WO2022024734A1 - Thermal radical curable organopolysiloxane composition, article adhered, coated, or potted with said composition, and method for producing cured product of said composition - Google Patents

Thermal radical curable organopolysiloxane composition, article adhered, coated, or potted with said composition, and method for producing cured product of said composition Download PDF

Info

Publication number
WO2022024734A1
WO2022024734A1 PCT/JP2021/026130 JP2021026130W WO2022024734A1 WO 2022024734 A1 WO2022024734 A1 WO 2022024734A1 JP 2021026130 W JP2021026130 W JP 2021026130W WO 2022024734 A1 WO2022024734 A1 WO 2022024734A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
mass
curing
component
composition
Prior art date
Application number
PCT/JP2021/026130
Other languages
French (fr)
Japanese (ja)
Inventor
晃嗣 藤原
隆文 坂本
Original Assignee
信越化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越化学工業株式会社 filed Critical 信越化学工業株式会社
Priority to JP2022540142A priority Critical patent/JPWO2022024734A1/ja
Publication of WO2022024734A1 publication Critical patent/WO2022024734A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/541Silicon-containing compounds containing oxygen
    • C08K5/5415Silicon-containing compounds containing oxygen containing at least one Si—O bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • C08L83/06Polysiloxanes containing silicon bound to oxygen-containing groups
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • C09D183/06Polysiloxanes containing silicon bound to oxygen-containing groups
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • C09D7/62Additives non-macromolecular inorganic modified by treatment with other compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/63Additives non-macromolecular organic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/04Non-macromolecular additives inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/06Non-macromolecular additives organic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J183/00Adhesives based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Adhesives based on derivatives of such polymers
    • C09J183/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J183/00Adhesives based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Adhesives based on derivatives of such polymers
    • C09J183/04Polysiloxanes
    • C09J183/06Polysiloxanes containing silicon bound to oxygen-containing groups

Definitions

  • the present invention relates to a stable and thermally radically curable organopolysiloxane composition, more specifically, an organopolysiloxane having at least two alkenyl groups bonded to a silicon atom in one molecule, and a hydrolyzable silyl group as a molecular chain.
  • Thermal radical curable organopolysiloxane composition containing organopolysiloxane, cross-linking agent, radical initiator, moisture curing initiator, and inorganic filler at both ends, bonded, coated or potted with the cured product of the composition.
  • the present invention relates to an article and a method for producing a cured product of the composition.
  • a curable organopolysiloxane composition that cures to become an elastomer material (silicone rubber cured product) is already known.
  • the curing method include moisture curing (condensation curing), thermal curing (hydrosilylated addition curing or radical curing with organic peroxide), radiation curing (radical curing with ultraviolet rays), and the like.
  • Moisture curing is a room temperature curable (RTV) silicone rubber composition that is crosslinked and cured by a condensation reaction at room temperature (23 ° C ⁇ 15 ° C) due to the humidity in the air. It is easy to handle, and has weather resistance and electricity. Due to its excellent properties, it is used in various fields such as sealing materials for building materials and adhesives in the electrical and electronic fields.
  • RTV silicone rubber compositions are often designed starting from an organopolysiloxane (base polymer) having a silanol group or a hydrolyzable silyl group at the end.
  • a de-alcohol type As the curing type of the room temperature curable (RTV) silicone rubber composition, a de-alcohol type, a de-oxime type, and a de-acetic acid type are generally known and are used in various applications.
  • the de-alcohol type it is widely used in component fixing adhesives and coating agents for electrical and electronic equipment, adhesives for automobiles, and the like.
  • the de-oxime type and de-acetic acid type have relatively fast curability, they are often used mainly as sealing materials for building materials. I have a problem with.
  • de-oxime type and deacetic acid type are also concerned about corrosiveness to adherends, so caution is required when using them.
  • thermosetting type a composition containing an organopolysiloxane having an alkenyl group bonded to a silicon atom and an organohydrogensiloxane having a hydrogen atom (SiH group) bonded to a silicon atom is hydrosilylated by heating in the presence of a platinum-based catalyst.
  • An addition reaction curing type organopolysiloxane composition for obtaining a cured elastic body (silicone rubber elastic body) by subjecting it to a chemical addition reaction is generally known.
  • the thermosetting type by addition reaction does not require moisture for curing, cures in a relatively short time, and can be applied to thick places and large areas of bonding.
  • platinum may be produced by these compounds.
  • the catalyst is inactivated and hardening inhibition can occur. As a result, sufficient properties originally required may not be exhibited.
  • a UV-curable organopolysiloxane composition that is generally cured by radicals generated by irradiation with UV light (ultraviolet rays) is widely known.
  • an organopolysiloxane having an acrylic group or a vinyl group as a radical functional group and a compound (radical initiator) that generates a radical by UV light the organopolysiloxanes are bonded to each other to form an elastomer material.
  • many compositions are cured by UV light irradiation within 60 seconds, and are characterized by quick curing.
  • the odor of acrylic groups is strong, and the adhesiveness is often insufficient.
  • the surface does not harden because it is a radical reaction and is hindered by oxygen. Curing in a nitrogen atmosphere can solve this problem, but it requires the introduction of dedicated equipment and the problem of asphyxiation must be fully taken into consideration.
  • Patent Document 1 Japanese Patent No. 6385370 exemplifies a silicone pressure-sensitive adhesive composition that is cured by condensation curing and thermal radical curing.
  • Condensation curing and thermal radical curing can be achieved by using a clustered functional organopolysiloxane having a radical curable group selected from an acrylate group and a methacrylate group and a reactive polymer having an alkoxy group.
  • the silicone pressure-sensitive adhesive composition obtained by the method described in Patent Document 1 has a demerit of oxygen inhibition because it is a system in which the surface of the composition subjected to oxygen inhibition by thermal radical curing is gradually cured by condensation curing. No.
  • the preparation of the clustered functional organopolysiloxane is complicated, the versatility is poor, and since it has an acrylate group and a methacrylate group, it has a strong odor.
  • Patent Document 2 International Publication No. 2018/186165 discloses a curing-reactive organopolysiloxane composition having a radical-reactive group and a condensation-reactive group.
  • the rate of increase of G'2 with respect to G'1 is at least 50%.
  • the composition is highly useful as an organopolysiloxane composition that can be primary cured by moisture curing in a room temperature environment and then thermally radically cured (secondary curing), but is cured at room temperature (primary curing).
  • the rate of increase of G'2 with respect to G'1 may fluctuate with time.
  • the present invention has been made in view of the above circumstances, and it is possible to provide a cured product (silicone rubber cured product) which can complete curing in a relatively short time and has a reduced effect of oxygen inhibition. Further, a stable and thermally radically curable organopolysiloxane composition having a low odor property, an article bonded, coated or potted with a cured product of the composition, and a cured product of the composition are produced. The purpose is to provide a method.
  • an organopolysiloxane composition in which an organopolysiloxane having a hydrolyzable silyl group at both ends is used as a base polymer and a cross-linking agent, a radical initiator, a water curing initiator, and an inorganic filler are combined is stable.
  • An organopolysiloxane composition that can be thermally radically cured is obtained, and in particular, after being thermally radically cured in a relatively short time under the conditions of 80 to 150 ° C. as the primary curing, in a room temperature environment of 40 ° C. or lower as the secondary curing.
  • the primary / secondary curing can be completed in a relatively short time, and the primary / secondary curing can be completed.
  • a thermoradical curable organopolysiloxane composition that can provide a cured product (cured silicone rubber product) with reduced effects of oxygen inhibition and that also achieves low odor can be obtained. I came to the point.
  • the present invention provides the following thermally radical curable organopolysiloxane composition, an article bonded, coated or potted with the cured product of the composition, and a method for producing the cured product of the composition. It is a thing.
  • (A) Organopolysiloxane having at least two alkenyl groups bonded to silicon atoms in one molecule: 100 parts by mass
  • (B) The following general formula (1) (In the formula, R 1 is an independently unsubstituted or halogen-substituted monovalent hydrocarbon group having 1 to 10 carbon atoms, n is an integer of 10 or more, and R 2 is independently non-substituted with 1 to 6 carbon atoms.
  • X is an oxygen atom or an alkylene group having 1 to 4 carbon atoms
  • a is 0 or 1 independently for each silicon atom to be bonded.
  • C A (organo) silane compound having 3 or more hydrolyzable groups in one molecule and / or a partially hydrolyzed condensate thereof: 0.1 to 30% by mass with respect to the content of the component (B).
  • (D) Radical initiator 0.1 to 20 parts by mass
  • (F) Inorganic filler An organopolysiloxane composition containing an amount of 1 to 500% by mass based on the total amount of the components (A) and (B), and 80 to 150 as the primary curing.
  • the component (C) is organotrialkoxysilane, tetraalkoxysilane, tetraalkoxydisilane compound, tetraalkoxytrisilane compound, hexaalkoxydisilane compound, hexaalkoxytrisilane compound, (organo) acetoxysilane, (organo) isopropenoxysilane.
  • the thermally radical curable organopolysiloxane composition according to any one of [1] to [4] can be thermally radically cured, including a step of thermally radical curing at 80 to 150 ° C. and then condensation curing at room temperature. A method for producing a cured product of an organopolysiloxane composition.
  • the present invention has an industrially versatile alkenyl group-containing organopolysiloxane (particularly, an organopolysiloxane containing an alkenyl group at both ends of the molecular chain) and a hydrolyzable silyl group at both ends of the molecular chain.
  • organopolysiloxane in combination as a base polymer, it becomes an organopolysiloxane composition that is stable (especially good storage stability) and can be thermally radically cured. After thermal radical curing in a short period of time, the surface of the cured product, which was first cured in a room temperature environment of 40 ° C.
  • the component (A) is the first base polymer of the composition of the present invention (that is, a base polymer having thermal radical curability), and is an organopoly having at least two alkenyl groups bonded to silicon atoms in one molecule. It is a siloxane.
  • the molecular structure of the component (A) is not particularly limited, and examples thereof include a linear structure and a cyclic structure, and these structures may have branches.
  • a linear diorganopolysiloxane in which the main chain basically consists of repeating diorganosiloxane units and both ends of the molecular chain are sealed with a triorganosyloxy group is preferably used.
  • the viscosity of the component (A) at 25 ° C. is preferably in the range of 100 to 500,000 mPa ⁇ s, and particularly preferably in the range of 100 to 100,000 mPa ⁇ s.
  • Viscosity can usually be measured at 25 ° C. with a rotational viscometer (eg, BL type, BH type, BS type, cone plate type, rheometer, etc.).
  • the degree of polymerization of the alkenyl group-containing organopolysiloxane having the above viscosity is usually 50 to 2,000, particularly 80 to 80. About 1,200 is preferable.
  • the degree of polymerization can be determined as a polystyrene-equivalent number average degree of polymerization (or number average molecular weight) or the like in gel permeation chromatography (GPC) analysis using, for example, toluene or the like as a developing solvent.
  • the alkenyl group bonded to the silicon atom is preferably one having 2 to 8 carbon atoms and further preferably 2 to 4 carbon atoms, and for example, a vinyl group, an allyl group and a butenyl group. , Pentenyl group, hexenyl group, heptenyl group and the like. Of these, a vinyl group is preferable.
  • the alkenyl group may be bonded to a silicon atom at the end of the molecular chain but to a silicon atom in the side chain of the molecular chain (non-terminal of the molecular chain). It may be either of these, but it is preferable that it has an alkenyl group bonded to a silicon atom at both ends of the molecular chain, and both ends of the molecular chain are blocked by a triorganosilyl group having an alkenyl group. More preferably, it is a linear diorganopolysiloxane.
  • the organic group other than the alkenyl group bonded to the silicon atom may be an unsubstituted or halogen-substituted monovalent hydrocarbon group, for example, a methyl group, an ethyl group, etc.
  • Alkyl group having 1 to 10 carbon atoms such as propyl group, butyl group, pentyl group, hexyl group, cyclohexyl group, heptyl group and decyl group; Aryl group; aralkyl group having 7 to 14 carbon atoms such as benzyl group and phenethyl group; 1 to 3 carbon atoms such as chloromethyl group, bromoethyl group, 3-chloropropyl group and 3,3,3-trifluoropropyl group. Examples thereof include an alkyl halide group. Of these, a methyl group and a phenyl group are preferable.
  • the linear diorganopolysiloxane includes a trimethylsiloxy group-blocked dimethylsiloxane / methylvinylsiloxane copolymer at both ends of the molecular chain and a trimethylsiloxy group-blocked dimethylsiloxane / methylvinylsiloxane / methylphenylsiloxane copolymer at both ends of the molecular chain.
  • the organopolysiloxane having a cyclic structure or a branched structure is represented by the formula: R 3 3 SiO 0.5 (R 3 is an unsubstituted or substituted monovalent hydrocarbon group other than an alkenyl group; the same applies hereinafter).
  • R 3 2 R 4 SiO 0.5 (R 4 is an alkenyl group; the same shall apply hereinafter) Siloxane unit and formula: R 3 2 SiO siloxane unit and formula: SiO 2 Organosiloxane copolymer consisting of a siloxane unit, from a hydrocarbon unit represented by the formula: R 3 3 SiO 0.5 and a hydrocarbon unit represented by the formula: R 3 2 R 4 SiO 0.5 and a siloxane unit represented by the formula: SiO 2 Organosiloxane copolymer, which consists of a siloxane unit represented by the formula: R 3 2 R 4 SiO and a siloxane unit represented by the formula: R 3 SiO 1.5 or a siloxane unit represented by the formula: R 4 SiO 1.5 .
  • Examples include polymers.
  • R 3 is an unsubstituted or substituted monovalent hydrocarbon group other than the alkenyl group, which is the same as that exemplified as the organic group other than the alkenyl group described above, and is, for example, a methyl group, an ethyl group and a propyl group.
  • An alkyl group having 1 to 10 carbon atoms such as a group, a butyl group, a pentyl group, a hexyl group, a cyclohexyl group, a heptyl group and a decyl group; and an aryl having 6 to 14 carbon atoms such as a phenyl group, a trill group, a xylyl group and a naphthyl group.
  • R 4 is preferably an alkenyl group having 2 to 8 carbon atoms and further preferably a 2 to 4 carbon atoms, and examples thereof include a vinyl group, an allyl group, a butenyl group, a pentenyl group, a hexenyl group and a heptenyl group.
  • the alkenyl group-containing organopolysiloxane of the component (A) can be used alone or in combination of two or more.
  • the component (B) is a second base polymer of the composition of the present invention (that is, a base polymer having moisture curability (condensation curability)), and two or three silicons at both ends of the molecular chain, respectively. It is a linear organopolysiloxane sealed with a hydrolyzable silyl group having an organooxy group bonded to an atom, and is represented by the following general formula (1).
  • R 1 is an independently unsubstituted or halogen-substituted monovalent hydrocarbon group having 1 to 10 carbon atoms
  • n is an integer of 10 or more
  • R 2 is independently non-substituted with 1 to 6 carbon atoms.
  • X is an oxygen atom or an alkylene group having 1 to 4 carbon atoms
  • a is 0 or 1 independently for each silicon atom to be bonded.
  • R 1 is an unsubstituted or halogen-substituted monovalent hydrocarbon group having 1 to 10 carbon atoms, preferably 1 to 6 carbon atoms, and is, for example, a methyl group, an ethyl group, a propyl group, or a butyl group.
  • Linear or branched alkyl group such as group, pentyl group, hexyl group, heptyl group, decyl group; cyclic alkyl group such as cyclohexyl group; vinyl group, allyl group, butenyl group, pentenyl group, hexenyl group, heptenyl group and the like.
  • Alkenyl groups aryl groups such as phenyl group, trill group, xylyl group, naphthyl group; aralkyl groups such as benzyl group and phenethyl group; and groups in which the hydrogen atom of these groups is partially substituted with a halogen atom, for example.
  • aryl groups such as phenyl group, trill group, xylyl group, naphthyl group
  • aralkyl groups such as benzyl group and phenethyl group
  • groups in which the hydrogen atom of these groups is partially substituted with a halogen atom, for example.
  • examples thereof include a chloromethyl group, a bromoethyl group, a 3-chloropropyl group, a 3,3,3-trifluoropropyl group and a chlorophenyl group.
  • an unsubstituted monovalent hydrocarbon group having no aliphatic unsaturated bond for example, an alkyl group, an aryl group, an aralkyl group, etc.
  • an alkyl group or an aryl group is more preferable
  • a methyl group is particularly preferable.
  • the plurality of R 1s may be the same group or different groups.
  • N (the number of repetitions of the diorganosiloxane unit) in the above formula (1) is an integer of 10 or more, and is usually an integer of 10 to 2,000, preferably an integer of 20 to 1,500, and more preferably 30 to. It is an integer of 1,000, more preferably an integer of 50 to 800.
  • the value of n is an integer in which the viscosity of the organopolysiloxane of the component (B) at 25 ° C. is in the range of 25 to 500,000 mPa ⁇ s, preferably in the range of 100 to 100,000 mPa ⁇ s. Is desirable.
  • n (or the number of repetitions of the bifunctional diorganosiloxane unit represented by ((R 1 ) 2 SiO 2/2 ) constituting the main chain of the organopolysiloxane of the component (B)).
  • the degree of polymerization can usually be determined as a polystyrene-equivalent number average degree of polymerization (or number average molecular weight) or the like in gel permeation chromatography (GPC) analysis using toluene or the like as a developing solvent. Further, the viscosity can usually be measured at 25 ° C. with a rotational viscometer (for example, BL type, BH type, BS type, cone plate type, rheometer, etc.).
  • X is an oxygen atom or an alkylene group having 1 to 4 carbon atoms
  • examples of the alkylene group having 1 to 4 carbon atoms include a methylene group, an ethylene group, a propylene group and a butylene group.
  • a chain alkylene group and isomers thereof, for example, an isopropylene group and an isobutylene group are applicable.
  • an oxygen atom and an ethylene group are particularly preferable. In the case of an ethylene group, it is very versatile because it can be easily produced by an addition reaction of the corresponding hydrosilane with the ⁇ , ⁇ -divinyl-terminated organopolysiloxane in the presence of a metal catalyst.
  • R 2 is independently an unsubstituted or substituted monovalent hydrocarbon group having 1 to 6 carbon atoms, and is, for example, an alkyl group such as a methyl group, an ethyl group or a propyl group; a methoxymethyl group, Alkoxy-substituted alkyl groups such as methoxyethyl group, ethoxymethyl group and ethoxyethyl group; cyclic alkyl groups such as cyclohexyl group; alkenyl groups such as vinyl group, allyl group and propenyl group, phenyl group and the like, and particularly methyl group. , Ethyl groups are preferred.
  • A is independently 0 or 1 for each silicon atom to be bonded, and is particularly preferably 0.
  • n1 is a number in which the viscosity of the organopolysiloxane at 25 ° C. is in the range of 25 to 500,000 mPa ⁇ s.
  • the organopolysiloxane of the component (B) may be used alone or in combination of two or more.
  • the blending amount of the organopolysiloxane of the component (B) is 100 parts by mass of the component (A) from the viewpoint of the balance between the thermal radical curability and the moisture (condensation) curability of the composition. On the other hand, it is 5 to 80 parts by mass, preferably 10 to 60 parts by mass, and more preferably 15 to 40 parts by mass. If the amount of the component (B) is less than 5 parts by mass, moisture (condensation) curing does not proceed sufficiently, and it may be difficult to sufficiently moisture (condensate) cure the surface of the cured product subjected to oxygen inhibition. If it exceeds, it may be difficult to cure for a short time due to thermal radical curability.
  • the component (C) is a (organo) silane compound having three or more hydrolyzable groups in one molecule and / or a partially hydrolyzed condensate thereof, and hydrolyzes and condenses with the above component (B) by moisture. It acts as a cross-linking agent (hardener) that cross-links (hardens).
  • the (organo) silane compound having three or more hydrolyzable groups in one molecule is preferably hydrolyzable (preferably hydrolyzable (organo) having three or more hydrolyzable groups in one molecule represented by the following general formula (2).
  • Organo A silane compound, or a bissilane type compound or a trisilane type compound having 3 or more (particularly 4 to 6) hydrolyzable groups in one molecule.
  • the partially hydrolyzed condensate is produced by partially hydrolyzing and condensing the hydrolyzable (organo) silane compound, and at least two, preferably three or more, in one molecule.
  • it means a (organo) siloxane oligomer having 3 to 6 residual hydrolyzable groups.
  • R 5 is an unsubstituted or substituted monovalent hydrocarbon group having 1 to 10 carbon atoms
  • Y is an independently hydrolyzable group
  • m is 3 or 4
  • R 5 is an unsubstituted or substituted monovalent hydrocarbon group having 1 to 10 carbon atoms, for example, a methyl group, an ethyl group, a propyl group, a butyl group, a hexyl group, a heptyl group and a decyl.
  • Alkyl groups such as groups; alkenyl groups such as vinyl groups, allyl groups, butenyl groups, pentenyl groups, hexenyl groups and heptenyl groups; aryl groups such as phenyl groups, trill groups, xsilyl groups and naphthyl groups; benzyl groups, phenethyl groups and the like Aralkyl group; chloromethyl group, bromoethyl group, 3-chloropropyl group, 3,3,3-trifluoropropyl group, halogen-substituted alkyl group such as chlorophenyl group, halogen-substituted aryl group and the like can be mentioned.
  • an alkyl group is preferable, and a butyl group, a hexyl group, a heptyl group, and a decyl group are particularly preferable.
  • the hydrolyzable groups of Y are independently, for example, methoxy group, ethoxy group, propoxy group, isopropoxy group, butoxy group and the like having 1 to 4 carbon atoms, particularly 1 carbon atom. Or 2 alkoxy groups; alkoxy-substituted alkoxy groups having 2 to 4 carbon atoms such as methoxymethoxy group and methoxyethoxy group; ketooximes having 3 to 5 carbon atoms such as dimethylketooxime group, diethylketooxime group and ethylmethylketooxime group.
  • Alkoxyoxy group having 2 to 4 carbon atoms such as vinyloxy group, allyloxy group, propenoxy group, isopropenoxy group
  • acyloxy group having 2 to 4 carbon atoms such as acetoxy group and propeonoxy group
  • carbon number of carbon number 2 such as dimethylaminoxy group
  • dialkylaminoxic group of 4 to 4 preferably an alkoxy group and an alkenyloxy group, and particularly preferably an alkoxy group.
  • m is 3 or 4.
  • the hydrolyzable (organo) silane compound of the component (C) is a silyl group having a hydrolyzable group such as two or three alkoxy groups such as a trialkoxysilyl group and a dialkoxy (organo) silyl group.
  • Alkoxy-type compounds having 2 to 6 carbon atoms that is, so-called bissilane-type compounds having 2 silyl groups at the end of the molecular chain), preferably having 2 to the end of the molecular chain (one at each end).
  • Two hydrolyzable silyl groups such as a trialkoxysilyl group or a dialkoxy (organo) silyl group (at both ends) via an alkylene group such as an ethylene group or an alkenylene group such as an ethenylene group (vinylene group).
  • a diorganosilylene compound having (one by one) that is, a so-called trisilane type compound having three silyl groups or silylene groups in one molecule
  • trisilane type compound having three silyl groups or silylene groups in one molecule
  • the hydrolyzable group the same as those exemplified by Y in the above formula (2) can be exemplified, and the hydrolyzable group is bonded to a silicon atom other than the hydrolyzable group.
  • the group to be used the same group as that exemplified by R 5 of the above-mentioned formula (2) can be exemplified.
  • component (C) examples include methyltrimethoxysilane, methyltriethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, phenyltrimethoxysilane, phenyltriethoxysilane, ethyltrimethoxysilane, and ethyltriethoxysilane.
  • Organotri such as n-propyltrimethoxysilane, n-propyltriethoxysilane, n-butyltrimethoxysilane, n-butyltriethoxysilane, isobutyltrimethoxysilane, n-hexyltrimethoxysilane, n-decyltrimethoxysilane Alkoxysilanes; tetraalkoxysilanes such as tetramethoxysilanes, tetraethoxysilanes, methylsilicates, ethylsilicates, methyl orthosilicates, ethyl orthosilicates and their partial hydrolysis condensates; 1,2-bis (dimethoxy (methyl) silyl) ethane.
  • 1 Hexaalkenyl such as 2-bis (trimethoxysilyl) ethane, 1,2-bis (triethoxysilyl) ethane, 1,6-bis (trimethoxysilyl) hexane, 1,6-bis (triethoxysilyl) hexane.
  • Disilane compounds bis [2- (dimethoxy (methyl) silyl) ethyl] dimethylsilane, bis [2- (diethoxy (methyl) silyl) ethyl] dimethylsilane, bis [2- (dimethoxy (methyl) silyl) ethenyl] dimethylsilane , Tetraalkoxytrisilane compounds such as bis [2- (diethoxy (methyl) silyl) ethenyl] dimethylsilane, bis [2- (trimethoxysilyl) ethyl] dimethylsilane, bis [2- (triethoxysilyl) ethyl] dimethyl Hexaalkoxytrisilane compounds such as silane, bis [2- (trimethoxysilyl) ethenyl] dimethylsilane, bis [2- (triethoxysilyl) ethenyl] dimethylsilane; methyltriisopropenoxysilane, ethyltriis
  • the blending amount of the component (C) is 0.1 to 30% by mass, preferably 1 to 30% by mass, particularly preferably 1 to 25% by mass with respect to the content of the component (B). Is the amount. If the amount is less than 0.1% by mass, storage stability is lacking, sufficient cross-linking property due to moisture cannot be obtained, and it is difficult to obtain a cured product having the desired rubber elasticity. Further, if the amount exceeds 30% by mass, the obtained cured product tends to deteriorate in mechanical properties, and has drawbacks such as separation from the organopolysiloxane composition.
  • the hydrolyzable (organo) silane compound of the component (C) is a functional group containing at least one heteroatom selected from nitrogen, oxygen, and sulfur in the molecule, in addition to the hydrolyzable group Y.
  • a silane coupling agent ie, containing a carbon functional group
  • a silane coupling agent which is usually blended as an adhesion improver in a room temperature curable organopolysiloxane composition in that it does not have a monovalent hydrocarbon group substituted with. It is clearly distinguished from a hydrolyzable organosilane compound or a carbon functional silane).
  • the component (D) is a radical initiator that generates radicals by heat, and is an important component for thermally radically curing the component (A).
  • the component (D) is not particularly limited, but an organic peroxide is usually preferable, for example, dicumyl peroxide, 1,1-bis (t-butylperoxy) -3,3,5-trimethylcyclohexane.
  • the blending amount of the component (D) is in the range of 0.1 to 20 parts by mass, preferably 0.5 to 20 parts by mass, and particularly preferably 1 to 15 parts by mass with respect to 100 parts by mass of the component (A). If it is less than 0.1 part by mass, curability by thermal radicals is not exhibited, and it is difficult to obtain a cured product having the desired rubber elasticity. Further, if it exceeds 20 parts by mass, the desired rubber elasticity can be obtained, but there are disadvantages such as high cost.
  • the water-curing initiator of the component (E) is used as a condensation reaction catalyst that accelerates curing by moisture, and is a Lewis acid, a primary, secondary, or tertiary organic amine compound, a metal oxide, or an organic titanium compound. , Organic tin compounds, organic zirconium compounds, or organic carboxylates of metals such as iron, antimony, bismuth, and manganese.
  • the component (E) may be used alone or as a mixture of two or more.
  • water-curing initiator examples include dibutyltin dilaurate, dibutyltin dioctate, dioctyltin dilaurate, dibutyltin malate ester, dimethyltindineodecanoate, dibutyltin dimethoxide, dioctyltin dineodecanoate, and star.
  • the amount of the component (E) added is 0.01 to 10% by mass, preferably 0.05 to 10% by mass, particularly preferably 0.1 with respect to the content of the component (B). It is an amount of up to 5% by mass. If the amount is less than 0.01% by mass, sufficient crosslinkability due to condensation hardening cannot be obtained. If the amount exceeds 10% by mass, there are drawbacks such as a disadvantage in terms of price and a decrease in the curing rate.
  • the inorganic filler of the component (F) is a component added for the purpose of improving the strength, thixotropic property, flame retardancy, heat dissipation, etc. of the composition of the present invention, and specifically, pulverized silica and fumigant silica.
  • the blending amount of the component (F) is 1 to 500% by mass, preferably 1 to 400% by mass, particularly preferably 1 to 1 to 500% by mass with respect to the total amount of the component (A) and the component (B). It is an amount of 200% by mass. If the amount is less than 1% by mass, the mechanical properties are poor. If the amount exceeds 500% by mass, it is difficult to obtain an organopolysiloxane composition that gives a cured product having rubber elasticity.
  • the thermally radically curable organopolysiloxane composition of the present invention has, if necessary (in addition to the above components (A) to (F)), for the purpose of further improving the adhesiveness of the cured product to various substrates.
  • a component (arbitrary component) an aliphatic polyvalent carboxylic acid allyl ester such as diallyl malonate, diallyl awate, diallyl maleate, diallyl fumarate, diallyl phthalate, triallyl trimellitate, tetraallyl pyromellitic acid or fragrance.
  • An organic compound having two or more (preferably 2 to 4) allyl groups in one molecule is contained in an amount of 0 to 20 parts by mass, preferably 0 to 20 parts by mass with respect to 100 parts by mass of the component (A). About 1 to 10 parts by mass can be blended.
  • an additive known as an additive for the organopolysiloxane composition may be added to the thermally radically curable organopolysiloxane composition of the present invention as long as the object of the present invention is not impaired.
  • examples thereof include polyether as a thixotropy improver, non-reactive dimethylsilicone oil as a plasticizer, isoparaffin, and a three-dimensional network methylpolysiloxane resin composed of trimethylsiloxy units and SiO 2 units as a crosslink density improver. ..
  • the thermally radically curable organopolysiloxane composition of the present invention may contain, if necessary, a colorant such as a pigment, a dye, a fluorescent whitening agent, a fungicide, an antibacterial agent, and a non-reactive phenyl as a bleed oil.
  • a colorant such as a pigment, a dye, a fluorescent whitening agent, a fungicide, an antibacterial agent, and a non-reactive phenyl
  • Surface modifiers such as silicone oil, fluorosilicone oil, and organic liquids incompatible with silicone, and solvents such as toluene, xylene, solvent volatile oil, cyclohexane, methylcyclohexane, and low boiling point isoparaffin may also be added.
  • the thermally radical curable organopolysiloxane composition of the present invention is (A) an organopolysiloxane having at least two alkenyl groups bonded to a silicon atom in one molecule, and (B) two or two at both ends of the molecular chain.
  • the thermally radically curable organopolysiloxane composition of the present invention is characterized in that the cross-linking reaction proceeds by radicals generated by heat, but the surface of the cured product poisoned by oxygen is gradually cured by the condensation reaction. ..
  • the method for curing the thermally radically curable organopolysiloxane composition of the present invention is more preferably after thermal radical curing at 80 to 150 ° C., particularly 100 to 130 ° C. for 5 to 60 minutes, particularly 10 to 30 minutes. Is preferably subjected to condensation curing at room temperature (23 ° C. ⁇ 15 ° C.) for 12 to 36 hours, particularly 18 to 24 hours, in the air, more preferably in a humid environment.
  • thermoradical curable organopolysiloxane composition of the present invention has the hardness (H 1 ) of the cured product obtained by thermally curing at 80 to 150 ° C. for 5 to 60 minutes as the primary curing, and the secondary curing.
  • H 1 hardness
  • H 2 hardness
  • the ratio of H 2 to H 1 (H) with respect to the hardness (H 2 ) of the cured product after the cured product was further moisture-cured for 1 day in an environment of a temperature of 23 ° C. and a humidity of 50% RH. 2 / H 1 ) gives a cured product of 1.00 to 1.20, preferably 1.05 to 1.20.
  • the hardnesses H 1 and H 2 of the cured product are values measured by a type A durometer hardness tester according to JIS K 6249 (durometer type A hardness).
  • the ratio of H 2 to H 1 (H 2 / H 1 ) is less than 1.00, it means that the moisture curing has not progressed, and the surface of the cured product poisoned by oxygen does not cure. If it is larger than 1.20, thermal radical curing does not proceed so much and the desired curing characteristics may not be obtained.
  • it can be achieved by mixing the component (A) and the component (B) in the blending ratio specified above.
  • Moisture curing for one day means curing by allowing it to stand for 24 hours in an environment with a humidity of 50% RH.
  • the thermally radically curable organopolysiloxane composition of the present invention is useful as an adhesive, a coating agent, a potting agent, for example, liquid packing used in automobiles and electronics, coatings for various substrates, potting, sealants and the like. It can be used for various purposes. Further, it can be adhered to an adherend such as a metal such as aluminum, copper and stainless steel, and a polymer resin such as Fr-4, PBT, PPS and Bakelite.
  • the method of using the thermally radically curable organopolysiloxane composition of the present invention as an adhesive, a coating agent, and a potting agent may follow a conventionally known method.
  • the viscosity is a value measured by a B-type rotational viscometer
  • the specific surface area is a value measured by the BET adsorption method
  • the room temperature means 23 ° C.
  • both ends of the molecular chain are sealed with a vinyldimethylsilyl group, 90 parts by mass of dimethylpolysiloxane having a viscosity at 25 ° C. of 30,000 mPa ⁇ s, and hexamethyldisilazane 8 as a surface treatment agent.
  • 40 parts by mass, 2 parts by mass of water, and 40 parts by mass of fumigant silica having a specific surface area of 300 m 2 / g as a component (F) were mixed at room temperature for 30 minutes, and then mixed at 160 ° C. for 2 hours. The mixture was further cooled to 80 ° C. or lower, and then passed through three rolls once to obtain a silicone base A.
  • a plastic initiator 48 parts by mass of dimethylpolysiloxane having both ends of the molecular chain sealed with a trimethylsilyl group and a viscosity of 500 mPa ⁇ s at 25 ° C., and di (4-methyl) as the component (D).
  • 50 parts by mass of benzoyl) peroxide and 2 parts by mass of fumigant silica having a specific surface area of 200 m 2 / g as a component (F) were mixed at room temperature for 30 minutes to obtain a radical initiator B.
  • Composition 1 45,000 mPa ⁇ s was mixed at room temperature for 20 minutes. Then, 2.5 parts by mass of n-decyltrimethoxysilane as the component (C), 5 parts by mass of the radical initiator A as the component (D), and 0.1 of diisopropoxybis (ethylacetoacetate) titanium as the component (E). A mass portion and 2 parts by mass of diallyl maleate as a component (G) were mixed under normal pressure for 15 minutes and then mixed under reduced pressure conditions for 15 minutes to obtain Composition 1.
  • composition 5 23,000 mPa ⁇ s was mixed at room temperature for 20 minutes. Then, 2.5 parts by mass of 1,6-bis (trimethoxysilyl) hexane as the component (C), 5 parts by mass of the radical initiator A as the component (D), and diisopropoxybis (ethylacetoacetate) as the component (E). ) 0.1 part by mass of titanium and 2 parts by mass of diallyl maleate as a component (G) were mixed under normal pressure for 15 minutes and then mixed under reduced pressure for 15 minutes to obtain composition 5.
  • composition 6 The same component as described in Example 2 was blended to obtain composition 6 except that 1,6-bis (trimethoxysilyl) hexane as the component (C) was not added.
  • Example 2 The same component as described in Example 2 was blended except that titanium diisopropoxybis (ethylacetate acetate) as a component (E) was not added to obtain a composition 7.
  • the prepared compositions 1 to 8 are sandwiched between iron plates so that the thickness is about 3 mm, heated in a hydraulic molding machine (manufactured by Shoji Co., Ltd.) at 120 ° C for 10 minutes, and further 23 ° C / 50%.
  • a cured product was obtained by leaving it in an RH atmosphere for 24 hours.
  • the hardness (durometer type A), tensile strength (MPa), and elongation at cutting (%) of the obtained cured product were measured according to JIS K 6249. In each case, the third digit of the measured value was rounded off to two significant figures.
  • the hardness (durometer type A) after being heat-cured for 10 minutes under the above 120 ° C. condition is left for 1 day (24 hours) in a room temperature environment of H 1 and an additional 23 ° C./50% RH.
  • the hardness (durometer type A) after the above was defined as H 2 , and the ratio of H 2 to H 1 (H 2 / H 1 ) was calculated. For each numerical value, the fourth digit of the calculated value was rounded off to three significant figures.
  • the prepared compositions 1 to 8 were placed in a glass petri dish having a diameter of 10 mm and a height of 13 mm, and left in a dryer at 120 ° C. for 10 minutes. After 10 minutes, the glass petri dish containing the compositions 1 to 8 was taken out from the dryer and left in a 23 ° C./50% RH atmosphere for 24 hours. After 24 hours, the surface tack of the cured compositions 1 to 8 was confirmed.
  • the index of surface tack is as follows. ⁇ : No tackiness on the surface of the cured product ⁇ : The surface of the cured product is not cured at all
  • the adhesive compositions 1 to 8 are sandwiched between the following adherends so as to have a thickness of 2 mm, left in a dryer at 120 ° C. for 20 minutes, and further left in a 23 ° C./50% RH atmosphere for 24 hours.
  • the compositions 1-8 were completely cured.
  • the shear adhesive force (MPa) was measured according to JIS K 6249. In each case, the third digit of the measured value was rounded off to two significant figures. The coagulation fracture rate (%) was also measured.
  • Substrate Aluminum, Polybutylene terephthalate (PBT), Polyphenylene sulfide (PPS)
  • compositions 1 to 8 were placed in a sealable container and left at room temperature for 30 days to confirm the stability (presence or absence of change) of the composition, and the one without change was regarded as good.
  • Example 1 In Examples 1 to 5 (Compositions 1 to 5), the curing properties, surface curability, adhesiveness, and storage stability were good. Although Comparative Example 1 (Composition 6) had good curing properties, surface curability, and adhesiveness, rapid thickening was confirmed only by placing it in a sealable container and leaving it at room temperature for 1 day. Comparative Example 2 (Composition 7) had good curability, adhesiveness, and storage stability, but did not exhibit surface curability at all. It is probable that room temperature curing due to humidity did not proceed because the component (E) was not added. Comparative Example 3 (Composition 8) had good curability, adhesiveness, and storage stability, but did not exhibit surface curability. It is probable that room temperature curing due to humidity did not proceed because the organopolysiloxane component (B) was not added.
  • both ends of the molecular chain are sealed with a vinyldimethylsilyl group, 70 parts by mass of dimethylpolysiloxane having a viscosity at 25 ° C. of 400 mPa ⁇ s, and the above silicone base which is a mixture of the components (A) and (F).
  • 10 parts by mass of A and both ends of the molecular chain as a component (B) are sealed with a trimethoxysilyl group
  • X in the above formula (1) is an ethylene group
  • a 0. 20 parts by mass of dimethylpolysiloxane having a viscosity at 25 ° C.
  • Example 5 The same components as described in Example 6 were blended to obtain the composition 13 except that the components (E), diisopropoxybis (ethylacetoacetate) titanium and tetra- (2-ethylhexyl) titanate, were not added. rice field.
  • the prepared compositions 9 to 13 were used to measure the viscosity in a 23 ° C./50% RH environment in accordance with JIS K 6249.
  • the prepared compositions 9 to 13 are sandwiched between iron plates so that the thickness is about 3 mm, heated in a hydraulic molding machine (manufactured by Shoji Co., Ltd.) at 120 ° C for 15 minutes, and further 23 ° C / 50%.
  • a cured product was obtained by leaving it in an RH atmosphere for 24 hours.
  • the hardness (durometer type A), tensile strength (MPa), and elongation at cutting (%) of the obtained cured product were measured according to JIS K 6249. In each case, the third digit of the measured value was rounded off to two significant figures.
  • the hardness (durometer type A) after being heat-cured for 15 minutes under the above 120 ° C. condition is left for 1 day (24 hours) in a room temperature environment of H 1 and an additional 23 ° C./50% RH.
  • the hardness (durometer type A) after the above was defined as H 2 , and the ratio of H 2 to H 1 (H 2 / H 1 ) was calculated. For each numerical value, the fourth digit of the calculated value was rounded off to three significant figures.
  • the prepared compositions 9 to 13 were placed in a glass petri dish having a diameter of 10 mm and a height of 13 mm, and left in a dryer at 120 ° C. for 20 minutes. After 20 minutes, the glass petri dish containing the compositions 9 to 13 was taken out from the dryer and left in a 23 ° C./50% RH atmosphere for 24 hours. After 24 hours, the surface tack of the cured compositions 9 to 13 was confirmed by touch.
  • the indexes of surface curability Presence or absence of surface tack
  • There is no tackiness on the surface of the cured product (no surface tackiness)
  • The surface of the cured product is not cured at all (there is surface tack).
  • compositions 9 to 13 were placed in a sealable container and left at room temperature for 30 days to confirm the stability (presence or absence of change) of the composition, and the one without change was regarded as good.
  • compositions 9 to 11 the curing characteristics, surface curability, adhesiveness, and storage stability were good. In addition, it is a low-viscosity composition considered to be useful for coating and potting.
  • Comparative Example 4 (composition 12) had good curability, surface curability, and adhesiveness. In addition, although the adhesiveness was good, rapid thickening was confirmed only by placing the bottle in a sealable bottle and leaving it at room temperature for 3 days. The viscosity after standing at room temperature for 3 days was 5,600 mPa ⁇ s, suggesting that the composition lacks storage stability.
  • Comparative Example 5 Comparative Example 5 (Composition 13) had good curability, adhesiveness, and storage stability, but did not exhibit surface curability at all. It is probable that room temperature curing did not proceed due to humidity because the organic titanium compound (E) was not added.
  • composition used in the above examples is characterized in that it is radically cured by heat as the first curing and then cured at room temperature and humidity as the second curing. Normally, only the first curing using thermal radicals causes the portion in contact with oxygen to be inhibited from curing and becomes uncured. By incorporating the second curing, the uncured portion is gradually cured at room temperature so that the uncured portion no longer exists. Another feature is that there is little change in hardness after the second curing.
  • the heat radical curable organopolysiloxane composition of the present invention is most suitable for a sealing agent, a coating agent, and a potting agent for automobile-related products having a short tact time. Further, since the organopolysiloxane composition of the present invention that can be thermally radically cured uses a versatile organopolysiloxane, it has a great cost advantage and is a polymer having an acrylic group that is usually used in thermal radical curing. It is considered that one of the merits is that the odor is less than that of the above.

Abstract

Provided is a composition which contains a highly industrially versatile alkenyl group-containing organopolysiloxane and an organopolysiloxane having a hydrolysable silyl group at both ends of the molecular chain as base polymers, in combination with a crosslinking agent, a radical initiator, a moisture-curing initiator, and an inorganic filler. A thermal radical curable organopolysiloxane composition, in which the ratio (H2/H1) of the hardness (H2) of a cured product of a secondary curing (1 day in an environment of 23°C and 50% RH) to the hardness (H1) of a cured product of a primary curing (5-60 minutes at 80-150°C) is 1.00-1.20, is stable, can complete curing in a relatively short time, can give a cured product having a reduced oxygen inhibition effect, and can achieve low odor properties.

Description

熱ラジカル硬化可能なオルガノポリシロキサン組成物、該組成物で接着、コーティング又はポッティングされた物品、及び該組成物の硬化物を製造する方法A method for producing a thermally radically curable organopolysiloxane composition, an article bonded, coated or potted with the composition, and a cured product of the composition.
 本発明は、安定で熱ラジカル硬化可能なオルガノポリシロキサン組成物に関し、より詳細には1分子中にケイ素原子に結合したアルケニル基を少なくとも2個有するオルガノポリシロキサン、加水分解性シリル基を分子鎖両末端に有するオルガノポリシロキサン、架橋剤、ラジカル開始剤、水分硬化開始剤、及び無機充填剤を含む熱ラジカル硬化可能なオルガノポリシロキサン組成物、該組成物の硬化物で接着、コーティング又はポッティングされた物品、及び該組成物の硬化物を製造する方法に関する。 The present invention relates to a stable and thermally radically curable organopolysiloxane composition, more specifically, an organopolysiloxane having at least two alkenyl groups bonded to a silicon atom in one molecule, and a hydrolyzable silyl group as a molecular chain. Thermal radical curable organopolysiloxane composition containing organopolysiloxane, cross-linking agent, radical initiator, moisture curing initiator, and inorganic filler at both ends, bonded, coated or potted with the cured product of the composition. The present invention relates to an article and a method for producing a cured product of the composition.
 硬化してエラストマー材料(シリコーンゴム硬化物)となる硬化性オルガノポリシロキサン組成物は既に公知となっている。硬化させる方法としては、湿気硬化(縮合硬化)、熱硬化(ヒドロシリル化付加硬化又は有機過酸化物によるラジカル硬化)、放射線硬化(紫外線によるラジカル硬化)等が挙げられる。 A curable organopolysiloxane composition that cures to become an elastomer material (silicone rubber cured product) is already known. Examples of the curing method include moisture curing (condensation curing), thermal curing (hydrosilylated addition curing or radical curing with organic peroxide), radiation curing (radical curing with ultraviolet rays), and the like.
 湿気硬化とは、空気中の湿気により室温下(23℃±15℃)で縮合反応によって架橋・硬化する室温硬化性(RTV)シリコーンゴム組成物であり、取り扱いが容易な上、耐候性や電気特性に優れているため、建材用のシーリング材、電気電子分野での接着剤など様々な分野で使用されている。これらのRTVシリコーンゴム組成物は、末端にシラノール基や加水分解性シリル基を有するオルガノポリシロキサン(ベースポリマー)を出発として設計される場合が多い。室温硬化性(RTV)シリコーンゴム組成物の硬化タイプとしては一般的に、脱アルコール型、脱オキシム型、脱酢酸型が知られており、各種用途で使用されている。例えば、脱アルコール型では、電気電子用の部品固定接着剤やコーティング剤、自動車用接着剤等で幅広く使用されている。脱オキシム型や脱酢酸型は硬化性が比較的早いため、主に建材用シーリング材での使用例が多いが、硬化時に副生するガスが有毒あるいは刺激臭を有しているため、安全上の問題を孕んでいる。また脱オキシム型や脱酢酸型は、被着体に対する腐食性も懸念されるため、使用時には注意が必要である。これらの硬化タイプはいずれも、空気中の湿気と触れる表面部分から内部に向けて硬化が進行するため、硬化が完了するまでの時間が湿度に大きく影響される。また、温度により反応速度が異なるため、使用される環境によって硬化速度が変化する。従って、厚みのある箇所や大面積の貼り合わせ等の用途には不適であることが知られている。 Moisture curing is a room temperature curable (RTV) silicone rubber composition that is crosslinked and cured by a condensation reaction at room temperature (23 ° C ± 15 ° C) due to the humidity in the air. It is easy to handle, and has weather resistance and electricity. Due to its excellent properties, it is used in various fields such as sealing materials for building materials and adhesives in the electrical and electronic fields. These RTV silicone rubber compositions are often designed starting from an organopolysiloxane (base polymer) having a silanol group or a hydrolyzable silyl group at the end. As the curing type of the room temperature curable (RTV) silicone rubber composition, a de-alcohol type, a de-oxime type, and a de-acetic acid type are generally known and are used in various applications. For example, in the de-alcohol type, it is widely used in component fixing adhesives and coating agents for electrical and electronic equipment, adhesives for automobiles, and the like. Since the de-oxime type and de-acetic acid type have relatively fast curability, they are often used mainly as sealing materials for building materials. I have a problem with. In addition, de-oxime type and deacetic acid type are also concerned about corrosiveness to adherends, so caution is required when using them. In all of these curing types, the curing progresses from the surface portion that comes into contact with the humidity in the air toward the inside, so the time until the curing is completed is greatly affected by the humidity. Moreover, since the reaction rate differs depending on the temperature, the curing rate changes depending on the environment in which it is used. Therefore, it is known that it is not suitable for applications such as thick places and large-area bonding.
 熱硬化タイプでは、ケイ素原子に結合したアルケニル基を有するオルガノポリシロキサンとケイ素原子に結合した水素原子(SiH基)を有するオルガノハイドロジェンシロキサンとを含む組成物を白金系触媒存在下で加熱によりヒドロシリル化付加反応させて弾性体硬化物(シリコーンゴム弾性体)を得る付加反応硬化型オルガノポリシロキサン組成物が一般的に知られている。付加反応による熱硬化タイプは、硬化のために湿気は必要なく、比較的短時間で硬化し、厚みのある箇所や大面積の貼り合わせ等にも適用可能である。しかし、塗布する箇所に窒素、リン、硫黄などの非共有電子対をもつ化合物(例えば、アミン化合物や有機リン化合物)、フラックスなどの有機酸、有機錫等が存在すると、それらの化合物等により白金触媒が不活性化され、硬化阻害が起こり得る。その結果、本来必要とされる十分な特性が発現しない場合がある。 In the thermosetting type, a composition containing an organopolysiloxane having an alkenyl group bonded to a silicon atom and an organohydrogensiloxane having a hydrogen atom (SiH group) bonded to a silicon atom is hydrosilylated by heating in the presence of a platinum-based catalyst. An addition reaction curing type organopolysiloxane composition for obtaining a cured elastic body (silicone rubber elastic body) by subjecting it to a chemical addition reaction is generally known. The thermosetting type by addition reaction does not require moisture for curing, cures in a relatively short time, and can be applied to thick places and large areas of bonding. However, if a compound having an unshared electron pair such as nitrogen, phosphorus, or sulfur (for example, an amine compound or an organic phosphorus compound), an organic acid such as a flux, or an organic tin is present at the application site, platinum may be produced by these compounds. The catalyst is inactivated and hardening inhibition can occur. As a result, sufficient properties originally required may not be exhibited.
 放射線硬化は、一般的にUV光(紫外線)の照射により発生するラジカルによって硬化するUV硬化型オルガノポリシロキサン組成物が広く知られている。ラジカル官能性基としてアクリル基やビニル基を有するオルガノポリシロキサンとUV光によりラジカルが発生する化合物(ラジカル開始剤)を含有することで、オルガノポリシロキサン同士が結合しエラストマー材料となる。一般的には60秒以内のUV光照射で硬化する組成物が多く、速硬化性が特徴である。しかし、アクリル基による臭気が強く、また接着性も十分でない場合が多い。更に、ラジカル反応であるが故に酸素による硬化阻害を受けるため、表面が硬化しないことが知られている。窒素雰囲気下での硬化によりこの問題は解決可能であるが、専用の設備導入が必要であり、また窒息の問題も十分考慮に入れる必要がある。 For radiation curing, a UV-curable organopolysiloxane composition that is generally cured by radicals generated by irradiation with UV light (ultraviolet rays) is widely known. By containing an organopolysiloxane having an acrylic group or a vinyl group as a radical functional group and a compound (radical initiator) that generates a radical by UV light, the organopolysiloxanes are bonded to each other to form an elastomer material. Generally, many compositions are cured by UV light irradiation within 60 seconds, and are characterized by quick curing. However, the odor of acrylic groups is strong, and the adhesiveness is often insufficient. Further, it is known that the surface does not harden because it is a radical reaction and is hindered by oxygen. Curing in a nitrogen atmosphere can solve this problem, but it requires the introduction of dedicated equipment and the problem of asphyxiation must be fully taken into consideration.
 また、放射線硬化以外にラジカルを発生させる方法として、有機過酸化物を用いた熱硬化による手法も知られている(過酸化物硬化型オルガノポリシロキサン組成物)。しかし、上記UV光によるオルガノポリシロキサン組成物と同様に、ラジカル反応であるが故に酸素阻害が発生するため、エラストマー表面が未硬化になる場合がある。これを改善する手法として、特許文献1(特許第6385370号公報)には、縮合硬化及び熱ラジカル硬化により硬化するシリコーン粘着剤組成物が例示されている。アクリレート基及びメタクリレート基から選択されるラジカル硬化性基を有するクラスタ化官能性オルガノポリシロキサン及びアルコキシ基を有する反応性ポリマーを使用することで、縮合硬化及び熱ラジカル硬化を実現できる。該特許文献1に記載されている方法により得られるシリコーン粘着剤組成物は、熱ラジカル硬化により酸素阻害を受けた組成物表面が、縮合硬化により徐々に硬化するというシステムのため酸素阻害のデメリットがない。しかし、クラスタ化官能性オルガノポリシロキサンの調製が煩雑であるため汎用性に乏しく、またアクリレート基やメタクリレート基を有しているため臭気が強い。 Further, as a method for generating radicals other than radiation curing, a method by thermosetting using an organic peroxide is also known (peroxide curing type organopolysiloxane composition). However, as with the organopolysiloxane composition by UV light, the surface of the elastomer may be uncured due to oxygen inhibition due to the radical reaction. As a method for improving this, Patent Document 1 (Japanese Patent No. 6385370) exemplifies a silicone pressure-sensitive adhesive composition that is cured by condensation curing and thermal radical curing. Condensation curing and thermal radical curing can be achieved by using a clustered functional organopolysiloxane having a radical curable group selected from an acrylate group and a methacrylate group and a reactive polymer having an alkoxy group. The silicone pressure-sensitive adhesive composition obtained by the method described in Patent Document 1 has a demerit of oxygen inhibition because it is a system in which the surface of the composition subjected to oxygen inhibition by thermal radical curing is gradually cured by condensation curing. No. However, since the preparation of the clustered functional organopolysiloxane is complicated, the versatility is poor, and since it has an acrylate group and a methacrylate group, it has a strong odor.
 また特許文献2(国際公開第2018/186165号)には、ラジカル反応性基及び縮合反応性基を有する硬化反応性オルガノポリシロキサン組成物が開示されている。室温において1次硬化(縮合硬化)させた硬化物の貯蔵弾性率G’1と、該硬化物を更に100℃以上の加熱により2次硬化(熱ラジカル硬化)させた硬化物の貯蔵弾性率G’2について、G’1に対するG’2の増加率が少なくとも50%であることが特徴である。該組成物は室温環境下で湿気硬化により1次硬化させた後、熱ラジカル硬化(2次硬化)させることができるオルガノポリシロキサン組成物として有用性が高いが、室温硬化(1次硬化)させる時間によってG’1に対するG’2の増加率が変動する可能性がある。また湿気硬化(1次硬化)による時間が長いため、実使用上のタクトタイムが長くなるというデメリットも孕んでいる。 Further, Patent Document 2 (International Publication No. 2018/186165) discloses a curing-reactive organopolysiloxane composition having a radical-reactive group and a condensation-reactive group. Storage elastic modulus G'1 of the cured product primary cured (condensation curing) at room temperature and storage elastic modulus G'1 of the cured product secondary cured (thermal radical curing) by further heating the cured product at 100 ° C. or higher. For ' 2 , the rate of increase of G'2 with respect to G'1 is at least 50%. The composition is highly useful as an organopolysiloxane composition that can be primary cured by moisture curing in a room temperature environment and then thermally radically cured (secondary curing), but is cured at room temperature (primary curing). The rate of increase of G'2 with respect to G'1 may fluctuate with time. In addition, since the time due to moisture curing (primary curing) is long, there is a demerit that the tact time in actual use becomes long.
特許第6385370号公報Japanese Patent No. 6385370 国際公開第2018/186165号International Publication No. 2018/186165
 本発明は、上記事情に鑑みなされたもので、比較的短時間のうちに硬化を完了させることができ、かつ酸素阻害の影響を低減させた硬化物(シリコーンゴム硬化物)を与えることが可能であり、更に、低臭気性も実現した安定で熱ラジカル硬化可能なオルガノポリシロキサン組成物、該組成物の硬化物で接着、コーティング又はポッティングされた物品、及び該組成物の硬化物を製造する方法を提供することを目的とする。 The present invention has been made in view of the above circumstances, and it is possible to provide a cured product (silicone rubber cured product) which can complete curing in a relatively short time and has a reduced effect of oxygen inhibition. Further, a stable and thermally radically curable organopolysiloxane composition having a low odor property, an article bonded, coated or potted with a cured product of the composition, and a cured product of the composition are produced. The purpose is to provide a method.
 本発明者らは、上記目的を達成するため鋭意検討した結果、工業的に汎用性の高いアルケニル基含有オルガノポリシロキサン(特に、分子鎖両末端にアルケニル基を含有するオルガノポリシロキサン)と分子鎖両末端に加水分解性シリル基を有するオルガノポリシロキサンとをベースポリマーとして併用し、かつ、架橋剤、ラジカル開始剤、水分硬化開始剤、無機充填剤を組み合わせたオルガノポリシロキサン組成物が、安定で熱ラジカル硬化可能なオルガノポリシロキサン組成物となり、特に、第1次硬化として80~150℃の条件で比較的短時間で熱ラジカル硬化させた後、第2次硬化として40℃以下の室温環境において第1次硬化させた該硬化物の表面を更に湿気硬化により1日間(24時間)2次硬化させることで、比較的短時間のうちに1次/2次硬化を完了させることができ、かつ酸素阻害の影響を低減させた硬化物(シリコーンゴム硬化物)を与えることができ、更に、低臭気性も実現した熱ラジカル硬化可能なオルガノポリシロキサン組成物が得られることを見出し、本発明をなすに至った。 As a result of diligent studies to achieve the above object, the present inventors have found that industrially versatile alkenyl group-containing organopolysiloxane (particularly, organopolysiloxane containing alkenyl groups at both ends of the molecular chain) and the molecular chain. An organopolysiloxane composition in which an organopolysiloxane having a hydrolyzable silyl group at both ends is used as a base polymer and a cross-linking agent, a radical initiator, a water curing initiator, and an inorganic filler are combined is stable. An organopolysiloxane composition that can be thermally radically cured is obtained, and in particular, after being thermally radically cured in a relatively short time under the conditions of 80 to 150 ° C. as the primary curing, in a room temperature environment of 40 ° C. or lower as the secondary curing. By further curing the surface of the primary cured product by moisture curing for 1 day (24 hours), the primary / secondary curing can be completed in a relatively short time, and the primary / secondary curing can be completed. We have found that a thermoradical curable organopolysiloxane composition that can provide a cured product (cured silicone rubber product) with reduced effects of oxygen inhibition and that also achieves low odor can be obtained. I came to the point.
 即ち、本発明は、下記の熱ラジカル硬化可能なオルガノポリシロキサン組成物、及び該組成物の硬化物で接着、コーティング又はポッティングされた物品、並びに該組成物の硬化物を製造する方法を提供するものである。
[1]
 (A)1分子中にケイ素原子に結合したアルケニル基を少なくとも2個有するオルガノポリシロキサン:100質量部、
(B)下記一般式(1)
Figure JPOXMLDOC01-appb-C000002
(式中、R1は独立に炭素数1~10の非置換又はハロゲン置換の一価炭化水素基であり、nは10以上の整数であり、R2は独立に炭素数1~6の非置換又は置換の一価炭化水素基であり、Xは酸素原子又は炭素数1~4のアルキレン基であり、aは結合するケイ素原子毎に独立に0又は1である。)
で示されるオルガノポリシロキサン:5~80質量部、
(C)1分子中に加水分解性基を3個以上有する(オルガノ)シラン化合物及び/又はその部分加水分解縮合物:(B)成分の含有量に対して0.1~30質量%となる量、
(D)ラジカル開始剤:0.1~20質量部、
(E)水分硬化開始剤:(B)成分の含有量に対して0.01~10質量%となる量、
(F)無機充填剤:(A)成分と(B)成分の合計量に対して1~500質量%となる量
を含むオルガノポリシロキサン組成物であって、第1次硬化として、80~150℃で5~60分間熱硬化させて得られる硬化物の硬さ(H1)と、第2次硬化として、該硬化物を更に、温度23℃、湿度50%RHの環境下で1日間(24時間)湿気硬化させた後の該硬化物の硬さ(H2)について、H1に対するH2の比(H2/H1)が1.00~1.20である硬化物を与えるものである熱ラジカル硬化可能なオルガノポリシロキサン組成物。
[2]
 更に、(G)1分子中にアリル基を2個以上有する有機化合物を(A)成分100質量部に対して1~20質量部含有する[1]に記載の熱ラジカル硬化可能なオルガノポリシロキサン組成物。
[3]
 (C)成分が、オルガノトリアルコキシシラン、テトラアルコキシシラン、テトラアルコキシジシラン化合物、テトラアルコキシトリシラン化合物、ヘキサアルコキシジシラン化合物、ヘキサアルコキシトリシラン化合物、(オルガノ)アセトキシシラン、(オルガノ)イソプロペノキシシラン及び(オルガノ)ケトオキシムシランからなる群から選択される1種又は2種以上である[1]又は[2]に記載の熱ラジカル硬化可能なオルガノポリシロキサン組成物。
[4]
 (E)成分が、有機チタン化合物又は有機錫化合物である[1]~[3]のいずれかに記載の熱ラジカル硬化可能なオルガノポリシロキサン組成物。
[5]
 [1]~[4]のいずれかに記載の熱ラジカル硬化可能なオルガノポリシロキサン組成物の硬化物で接着、コーティング又はポッティングされた物品。
[6]
 [1]~[4]のいずれかに記載の熱ラジカル硬化可能なオルガノポリシロキサン組成物を80~150℃で熱ラジカル硬化させた後、更に室温で縮合硬化させる工程を含む熱ラジカル硬化可能なオルガノポリシロキサン組成物の硬化物を製造する方法。
That is, the present invention provides the following thermally radical curable organopolysiloxane composition, an article bonded, coated or potted with the cured product of the composition, and a method for producing the cured product of the composition. It is a thing.
[1]
(A) Organopolysiloxane having at least two alkenyl groups bonded to silicon atoms in one molecule: 100 parts by mass,
(B) The following general formula (1)
Figure JPOXMLDOC01-appb-C000002
(In the formula, R 1 is an independently unsubstituted or halogen-substituted monovalent hydrocarbon group having 1 to 10 carbon atoms, n is an integer of 10 or more, and R 2 is independently non-substituted with 1 to 6 carbon atoms. It is a substituted or substituted monovalent hydrocarbon group, X is an oxygen atom or an alkylene group having 1 to 4 carbon atoms, and a is 0 or 1 independently for each silicon atom to be bonded.)
Organopolysiloxane indicated by: 5-80 parts by mass,
(C) A (organo) silane compound having 3 or more hydrolyzable groups in one molecule and / or a partially hydrolyzed condensate thereof: 0.1 to 30% by mass with respect to the content of the component (B). amount,
(D) Radical initiator: 0.1 to 20 parts by mass,
(E) Moisture curing initiator: 0.01 to 10% by mass with respect to the content of the component (B),
(F) Inorganic filler: An organopolysiloxane composition containing an amount of 1 to 500% by mass based on the total amount of the components (A) and (B), and 80 to 150 as the primary curing. The hardness (H 1 ) of the cured product obtained by heat-curing at ° C for 5 to 60 minutes, and as the secondary curing, the cured product was further subjected to an environment of a temperature of 23 ° C and a humidity of 50% RH for 1 day (H 1). 24 hours) A product that gives a cured product in which the ratio of H 2 to H 1 (H 2 / H 1 ) is 1.00 to 1.20 with respect to the hardness (H 2 ) of the cured product after being cured by moisture. An organopolysiloxane composition that is thermosetting.
[2]
Further, the thermally radical curable organopolysiloxane according to [1], wherein (G) contains 1 to 20 parts by mass of an organic compound having two or more allyl groups in one molecule with respect to 100 parts by mass of the component (A). Composition.
[3]
The component (C) is organotrialkoxysilane, tetraalkoxysilane, tetraalkoxydisilane compound, tetraalkoxytrisilane compound, hexaalkoxydisilane compound, hexaalkoxytrisilane compound, (organo) acetoxysilane, (organo) isopropenoxysilane. The thermal radical curable organopolysiloxane composition according to [1] or [2], which is one or more selected from the group consisting of (organo) ketooxymsilane.
[4]
The thermally radical curable organopolysiloxane composition according to any one of [1] to [3], wherein the component (E) is an organic titanium compound or an organic tin compound.
[5]
An article bonded, coated or potted with a cured product of the thermally radically curable organopolysiloxane composition according to any one of [1] to [4].
[6]
The thermally radical curable organopolysiloxane composition according to any one of [1] to [4] can be thermally radically cured, including a step of thermally radical curing at 80 to 150 ° C. and then condensation curing at room temperature. A method for producing a cured product of an organopolysiloxane composition.
 本発明によれば、工業的に汎用性の高いアルケニル基含有オルガノポリシロキサン(特には、分子鎖両末端にアルケニル基を含有するオルガノポリシロキサン)と分子鎖両末端に加水分解性シリル基を有するオルガノポリシロキサンとをベースポリマーとして併用することで、安定(特に貯蔵安定性が良好)で熱ラジカル硬化可能なオルガノポリシロキサン組成物となり、特に、第1次硬化として80~150℃の条件で比較的短時間で熱ラジカル硬化させた後、第2次硬化として40℃以下の室温環境において第1次硬化させた該硬化物の表面を更に湿気硬化により2次硬化させることで、比較的短時間のうちに1次/2次硬化を完了させることができ、かつ酸素阻害の影響を低減させた硬化物(シリコーンゴム硬化物)を与えることが可能であり、更に、低臭気性も実現した熱ラジカル硬化可能なオルガノポリシロキサン組成物を提供することができる。 According to the present invention, it has an industrially versatile alkenyl group-containing organopolysiloxane (particularly, an organopolysiloxane containing an alkenyl group at both ends of the molecular chain) and a hydrolyzable silyl group at both ends of the molecular chain. By using organopolysiloxane in combination as a base polymer, it becomes an organopolysiloxane composition that is stable (especially good storage stability) and can be thermally radically cured. After thermal radical curing in a short period of time, the surface of the cured product, which was first cured in a room temperature environment of 40 ° C. or lower as the secondary curing, is further secondarily cured by moisture curing for a relatively short time. It is possible to complete the primary / secondary curing in the meantime, and it is possible to give a cured product (silicone rubber cured product) with a reduced effect of oxygen inhibition, and further, heat that realizes low odor. It is possible to provide an organopolysiloxane composition that can be radically cured.
 以下、本発明について詳しく説明する。
[(A)成分]
 (A)成分は、本発明の組成物の第一のベースポリマー(即ち、熱ラジカル硬化性を有するベースポリマー)であり、1分子中にケイ素原子に結合したアルケニル基を少なくとも2個有するオルガノポリシロキサンである。(A)成分の分子構造は特に制限されるものではなく、直鎖状構造、環状構造が挙げられ、これらの構造は分岐を有していてもよい。特には主鎖が基本的にジオルガノシロキサン単位の繰り返しからなり、分子鎖両末端がトリオルガノシロキシ基で封鎖された、直鎖状のジオルガノポリシロキサンが好ましく用いられる。
Hereinafter, the present invention will be described in detail.
[(A) component]
The component (A) is the first base polymer of the composition of the present invention (that is, a base polymer having thermal radical curability), and is an organopoly having at least two alkenyl groups bonded to silicon atoms in one molecule. It is a siloxane. The molecular structure of the component (A) is not particularly limited, and examples thereof include a linear structure and a cyclic structure, and these structures may have branches. In particular, a linear diorganopolysiloxane in which the main chain basically consists of repeating diorganosiloxane units and both ends of the molecular chain are sealed with a triorganosyloxy group is preferably used.
 (A)成分の25℃における粘度は、100~500,000mPa・sの範囲内であることが好ましく、特には100~100,000mPa・sの範囲内であることが好ましい。粘度が上記範囲内であると、組成物の取り扱い作業性と該組成物から得られるエラストマー材料(シリコーンゴム硬化物)の物理的強度とを十分に確保することができる。粘度は通常、25℃において回転粘度計(例えば、BL型、BH型、BS型、コーンプレート型、レオメータ等)により測定することができる。 The viscosity of the component (A) at 25 ° C. is preferably in the range of 100 to 500,000 mPa · s, and particularly preferably in the range of 100 to 100,000 mPa · s. When the viscosity is within the above range, the handling workability of the composition and the physical strength of the elastomer material (silicone rubber cured product) obtained from the composition can be sufficiently ensured. Viscosity can usually be measured at 25 ° C. with a rotational viscometer (eg, BL type, BH type, BS type, cone plate type, rheometer, etc.).
 また、上記粘度を有するアルケニル基含有オルガノポリシロキサンの重合度(分子中のケイ素原子数、又は主鎖を構成するジオルガノシロキサン単位の繰り返し数)は、通常50~2,000、特には80~1,200程度が好ましい。本発明において、重合度は、例えばトルエン等を展開溶媒としてゲルパーミエーションクロマトグラフィ(GPC)分析におけるポリスチレン換算の数平均重合度(又は数平均分子量)等として求めることができる。 The degree of polymerization of the alkenyl group-containing organopolysiloxane having the above viscosity (the number of silicon atoms in the molecule or the number of repetitions of the diorganosiloxane unit constituting the main chain) is usually 50 to 2,000, particularly 80 to 80. About 1,200 is preferable. In the present invention, the degree of polymerization can be determined as a polystyrene-equivalent number average degree of polymerization (or number average molecular weight) or the like in gel permeation chromatography (GPC) analysis using, for example, toluene or the like as a developing solvent.
 (A)成分のアルケニル基含有オルガノポリシロキサンにおいて、ケイ素原子に結合したアルケニル基は、炭素数2~8、更には炭素数2~4のものが好ましく、例えば、ビニル基、アリル基、ブテニル基、ペンテニル基、ヘキセニル基、ヘプテニル基等が挙げられる。中でもビニル基であることが好ましい。該オルガノポリシロキサンが直鎖状構造を有する場合、アルケニル基は分子鎖末端のケイ素原子に結合するものであっても、分子鎖側鎖(分子鎖非末端)のケイ素原子に結合するものであってもよく、その両方であってもよいが、分子鎖両末端のケイ素原子に結合したアルケニル基を有するものであることが好ましく、アルケニル基を有するトリオルガノシリル基で分子鎖両末端が封鎖された直鎖状ジオルガノポリシロキサンであることがより好ましい。 In the alkenyl group-containing organopolysiloxane of the component (A), the alkenyl group bonded to the silicon atom is preferably one having 2 to 8 carbon atoms and further preferably 2 to 4 carbon atoms, and for example, a vinyl group, an allyl group and a butenyl group. , Pentenyl group, hexenyl group, heptenyl group and the like. Of these, a vinyl group is preferable. When the organopolysiloxane has a linear structure, the alkenyl group may be bonded to a silicon atom at the end of the molecular chain but to a silicon atom in the side chain of the molecular chain (non-terminal of the molecular chain). It may be either of these, but it is preferable that it has an alkenyl group bonded to a silicon atom at both ends of the molecular chain, and both ends of the molecular chain are blocked by a triorganosilyl group having an alkenyl group. More preferably, it is a linear diorganopolysiloxane.
 (A)成分のアルケニル基含有オルガノポリシロキサンにおいて、ケイ素原子に結合するアルケニル基以外の有機基は、非置換又はハロゲン置換の一価炭化水素基であればよく、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、シクロヘキシル基、ヘプチル基、デシル基等の炭素数1~10のアルキル基;フェニル基、トリル基、キシリル基、ナフチル基等の炭素数6~14のアリール基;ベンジル基、フェネチル基等の炭素数7~14のアラルキル基;クロロメチル基、ブロモエチル基、3-クロロプロピル基、3,3,3-トリフルオロプロピル基等の炭素数1~3のハロゲン化アルキル基などが挙げられる。中でもメチル基、フェニル基が好ましい。 In the alkenyl group-containing organopolysiloxane of the component (A), the organic group other than the alkenyl group bonded to the silicon atom may be an unsubstituted or halogen-substituted monovalent hydrocarbon group, for example, a methyl group, an ethyl group, etc. Alkyl group having 1 to 10 carbon atoms such as propyl group, butyl group, pentyl group, hexyl group, cyclohexyl group, heptyl group and decyl group; Aryl group; aralkyl group having 7 to 14 carbon atoms such as benzyl group and phenethyl group; 1 to 3 carbon atoms such as chloromethyl group, bromoethyl group, 3-chloropropyl group and 3,3,3-trifluoropropyl group. Examples thereof include an alkyl halide group. Of these, a methyl group and a phenyl group are preferable.
 直鎖状のジオルガノポリシロキサンとしては、分子鎖両末端トリメチルシロキシ基封鎖ジメチルシロキサン・メチルビニルシロキサン共重合体、分子鎖両末端トリメチルシロキシ基封鎖ジメチルシロキサン・メチルビニルシロキサン・メチルフェニルシロキサン共重合体、分子鎖両末端ジメチルビニルシロキシ基封鎖ジメチルポリシロキサン、分子鎖両末端ジメチルビニルシロキシ基封鎖ジメチルシロキサン・メチルビニルシロキサン共重合体、分子鎖両末端ジメチルビニルシロキシ基封鎖ジメチルシロキサン・メチルビニルシロキサン・メチルフェニルシロキサン共重合体、分子鎖両末端トリビニルシロキシ基封鎖ジメチルポリシロキサンが挙げられる。環状構造又は分岐構造を有するオルガノポリシロキサンとしては、式:R3 3SiO0.5(R3はアルケニル基以外の非置換又は置換の一価炭化水素基である。以下、同じ。)で示されるシロキシ単位と式:R3 24SiO0.5(R4はアルケニル基である。以下、同じ。)で示されるシロキシ単位と式:R3 2SiOで示されるシロキサン単位と式:SiO2で示されるシロキサン単位とからなるオルガノシロキサン共重合体、式:R3 3SiO0.5で示されるシロキシ単位と式:R3 24SiO0.5で示されるシロキシ単位と式:SiO2で示されるシロキサン単位とからなるオルガノシロキサン共重合体、式:R3 24SiOで示されるシロキサン単位と式:R3SiO1.5で示されるシロキサン単位もしくは式:R4SiO1.5で示されるシロキサン単位とからなるオルガノシロキサン共重合体が挙げられる。 The linear diorganopolysiloxane includes a trimethylsiloxy group-blocked dimethylsiloxane / methylvinylsiloxane copolymer at both ends of the molecular chain and a trimethylsiloxy group-blocked dimethylsiloxane / methylvinylsiloxane / methylphenylsiloxane copolymer at both ends of the molecular chain. , Molecular chain double-ended dimethylvinylsiloxy group-blocked dimethylpolysiloxane, Molecular chain double-ended dimethylvinylsiloxy group-blocked dimethylsiloxane / methylvinylsiloxane copolymer, Molecular chain double-ended dimethylvinylsiloxy group-blocked dimethylsiloxane / methylvinylsiloxane / methyl Examples thereof include a phenylsiloxane copolymer and a trivinylsiloxy group-blocked dimethylpolysiloxane having both ends of the molecular chain. The organopolysiloxane having a cyclic structure or a branched structure is represented by the formula: R 3 3 SiO 0.5 (R 3 is an unsubstituted or substituted monovalent hydrocarbon group other than an alkenyl group; the same applies hereinafter). Unit and formula: R 3 2 R 4 SiO 0.5 (R 4 is an alkenyl group; the same shall apply hereinafter) Siloxane unit and formula: R 3 2 SiO siloxane unit and formula: SiO 2 Organosiloxane copolymer consisting of a siloxane unit, from a hydrocarbon unit represented by the formula: R 3 3 SiO 0.5 and a hydrocarbon unit represented by the formula: R 3 2 R 4 SiO 0.5 and a siloxane unit represented by the formula: SiO 2 Organosiloxane copolymer, which consists of a siloxane unit represented by the formula: R 3 2 R 4 SiO and a siloxane unit represented by the formula: R 3 SiO 1.5 or a siloxane unit represented by the formula: R 4 SiO 1.5 . Examples include polymers.
 上記式中、R3はアルケニル基以外の非置換又は置換の一価炭化水素基であり、上述したアルケニル基以外の有機基として例示したものと同様であり、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、シクロヘキシル基、ヘプチル基、デシル基等の炭素数1~10のアルキル基;フェニル基、トリル基、キシリル基、ナフチル基等の炭素数6~14のアリール基;ベンジル基、フェネチル基等の炭素数7~14のアラルキル基;クロロメチル基、ブロモエチル基、3-クロロプロピル基、3,3,3-トリフルオロプロピル基等の炭素数1~3のハロゲン化アルキル基などが挙げられる。またR4は、炭素数2~8、更には炭素数2~4であるアルケニル基が好ましく、例えば、ビニル基、アリル基、ブテニル基、ペンテニル基、ヘキセニル基、及びヘプテニル基等が挙げられる。 In the above formula, R 3 is an unsubstituted or substituted monovalent hydrocarbon group other than the alkenyl group, which is the same as that exemplified as the organic group other than the alkenyl group described above, and is, for example, a methyl group, an ethyl group and a propyl group. An alkyl group having 1 to 10 carbon atoms such as a group, a butyl group, a pentyl group, a hexyl group, a cyclohexyl group, a heptyl group and a decyl group; and an aryl having 6 to 14 carbon atoms such as a phenyl group, a trill group, a xylyl group and a naphthyl group. Group; Aralkyl group having 7 to 14 carbon atoms such as benzyl group and phenethyl group; Halogen having 1 to 3 carbon atoms such as chloromethyl group, bromoethyl group, 3-chloropropyl group and 3,3,3-trifluoropropyl group Examples thereof include an alkylated group. Further, R 4 is preferably an alkenyl group having 2 to 8 carbon atoms and further preferably a 2 to 4 carbon atoms, and examples thereof include a vinyl group, an allyl group, a butenyl group, a pentenyl group, a hexenyl group and a heptenyl group.
 (A)成分のアルケニル基含有オルガノポリシロキサンは、1種単独でも2種以上組み合わせても使用することができる。 The alkenyl group-containing organopolysiloxane of the component (A) can be used alone or in combination of two or more.
[(B)成分]
 (B)成分は、本発明の組成物の第二のベースポリマー(即ち、湿気硬化性(縮合硬化性)を有するベースポリマー)であって、分子鎖両末端にそれぞれ2個又は3個のケイ素原子に結合したオルガノオキシ基を有する加水分解性シリル基で封鎖された直鎖状のオルガノポリシロキサンであり、下記一般式(1)で示されるものである。
Figure JPOXMLDOC01-appb-C000003
(式中、R1は独立に炭素数1~10の非置換又はハロゲン置換の一価炭化水素基であり、nは10以上の整数であり、R2は独立に炭素数1~6の非置換又は置換の一価炭化水素基であり、Xは酸素原子又は炭素数1~4のアルキレン基であり、aは結合するケイ素原子毎に独立に0又は1である。)
[(B) component]
The component (B) is a second base polymer of the composition of the present invention (that is, a base polymer having moisture curability (condensation curability)), and two or three silicons at both ends of the molecular chain, respectively. It is a linear organopolysiloxane sealed with a hydrolyzable silyl group having an organooxy group bonded to an atom, and is represented by the following general formula (1).
Figure JPOXMLDOC01-appb-C000003
(In the formula, R 1 is an independently unsubstituted or halogen-substituted monovalent hydrocarbon group having 1 to 10 carbon atoms, n is an integer of 10 or more, and R 2 is independently non-substituted with 1 to 6 carbon atoms. It is a substituted or substituted monovalent hydrocarbon group, X is an oxygen atom or an alkylene group having 1 to 4 carbon atoms, and a is 0 or 1 independently for each silicon atom to be bonded.)
 上記式(1)中、R1は炭素数1~10、好ましくは炭素数1~6の非置換又はハロゲン置換の一価炭化水素基であり、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、デシル基等の直鎖状又は分岐状アルキル基;シクロヘキシル基等の環状アルキル基;ビニル基、アリル基、ブテニル基、ペンテニル基、ヘキセニル基、ヘプテニル基等のアルケニル基;フェニル基、トリル基、キシリル基、ナフチル基等のアリール基;ベンジル基、フェネチル基等のアラルキル基;及びこれらの基の水素原子が部分的にハロゲン原子で置換された基、例えばクロロメチル基、ブロモエチル基、3-クロロプロピル基、3,3,3-トリフルオロプロピル基、クロロフェニル基等が挙げられる。これらの中では、脂肪族不飽和結合を有さない非置換の一価炭化水素基(例えば、アルキル基、アリール基、アラルキル基等)が好ましく、アルキル基又はアリール基がより好ましく、特にメチル基が好ましい。また、複数のR1は同一の基であっても異種の基であってもよい。 In the above formula (1), R 1 is an unsubstituted or halogen-substituted monovalent hydrocarbon group having 1 to 10 carbon atoms, preferably 1 to 6 carbon atoms, and is, for example, a methyl group, an ethyl group, a propyl group, or a butyl group. Linear or branched alkyl group such as group, pentyl group, hexyl group, heptyl group, decyl group; cyclic alkyl group such as cyclohexyl group; vinyl group, allyl group, butenyl group, pentenyl group, hexenyl group, heptenyl group and the like. Alkenyl groups; aryl groups such as phenyl group, trill group, xylyl group, naphthyl group; aralkyl groups such as benzyl group and phenethyl group; and groups in which the hydrogen atom of these groups is partially substituted with a halogen atom, for example. Examples thereof include a chloromethyl group, a bromoethyl group, a 3-chloropropyl group, a 3,3,3-trifluoropropyl group and a chlorophenyl group. Among these, an unsubstituted monovalent hydrocarbon group having no aliphatic unsaturated bond (for example, an alkyl group, an aryl group, an aralkyl group, etc.) is preferable, an alkyl group or an aryl group is more preferable, and a methyl group is particularly preferable. Is preferable. Further, the plurality of R 1s may be the same group or different groups.
 上記式(1)中のn(ジオルガノシロキサン単位の繰り返し数)は10以上の整数であり、通常、10~2,000の整数、好ましくは20~1,500の整数、より好ましくは30~1,000の整数、更に好ましくは50~800の整数である。また、このnの値は、特に(B)成分のオルガノポリシロキサンの25℃における粘度が25~500,000mPa・sの範囲、好ましくは100~100,000mPa・sの範囲となる整数であることが望ましい。 N (the number of repetitions of the diorganosiloxane unit) in the above formula (1) is an integer of 10 or more, and is usually an integer of 10 to 2,000, preferably an integer of 20 to 1,500, and more preferably 30 to. It is an integer of 1,000, more preferably an integer of 50 to 800. Further, the value of n is an integer in which the viscosity of the organopolysiloxane of the component (B) at 25 ° C. is in the range of 25 to 500,000 mPa · s, preferably in the range of 100 to 100,000 mPa · s. Is desirable.
 なお、本発明において、(B)成分のオルガノポリシロキサンの主鎖を構成する((R12SiO2/2)で示される2官能性のジオルガノシロキサン単位の繰り返し数であるn(又は重合度)は、通常、トルエン等を展開溶媒としてゲルパーミエーションクロマトグラフィ(GPC)分析におけるポリスチレン換算の数平均重合度(又は数平均分子量)等として求めることができる。また、粘度は通常、25℃において回転粘度計(例えば、BL型、BH型、BS型、コーンプレート型、レオメータ等)により測定することができる。 In the present invention, n (or the number of repetitions of the bifunctional diorganosiloxane unit represented by ((R 1 ) 2 SiO 2/2 ) constituting the main chain of the organopolysiloxane of the component (B)). The degree of polymerization) can usually be determined as a polystyrene-equivalent number average degree of polymerization (or number average molecular weight) or the like in gel permeation chromatography (GPC) analysis using toluene or the like as a developing solvent. Further, the viscosity can usually be measured at 25 ° C. with a rotational viscometer (for example, BL type, BH type, BS type, cone plate type, rheometer, etc.).
 上記式(1)中、Xは酸素原子又は炭素数1~4のアルキレン基であり、炭素数1~4のアルキレン基としては、例えば、メチレン基、エチレン基、プロピレン基、ブチレン基などの直鎖アルキレン基、及びこれらの異性体、例えば、イソプロピレン基、イソブチレン基などが該当する。Xとしては、特に、酸素原子とエチレン基が好ましい。
 エチレン基の場合、α,ω-ジビニル末端オルガノポリシロキサンに対し、対応するヒドロシランを金属触媒存在下で付加反応させることにより容易に生成できることから、非常に汎用性がある。
In the above formula (1), X is an oxygen atom or an alkylene group having 1 to 4 carbon atoms, and examples of the alkylene group having 1 to 4 carbon atoms include a methylene group, an ethylene group, a propylene group and a butylene group. A chain alkylene group and isomers thereof, for example, an isopropylene group and an isobutylene group are applicable. As X, an oxygen atom and an ethylene group are particularly preferable.
In the case of an ethylene group, it is very versatile because it can be easily produced by an addition reaction of the corresponding hydrosilane with the α, ω-divinyl-terminated organopolysiloxane in the presence of a metal catalyst.
 また上記式(1)中、R2は独立に炭素数1~6の非置換又は置換一価炭化水素基であり、例えば、メチル基、エチル基、プロピル基等のアルキル基;メトキシメチル基、メトキシエチル基、エトキシメチル基、エトキシエチル基等のアルコキシ置換アルキル基;シクロヘキシル基等の環状アルキル基;ビニル基、アリル基、プロペニル基等のアルケニル基、フェニル基などが挙げられるが、特にメチル基、エチル基が好ましい。 Further, in the above formula (1), R 2 is independently an unsubstituted or substituted monovalent hydrocarbon group having 1 to 6 carbon atoms, and is, for example, an alkyl group such as a methyl group, an ethyl group or a propyl group; a methoxymethyl group, Alkoxy-substituted alkyl groups such as methoxyethyl group, ethoxymethyl group and ethoxyethyl group; cyclic alkyl groups such as cyclohexyl group; alkenyl groups such as vinyl group, allyl group and propenyl group, phenyl group and the like, and particularly methyl group. , Ethyl groups are preferred.
 aは結合するケイ素原子毎に独立に0又は1であり、特に好ましくは0である。 A is independently 0 or 1 for each silicon atom to be bonded, and is particularly preferably 0.
 (B)成分としては、下記に示すものが例示できる。
Figure JPOXMLDOC01-appb-C000004
(式中、n1は上記オルガノポリシロキサンの25℃における粘度が25~500,000mPa・sの範囲となる数である。)
Examples of the component (B) include those shown below.
Figure JPOXMLDOC01-appb-C000004
(In the formula, n1 is a number in which the viscosity of the organopolysiloxane at 25 ° C. is in the range of 25 to 500,000 mPa · s.)
 (B)成分のオルガノポリシロキサンは、1種単独で使用しても2種以上組み合わせて使用してもよい。
 本発明の組成物において、(B)成分のオルガノポリシロキサンの配合量は、該組成物の熱ラジカル硬化性と湿気(縮合)硬化性とのバランスの観点から、(A)成分100質量部に対して5~80質量部、好ましくは10~60質量部、より好ましくは15~40質量部である。(B)成分が5質量部未満では湿気(縮合)硬化が十分進行せず、酸素阻害を受けた硬化物表面を十分に湿気(縮合)硬化させることが難しくなる場合があり、80質量部を超えると熱ラジカル硬化性による短時間硬化が困難になる場合がある。
The organopolysiloxane of the component (B) may be used alone or in combination of two or more.
In the composition of the present invention, the blending amount of the organopolysiloxane of the component (B) is 100 parts by mass of the component (A) from the viewpoint of the balance between the thermal radical curability and the moisture (condensation) curability of the composition. On the other hand, it is 5 to 80 parts by mass, preferably 10 to 60 parts by mass, and more preferably 15 to 40 parts by mass. If the amount of the component (B) is less than 5 parts by mass, moisture (condensation) curing does not proceed sufficiently, and it may be difficult to sufficiently moisture (condensate) cure the surface of the cured product subjected to oxygen inhibition. If it exceeds, it may be difficult to cure for a short time due to thermal radical curability.
[(C)成分]
 (C)成分は、1分子中に加水分解性基を3個以上有する(オルガノ)シラン化合物及び/又はその部分加水分解縮合物であり、上記(B)成分と湿気により加水分解・縮合反応して架橋(硬化)する架橋剤(硬化剤)として作用するものである。1分子中に加水分解性基を3個以上有する(オルガノ)シラン化合物として、好ましくは、下記一般式(2)で示される1分子中に3個以上の加水分解性基を有する加水分解性(オルガノ)シラン化合物や、1分子中に3個以上(特には4~6個)の加水分解性基を有するビスシラン型化合物又はトリシラン型化合物である。
 なお、本発明において、部分加水分解縮合物とは、該加水分解性(オルガノ)シラン化合物を部分的に加水分解・縮合して生成する、1分子中に少なくとも2個、好ましくは3個以上、特には3~6個の残存加水分解性基を有する(オルガノ)シロキサンオリゴマーを意味する。
[(C) component]
The component (C) is a (organo) silane compound having three or more hydrolyzable groups in one molecule and / or a partially hydrolyzed condensate thereof, and hydrolyzes and condenses with the above component (B) by moisture. It acts as a cross-linking agent (hardener) that cross-links (hardens). The (organo) silane compound having three or more hydrolyzable groups in one molecule is preferably hydrolyzable (preferably hydrolyzable (organo) having three or more hydrolyzable groups in one molecule represented by the following general formula (2). Organo) A silane compound, or a bissilane type compound or a trisilane type compound having 3 or more (particularly 4 to 6) hydrolyzable groups in one molecule.
In the present invention, the partially hydrolyzed condensate is produced by partially hydrolyzing and condensing the hydrolyzable (organo) silane compound, and at least two, preferably three or more, in one molecule. In particular, it means a (organo) siloxane oligomer having 3 to 6 residual hydrolyzable groups.
  (R53-mSiYm  (2)
(式中、R5は炭素数1~10の非置換又は置換の一価炭化水素基であり、Yは独立に加水分解性基であり、mは3又は4である。)
(R 5 ) 3-m SiY m (2)
(In the formula, R 5 is an unsubstituted or substituted monovalent hydrocarbon group having 1 to 10 carbon atoms, Y is an independently hydrolyzable group, and m is 3 or 4).
 上記式(2)中、R5は炭素数1~10の非置換又は置換の一価炭化水素基であり、例えば、メチル基、エチル基、プロピル基、ブチル基、ヘキシル基、ヘプチル基、デシル基等のアルキル基;ビニル基、アリル基、ブテニル基、ペンテニル基、ヘキセニル基、ヘプテニル基等のアルケニル基;フェニル基、トリル基、キシリル基、ナフチル基等のアリール基;ベンジル基、フェネチル基等のアラルキル基;クロロメチル基、ブロモエチル基、3-クロロプロピル基、3,3,3-トリフルオロプロピル基、クロロフェニル基等のハロゲン置換アルキル基、ハロゲン置換アリール基などが挙げられる。これらの中でもアルキル基が好ましく、特にブチル基、ヘキシル基、ヘプチル基、デシル基が好ましい。 In the above formula (2), R 5 is an unsubstituted or substituted monovalent hydrocarbon group having 1 to 10 carbon atoms, for example, a methyl group, an ethyl group, a propyl group, a butyl group, a hexyl group, a heptyl group and a decyl. Alkyl groups such as groups; alkenyl groups such as vinyl groups, allyl groups, butenyl groups, pentenyl groups, hexenyl groups and heptenyl groups; aryl groups such as phenyl groups, trill groups, xsilyl groups and naphthyl groups; benzyl groups, phenethyl groups and the like Aralkyl group; chloromethyl group, bromoethyl group, 3-chloropropyl group, 3,3,3-trifluoropropyl group, halogen-substituted alkyl group such as chlorophenyl group, halogen-substituted aryl group and the like can be mentioned. Among these, an alkyl group is preferable, and a butyl group, a hexyl group, a heptyl group, and a decyl group are particularly preferable.
 上記式(2)中、Yの加水分解性基としては、それぞれ独立に、例えば、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、ブトキシ基等の炭素数1~4、特には炭素数1又は2のアルコキシ基;メトキシメトキシ基、メトキシエトキシ基等の炭素数2~4のアルコキシ置換アルコキシ基;ジメチルケトオキシム基、ジエチルケトオキシム基、エチルメチルケトオキシム基等の炭素数3~5のケトオキシム基;ビニルオキシ基、アリルオキシ基、プロペノキシ基、イソプロペノキシ基等の炭素数2~4のアルケニルオキシ基;アセトキシ基、プロペオノキシ基等の炭素数2~4のアシロキシ基;ジメチルアミノキシ基等の炭素数2~4のジアルキルアミノキシ基等が挙げられ、アルコキシ基、アルケニルオキシ基が好ましく、アルコキシ基が特に好ましい。
 上記式(2)中、mは3又は4である。
In the above formula (2), the hydrolyzable groups of Y are independently, for example, methoxy group, ethoxy group, propoxy group, isopropoxy group, butoxy group and the like having 1 to 4 carbon atoms, particularly 1 carbon atom. Or 2 alkoxy groups; alkoxy-substituted alkoxy groups having 2 to 4 carbon atoms such as methoxymethoxy group and methoxyethoxy group; ketooximes having 3 to 5 carbon atoms such as dimethylketooxime group, diethylketooxime group and ethylmethylketooxime group. Group; Alkoxyoxy group having 2 to 4 carbon atoms such as vinyloxy group, allyloxy group, propenoxy group, isopropenoxy group; acyloxy group having 2 to 4 carbon atoms such as acetoxy group and propeonoxy group; carbon number of carbon number 2 such as dimethylaminoxy group Examples thereof include the dialkylaminoxic group of 4 to 4, preferably an alkoxy group and an alkenyloxy group, and particularly preferably an alkoxy group.
In the above formula (2), m is 3 or 4.
 また、(C)成分の加水分解性(オルガノ)シラン化合物としては、トリアルコキシシリル基、ジアルコキシ(オルガノ)シリル基等の2個又は3個のアルコキシ基等の加水分解性基を有するシリル基を分子鎖末端に2個(両末端に1個ずつ)有する、好ましくは炭素数2~6個のアルカン型化合物(即ち、分子鎖末端にシリル基を2個有する、いわゆるビスシラン型化合物)や、エチレン基等のアルキレン基又はエテニレン基(ビニレン基)等のアルケニレン基を介してトリアルコキシシリル基又はジアルコキシ(オルガノ)シリル基等の加水分解性シリル基を分子鎖末端に2個(両末端に1個ずつ)有するジオルガノシリレン化合物(即ち、1分子中にシリル基又はシリレン基を3個有する、いわゆるトリシラン型化合物)を用いることができる。 The hydrolyzable (organo) silane compound of the component (C) is a silyl group having a hydrolyzable group such as two or three alkoxy groups such as a trialkoxysilyl group and a dialkoxy (organo) silyl group. Alkoxy-type compounds having 2 to 6 carbon atoms (that is, so-called bissilane-type compounds having 2 silyl groups at the end of the molecular chain), preferably having 2 to the end of the molecular chain (one at each end). Two hydrolyzable silyl groups such as a trialkoxysilyl group or a dialkoxy (organo) silyl group (at both ends) via an alkylene group such as an ethylene group or an alkenylene group such as an ethenylene group (vinylene group). A diorganosilylene compound having (one by one) (that is, a so-called trisilane type compound having three silyl groups or silylene groups in one molecule) can be used.
 ここで、これらビスシラン型化合物、トリシラン型化合物において、加水分解性基としては、上述した式(2)のYで例示したものと同様のものが例示でき、加水分解性基以外のケイ素原子に結合する基としては、上述した式(2)のR5で例示したものと同様のものが例示できる。 Here, in these bissilane type compounds and trisilane type compounds, as the hydrolyzable group, the same as those exemplified by Y in the above formula (2) can be exemplified, and the hydrolyzable group is bonded to a silicon atom other than the hydrolyzable group. As the group to be used, the same group as that exemplified by R 5 of the above-mentioned formula (2) can be exemplified.
 (C)成分の具体例としては、メチルトリメトキシシラン、メチルトリエトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、n-プロピルトリメトキシシラン、n-プロピルトリエトキシシラン、n-ブチルトリメトキシシラン、n-ブチルトリエトキシシラン、イソブチルトリメトキシシラン、n-ヘキシルトリメトキシシラン、n-デシルトリメトキシシラン等のオルガノトリアルコキシシラン;テトラメトキシシラン、テトラエトキシシラン、メチルシリケート、エチルシリケート、オルソ珪酸メチル、オルソ珪酸エチル等のテトラアルコキシシラン及びその部分加水分解縮合物;1,2-ビス(ジメトキシ(メチル)シリル)エタン、1,2-ビス(ジエトキシ(メチル)シリル)エタン、1,6-ビス(ジメトキシ(メチル)シリル)ヘキサン、1,6-ビス(ジエトキシ(メチル)シリル)ヘキサン等のテトラアルコキシジシラン化合物;1,2-ビス(トリメトキシシリル)エタン、1,2-ビス(トリエトキシシリル)エタン、1,6-ビス(トリメトキシシリル)ヘキサン、1,6-ビス(トリエトキシシリル)ヘキサン等のヘキサアルコキシジシラン化合物;ビス[2-(ジメトキシ(メチル)シリル)エチル]ジメチルシラン、ビス[2-(ジエトキシ(メチル)シリル)エチル]ジメチルシラン、ビス[2-(ジメトキシ(メチル)シリル)エテニル]ジメチルシラン、ビス[2-(ジエトキシ(メチル)シリル)エテニル]ジメチルシラン等のテトラアルコキシトリシラン化合物、ビス[2-(トリメトキシシリル)エチル]ジメチルシラン、ビス[2-(トリエトキシシリル)エチル]ジメチルシラン、ビス[2-(トリメトキシシリル)エテニル]ジメチルシラン、ビス[2-(トリエトキシシリル)エテニル]ジメチルシラン等のヘキサアルコキシトリシラン化合物;メチルトリイソプロペノキシシラン、エチルトリイソプロペノキシシラン、ビニルトリイソプロペノキシシラン、フェニルトリイソプロペノキシシラン等の(オルガノ)イソプロペノキシシラン;メチルトリス(ジメチルケトオキシム)シラン、エチルトリス(ジメチルケトオキシム)シラン、メチルトリス(メチルエチルケトオキシム)シラン、エチルトリス(メチルエチルケトオキシム)シラン、メチルトリス(メチルイソブチルケトオキシム)シラン、エチルトリス(メチルイソブチルケトオキシム)シラン、ビニルトリス(メチルエチルケトオキシム)シラン、フェニルトリス(メチルエチルケトオキシム)シラン等の(オルガノ)ケトオキシムシラン;メチルトリアセトキシシラン、エチルトリアセトキシシラン、ビニルトリアセトキシシラン等の(オルガノ)アセトキシシランなどが挙げられる。
 (C)成分は、1種を単独で使用しても2種以上を併用してもよい。
Specific examples of the component (C) include methyltrimethoxysilane, methyltriethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, phenyltrimethoxysilane, phenyltriethoxysilane, ethyltrimethoxysilane, and ethyltriethoxysilane. Organotri such as n-propyltrimethoxysilane, n-propyltriethoxysilane, n-butyltrimethoxysilane, n-butyltriethoxysilane, isobutyltrimethoxysilane, n-hexyltrimethoxysilane, n-decyltrimethoxysilane Alkoxysilanes; tetraalkoxysilanes such as tetramethoxysilanes, tetraethoxysilanes, methylsilicates, ethylsilicates, methyl orthosilicates, ethyl orthosilicates and their partial hydrolysis condensates; 1,2-bis (dimethoxy (methyl) silyl) ethane. , 1,2-bis (diethoxy (methyl) silyl) ethane, 1,6-bis (dimethoxy (methyl) silyl) hexane, 1,6-bis (diethoxy (methyl) silyl) hexane and other tetraalkoxydisilane compounds; 1 Hexaalkenyl such as 2-bis (trimethoxysilyl) ethane, 1,2-bis (triethoxysilyl) ethane, 1,6-bis (trimethoxysilyl) hexane, 1,6-bis (triethoxysilyl) hexane. Disilane compounds; bis [2- (dimethoxy (methyl) silyl) ethyl] dimethylsilane, bis [2- (diethoxy (methyl) silyl) ethyl] dimethylsilane, bis [2- (dimethoxy (methyl) silyl) ethenyl] dimethylsilane , Tetraalkoxytrisilane compounds such as bis [2- (diethoxy (methyl) silyl) ethenyl] dimethylsilane, bis [2- (trimethoxysilyl) ethyl] dimethylsilane, bis [2- (triethoxysilyl) ethyl] dimethyl Hexaalkoxytrisilane compounds such as silane, bis [2- (trimethoxysilyl) ethenyl] dimethylsilane, bis [2- (triethoxysilyl) ethenyl] dimethylsilane; methyltriisopropenoxysilane, ethyltriisopropenoxysilane , Vinyl triisopropenoxysilane, (organo) isopropenoxysilane such as phenyltriisopropenoxysilane; methyltris (dimethylketooxym) silane, ethyltris (dimethylketooxym) silane, methyltris (methylethylketooxime) silane, ethyltris (methylethylke) (Organo) ketooxime silanes such as tooxime) silane, methyltris (methylisobutylketooxime) silane, ethyltris (methylisobutylketooxime) silane, vinyltris (methylethylketooxime) silane, phenyltris (methylethylketooxime) silane; methyltriacetoxysilane, Examples thereof include (organo) acetoxysilanes such as ethyltriacetoxysilanes and vinyltriacetoxysilanes.
As the component (C), one type may be used alone or two or more types may be used in combination.
 (C)成分の配合量は、(B)成分の含有量に対して0.1~30質量%となる量、好ましくは1~30質量%となる量、特に好ましくは1~25質量%となる量である。0.1質量%となる量未満では、貯蔵安定性に欠けたり、また湿気による十分な架橋性が得られず、目的とするゴム弾性を有する硬化物が得難い。また30質量%となる量を超えると、得られる硬化物は機械特性が低下し易く、また該オルガノポリシロキサン組成物からの分離が発生するなどの欠点がある。 The blending amount of the component (C) is 0.1 to 30% by mass, preferably 1 to 30% by mass, particularly preferably 1 to 25% by mass with respect to the content of the component (B). Is the amount. If the amount is less than 0.1% by mass, storage stability is lacking, sufficient cross-linking property due to moisture cannot be obtained, and it is difficult to obtain a cured product having the desired rubber elasticity. Further, if the amount exceeds 30% by mass, the obtained cured product tends to deteriorate in mechanical properties, and has drawbacks such as separation from the organopolysiloxane composition.
 なお、(C)成分の加水分解性(オルガノ)シラン化合物は、加水分解性基Y以外には、分子中に、窒素、酸素、硫黄から選ばれる少なくとも1種のヘテロ原子を含有する官能性基で置換された一価炭化水素基を有さないものである点において、通常、室温硬化性オルガノポリシロキサン組成物に接着性向上剤として配合されるシランカップリング剤(即ち、炭素官能性基含有加水分解性オルガノシラン化合物又はカーボンファンクショナルシラン)とは明確に区別されるものである。 The hydrolyzable (organo) silane compound of the component (C) is a functional group containing at least one heteroatom selected from nitrogen, oxygen, and sulfur in the molecule, in addition to the hydrolyzable group Y. A silane coupling agent (ie, containing a carbon functional group) which is usually blended as an adhesion improver in a room temperature curable organopolysiloxane composition in that it does not have a monovalent hydrocarbon group substituted with. It is clearly distinguished from a hydrolyzable organosilane compound or a carbon functional silane).
[(D)成分]
 (D)成分は、熱によってラジカルを発生させるラジカル開始剤であり、上記(A)成分を熱ラジカル硬化させるための重要な成分である。(D)成分としては特に限定されるものではないが、通常、有機過酸化物が好ましく、例えば、ジクミルペルオキシド、1,1-ビス(t-ブチルペルオキシ)-3,3,5-トリメチルシクロヘキサン、ジ-t-ブチルペルオキシド、2,5-ジ(t-ブチルペルオキシ)-2,5-ジメチルヘキサン、1,1-ビス(t-アミルペルオキシ)シクロヘキサン、2,2-ビス(t-ブチルペルオキシ)ブタン、2,4-ペンタンジオンペルオキシド、2,5-ビス(t-ブチルペルオキシ)-2,5-ジメチルヘキサン、2,5-ジ(t-ブチルペルオキシ)-2,5-ジメチル-3-ヘキシン、2-ブタノンペルオキシド、ベンゾイルペルオキシド、クメンヒドロペルオキシド、ラウロイルペルオキシド、t-ブチルヒドロペルオキシド、t-ブチルペルオキシベンゾエート、t-ブチルペルオキシ-2-エチルヘキシルカーボネート、ジ(2,4-ジクロロベンゾイル)ペルオキシド、ジクロロベンゾイルペルオキシド、ジ(t-ブチルペルオキシイソプロピル)ベンゼン、ジ(4-メチルベンゾイル)ペルオキシド、ジ(2-メチルベンゾイル)ペルオキシド、ブチル-4,4-ジ(t-ブチルペルオキシ)バラレート、3,3,5,7,7-ペンタメチル-1,2,4-トリオキセパン、t-ブチルクミルペルオキシド、ジ(4-t-ブチルシクロヘキシル)ペルオキシジカーボネート、ジセチルペルオキシジカーボネート、2,3-ジメチル-2,3-ジフェニルブタン、ジオクタノイルペルオキシド、t-ブチルペルオキシ-2-エチルヘキシルカーボネート、t-アミルペルオキシ-2-エチルヘキサノエート、1,6-ヘキサンジオール-ビス-t-ブチルペルオキシカーボネート等の有機過酸化物、及びこれらの組み合わせが挙げられる。
[(D) component]
The component (D) is a radical initiator that generates radicals by heat, and is an important component for thermally radically curing the component (A). The component (D) is not particularly limited, but an organic peroxide is usually preferable, for example, dicumyl peroxide, 1,1-bis (t-butylperoxy) -3,3,5-trimethylcyclohexane. , Di-t-butyl peroxide, 2,5-di (t-butylperoxy) -2,5-dimethylhexane, 1,1-bis (t-amylperoxy) cyclohexane, 2,2-bis (t-butylperoxy) ) Butane, 2,4-pentanedione peroxide, 2,5-bis (t-butylperoxy) -2,5-dimethylhexane, 2,5-di (t-butylperoxy) -2,5-dimethyl-3- Hexin, 2-butanone peroxide, benzoyl peroxide, cumene hydroperoxide, lauroyl peroxide, t-butyl hydroperoxide, t-butyl peroxybenzoate, t-butyl peroxy-2-ethylhexyl carbonate, di (2,4-dichlorobenzoyl) peroxide, Dichlorobenzoyl peroxide, di (t-butylperoxyisopropyl) benzene, di (4-methylbenzoyl) peroxide, di (2-methylbenzoyl) peroxide, butyl-4,4-di (t-butylperoxy) peroxide, 3,3 , 5,7,7-Pentamethyl-1,2,4-trioxepan, t-butylcumyl peroxide, di (4-t-butylcyclohexyl) peroxydicarbonate, disetylperoxydicarbonate, 2,3-dimethyl-2 , 3-Diphenylbutane, dioctanoyl peroxide, t-butylperoxy-2-ethylhexyl carbonate, t-amylperoxy-2-ethylhexanoate, 1,6-hexanediol-bis-t-butylperoxycarbonate, etc. Peroxides and combinations thereof can be mentioned.
 (D)成分の配合量は、(A)成分100質量部に対して0.1~20質量部、好ましくは0.5~20質量部、特に好ましくは1~15質量部の範囲である。0.1質量部未満では、熱ラジカルによる硬化性が発現せず、目的とするゴム弾性を有する硬化物が得難い。また20質量部を超えると、目的とするゴム弾性は得られるものの、コストが高くなる等のデメリットがある。 The blending amount of the component (D) is in the range of 0.1 to 20 parts by mass, preferably 0.5 to 20 parts by mass, and particularly preferably 1 to 15 parts by mass with respect to 100 parts by mass of the component (A). If it is less than 0.1 part by mass, curability by thermal radicals is not exhibited, and it is difficult to obtain a cured product having the desired rubber elasticity. Further, if it exceeds 20 parts by mass, the desired rubber elasticity can be obtained, but there are disadvantages such as high cost.
[(E)成分]
 (E)成分の水分硬化開始剤は、湿気により硬化を促進させる縮合反応触媒として使用されるもので、ルイス酸、一級、二級、又は三級の有機アミン化合物、金属酸化物、有機チタン化合物、有機錫化合物、有機ジルコニウム化合物、又は鉄、アンチモン、ビスマス、マンガン等の金属の有機カルボン酸塩等が挙げられる。(E)成分は、1種を単独で使用しても2種以上の混合物として使用してもよい。
[(E) component]
The water-curing initiator of the component (E) is used as a condensation reaction catalyst that accelerates curing by moisture, and is a Lewis acid, a primary, secondary, or tertiary organic amine compound, a metal oxide, or an organic titanium compound. , Organic tin compounds, organic zirconium compounds, or organic carboxylates of metals such as iron, antimony, bismuth, and manganese. The component (E) may be used alone or as a mixture of two or more.
 水分硬化開始剤として、具体的には、ジブチル錫ジラウレート、ジブチル錫ジオクトエート、ジオクチル錫ジラウレート、ジブチル錫マレートエステル、ジメチル錫ジネオデカノエート、ジブチル錫ジメトキサイド、ジオクチル錫ジネオデカノエート、スタナスオクトエート、テトラブチルチタネート、テトラ-(2-エチルヘキシル)チタネート、ジイソプロポキシビス(アセチルアセトネート)チタン、ジイソプロポキシビス(エチルアセトアセテート)チタン、テトラメチルグアニジルプロピルトリメトキシシラン及びその塩などが例示される。本発明組成物の縮合硬化による硬化特性が優れることから、有機錫化合物あるいは有機チタン化合物を添加することが好ましく、中でも有機チタン化合物、特にはテトラ-(2-エチルヘキシル)チタネート、ジイソプロポキシビス(アセチルアセトネート)チタン、ジイソプロポキシビス(エチルアセトアセテート)チタンであることが好ましい。 Specific examples of the water-curing initiator include dibutyltin dilaurate, dibutyltin dioctate, dioctyltin dilaurate, dibutyltin malate ester, dimethyltindineodecanoate, dibutyltin dimethoxide, dioctyltin dineodecanoate, and star. Nasoctate, tetrabutyl titanate, tetra- (2-ethylhexyl) titanate, diisopropoxybis (acetylacetonate) titanium, diisopropoxybis (ethylacetoacetate) titanium, tetramethylguanidylpropyltrimethoxysilane and its like Examples include salt. Since the composition of the present invention has excellent curing properties by condensation curing, it is preferable to add an organic tin compound or an organic titanium compound, among which organic titanium compounds, particularly tetra- (2-ethylhexyl) titanate and diisopropoxybis ( Acetylacetate) titanium and diisopropoxybis (ethylacetacetate) titanium are preferable.
 (E)成分の添加量は、(B)成分の含有量に対して、0.01~10質量%となる量、好ましくは0.05~10質量%となる量、特に好ましくは0.1~5質量%となる量である。0.01質量%となる量未満では、縮合硬化による十分な架橋性が得られない。10質量%となる量を超えると、価格的に不利になる場合や硬化速度が低下するなどの欠点がある。 The amount of the component (E) added is 0.01 to 10% by mass, preferably 0.05 to 10% by mass, particularly preferably 0.1 with respect to the content of the component (B). It is an amount of up to 5% by mass. If the amount is less than 0.01% by mass, sufficient crosslinkability due to condensation hardening cannot be obtained. If the amount exceeds 10% by mass, there are drawbacks such as a disadvantage in terms of price and a decrease in the curing rate.
[(F)成分]
 (F)成分の無機充填剤は、本発明組成物の強度やチキソトロピー性、難燃性や放熱性等の向上を目的として添加される成分であり、具体的には、粉砕シリカ、煙霧質シリカ(ヒュームドシリカ又は乾式シリカ)、沈降性シリカ(湿式シリカ)、結晶性シリカ、球状シリカ(溶融シリカ)、水酸化アルミニウム、アルミナ、ベーマイト、水酸化マグネシウム、酸化マグネシウム、水酸化カルシウム、炭酸カルシウム、炭酸亜鉛、塩基性炭酸亜鉛、酸化亜鉛、酸化チタン、カーボンブラック、ガラスビーズ、ガラスバルーン、樹脂ビーズ、樹脂バルーンなどが挙げられ、単独で使用してもよく、また2種類以上を組み合わせてもよい。これらの無機充填剤は、表面処理されていなくても、公知の処理剤で表面処理されていてもよい。公知の処理剤としては、例えば、特開2000-256558号公報記載の加水分解性基含有ポリシロキサンが好ましいが、これに限定されるものではない。
[(F) component]
The inorganic filler of the component (F) is a component added for the purpose of improving the strength, thixotropic property, flame retardancy, heat dissipation, etc. of the composition of the present invention, and specifically, pulverized silica and fumigant silica. (Fumed silica or dry silica), precipitate silica (wet silica), crystalline silica, spherical silica (molten silica), aluminum hydroxide, alumina, boehmite, magnesium hydroxide, magnesium oxide, calcium hydroxide, calcium carbonate, Examples thereof include zinc carbonate, basic zinc carbonate, zinc oxide, titanium oxide, carbon black, glass beads, glass balloons, resin beads, resin balloons, etc., which may be used alone or in combination of two or more. .. These inorganic fillers may not be surface-treated or may be surface-treated with a known treatment agent. As the known treatment agent, for example, the hydrolyzable group-containing polysiloxane described in JP-A-2000-256558 is preferable, but the treatment agent is not limited thereto.
 (F)成分の配合量は、(A)成分と(B)成分との合計量に対して1~500質量%となる量、好ましくは1~400質量%となる量、特に好ましくは1~200質量%となる量である。1質量%となる量未満では、機械的特性が乏しくなる。500質量%となる量を超えると、ゴム弾性を有する硬化物を与えるオルガノポリシロキサン組成物が得難い。 The blending amount of the component (F) is 1 to 500% by mass, preferably 1 to 400% by mass, particularly preferably 1 to 1 to 500% by mass with respect to the total amount of the component (A) and the component (B). It is an amount of 200% by mass. If the amount is less than 1% by mass, the mechanical properties are poor. If the amount exceeds 500% by mass, it is difficult to obtain an organopolysiloxane composition that gives a cured product having rubber elasticity.
[その他の成分]
 本発明の熱ラジカル硬化可能なオルガノポリシロキサン組成物には、各種基材に対する硬化物の接着性をより向上させる目的で、上記の(A)~(F)成分以外に、必要に応じて(G)成分(任意成分)として、マロン酸ジアリル、琥珀酸ジアリル、マレイン酸ジアリル、フマル酸ジアリル、フタル酸ジアリル、トリメリット酸トリアリル、ピロメリット酸テトラアリル等の脂肪族多価カルボン酸アリルエステル又は芳香族多価カルボン酸アリルエステルなどの、1分子中にアリル基を2個以上(好ましくは2~4個)有する有機化合物を(A)成分100質量部に対して0~20質量部、好ましくは1~10質量部程度配合することができる。
[Other ingredients]
In addition to the above components (A) to (F), the thermally radically curable organopolysiloxane composition of the present invention has, if necessary (in addition to the above components (A) to (F)), for the purpose of further improving the adhesiveness of the cured product to various substrates. G) As a component (arbitrary component), an aliphatic polyvalent carboxylic acid allyl ester such as diallyl malonate, diallyl awate, diallyl maleate, diallyl fumarate, diallyl phthalate, triallyl trimellitate, tetraallyl pyromellitic acid or fragrance. An organic compound having two or more (preferably 2 to 4) allyl groups in one molecule, such as a group polyvalent carboxylic acid allyl ester, is contained in an amount of 0 to 20 parts by mass, preferably 0 to 20 parts by mass with respect to 100 parts by mass of the component (A). About 1 to 10 parts by mass can be blended.
 また本発明の熱ラジカル硬化可能なオルガノポリシロキサン組成物には、上記成分以外に、オルガノポリシロキサン組成物の添加剤として公知の添加剤を本発明の目的を損なわない範囲で添加してもよい。例えば、チキソトロピー向上剤としてのポリエーテル、可塑剤としての非反応性ジメチルシリコーンオイル、イソパラフィン、架橋密度向上剤としてのトリメチルシロキシ単位とSiO2単位とからなる三次元網状メチルポリシロキサン樹脂等が挙げられる。 Further, in addition to the above components, an additive known as an additive for the organopolysiloxane composition may be added to the thermally radically curable organopolysiloxane composition of the present invention as long as the object of the present invention is not impaired. .. Examples thereof include polyether as a thixotropy improver, non-reactive dimethylsilicone oil as a plasticizer, isoparaffin, and a three-dimensional network methylpolysiloxane resin composed of trimethylsiloxy units and SiO 2 units as a crosslink density improver. ..
 更に本発明の熱ラジカル硬化可能なオルガノポリシロキサン組成物には、必要に応じて、顔料、染料、蛍光増白剤等の着色剤、防かび剤、抗菌剤、ブリードオイルとしての非反応性フェニルシリコーンオイル、フルオロシリコーンオイル、シリコーンと非相溶の有機液体等の表面改質剤、トルエン、キシレン、溶剤揮発油、シクロヘキサン、メチルシクロヘキサン、低沸点イソパラフィン等の溶剤も添加してよい。 Further, the thermally radically curable organopolysiloxane composition of the present invention may contain, if necessary, a colorant such as a pigment, a dye, a fluorescent whitening agent, a fungicide, an antibacterial agent, and a non-reactive phenyl as a bleed oil. Surface modifiers such as silicone oil, fluorosilicone oil, and organic liquids incompatible with silicone, and solvents such as toluene, xylene, solvent volatile oil, cyclohexane, methylcyclohexane, and low boiling point isoparaffin may also be added.
 本発明の熱ラジカル硬化可能なオルガノポリシロキサン組成物は、(A)1分子中にケイ素原子に結合したアルケニル基を少なくとも2個有するオルガノポリシロキサン、(B)分子鎖両末端にそれぞれ2個又は3個のケイ素原子に結合したオルガノオキシ基を有する加水分解性シリル基で封鎖された直鎖状のオルガノポリシロキサン、(C)1分子中に加水分解性基を3個以上有する(オルガノ)シラン化合物及び/又はその部分加水分解縮合物、(D)ラジカル開始剤、(E)水分硬化開始剤、(F)無機充填剤を任意の混合順序で均一に混合して形成される。 The thermally radical curable organopolysiloxane composition of the present invention is (A) an organopolysiloxane having at least two alkenyl groups bonded to a silicon atom in one molecule, and (B) two or two at both ends of the molecular chain. A linear organopolysiloxane sealed with a hydrolyzable silyl group having an organooxy group bonded to three silicon atoms, (C) a (organo) silane having three or more hydrolyzable groups in one molecule. It is formed by uniformly mixing a compound and / or a partially hydrolyzed condensate thereof, (D) a radical initiator, (E) a water curing initiator, and (F) an inorganic filler in any mixing order.
 本発明の熱ラジカル硬化可能なオルガノポリシロキサン組成物は、熱により発生するラジカルにより架橋反応が進行するが、酸素により被毒された硬化物表面は縮合反応により徐々に硬化することが特徴である。
 本発明の熱ラジカル硬化可能なオルガノポリシロキサン組成物の硬化方法としては、80~150℃、特に100~130℃で5~60分間、特に10~30分間熱ラジカル硬化させた後、更に、好ましくは大気中、より好ましくは湿気を含む環境下で、室温(23℃±15℃)で12~36時間、特に18~24時間で縮合硬化させることが好ましい。
The thermally radically curable organopolysiloxane composition of the present invention is characterized in that the cross-linking reaction proceeds by radicals generated by heat, but the surface of the cured product poisoned by oxygen is gradually cured by the condensation reaction. ..
The method for curing the thermally radically curable organopolysiloxane composition of the present invention is more preferably after thermal radical curing at 80 to 150 ° C., particularly 100 to 130 ° C. for 5 to 60 minutes, particularly 10 to 30 minutes. Is preferably subjected to condensation curing at room temperature (23 ° C. ± 15 ° C.) for 12 to 36 hours, particularly 18 to 24 hours, in the air, more preferably in a humid environment.
 本発明の熱ラジカル硬化可能なオルガノポリシロキサン組成物は、第1次硬化として、80~150℃で5~60分間熱硬化させて得られる硬化物の硬さ(H1)と、第2次硬化として、該硬化物を更に、温度23℃、湿度50%RHの環境下で1日間湿気硬化させた後の該硬化物の硬さ(H2)について、H1に対するH2の比(H2/H1)が1.00~1.20、好ましくは1.05~1.20である硬化物を与えるものである。ここで、硬化物の硬さH1及びH2は、JIS K 6249に従いタイプAデュロメータ硬度計により測定した値(デュロメータタイプA硬さ)である。H1に対するH2の比(H2/H1)が1.00未満であると湿気硬化が進行していないことを意味し、酸素により被毒された硬化物表面が硬化しない。1.20より大きいと熱ラジカル硬化があまり進行しておらず目的とする硬化特性が得られない場合がある。
 なお、H1に対するH2の比(H2/H1)を上記範囲とするためには、(A)成分と(B)成分を上記で特定した配合比率で混合することにより達成できる。また、1日間湿気硬化させるとは、湿度50%RHの環境下24時間静置して硬化させることである。
The thermoradical curable organopolysiloxane composition of the present invention has the hardness (H 1 ) of the cured product obtained by thermally curing at 80 to 150 ° C. for 5 to 60 minutes as the primary curing, and the secondary curing. As curing, the ratio of H 2 to H 1 (H) with respect to the hardness (H 2 ) of the cured product after the cured product was further moisture-cured for 1 day in an environment of a temperature of 23 ° C. and a humidity of 50% RH. 2 / H 1 ) gives a cured product of 1.00 to 1.20, preferably 1.05 to 1.20. Here, the hardnesses H 1 and H 2 of the cured product are values measured by a type A durometer hardness tester according to JIS K 6249 (durometer type A hardness). When the ratio of H 2 to H 1 (H 2 / H 1 ) is less than 1.00, it means that the moisture curing has not progressed, and the surface of the cured product poisoned by oxygen does not cure. If it is larger than 1.20, thermal radical curing does not proceed so much and the desired curing characteristics may not be obtained.
In addition, in order to make the ratio of H 2 to H 1 (H 2 / H 1 ) in the above range, it can be achieved by mixing the component (A) and the component (B) in the blending ratio specified above. Moisture curing for one day means curing by allowing it to stand for 24 hours in an environment with a humidity of 50% RH.
 本発明の熱ラジカル硬化可能なオルガノポリシロキサン組成物は、接着剤、コーティング剤、ポッティング剤として有用であり、例えば、自動車、エレクトロニクスに使用される液状パッキン、各種基板用のコーティング、ポッティング、シーラントなど様々な用途で使用可能である。また、アルミニウム、銅、ステンレスなどの金属、Fr-4、PBT、PPS、ベークライト等の高分子樹脂などの被着体に接着することができる。本発明の熱ラジカル硬化可能なオルガノポリシロキサン組成物を接着剤、コーティング剤、ポッティング剤として使用する方法は、従来公知の方法に従えばよい。 The thermally radically curable organopolysiloxane composition of the present invention is useful as an adhesive, a coating agent, a potting agent, for example, liquid packing used in automobiles and electronics, coatings for various substrates, potting, sealants and the like. It can be used for various purposes. Further, it can be adhered to an adherend such as a metal such as aluminum, copper and stainless steel, and a polymer resin such as Fr-4, PBT, PPS and Bakelite. The method of using the thermally radically curable organopolysiloxane composition of the present invention as an adhesive, a coating agent, and a potting agent may follow a conventionally known method.
 以下、本発明を具体的に説明する実施例及び比較例を示すが、本発明は下記の実施例に制限されるものではない。なお、粘度はB型回転粘度計による測定値であり、比表面積はBET吸着法による測定値であり、室温は23℃を意味する。 Hereinafter, examples and comparative examples that specifically explain the present invention will be shown, but the present invention is not limited to the following examples. The viscosity is a value measured by a B-type rotational viscometer, the specific surface area is a value measured by the BET adsorption method, and the room temperature means 23 ° C.
シリコーンベースAの調製
 (A)成分として分子鎖両末端がビニルジメチルシリル基で封鎖され、25℃における粘度が30,000mPa・sのジメチルポリシロキサン90質量部、表面処理剤としてヘキサメチルジシラザン8質量部、水2質量部、及び(F)成分として比表面積300m2/gの煙霧質シリカ40質量部を室温で30分混合し、その後160℃で2時間混合した。該混合物を更に80℃以下になるまで冷却した後、三本ロールに1回通し、シリコーンベースAとした。
Preparation of Silicone Base A As a component (A), both ends of the molecular chain are sealed with a vinyldimethylsilyl group, 90 parts by mass of dimethylpolysiloxane having a viscosity at 25 ° C. of 30,000 mPa · s, and hexamethyldisilazane 8 as a surface treatment agent. 40 parts by mass, 2 parts by mass of water, and 40 parts by mass of fumigant silica having a specific surface area of 300 m 2 / g as a component (F) were mixed at room temperature for 30 minutes, and then mixed at 160 ° C. for 2 hours. The mixture was further cooled to 80 ° C. or lower, and then passed through three rolls once to obtain a silicone base A.
(D)成分 ラジカル開始剤Aの調製
 可塑剤として分子鎖両末端がトリメチルシリル基で封鎖され、25℃における粘度が1,000mPa・sのジメチルポリシロキサン50質量部、(D)成分としてベンゾイルペルオキシド40質量部、及び(F)成分として比表面積200m2/gの煙霧質シリカ10質量部を室温で30分混合して、ラジカル開始剤Aとした。
(D) Preparation of Radical Initiator A 50 parts by mass of dimethylpolysiloxane having both ends of the molecular chain sealed with a trimethylsilyl group as a plastic initiator and having a viscosity of 1,000 mPa · s at 25 ° C., and benzoyl peroxide 40 as a component (D). 10 parts by mass and 10 parts by mass of fumigant silica having a specific surface area of 200 m 2 / g as a component (F) were mixed at room temperature for 30 minutes to obtain a radical initiator A.
(D)成分 ラジカル開始剤Bの調製
 可塑剤として分子鎖両末端がトリメチルシリル基で封鎖され、25℃における粘度が500mPa・sのジメチルポリシロキサン48質量部、(D)成分としてジ(4-メチルベンゾイル)ペルオキシド50質量部、及び(F)成分として比表面積200m2/gの煙霧質シリカ2質量部を室温で30分混合して、ラジカル開始剤Bとした。
(D) Preparation of Radical Initiator B As a plastic initiator, 48 parts by mass of dimethylpolysiloxane having both ends of the molecular chain sealed with a trimethylsilyl group and a viscosity of 500 mPa · s at 25 ° C., and di (4-methyl) as the component (D). 50 parts by mass of benzoyl) peroxide and 2 parts by mass of fumigant silica having a specific surface area of 200 m 2 / g as a component (F) were mixed at room temperature for 30 minutes to obtain a radical initiator B.
[実施例1]
 (A)成分として分子鎖両末端がビニルジメチルシリル基で封鎖され、25℃における粘度が10,000mPa・sのジメチルポリシロキサン20質量部、(A)成分と(F)成分の混合物である上記シリコーンベースA60質量部、及び(B)成分として分子鎖両末端がトリメトキシシリル基で封鎖され、上記式(1)のXがエチレン基であり、R1=R2=メチル基であり、a=0であり、25℃における粘度が45,000mPa・sのジメチルポリシロキサン20質量部を室温で20分混合した。その後、(C)成分としてn-デシルトリメトキシシラン2.5質量部、(D)成分として上記ラジカル開始剤A5質量部、(E)成分としてジイソプロポキシビス(エチルアセトアセテート)チタン0.1質量部、及び(G)成分としてマレイン酸ジアリル2質量部を常圧下にて15分混合後、減圧条件下で15分混合し、組成物1を得た。
[Example 1]
As a component (A), both ends of the molecular chain are sealed with a vinyldimethylsilyl group, and 20 parts by mass of dimethylpolysiloxane having a viscosity at 25 ° C. of 10,000 mPa · s is a mixture of the components (A) and (F). 60 parts by mass of the silicone base A and both ends of the molecular chain as a component (B) are sealed with a trimethoxysilyl group, X in the above formula (1) is an ethylene group, R 1 = R 2 = a methyl group, and a. = 0, and 20 parts by mass of dimethylpolysiloxane having a viscosity at 25 ° C. of 45,000 mPa · s was mixed at room temperature for 20 minutes. Then, 2.5 parts by mass of n-decyltrimethoxysilane as the component (C), 5 parts by mass of the radical initiator A as the component (D), and 0.1 of diisopropoxybis (ethylacetoacetate) titanium as the component (E). A mass portion and 2 parts by mass of diallyl maleate as a component (G) were mixed under normal pressure for 15 minutes and then mixed under reduced pressure conditions for 15 minutes to obtain Composition 1.
[実施例2]
 (A)成分として分子鎖両末端がビニルジメチルシリル基で封鎖され、25℃における粘度が10,000mPa・sのジメチルポリシロキサン20質量部、(A)成分と(F)成分の混合物である上記シリコーンベースA60質量部、及び(B)成分として分子鎖両末端がトリメトキシシリル基で封鎖され、上記式(1)のXがエチレン基であり、R1=R2=メチル基であり、a=0であり、25℃における粘度が45,000mPa・sのジメチルポリシロキサン20質量部を室温で20分混合した。その後、(C)成分として1,6-ビス(トリメトキシシリル)ヘキサン2.5質量部、(D)成分として上記ラジカル開始剤A5質量部、(E)成分としてジイソプロポキシビス(エチルアセトアセテート)チタン0.1質量部、及び(G)成分としてマレイン酸ジアリル2質量部を常圧下にて15分混合後、減圧条件下で15分混合し、組成物2を得た。
[Example 2]
As a component (A), both ends of the molecular chain are sealed with a vinyldimethylsilyl group, and 20 parts by mass of dimethylpolysiloxane having a viscosity at 25 ° C. of 10,000 mPa · s is a mixture of the components (A) and (F). 60 parts by mass of the silicone base A and both ends of the molecular chain as a component (B) are sealed with a trimethoxysilyl group, X in the above formula (1) is an ethylene group, R 1 = R 2 = a methyl group, and a. = 0, and 20 parts by mass of dimethylpolysiloxane having a viscosity at 25 ° C. of 45,000 mPa · s was mixed at room temperature for 20 minutes. Then, 2.5 parts by mass of 1,6-bis (trimethoxysilyl) hexane as the component (C), 5 parts by mass of the radical initiator A as the component (D), and diisopropoxybis (ethylacetoacetate) as the component (E). ) 0.1 part by mass of titanium and 2 parts by mass of diallyl maleate as a component (G) were mixed under normal pressure for 15 minutes and then mixed under reduced pressure for 15 minutes to obtain Composition 2.
[実施例3]
 (A)成分として分子鎖両末端がビニルジメチルシリル基で封鎖され、25℃における粘度が10,000mPa・sのジメチルポリシロキサン20質量部、(A)成分と(F)成分の混合物である上記シリコーンベースA60質量部、及び(B)成分として分子鎖両末端がトリメトキシシリル基で封鎖され、上記式(1)のXがエチレン基であり、R1=R2=メチル基であり、a=0であり、25℃における粘度が45,000mPa・sのジメチルポリシロキサン20質量部を室温で20分混合した。その後、(C)成分として1,6-ビス(トリメトキシシリル)ヘキサン2.5質量部、(D)成分として上記ラジカル開始剤B5質量部、(E)成分としてジイソプロポキシビス(エチルアセトアセテート)チタン0.1質量部、及び(G)成分としてマレイン酸ジアリル2質量部を常圧下にて15分混合後、減圧条件下で15分混合し、組成物3を得た。
[Example 3]
As a component (A), both ends of the molecular chain are sealed with a vinyldimethylsilyl group, and 20 parts by mass of dimethylpolysiloxane having a viscosity at 25 ° C. of 10,000 mPa · s is a mixture of the components (A) and (F). 60 parts by mass of the silicone base A and both ends of the molecular chain as a component (B) are sealed with a trimethoxysilyl group, X in the above formula (1) is an ethylene group, R 1 = R 2 = a methyl group, and a. = 0, and 20 parts by mass of dimethylpolysiloxane having a viscosity at 25 ° C. of 45,000 mPa · s was mixed at room temperature for 20 minutes. Then, 2.5 parts by mass of 1,6-bis (trimethoxysilyl) hexane as the component (C), 5 parts by mass of the radical initiator B as the component (D), and diisopropoxybis (ethylacetoacetate) as the component (E). ) 0.1 part by mass of titanium and 2 parts by mass of diallyl maleate as a component (G) were mixed under normal pressure for 15 minutes and then mixed under reduced pressure for 15 minutes to obtain Composition 3.
[実施例4]
 (A)成分として分子鎖両末端がビニルジメチルシリル基で封鎖され、25℃における粘度が10,000mPa・sのジメチルポリシロキサン20質量部、(A)成分と(F)成分の混合物である上記シリコーンベースA60質量部、及び(B)成分として分子鎖両末端がトリメトキシシリル基で封鎖され、上記式(1)のXがエチレン基であり、R1=R2=メチル基であり、a=0であり、25℃における粘度が45,000mPa・sのジメチルポリシロキサン20質量部を室温で20分混合した。その後、(C)成分として1,6-ビス(トリメトキシシリル)ヘキサン2.5質量部、(D)成分として上記ラジカル開始剤A5質量部、(E)成分としてジイソプロポキシビス(エチルアセトアセテート)チタン0.1質量部、及び(G)成分としてピロメリット酸テトラアリル1質量部を常圧下にて15分混合後、減圧条件下で15分混合し、組成物4を得た。
[Example 4]
As a component (A), both ends of the molecular chain are sealed with a vinyldimethylsilyl group, and 20 parts by mass of dimethylpolysiloxane having a viscosity at 25 ° C. of 10,000 mPa · s is a mixture of the components (A) and (F). 60 parts by mass of the silicone base A and both ends of the molecular chain as a component (B) are sealed with a trimethoxysilyl group, X in the above formula (1) is an ethylene group, R 1 = R 2 = a methyl group, and a. = 0, and 20 parts by mass of dimethylpolysiloxane having a viscosity at 25 ° C. of 45,000 mPa · s was mixed at room temperature for 20 minutes. Then, 2.5 parts by mass of 1,6-bis (trimethoxysilyl) hexane as the component (C), 5 parts by mass of the radical initiator A as the component (D), and diisopropoxybis (ethylacetoacetate) as the component (E). ) 0.1 part by mass of titanium and 1 part by mass of tetraallyl pyromellitic acid as a component (G) were mixed under normal pressure for 15 minutes and then mixed under reduced pressure for 15 minutes to obtain Composition 4.
[実施例5]
 (A)成分として分子鎖両末端がビニルジメチルシリル基で封鎖され、25℃における粘度が10,000mPa・sのジメチルポリシロキサン20質量部、(A)成分と(F)成分の混合物である上記シリコーンベースA60質量部、及び(B)成分として分子鎖両末端がトリメトキシシリル基で封鎖され、上記式(1)のXが酸素原子であり、R1=R2=メチル基であり、a=0であり、25℃における粘度が23,000mPa・sのジメチルポリシロキサン20質量部を室温で20分混合した。その後、(C)成分として1,6-ビス(トリメトキシシリル)ヘキサン2.5質量部、(D)成分として上記ラジカル開始剤A5質量部、(E)成分としてジイソプロポキシビス(エチルアセトアセテート)チタン0.1質量部、及び(G)成分としてマレイン酸ジアリル2質量部を常圧下にて15分混合後、減圧条件下で15分混合し、組成物5を得た。
[Example 5]
As a component (A), both ends of the molecular chain are sealed with a vinyldimethylsilyl group, and 20 parts by mass of dimethylpolysiloxane having a viscosity at 25 ° C. of 10,000 mPa · s is a mixture of the components (A) and (F). 60 parts by mass of the silicone base A and both ends of the molecular chain as a component (B) are sealed with a trimethoxysilyl group, X in the above formula (1) is an oxygen atom, R 1 = R 2 = a methyl group, and a. = 0, and 20 parts by mass of dimethylpolysiloxane having a viscosity at 25 ° C. of 23,000 mPa · s was mixed at room temperature for 20 minutes. Then, 2.5 parts by mass of 1,6-bis (trimethoxysilyl) hexane as the component (C), 5 parts by mass of the radical initiator A as the component (D), and diisopropoxybis (ethylacetoacetate) as the component (E). ) 0.1 part by mass of titanium and 2 parts by mass of diallyl maleate as a component (G) were mixed under normal pressure for 15 minutes and then mixed under reduced pressure for 15 minutes to obtain composition 5.
[比較例1]
 (C)成分の1,6-ビス(トリメトキシシリル)ヘキサンを添加しなかった以外は、実施例2に記載の同じ成分を配合し、組成物6を得た。
[Comparative Example 1]
The same component as described in Example 2 was blended to obtain composition 6 except that 1,6-bis (trimethoxysilyl) hexane as the component (C) was not added.
[比較例2]
 (E)成分のジイソプロポキシビス(エチルアセトアセテート)チタンを添加しなかった以外は、実施例2に記載の同じ成分を配合し、組成物7を得た。
[Comparative Example 2]
The same component as described in Example 2 was blended except that titanium diisopropoxybis (ethylacetate acetate) as a component (E) was not added to obtain a composition 7.
[比較例3]
 (A)成分として分子鎖両末端がビニルジメチルシリル基で封鎖され、25℃における粘度が10,000mPa・sのジメチルポリシロキサン40質量部、及び(A)成分と(F)成分の混合物である上記シリコーンベースA60質量部を室温で20分混合した。その後、(C)成分として1,6-ビス(トリメトキシシリル)ヘキサン2.5質量部、(D)成分として上記ラジカル開始剤A5質量部、(E)成分としてジイソプロポキシビス(エチルアセトアセテート)チタン0.1質量部、及び(G)成分としてマレイン酸ジアリル2質量部を常圧下にて15分混合後、減圧条件下で15分混合し、組成物8を得た。
[Comparative Example 3]
As a component (A), both ends of the molecular chain are sealed with a vinyldimethylsilyl group, 40 parts by mass of dimethylpolysiloxane having a viscosity at 25 ° C. of 10,000 mPa · s, and a mixture of the components (A) and (F). 60 parts by mass of the silicone base A was mixed at room temperature for 20 minutes. Then, 2.5 parts by mass of 1,6-bis (trimethoxysilyl) hexane as the component (C), 5 parts by mass of the radical initiator A as the component (D), and diisopropoxybis (ethylacetoacetate) as the component (E). ) 0.1 part by mass of titanium and 2 parts by mass of diallyl maleate as a component (G) were mixed under normal pressure for 15 minutes and then mixed under reduced pressure for 15 minutes to obtain Composition 8.
 調製した組成物1~8を用いて、以下の特性を評価した。結果を表1、2に示す。 The following characteristics were evaluated using the prepared compositions 1 to 8. The results are shown in Tables 1 and 2.
・性状
 調製した組成物1~8の性状を目視にて確認した。
-Properties The properties of the prepared compositions 1 to 8 were visually confirmed.
・硬化特性
 調製した組成物1~8を厚みが約3mmになるように鉄板で挟み込み、油圧成型機(株式会社ショージ製)にて120℃条件にて10分加熱し、更に23℃/50%RH雰囲気下に24時間放置して硬化物を得た。得られた硬化物を、JIS K 6249に従い硬さ(デュロメータタイプA)、引張り強度(MPa)、切断時伸び率(%)を測定した。いずれの数値も、測定値の三桁目を四捨五入して有効数字二桁とした。
-Curing characteristics The prepared compositions 1 to 8 are sandwiched between iron plates so that the thickness is about 3 mm, heated in a hydraulic molding machine (manufactured by Shoji Co., Ltd.) at 120 ° C for 10 minutes, and further 23 ° C / 50%. A cured product was obtained by leaving it in an RH atmosphere for 24 hours. The hardness (durometer type A), tensile strength (MPa), and elongation at cutting (%) of the obtained cured product were measured according to JIS K 6249. In each case, the third digit of the measured value was rounded off to two significant figures.
・硬さ変化率の確認
 上記120℃条件で10分熱硬化させた後の硬さ(デュロメータタイプA)をH1、追加で23℃/50%RHの室温環境で1日(24時間)放置した後の硬さ(デュロメータタイプA)をH2とし、H2とH1の比(H2/H1)を算出した。いずれの数値も、算出値の四桁目を四捨五入して有効数字三桁とした。
-Confirmation of hardness change rate The hardness (durometer type A) after being heat-cured for 10 minutes under the above 120 ° C. condition is left for 1 day (24 hours) in a room temperature environment of H 1 and an additional 23 ° C./50% RH. The hardness (durometer type A) after the above was defined as H 2 , and the ratio of H 2 to H 1 (H 2 / H 1 ) was calculated. For each numerical value, the fourth digit of the calculated value was rounded off to three significant figures.
・表面硬化性
 調製した組成物1~8をφ10mm、高さ13mmのガラスシャーレに入れ、120℃の乾燥機に10分放置した。10分後乾燥機から組成物1~8を入れたガラスシャーレを取り出し、23℃/50%RH雰囲気下に24時間放置した。24時間後、硬化した組成物1~8の表面タックを確認した。表面タックの指標は以下の通りとした。
○:硬化物表面のタック感が全くない
×:硬化物表面が全く硬化していない
-Surface curability The prepared compositions 1 to 8 were placed in a glass petri dish having a diameter of 10 mm and a height of 13 mm, and left in a dryer at 120 ° C. for 10 minutes. After 10 minutes, the glass petri dish containing the compositions 1 to 8 was taken out from the dryer and left in a 23 ° C./50% RH atmosphere for 24 hours. After 24 hours, the surface tack of the cured compositions 1 to 8 was confirmed. The index of surface tack is as follows.
◯: No tackiness on the surface of the cured product ×: The surface of the cured product is not cured at all
・接着性
 組成物1~8を厚みが2mmになるように以下の被着体で挟み込み、120℃の乾燥機に20分放置し、更に23℃/50%RH雰囲気下に24時間放置して組成物1~8を完全に硬化させた。得られた試験体を用いて、JIS K 6249に従いせん断接着力(MPa)を測定した。いずれの数値も、測定値の三桁目を四捨五入して有効数字二桁とした。また凝集破壊率(%)についても測定を行った。
被着体:アルミニウム、ポリブチレンテレフタレート(PBT)、ポリフェニレンサルファイド(PPS)
-The adhesive compositions 1 to 8 are sandwiched between the following adherends so as to have a thickness of 2 mm, left in a dryer at 120 ° C. for 20 minutes, and further left in a 23 ° C./50% RH atmosphere for 24 hours. The compositions 1-8 were completely cured. Using the obtained test piece, the shear adhesive force (MPa) was measured according to JIS K 6249. In each case, the third digit of the measured value was rounded off to two significant figures. The coagulation fracture rate (%) was also measured.
Substrate: Aluminum, Polybutylene terephthalate (PBT), Polyphenylene sulfide (PPS)
・貯蔵安定性
 組成物1~8を密閉可能容器に入れ、室温にて30日間放置して、組成物の安定性(変化の有無)を確認し、変化のないものを良好とした。
-Storage stability The compositions 1 to 8 were placed in a sealable container and left at room temperature for 30 days to confirm the stability (presence or absence of change) of the composition, and the one without change was regarded as good.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 実施例1~5(組成物1~5)において、硬化特性、表面硬化性、接着性、貯蔵安定性は良好であった。
 比較例1(組成物6)は、硬化特性、表面硬化性、接着性は良好であったものの、密閉可能容器に入れ室温1日放置しただけで急激な増粘が確認された。
 比較例2(組成物7)は、硬化特性、接着性、貯蔵安定性は良好であったが、表面硬化性は全く発現しなかった。(E)成分を添加しなかったため、湿気による室温硬化が進行しなかったと考えられる。
 比較例3(組成物8)は、硬化特性、接着性、貯蔵安定性は良好であったが、表面硬化性は発現しなかった。(B)成分のオルガノポリシロキサンを添加しなかったため、湿気による室温硬化が進行しなかったと考えられる。
In Examples 1 to 5 (Compositions 1 to 5), the curing properties, surface curability, adhesiveness, and storage stability were good.
Although Comparative Example 1 (Composition 6) had good curing properties, surface curability, and adhesiveness, rapid thickening was confirmed only by placing it in a sealable container and leaving it at room temperature for 1 day.
Comparative Example 2 (Composition 7) had good curability, adhesiveness, and storage stability, but did not exhibit surface curability at all. It is probable that room temperature curing due to humidity did not proceed because the component (E) was not added.
Comparative Example 3 (Composition 8) had good curability, adhesiveness, and storage stability, but did not exhibit surface curability. It is probable that room temperature curing due to humidity did not proceed because the organopolysiloxane component (B) was not added.
 上記の通り、第一硬化として120℃にて10~20分の条件における熱ラジカル硬化、第二硬化として23℃/50%RH雰囲気下24時間における室温硬化を行うことで、良好な硬化特性、表面硬化性、接着性が発現することが分かる。 As described above, good curing characteristics are achieved by performing thermal radical curing at 120 ° C. for 10 to 20 minutes as the first curing, and room temperature curing at 23 ° C./50% RH atmosphere for 24 hours as the second curing. It can be seen that surface curability and adhesiveness are exhibited.
 以下は、コーティング、ポッティング用途として有用と考えられる実施例及び比較例を示す。 The following shows examples and comparative examples that are considered to be useful for coating and potting applications.
[実施例6]
 (A)成分として分子鎖両末端がビニルジメチルシリル基で封鎖され、25℃における粘度が400mPa・sのジメチルポリシロキサン70質量部、(A)成分と(F)成分の混合物である上記シリコーンベースA10質量部、及び(B)成分として分子鎖両末端がトリメトキシシリル基で封鎖され、上記式(1)のXがエチレン基であり、R1=R2=メチル基であり、a=0であり、25℃における粘度が45,000mPa・sのジメチルポリシロキサン20質量部を室温で20分混合した。その後、(C)成分として1,6-ビス(トリメトキシシリル)ヘキサン2質量部、(D)成分として上記ラジカル開始剤A5質量部、(E)成分としてジイソプロポキシビス(エチルアセトアセテート)チタン0.5質量部、テトラ-(2-エチルヘキシル)チタネート0.1質量部、及び(G)成分としてマレイン酸ジアリル4質量部を常圧下にて15分混合後、減圧条件下で15分混合し、組成物9を得た。
[Example 6]
As a component (A), both ends of the molecular chain are sealed with a vinyldimethylsilyl group, 70 parts by mass of dimethylpolysiloxane having a viscosity at 25 ° C. of 400 mPa · s, and the above silicone base which is a mixture of the components (A) and (F). 10 parts by mass of A and both ends of the molecular chain as a component (B) are sealed with a trimethoxysilyl group, X in the above formula (1) is an ethylene group, R 1 = R 2 = methyl group, and a = 0. 20 parts by mass of dimethylpolysiloxane having a viscosity at 25 ° C. of 45,000 mPa · s was mixed at room temperature for 20 minutes. Then, 2 parts by mass of 1,6-bis (trimethoxysilyl) hexane as the component (C), 5 parts by mass of the radical initiator A as the component (D), and diisopropoxybis (ethylacetoacetate) titanium as the component (E). 0.5 parts by mass, 0.1 part by mass of tetra- (2-ethylhexyl) titanate, and 4 parts by mass of diallyl maleate as a component (G) are mixed for 15 minutes under normal pressure, and then mixed for 15 minutes under reduced pressure conditions. , Composition 9 was obtained.
[実施例7]
 (A)成分として分子鎖両末端がビニルジメチルシリル基で封鎖され、25℃における粘度が400mPa・sのジメチルポリシロキサン70質量部、(A)成分と(F)成分の混合物である上記シリコーンベースA10質量部、及び(B)成分として分子鎖両末端がトリメトキシシリル基で封鎖され、上記式(1)のXがエチレン基であり、R1=R2=メチル基であり、a=0であり、25℃における粘度が45,000mPa・sのジメチルポリシロキサン20質量部を室温で20分混合した。その後、(C)成分として1,6-ビス(トリメトキシシリル)ヘキサン2質量部、(D)成分として上記ラジカル開始剤A5質量部、(E)成分としてジイソプロポキシビス(エチルアセトアセテート)チタン0.5質量部、テトラ-(2-エチルヘキシル)チタネート0.1質量部、及び(G)成分としてピロメリット酸テトラアリル1質量部を常圧下にて15分混合後、減圧条件下で15分混合し、組成物10を得た。
[Example 7]
As a component (A), both ends of the molecular chain are sealed with a vinyldimethylsilyl group, 70 parts by mass of dimethylpolysiloxane having a viscosity at 25 ° C. of 400 mPa · s, and the above silicone base which is a mixture of the components (A) and (F). 10 parts by mass of A and both ends of the molecular chain as a component (B) are sealed with a trimethoxysilyl group, X in the above formula (1) is an ethylene group, R 1 = R 2 = methyl group, and a = 0. 20 parts by mass of dimethylpolysiloxane having a viscosity at 25 ° C. of 45,000 mPa · s was mixed at room temperature for 20 minutes. Then, 2 parts by mass of 1,6-bis (trimethoxysilyl) hexane as the component (C), 5 parts by mass of the radical initiator A as the component (D), and diisopropoxybis (ethylacetoacetate) titanium as the component (E). Mix 0.5 parts by mass, 0.1 part by mass of tetra- (2-ethylhexyl) titanate, and 1 part by mass of tetraallyl pyromellitic acid as a component (G) under normal pressure for 15 minutes, and then mix under reduced pressure for 15 minutes. And the composition 10 was obtained.
[実施例8]
 (A)成分として分子鎖両末端がビニルジメチルシリル基で封鎖され、25℃における粘度が400mPa・sのジメチルポリシロキサン70質量部、(A)成分と(F)成分の混合物である上記シリコーンベースA10質量部、及び(B)成分として分子鎖両末端がトリメトキシシリル基で封鎖され、上記式(1)のXがエチレン基であり、R1=R2=メチル基であり、a=0であり、25℃における粘度が45,000mPa・sのジメチルポリシロキサン20質量部を室温で20分混合した。その後、(C)成分としてn-デシルトリメトキシシラン2質量部、(D)成分として上記ラジカル開始剤A5質量部、(E)成分としてジイソプロポキシビス(エチルアセトアセテート)チタン0.5質量部、テトラ-(2-エチルヘキシル)チタネート0.1質量部、及び(G)成分としてピロメリット酸テトラアリル1質量部を常圧下にて15分混合後、減圧条件下で15分混合し、組成物11を得た。
[Example 8]
As a component (A), both ends of the molecular chain are sealed with a vinyldimethylsilyl group, 70 parts by mass of dimethylpolysiloxane having a viscosity at 25 ° C. of 400 mPa · s, and the above silicone base which is a mixture of the components (A) and (F). 10 parts by mass of A and both ends of the molecular chain as a component (B) are sealed with a trimethoxysilyl group, X in the above formula (1) is an ethylene group, R 1 = R 2 = methyl group, and a = 0. 20 parts by mass of dimethylpolysiloxane having a viscosity at 25 ° C. of 45,000 mPa · s was mixed at room temperature for 20 minutes. Then, 2 parts by mass of n-decyltrimethoxysilane as the component (C), 5 parts by mass of the radical initiator A as the component (D), and 0.5 parts by mass of diisopropoxybis (ethylacetacetate) titanium as the component (E). , 0.1 part by mass of tetra- (2-ethylhexyl) titanate and 1 part by mass of tetraallyl pyromellitic acid as a component (G) are mixed under normal pressure for 15 minutes and then mixed under reduced pressure for 15 minutes to form composition 11. Got
[比較例4]
 (C)成分の1,6-ビス(トリメトキシシリル)ヘキサンを添加しなかった以外は、実施例6に記載の同じ成分を配合し、組成物12を得た。
[Comparative Example 4]
The same component as described in Example 6 was blended except that 1,6-bis (trimethoxysilyl) hexane as the component (C) was not added to obtain a composition 12.
[比較例5]
 (E)成分のジイソプロポキシビス(エチルアセトアセテート)チタン、及びテトラ-(2-エチルヘキシル)チタネートを添加しなかった以外は、実施例6に記載の同じ成分を配合し、組成物13を得た。
[Comparative Example 5]
The same components as described in Example 6 were blended to obtain the composition 13 except that the components (E), diisopropoxybis (ethylacetoacetate) titanium and tetra- (2-ethylhexyl) titanate, were not added. rice field.
 調製した組成物9~13を用いて、以下の特性を評価した。結果を表3に示す。 The following characteristics were evaluated using the prepared compositions 9 to 13. The results are shown in Table 3.
・初期粘度
 調製した組成物9~13を用いて、JIS K 6249に準拠し、23℃/50%RH環境下で粘度を測定した。
-Initial Viscosity The prepared compositions 9 to 13 were used to measure the viscosity in a 23 ° C./50% RH environment in accordance with JIS K 6249.
・硬化特性
 調製した組成物9~13を厚みが約3mmになるように鉄板で挟み込み、油圧成型機(株式会社ショージ製)にて120℃条件にて15分加熱し、更に23℃/50%RH雰囲気下に24時間放置して硬化物を得た。得られた硬化物を、JIS K 6249に従い硬さ(デュロメータタイプA)、引張り強度(MPa)、切断時伸び率(%)を測定した。いずれの数値も、測定値の三桁目を四捨五入して有効数字二桁とした。
-Curing characteristics The prepared compositions 9 to 13 are sandwiched between iron plates so that the thickness is about 3 mm, heated in a hydraulic molding machine (manufactured by Shoji Co., Ltd.) at 120 ° C for 15 minutes, and further 23 ° C / 50%. A cured product was obtained by leaving it in an RH atmosphere for 24 hours. The hardness (durometer type A), tensile strength (MPa), and elongation at cutting (%) of the obtained cured product were measured according to JIS K 6249. In each case, the third digit of the measured value was rounded off to two significant figures.
・硬さ変化率の確認
 上記120℃条件で15分熱硬化させた後の硬さ(デュロメータタイプA)をH1、追加で23℃/50%RHの室温環境で1日(24時間)放置した後の硬さ(デュロメータタイプA)をH2とし、H2とH1の比(H2/H1)を算出した。いずれの数値も、算出値の四桁目を四捨五入して有効数字三桁とした。
-Confirmation of hardness change rate The hardness (durometer type A) after being heat-cured for 15 minutes under the above 120 ° C. condition is left for 1 day (24 hours) in a room temperature environment of H 1 and an additional 23 ° C./50% RH. The hardness (durometer type A) after the above was defined as H 2 , and the ratio of H 2 to H 1 (H 2 / H 1 ) was calculated. For each numerical value, the fourth digit of the calculated value was rounded off to three significant figures.
・表面硬化性
 調製した組成物9~13をφ10mm、高さ13mmのガラスシャーレに入れ、120℃の乾燥機に20分放置した。20分後乾燥機から組成物9~13を入れたガラスシャーレを取り出し、23℃/50%RH雰囲気下に24時間放置した。24時間後、硬化した組成物9~13の表面タックを指触により確認した。表面硬化性(表面タックの有無)の指標は以下の通りとした。
○:硬化物表面のタック感が全くない(表面タックなし)
×:硬化物表面が全く硬化していない(表面タックあり)
-Surface curability The prepared compositions 9 to 13 were placed in a glass petri dish having a diameter of 10 mm and a height of 13 mm, and left in a dryer at 120 ° C. for 20 minutes. After 20 minutes, the glass petri dish containing the compositions 9 to 13 was taken out from the dryer and left in a 23 ° C./50% RH atmosphere for 24 hours. After 24 hours, the surface tack of the cured compositions 9 to 13 was confirmed by touch. The indexes of surface curability (presence or absence of surface tack) are as follows.
◯: There is no tackiness on the surface of the cured product (no surface tackiness)
×: The surface of the cured product is not cured at all (there is surface tack).
・接着性
 組成物9~13を厚みが1mmになるようにFr-4基板(プリント基板、Flame Retardant Type 4)に塗布し、120℃の乾燥機に20分放置し、更に23℃/50%RH雰囲気下に24時間放置して組成物9~13を完全に硬化させた。得られた試験体について、Fr-4基板に対し組成物9~13の硬化物が接着しているか、以下の指標で評価した。
○:組成物の硬化物がFr-4に対し接着している(接着良好)
×:組成物の硬化物がFr-4から剥がれる(接着不良)
-Applying the adhesive compositions 9 to 13 to a Fr-4 substrate (printed circuit board, Flame Retardant Type 4) so as to have a thickness of 1 mm, leaving it in a dryer at 120 ° C. for 20 minutes, and further 23 ° C./50%. The compositions 9 to 13 were completely cured by leaving them in an RH atmosphere for 24 hours. The obtained test piece was evaluated by the following index as to whether or not the cured product of the compositions 9 to 13 was adhered to the Fr-4 substrate.
◯: The cured product of the composition is adhered to Fr-4 (adhesion is good).
X: The cured product of the composition is peeled off from Fr-4 (poor adhesion).
・貯蔵安定性
 組成物9~13を密閉可能容器に入れ、室温にて30日間放置して、組成物の安定性(変化の有無)を確認し、変化のないものを良好とした。
-Storage stability The compositions 9 to 13 were placed in a sealable container and left at room temperature for 30 days to confirm the stability (presence or absence of change) of the composition, and the one without change was regarded as good.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 実施例6~8(組成物9~11)において、硬化特性、表面硬化性、接着性、貯蔵安定性は良好であった。またコーティング、ポッティングに有用と考えられる低粘度組成物となっている。
 比較例4(組成物12)は、硬化特性、表面硬化性、接着性は良好であった。また、接着性は良好であったものの、密閉可能なビンに入れ室温3日放置しただけで急激な増粘が確認された。室温で3日間放置後の粘度は、5,600mPa・sであり、貯蔵安定性に欠ける組成物であることがうかがわれた。
 比較例5(組成物13)は、硬化特性、接着性、貯蔵安定性は良好であったが、表面硬化性は全く発現しなかった。(E)成分の有機チタン化合物を添加しなかったため、湿気による室温硬化が進行しなかったと考えられる。
In Examples 6 to 8 (compositions 9 to 11), the curing characteristics, surface curability, adhesiveness, and storage stability were good. In addition, it is a low-viscosity composition considered to be useful for coating and potting.
Comparative Example 4 (composition 12) had good curability, surface curability, and adhesiveness. In addition, although the adhesiveness was good, rapid thickening was confirmed only by placing the bottle in a sealable bottle and leaving it at room temperature for 3 days. The viscosity after standing at room temperature for 3 days was 5,600 mPa · s, suggesting that the composition lacks storage stability.
Comparative Example 5 (Composition 13) had good curability, adhesiveness, and storage stability, but did not exhibit surface curability at all. It is probable that room temperature curing did not proceed due to humidity because the organic titanium compound (E) was not added.
 上記実施例で使用した組成物は、第一硬化として熱によるラジカル硬化をさせた後、第二硬化として室温湿気硬化させることが特徴である。通常、熱ラジカルを利用した第一硬化のみでは、酸素と接触した部分が硬化阻害を受け未硬化の状態となる。第二硬化を組み込むことで、未硬化部分が室温下で徐々に硬化することで未硬化部分がもはや存在しなくなる。また、第二硬化後の硬度変化が少ないことも特徴である。 The composition used in the above examples is characterized in that it is radically cured by heat as the first curing and then cured at room temperature and humidity as the second curing. Normally, only the first curing using thermal radicals causes the portion in contact with oxygen to be inhibited from curing and becomes uncured. By incorporating the second curing, the uncured portion is gradually cured at room temperature so that the uncured portion no longer exists. Another feature is that there is little change in hardness after the second curing.
 本発明の熱ラジカル硬化可能なオルガノポリシロキサン組成物は、タクトタイムが短い車載関連向け等のシール剤、コーティング剤、ポッティング剤に最適であることが考えられる。
 また、本発明の熱ラジカル硬化可能なオルガノポリシロキサン組成物は、汎用性のあるオルガノポリシロキサンを使用しているため、コストメリットが大きく、熱ラジカル硬化で通常使用されるアクリル基を持ったポリマー等と比較して、臭気が少ないこともメリットの一つとして考えられる。
It is considered that the heat radical curable organopolysiloxane composition of the present invention is most suitable for a sealing agent, a coating agent, and a potting agent for automobile-related products having a short tact time.
Further, since the organopolysiloxane composition of the present invention that can be thermally radically cured uses a versatile organopolysiloxane, it has a great cost advantage and is a polymer having an acrylic group that is usually used in thermal radical curing. It is considered that one of the merits is that the odor is less than that of the above.

Claims (6)

  1.  (A)1分子中にケイ素原子に結合したアルケニル基を少なくとも2個有するオルガノポリシロキサン:100質量部、
    (B)下記一般式(1)
    Figure JPOXMLDOC01-appb-C000001
    (式中、R1は独立に炭素数1~10の非置換又はハロゲン置換の一価炭化水素基であり、nは10以上の整数であり、R2は独立に炭素数1~6の非置換又は置換の一価炭化水素基であり、Xは酸素原子又は炭素数1~4のアルキレン基であり、aは結合するケイ素原子毎に独立に0又は1である。)
    で示されるオルガノポリシロキサン:5~80質量部、
    (C)1分子中に加水分解性基を3個以上有する(オルガノ)シラン化合物及び/又はその部分加水分解縮合物:(B)成分の含有量に対して0.1~30質量%となる量、
    (D)ラジカル開始剤:0.1~20質量部、
    (E)水分硬化開始剤:(B)成分の含有量に対して0.01~10質量%となる量、
    (F)無機充填剤:(A)成分と(B)成分の合計量に対して1~500質量%となる量
    を含むオルガノポリシロキサン組成物であって、第1次硬化として、80~150℃で5~60分間熱硬化させて得られる硬化物の硬さ(H1)と、第2次硬化として、該硬化物を更に、温度23℃、湿度50%RHの環境下で1日間湿気硬化させた後の該硬化物の硬さ(H2)について、H1に対するH2の比(H2/H1)が1.00~1.20である硬化物を与えるものである熱ラジカル硬化可能なオルガノポリシロキサン組成物。
    (A) Organopolysiloxane having at least two alkenyl groups bonded to silicon atoms in one molecule: 100 parts by mass,
    (B) The following general formula (1)
    Figure JPOXMLDOC01-appb-C000001
    (In the formula, R 1 is an independently unsubstituted or halogen-substituted monovalent hydrocarbon group having 1 to 10 carbon atoms, n is an integer of 10 or more, and R 2 is independently non-substituted with 1 to 6 carbon atoms. It is a substituted or substituted monovalent hydrocarbon group, X is an oxygen atom or an alkylene group having 1 to 4 carbon atoms, and a is 0 or 1 independently for each silicon atom to be bonded.)
    Organopolysiloxane indicated by: 5-80 parts by mass,
    (C) A (organo) silane compound having 3 or more hydrolyzable groups in one molecule and / or a partially hydrolyzed condensate thereof: 0.1 to 30% by mass with respect to the content of the component (B). amount,
    (D) Radical initiator: 0.1 to 20 parts by mass,
    (E) Moisture curing initiator: 0.01 to 10% by mass with respect to the content of the component (B),
    (F) Inorganic filler: An organopolysiloxane composition containing an amount of 1 to 500% by mass based on the total amount of the components (A) and (B), and 80 to 150 as the primary curing. The hardness (H 1 ) of the cured product obtained by heat-curing at ° C. for 5 to 60 minutes, and as the secondary curing, the cured product is further moistened for 1 day in an environment of a temperature of 23 ° C. and a humidity of 50% RH. Regarding the hardness (H 2 ) of the cured product after curing, a thermal radical that gives the cured product in which the ratio of H 2 to H 1 (H 2 / H 1 ) is 1.00 to 1.20. Curable organopolysiloxane composition.
  2.  更に、(G)1分子中にアリル基を2個以上有する有機化合物を(A)成分100質量部に対して1~20質量部含有する請求項1に記載の熱ラジカル硬化可能なオルガノポリシロキサン組成物。 The thermally radical curable organopolysiloxane according to claim 1, further comprising (G) 1 to 20 parts by mass of an organic compound having two or more allyl groups in one molecule with respect to 100 parts by mass of the component (A). Composition.
  3.  (C)成分が、オルガノトリアルコキシシラン、テトラアルコキシシラン、テトラアルコキシジシラン化合物、テトラアルコキシトリシラン化合物、ヘキサアルコキシジシラン化合物、ヘキサアルコキシトリシラン化合物、(オルガノ)アセトキシシラン、(オルガノ)イソプロペノキシシラン及び(オルガノ)ケトオキシムシランからなる群から選択される1種又は2種以上である請求項1又は2に記載の熱ラジカル硬化可能なオルガノポリシロキサン組成物。 The component (C) is organotrialkoxysilane, tetraalkoxysilane, tetraalkoxydisilane compound, tetraalkoxytrisilane compound, hexaalkoxydisilane compound, hexaalkoxytrisilane compound, (organo) acetoxysilane, (organo) isopropenoxysilane. The thermoradical curable organopolysiloxane composition according to claim 1 or 2, which is one or more selected from the group consisting of (organo) ketooxymsilane.
  4.  (E)成分が、有機チタン化合物又は有機錫化合物である請求項1~3のいずれか1項に記載の熱ラジカル硬化可能なオルガノポリシロキサン組成物。 The thermally radical curable organopolysiloxane composition according to any one of claims 1 to 3, wherein the component (E) is an organic titanium compound or an organic tin compound.
  5.  請求項1~4のいずれか1項に記載の熱ラジカル硬化可能なオルガノポリシロキサン組成物の硬化物で接着、コーティング又はポッティングされた物品。 An article bonded, coated or potted with a cured product of the organopolysiloxane composition according to any one of claims 1 to 4.
  6.  請求項1~4のいずれか1項に記載の熱ラジカル硬化可能なオルガノポリシロキサン組成物を80~150℃で熱ラジカル硬化させた後、更に室温で縮合硬化させる工程を含む熱ラジカル硬化可能なオルガノポリシロキサン組成物の硬化物を製造する方法。 The thermally radical curable organopolysiloxane composition according to any one of claims 1 to 4 can be thermally radically cured, which comprises a step of thermally radically curing the organopolysiloxane composition at 80 to 150 ° C. and then condensing curing at room temperature. A method for producing a cured product of an organopolysiloxane composition.
PCT/JP2021/026130 2020-07-28 2021-07-12 Thermal radical curable organopolysiloxane composition, article adhered, coated, or potted with said composition, and method for producing cured product of said composition WO2022024734A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022540142A JPWO2022024734A1 (en) 2020-07-28 2021-07-12

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-127332 2020-07-28
JP2020127332 2020-07-28

Publications (1)

Publication Number Publication Date
WO2022024734A1 true WO2022024734A1 (en) 2022-02-03

Family

ID=80036220

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/026130 WO2022024734A1 (en) 2020-07-28 2021-07-12 Thermal radical curable organopolysiloxane composition, article adhered, coated, or potted with said composition, and method for producing cured product of said composition

Country Status (2)

Country Link
JP (1) JPWO2022024734A1 (en)
WO (1) WO2022024734A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11396616B2 (en) 2017-04-06 2022-07-26 Dow Toray Co., Ltd. Liquid curable silicone adhesive composition, cured product thereof, and use thereof
CN115109562A (en) * 2022-08-09 2022-09-27 广州市白云化工实业有限公司 Bi-component high-heat-dissipation high-conductivity organic silicon pouring sealant and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06329997A (en) * 1993-05-18 1994-11-29 Toray Dow Corning Silicone Co Ltd Method for bonding substrate with silicone rubber
JPH06329914A (en) * 1993-05-18 1994-11-29 Toray Dow Corning Silicone Co Ltd Room-temperature-curable organopolysiloxane composition and production thereof
JPH07207164A (en) * 1994-01-20 1995-08-08 Toray Dow Corning Silicone Co Ltd Curable organopolysiloxane composition
JPH0948960A (en) * 1995-08-04 1997-02-18 Toray Dow Corning Silicone Co Ltd Silicone-based die bonding agent and semiconductor device
WO2018186165A1 (en) * 2017-04-06 2018-10-11 東レ・ダウコーニング株式会社 Liquid curable silicone adhesive composition, cured product thereof, and use thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06329997A (en) * 1993-05-18 1994-11-29 Toray Dow Corning Silicone Co Ltd Method for bonding substrate with silicone rubber
JPH06329914A (en) * 1993-05-18 1994-11-29 Toray Dow Corning Silicone Co Ltd Room-temperature-curable organopolysiloxane composition and production thereof
JPH07207164A (en) * 1994-01-20 1995-08-08 Toray Dow Corning Silicone Co Ltd Curable organopolysiloxane composition
JPH0948960A (en) * 1995-08-04 1997-02-18 Toray Dow Corning Silicone Co Ltd Silicone-based die bonding agent and semiconductor device
WO2018186165A1 (en) * 2017-04-06 2018-10-11 東レ・ダウコーニング株式会社 Liquid curable silicone adhesive composition, cured product thereof, and use thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11396616B2 (en) 2017-04-06 2022-07-26 Dow Toray Co., Ltd. Liquid curable silicone adhesive composition, cured product thereof, and use thereof
CN115109562A (en) * 2022-08-09 2022-09-27 广州市白云化工实业有限公司 Bi-component high-heat-dissipation high-conductivity organic silicon pouring sealant and preparation method thereof
CN115109562B (en) * 2022-08-09 2024-03-12 广州白云科技股份有限公司 Double-component high-heat-dissipation high-conductivity organic silicon pouring sealant and preparation method thereof

Also Published As

Publication number Publication date
JPWO2022024734A1 (en) 2022-02-03

Similar Documents

Publication Publication Date Title
WO2008047892A1 (en) Curable polyorganosiloxane composition
JP2009120437A (en) Siloxane-grafted silica, highly transparent silicone composition, and light-emitting semiconductor device sealed with the composition
KR102224557B1 (en) Room-temperature-curable silicone rubber composition, the use thereof, and method for repairing electronic device
JP5068988B2 (en) Adhesive polyorganosiloxane composition
WO2022024734A1 (en) Thermal radical curable organopolysiloxane composition, article adhered, coated, or potted with said composition, and method for producing cured product of said composition
JP2009007553A (en) Room temperature-curable organopolysiloxane composition
EP3087144B1 (en) Room-temperature-curable silicone rubber composition, and the use thereof
JP7408807B2 (en) Silicone composition and its cured product
JP2004323764A (en) Adhesive polyorganosiloxane composition
JP4924810B2 (en) Room temperature curable polyorganosiloxane composition and flat panel display
WO2013179896A1 (en) Adhesive tape or sheet and method for manufacturing same
JPWO2018186165A1 (en) Liquid curable silicone adhesive composition, cured product thereof and use thereof
JP5601481B2 (en) Highly transparent silicone composition and light-emitting semiconductor device sealed with the composition
JP4788897B2 (en) Room temperature curable polyorganosiloxane composition
TW200932833A (en) Room-temperature curable organopolysiloxane composition
JP6319168B2 (en) Method for producing condensation reaction product, method for producing room temperature curable organopolysiloxane composition containing the condensation reaction product
JP2008144042A (en) Room temperature-curable organopolysiloxane composition
WO2023068094A1 (en) Room temperature-curable organopolysiloxane composition, adhesive, sealing agent, and coating agent
JP7327212B2 (en) Two-component room temperature condensation-curable organopolysiloxane composition
JP4180477B2 (en) Room temperature curable polyorganosiloxane composition
KR20220118902A (en) Moisture curable polyacrylate composition and uses thereof
JP2005213487A (en) Room temperature-curing polyorganosiloxane composition
KR20210060505A (en) A primer composition for bonding a silicone resin to a polyolefin resin, and a method for bonding a silicone resin to a polyolefin resin
KR101166034B1 (en) Room-temperature curable organopolysiloxane composition and electrical or electronic devices
WO2022224885A1 (en) Room-temperature-curable silicone coating composition and article

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21850461

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022540142

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21850461

Country of ref document: EP

Kind code of ref document: A1