数と冷却液の量とが、エンジンの温度上昇を引き起こす直接的な因子、すなわち、オーバーヒートを引き起こす間接的な因子である。 It is desirable that the variables included in the variable configuration of the state observer are factors of the function of the equipment to be detected by the abnormality detection device 1 or factors of the failure mechanism of the equipment. For example, if the equipment failure mechanism is engine overheating, engine temperature is a direct factor in causing overheating. Further, the engine speed and the amount of the coolant are direct factors that cause the temperature rise of the engine, that is, indirect factors that cause overheating.
 例えば、図3に示すように、車両の駆動系を機器の機能とした状態観測器(以下、駆動系状態観測器)は、エンジン回転数とタービン回転数とを変数として生成される。具体的には、1番目の状態観測器である駆動系状態観測器aは、式(2)に示すように、エンジン回転数およびタービン回転数をそれぞれ変数x11および変数x12として、係数a11および係数a12を用いた線形結合により生成される。 For example, as shown in FIG. 3, a state observer (hereinafter referred to as a drive system state observer) in which the drive system of a vehicle is a function of an apparatus is generated with the engine rotation speed and the turbine rotation speed as variables. Specifically, the drive system state observer a 1 X 1 , which is the first state observer, sets the engine rotation speed and the turbine rotation speed as variables x 11 and variables x 12 , respectively, as shown in the equation (2). , Generated by linear coupling with coefficients a11 and a12 .
Figure JPOXMLDOC01-appb-M000002
 
 また、図4に示すように、車両の空燃比系を機器の機能とした状態観測器(以下、空燃比系状態観測器)は、酸素センサ電圧と空燃比センサ電流とを変数として生成される。具体的には、2番目の状態観測器である空燃比系状態観測器aは、式(3)に示すように、酸素センサ電圧および空燃比センサ電流をそれぞれ変数x21および変数x22として、係数a21および係数a22を用いた線形結合により生成される。
Figure JPOXMLDOC01-appb-M000002

Further, as shown in FIG. 4, a state observer having the air-fuel ratio system of the vehicle as a function of the device (hereinafter referred to as an air-fuel ratio system state observer) is generated with the oxygen sensor voltage and the air-fuel ratio sensor current as variables. .. Specifically, the air-fuel ratio system state observer a 2 X 2 , which is the second state observer, changes the oxygen sensor voltage and the air-fuel ratio sensor current into variables x 21 and variables x, respectively, as shown in the equation (3). As 22 , it is generated by a linear coupling using the coefficients a 21 and the coefficients a 22 .
Figure JPOXMLDOC01-appb-M000003
 
 なお、上述した変数以外の変数を用いて状態観測器を生成してもよい。また、結合する変数の数は2つに限らず、3つ以上でもよい。さらに、生成する状態観測器の数は2つに限らず、1つでもよいし、3つ以上でもよい。
Figure JPOXMLDOC01-appb-M000003

The state observer may be generated by using variables other than the above-mentioned variables. Further, the number of variables to be combined is not limited to two, and may be three or more. Further, the number of state observers to be generated is not limited to two, and may be one or three or more.
 本実施形態では、状態観測器の例として、入力-出力の2層構造を有する例を挙げたが、3層以上であってもよい。3層以上の場合には、階層型ニューラルネットワークを用いて記述してもよい。 In this embodiment, as an example of the state observer, an example having a two-layer structure of input and output is given, but three or more layers may be used. In the case of three or more layers, it may be described using a hierarchical neural network.
 また、状態観測器として、変数を線形で結合する例を挙げたが、これに限らず、非線形な結合で構成されてもよい。例えば、階層型ニューラルネットワークを用いて記述する場合には、シグモイド関数を用いるので、非線形の結合で構成されることになる。 Also, as a state observer, an example of linearly connecting variables was given, but the present invention is not limited to this, and may be composed of non-linear coupling. For example, when describing using a hierarchical neural network, since a sigmoid function is used, it is composed of non-linear coupling.
 状態観測器を生成することにより、直接センサ等で測定することができない状態観測値を推定することができる。また、機器の機能および故障メカニズムを状態観測器に反映させることにより、故障の要因分析が容易になる。 By generating a state observer, it is possible to estimate state observation values that cannot be directly measured by a sensor or the like. Further, by reflecting the function of the device and the failure mechanism in the state observer, the cause analysis of the failure becomes easy.
 状態観測器生成部104は、後述する質的ソフトセンサを生成する。ここで、「質的」データとは、直接数値で測定できないデータを指し、名義尺度及び順序尺度が属するデータの種類である。 The state observer generator 104 generates a qualitative soft sensor, which will be described later. Here, "qualitative" data refers to data that cannot be directly measured numerically, and is a type of data to which a nominal scale and an ordinal scale belong.
 状態観測器情報記憶部105は、状態観測器生成部104により生成された状態観測器および質的ソフトセンサの係数および変数構成を記憶する。 The state observer information storage unit 105 stores the coefficients and variable configurations of the state observer and the qualitative soft sensor generated by the state observer generation unit 104.
 なお、異常検出装置1は、状態観測器を生成するときに状態観測器生成部104を備えていればよい。すなわち、異常検出装置1は、状態観測器を生成して状態観測器の変数構成および係数を状態観測器情報記憶部105に記憶した後に状態観測器生成部104を異常検出装置1から切り離してもよい。 The abnormality detection device 1 may include a state observer generation unit 104 when generating a state observer. That is, even if the anomaly detection device 1 generates a state observer and stores the variable configuration and coefficient of the state observer in the state observer information storage unit 105, the state observer generation unit 104 is separated from the anomaly detection device 1. good.
 正常モデル生成部106は、学習対象データ記憶部102から学習対象データを読み出し、状態観測器情報記憶部105から状態観測器および質的ソフトセンサの変数構成および係数を読み出す。そして正常モデル生成部106は、状態観測器ごとに、状態観測器を構成する変数に対して学習対象データを当て嵌めて第1状態観測値を算出する。また正常モデル生成部106は、質的ソフトセンサごとに、質的ソフトセンサを構成する変数に対して学習対象データを当て嵌めて第1潜在状態値を算出する。 The normal model generation unit 106 reads out the learning target data from the learning target data storage unit 102, and reads out the variable configurations and coefficients of the state observer and the qualitative soft sensor from the state observer information storage unit 105. Then, the normal model generation unit 106 calculates the first state observation value by applying the training target data to the variables constituting the state observer for each state observer. Further, the normal model generation unit 106 calculates the first latent state value by applying the learning target data to the variables constituting the qualitative soft sensor for each qualitative soft sensor.
 正常モデル生成部106は、例えば、学習対象データとして取得したエンジン回転数およびタービン回転数を式(2)に代入して得られる値を、駆動系状態観測器aの第1状態観測値とする。また正常モデル生成部106は、学習対象データとして取得した酸素センサ電圧および空燃比センサ電流を式(3)に代入して得られる値を、空燃比系状態観測器aの第1状態観測値とする。 The normal model generation unit 106, for example, substitutes the engine rotation speed and the turbine rotation speed acquired as learning target data into the equation (2), and uses the values obtained by substituting the values obtained by substituting the values obtained by substituting the engine rotation speed and the turbine rotation speed into the first state observation of the drive system state observer a 1 X 1 . Use as a value. Further, the normal model generation unit 106 substitutes the oxygen sensor voltage and the air fuel ratio sensor current acquired as the learning target data into the equation (3), and uses the values obtained by substituting the values obtained by substituting the values obtained by substituting the values obtained by substituting the oxygen sensor voltage and the air fuel ratio sensor current into the first state of the air fuel ratio system state observer a2 X 2 . Use as an observed value.
 そして正常モデル生成部106は、第1状態観測値と第1潜在状態値と学習対象データとを結合する。例えば、正常モデル生成部106は、エンジン回転数、タービン回転数、駆動系状態観測器aの第1状態観測値、酸素センサ電圧、空燃比センサ電流、空燃比系状態観測器aの第1状態観測値、および、第1潜在状態値の7つのデータを結合する。なお、第1状態観測値と第1潜在状態値と学習対象データとの結合は、第1状態観測値と第1潜在状態値と学習対象データとを同時に競合型ニューラルネットワークに入力できる状態となればよい。 Then, the normal model generation unit 106 combines the first state observed value, the first latent state value, and the learning target data. For example, the normal model generator 106 may include engine speed, turbine speed, first state observed value of drive system state observer a 1 X 1 , oxygen sensor voltage, air fuel ratio sensor current, air fuel ratio system state observer a 2 . The seven data of the first state observed value of X2 and the first latent state value are combined. The combination of the first state observed value, the first latent state value, and the training target data should be such that the first state observed value, the first latent state value, and the training target data can be input to the competitive neural network at the same time. Just do it.
 さらに正常モデル生成部106は、結合したデータを競合型ニューラルネットワークに入力することにより、正常モデルとして正常面を学習する。競合型ニューラルネットワークは、入力層と出力層との2つの層を備えるネットワークであり、複数個の入力層ニューロンと、入力層ニューロンに全結合で結ばれた複数個の出力層ニューロンとで構成されている。各出力層ニューロンの重みデータが、正常面に相当する。 Further, the normal model generation unit 106 learns the normal surface as a normal model by inputting the combined data into the competitive neural network. A competitive neural network is a network having two layers, an input layer and an output layer, and is composed of a plurality of input layer neurons and a plurality of output layer neurons fully connected to the input layer neurons. ing. The weight data of each output layer neuron corresponds to the normal plane.
 なお、競合型ニューラルネットワークに与える初期値としては、例えば、車種、測定季節、昼夜、カスタマイズ仕様、経年度など、入力されるデータの属性の組み合わせが複数ある場合に、万遍なくサンプリングあるいはランダムにサンプリングすることが望ましい。これにより、競合型ニューラルネットワークのマップ上のニューロンの重みベクトルの学習時の収束を速くすることができる。 The initial values given to the competitive neural network are, for example, evenly sampled or randomly sampled or randomly when there are multiple combinations of data attribute attributes to be input, such as vehicle type, measurement season, day and night, customized specifications, and age. It is desirable to sample. This makes it possible to accelerate the convergence of the weight vectors of neurons on the map of the competitive neural network during learning.
 本実施形態では、競合型ニューラルネットワークに入力された学習対象データ、第1状態観測値および第1潜在状態値と、勝者ユニットのニューロン重みデータとの差分である異常度が算出される。そして、差分の集合を用いて閾値が算出される。例えば差分(または、差分の絶対値)の集合の99.9%分位点の定数倍が閾値として用いられる。 In the present embodiment, the degree of abnormality, which is the difference between the learning target data, the first state observed value and the first latent state value, and the neuron weight data of the winning unit, which are input to the competitive neural network, is calculated. Then, the threshold value is calculated using the set of differences. For example, a constant multiple of the 99.9% quantile of a set of differences (or absolute values of differences) is used as the threshold.
 正常モデルパラメータ記憶部107は、正常モデル生成部106が学習した正常面を表す学習済みパラメータを記憶する。また正常モデルパラメータ記憶部107は、正常モデル生成部106で算出された閾値を記憶する。 The normal model parameter storage unit 107 stores learned parameters representing the normal surface learned by the normal model generation unit 106. Further, the normal model parameter storage unit 107 stores the threshold value calculated by the normal model generation unit 106.
 異常度算出部108は、監視対象データ記憶部103から監視対象データを読み出し、状態観測器情報記憶部105から状態観測器および質的ソフトセンサの変数構成および係数を読み出す。そして異常度算出部108は、状態観測器ごとに、状態観測器を構成する変数に対して監視対象データを当て嵌めて第2状態観測値を算出する。また異常度算出部108は、質的ソフトセンサごとに、質的ソフトセンサを構成する変数に対して監視対象データを当て嵌めて第2潜在状態値を算出する。 The abnormality degree calculation unit 108 reads the monitored data from the monitored data storage unit 103, and reads the variable configurations and coefficients of the state observer and the qualitative soft sensor from the state observer information storage unit 105. Then, the abnormality degree calculation unit 108 calculates the second state observation value by applying the monitored data to the variables constituting the state observer for each state observer. Further, the abnormality degree calculation unit 108 calculates the second latent state value by applying the monitored data to the variables constituting the qualitative soft sensor for each qualitative soft sensor.
 異常度算出部108は、例えば、監視対象データとして取得したエンジン回転数およびタービン回転数を式(2)に代入して得られる値を、駆動系状態観測器aの第2状態観測値とする。また異常度算出部108は、監視対象データとして取得した酸素センサ電圧および空燃比センサ電流を式(3)に代入して得られる値を、空燃比系状態観測器aの第2状態観測値とする。 The anomaly degree calculation unit 108, for example, substitutes the engine rotation speed and the turbine rotation speed acquired as monitoring target data into the equation (2) and obtains the values obtained by observing the second state of the drive system state observer a 1 X 1 . Use as a value. Further, the abnormality degree calculation unit 108 substitutes the oxygen sensor voltage and the air fuel ratio sensor current acquired as the monitored data into the equation (3), and uses the values obtained by substituting the values obtained by substituting the values obtained by substituting the values obtained by substituting the oxygen sensor voltage and the air fuel ratio sensor current into the second state of the air fuel ratio system state observer a2 X 2 . Use as an observed value.
 そして異常度算出部108は、第2状態観測値と第2潜在状態値と監視対象データとを結合する。例えば、異常度算出部108は、エンジン回転数、タービン回転数、駆動系状態観測器aの第2状態観測値、酸素センサ電圧、空燃比センサ電流、空燃比系状態観測器aの第2状態観測値、および、第2潜在状態値の7つのデータを結合する。なお、第2状態観測値と第2潜在状態値と監視対象データとの結合は、第2状態観測値と第2潜在状態値と監視対象データとを同時に競合型ニューラルネットワークに入力できる状態となればよい。 Then, the abnormality degree calculation unit 108 combines the second state observed value, the second latent state value, and the monitored data. For example, the abnormality degree calculation unit 108 includes the engine speed, the turbine speed, the second state observed value of the drive system state observer a 1 X 1 , the oxygen sensor voltage, the air fuel ratio sensor current, and the air fuel ratio system state observer a 2 . The 7 data of the 2nd state observed value of X2 and the 2nd latent state value are combined. The combination of the second state observed value, the second latent state value, and the monitored data should be such that the second state observed value, the second latent state value, and the monitored data can be input to the competitive neural network at the same time. Just do it.
 さらに異常度算出部108は、正常モデルパラメータ記憶部107から、正常面(すなわち、ニューロンの重みデータ)などの学習済みパラメータを読み出す。そして異常度算出部108は、結合したデータを競合型ニューラルネットワークに入力することにより、監視対象データ、第2状態観測値および第2潜在状態値と正常面との距離を、異常度として算出する。 Further, the abnormality degree calculation unit 108 reads learned parameters such as the normal surface (that is, neuron weight data) from the normal model parameter storage unit 107. Then, the abnormality degree calculation unit 108 calculates the distance between the monitored data, the second state observed value and the second latent state value and the normal surface as the abnormality degree by inputting the combined data into the competitive neural network. ..
 判定部109は、正常モデルパラメータ記憶部107から読み出した閾値と、異常度算出部108が算出した異常度とに基づいて、車両が正常であるか異常であるかを判定する。 The determination unit 109 determines whether the vehicle is normal or abnormal based on the threshold value read from the normal model parameter storage unit 107 and the abnormality degree calculated by the abnormality degree calculation unit 108.
 要因分析部110は、車両が異常であると判定部109により判定された場合に、異常と判定される原因となった第2状態観測値、第2状態観測値および監視対象データを用いて、異常の原因を特定する。 When the determination unit 109 determines that the vehicle is abnormal, the factor analysis unit 110 uses the second state observed value, the second state observed value, and the monitored data that caused the determination of the abnormality. Identify the cause of the anomaly.
 表示部111は、異常の原因を特定する情報を表示装置5の表示画面に表示する。 The display unit 111 displays information for identifying the cause of the abnormality on the display screen of the display device 5.
 次に、制御装置2のCPU11が実行する学習処理の手順を説明する。学習処理は、制御装置2の動作中において繰り返し実行される処理である。 Next, the procedure of the learning process executed by the CPU 11 of the control device 2 will be described. The learning process is a process that is repeatedly executed during the operation of the control device 2.
 学習処理が実行されると、CPU11は、図5に示すように、まずS10にて、各種センサから学習対象データを取得する。 When the learning process is executed, the CPU 11 first acquires learning target data from various sensors in S10, as shown in FIG.
 さらにCPU11は、S20にて、S10で取得した学習対象データに対して、正規分布に近づける分布変換を行う。分布変換の例として、Bоx-Cоx変換およびJohnsоn変換が挙げられる。分布変換により、判定部109における判定精度が向上する可能性がある。 Further, in S20, the CPU 11 performs a distribution conversion to bring the learning target data acquired in S10 closer to a normal distribution. Examples of distribution transformations include the Bоx-Cоx transformation and the Johnson transformation. The distribution conversion may improve the determination accuracy in the determination unit 109.
 そしてCPU11は、S30にて、分布変換後の学習対象データを学習対象データ記憶部102に記憶する。 Then, in S30, the CPU 11 stores the learning target data after the distribution conversion in the learning target data storage unit 102.
 次にCPU11は、S40にて、質的ソフトセンサ生成処理を実行する。ここで、質的ソフトセンサ生成処理の手順を説明する。 Next, the CPU 11 executes a qualitative soft sensor generation process in S40. Here, the procedure of the qualitative soft sensor generation process will be described.
 質的ソフトセンサ生成処理が実行されると、CPU11は、図6に示すように、まずS210にて、共起行列を生成する。 When the qualitative soft sensor generation process is executed, the CPU 11 first generates a co-occurrence matrix in S210 as shown in FIG.
 共起行列は、図7に示すように、車両に搭載された機器(以下、車載機器)の状態の時間変化を示す複数のフラグで構成されている。共起行列CM1は、フラグA、フラグB、フラグCおよびフラグDで構成されている。車載機器の状態として、ヘッドランプのオン/オフ、変速機のギア(例えば、1速、2速、3速など)、カーエアコンの送風のオン/オフ、カーエアコンの送風量(例えば、弱、中、強など)が挙げられる。 As shown in FIG. 7, the co-occurrence matrix is composed of a plurality of flags indicating changes in the state of the equipment mounted on the vehicle (hereinafter referred to as in-vehicle equipment). The co-occurrence matrix CM1 is composed of flag A, flag B, flag C and flag D. The state of the in-vehicle device includes on / off of the headlamp, gear of the transmission (for example, 1st speed, 2nd speed, 3rd speed, etc.), on / off of the ventilation of the car air conditioner, and the amount of ventilation of the car air conditioner (for example, weak). Medium, strong, etc.).
 フラグDの「1」、「2」、「3」はそれぞれ、カーエアコンの送風量の「弱」、「中」、「強」を示している。共起行列CM2で示すように、フラグDの代わりに、フラグD1、フラグD2およびフラグD3を用いるようにしてもよい。フラグD1は、カーエアコンの送風量が「弱」のときにセットされるフラグである。フラグD2は、カーエアコンの送風量が「中」のときにセットされるフラグである。フラグD3は、カーエアコンの送風量が「強」のときにセットされるフラグである。 Flags D "1", "2", and "3" indicate "weak", "medium", and "strong" in the air volume of the car air conditioner, respectively. As shown by the co-occurrence matrix CM2, the flags D1, the flag D2, and the flag D3 may be used instead of the flag D. The flag D1 is a flag set when the air volume of the car air conditioner is "weak". The flag D2 is a flag set when the air volume of the car air conditioner is "medium". The flag D3 is a flag set when the air volume of the car air conditioner is "strong".
 なお、車載機器の状態として、フラグの値の代わりに、フラグにおける0から1への立ち上がり、または、フラグにおける1から0への立ち上がりをカウントするようにしてもよい。また、タイムウインドウなどを用いて共起行列を生成するようにしてもよい。 As the state of the in-vehicle device, instead of the value of the flag, the rising edge from 0 to 1 in the flag or the rising edge from 1 to 0 in the flag may be counted. Further, a co-occurrence matrix may be generated by using a time window or the like.
 共起行列の生成が終了すると、CPU11は、図6に示すように、S220にて、S210で生成した共起行列について、コサイン類似度による分散共分散行列を生成する。なお、CPU11は、相互情報量による分散共分散行列を生成するようにしてもよいし、前処理なしによる分散共分散行列を生成するようにしてもよい。 When the generation of the co-occurrence matrix is completed, the CPU 11 generates a variance-covariance matrix based on the cosine similarity for the co-occurrence matrix generated in S210 in S220 as shown in FIG. The CPU 11 may generate a variance-covariance matrix based on mutual information, or may generate a variance-covariance matrix without preprocessing.
 次にCPU11は、S230にて、S220で生成された分散共分散行列に対してSVDを行うことによって、正常状態の係数(例えば、特異値など)を生成する。SVDは、Singular Value Decompositionの略である。なお、CPU11は、SVDの代わりに、バリ/プロマックス回転またはWord2Vecなどを用いて正常状態の係数を生成するようにしてもよい。 Next, the CPU 11 generates a coefficient (for example, a singular value) in a normal state by performing SVD on the variance-covariance matrix generated in S220 in S230. SVD is an abbreviation for Singular Value Decomposition. The CPU 11 may generate the coefficient in the normal state by using vari / promax rotation, Word2Vec, or the like instead of SVD.
 さらにCPU11は、S240にて、S230のSVDで算出された寄与率に基づいて次元削減を行う。そしてCPU11は、S250にて、S240での次元削減により得られた固有ベクトルを用いて質的ソフトセンサを生成する。 Further, the CPU 11 performs dimension reduction in S240 based on the contribution rate calculated by the SVD of S230. Then, the CPU 11 generates a qualitative soft sensor in S250 using the eigenvector obtained by the dimension reduction in S240.
 質的ソフトセンサは、例えば、複数のフラグの線形結合によって形成される。例えば、図7に示すように、第1潜在状態を示す質的ソフトセンサQS1は、フラグAとフラグBとの線形結合により形成される。第2潜在状態を示す質的ソフトセンサQS2は、フラグCとフラグD1とフラグD2との線形結合により形成される。なお、第1潜在状態は、例えば、車両が暖気前であることを示し、第2潜在状態は、例えば、車両が暖気後であることを示す。 The qualitative soft sensor is formed by, for example, a linear combination of a plurality of flags. For example, as shown in FIG. 7, the qualitative soft sensor QS1 indicating the first latent state is formed by a linear combination of the flag A and the flag B. The qualitative soft sensor QS2 indicating the second latent state is formed by a linear combination of the flag C, the flag D1 and the flag D2. The first latent state indicates, for example, that the vehicle is before warming up, and the second latent state indicates, for example, that the vehicle is after warming up.
 S250の処理が終了すると、CPU11は、図6に示すように、S260にて、S250で生成された質的ソフトセンサの係数と変数構成とを状態観測器情報記憶部105に記憶し、質的ソフトセンサ生成処理を終了する。 When the processing of S250 is completed, as shown in FIG. 6, the CPU 11 stores the coefficient and variable configuration of the qualitative soft sensor generated in S250 in the state observer information storage unit 105 in S260, and qualitatively. The soft sensor generation process is terminated.
 質的ソフトセンサ生成処理が終了すると、CPU11は、図5に示すように、S50にて、状態観測器生成処理を実行する。ここで、状態観測器生成処理の手順を説明する。 When the qualitative soft sensor generation process is completed, the CPU 11 executes the state observer generation process in S50 as shown in FIG. Here, the procedure of the state observer generation process will be described.
 状態観測器生成処理が実行されると、CPU11は、図8に示すように、まずS310にて、変数構成を取得する。 When the state observer generation process is executed, the CPU 11 first acquires the variable configuration in S310 as shown in FIG.
 そしてCPU11は、S320にて、例えば式(1)に示すように、取得した変数構成に含まれる変数を線形結合することにより、状態観測器を生成する。 Then, the CPU 11 generates a state observer in S320 by linearly combining the variables included in the acquired variable configuration, for example, as shown in the equation (1).
 次にCPU11は、S330にて、S320で生成した状態観測器の数が1つであるか否かを判断する。ここで、状態観測器の数が1つである場合には、CPU11は、S370に移行する。 Next, the CPU 11 determines in S330 whether or not the number of state observers generated in S320 is one. Here, when the number of state observers is one, the CPU 11 shifts to S370.
 一方、状態観測器の数が1つでない場合には、CPU11は、S340にて、S320で生成した状態観測器の数が2つであるか否かを判断する。ここで、状態観測器の数が2つである場合には、CPU11は、S350にて、生成した2つの状態観測器の相関を最大化し、S270に移行する。以下、S320で生成した2つの状態観測器のうち、一方の状態観測器を第1状態観測器、他方の状態観測器を第2状態観測器という。 On the other hand, when the number of state observers is not one, the CPU 11 determines in S340 whether or not the number of state observers generated in S320 is two. Here, when the number of state observers is two, the CPU 11 maximizes the correlation between the two generated state observers in S350, and shifts to S270. Hereinafter, of the two state observers generated in S320, one state observer is referred to as a first state observer, and the other state observer is referred to as a second state observer.
 具体的には、CPU11は、式(5)に示す制約条件下で、式(4)に示す相関係数ρが最大となるように第1状態観測器の係数と第2状態観測器の係数とを調整する。式(5)は、ラグランジュの未定乗数法の制約条件である。n,mは状態観測器の番号、Vは分散である。式(4)の分子は、第1状態観測器と第2状態観測器との標本共分散、式(4)の分母は、第1状態観測器の標本分散の平方根と第2状態観測器の標本分散の平方根との積である。 Specifically, the CPU 11 has the coefficient of the first state observer and the coefficient of the second state observer so that the correlation coefficient ρ shown in the equation (4) is maximized under the constraint conditions shown in the equation (5). And adjust. Equation (5) is a constraint of Lagrange's undetermined multiplier method. n and m are the number of the state observer, and V is the variance. The molecule of equation (4) is the sample covariance of the first state observer and the second state observer, and the denominator of equation (4) is the square root of the sample dispersion of the first state observer and the second state observer. It is the product of the square root of the sample variance.
Figure JPOXMLDOC01-appb-M000004
 
 S340にて状態観測器の数が2つでない場合には、CPU11は、S360にて、S320で生成した3つ以上の状態観測器の相関を最大化し、S370に移行する。例えば、S320で第1状態観測器、第2状態観測器および第3の状態観測器が生成されている場合には、図9に示すように、2つの状態観測器間の相関の和を最大化することが望ましい。具体的には、式(6)を用いて、2つの状態観測器間の相関の和を最大化する。Nは状態観測器の総数である。gは和を表す関数であり、gの括弧内は和の対象である。状態観測器が4つ以上である場合でも、3つの場合と同様の方法で最大化を行う。なお、本実施形態において、「和」とは、単純和の他、二乗和、絶対値和などのように演算に和を含んでいればよい。
Figure JPOXMLDOC01-appb-M000004

If the number of state observers is not two in S340, the CPU 11 maximizes the correlation between the three or more state observers generated in S320 in S360 and shifts to S370. For example, when the first state observer, the second state observer, and the third state observer are generated in S320, the sum of the correlations between the two state observers is maximized as shown in FIG. It is desirable to make it. Specifically, equation (6) is used to maximize the sum of the correlations between the two state observers. N is the total number of state observers. g is a function representing the sum, and the inside of the parentheses of g is the object of the sum. Even if there are four or more state observers, maximization is performed in the same manner as in the case of three. In the present embodiment, the "sum" may include the sum in the calculation such as the sum of squares and the sum of absolute values, in addition to the simple sum.
Figure JPOXMLDOC01-appb-M000005
 
 S370に移行すると、CPU11は、S320~S360の処理によって生成された状態観測器の係数と変数構成とを状態観測器情報記憶部105に記憶し、状態観測器生成処理を終了する。
Figure JPOXMLDOC01-appb-M000005

After shifting to S370, the CPU 11 stores the coefficients and variable configurations of the state observer generated by the processes of S320 to S360 in the state observer information storage unit 105, and ends the state observer generation process.
 状態観測器生成処理が終了すると、CPU11は、図5に示すように、S60にて、学習対象データ、変数構成および係数を読み出し、状態観測器ごとに、状態観測器を構成する変数に対して学習対象データを当て嵌めて第1状態観測値を算出する。 When the state observer generation process is completed, the CPU 11 reads out the training target data, the variable configuration and the coefficient in S60 as shown in FIG. 5, and for each state observer, for the variables constituting the state observer. The first state observation value is calculated by applying the training target data.
 さらにCPU11は、S70にて、学習対象データ、変数構成および係数を読み出し、質的ソフトセンサごとに、質的ソフトセンサを構成する変数に対して学習対象データを当て嵌めて第1潜在状態値を算出する。 Further, the CPU 11 reads out the training target data, the variable configuration, and the coefficient in S70, applies the training target data to the variables constituting the qualitative soft sensor for each qualitative soft sensor, and obtains the first latent state value. calculate.
 そしてCPU11は、S80にて、S10で取得した学習対象データと、S60で算出した第1状態観測値と、S70で算出した第1潜在状態値とを結合する。 Then, in S80, the CPU 11 combines the learning target data acquired in S10, the first state observed value calculated in S60, and the first latent state value calculated in S70.
 次にCPU11は、S90にて、S80で結合したデータを競合型ニューラルネットワークに入力することにより、正常モデルとして正常面を学習する。 Next, in S90, the CPU 11 learns the normal surface as a normal model by inputting the data combined in S80 into the competitive neural network.
 図10に示すように、初期化された正常面PL1は、ニューロンを二次元格子状に配置したSOMである。SOMは、Self-Organizing Mapの略である。各ニューロンは、学習対象データ、第1状態観測値および第1潜在状態値で構成されている。例えば、各ニューロンは、エンジン回転数、タービン回転数、駆動系状態観測器aの第1状態観測値、酸素センサ電圧、空燃比センサ電流、空燃比系状態観測器aの第1状態観測値、および、第1潜在状態値の7つのデータで構成されている。以下、ニューロンを構成する各データを、ニューロンの重みデータという。 As shown in FIG. 10, the initialized normal plane PL1 is a SOM in which neurons are arranged in a two-dimensional grid pattern. SOM is an abbreviation for Self-Organizing Map. Each neuron is composed of learning target data, a first state observed value, and a first latent state value. For example, each neuron has engine speed, turbine speed, first state observer of drive system state observer a 1 X 1 , oxygen sensor voltage, air fuel ratio sensor current, air fuel ratio system state observer a 2 X 2 . It is composed of seven data, the first state observed value and the first latent state value. Hereinafter, each data constituting the neuron is referred to as neuron weight data.
 学習により、正常面を構成するニューロンの重みが初期値から変化し、学習済みの正常面PL2が得られる。 By learning, the weights of the neurons that make up the normal surface change from the initial value, and the learned normal surface PL2 is obtained.
 正常面の学習が終了すると、CPU11は、図5に示すように、S100にて、S90で学習した正常面を表す学習済みパラメータを正常モデルパラメータ記憶部107に記憶し、学習処理を終了する。 When the learning of the normal surface is completed, as shown in FIG. 5, the CPU 11 stores the learned parameters representing the normal surface learned in S90 in the normal model parameter storage unit 107 in S100, and ends the learning process.
 次に、制御装置2のCPU11が実行する監視処理の手順を説明する。監視処理は、正常面の学習が終了した後に繰り返し実行される処理である。 Next, the procedure of the monitoring process executed by the CPU 11 of the control device 2 will be described. The monitoring process is a process that is repeatedly executed after the learning of the normal surface is completed.
 監視処理が実行されると、CPU11は、図11に示すように、まずS410にて、各種センサから監視対象データを取得する。 When the monitoring process is executed, the CPU 11 first acquires monitoring target data from various sensors in S410, as shown in FIG.
 さらにCPU11は、S420にて、S410で取得した監視対象データに対して、正規分布に近づける分布変換を行う。 Further, the CPU 11 performs distribution conversion in S420 to bring the monitored data acquired in S410 closer to a normal distribution.
 そしてCPU11は、S430にて、分布変換後の監視対象データを監視対象データ記憶部103に記憶する。 Then, in S430, the CPU 11 stores the monitored data after the distribution conversion in the monitored data storage unit 103.
 次にCPU11は、S440にて、監視対象データ、変数構成および係数を読み出し、状態観測器ごとに、状態観測器を構成する変数に対して監視対象データを当て嵌めて第2状態観測値を算出する。 Next, the CPU 11 reads out the monitored data, the variable configuration, and the coefficient in S440, applies the monitored data to the variables constituting the state observer for each state observer, and calculates the second state observed value. do.
 さらにCPU11は、S450にて、監視対象データ、変数構成および係数を読み出し、質的ソフトセンサごとに、質的ソフトセンサを構成する変数に対して監視対象データを当て嵌めて第2潜在状態値を算出する。 Further, the CPU 11 reads out the monitored data, the variable configuration and the coefficient in S450, applies the monitored data to the variables constituting the qualitative soft sensor for each qualitative soft sensor, and sets the second latent state value. calculate.
 そしてCPU11は、S460にて、S410で取得した監視対象データと、S440で算出した第2状態観測値と、S450で算出した第2潜在状態値とを結合する。以下、結合された監視対象データ、第2状態観測値および第2潜在状態値をまとめて検証用データという。 Then, the CPU 11 combines the monitored data acquired in S410 in S460, the second state observed value calculated in S440, and the second latent state value calculated in S450. Hereinafter, the combined monitored data, the second state observed value, and the second latent state value are collectively referred to as verification data.
 またCPU11は、S470にて、正常モデルパラメータ記憶部107から学習済みパラメータを取得する。 Further, the CPU 11 acquires the learned parameters from the normal model parameter storage unit 107 in S470.
 そしてCPU11は、S480にて、異常度算出処理を実行する。ここで、異常度算出処理の手順を説明する。 Then, the CPU 11 executes the abnormality degree calculation process in S480. Here, the procedure of the abnormality degree calculation process will be described.
 異常度算出処理が実行されると、CPU11は、図12に示すように、まずS610にて、ループカウンタlの値を1に設定する。 When the abnormality degree calculation process is executed, the CPU 11 first sets the value of the loop counter l to 1 in S610, as shown in FIG.
 そしてCPU11は、S620にて、まず、監視時点kにおける検証用データZと、正常面を構成する各ニューロンWi,jとのユークリッド距離dk,l,i,jを算出する。iは、正常面におけるニューロンの横方向位置を示す番号であり、1~Nの整数である。Nは正常面の横サイズを示す。jは、正常面におけるニューロンの縦方向位置を示す番号であり、1~Mの整数である。Mは正常面の縦サイズを示す。 Then, in S620, the CPU 11 first calculates the Euclidean distance d k, l, i, j between the verification data Z k at the monitoring time point k and the neurons Wi, j constituting the normal plane. i is a number indicating the lateral position of the neuron on the normal plane, and is an integer of 1 to N. N indicates the horizontal size of the normal surface. j is a number indicating the vertical position of the neuron on the normal plane, and is an integer of 1 to M. M indicates the vertical size of the normal surface.
 検証用データZは、式(7)に示すように、X個のデータで構成されている。ニューロンWi,jは、式(8)に示すように、X個の重みデータで構成されている。 The verification data Z k is composed of X data as shown in the equation (7). As shown in Eq. (8), the neurons Wi and j are composed of X weight data.
Figure JPOXMLDOC01-appb-M000006
 
 さらにCPU11は、S620にて、全てのニューロンWi,jにおいて算出されたユークリッド距離dk,l,i,jの中から、最小のユークリッド距離を、最小ユークリッド距離dk,lとする。
Figure JPOXMLDOC01-appb-M000006

Further, the CPU 11 sets the minimum Euclidean distance d k, l from the Euclidean distances d k, l, i, j calculated in all the neurons Wi , j in S620.
 またCPU11は、S630にて、検証用データZと、検証用データZに最も近いニューロンW’k,lとのコサイン類似度cosθk,lを算出する。 Further, the CPU 11 calculates in S630 the cosine similarity cos θ k, l between the verification data Z k and the neurons W'k , l closest to the verification data Z k .
 またCPU11は、S640にて、最小ユークリッド距離dk,lとコサイン類似度cosθk,lとの積を異常度ck,lとして算出する。 Further, the CPU 11 calculates in S640 the product of the minimum Euclidean distance d k, l and the cosine similarity cos θ k, l as the abnormality degree c k, l .
 そしてCPU11は、S650にて、ループカウンタlの値が予め設定された終了判定値L(例えば、10)を超えているか否かを判断する。ここで、ループカウンタlの値が終了判定値Lを超えていない場合には、CPU11は、S660にて、ループカウンタlをインクリメント(すなわち、1加算)する。さらにCPU11は、S670にて、正常面を構成するニューロンWi,jの中から、検証用データZに最も近いニューロンW’k,lを取り除いて、S620に移行する。 Then, the CPU 11 determines in S650 whether or not the value of the loop counter l exceeds the preset end determination value L (for example, 10). Here, if the value of the loop counter l does not exceed the end determination value L, the CPU 11 increments (that is, adds 1) the loop counter l in S660. Further, in S670, the CPU 11 removes the neurons W'k , l closest to the verification data Z k from the neurons Wi , j constituting the normal plane, and shifts to S620.
 またS650にて、ループカウンタlの値が終了判定値Lを超えている場合には、CPU11は、S680にて、L個の異常度ck,lの総和を総合異常度cとして算出して、異常度算出処理を終了する。 Further, in S650, when the value of the loop counter l exceeds the end determination value L, the CPU 11 calculates in S680 the sum of the L abnormality degrees c k and l as the total abnormality degree c k . Then, the abnormality degree calculation process is terminated.
 異常度算出処理が終了すると、CPU11は、図11に示すように、S490にて、異常判定を行い、監視処理を終了する。具体的には、CPU11は、正常モデルパラメータ記憶部107から閾値を読み出し、S680で算出された総合異常度cが閾値以下であるか否か判断する。総合異常度cが閾値以下である場合には、CPU11は、車両が正常であると判断する。総合異常度cが閾値を超えている場合には、CPU11は、車両が異常であると判断する。 When the abnormality degree calculation process is completed, the CPU 11 determines the abnormality in S490 and ends the monitoring process, as shown in FIG. Specifically, the CPU 11 reads a threshold value from the normal model parameter storage unit 107, and determines whether or not the total abnormality degree ck calculated in S680 is equal to or less than the threshold value. When the total abnormality degree c k is equal to or less than the threshold value, the CPU 11 determines that the vehicle is normal. When the total abnormality degree c k exceeds the threshold value, the CPU 11 determines that the vehicle is abnormal.
 このように構成された異常検出装置1は、データ取得部101と、正常モデル生成部106と、異常度算出部108と、判定部109とを備える。 The abnormality detection device 1 configured in this way includes a data acquisition unit 101, a normal model generation unit 106, an abnormality degree calculation unit 108, and a determination unit 109.
 データ取得部101は、車両の学習対象データおよび監視対象データを取得する。 The data acquisition unit 101 acquires the learning target data and the monitoring target data of the vehicle.
 正常モデル生成部106は、学習対象データと、第1状態観測値と、第1潜在状態値とにより構成されるデータを競合型ニューラルネットワークに入力することにより正常モデルを生成する。第1状態観測値は、車両が有する系統の状態を表す状態観測器に学習対象データを入力することによって得られる。第1潜在状態値は、車両の潜在状態を表す質的ソフトセンサに学習対象データを入力することによって得られる。 The normal model generation unit 106 generates a normal model by inputting data composed of learning target data, a first state observed value, and a first latent state value into a competitive neural network. The first state observation value is obtained by inputting the learning target data into the state observer representing the state of the system possessed by the vehicle. The first latent state value is obtained by inputting the learning target data into the qualitative soft sensor representing the latent state of the vehicle.
 異常度算出部108は、監視対象データと、第2状態観測値と、第2潜在状態値とにより構成されるデータを正常モデルと比較することにより、車両の異常の度合いを示す異常度を算出する。第2状態観測値は、状態観測器に監視対象データを入力することによって得られる。第2潜在状態値は、質的ソフトセンサに監視対象データを入力することによって得られる。 The abnormality degree calculation unit 108 calculates the degree of abnormality indicating the degree of abnormality of the vehicle by comparing the data composed of the monitored data, the second state observed value, and the second latent state value with the normal model. do. The second state observation value is obtained by inputting the monitored data into the state observer. The second latent state value is obtained by inputting the monitored data into the qualitative soft sensor.
 判定部109は、異常度算出部108により算出された異常度に基づいて、車両が正常であるか異常であるかを判定する。 The determination unit 109 determines whether the vehicle is normal or abnormal based on the abnormality degree calculated by the abnormality degree calculation unit 108.
 このように異常検出装置1は、学習対象データおよび第1状態観測値に第1潜在状態値を加えて正常モデルを生成し、監視対象データおよび第2状態観測値に第2潜在状態値を加えて異常度を算出する。これにより、異常検出装置1は、車両の状態を含めて学習した正常モデルにより異常を検出することができ、異常検出精度を向上させることができる。 In this way, the abnormality detection device 1 adds the first latent state value to the training target data and the first state observed value to generate a normal model, and adds the second latent state value to the monitored data and the second state observed value. To calculate the degree of abnormality. As a result, the abnormality detection device 1 can detect the abnormality by the normal model learned including the state of the vehicle, and can improve the abnormality detection accuracy.
 また異常検出装置1は、例えば図13に示すように、各監視時点においてどのようなデータの背景から異常が発生したかを可視化して要因分析を行うことができる。図13では、異常検出装置1は、監視時点t1および監視時点t2において第1潜在状態および第2潜在状態の値が0でないことを加味して要因分析を行うことができる。 Further, as shown in FIG. 13, for example, the abnormality detection device 1 can visualize from what kind of data background the abnormality occurred at each monitoring time point and perform factor analysis. In FIG. 13, the abnormality detection device 1 can perform factor analysis in consideration of the fact that the values of the first latent state and the second latent state are not 0 at the monitoring time point t1 and the monitoring time point t2.
 質的ソフトセンサは、車両を構成する構成要素(例えば、ヘッドランプ、変速機、カーエアコン)の状態を表す複数のフラグを結合することにより生成される。これにより、異常検出装置1は、次元圧縮することで潜在的な状態を表す変数を生成し、ノイズ等に対しロバストなデータ状態を表す変数を獲得することができる。 The qualitative soft sensor is generated by combining a plurality of flags indicating the states of the components (for example, headlamps, transmissions, car air conditioners) constituting the vehicle. As a result, the anomaly detection device 1 can generate a variable representing a latent state by dimensional compression, and can acquire a variable representing a data state robust to noise and the like.
 以上説明した実施形態において、車両は異常検出対象に相当し、S10,S410はデータ取得手順としての処理に相当し、S90は正常モデル生成手順としての処理に相当し、S480は異常度算出手順としての処理に相当し、S490は判定手順としての処理に相当する。 In the embodiment described above, the vehicle corresponds to the abnormality detection target, S10 and S410 correspond to the processing as the data acquisition procedure, S90 corresponds to the processing as the normal model generation procedure, and S480 corresponds to the abnormality degree calculation procedure. Corresponds to the process of, and S490 corresponds to the process as the determination procedure.
 [第2実施形態]
 以下に本開示の第2実施形態を図面とともに説明する。なお第2実施形態では、第1実施形態と異なる部分を説明する。共通する構成については同一の符号を付す。
[Second Embodiment]
The second embodiment of the present disclosure will be described below together with the drawings. In the second embodiment, a part different from the first embodiment will be described. The same reference numerals are given to common configurations.
 第2実施形態の異常検出装置1は、学習処理および監視処理が変更された点が第1実施形態と異なる。 The abnormality detection device 1 of the second embodiment is different from the first embodiment in that the learning process and the monitoring process are changed.
 第2実施形態の学習処理は、S45,S75の処理が追加された点と、S80,S90の代わりにS85,S95の処理が実行される点とが第1実施形態と異なる。 The learning process of the second embodiment is different from the first embodiment in that the processes of S45 and S75 are added and the processes of S85 and S95 are executed instead of S80 and S90.
 すなわち、図14に示すように、S40の処理が終了すると、CPU11は、S45にて、マハラノビス距離算出用パラメータを生成する。具体的には、CPU11は、状態観測器毎に、状態観測器を構成する変数に対応する学習対象データで標本平均および標本共分散行列をマハラノビス距離算出用パラメータとして算出する。例えば、駆動系状態観測器では、エンジン回転数およびタービン回転数を変数としてマハラノビス距離算出用パラメータが算出される。標本平均は式(9)で算出される。標本共分散行列は式(10)で算出される。式(9),(10)におけるx(n)は、状態観測器を構成する変数である。式(9),(10)におけるNは、学習対象データの数である。 That is, as shown in FIG. 14, when the processing of S40 is completed, the CPU 11 generates a Mahalanobis distance calculation parameter in S45. Specifically, the CPU 11 calculates the sample mean and the sample covariance matrix as the Mahalanobis distance calculation parameters for each state observer with the training target data corresponding to the variables constituting the state observer. For example, in the drive train state observer, the Mahalanobis distance calculation parameter is calculated with the engine speed and the turbine speed as variables. The sample average is calculated by Eq. (9). The sample covariance matrix is calculated by Eq. (10). X (n) in the equations (9) and (10) is a variable constituting the state observer. N in the equations (9) and (10) is the number of data to be learned.
Figure JPOXMLDOC01-appb-M000007
 
 S45の処理が終了すると、S50に移行する。
Figure JPOXMLDOC01-appb-M000007

When the processing of S45 is completed, the process proceeds to S50.
 また、S70の処理が終了すると、CPU11は、S75にて、S10で取得した学習対象データを用いて、式(11)により第1指標を算出する。式(11)の左辺は第1指標である。式(11)の右辺は、マハラノビス距離を算出するための式である。 Further, when the processing of S70 is completed, the CPU 11 calculates the first index by the equation (11) in S75 using the learning target data acquired in S10. The left side of the equation (11) is the first index. The right side of the equation (11) is an equation for calculating the Mahalanobis distance.
Figure JPOXMLDOC01-appb-M000008
 
 S75の処理が終了すると、CPU11は、S85にて、S10で取得した学習対象データと、S60で算出した第1状態観測値と、S70で算出した第1潜在状態値と、S75で算出した第1指標とを結合する。
Figure JPOXMLDOC01-appb-M000008

When the processing of S75 is completed, the CPU 11 has the learning target data acquired in S10 in S85, the first state observed value calculated in S60, the first latent state value calculated in S70, and the first latent state value calculated in S75. Combine with 1 index.
 次にCPU11は、S95にて、S85で結合したデータを競合型ニューラルネットワークに入力することにより、正常モデルとして正常面を学習し、S100に移行する。 Next, in S95, the CPU 11 learns the normal surface as a normal model by inputting the data combined in S85 into the competitive neural network, and shifts to S100.
 第2実施形態の監視処理は、S455の処理が追加された点と、S460の代わりにS465の処理が実行される点とが第1実施形態と異なる。 The monitoring process of the second embodiment is different from the first embodiment in that the process of S455 is added and the process of S465 is executed instead of S460.
 すなわち、図15に示すように、S450の処理が終了すると、CPU11は、S455にて、S410で取得した監視対象データを用いて、式(11)により第2指標を算出する。 That is, as shown in FIG. 15, when the processing of S450 is completed, the CPU 11 calculates the second index by the equation (11) using the monitored data acquired in S410 in S455.
 そしてCPU11は、S465にて、S410で取得した監視対象データと、S440で算出した第2状態観測値と、S450で算出した第2潜在状態値と、S455で算出した第2指標とを結合し、S470に移行する。第2実施形態では、結合された監視対象データ、第2状態観測値、第2潜在状態値および第2指標をまとめて検証用データという。 Then, the CPU 11 combines the monitored data acquired in S410 in S465, the second state observed value calculated in S440, the second latent state value calculated in S450, and the second index calculated in S455. , S470. In the second embodiment, the combined monitored data, the second state observed value, the second latent state value, and the second index are collectively referred to as verification data.
 次に、マハラノビス距離を用いた正常面の学習と、マハラノビス距離を用いた異常検出とについて説明する。 Next, learning of the normal surface using the Mahalanobis distance and abnormality detection using the Mahalanobis distance will be explained.
 図16のターミングチャートTC1は、車両の空気系の状態観測器を構成する変数である吸入空気量および負荷値の時間変化を示す。ターミングチャートTC1は、期間T1において、学習対象データとして取得された吸入空気量および負荷値の時間変化を示し、期間T2において、監視対象データとして取得された吸入空気量および負荷値の時間変化を示す。 The terming chart TC1 of FIG. 16 shows the time change of the intake air amount and the load value, which are variables constituting the state observer of the vehicle air system. The terming chart TC1 shows the time change of the intake air amount and the load value acquired as the learning target data in the period T1, and shows the time change of the intake air amount and the load value acquired as the monitoring target data in the period T2. show.
 領域R1,R2では、吸入空気量と負荷値との間で負の相関がある。これは、潜在状態が変化しただけであり、正常である。 In regions R1 and R2, there is a negative correlation between the intake air amount and the load value. This is normal, only the latent state has changed.
 領域R3では、吸入空気量が低下しているのに対して、負荷値が一定である。これは、負荷値の固着異常である。領域R1,R2,R3以外の領域では、吸入空気量と負荷値との間で正の相関がある。これは、正常である。 In region R3, the load value is constant while the intake air amount is low. This is a sticking abnormality of the load value. In the regions other than the regions R1, R2 and R3, there is a positive correlation between the intake air amount and the load value. This is normal.
 グラフGR1,GR2は、縦軸を吸入空気量とし横軸を吸入空気量として、ターミングチャートTC1における吸入空気量および負荷値の分布を示す。 Graphs GR1 and GR2 show the distribution of the intake air amount and the load value in the terming chart TC1 with the vertical axis as the intake air amount and the horizontal axis as the intake air amount.
 グラフGR1,GR2における領域R4内の複数の点は、ターミングチャートTC1における領域R1,R2内のデータに対応している。グラフGR1,GR2における領域R5内の複数の点は、ターミングチャートTC1における領域R3内のデータに対応している。グラフGR1,GR2における領域R4,R5以外の複数の点は、ターミングチャートTC1における領域R1,R2,R3以外のデータに対応している。 A plurality of points in the region R4 in the graphs GR1 and GR2 correspond to the data in the regions R1 and R2 in the terming chart TC1. The plurality of points in the region R5 in the graphs GR1 and GR2 correspond to the data in the region R3 in the terming chart TC1. The plurality of points other than the regions R4 and R5 in the graphs GR1 and GR2 correspond to the data other than the regions R1, R2 and R3 in the terming chart TC1.
 グラフGR1における複数の楕円は、マハラノビス距離の等距離線である。グラフGR2における複数の円は、ユークリッド距離の等距離線である。 The plurality of ellipses in Graph GR1 are equidistant lines of Mahalanobis distance. The plurality of circles in the graph GR2 are equidistant lines of the Euclidean distance.
 図17に示すように、初期化された正常面PL3は、ニューロンを二次元格子状に配置したSOMである。各ニューロンは、学習対象データ、第1状態観測値、第1潜在状態値および第1指標で構成されている。例えば、各ニューロンは、エンジン回転数、タービン回転数、駆動系状態観測器aの第1状態観測値、酸素センサ電圧、空燃比センサ電流、空燃比系状態観測器aの第1状態観測値、第1潜在状態値、および、第1指標の8つのデータで構成されている。学習により、正常面を構成するニューロンの重みが初期値から変化し、学習済みの正常面PL4が得られる。 As shown in FIG. 17, the initialized normal plane PL3 is a SOM in which neurons are arranged in a two-dimensional grid pattern. Each neuron is composed of learning target data, a first state observed value, a first latent state value, and a first index. For example, each neuron has engine speed, turbine speed, first state observer of drive system state observer a 1 X 1 , oxygen sensor voltage, air fuel ratio sensor current, air fuel ratio system state observer a 2 X 2 . It is composed of eight data, a first state observed value, a first latent state value, and a first index. By learning, the weights of the neurons constituting the normal plane are changed from the initial values, and the trained normal plane PL4 is obtained.
 マハラノビス距離を用いて算出された指標を、潜在状態値とともに学習させることにより、図18に示すように、領域R4内の複数の点を正常、領域R5内の複数の点を異常と判定させることが可能となる。図18における領域R6は、正常と判定される領域である。なお、指標によって、吸入空気量と負荷値との関係を見るが例外条件をSOMで設定する。 By learning the index calculated using the Mahalanobis distance together with the latent state value, as shown in FIG. 18, it is determined that a plurality of points in the region R4 are normal and a plurality of points in the region R5 are abnormal. Is possible. The region R6 in FIG. 18 is a region determined to be normal. The relationship between the intake air amount and the load value is checked by the index, but the exception condition is set by SOM.
 このように構成された異常検出装置1では、正常モデル生成部106は、第1指標を算出し、学習対象データと、第1状態観測値と、第1潜在状態値と、第1指標とにより構成されるデータを競合型ニューラルネットワークに入力することにより正常モデルを生成する。第1指標は、状態観測器を構成する複数の変数の関係性の変化を表し学習対象データを入力することによって得られる。 In the abnormality detection device 1 configured in this way, the normal model generation unit 106 calculates the first index, and uses the learning target data, the first state observation value, the first latent state value, and the first index. A normal model is generated by inputting the constructed data into the competitive neural network. The first index represents a change in the relationship between a plurality of variables constituting the state observer and is obtained by inputting learning target data.
 異常度算出部108は、第2指標を算出し、監視対象データと、第2状態観測値と、第2潜在状態値と、第2指標とにより構成されるデータを正常モデルと比較することにより異常度を算出する。第2指標は、状態観測器を構成する複数の変数の関係性の変化を表して監視対象データを入力することによって得られる。 The anomaly degree calculation unit 108 calculates the second index, and compares the data composed of the monitored data, the second state observed value, the second latent state value, and the second index with the normal model. Calculate the degree of anomaly. The second index is obtained by inputting monitored data representing changes in the relationships of a plurality of variables constituting the state observer.
 これにより、異常検出装置1は、状態観測器を構成する複数の変数の関係性を含めて学習した正常モデルにより異常を検出することができ、異常検出精度を向上させることができる。 As a result, the anomaly detection device 1 can detect anomalies using a normal model learned including the relationships of a plurality of variables constituting the state observer, and can improve the anomaly detection accuracy.
 また、第1指標および第2指標はマハラノビス距離である。これにより、異常検出装置1は、ユークリッド距離基準では検出が難しかった関係性変化を検出することができる。 The first and second indicators are Mahalanobis distances. As a result, the anomaly detection device 1 can detect the relationship change that was difficult to detect by the Euclidean distance standard.
 なお、マハラノビス距離では、状態観測器を構成する2つの変数が稀に線形関係から崩れる場合に、正常であっても指標が大きくなってしまうことがある。しかし、正常時に線形関係から崩れる場合の指標を、競合型ニューラルネットワークを用いて他の値と共にニューロンへ学習させることで、指標が高くても他の値を含めて判断することができ、第2種の過誤を抑止することができる。 In the Mahalanobis distance, when the two variables that make up the state observer rarely collapse from the linear relationship, the index may become large even if it is normal. However, by letting the neuron learn the index when the linear relationship collapses at normal times together with other values using a competitive neural network, it is possible to judge including other values even if the index is high. Species error can be deterred.
 [第3実施形態]
 以下に本開示の第3実施形態を図面とともに説明する。なお第3実施形態では、第1実施形態と異なる部分を説明する。共通する構成については同一の符号を付す。
[Third Embodiment]
The third embodiment of the present disclosure will be described below together with the drawings. In the third embodiment, a part different from the first embodiment will be described. The same reference numerals are given to common configurations.
 第3実施形態の異常検出装置1は、学習処理が変更された点が第1実施形態と異なる。 The abnormality detection device 1 of the third embodiment is different from the first embodiment in that the learning process is changed.
 第3実施形態の学習処理は、S35の処理が追加された点が第1実施形態と異なる。 The learning process of the third embodiment is different from the first embodiment in that the process of S35 is added.
 すなわち、図19に示すように、S30の処理が終了すると、CPU11は、S35にて、パラメータ設定処理を実行する。ここで、パラメータ設定処理の手順を説明する。 That is, as shown in FIG. 19, when the processing of S30 is completed, the CPU 11 executes the parameter setting processing in S35. Here, the procedure of the parameter setting process will be described.
 パラメータ設定処理が実行されると、CPU11は、図20に示すように、まずS710にて、後述するクラスタリング係数設定処理を実行する。 When the parameter setting process is executed, the CPU 11 first executes the clustering coefficient setting process described later in S710, as shown in FIG. 20.
 そしてCPU11は、S720にて、後述する正則化係数設定処理を実行する。さらにCPU11は、S730にて、後述するマップサイズ設定処理を実行して、パラメータ設定処理を終了する。 Then, the CPU 11 executes the regularization coefficient setting process described later in S720. Further, the CPU 11 executes the map size setting process described later in S730 to end the parameter setting process.
 次に、S710で実行されるクラスタリング係数設定処理の手順を説明する。 Next, the procedure of the clustering coefficient setting process executed in S710 will be described.
 クラスタリング係数設定処理が実行されると、CPU11は、図21に示すように、まずS810にて、外部要因による層別分類を行う。外部要因による層別分類とは、後述する第1探索範囲を、車両の条件に応じて設定することである。車両の条件として、例えば車速が挙げられる。 When the clustering coefficient setting process is executed, the CPU 11 first performs stratified classification by external factors in S810 as shown in FIG. 21. The stratified classification based on external factors is to set the first search range, which will be described later, according to the conditions of the vehicle. As a condition of the vehicle, for example, a vehicle speed can be mentioned.
 またCPU11は、S820にて、クラスタリング係数の正常データの範囲を定義する。 Further, the CPU 11 defines the range of normal data of the clustering coefficient in S820.
 そしてCPU11は、S830にて、DBSCANのクラスタリング係数を探索するための第1探索範囲を設定する。DBSCANは、Density-Based Spatial Clustering of Applications with Noiseの略であり、クラスタリングアルゴリズムである。DBSCANは、教師データの外れ値を除去するために行われる。DBSCANのクラスタリング係数は、近傍探索半径εおよび最小近傍点数minptsの2つである。第1探索範囲は、近傍探索半径εおよび最小近傍点数minptsのそれぞれで設定される。 Then, the CPU 11 sets a first search range for searching the clustering coefficient of DBSCAN in S830. DBSCAN is an abbreviation for Density-Based Spatial Clustering of Applications with Noise and is a clustering algorithm. DBSCAN is performed to remove outliers in teacher data. There are two DBSCAN clustering coefficients, the neighborhood search radius ε and the minimum number of neighborhood points minpts. The first search range is set by the neighborhood search radius ε and the minimum number of neighborhood points minpts, respectively.
 次にCPU11は、S840にて、S830で設定された第1探索範囲内で、近傍探索半径εおよび最小近傍点数minptsの最適解を探索する。具体的には、CPU11は、S10で取得した学習対象データを用いて、第1探索範囲内で近傍探索半径εおよび最小近傍点数minptsを変化させながら正常モデルの学習を行って総合異常度を算出し、総合異常度が最小となる近傍探索半径εおよび最小近傍点数minptsを最適解として決定する。なお、正常モデルの学習および異常度の算出において、クロスバリデーションが用いられている。クロスバリデーションにより過学習を抑制し、汎化精度を確保することができる。また、クラスタリング係数の探索において、グリッドサーチが用いられている。 Next, in S840, the CPU 11 searches for the optimum solution having the neighborhood search radius ε and the minimum number of neighborhood points minpts within the first search range set in S830. Specifically, the CPU 11 uses the learning target data acquired in S10 to train the normal model while changing the neighborhood search radius ε and the minimum neighborhood score minpts within the first search range, and calculates the total abnormality degree. Then, the neighborhood search radius ε and the minimum number of neighborhood points minpts that minimize the total anomaly are determined as the optimum solution. Cross-validation is used in learning the normal model and calculating the degree of abnormality. Cross-validation can suppress overfitting and ensure generalization accuracy. Moreover, the grid search is used in the search of the clustering coefficient.
 S840における最適解の探索では、例えば、図22のグラフGR3に示すように、CPU11は、まず、第1探索範囲SR1内に複数の設定値x0,x1,x2,x3,x4を設定する。そしてCPU11は、設定値x0,x1,x2,x3,x4のそれぞれについて総合異常度を算出し、総合異常度が最小となる設定値を最適解とする。グラフGR3では、設定値x2が最適解である。 In the search for the optimum solution in S840, for example, as shown in the graph GR3 of FIG. 22, the CPU 11 first sets a plurality of set values x0, x1, x2, x3, x4 in the first search range SR1. Then, the CPU 11 calculates the total abnormality degree for each of the set values x0, x1, x2, x3, x4, and sets the set value at which the total abnormality degree is the minimum as the optimum solution. In the graph GR3, the set value x2 is the optimum solution.
 S840の処理が終了すると、CPU11は、図21に示すように、S850にて、S840で探索した最適解の近傍に、第1探索範囲より狭い第2探索範囲を設定する。 When the processing of S840 is completed, as shown in FIG. 21, the CPU 11 sets a second search range narrower than the first search range in the vicinity of the optimum solution searched in S840 in S850.
 次にCPU11は、S860にて、S850で設定された第2探索範囲内で、近傍探索半径εおよび最小近傍点数minptsの最適解を探索する。具体的には、CPU11は、S10で取得した学習対象データを用いて、第2探索範囲内で近傍探索半径εおよび最小近傍点数minptsを変化させながら正常モデルの学習を行って総合異常度を算出し、総合異常度が最小となる近傍探索半径εおよび最小近傍点数minptsを最適解として決定する。 Next, in S860, the CPU 11 searches for the optimum solution having the neighborhood search radius ε and the minimum number of neighborhood points minpts within the second search range set in S850. Specifically, the CPU 11 uses the learning target data acquired in S10 to learn the normal model while changing the neighborhood search radius ε and the minimum neighborhood score minpts within the second search range, and calculates the total abnormality degree. Then, the neighborhood search radius ε and the minimum number of neighborhood points minpts that minimize the total anomaly are determined as the optimum solution.
 S860における最適解の探索では、例えば、図22のグラフGR4に示すように、CPU11は、まず、第2探索範囲SR2内に複数の設定値(x2-2a),(x2-a),x2,(x2+a),(x2+2a)を設定する。そしてCPU11は、設定値(x2-2a),(x2-a),x2,(x2+a),(x2+2a)のそれぞれについて総合異常度を算出し、総合異常度が最小となる設定値を最適解とする。グラフGR4では、設定値(x2-2a)が最適解である。 In the search for the optimum solution in S860, for example, as shown in the graph GR4 of FIG. 22, the CPU 11 first has a plurality of set values (x2-2a), (x2-a), x2 in the second search range SR2. Set (x2 + a) and (x2 + 2a). Then, the CPU 11 calculates the total abnormality degree for each of the set values (x2-2a), (x2-a), x2, (x2 + a), and (x2 + 2a), and sets the setting value that minimizes the total abnormality degree as the optimum solution. do. In the graph GR4, the set value (x2-2a) is the optimum solution.
 S860の処理が終了すると、CPU11は、図21に示すように、S870にて、S860で探索した最適解を、クラスタリング係数(すなわち、近傍探索半径εおよび最小近傍点数minpts)に設定して、クラスタリング係数設定処理を終了する。 When the processing of S860 is completed, as shown in FIG. 21, the CPU 11 sets the optimum solution searched in S860 in S870 to the clustering coefficient (that is, the neighborhood search radius ε and the minimum number of neighborhood points minpts), and clusters. The coefficient setting process ends.
 クラスタリング係数設定処理が終了すると、CPU11は、図20に示すように、S720にて、正則化係数設定処理を実行する。 When the clustering coefficient setting process is completed, the CPU 11 executes the regularization coefficient setting process in S720 as shown in FIG. 20.
 正則化係数設定処理は、クラスタリング係数の代わりに正則化係数の最適解を探索する点以外はクラスタリング係数設定処理と同じであるため詳細な説明を省略する。すなわち、正則化係数設定処理では、CPU11は、まず、第1探索範囲を設定して第1探索範囲内で正則化係数の最適解を探索する。またCPU11は、第1探索範囲より狭い第2探索範囲を最適解の近傍に設定して第2探索範囲内で正則化係数の最適解を探索する。そしてCPU11は、第2探索範囲内で探索した最適解を正則化係数に設定する。 The regularization coefficient setting process is the same as the clustering coefficient setting process except that the optimum solution of the regularization coefficient is searched instead of the clustering coefficient, so detailed explanation is omitted. That is, in the regularization coefficient setting process, the CPU 11 first sets the first search range and searches for the optimum solution of the regularization coefficient within the first search range. Further, the CPU 11 sets a second search range narrower than the first search range in the vicinity of the optimum solution, and searches for the optimum solution of the regularization coefficient within the second search range. Then, the CPU 11 sets the optimum solution searched within the second search range as the regularization coefficient.
 正則化係数は、状態観測器の係数を算出するために行われるRGCCAで用いられる正則化項の係数である。RGCCAは、Regularized Generalized Canonical Correlation Analysisの略である。 The regularization coefficient is the coefficient of the regularization term used in RGCCA to calculate the coefficient of the state observer. RGCCA is an abbreviation for Regularized Generalized Canonical Correlation Analysis.
 正則化係数設定処理が終了すると、CPU11は、S730にて、マップサイズ設定処理を実行して、パラメータ設定処理を終了する。 When the regularization coefficient setting process is completed, the CPU 11 executes the map size setting process in S730 and ends the parameter setting process.
 マップサイズ設定処理は、クラスタリング係数の代わりに正常面の横サイズおよび縦サイズの最適解を探索する点以外はクラスタリング係数設定処理と同じであるため詳細な説明を省略する。すなわち、マップサイズ設定処理では、CPU11は、まず、第1探索範囲を設定して第1探索範囲内で正常面の横サイズおよび縦サイズの最適解を探索する。またCPU11は、第1探索範囲より狭い第2探索範囲を最適解の近傍に設定して第2探索範囲内で正常面の横サイズおよび縦サイズの最適解を探索する。そしてCPU11は、第2探索範囲内で探索した最適解を正常面の横サイズおよび縦サイズに設定する。 The map size setting process is the same as the clustering coefficient setting process except that it searches for the optimum solution for the horizontal size and vertical size of the normal surface instead of the clustering coefficient, so detailed explanation is omitted. That is, in the map size setting process, the CPU 11 first sets the first search range and searches for the optimum solution of the horizontal size and the vertical size of the normal surface within the first search range. Further, the CPU 11 sets a second search range narrower than the first search range in the vicinity of the optimum solution, and searches for the optimum solution of the horizontal size and the vertical size of the normal surface within the second search range. Then, the CPU 11 sets the optimum solution searched within the second search range to the horizontal size and the vertical size of the normal surface.
 パラメータ設定処理が終了すると、CPU11は、図19に示すように、S40に移行する。 When the parameter setting process is completed, the CPU 11 shifts to S40 as shown in FIG.
 このように構成された異常検出装置1は、正常モデルを生成するために用いられるクラスタリング係数、正則化係数およびマップサイズ(以下、パラメータ)について、予め設定された第1探索範囲内で最適解(以下、第1最適解)を探索する。そして異常検出装置1は、探索された第1最適解を含み且つ第1探索範囲より狭くなるように設定された第2探索範囲内でパラメータの最適解(以下、第2最適解)を探索する。 The anomaly detection device 1 configured in this way has an optimum solution (hereinafter, parameter) within a preset first search range for the clustering coefficient, regularization coefficient, and map size (hereinafter referred to as parameters) used to generate a normal model. Hereinafter, the first optimum solution) is searched. Then, the anomaly detection device 1 searches for the optimum solution of the parameter (hereinafter referred to as the second optimum solution) within the second search range including the searched first optimum solution and set to be narrower than the first search range. ..
 これにより、異常検出装置1は、第1探索範囲内で粗く第1最適解を探索し、その後に第2探索範囲内で細かく第2最適解を探索することにより、パラメータの最適解を決定することができるため、最適解を探索するための計算量を削減することができる。 As a result, the anomaly detection device 1 roughly searches for the first optimum solution within the first search range, and then finely searches for the second optimum solution within the second search range to determine the optimum solution for the parameter. Therefore, the amount of calculation for searching for the optimum solution can be reduced.
 異常検出装置1は、クラスタリング係数、正則化係数、マップサイズの順に最適解の探索を行う。クラスタリング係数、正則化係数、マップサイズの順は、正常モデルの精度に及ぼす影響が大きい順である。これにより、異常検出装置1は、正常モデルの精度の低下を抑制することができる。 The anomaly detection device 1 searches for the optimum solution in the order of the clustering coefficient, the regularization coefficient, and the map size. The order of clustering coefficient, regularization coefficient, and map size has the greatest effect on the accuracy of the normal model. As a result, the abnormality detection device 1 can suppress a decrease in the accuracy of the normal model.
 以上説明した実施形態において、S830,S840は第1探索部および第1探索手順としての処理に相当し、S850,S860は第2探索部および第2探索手順としての処理に相当する。 In the embodiment described above, S830 and S840 correspond to the processing as the first search unit and the first search procedure, and S850 and S860 correspond to the processing as the second search unit and the second search procedure.
 以上、本開示の一実施形態について説明したが、本開示は上記実施形態に限定されるものではなく、種々変形して実施することができる。 Although one embodiment of the present disclosure has been described above, the present disclosure is not limited to the above embodiment, and can be variously modified and implemented.
 [変形例1]
 上記実施形態では、異常検出装置1が車両の異常を検出する形態を示した。しかし、異常検出装置1は、輸送機器、農具機器および建設機器などの異常を検出するようにしてもよい。
[Modification 1]
In the above embodiment, the abnormality detection device 1 shows a mode of detecting an abnormality of a vehicle. However, the anomaly detection device 1 may detect anomalies in transportation equipment, farm tool equipment, construction equipment, and the like.
 [変形例2]
 上記実施形態では、異常検出装置1が車両に搭載される形態を示した。しかし、異常検出装置1は、車両に搭載されていなくてもよい。例えば、異常検出装置1は、車両の外部に設置され、車両のコネクティッドECUに有線または無線で接続されるようにしてもよい。
[Modification 2]
In the above embodiment, the mode in which the abnormality detection device 1 is mounted on the vehicle is shown. However, the abnormality detection device 1 does not have to be mounted on the vehicle. For example, the abnormality detection device 1 may be installed outside the vehicle and may be connected to the connected ECU of the vehicle by wire or wirelessly.
 [変形例3]
 上記実施形態では、監視対象データとニューロンとの差分で異常度を算出する形態を示した。しかし、図23に示すように、各次元のニューロンと監視対象データとの大小を加味して負値の異常度を表現するようにしてもよい。これにより、各次元の正常値より大きいか小さいかを判断することが可能となる。
[Modification 3]
In the above embodiment, the mode in which the degree of abnormality is calculated by the difference between the monitored data and the neuron is shown. However, as shown in FIG. 23, the degree of abnormality of the negative value may be expressed by adding the magnitude of the neuron of each dimension and the monitored data. This makes it possible to determine whether the value is larger or smaller than the normal value of each dimension.
 [変形例4]
 上記実施形態では、学習対象データと第1状態観測値と第1潜在状態値とを結合して競合型ニューラルネットワークに入力することにより正常モデルとして正常面を学習する形態を示した。しかし、図24に示すように、状態観測器を構成する変数に、潜在状態値を含めるようにしてもよい。この場合には、学習対象データと、潜在状態値を含めて算出された第1状態観測値とを結合して競合型ニューラルネットワークに入力することにより正常モデルが生成される。
[Modification 4]
In the above embodiment, a mode is shown in which the normal surface is learned as a normal model by combining the training target data, the first state observed value, and the first latent state value and inputting them into the competitive neural network. However, as shown in FIG. 24, the latent state value may be included in the variables constituting the state observer. In this case, a normal model is generated by combining the training target data and the first state observation value calculated including the latent state value and inputting them into the competitive neural network.
 本開示に記載の制御装置2およびその手法は、コンピュータプログラムにより具体化された一つ乃至は複数の機能を実行するようにプログラムされたプロセッサおよびメモリを構成することによって提供された専用コンピュータにより、実現されてもよい。あるいは、本開示に記載の制御装置2およびその手法は、一つ以上の専用ハードウェア論理回路によってプロセッサを構成することによって提供された専用コンピュータにより、実現されてもよい。もしくは、本開示に記載の制御装置2およびその手法は、一つ乃至は複数の機能を実行するようにプログラムされたプロセッサおよびメモリと一つ以上のハードウェア論理回路によって構成されたプロセッサとの組み合わせにより構成された一つ以上の専用コンピュータにより、実現されてもよい。また、コンピュータプログラムは、コンピュータにより実行されるインストラクションとして、コンピュータ読み取り可能な非遷移有形記録媒体に記憶されてもよい。制御装置2に含まれる各部の機能を実現する手法には、必ずしもソフトウェアが含まれている必要はなく、その全部の機能が、一つあるいは複数のハードウェアを用いて実現されてもよい。 The control device 2 and its method described in the present disclosure are provided by a dedicated computer provided by configuring a processor and memory programmed to perform one or more functions embodied by a computer program. It may be realized. Alternatively, the control device 2 and its method described in the present disclosure may be realized by a dedicated computer provided by configuring a processor with one or more dedicated hardware logic circuits. Alternatively, the control device 2 and its method described in the present disclosure are a combination of a processor and memory programmed to perform one or more functions and a processor configured by one or more hardware logic circuits. It may be realized by one or more dedicated computers configured by. The computer program may also be stored on a computer-readable non-transitional tangible recording medium as an instruction executed by the computer. The method for realizing the functions of each part included in the control device 2 does not necessarily include software, and all the functions may be realized by using one or a plurality of hardware.
 上記実施形態における1つの構成要素が有する複数の機能を、複数の構成要素によって実現したり、1つの構成要素が有する1つの機能を、複数の構成要素によって実現したりしてもよい。また、複数の構成要素が有する複数の機能を、1つの構成要素によって実現したり、複数の構成要素によって実現される1つの機能を、1つの構成要素によって実現したりしてもよい。また、上記実施形態の構成の一部を省略してもよい。また、上記実施形態の構成の少なくとも一部を、他の上記実施形態の構成に対して付加または置換してもよい。 A plurality of functions possessed by one component in the above embodiment may be realized by a plurality of components, or one function possessed by one component may be realized by a plurality of components. Further, a plurality of functions possessed by the plurality of components may be realized by one component, or one function realized by the plurality of components may be realized by one component. Further, a part of the configuration of the above embodiment may be omitted. Further, at least a part of the configuration of the above embodiment may be added or replaced with the configuration of the other above embodiment.
 上述した異常検出装置1の他、当該異常検出装置1を構成要素とするシステム、当該異常検出装置1としてコンピュータを機能させるためのプログラム、このプログラムを記録した半導体メモリ等の非遷移的実体的記録媒体、異常検出方法など、種々の形態で本開示を実現することもできる。 In addition to the above-mentioned abnormality detection device 1, a system having the abnormality detection device 1 as a component, a program for operating a computer as the abnormality detection device 1, a non-transitional substantive record of a semiconductor memory or the like in which this program is recorded, etc. The present disclosure can also be realized in various forms such as a medium and an abnormality detection method.

Claims (12)

  1.  異常を検出する対象である異常検出対象の学習対象データおよび監視対象データを取得するように構成されたデータ取得部(101)と、
     前記学習対象データと、前記異常検出対象が有する系統の状態を表す状態観測器に前記学習対象データを入力することによって得られる第1状態観測値と、前記異常検出対象の潜在状態を表す質的ソフトセンサに前記学習対象データを入力することによって得られる第1潜在状態値とにより構成されるデータを競合型ニューラルネットワークに入力することにより正常モデルを生成するように構成された正常モデル生成部(106)と、
     前記監視対象データと、前記状態観測器に前記監視対象データを入力することによって得られる第2状態観測値と、前記質的ソフトセンサに前記監視対象データを入力することによって得られる第2潜在状態値とにより構成されるデータを前記正常モデルと比較することにより、前記異常検出対象の異常の度合いを示す異常度を算出するように構成された異常度算出部(108)と、
     前記異常度算出部により算出された前記異常度に基づいて、前記異常検出対象が正常であるか異常であるかを判定するように構成された判定部(109)と
     を備える異常検出装置(1)。
    A data acquisition unit (101) configured to acquire learning target data and monitoring target data of an abnormality detection target, which is a target for detecting an abnormality, and a data acquisition unit (101).
    The learning target data, the first state observation value obtained by inputting the learning target data into the state observer representing the state of the system of the abnormality detection target, and the qualitative state representing the latent state of the abnormality detection target. A normal model generator configured to generate a normal model by inputting data composed of a first latent state value obtained by inputting the training target data into a soft sensor into a competitive neural network (a normal model generator). 106) and
    The monitored data, the second state observed value obtained by inputting the monitored data into the state observer, and the second latent state obtained by inputting the monitored data into the qualitative soft sensor. An abnormality degree calculation unit (108) configured to calculate an abnormality degree indicating the degree of abnormality of the abnormality detection target by comparing the data composed of the values with the normal model.
    An abnormality detection device (1) including a determination unit (109) configured to determine whether the abnormality detection target is normal or abnormal based on the abnormality degree calculated by the abnormality degree calculation unit. ).
  2.  請求項1に記載の異常検出装置であって、
     前記質的ソフトセンサは、前記異常検出対象を構成する構成要素の状態を表す複数のフラグを結合することにより生成される異常検出装置。
    The abnormality detection device according to claim 1.
    The qualitative soft sensor is an abnormality detection device generated by combining a plurality of flags representing the states of the components constituting the abnormality detection target.
  3.  請求項1または請求項2に記載の異常検出装置であって、
     前記正常モデル生成部は、前記状態観測器を構成する複数の変数の関係性の変化を表し前記学習対象データを入力することによって得られる第1指標を算出し、前記学習対象データと、前記第1状態観測値と、前記第1潜在状態値と、前記第1指標とにより構成されるデータを前記競合型ニューラルネットワークに入力することにより前記正常モデルを生成し、
     前記異常度算出部は、前記状態観測器を構成する複数の変数の関係性の変化を表して前記監視対象データを入力することによって得られる第2指標を算出し、前記監視対象データと、前記第2状態観測値と、前記第2潜在状態値と、前記第2指標とにより構成されるデータを前記正常モデルと比較することにより前記異常度を算出する異常検出装置。
    The abnormality detection device according to claim 1 or 2.
    The normal model generation unit represents a change in the relationship between a plurality of variables constituting the state observer, calculates a first index obtained by inputting the training target data, and calculates the training target data and the first index. The normal model is generated by inputting data composed of one state observed value, the first latent state value, and the first index into the competitive neural network.
    The anomaly degree calculation unit calculates a second index obtained by inputting the monitoring target data by representing the change in the relationship between the plurality of variables constituting the state observer, and the monitoring target data and the monitoring target data are described. An abnormality detection device that calculates the degree of anomaly by comparing data composed of a second state observed value, the second latent state value, and the second index with the normal model.
  4.  請求項3に記載の異常検出装置であって、
     前記第1指標および前記第2指標はマハラノビス距離である異常検出装置。
    The abnormality detection device according to claim 3.
    The first index and the second index are anomaly detection devices in which the Mahalanobis distance is used.
  5.  請求項1~請求項4の何れか1項に記載の異常検出装置であって、
     前記正常モデル生成部が前記正常モデルを生成するために用いられる少なくとも一つのパラメータについて、予め設定された第1探索範囲内で最適解を第1最適解として探索するように構成された第1探索部(S830,S840)と、
     前記第1探索部で探索された前記第1最適解を含み且つ前記第1探索範囲より狭くなるように設定された第2探索範囲内で前記パラメータの最適解を第2最適解として探索するように構成された第2探索部(S850,S860)と
     を備える異常検出装置。
    The abnormality detection device according to any one of claims 1 to 4.
    A first search configured such that the normal model generation unit searches for the optimum solution as the first optimal solution within a preset first search range for at least one parameter used to generate the normal model. Part (S830, S840) and
    The optimum solution of the parameter is searched as the second optimum solution within the second search range including the first optimum solution searched by the first search unit and set to be narrower than the first search range. Anomaly detection device including a second search unit (S850, S860) configured in.
  6.  請求項5に記載の異常検出装置であって、
     前記第1探索部および前記第2探索部は、前記パラメータが複数存在する場合には、前記正常モデルの精度に及ぼす影響が大きい順に前記パラメータを探索する異常検出装置。
    The abnormality detection device according to claim 5.
    The first search unit and the second search unit are abnormality detection devices that search for the parameters in descending order of influence on the accuracy of the normal model when a plurality of the parameters are present.
  7.  異常を検出する対象である異常検出対象の学習対象データおよび監視対象データを取得するデータ取得手順(S10,S410)と、
     前記学習対象データと、前記異常検出対象が有する系統の状態を表す状態観測器に前記学習対象データを入力することによって得られる第1状態観測値と、前記異常検出対象の潜在状態を表す質的ソフトセンサに前記学習対象データを入力することによって得られる第1潜在状態値とにより構成されるデータを競合型ニューラルネットワークに入力することにより正常モデルを生成する正常モデル生成手順(S90)と、
     前記監視対象データと、前記状態観測器に前記監視対象データを入力することによって得られる第2状態観測値と、前記質的ソフトセンサに前記監視対象データを入力することによって得られる第2潜在状態値とにより構成されるデータを前記正常モデルと比較することにより、前記異常検出対象の異常の度合いを示す異常度を算出する異常度算出手順(S480)と、
     前記異常度に基づいて、前記異常検出対象が正常であるか異常であるかを判定する判定手順(S490)と
     を備える異常検出方法。
    The data acquisition procedure (S10, S410) for acquiring the learning target data and the monitoring target data of the abnormality detection target, which is the target for detecting the abnormality, and
    The learning target data, the first state observation value obtained by inputting the learning target data into the state observer representing the state of the system of the abnormality detection target, and the qualitative state representing the latent state of the abnormality detection target. A normal model generation procedure (S90) for generating a normal model by inputting data composed of a first latent state value obtained by inputting the training target data into a soft sensor into a competitive neural network, and a normal model generation procedure (S90).
    The monitored data, the second state observed value obtained by inputting the monitored data into the state observer, and the second latent state obtained by inputting the monitored data into the qualitative soft sensor. An abnormality degree calculation procedure (S480) for calculating an abnormality degree indicating the degree of abnormality of the abnormality detection target by comparing the data composed of the values with the normal model.
    An abnormality detection method including a determination procedure (S490) for determining whether the abnormality detection target is normal or abnormal based on the abnormality degree.
  8.  請求項7に記載の異常検出方法であって、
     前記正常モデル生成手順は、前記状態観測器を構成する複数の変数の関係性の変化を表し前記学習対象データを入力することによって得られる第1指標を算出し、前記学習対象データと、前記第1状態観測値と、前記第1潜在状態値と、前記第1指標とにより構成されるデータを前記競合型ニューラルネットワークに入力することにより前記正常モデルを生成し、
     前記異常度算出手順は、前記状態観測器を構成する複数の変数の関係性の変化を表し前記監視対象データを入力することによって得られる第2指標を算出し、前記監視対象データと、前記第2状態観測値と、前記第2潜在状態値と、前記第2指標とにより構成されるデータを前記競合型ニューラルネットワークに入力することにより前記異常度を算出する異常検出方法。
    The abnormality detection method according to claim 7.
    The normal model generation procedure represents a change in the relationship between a plurality of variables constituting the state observer, calculates a first index obtained by inputting the training target data, and calculates the training target data and the first index. The normal model is generated by inputting data composed of one state observed value, the first latent state value, and the first index into the competitive neural network.
    The abnormality degree calculation procedure represents a change in the relationship between a plurality of variables constituting the state observer, calculates a second index obtained by inputting the monitored data, and calculates the monitored data and the first. An abnormality detection method for calculating the degree of anomaly by inputting data composed of a two-state observed value, the second latent state value, and the second index into the competitive neural network.
  9.  請求項7または請求項8に記載の異常検出方法であって、
     前記正常モデルを生成するために用いられる少なくとも一つのパラメータについて、予め設定された第1探索範囲内で最適解を第1最適解として探索する第1探索手順(S830,S840)と、
     前記第1最適解を含み且つ前記第1探索範囲より狭くなるように設定された第2探索範囲内で前記パラメータの最適解を第2最適解として探索する第2探索手順(S850,S860)と
     を備える異常検出方法。
    The abnormality detection method according to claim 7 or 8.
    The first search procedure (S830, S840) for searching the optimum solution as the first optimum solution within the preset first search range for at least one parameter used to generate the normal model.
    With the second search procedure (S850, S860) in which the optimum solution of the parameter is searched as the second optimum solution within the second search range including the first optimum solution and set to be narrower than the first search range. Anomaly detection method.
  10.  コンピュータを、
     異常を検出する対象である異常検出対象の学習対象データおよび監視対象データを取得するように構成されたデータ取得部、
     前記学習対象データと、前記異常検出対象が有する系統の状態を表す状態観測器に前記学習対象データを入力することによって得られる第1状態観測値と、前記異常検出対象の潜在状態を表す質的ソフトセンサに前記学習対象データを入力することによって得られる第1潜在状態値とにより構成されるデータを競合型ニューラルネットワークに入力することにより正常モデルを生成するように構成された正常モデル生成部、
     前記監視対象データと、前記状態観測器に前記監視対象データを入力することによって得られる第2状態観測値と、前記質的ソフトセンサに前記監視対象データを入力することによって得られる第2潜在状態値とにより構成されるデータを前記正常モデルと比較することにより、前記異常検出対象の異常の度合いを示す異常度を算出するように構成された異常度算出部、及び、
     前記異常度算出部により算出された前記異常度に基づいて、前記異常検出対象が正常であるか異常であるかを判定するように構成された判定部
     として機能させるための異常検出プログラム。
    Computer,
    A data acquisition unit configured to acquire learning target data and monitoring target data for anomaly detection targets, which are targets for detecting anomalies.
    The learning target data, the first state observation value obtained by inputting the learning target data into the state observer representing the state of the system of the abnormality detection target, and the qualitative state representing the latent state of the abnormality detection target. A normal model generator configured to generate a normal model by inputting data composed of a first latent state value obtained by inputting the training target data into a soft sensor into a competitive neural network.
    The monitored data, the second state observed value obtained by inputting the monitored data into the state observer, and the second latent state obtained by inputting the monitored data into the qualitative soft sensor. An abnormality degree calculation unit configured to calculate an abnormality degree indicating the degree of abnormality of the abnormality detection target by comparing the data composed of the values with the normal model, and an abnormality degree calculation unit.
    An abnormality detection program for functioning as a determination unit configured to determine whether the abnormality detection target is normal or abnormal based on the abnormality degree calculated by the abnormality degree calculation unit.
  11.  請求項10に記載の異常検出プログラムであって、
     前記正常モデル生成部は、前記状態観測器を構成する複数の変数の関係性の変化を表して前記学習対象データを入力することによって得られる第1指標を算出し、前記学習対象データと、前記第1状態観測値と、前記第1潜在状態値と、前記第1指標とにより構成されるデータを前記競合型ニューラルネットワークに入力することにより前記正常モデルを生成し、
     前記異常度算出部は、前記状態観測器を構成する複数の変数の関係性の変化を表して前記監視対象データを入力することによって得られる第2指標を算出し、前記監視対象データと、前記第2状態観測値と、前記第2潜在状態値と、前記第2指標とにより構成されるデータを前記正常モデルと比較することにより前記異常度を算出する異常検出プログラム。
    The abnormality detection program according to claim 10.
    The normal model generation unit calculates a first index obtained by inputting the training target data, representing changes in the relationships of a plurality of variables constituting the state observer, and calculates the training target data and the training target data. The normal model is generated by inputting the data composed of the first state observed value, the first latent state value, and the first index into the competitive neural network.
    The anomaly degree calculation unit calculates a second index obtained by inputting the monitoring target data by representing the change in the relationship between the plurality of variables constituting the state observer, and the monitoring target data and the monitoring target data are described. An abnormality detection program that calculates the degree of anomaly by comparing data composed of a second state observed value, the second latent state value, and the second index with the normal model.
  12.  請求項10または請求項11に記載の異常検出プログラムであって、
     コンピュータを、更に、
     前記正常モデル生成部が前記正常モデルを生成するために用いられる少なくとも一つのパラメータについて、予め設定された第1探索範囲内で最適解を第1最適解として探索するように構成された第1探索部、及び、
     前記第1探索部で探索された前記第1最適解を含み且つ前記第1探索範囲より狭くなるように設定された第2探索範囲内で前記パラメータの最適解を第2最適解として探索するように構成された第2探索部
     として機能させるための異常検出プログラム。
    The abnormality detection program according to claim 10 or 11.
    Computer, more
    A first search configured such that the normal model generation unit searches for the optimum solution as the first optimal solution within a preset first search range for at least one parameter used to generate the normal model. Department and
    The optimum solution of the parameter is searched as the second optimum solution within the second search range including the first optimum solution searched by the first search unit and set to be narrower than the first search range. Anomaly detection program to function as the second search unit configured in.
PCT/JP2021/027536 2020-07-31 2021-07-26 Abnormality detection device, abnormality detection method, and abnormality detection program WO2022024991A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-130838 2020-07-31
JP2020130838A JP2022027057A (en) 2020-07-31 2020-07-31 Abnormality detection device, abnormality detection method, and abnormality detection program

Publications (1)

Publication Number Publication Date
WO2022024991A1 true WO2022024991A1 (en) 2022-02-03

Family

ID=80036242

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/027536 WO2022024991A1 (en) 2020-07-31 2021-07-26 Abnormality detection device, abnormality detection method, and abnormality detection program

Country Status (2)

Country Link
JP (1) JP2022027057A (en)
WO (1) WO2022024991A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7356773B1 (en) 2023-07-07 2023-10-05 株式会社Futu-Re Anomaly detection system and anomaly detection method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006016440A1 (en) * 2004-08-13 2006-02-16 Shin Caterpillar Mitsubishi Ltd. Data processing method, data processing device, diagnosis method, and diagnosis device
WO2011024382A1 (en) * 2009-08-28 2011-03-03 株式会社日立製作所 Method and device for monitoring the state of a facility
WO2020162069A1 (en) * 2019-02-07 2020-08-13 株式会社デンソー Abnormality sensing device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006016440A1 (en) * 2004-08-13 2006-02-16 Shin Caterpillar Mitsubishi Ltd. Data processing method, data processing device, diagnosis method, and diagnosis device
WO2011024382A1 (en) * 2009-08-28 2011-03-03 株式会社日立製作所 Method and device for monitoring the state of a facility
WO2020162069A1 (en) * 2019-02-07 2020-08-13 株式会社デンソー Abnormality sensing device

Also Published As

Publication number Publication date
JP2022027057A (en) 2022-02-10

Similar Documents

Publication Publication Date Title
US10551212B2 (en) Sensor output change detection
JP4183185B2 (en) Diagnostic device, detection device, control method, detection method, program, and recording medium
US20160239759A1 (en) Method and apparatus estimating state of battery
JP6109320B2 (en) Detection apparatus, detection method, and program
EP3195068B1 (en) Bias estimation apparatus and method and failure diagnosis apparatus and method
JP2016045861A (en) Abnormality diagnosis device and program
JP6991412B2 (en) Search device, search method, search program and learning model search system
WO2022024991A1 (en) Abnormality detection device, abnormality detection method, and abnormality detection program
US20210357727A1 (en) Abnormality detection device
CN112955837A (en) Abnormality diagnosis device, abnormality diagnosis method, and program
CN113830097A (en) Vehicle, model learning system, and server
TV et al. Data-driven prognostics with predictive uncertainty estimation using ensemble of deep ordinal regression models
JP6448745B2 (en) Bias estimation apparatus, method and program thereof
WO2022004662A1 (en) Factor analysis device, factor analysis method, and factor analysis program
JP7472685B2 (en) Factor analysis device, factor analysis method, and factor analysis program
Choi et al. Data Preprocessing Method in Motor Fault Diagnosis Using Unsupervised Learning
Wilhelm et al. Pusion-A Generic and Automated Framework for Decision Fusion
US20230306234A1 (en) Method for assessing model uncertainties with the aid of a neural network and an architecture of the neural network
US20240020535A1 (en) Method for estimating model uncertainties with the aid of a neural network and an architecture of the neural network
JP2022035222A (en) Machine learning apparatus
CN116089196A (en) Intelligent level analysis and evaluation method and device and computer readable storage medium
CN114077237A (en) Machine learning device
CN117668579A (en) MEST-based multi-rotor unmanned aerial vehicle fault diagnosis method, equipment and storage medium
JP2010127264A (en) Control device of internal combustion engine
JP2019144824A (en) Classification index, classification method, and classification device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21849559

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21849559

Country of ref document: EP

Kind code of ref document: A1