WO2022024745A1 - Display unit - Google Patents

Display unit Download PDF

Info

Publication number
WO2022024745A1
WO2022024745A1 PCT/JP2021/026280 JP2021026280W WO2022024745A1 WO 2022024745 A1 WO2022024745 A1 WO 2022024745A1 JP 2021026280 W JP2021026280 W JP 2021026280W WO 2022024745 A1 WO2022024745 A1 WO 2022024745A1
Authority
WO
WIPO (PCT)
Prior art keywords
antiglare layer
main surface
layer
display
display unit
Prior art date
Application number
PCT/JP2021/026280
Other languages
French (fr)
Japanese (ja)
Inventor
眞誠 一色
Original Assignee
Agc株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agc株式会社 filed Critical Agc株式会社
Publication of WO2022024745A1 publication Critical patent/WO2022024745A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00

Definitions

  • This disclosure relates to a display unit.
  • the antiglare layer is a glass substrate that has been subjected to antiglare treatment and has irregularities.
  • the antiglare treatment includes, for example, at least one selected from frost treatment, etching treatment, and blasting treatment of the surface of the glass substrate, or coating and firing of a coating liquid on the glass substrate.
  • the antiglare layer has irregularities.
  • the unevenness can disperse the reflection direction of light and suppress the reflection of surrounding objects or lighting.
  • One aspect of the present disclosure provides a technique for further improving antiglare.
  • the display unit includes a display and an antiglare layer.
  • the antiglare layer includes a first main surface including irregularities and a second main surface opposite to the first main surface, and the second main surface is laminated on the display with the second main surface facing the display.
  • the display has an internal reflectance R_int of 3.0% or less.
  • the antiglare property can be further improved.
  • FIG. 1 is a cross-sectional view of a display unit according to an embodiment.
  • FIG. 2 is a cross-sectional view of a display unit according to a modified example.
  • the display unit 1 according to the present embodiment will be described with reference to FIG.
  • the display unit 1 is, for example, for an in-vehicle use.
  • the use of the display unit 1 is not particularly limited.
  • the display unit 1 includes, for example, a display 2 and an antiglare layer 3.
  • the display 2 and the antiglare layer 3 are adhered to each other by an adhesive layer such as OCA (Optical Clear Adaptive).
  • OCA Optical Clear Adaptive
  • the display 2 is, for example, a liquid crystal display.
  • the display 2 includes a touch sensor 21, a first polarizing element 22, a color filter substrate 23, a liquid crystal layer 24, a TFT substrate 25, a second polarizing element 26, and a backlight 27 from the antiglare layer 3 side. Are included in this order.
  • the touch sensor 21 detects the proximity of an object such as a finger to the screen of the display 2.
  • the touch sensor 21 accepts the operation of the occupant of the vehicle.
  • the touch sensor 21 has an arbitrary configuration, and the display 2 does not have to include the touch sensor 21.
  • the first polarizing element 22 and the second polarizing element 26 are linear polarizing elements, respectively. These two linear transducers are arranged with the absorption axis offset by 90 °.
  • the color filter substrate 23, the liquid crystal layer 24, and the TFT substrate 25 are arranged between the first polarizing element 22 and the second polarizing element 26.
  • the color filter substrate 23 includes, for example, a glass substrate, a color filter, a common electrode, and an alignment film in this order from the first polarizing element 22 toward the liquid crystal layer 24.
  • the alignment film orients the liquid crystal molecules of the liquid crystal layer 24.
  • the TFT substrate 25 includes, for example, a glass substrate, a pixel electrode, and an alignment film in this order from the second polarizing element 26 toward the liquid crystal layer 24.
  • the alignment film orients the liquid crystal molecules of the liquid crystal layer 24.
  • the TFT substrate 25 further includes a TFT as a driving element for driving the pixel electrodes.
  • the liquid crystal layer 24 is arranged between the color filter substrate 23 and the TFT substrate 25. A voltage is applied to the liquid crystal layer 24 for each pixel. The orientation of the liquid crystal molecules changes depending on the application of voltage, and the brightness of the pixels changes.
  • the backlight 27 irradiates the liquid crystal layer 24 with light via the second polarizing element 26 and the TFT substrate 25.
  • the light passes through the color filter substrate 23, the first polarizing element 22, the touch sensor 21, and the antiglare layer 3 and is emitted.
  • the display 2 may further include a functional layer other than the above.
  • the display 2 may further have an adhesive layer.
  • the adhesive layer adheres adjacent layers to each other.
  • the display 2 has an internal reflectance R_int of 3.0% or less.
  • the measurement method of R_int is as follows. With respect to the main surface 2a on which the antiglare layer 3 of the display 2 is formed, the visual reflectance measured under the geometric condition d (8 °: di) in accordance with JIS Z8722: 2009 is defined as R_dip. Further, in a state where the uppermost layer closest to the antiglare layer 3 of the display 2 is peeled off and a black film is applied to the peeled surface of the uppermost layer, JIS is applied to the main surface 2a on which the uppermost antiglare layer 3 is formed.
  • the visual reflectance measured under the geometric condition d (8 °: di) is defined as R_surf.
  • R_dip and R_surf are measured by, for example, a spectroscopic measuring instrument U-4100 manufactured by Hitachi High-Tech Science Corporation.
  • R_int is calculated by the following formula (1).
  • R_int R_dip-R_surf ... (1)
  • the uppermost layer of the display 2 is the touch sensor 21 in FIG. In the absence of the touch sensor 21, the uppermost layer of the display 2 is the first polarizing element 22.
  • R_surf is subtracted from R_dip. That is, the reason for subtracting R_Surf from R_dip is that R_dip contains reflections at the interface between the top layer of the display 2 and the air.
  • the antiglare layer 3 is laminated on the uppermost layer of the display 2.
  • the difference in refractive index between the antiglare layer 3 and the uppermost layer is smaller than the difference in refractive index between the air layer and the uppermost layer. Therefore, the reflection of light at the interface between the antiglare layer 3 and the uppermost layer is negligibly smaller than the reflection of light at the interface between the air layer and the uppermost layer. Therefore, R_surf is subtracted from R_dip to eliminate the influence of light reflection at the interface between the top layer of the display 2 and the air.
  • R_int is, for example, 3.0% or less, preferably 1.0% or less, more preferably 0.5% or less, still more preferably 0.3% or less.
  • R_int is 3.0% or less, specular reflection between adjacent layers constituting the display 2 can be suppressed, and reflection of surrounding objects or lighting due to the specular reflection can be suppressed.
  • R_int is 0.0% or more.
  • the present inventor has improved the antiglare property of the display unit 1 by combining the display 2 having an R_int of 3.0% or less and the antiglare layer 3 having a ⁇ Rb of 0.05 or more, which will be described later, by an experiment or the like. I found that it could be improved. Even if R_int is 3.0% or less, if ⁇ Rb is less than 0.05, the antiglare property of the display unit 1 is not sufficiently improved.
  • the antiglare property of the display unit 1 is represented by an antiglare property index value R20 °.
  • R20 ° is measured by a variable angle photometer GC-5000L manufactured by Nippon Denshoku Kogyo Co., Ltd.
  • the method for measuring R20 ° is as follows.
  • R20 ° is calculated by the formula.
  • R20 ° (R20 ° _2-R20 ° _1) / (R20 ° _2)
  • the detector rotates the light irradiation point on the first main surface 3a of the antiglare layer 3 in 1 ° increments in the same plane, and detects the brightness in 1 ° increments.
  • the rotation angle of the detector is the above angle ⁇ .
  • the antiglare index value R20 ° is, for example, 0.60 or more and less than 1.00, preferably 0.80 or more and less than 1.00.
  • the antiglare index value R20 ° is 0.60 or more, it is possible to suppress the reflection of surrounding objects or lighting on the display unit 1.
  • the antiglare layer 3 includes a first main surface 3a including irregularities and a second main surface 3b opposite to the first main surface 3a, and the second main surface 3b is directed toward the display 2 and is above the display 2. Is laminated to.
  • the antiglare layer 3 is a so-called cover glass.
  • the antiglare layer 3 is a glass substrate, and the glass substrate includes irregularities.
  • the unevenness is formed by, for example, at least one selected from a frost treatment, an etching treatment, and a blast treatment on the surface of the glass substrate.
  • the unevenness can disperse the reflection direction of light and suppress the reflection of surrounding objects or lighting.
  • the unevenness is formed on the first main surface 3a and not on the second main surface 3b.
  • the second main surface 3b is protected by a mask when forming irregularities on the first main surface 3a.
  • the unevenness may also be formed on the second main surface 3b.
  • the antiglare layer 3 of the present embodiment is a glass substrate, and the glass substrate contains irregularities, but the antiglare layer 3 includes a glass substrate and a coating layer, and the coating layer may include irregularities. Unevenness is formed by applying and firing the coating liquid.
  • the glass substrate of the antiglare layer 3 is also simply referred to as a glass substrate.
  • the glass substrate is formed by a float method, a fusion method, a down draw method, or the like.
  • the glass substrate may be bent. Further, the glass substrate may be tempered glass.
  • the tempered glass is air-cooled tempered glass or chemically tempered glass.
  • the thickness of the glass substrate is, for example, 0.05 mm to 3 mm. If the glass substrate is tempered glass, the strength of the glass substrate can be ensured while reducing the thickness of the glass substrate.
  • the glass of the glass substrate is, for example, soda lime glass, borosilicate glass, aluminosilicate glass, or non-alkali glass. Among these, aluminosilicate glass is preferable.
  • the antiglare layer 3 may include a resin substrate instead of the glass substrate or in addition to the glass substrate.
  • the resin substrate has excellent flexibility.
  • ⁇ Rb is measured by a variable angle photometer GC-5000L manufactured by Nippon Denshoku Kogyo Co., Ltd.
  • the method for measuring ⁇ Rb is the same as the measuring method described in Patent Document 1, and is specifically as follows.
  • Rb20 ° a method for measuring Rb20 °.
  • the antiglare layer 3 is measured alone, and a black film is applied to the second main surface 3b of the antiglare layer 3.
  • the first main surface 3a of the antiglare layer 3 is irradiated with light, and the brightness of the reflected light is detected by the detector.
  • the angle ⁇ in the direction parallel to the thickness direction of the antiglare layer 3 is 0 °
  • Rb20 ° is calculated by the equation (2).
  • Rb20 ° (Rb20 ° _2-Rb20 ° _1) / (Rb20 ° _2) ...
  • the detector rotates the light irradiation point on the first main surface 3a of the antiglare layer 3 in 1 ° increments in the same plane, and detects the brightness in 1 ° increments.
  • the rotation angle of the detector is the above angle ⁇ .
  • the first main surface 3a of the antiglare layer 3 is irradiated with light, and the brightness of the reflected light is detected by a detector.
  • the angle ⁇ in the direction parallel to the thickness direction of the antiglare layer 3 is 0 °
  • Rb45 ° is calculated by the following equation (3).
  • Rb45 ° (Rb45 ° _2-Rb45 ° _1) / (Rb45 ° _2) ...
  • the detector rotates the light irradiation point on the first main surface 3a of the antiglare layer 3 in 1 ° increments in the same plane, and detects the brightness in 1 ° increments.
  • the rotation angle of the detector is the above angle ⁇ .
  • ⁇ Rb is, for example, 0.05 to 0.25, preferably 0.07 to 0.20.
  • ⁇ Rb is 0.05 or more, the antiglare layer 3 having excellent both transmitted image sharpness and Sparkle performance can be obtained.
  • the transmission image sharpness is represented by the following sharpness index value C.
  • the Sparkle performance is represented by the following glare index value S.
  • the antiglare layer 3 has a sharpness index value C of, for example, 0.70 or more.
  • C is measured by a variable angle photometer GC-5000L manufactured by Nippon Denshoku Kogyo Co., Ltd.
  • the method for measuring C is the same as the method for measuring "Clarity" described in Patent Document 2, and the specifics are as follows.
  • a light source arranged to face the second main surface 3b of the antiglare layer 3 irradiates the second main surface 3b of the antiglare layer 3 with light in a direction parallel to the thickness direction of the antiglare layer 3.
  • the brightness of the transmitted light is detected by the detector.
  • the angle ⁇ in the direction parallel to the thickness direction of the antiglare layer 3 is 0 °.
  • the detector rotates the light irradiation point on the second main surface 3b of the antiglare layer 3 in 1 ° increments in the same plane, and detects the brightness in 1 ° increments.
  • the rotation angle of the detector is the above angle ⁇ .
  • C is, for example, 0.70 or more and less than 1.00, preferably 0.90 or more and less than 1.00.
  • the transmission image sharpness is good.
  • the glare index value S of the antiglare layer 3 is, for example, less than 8.00%.
  • the measuring method of S is the same as the measuring method described in Patent Documents 2 and 3, and is specifically as follows.
  • Pixel Pattern attached to SMS-1000 manufactured by D & MS is installed as a photomask with its pattern surface facing up.
  • a glass plate with a thickness of 0.5 mm (for example, a soda lime glass plate manufactured by AGC) is installed on the pattern surface of the photomask, and the antiglare layer 3 is placed on the glass plate with the first main surface 3a facing upward.
  • AGC soda lime glass plate manufactured by AGC
  • the camera of the apparatus SMS-1000 captures an area of 190 dpi of the pattern surface of the photomask through the antiglare layer 3.
  • the Sparkle value obtained by image analysis of the evaluation device is S.
  • the measurement is performed in the DIM (Difference Image Method) mode.
  • the distance between the image sensor of the camera and the antiglare layer 3 is 540 mm.
  • a 23FM50SP lens having a focal length of 50 mm is used at the aperture 16.
  • S is, for example, 0.00% or more and less than 8.00%, preferably 0% or more and less than 5.00%, more preferably less than 4.00%, and further preferably less than 3.00%. If S is less than 8.00%, glare is suppressed.
  • the antiglare layer 3 has a haze value of, for example, 5% to 30%.
  • the haze value is measured with a commercially available measuring device.
  • the measuring device and measuring conditions are as follows, for example. Measuring device: Suga tester Haze meter HZ-V3 Measurement conditions: Based on Japanese Industrial Standards (JIS K 7136: 2000), measurement is performed using a C light source.
  • the haze value is, for example, 5% to 30%, preferably 5% to 20%, more preferably 5 to 15%, and even more preferably 5 to 10%. When the haze value is 30% or less, the sharpness of the transmitted image is good.
  • the display 2 of this modification is not a liquid crystal display but an organic EL display.
  • the display 2 includes the touch sensor 41, the circularly polarizing element 42, the first substrate 43, the light emitting layer 44, and the second substrate 45 in this order from the antiglare layer 3 side.
  • the touch sensor 41 is the same as the touch sensor 21 of the above embodiment, the description thereof will be omitted.
  • the circular polarizing element 42 suppresses the reflection of external light.
  • the circular polarizing element 42 includes, for example, a linear polarizing element and a quarter wavelength film.
  • the circular polarizing element 42 has an arbitrary configuration, and the display 2 does not have to include the circular polarizing element 42.
  • the first substrate 43 includes, for example, a glass substrate or a resin substrate and a transparent electrode.
  • the light generated in the light emitting layer 44 passes through the transparent electrode.
  • the light emitting layer 44 includes, for example, a red light emitting layer, a green light emitting layer, and a blue light emitting layer.
  • the light emitting layer 44 may include a white light emitting layer.
  • the white light emitting layer is used in combination with a color filter.
  • a voltage is applied to the light emitting layer 44 for each pixel.
  • the light emitting layer 44 emits light depending on the application of voltage.
  • the second substrate 45 includes, for example, a glass substrate or a resin substrate and a reflective electrode.
  • the light generated in the light emitting layer 44 is reflected by the reflective electrode and passes through the light emitting layer 44 and the transparent electrode.
  • the display 2 is not limited to the structure shown in FIG.
  • the light extraction method of the display 2 may be either a top emission method or a bottom emission method.
  • various functions such as a hole injection layer, a hole transport layer, an electron transport layer, or an electron injection layer are provided between the first substrate 43 and the light emitting layer 44, or between the second substrate 45 and the light emitting layer 44. Layers may be arranged.
  • the top layer of the display 2 is the touch sensor 41 in FIG.
  • the uppermost layer of the display 2 is a circular polarizing element 42.
  • the uppermost layer of the display 2 is the first substrate 43.
  • the antiglare layer 1 of the display unit 1 is used. Can improve sex. Even if R_int is 3.0% or less, if ⁇ Rb is less than 0.05, the antiglare property of the display unit 1 is not sufficiently improved.
  • the haze value of the antiglare layer 3 is, for example, 5% to 30%, as in the above embodiment. Further, the antiglare layer 3 has a sharpness index value C of, for example, 0.70 or more. Further, the antiglare layer 3 has a glare index value S of, for example, less than 8.00%.
  • Example 1 The first main surface of a glass substrate (soda lime glass plate manufactured by AGC: 100 mm ⁇ 100 mm ⁇ 0.7 mm) was subjected to antiglare treatment to obtain an antiglare layer. As the antiglare treatment, the frost treatment and the etching treatment were performed in this order. A mask film (SPV-3620 manufactured by Nitto Denko Corporation) was attached to the second main surface of the glass substrate before the frost treatment. The mask film was removed after etching.
  • SPV-3620 manufactured by Nitto Denko Corporation
  • frost treatment liquid an aqueous solution containing 2 wt% HF and 3 wt% KF
  • Immersion time in frost treatment liquid 3 [min] After the frost treatment and before the etching treatment, the glass substrate was washed.
  • the processing conditions for the etching process were as follows. ⁇ Etching treatment liquid (an aqueous solution containing 7.5 wt% of HF and 7.5 wt% of HCl) -Immersion time in the etching treatment liquid: 18 [min].
  • a glass substrate different from the glass substrate of the antiglare layer A glass substrate different from the glass substrate of the antiglare layer (AGC, Dragontrail: 100 mm ⁇ 100 mm ⁇ 0.7 mm).
  • a titanium oxide film, and a polarizing film manufactured by Nitto Denko KK, NPF were laminated in this order to prepare a laminated body.
  • the main surface on the glass substrate side was coated with a black film.
  • the black film was formed by black magic (manufactured by Mitsubishi Pencil Co., Ltd., paint marker, PX-30 (black)).
  • the titanium oxide film was formed on a glass substrate by a sputtering method. The film thickness of the titanium oxide film was 7.0 nm.
  • the polarizing film of the simulated display and the antiglare layer are faced to each other, and the polarizing film and the antiglare layer are adhered with OCA (Taica, OPT ⁇ GEL, K120E, 0.2 mm thick), and the display for R20 ° measurement.
  • OCA Teica, OPT ⁇ GEL, K120E, 0.2 mm thick
  • Example 2 to 3 Comparative Example 1
  • an antiglare layer was prepared under the same conditions as in Example 1.
  • Example 2 the simulated display combined with the antiglare layer was produced under the same conditions except that the film thickness of the titanium oxide film was changed in order to change the internal reflectance R_int. Specifically, in Example 2, the film thickness of the titanium oxide film was 10.5 nm. Further, in Example 3, the glass substrate and the polarizing film were laminated without forming a titanium oxide film on the glass substrate and without passing through the titanium oxide film.
  • Comparative Example 1 in the simulated display combined with the antiglare layer, in order to change the internal reflectance R_int, the titanium oxide film was not formed on the glass substrate, and the glass substrate was used without the titanium oxide film.
  • the polarizing film was laminated, and no black film was applied to the main surface of the laminated body on the glass substrate side.
  • Example 4 to 5 and Comparative Examples 2 to 3 In Examples 4 to 5 and Comparative Examples 2 to 3, the antiglare layer was prepared under the same conditions as in Example 1 except that the treatment conditions for the antiglare treatment were changed in order to change the uneven shape.
  • Example 4 a simulated display to be combined with the antiglare layer was produced under the same conditions as in Example 1.
  • ⁇ Clarity index value C> The sharpness index value C of each antiglare layer was measured as described above. C evaluated 0.90 or more as “good”, 0.70 or more and less than 0.90 as “possible”, and evaluated less than 0.70 as “impossible”. “Good” and “OK” are pass, and "No” is fail.
  • ⁇ Anti-glare index value R20 °> The antiglare index value R20 ° of each display unit was measured as described above. For R20 °, 0.80 or more was evaluated as “good”, 0.60 or more and less than 0.80 was evaluated as “possible”, and less than 0.60 was evaluated as “impossible”. “Good” and “OK” are pass, and "No” is fail.
  • ⁇ Glitter index value S> In order to measure the glare index value S of each antiglare layer, a simulated display unit including the antiglare layer, a glass plate, a photomask, and a backlight was prepared in this order. As the backlight, TMN150X180-22GD-4 manufactured by Aitec System Co., Ltd. was used. The method for measuring the glare index value S is as described above.
  • the glare index value S 0.00% or more and less than 8.00% was evaluated as “good”, and 8.00% or more was evaluated as “impossible”. "Good” is a pass and “impossible” is a failure.
  • Table 1 shows the evaluation results.
  • Example 1 As is clear from a comparison between Example 1 and Comparative Example 1, a display having an R_int of 3.0% or less and an antiglare layer having a ⁇ Rb of 0.05 or more are combined to prevent the display unit. It can be seen that the glare index value R20 ° becomes good. Further, from Comparative Examples 2 to 3, it can be seen that even if R_int is 3.0% or less, if ⁇ Rb is less than 0.05, the antiglare index value R20 ° of the display unit becomes defective. Further, from Examples 1 to 3, it can be seen that when ⁇ Rb is 0.05 or more, the smaller R_int is, the larger R20 ° is, and a display unit having excellent anti-glare properties can be obtained.
  • Display unit 2 Display 24 Liquid crystal layer 3 Anti-glare layer 3a 1st main surface 3b 2nd main surface

Abstract

This display unit comprises a display and an antiglare layer. The antiglare layer includes a first principal surface including protrusions and recesses, and a second principal surface on the reverse side from the first principal surface, and is stacked on the display with the second principal surface facing the display. The antiglare layer has a difference ΔRb (ΔRb = Rb20°-Rb45°) of 0.05 or more between the 20° reflection image diffusiveness index value Rb20° and the 45° reflection image diffusiveness index value Rb45°. The display has an internal reflectance R_int of 3.0% or less.

Description

ディスプレイユニットDisplay unit
 本開示は、ディスプレイユニットに関する。 This disclosure relates to a display unit.
 ディスプレイの表面に、周囲の物体又は照明等が映り込むと、画像の視認性が低下する。そこで、ディスプレイの表面には、防眩層が設けられる(例えば特許文献1~3参照)。防眩層は、ガラス基板に対して防眩処理が施されたものであり、凹凸が付与されたものである。防眩処理は、例えば、ガラス基板の表面のフロスト処理、エッチング処理、及びブラスト処理から選ばれる少なくとも1つ、又はガラス基板に対するコーティング液の塗布と焼成を含む。 If surrounding objects or lighting are reflected on the surface of the display, the visibility of the image will be reduced. Therefore, an antiglare layer is provided on the surface of the display (see, for example, Patent Documents 1 to 3). The antiglare layer is a glass substrate that has been subjected to antiglare treatment and has irregularities. The antiglare treatment includes, for example, at least one selected from frost treatment, etching treatment, and blasting treatment of the surface of the glass substrate, or coating and firing of a coating liquid on the glass substrate.
日本国特開2016-6498号公報Japanese Patent Application Laid-Open No. 2016-6998 日本国特開2019-144475号公報Japanese Patent Application Laid-Open No. 2019-144475 日本国特開2019-123652号公報Japanese Patent Application Laid-Open No. 2019-123652
 防眩層は、凹凸を有する。凹凸によって、光の反射方向を分散でき、周囲の物体又は照明等の映り込みを抑制できる。 The antiglare layer has irregularities. The unevenness can disperse the reflection direction of light and suppress the reflection of surrounding objects or lighting.
 本開示の一態様は、防眩性を更に向上する、技術を提供する。 One aspect of the present disclosure provides a technique for further improving antiglare.
 本開示の一態様に係るディスプレイユニットは、ディスプレイと、防眩層と、を有する。前記防眩層は、凹凸を含む第1主面と前記第1主面とは反対向きの第2主面とを含み、前記第2主面を前記ディスプレイに向けて前記ディスプレイの上に積層される。前記防眩層は、20°反射像拡散性指標値Rb20°と45°反射像拡散性指標値Rb45°との差ΔRb(ΔRb=Rb20°-Rb45°)が0.05以上である。前記ディスプレイは、内部反射率R_intが3.0%以下である。 The display unit according to one aspect of the present disclosure includes a display and an antiglare layer. The antiglare layer includes a first main surface including irregularities and a second main surface opposite to the first main surface, and the second main surface is laminated on the display with the second main surface facing the display. To. The antiglare layer has a difference ΔRb (ΔRb = Rb20 ° −Rb45 °) between the 20 ° reflection image diffusivity index value Rb20 ° and the 45 ° reflection image diffusivity index value Rb45 ° of 0.05 or more. The display has an internal reflectance R_int of 3.0% or less.
 本開示の一態様によれば、防眩性を更に向上できる。 According to one aspect of the present disclosure, the antiglare property can be further improved.
図1は、実施形態に係るディスプレイユニットの断面図である。FIG. 1 is a cross-sectional view of a display unit according to an embodiment. 図2は、変形例に係るディスプレイユニットの断面図である。FIG. 2 is a cross-sectional view of a display unit according to a modified example.
 以下、本開示の実施形態について図面を参照して説明する。なお、各図面において同一の又は対応する構成には同一の符号を付し、説明を省略することがある。また、明細書中、数値範囲を示す「~」は、その前後に記載された数値を下限値及び上限値として含むことを意味する。 Hereinafter, embodiments of the present disclosure will be described with reference to the drawings. In each drawing, the same or corresponding configurations may be designated by the same reference numerals and description thereof may be omitted. Further, in the specification, "-" indicating a numerical range means that the numerical values described before and after the numerical range are included as the lower limit value and the upper limit value.
 図1を参照して、本実施形態に係るディスプレイユニット1について説明する。ディスプレイユニット1は、例えば車載用である。但し、ディスプレイユニット1の用途は、特に限定されない。 The display unit 1 according to the present embodiment will be described with reference to FIG. The display unit 1 is, for example, for an in-vehicle use. However, the use of the display unit 1 is not particularly limited.
 ディスプレイユニット1は、例えば、ディスプレイ2と、防眩層3と、を含む。ディスプレイ2と防眩層3とは、例えばOCA(Optical Clear Adhesive)等の接着層で接着される。 The display unit 1 includes, for example, a display 2 and an antiglare layer 3. The display 2 and the antiglare layer 3 are adhered to each other by an adhesive layer such as OCA (Optical Clear Adaptive).
 先ず、ディスプレイ2について説明する。ディスプレイ2は、例えば液晶ディスプレイである。ディスプレイ2は、防眩層3側から、タッチセンサ21と、第1偏光子22と、カラーフィルター基板23と、液晶層24と、TFT基板25と、第2偏光子26と、バックライト27とを、この順番で含む。 First, the display 2 will be described. The display 2 is, for example, a liquid crystal display. The display 2 includes a touch sensor 21, a first polarizing element 22, a color filter substrate 23, a liquid crystal layer 24, a TFT substrate 25, a second polarizing element 26, and a backlight 27 from the antiglare layer 3 side. Are included in this order.
 タッチセンサ21は、ディスプレイ2の画面に対する指などの物体の近接を検出する。ディスプレイユニット1が車載用である場合、タッチセンサ21は車両の搭乗者の操作を受け付ける。なお、タッチセンサ21は任意の構成であって、ディスプレイ2はタッチセンサ21を含まなくてもよい。 The touch sensor 21 detects the proximity of an object such as a finger to the screen of the display 2. When the display unit 1 is for in-vehicle use, the touch sensor 21 accepts the operation of the occupant of the vehicle. The touch sensor 21 has an arbitrary configuration, and the display 2 does not have to include the touch sensor 21.
 第1偏光子22と第2偏光子26は、それぞれ、直線偏光子である。これら2つの直線偏光子は、吸収軸を90°ずらして配置される。第1偏光子22と第2偏光子26の間に、カラーフィルター基板23と液晶層24とTFT基板25とが配置される。 The first polarizing element 22 and the second polarizing element 26 are linear polarizing elements, respectively. These two linear transducers are arranged with the absorption axis offset by 90 °. The color filter substrate 23, the liquid crystal layer 24, and the TFT substrate 25 are arranged between the first polarizing element 22 and the second polarizing element 26.
 カラーフィルター基板23は、図示しないが、例えば、第1偏光子22から液晶層24に向けて、ガラス基板と、カラーフィルターと、共通電極と、配向膜とを、この順番で含む。配向膜は、液晶層24の液晶分子を配向させる。 Although not shown, the color filter substrate 23 includes, for example, a glass substrate, a color filter, a common electrode, and an alignment film in this order from the first polarizing element 22 toward the liquid crystal layer 24. The alignment film orients the liquid crystal molecules of the liquid crystal layer 24.
 TFT基板25は、図示しないが、例えば、第2偏光子26から液晶層24に向けて、ガラス基板と、画素電極と、配向膜とを、この順番で含む。配向膜は、液晶層24の液晶分子を配向させる。TFT基板25は、画素電極を駆動する駆動素子としてのTFTを更に含む。 Although not shown, the TFT substrate 25 includes, for example, a glass substrate, a pixel electrode, and an alignment film in this order from the second polarizing element 26 toward the liquid crystal layer 24. The alignment film orients the liquid crystal molecules of the liquid crystal layer 24. The TFT substrate 25 further includes a TFT as a driving element for driving the pixel electrodes.
 液晶層24は、カラーフィルター基板23とTFT基板25の間に配置される。液晶層24には、画素毎に電圧が印可される。電圧の印可によって液晶分子の向きが変わり、画素の輝度が変わる。 The liquid crystal layer 24 is arranged between the color filter substrate 23 and the TFT substrate 25. A voltage is applied to the liquid crystal layer 24 for each pixel. The orientation of the liquid crystal molecules changes depending on the application of voltage, and the brightness of the pixels changes.
 バックライト27は、第2偏光子26及びTFT基板25を介して、液晶層24に光を照射する。光は、カラーフィルター基板23、第1偏光子22、タッチセンサ21及び防眩層3を透過し、出射する。 The backlight 27 irradiates the liquid crystal layer 24 with light via the second polarizing element 26 and the TFT substrate 25. The light passes through the color filter substrate 23, the first polarizing element 22, the touch sensor 21, and the antiglare layer 3 and is emitted.
 なお、ディスプレイ2は、上記以外の機能層を更に含んでもよい。例えば、ディスプレイ2は、接着層を更に有してもよい。接着層は、隣り合う層同士を接着する。 The display 2 may further include a functional layer other than the above. For example, the display 2 may further have an adhesive layer. The adhesive layer adheres adjacent layers to each other.
 ディスプレイ2は、内部反射率R_intが3.0%以下である。R_intの測定方法は、具体的には下記の通りである。ディスプレイ2の防眩層3が形成される主面2aに対して、JIS Z8722:2009に準拠して、幾何条件d(8°:di)で測定した視感反射率をR_dipとする。また、ディスプレイ2の防眩層3に最も近い最上層を剥離し、最上層の剥離面に黒色膜を施した状態で、最上層の防眩層3が形成される主面2aに対してJIS Z8722:2009に準拠して、幾何条件d(8°:di)で測定した視感反射率をR_surfとする。R_dip及びR_surfは、例えば日立ハイテクサイエンス社製の分光測定器U-4100で測定する。下記式(1)によりR_intが算出される。
R_int=R_dip-R_surf・・・(1)
ディスプレイ2の最上層は、図1ではタッチセンサ21である。なお、タッチセンサ21が無い場合には、ディスプレイ2の最上層は、第1偏光子22である。
The display 2 has an internal reflectance R_int of 3.0% or less. Specifically, the measurement method of R_int is as follows. With respect to the main surface 2a on which the antiglare layer 3 of the display 2 is formed, the visual reflectance measured under the geometric condition d (8 °: di) in accordance with JIS Z8722: 2009 is defined as R_dip. Further, in a state where the uppermost layer closest to the antiglare layer 3 of the display 2 is peeled off and a black film is applied to the peeled surface of the uppermost layer, JIS is applied to the main surface 2a on which the uppermost antiglare layer 3 is formed. According to Z8722: 2009, the visual reflectance measured under the geometric condition d (8 °: di) is defined as R_surf. R_dip and R_surf are measured by, for example, a spectroscopic measuring instrument U-4100 manufactured by Hitachi High-Tech Science Corporation. R_int is calculated by the following formula (1).
R_int = R_dip-R_surf ... (1)
The uppermost layer of the display 2 is the touch sensor 21 in FIG. In the absence of the touch sensor 21, the uppermost layer of the display 2 is the first polarizing element 22.
 R_dipからR_surfを引くのは、R_dipを測定する際には、防眩層3がディスプレイ2から取り外されており、ディスプレイ2の最上層が空気に接するからである。つまり、R_dipからR_Surfを引くのは、R_dipが、ディスプレイ2の最上層と空気の界面での反射を含むからである。 The reason why R_surf is subtracted from R_dip is that the antiglare layer 3 is removed from the display 2 when measuring R_dip, and the uppermost layer of the display 2 is in contact with air. That is, the reason for subtracting R_Surf from R_dip is that R_dip contains reflections at the interface between the top layer of the display 2 and the air.
 ディスプレイユニット1において、ディスプレイ2の最上層の上には、防眩層3が積層されている。防眩層3と最上層の屈折率差は、空気層と最上層の屈折率差よりも小さい。それゆえ、防眩層3と最上層の界面での光の反射は、空気層と最上層の界面での光の反射に比べて、無視できる程度に小さい。そこで、R_dipからR_surfを引き、ディスプレイ2の最上層と空気の界面での光の反射の影響を排除する。 In the display unit 1, the antiglare layer 3 is laminated on the uppermost layer of the display 2. The difference in refractive index between the antiglare layer 3 and the uppermost layer is smaller than the difference in refractive index between the air layer and the uppermost layer. Therefore, the reflection of light at the interface between the antiglare layer 3 and the uppermost layer is negligibly smaller than the reflection of light at the interface between the air layer and the uppermost layer. Therefore, R_surf is subtracted from R_dip to eliminate the influence of light reflection at the interface between the top layer of the display 2 and the air.
 R_intは、例えば3.0%以下、好ましくは1.0%以下、より好ましくは0.5%以下、さらに好ましくは0.3%以下である。R_intが3.0%以下であれば、ディスプレイ2を構成する隣り合う層間での正反射を抑制でき、その正反射による周囲の物体又は照明等の映り込みを抑制できる。R_intは、0.0%以上である。 R_int is, for example, 3.0% or less, preferably 1.0% or less, more preferably 0.5% or less, still more preferably 0.3% or less. When R_int is 3.0% or less, specular reflection between adjacent layers constituting the display 2 can be suppressed, and reflection of surrounding objects or lighting due to the specular reflection can be suppressed. R_int is 0.0% or more.
 本発明者は、実験等により、R_intが3.0%以下であるディスプレイ2と、後述のΔRbが0.05以上である防眩層3とを組み合わせることで、ディスプレイユニット1の防眩性を向上できることを見出した。なお、R_intが3.0%以下であっても、ΔRbが0.05未満であれば、ディスプレイユニット1の防眩性は十分に向上しない。 The present inventor has improved the antiglare property of the display unit 1 by combining the display 2 having an R_int of 3.0% or less and the antiglare layer 3 having a ΔRb of 0.05 or more, which will be described later, by an experiment or the like. I found that it could be improved. Even if R_int is 3.0% or less, if ΔRb is less than 0.05, the antiglare property of the display unit 1 is not sufficiently improved.
 ディスプレイユニット1の防眩性は、防眩性指標値R20°で表される。R20°は、日本電色工業社製の変角光度計GC-5000Lにより測定する。R20°の測定方法は、下記の通りである。防眩層3の第1主面3aに対して光を照射し、その反射光の輝度を検出器で検出する。防眩層3の厚さ方向と平行な方向の角度φを0゜とすると、φ=20°の角度で光を照射する。φ=-20°で検出される正反射光の輝度をR20°_1とし、φ=-50°~+10°の全範囲で検出される反射光の輝度の合計値をR20°_2とすると、下記式によりR20°が算出される。
R20°=(R20°_2-R20°_1)/(R20°_2)
ここで、検出器は、防眩層3の第1主面3aにおける光の照射点を中心に、同一平面内で1°刻みで回転させ、1°刻みで輝度を検出する。検出器の回転角度が、上記角度φである。
The antiglare property of the display unit 1 is represented by an antiglare property index value R20 °. R20 ° is measured by a variable angle photometer GC-5000L manufactured by Nippon Denshoku Kogyo Co., Ltd. The method for measuring R20 ° is as follows. The first main surface 3a of the antiglare layer 3 is irradiated with light, and the brightness of the reflected light is detected by a detector. Assuming that the angle φ in the direction parallel to the thickness direction of the antiglare layer 3 is 0 °, light is irradiated at an angle of φ = 20 °. Assuming that the brightness of the specularly reflected light detected at φ = -20 ° is R20 ° _1 and the total brightness of the reflected light detected in the entire range of φ = -50 ° to + 10 ° is R20 ° _2, it is as follows. R20 ° is calculated by the formula.
R20 ° = (R20 ° _2-R20 ° _1) / (R20 ° _2)
Here, the detector rotates the light irradiation point on the first main surface 3a of the antiglare layer 3 in 1 ° increments in the same plane, and detects the brightness in 1 ° increments. The rotation angle of the detector is the above angle φ.
 防眩性指標値R20°は、例えば0.60以上1.00未満であり、好ましくは0.80以上1.00未満である。防眩性指標値R20°が0.60以上であれば、ディスプレイユニット1に対する周囲の物体又は照明等の映り込みを抑制できる。 The antiglare index value R20 ° is, for example, 0.60 or more and less than 1.00, preferably 0.80 or more and less than 1.00. When the antiglare index value R20 ° is 0.60 or more, it is possible to suppress the reflection of surrounding objects or lighting on the display unit 1.
 次に、防眩層3について説明する。防眩層3は、凹凸を含む第1主面3aと、第1主面3aとは反対向きの第2主面3bとを含み、第2主面3bをディスプレイ2に向けてディスプレイ2の上に積層される。防眩層3は、いわゆるカバーガラスである。防眩層3はガラス基板であり、ガラス基板が凹凸を含む。 Next, the antiglare layer 3 will be described. The antiglare layer 3 includes a first main surface 3a including irregularities and a second main surface 3b opposite to the first main surface 3a, and the second main surface 3b is directed toward the display 2 and is above the display 2. Is laminated to. The antiglare layer 3 is a so-called cover glass. The antiglare layer 3 is a glass substrate, and the glass substrate includes irregularities.
 凹凸は、例えば、ガラス基板の表面のフロスト処理、エッチング処理、及びブラスト処理から選ばれる少なくとも1つによって形成される。凹凸によって、光の反射方向を分散でき、周囲の物体又は照明等の映り込みを抑制できる。凹凸は、第1主面3aに形成され、第2主面3bには形成されない。第2主面3bは、第1主面3aに凹凸を形成する際に、マスクで保護される。但し、凹凸は、第2主面3bにも形成されてもよい。 The unevenness is formed by, for example, at least one selected from a frost treatment, an etching treatment, and a blast treatment on the surface of the glass substrate. The unevenness can disperse the reflection direction of light and suppress the reflection of surrounding objects or lighting. The unevenness is formed on the first main surface 3a and not on the second main surface 3b. The second main surface 3b is protected by a mask when forming irregularities on the first main surface 3a. However, the unevenness may also be formed on the second main surface 3b.
 なお、本実施形態の防眩層3はガラス基板であり、そのガラス基板が凹凸を含むが、防眩層3はガラス基板とコーティング層とを含み、コーティング層が凹凸を含んでもよい。コーティング液の塗布及び焼成によって、凹凸が形成される。以下、防眩層3のガラス基板を、単にガラス基板とも表記する。 The antiglare layer 3 of the present embodiment is a glass substrate, and the glass substrate contains irregularities, but the antiglare layer 3 includes a glass substrate and a coating layer, and the coating layer may include irregularities. Unevenness is formed by applying and firing the coating liquid. Hereinafter, the glass substrate of the antiglare layer 3 is also simply referred to as a glass substrate.
 ガラス基板は、フロート法、フュージョン法、又はダウンドロー法等により成形される。ガラス基板は、曲げ加工されてもよい。また、ガラス基板は、強化ガラスでもよい。強化ガラスは、風冷強化ガラス、又は化学強化ガラスである。 The glass substrate is formed by a float method, a fusion method, a down draw method, or the like. The glass substrate may be bent. Further, the glass substrate may be tempered glass. The tempered glass is air-cooled tempered glass or chemically tempered glass.
 ガラス基板の厚さは、例えば0.05mm~3mmである。ガラス基板が強化ガラスであれば、ガラス基板の厚さを低減しつつ、ガラス基板の強度を確保できる。ガラス基板のガラスは、例えばソーダライムガラス、ホウケイ酸ガラス、アルミノシリケートガラス、又は無アルカリガラスである。これらの中でも、アルミノシリケートガラスが好ましい。 The thickness of the glass substrate is, for example, 0.05 mm to 3 mm. If the glass substrate is tempered glass, the strength of the glass substrate can be ensured while reducing the thickness of the glass substrate. The glass of the glass substrate is, for example, soda lime glass, borosilicate glass, aluminosilicate glass, or non-alkali glass. Among these, aluminosilicate glass is preferable.
 なお、防眩層3は、ガラス基板の代わりに、又はガラス基板に加えて、樹脂基板を含んでもよい。樹脂基板は、フレキシブル性に優れる。 The antiglare layer 3 may include a resin substrate instead of the glass substrate or in addition to the glass substrate. The resin substrate has excellent flexibility.
 防眩層3は、20°反射像拡散性指標値Rb20°と45°反射像拡散性指標値Rb45°との差ΔRb(ΔRb=Rb20°-Rb45°)が0.05以上である。ΔRbは、日本電色工業社製の変角光度計GC-5000Lにより測定する。ΔRbの測定方法は、特許文献1に記載の測定方法と同様であり、具体的には下記の通りである。 The antiglare layer 3 has a difference ΔRb (ΔRb = Rb20 ° −Rb45 °) between the 20 ° reflection image diffusivity index value Rb20 ° and the 45 ° reflection image diffusivity index value Rb45 ° of 0.05 or more. ΔRb is measured by a variable angle photometer GC-5000L manufactured by Nippon Denshoku Kogyo Co., Ltd. The method for measuring ΔRb is the same as the measuring method described in Patent Document 1, and is specifically as follows.
 先ず、Rb20°の測定方法を説明する。Rb20°の測定では、R20°の測定とは異なり、防眩層3単体で測定し、防眩層3の第2主面3bに黒色膜を施す。その状態で、防眩層3の第1主面3aに対して光を照射し、その反射光の輝度を検出器で検出する。防眩層3の厚さ方向と平行な方向の角度φを0゜とすると、φ=20°の角度で光を照射する。φ=-20°で検出される正反射光の輝度をRb20°_1とし、φ=-50°~+10°の全範囲で検出される反射光の輝度の合計値をRb20°_2とすると、下記式(2)によりRb20°が算出される。
Rb20°=(Rb20°_2-Rb20°_1)/(Rb20°_2)・・・(2)
ここで、検出器は、防眩層3の第1主面3aにおける光の照射点を中心に、同一平面内で1°刻みで回転させ、1°刻みで輝度を検出する。検出器の回転角度が、上記角度φである。
First, a method for measuring Rb20 ° will be described. In the measurement of Rb20 °, unlike the measurement of R20 °, the antiglare layer 3 is measured alone, and a black film is applied to the second main surface 3b of the antiglare layer 3. In that state, the first main surface 3a of the antiglare layer 3 is irradiated with light, and the brightness of the reflected light is detected by the detector. Assuming that the angle φ in the direction parallel to the thickness direction of the antiglare layer 3 is 0 °, light is irradiated at an angle of φ = 20 °. Assuming that the brightness of the specularly reflected light detected at φ = -20 ° is Rb20 ° _1 and the total brightness of the reflected light detected in the entire range of φ = -50 ° to + 10 ° is Rb20 ° _1, the following is assumed. Rb20 ° is calculated by the equation (2).
Rb20 ° = (Rb20 ° _2-Rb20 ° _1) / (Rb20 ° _2) ... (2)
Here, the detector rotates the light irradiation point on the first main surface 3a of the antiglare layer 3 in 1 ° increments in the same plane, and detects the brightness in 1 ° increments. The rotation angle of the detector is the above angle φ.
 次に、Rb45°の測定方法を説明する。防眩層3の第2主面3bに黒色膜を施した状態で、防眩層3の第1主面3aに対して光を照射し、その反射光の輝度を検出器で検出する。防眩層3の厚さ方向と平行な方向の角度φを0゜とすると、φ=45°の角度で光を照射する。φ=-45°で検出される正反射光の輝度をRb45°_1とし、φ=―75°~-15°の全範囲で検出される反射光の輝度の合計値をRb45°_2とすると、下記式(3)によりRb45°が算出される。
Rb45°=(Rb45°_2-Rb45°_1)/(Rb45°_2)・・・(3)
ここで、検出器は、防眩層3の第1主面3aにおける光の照射点を中心に、同一平面内で1°刻みで回転させ、1°刻みで輝度を検出する。検出器の回転角度が、上記角度φである。
Next, a method for measuring Rb45 ° will be described. With the second main surface 3b of the antiglare layer 3 coated with a black film, the first main surface 3a of the antiglare layer 3 is irradiated with light, and the brightness of the reflected light is detected by a detector. Assuming that the angle φ in the direction parallel to the thickness direction of the antiglare layer 3 is 0 °, light is irradiated at an angle of φ = 45 °. Assuming that the brightness of the specularly reflected light detected at φ = −45 ° is Rb45 ° _1 and the total brightness of the reflected light detected in the entire range of φ = −75 ° to −15 ° is Rb45 ° _2. Rb45 ° is calculated by the following equation (3).
Rb45 ° = (Rb45 ° _2-Rb45 ° _1) / (Rb45 ° _2) ... (3)
Here, the detector rotates the light irradiation point on the first main surface 3a of the antiglare layer 3 in 1 ° increments in the same plane, and detects the brightness in 1 ° increments. The rotation angle of the detector is the above angle φ.
 ΔRbは、例えば0.05~0.25であり、好ましくは0.07~0.20である。ΔRbが0.05以上であれば、透過像鮮明性とSparkle性能の両方に優れた防眩層3が得られる。透過像鮮明性は、下記の鮮明性指標値Cで表される。また、Sparkle性能は、下記のギラツキ指標値Sで表される。 ΔRb is, for example, 0.05 to 0.25, preferably 0.07 to 0.20. When ΔRb is 0.05 or more, the antiglare layer 3 having excellent both transmitted image sharpness and Sparkle performance can be obtained. The transmission image sharpness is represented by the following sharpness index value C. Further, the Sparkle performance is represented by the following glare index value S.
 防眩層3は、鮮明性指標値Cが例えば0.70以上である。Cは、日本電色工業社製の変角光度計GC-5000Lにより測定する。Cの測定方法は、特許文献2に記載の「Clarity」の測定方法と同様であり、具体的には下記の通りである。なお、Cを測定する際には、Rb20°を測定する際とは異なり、防眩層3の第2主面3bに黒色膜を施さない。先ず、防眩層3の第2主面3bに対向配置される光源から、防眩層3の厚さ方向と平行な方向に、光を防眩層3の第2主面3bに照射し、その透過光の輝度を検出器で検出する。防眩層3の厚さ方向と平行な方向の角度θを0°とする。θ=0°で検出される透過光の輝度をC1とし、θ=-90°~90°の全範囲で検出される透過光の輝度の合計値をC2とする場合に、下記式(4)によりCが算出される。
C=C1/C2・・・(4)
ここで、検出器は、防眩層3の第2主面3bにおける光の照射点を中心に、同一平面内で1°刻みで回転させ、1°刻みで輝度を検出する。検出器の回転角度が、上記角度θである。
The antiglare layer 3 has a sharpness index value C of, for example, 0.70 or more. C is measured by a variable angle photometer GC-5000L manufactured by Nippon Denshoku Kogyo Co., Ltd. The method for measuring C is the same as the method for measuring "Clarity" described in Patent Document 2, and the specifics are as follows. When measuring C, unlike the case of measuring Rb20 °, the black film is not applied to the second main surface 3b of the antiglare layer 3. First, a light source arranged to face the second main surface 3b of the antiglare layer 3 irradiates the second main surface 3b of the antiglare layer 3 with light in a direction parallel to the thickness direction of the antiglare layer 3. The brightness of the transmitted light is detected by the detector. The angle θ in the direction parallel to the thickness direction of the antiglare layer 3 is 0 °. When the brightness of the transmitted light detected at θ = 0 ° is C1, and the total value of the brightness of the transmitted light detected in the entire range of θ = −90 ° to 90 ° is C2, the following equation (4) C is calculated by.
C = C1 / C2 ... (4)
Here, the detector rotates the light irradiation point on the second main surface 3b of the antiglare layer 3 in 1 ° increments in the same plane, and detects the brightness in 1 ° increments. The rotation angle of the detector is the above angle θ.
 Cは、例えば0.70以上1.00未満であり、好ましくは0.90以上1.00未満である。Cが0.70以上であれば、透過像鮮明性が良好である。 C is, for example, 0.70 or more and less than 1.00, preferably 0.90 or more and less than 1.00. When C is 0.70 or more, the transmission image sharpness is good.
 防眩層3は、ギラツキ指標値Sが例えば8.00%未満である。Sの測定方法は、特許文献2、3に記載の測定方法と同様であり、具体的には下記の通りである。バックライトの発光面の上に、フォトマスクとしてD&MS社製のSMS―1000に付属のPixel Patternを、そのパターン面を上向きにして設置する。フォトマスクのパターン面の上に0.5mm厚のガラス板(例えばAGC社製、ソーダライムガラス板)を設置し、更にその上に、防眩層3を、その第1主面3aを上向きにして設置する。発光色が緑色のバックライトの発光面の上に前記フォトマスクを設置することで、RGB(0,255,0)で構成される緑単色の画像表示を模擬した状態で、DM&S社製の評価装置SMS-1000のカメラにより、防眩層3を介してフォトマスクのパターン面の190dpiの領域を撮像する。評価装置の画像解析により求められるSparkle値がSである。ここでは、DIM(Difference Image Method)モードで測定を行う。カメラの撮像素子と防眩層3との間の距離は540mmである。カメラのレンズは、焦点距離が50mmの23FM50SPレンズを絞り16で使用する。 The glare index value S of the antiglare layer 3 is, for example, less than 8.00%. The measuring method of S is the same as the measuring method described in Patent Documents 2 and 3, and is specifically as follows. On the light emitting surface of the backlight, Pixel Pattern attached to SMS-1000 manufactured by D & MS is installed as a photomask with its pattern surface facing up. A glass plate with a thickness of 0.5 mm (for example, a soda lime glass plate manufactured by AGC) is installed on the pattern surface of the photomask, and the antiglare layer 3 is placed on the glass plate with the first main surface 3a facing upward. To install. Evaluation by DM & S Co., Ltd. in a state of simulating a single green image display composed of RGB (0,255,0) by installing the photomask on the light emitting surface of a backlight whose light emitting color is green. The camera of the apparatus SMS-1000 captures an area of 190 dpi of the pattern surface of the photomask through the antiglare layer 3. The Sparkle value obtained by image analysis of the evaluation device is S. Here, the measurement is performed in the DIM (Difference Image Method) mode. The distance between the image sensor of the camera and the antiglare layer 3 is 540 mm. As the camera lens, a 23FM50SP lens having a focal length of 50 mm is used at the aperture 16.
 Sは、例えば0.00%以上8.00%未満であり、好ましくは0%以上5.00%未満、より好ましくは4.00%未満、さらに好ましくは3.00%未満である。Sが8.00%未満であれば、ギラツキが抑制される。 S is, for example, 0.00% or more and less than 8.00%, preferably 0% or more and less than 5.00%, more preferably less than 4.00%, and further preferably less than 3.00%. If S is less than 8.00%, glare is suppressed.
 防眩層3は、ヘイズ値が例えば5%~30%である。ヘイズ値は、市販の測定装置で測定する。測定装置及び測定条件は、例えば下記の通りである。測定装置:スガ試験機ヘイズメーターHZ-V3測定条件:日本工業規格(JIS K 7136:2000)に準拠し、C光源を使用して測定する。 The antiglare layer 3 has a haze value of, for example, 5% to 30%. The haze value is measured with a commercially available measuring device. The measuring device and measuring conditions are as follows, for example. Measuring device: Suga tester Haze meter HZ-V3 Measurement conditions: Based on Japanese Industrial Standards (JIS K 7136: 2000), measurement is performed using a C light source.
 ヘイズ値は、例えば5%~30%であり、好ましくは5%~20%、より好ましくは5~15%、さらに好ましくは5~10%である。ヘイズ値が30%以下であれば、透過像の鮮明性が良好である。 The haze value is, for example, 5% to 30%, preferably 5% to 20%, more preferably 5 to 15%, and even more preferably 5 to 10%. When the haze value is 30% or less, the sharpness of the transmitted image is good.
 次に、図2を参照して、変形例に係るディスプレイユニット1について説明する。以下、主に相違点について説明する。本変形例のディスプレイ2は、液晶ディスプレイではなく、有機ELディスプレイである。ディスプレイ2は、防眩層3側から、タッチセンサ41と、円偏光子42と、第1基板43と、発光層44と、第2基板45とを、この順番で含む。 Next, the display unit 1 according to the modified example will be described with reference to FIG. The differences will be mainly described below. The display 2 of this modification is not a liquid crystal display but an organic EL display. The display 2 includes the touch sensor 41, the circularly polarizing element 42, the first substrate 43, the light emitting layer 44, and the second substrate 45 in this order from the antiglare layer 3 side.
 タッチセンサ41は、上記実施形態のタッチセンサ21と同様であるので、説明を省略する。 Since the touch sensor 41 is the same as the touch sensor 21 of the above embodiment, the description thereof will be omitted.
 円偏光子42は、外光の反射を抑制する。円偏光子42は、例えば直線偏光子と1/4波長膜とを含む。なお、円偏光子42は任意の構成であって、ディスプレイ2は円偏光子42を含まなくてもよい。 The circular polarizing element 42 suppresses the reflection of external light. The circular polarizing element 42 includes, for example, a linear polarizing element and a quarter wavelength film. The circular polarizing element 42 has an arbitrary configuration, and the display 2 does not have to include the circular polarizing element 42.
 第1基板43は、例えば、ガラス基板又は樹脂基板と、透明電極とを含む。発光層44で発生した光は、透明電極を透過する。 The first substrate 43 includes, for example, a glass substrate or a resin substrate and a transparent electrode. The light generated in the light emitting layer 44 passes through the transparent electrode.
 発光層44は、例えば、赤色発光層と、緑色発光層と、青色発光層と含む。なお、発光層44は白色発光層を含んでもよい。白色発光層は、カラーフィルターと組み合わせて用いられる。発光層44には、画素毎に電圧が印可される。電圧の印可によって、発光層44が発光する。 The light emitting layer 44 includes, for example, a red light emitting layer, a green light emitting layer, and a blue light emitting layer. The light emitting layer 44 may include a white light emitting layer. The white light emitting layer is used in combination with a color filter. A voltage is applied to the light emitting layer 44 for each pixel. The light emitting layer 44 emits light depending on the application of voltage.
 第2基板45は、例えば、ガラス基板又は樹脂基板と、反射電極とを含む。発光層44で発生した光は、反射電極で反射され、発光層44及び透明電極を透過する。 The second substrate 45 includes, for example, a glass substrate or a resin substrate and a reflective electrode. The light generated in the light emitting layer 44 is reflected by the reflective electrode and passes through the light emitting layer 44 and the transparent electrode.
 なお、ディスプレイ2は、図2に示す構造には限定されない。ディスプレイ2の光取り出し方式は、トップエミッション方式、ボトムエミッション方式のいずれでもよい。また、第1基板43と発光層44の間、又は第2基板45と発光層44の間には、正孔注入層、正孔輸送層、電子輸送層、又は電子注入層等の各種の機能層が配置されてもよい。 Note that the display 2 is not limited to the structure shown in FIG. The light extraction method of the display 2 may be either a top emission method or a bottom emission method. Further, various functions such as a hole injection layer, a hole transport layer, an electron transport layer, or an electron injection layer are provided between the first substrate 43 and the light emitting layer 44, or between the second substrate 45 and the light emitting layer 44. Layers may be arranged.
 ディスプレイ2の最上層は、図2ではタッチセンサ41である。なお、タッチセンサ41が無い場合には、ディスプレイ2の最上層は、円偏光子42である。円偏光子42も無い場合には、ディスプレイ2の最上層は、第1基板43である。 The top layer of the display 2 is the touch sensor 41 in FIG. In the absence of the touch sensor 41, the uppermost layer of the display 2 is a circular polarizing element 42. In the absence of the circular polarizing element 42, the uppermost layer of the display 2 is the first substrate 43.
 本変形例においても、上記実施形態と同様に、R_intが3.0%以下であるディスプレイ2と、ΔRbが0.05以上である防眩層3とを組み合わせることで、ディスプレイユニット1の防眩性を向上できる。なお、R_intが3.0%以下であっても、ΔRbが0.05未満であれば、ディスプレイユニット1の防眩性は十分に向上しない。 Also in this modification, as in the above embodiment, by combining the display 2 having R_int of 3.0% or less and the antiglare layer 3 having ΔRb of 0.05 or more, the antiglare layer 1 of the display unit 1 is used. Can improve sex. Even if R_int is 3.0% or less, if ΔRb is less than 0.05, the antiglare property of the display unit 1 is not sufficiently improved.
 また、本変形例においても、上記実施形態と同様に、防眩層3は、ヘイズ値が例えば5%~30%である。また、防眩層3は、鮮明性指標値Cが例えば0.70以上である。更に、防眩層3は、ギラツキ指標値Sが例えば8.00%未満である。 Further, also in this modification, the haze value of the antiglare layer 3 is, for example, 5% to 30%, as in the above embodiment. Further, the antiglare layer 3 has a sharpness index value C of, for example, 0.70 or more. Further, the antiglare layer 3 has a glare index value S of, for example, less than 8.00%.
 以下、実施例1~5及び比較例1~3について説明する。 Hereinafter, Examples 1 to 5 and Comparative Examples 1 to 3 will be described.
 [実施例1]
 ガラス基板(AGC社製、ソーダライムガラス板:100mm×100mm×0.7mm)の第1主面に対して、防眩処理を行い、防眩層を得た。防眩処理として、フロスト処理と、エッチング処理とをこの順番で行った。ガラス基板の第2主面には、フロスト処理前にマスク用のフィルム(日東電工社製SPV-3620)を貼り付けた。マスク用のフィルムは、エッチング処理後に取り外した。
[Example 1]
The first main surface of a glass substrate (soda lime glass plate manufactured by AGC: 100 mm × 100 mm × 0.7 mm) was subjected to antiglare treatment to obtain an antiglare layer. As the antiglare treatment, the frost treatment and the etching treatment were performed in this order. A mask film (SPV-3620 manufactured by Nitto Denko Corporation) was attached to the second main surface of the glass substrate before the frost treatment. The mask film was removed after etching.
 フロスト処理の処理条件は、下記の通りであった。
・フロスト処理液(HFを2wt%含み且つKFを3wt%含む水溶液)
・フロスト処理液への浸漬時間:3[min]
フロスト処理の後、エッチング処理の前に、ガラス基板を洗浄した。
The processing conditions for the frost treatment were as follows.
Frost treatment liquid (an aqueous solution containing 2 wt% HF and 3 wt% KF)
・ Immersion time in frost treatment liquid: 3 [min]
After the frost treatment and before the etching treatment, the glass substrate was washed.
 エッチング処理の処理条件は、下記の通りであった。
・エッチング処理液(HFを7.5wt%含み且つHClを7.5wt%含む水溶液)
・エッチング処理液への浸漬時間:18[min]。
The processing conditions for the etching process were as follows.
・ Etching treatment liquid (an aqueous solution containing 7.5 wt% of HF and 7.5 wt% of HCl)
-Immersion time in the etching treatment liquid: 18 [min].
 防眩層と組み合わせる模擬的なディスプレイ(R20°を測定する時に用いる模擬的なディスプレイ)として、防眩層のガラス基板とは別のガラス基板(AGC社製、Dragontrail:100mm×100mm×0.7mm)と、酸化チタン膜と、偏光フィルム(日東電工社製、NPF)とをこの順番で積層した積層体を作製した。この積層体の2つの主面のうち、ガラス基板側の主面には黒色膜を施した。黒色膜は、黒マジック(三菱鉛筆社製、ペイントマーカー、PX-30(黒))で形成した。酸化チタン膜は、ガラス基板上にスパッタリング法で形成した。酸化チタン膜の膜厚は7.0nmであった。 As a simulated display to be combined with the antiglare layer (simulated display used when measuring R20 °), a glass substrate different from the glass substrate of the antiglare layer (AGC, Dragontrail: 100 mm × 100 mm × 0.7 mm). ), A titanium oxide film, and a polarizing film (manufactured by Nitto Denko KK, NPF) were laminated in this order to prepare a laminated body. Of the two main surfaces of this laminate, the main surface on the glass substrate side was coated with a black film. The black film was formed by black magic (manufactured by Mitsubishi Pencil Co., Ltd., paint marker, PX-30 (black)). The titanium oxide film was formed on a glass substrate by a sputtering method. The film thickness of the titanium oxide film was 7.0 nm.
 模擬的なディスプレイの偏光フィルムと防眩層とを向かい合わせて、偏光フィルムと防眩層とをOCA(タイカ社製、OPTαGEL、K120E、0.2mm厚)で接着し、R20°測定用のディスプレイユニットを作製した。 The polarizing film of the simulated display and the antiglare layer are faced to each other, and the polarizing film and the antiglare layer are adhered with OCA (Taica, OPTαGEL, K120E, 0.2 mm thick), and the display for R20 ° measurement. The unit was made.
 [実施例2~3、比較例1]
 実施例2~3及び比較例1では、実施例1と同じ条件で、防眩層を作製した。
[Examples 2 to 3, Comparative Example 1]
In Examples 2 to 3 and Comparative Example 1, an antiglare layer was prepared under the same conditions as in Example 1.
 実施例2~3では、防眩層と組み合わせる模擬的なディスプレイは、内部反射率R_intを変更すべく、酸化チタン膜の膜厚を変更した以外、同じ条件で作製した。具体的には、実施例2では、酸化チタン膜の膜厚は10.5nmであった。また、実施例3では、酸化チタン膜をガラス基板上に成膜することなく、酸化チタン膜を介さずにガラス基材と偏光フィルムとを積層した。 In Examples 2 and 3, the simulated display combined with the antiglare layer was produced under the same conditions except that the film thickness of the titanium oxide film was changed in order to change the internal reflectance R_int. Specifically, in Example 2, the film thickness of the titanium oxide film was 10.5 nm. Further, in Example 3, the glass substrate and the polarizing film were laminated without forming a titanium oxide film on the glass substrate and without passing through the titanium oxide film.
 比較例1では、防眩層と組み合わせる模擬的なディスプレイは、内部反射率R_intを変更すべく、酸化チタン膜をガラス基板上に成膜することなく、酸化チタン膜を介さずにガラス基材と偏光フィルムとを積層し、且つ、積層体のガラス基板側の主面に黒色膜を施さなかった。 In Comparative Example 1, in the simulated display combined with the antiglare layer, in order to change the internal reflectance R_int, the titanium oxide film was not formed on the glass substrate, and the glass substrate was used without the titanium oxide film. The polarizing film was laminated, and no black film was applied to the main surface of the laminated body on the glass substrate side.
 [実施例4~5、比較例2~3]
 実施例4~5及び比較例2~3では、防眩層は、凹凸形状を変更すべく、防眩処理の処理条件を変更した以外、実施例1と同じ条件で作製した。
[Examples 4 to 5, Comparative Examples 2 to 3]
In Examples 4 to 5 and Comparative Examples 2 to 3, the antiglare layer was prepared under the same conditions as in Example 1 except that the treatment conditions for the antiglare treatment were changed in order to change the uneven shape.
 実施例4~5及び比較例2~3では、防眩層と組み合わせる模擬的なディスプレイは、実施例1と同じ条件で作製した。 In Examples 4 to 5 and Comparative Examples 2 to 3, a simulated display to be combined with the antiglare layer was produced under the same conditions as in Example 1.
 [評価]
 <ΔRb>
 各防眩層のΔRbは、既述の通り測定した。
[evaluation]
<ΔRb>
ΔRb of each antiglare layer was measured as described above.
 <鮮明性指標値C>
 各防眩層の鮮明性指標値Cは、既述の通り測定した。Cは、0.90以上を「良」と評価し、0.70以上0.90未満を「可」と評価し、0.70未満を「不可」と評価した。「良」及び「可」が合格であり、「不可」が不合格である。
<Clarity index value C>
The sharpness index value C of each antiglare layer was measured as described above. C evaluated 0.90 or more as "good", 0.70 or more and less than 0.90 as "possible", and evaluated less than 0.70 as "impossible". "Good" and "OK" are pass, and "No" is fail.
 <ヘイズ値>
 各防眩層のヘイズ値は、既述の通り測定した。
<Haze value>
The haze value of each antiglare layer was measured as described above.
 <内部反射率R_int>
 各ディスプレイの内部反射率R_intは、既述の通り測定した。なお、R_surfは、模擬的なディスプレイで使用した偏光フィルムと同じものを用意し、用意した偏光フィルムの片面に黒色膜を施した状態で、偏光フィルムの反対面に対して、幾何条件d(8°:di)で測定した視感反射率とした。黒色膜は、黒マジック(三菱鉛筆社製、ペイントマーカー、PX-30(黒))で形成した。
<Internal reflectance R_int>
The internal reflectance R_int of each display was measured as described above. For R_surf, the same polarizing film used in the simulated display was prepared, and with a black film applied to one side of the prepared polarizing film, the geometric condition d (8) was applied to the opposite surface of the polarizing film. °: The visual reflectance measured in di) was used. The black film was formed by black magic (manufactured by Mitsubishi Pencil Co., Ltd., paint marker, PX-30 (black)).
 <防眩性指標値R20°>
 各ディスプレイユニットの防眩性指標値R20°は、既述の通り測定した。R20°は、0.80以上を「良」と評価し、0.60以上0.80未満を「可」と評価し、0.60未満を「不可」と評価した。「良」及び「可」が合格であり、「不可」が不合格である。
<Anti-glare index value R20 °>
The antiglare index value R20 ° of each display unit was measured as described above. For R20 °, 0.80 or more was evaluated as “good”, 0.60 or more and less than 0.80 was evaluated as “possible”, and less than 0.60 was evaluated as “impossible”. "Good" and "OK" are pass, and "No" is fail.
 <ギラツキ指標値S>
 各防眩層のギラツキ指標値Sを測定すべく、防眩層とガラス板とフォトマスクとバックライトとをこの順番で含む模擬的なディスプレイユニットを作製した。バックライトとしては、アイテックシステム社製のTMN150X180-22GD-4を用いた。ギラツキ指標値Sの測定方法は、既述の通りである。
<Glitter index value S>
In order to measure the glare index value S of each antiglare layer, a simulated display unit including the antiglare layer, a glass plate, a photomask, and a backlight was prepared in this order. As the backlight, TMN150X180-22GD-4 manufactured by Aitec System Co., Ltd. was used. The method for measuring the glare index value S is as described above.
 ギラツキ指標値Sは、0.00%以上8.00%未満を「良」と評価し、8.00%以上を「不可」と評価した。「良」が合格であり、「不可」が不合格である。 As for the glare index value S, 0.00% or more and less than 8.00% was evaluated as "good", and 8.00% or more was evaluated as "impossible". "Good" is a pass and "impossible" is a failure.
 <評価結果>
 表1に、評価結果を示す。
<Evaluation result>
Table 1 shows the evaluation results.
Figure JPOXMLDOC01-appb-T000001
 実施例1と比較例1とを比較すれば明らかなように、R_intが3.0%以下であるディスプレイと、ΔRbが0.05以上である防眩層とを組み合わせることで、ディスプレイユニットの防眩性指標値R20°が良好になることが分かる。また、比較例2~3から、R_intが3.0%以下であっても、ΔRbが0.05未満であれば、ディスプレイユニットの防眩性指標値R20°が不良になることが分かる。更に、実施例1~3から、ΔRbが0.05以上であれば、R_intが小さいほど、R20°が大きく、防眩性に優れたディスプレイユニットが得られることが分かる。
Figure JPOXMLDOC01-appb-T000001
As is clear from a comparison between Example 1 and Comparative Example 1, a display having an R_int of 3.0% or less and an antiglare layer having a ΔRb of 0.05 or more are combined to prevent the display unit. It can be seen that the glare index value R20 ° becomes good. Further, from Comparative Examples 2 to 3, it can be seen that even if R_int is 3.0% or less, if ΔRb is less than 0.05, the antiglare index value R20 ° of the display unit becomes defective. Further, from Examples 1 to 3, it can be seen that when ΔRb is 0.05 or more, the smaller R_int is, the larger R20 ° is, and a display unit having excellent anti-glare properties can be obtained.
 以上、本開示に係るディスプレイユニットについて説明したが、本開示は上記実施形態などに限定されない。特許請求の範囲に記載された範疇内において、各種の変更、修正、置換、付加、削除、及び組み合わせが可能である。それらについても当然に本開示の技術的範囲に属する。 Although the display unit according to the present disclosure has been described above, the present disclosure is not limited to the above-described embodiment or the like. Various changes, modifications, replacements, additions, deletions, and combinations are possible within the scope of the claims. Of course, they also belong to the technical scope of the present disclosure.
 本出願は、2020年7月31日に日本国特許庁に出願した特願2020-130467号に基づく優先権を主張するものであり、特願2020-130467号の全内容を本出願に援用する。 This application claims priority based on Japanese Patent Application No. 2020-130467 filed with the Japan Patent Office on July 31, 2020, and the entire contents of Japanese Patent Application No. 2020-130467 are incorporated into this application. ..
1  ディスプレイユニット
2  ディスプレイ
24 液晶層
3  防眩層
3a 第1主面
3b 第2主面
1 Display unit 2 Display 24 Liquid crystal layer 3 Anti-glare layer 3a 1st main surface 3b 2nd main surface

Claims (7)

  1.  ディスプレイと、防眩層と、を有する、ディスプレイユニットであって、
     前記防眩層は、凹凸を含む第1主面と前記第1主面とは反対向きの第2主面とを含み、前記第2主面を前記ディスプレイに向けて前記ディスプレイの上に積層され、
     前記防眩層は、下記の20°反射像拡散性指標値Rb20°と下記の45°反射像拡散性指標値Rb45°との差ΔRb(ΔRb=Rb20°-Rb45°)が0.05以上であり、
     前記ディスプレイは、下記の内部反射率R_intが3.0%以下である、ディスプレイユニット。
     内部反射率R_int:前記ディスプレイの前記防眩層が形成される主面に対して、JIS Z8722:2009に準拠して、幾何条件d(8°:di)で測定した視感反射率をR_dipとする。また、前記ディスプレイの前記防眩層に最も近い最上層を剥離し、前記最上層の剥離面に黒色膜を施した状態で、前記最上層の前記防眩層が形成される主面に対してJIS Z8722:2009に準拠して、幾何条件d(8°:di)で測定した視感反射率をR_surfとする。下記式(1)によりR_intが算出される。
    R_int=R_dip-R_surf・・・(1)
     20°反射像拡散性指標値Rb20°:日本電色工業社製の変角光度計GC-5000Lを用い、前記防眩層の前記第2主面に黒色膜を施した状態で、前記防眩層の前記第1主面に対して光を照射し、その反射光の輝度を検出器で検出する。前記防眩層の厚さ方向と平行な方向の角度φを0゜とすると、φ=20°の角度で光を照射する。φ=-20°で検出される正反射光の輝度をRb20°_1とし、φ=-50°~+10°の全範囲で検出される反射光の輝度の合計値をRb20°_2とすると、下記式(2)によりRb20°が算出される。
    Rb20°=(Rb20°_2-Rb20°_1)/(Rb20°_2)・・・(2)
     45°反射像拡散性指標値Rb45°:日本電色工業社製の変角光度計GC-5000Lを用い、前記防眩層の前記第2主面に黒色膜を施した状態で、前記防眩層の前記第1主面に対して光を照射し、その反射光の輝度を検出器で検出する。前記防眩層の厚さ方向と平行な方向の角度φを0゜とすると、角度φ=45°の角度で光を照射する。φ=-45°で検出される正反射光の輝度をRb45°_1とし、φ=-75°~―15°の全範囲で検出される反射光の輝度の合計値をRb45°_2とすると、下記式(3)によりRb45°が算出される。
    Rb45°=(Rb45°_2-Rb45°_1)/(Rb45°_2)・・・(3)
    A display unit having a display and an antiglare layer.
    The antiglare layer includes a first main surface including irregularities and a second main surface opposite to the first main surface, and the second main surface is laminated on the display with the second main surface facing the display. ,
    In the antiglare layer, the difference ΔRb (ΔRb = Rb20 ° −Rb45 °) between the following 20 ° reflection image diffusivity index value Rb20 ° and the following 45 ° reflection image diffusivity index value Rb45 ° is 0.05 or more. can be,
    The display is a display unit having the following internal reflectance R_int of 3.0% or less.
    Internal reflectance R_int: The visual reflectance measured under geometric condition d (8 °: di) with respect to the main surface of the display on which the antiglare layer is formed is defined as R_dip in accordance with JIS Z8722: 2009. do. Further, with respect to the main surface on which the antiglare layer of the uppermost layer is formed in a state where the uppermost layer closest to the antiglare layer of the display is peeled off and a black film is applied to the peeled surface of the uppermost layer. According to JIS Z8722: 2009, the visual reflectance measured under the geometric condition d (8 °: di) is defined as R_surf. R_int is calculated by the following formula (1).
    R_int = R_dip-R_surf ... (1)
    20 ° Reflection image Diffusivity index value Rb 20 °: Using a variable-angle photometer GC-5000L manufactured by Nippon Denshoku Kogyo Co., Ltd., the antiglare layer is provided with a black film on the second main surface of the antiglare layer. The first main surface of the layer is irradiated with light, and the brightness of the reflected light is detected by a detector. Assuming that the angle φ in the direction parallel to the thickness direction of the antiglare layer is 0 °, light is irradiated at an angle of φ = 20 °. Assuming that the brightness of the specularly reflected light detected at φ = -20 ° is Rb20 ° _1 and the total brightness of the reflected light detected in the entire range of φ = -50 ° to + 10 ° is Rb20 ° _1, the following is assumed. Rb20 ° is calculated by the equation (2).
    Rb20 ° = (Rb20 ° _2-Rb20 ° _1) / (Rb20 ° _2) ... (2)
    45 ° Reflection image Diffusivity index value Rb 45 °: Using a variable-angle photometer GC-5000L manufactured by Nippon Denshoku Kogyo Co., Ltd., the antiglare layer is provided with a black film on the second main surface of the antiglare layer. The first main surface of the layer is irradiated with light, and the brightness of the reflected light is detected by a detector. Assuming that the angle φ in the direction parallel to the thickness direction of the antiglare layer is 0 °, light is irradiated at an angle φ = 45 °. Assuming that the brightness of the specularly reflected light detected at φ = −45 ° is Rb45 ° _1 and the total brightness of the reflected light detected in the entire range of φ = −75 ° to -15 ° is Rb45 ° _1 Rb45 ° is calculated by the following equation (3).
    Rb45 ° = (Rb45 ° _2-Rb45 ° _1) / (Rb45 ° _2) ... (3)
  2.  前記防眩層は、ヘイズ値が5%~30%である、請求項1に記載のディスプレイユニット。 The display unit according to claim 1, wherein the antiglare layer has a haze value of 5% to 30%.
  3.  前記防眩層は、下記の鮮明性指標値Cが0.70以上である、請求項1又は2に記載のディスプレイユニット。
     鮮明性指標値C:日本電色工業社製の変角光度計GC-5000Lを用い、前記防眩層の前記第2主面に対向配置される光源から、前記防眩層の厚さ方向と平行な方向に、光を前記防眩層の前記第2主面に照射し、その透過光の輝度を検出器で検出する。前記防眩層の厚さ方向と平行な方向の角度θを0°とする。θ=0°で検出される透過光の輝度をC1とし、θ=-90°~90°の全範囲で検出される透過光の輝度の合計値をC2とする場合に、下記式(4)によりCが算出される。
    C=C1/C2・・・(4)
    The display unit according to claim 1 or 2, wherein the antiglare layer has the following sharpness index value C of 0.70 or more.
    Clarity index value C: Using a variable-angle photometer GC-5000L manufactured by Nippon Denshoku Kogyo Co., Ltd., from a light source arranged opposite to the second main surface of the antiglare layer, in the thickness direction of the antiglare layer. The second main surface of the antiglare layer is irradiated with light in a parallel direction, and the brightness of the transmitted light is detected by a detector. The angle θ in the direction parallel to the thickness direction of the antiglare layer is 0 °. When the brightness of the transmitted light detected at θ = 0 ° is C1, and the total value of the brightness of the transmitted light detected in the entire range of θ = −90 ° to 90 ° is C2, the following equation (4) C is calculated by.
    C = C1 / C2 ... (4)
  4.  前記防眩層がガラス基板であり、前記ガラス基板が前記凹凸を含む、請求項1~3のいずれか1項に記載のディスプレイユニット。 The display unit according to any one of claims 1 to 3, wherein the antiglare layer is a glass substrate, and the glass substrate includes the unevenness.
  5.  前記防眩層がガラス基板とコーティング層とを含み、前記コーティング層が前記凹凸を含む、請求項1~3のいずれか1項に記載のディスプレイユニット。 The display unit according to any one of claims 1 to 3, wherein the antiglare layer includes a glass substrate and a coating layer, and the coating layer includes the unevenness.
  6.  前記ガラス基板は、アルミノシリケートガラスである、請求項4又は5に記載のディスプレイユニット。 The display unit according to claim 4 or 5, wherein the glass substrate is aluminosilicate glass.
  7.  前記ディスプレイユニットが車載用である、請求項1~6のいずれか1項に記載のディスプレイユニット。 The display unit according to any one of claims 1 to 6, wherein the display unit is for an in-vehicle use.
PCT/JP2021/026280 2020-07-31 2021-07-13 Display unit WO2022024745A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-130467 2020-07-31
JP2020130467A JP2023126988A (en) 2020-07-31 2020-07-31 display unit

Publications (1)

Publication Number Publication Date
WO2022024745A1 true WO2022024745A1 (en) 2022-02-03

Family

ID=80037303

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/026280 WO2022024745A1 (en) 2020-07-31 2021-07-13 Display unit

Country Status (2)

Country Link
JP (1) JP2023126988A (en)
WO (1) WO2022024745A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115167030A (en) * 2022-07-14 2022-10-11 苏州华星光电技术有限公司 Display panel, manufacturing method thereof and mobile terminal

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013092632A (en) * 2011-10-25 2013-05-16 Konica Minolta Advanced Layers Inc Display device
WO2013161894A1 (en) * 2012-04-25 2013-10-31 コニカミノルタ株式会社 Gas barrier film, substrate for electronic device, and electronic device
JP2016006498A (en) * 2014-05-26 2016-01-14 旭硝子株式会社 Transparent base material
JP2018197183A (en) * 2017-05-23 2018-12-13 Agc株式会社 Glass article, and display unit
WO2019207008A1 (en) * 2018-04-25 2019-10-31 University Court Of The University Of Glasgow Display apparatus, controller therefor and method of controlling the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013092632A (en) * 2011-10-25 2013-05-16 Konica Minolta Advanced Layers Inc Display device
WO2013161894A1 (en) * 2012-04-25 2013-10-31 コニカミノルタ株式会社 Gas barrier film, substrate for electronic device, and electronic device
JP2016006498A (en) * 2014-05-26 2016-01-14 旭硝子株式会社 Transparent base material
JP2018197183A (en) * 2017-05-23 2018-12-13 Agc株式会社 Glass article, and display unit
WO2019207008A1 (en) * 2018-04-25 2019-10-31 University Court Of The University Of Glasgow Display apparatus, controller therefor and method of controlling the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115167030A (en) * 2022-07-14 2022-10-11 苏州华星光电技术有限公司 Display panel, manufacturing method thereof and mobile terminal

Also Published As

Publication number Publication date
JP2023126988A (en) 2023-09-13

Similar Documents

Publication Publication Date Title
KR101395463B1 (en) Anti-glare optical multilayer body
US8692959B2 (en) Optical layered body, polarizer and image display device
US8208097B2 (en) Color compensation multi-layered member for display apparatus, optical filter for display apparatus having the same and display apparatus having the same
TWI511168B (en) Conducting substrate, touch screen and display comprising the same
US7889284B1 (en) Rigid antiglare low reflection glass for touch screen application
CN1249500C (en) Liquid crystal display device and electronic apparatus
TW202036060A (en) Backlight including patterned reflectors, diffuser plate, and method for fabricating the backlight
JP5948763B2 (en) Anti-glare film, polarizing plate and image display device
US20130250414A1 (en) Antiglare film, polarizer, and image display device
US20140126064A1 (en) Anti-glare film, polarizing plate, image display, and method for producing anti-glare film
US20100177397A1 (en) Front filter for plasma display and plasma display
JPWO2006137427A1 (en) Protective film for polarizing plate
TW201543291A (en) Touch-panel display device
CN101506721B (en) Liquid crystal display panel and liquid crystal display apparatus
WO2022024745A1 (en) Display unit
JP4402111B2 (en) Liquid crystal display panel and liquid crystal display device
KR20200066162A (en) Appearance inspection method and appearance inspection apparatus
JP2007101912A (en) Antiglare film, polarizing film, optical film and image display device
US11187843B2 (en) Electronic device having backlight module
US20150355401A1 (en) Patterned glass light guide and display device comprising the same
JP7140134B2 (en) cover material
JP2008060280A (en) Electromagnetic wave shielding filter, manufacturing method thereof, composite filter, and display
WO2022024678A1 (en) Display unit
CN111684316B (en) Transparent substrate with antiglare film
US20240142669A1 (en) Electronic device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21849648

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21849648

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP