WO2022024578A1 - Egr system - Google Patents

Egr system Download PDF

Info

Publication number
WO2022024578A1
WO2022024578A1 PCT/JP2021/023079 JP2021023079W WO2022024578A1 WO 2022024578 A1 WO2022024578 A1 WO 2022024578A1 JP 2021023079 W JP2021023079 W JP 2021023079W WO 2022024578 A1 WO2022024578 A1 WO 2022024578A1
Authority
WO
WIPO (PCT)
Prior art keywords
egr
valve
bypass
passage
temperature
Prior art date
Application number
PCT/JP2021/023079
Other languages
French (fr)
Japanese (ja)
Inventor
衛 吉岡
海翔 曹
崇 別所
伸二 河井
Original Assignee
愛三工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2021048848A external-priority patent/JP2022023773A/en
Application filed by 愛三工業株式会社 filed Critical 愛三工業株式会社
Publication of WO2022024578A1 publication Critical patent/WO2022024578A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/23Layout, e.g. schematics
    • F02M26/25Layout, e.g. schematics with coolers having bypasses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/23Layout, e.g. schematics
    • F02M26/25Layout, e.g. schematics with coolers having bypasses
    • F02M26/26Layout, e.g. schematics with coolers having bypasses characterised by details of the bypass valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/23Layout, e.g. schematics
    • F02M26/28Layout, e.g. schematics with liquid-cooled heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/29Constructional details of the coolers, e.g. pipes, plates, ribs, insulation or materials
    • F02M26/30Connections of coolers to other devices, e.g. to valves, heaters, compressors or filters; Coolers characterised by their location on the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/29Constructional details of the coolers, e.g. pipes, plates, ribs, insulation or materials
    • F02M26/32Liquid-cooled heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/45Sensors specially adapted for EGR systems
    • F02M26/46Sensors specially adapted for EGR systems for determining the characteristics of gases, e.g. composition
    • F02M26/47Sensors specially adapted for EGR systems for determining the characteristics of gases, e.g. composition the characteristics being temperatures, pressures or flow rates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/49Detecting, diagnosing or indicating an abnormal function of the EGR system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/50Arrangements or methods for preventing or reducing deposits, corrosion or wear caused by impurities
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/52Systems for actuating EGR valves
    • F02M26/53Systems for actuating EGR valves using electric actuators, e.g. solenoids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/65Constructional details of EGR valves
    • F02M26/70Flap valves; Rotary valves; Sliding valves; Resilient valves

Definitions

  • the technology disclosed in this specification relates to an EGR system configured to flow a part of the exhaust gas discharged from the engine to the exhaust passage as EGR gas to the intake passage through the EGR passage and return it to the engine.
  • This exhaust heat recovery device is a heat exchanger that exchanges heat between the exhaust gas and the medium (cooling water) in an exhaust system such as an internal combustion engine (engine), and a bypass path in which the exhaust gas bypasses the heat exchanger. It is provided with a (bypass passage) and a valve body (bypass valve) that opens and closes the bypass passage.
  • the bypass valve has a valve body that opens the bypass passage from the closed state against the urging force of the urging body (spring) when the flow rate of the exhaust gas exceeds the predetermined value, and the temperature of the cooling water exceeds the predetermined value.
  • the bypass valve opens when the exhaust gas has a large flow rate or the cooling water is at a high temperature, and the exhaust gas bypasses the heat exchanger. If a resin exhaust component is provided downstream of the exhaust component, there is a risk of melting damage due to high heat in the exhaust component.
  • the same configuration as the exhaust heat recovery device described above is embodied in an EGR system in which a part of the exhaust gas discharged from the engine to the exhaust passage is passed as EGR gas to the intake passage through the EGR passage and returned to the engine. can do.
  • This EGR system is provided in an EGR passage, and has an EGR cooler having a heat exchanger using engine cooling water as a medium, a bypass passage that bypasses the EGR cooler, a bypass valve that opens and closes the bypass passage, and an EGR cooler and a bypass.
  • a resin EGR passage or a resin EGR gas distributor constituting the downstream EGR passage downstream from the passage is provided.
  • the bypass valve opens and the hot EGR gas bypasses the EGR cooler (heat exchanger) and flows through the bypass passage, and the downstream EGR
  • the EGR passages or EGR gas distributors made of resin that constitute the passages will flow to the EGR passages or EGR gas distributors made of resin, and the EGR passages or EGR gas distributors will be melted due to high heat.
  • the downstream EGR passage if EGR gas flows during unwarming, condensed water may be generated inside.
  • This disclosure technique was made in view of the above circumstances, and the purpose is to reduce the high temperature EGR gas flowing from the exhaust passage to the EGR passage to an appropriate temperature in the above-mentioned EGR system, and to make the resin.
  • the purpose is to allow the gas to flow into the downstream EGR passage and suppress the melting damage of the downstream EGR passage and the generation of condensed water in the downstream EGR passage.
  • the aspect of the present invention is configured so that a part of the exhaust gas discharged from the engine to the exhaust passage is passed as EGR gas to the intake passage through the EGR passage and returned to the engine.
  • an EGR valve for adjusting the flow rate of EGR gas in the EGR passage and a heat exchanger that exchanges heat between the EGR gas and the cooling water of the engine to cool the EGR gas flowing in the EGR passage.
  • An EGR cooler including, a bypass passage for bypassing a part of EGR gas flowing to the heat exchanger of the EGR cooler in the EGR passage, a bypass valve for opening and closing the bypass passage, and a downstream of the EGR cooler and the bypass passage.
  • the downstream EGR passage is composed of a resin material, and the bypass valve is provided when the temperature of the valve body and the EGR gas, the temperature of the downstream EGR passage, or the temperature of the cooling water becomes equal to or higher than the first predetermined value.
  • the purpose is to include an actuator configured to close the valve body from the open state.
  • the valve body of the bypass valve is opened by the actuator when EGR is executed in which the temperature of the EGR gas, the temperature of the downstream EGR passage, or the temperature of the cooling water becomes less than the first predetermined value. It becomes.
  • a part of the EGR gas flowing from the exhaust passage to the EGR passage flows to the bypass passage, and the rest flows to the heat exchanger. Then, these two flows merge at the downstream EGR passage and flow through the downstream EGR passage. Therefore, even if a high-temperature EGR gas flows from the exhaust passage to the EGR passage, the EGR gas flowing through the bypass passage among the EGR gas is heated by the heat exchanger and merges with the EGR gas whose temperature has dropped.
  • EGR gas that has dropped to an appropriate temperature flows to the downstream EGR passage.
  • the valve body of the bypass valve is closed from the opened state by the actuator. Therefore, almost all of the EGR gas flowing from the exhaust passage to the EGR passage flows to the heat exchanger of the EGR cooler, heat is exchanged by the heat exchanger and the temperature drops to an appropriate temperature, and the EGR gas having an appropriate temperature flows to the downstream EGR passage. Flow to.
  • the actuator operates in response to a change in temperature in the configuration of the above (1).
  • the actuator of the bypass valve operates in response to a change in temperature, so that it is not necessary to electrically control the bypass valve and the bypass is bypassed.
  • the configuration for the valve is simplified.
  • the actuator is configured to open the valve body under the condition that the EGR valve is fully closed.
  • the heat exchanger includes an outlet through which the EGR gas flows, and the bypass passage is adjacent to the outlet of the heat exchanger.
  • the bypass valve further includes a plate-like valve body and a rotating shaft that rotates the valve body, and the valve body and the rotating shaft are located at the outlet of the bypass passage.
  • the valve body is configured to open and close the outlet of the bypass passage by rotating the rotating shaft, and the rotating shaft is provided with a sealing member for preventing leakage of EGR gas to the outside.
  • the bypass valve is placed in a position where the valve body is parallel to the axial direction of the heat exchanger or tilted downstream toward the heat exchanger when the valve body closes the outlet of the bypass passage.
  • the valve body is arranged at a position that blocks a part of the flow path area of the outlet of the heat exchanger and narrows the flow path area.
  • the flow rate of the cooled EGR gas flowing out of the heat exchanger decreases as the flow path area at the outlet of the heat exchanger becomes narrower, and the ratio of the flow rate of the uncooled EGR gas flowing out of the bypass passage to the flow rate decreases.
  • the amount increases, and the temperature of the EGR gas flowing to the downstream EGR passage becomes high.
  • a gap is provided between the boundary portion between the outlet of the heat exchanger and the outlet of the bypass passage and the valve body or the rotating shaft, and the gap is provided. Is preferably configured to be larger when the valve body is opened than when the valve body is closed.
  • the gap between the boundary portion and the valve body or the rotating shaft is larger than that at the time of opening the valve body of the bypass valve when the valve body is closed.
  • the EGR gas in the bypass passage is less likely to leak to the outlet side of the heat exchanger through the gap.
  • the gap becomes larger when the valve body is opened than when the valve is closed, so that the condensed water discharged from the outlet of the heat exchanger easily flows into the gap. Further, since a part of the flow path area at the outlet of the heat exchanger is blocked by the valve body, the scattering of the condensed water discharged from the outlet is suppressed.
  • the bypass valve further includes a valve closing spring that urges the valve body in the valve closing direction.
  • the actuator includes a stator including a coil, a rotor rotatably arranged at the center of the stator, a drive shaft rotatably connected to the rotor via a screw mechanism, and a drive shaft. It is equipped with a shaft spring that urges in the axial direction, and the rotation shaft and the drive shaft of the actuator are connected via a link in order to rotate the rotation shaft of the bypass valve, and the shaft spring links the drive shaft and the rotation shaft. It is preferable that the valve body is configured to urge the valve body in the valve closing direction.
  • the bypass valve has a valve closing spring that urges the valve body in the valve closing direction.
  • the actuator includes a shaft spring that urges the valve body in the valve closing direction via the link and the rotating shaft of the drive shaft. Therefore, the urging force of the valve closing spring and the urging force of the shaft spring always act on the valve body of the bypass valve in the valve closing direction, and the valve closing of the valve body is assisted.
  • the disconnection detecting means for detecting the disconnection of the coil and the EGR control means for controlling the recirculation of the EGR gas are further provided, and EGR It is preferable that the control means changes at least one of the condition for starting the opening of the EGR valve and the maximum opening degree in order to control the recirculation of the EGR gas according to the detection result of the disconnection detecting means.
  • the EGR valve is used to control the recirculation of the EGR gas. At least one of the valve opening start condition and the maximum opening degree is changed by the EGR control means. Therefore, if the actuator does not operate normally due to the disconnection of the coil, the condition for starting the valve opening of the EGR valve is changed, so that the EGR gas does not flow to the EGR cooler before warming up, and the maximum opening of the EGR valve is changed. As a result, a large amount of high-temperature EGR gas does not flow into the downstream EGR passage.
  • the EGR cooler includes a housing, and at least a part of the bypass passage is provided integrally with the housing of the EGR cooler. It is preferable that the bypass valve is provided in a bypass passage integrally provided with the housing of the EGR cooler, and a cooling water passage through which cooling water flows is provided around the bypass valve.
  • a bypass valve is provided in the bypass passage provided integrally with the housing of the EGR cooler, and is around the bypass valve. Is provided with a cooling water passage through which cooling water flows. Therefore, when the actuator of the bypass valve operates in response to a change in temperature, the actuator operates in response to a change in the temperature of the cooling water flowing through the cooling water passage, and the valve body of the bypass valve operates as cooling water. It will open and close according to the temperature change of.
  • the EGR valve includes a housing made of an aluminum material, and the bypass valve is an EGR valve. It is preferable that it is provided integrally with the housing of.
  • the housing of the EGR valve is formed of an aluminum material, so that the thermal conductivity is good. .. Further, the bypass valve is provided integrally with the housing of the EGR valve. Therefore, when the actuator of the bypass valve operates in response to a change in temperature, the valve body of the bypass valve opens and closes in response to the change in temperature of the housing of the EGR valve.
  • the bypass passage is vertically downward with respect to the EGR cooler. It is preferably arranged so that its upstream side inclines vertically downward toward the exhaust passage.
  • the bypass passage is vertically downward with respect to the EGR cooler when the EGR cooler is mounted on the vehicle. Since it is arranged on the side, the condensed water generated by the EGR cooler can flow down to the bypass passage due to its own weight. Further, since the upstream side of the bypass passage is inclined downward in the vertical direction toward the exhaust passage, the condensed water flowing down to the bypass passage can flow down to the exhaust passage due to its own weight.
  • the EGR cooler and the bypass passage are adjacent to each other via the partition wall, so that the EGR cooler and the bypass passage are connected to each other. Heat exchange is possible through the partition wall between them.
  • the partition wall includes a main wall portion in contact with the heat exchanger and a downstream wall portion extending downstream from the heat exchanger, and the downstream wall portion. Is preferably provided with at least one communication hole that communicates from the EGR cooler to the bypass passage.
  • the condensed water flowing out from the heat exchanger by the EGR cooler has its own weight from the communication hole to the bypass passage at the downstream wall portion of the partition wall. Makes it easier to flow down.
  • the communication hole is arranged at a position facing the valve body of the bypass valve, and when the bypass valve is closed, the valve body and the downstream wall portion are connected to each other. It is preferable to function as a relief hole to avoid interference.
  • the communication hole functions as a relief hole for avoiding interference between the valve body and the downstream wall portion when the bypass valve is closed. Even if the valve body operates excessively during valve operation, it does not come into contact with the downstream wall.
  • the EGR cooler is provided with a plurality of fins adjacent to the partition wall and parallel to the flow direction of the EGR gas. It is preferable to be.
  • a plurality of fins parallel to the flow direction of the EGR gas are adjacent to the partition wall. Is provided. Therefore, the heat of the EGR gas flowing through the bypass passage is transferred to the fins through the partition wall, the fins are warmed, and the condensed water adhering to the fins is warmed.
  • the bypass passage is provided with a plurality of fins in contact with the partition wall and parallel to the flow direction of the EGR gas. Is preferable.
  • a plurality of fins parallel to the flow direction of EGR gas are adjacent to the partition wall in the bypass passage. Is provided. Therefore, the heat of the EGR gas flowing through the bypass passage is transferred to the partition wall through the fins, and the EGR cooler is warmed.
  • a sub-bypass passage for bypassing the EGR gas flowing to the bypass valve in the bypass passage is further provided, and the sub-bypass passage is provided. Is preferably provided with a sub-bypass valve that opens when the outside air temperature becomes less than the second predetermined value.
  • a sub-bypass passage for bypassing the EGR gas flowing to the bypass valve is provided in the bypass passage, and the sub-bypass passage is provided.
  • the sub-bypass valve provided in the bypass passage opens when the outside air temperature becomes less than the second predetermined value. Therefore, even when the bypass valve is closed, when the outside air temperature becomes less than the second predetermined value, the sub-bypass valve is opened and the EGR gas flows to the downstream side through the bypass passage and the sub-bypass passage. It merges with the EGR gas cooled by the EGR cooler, and the temperature of the EGR gas flowing to the downstream EGR passage increases.
  • temperature detection for detecting the temperature of the downstream EGR passage or the temperature of the EGR gas flowing through the downstream EGR passage.
  • the means and the first control means for controlling the EGR valve based on the detection value of the temperature detecting means are further provided, and in the first control means, the temperature detected by the temperature detecting means is the allowable heating temperature of the downstream EGR passage.
  • the temperature of the downstream EGR passage detected by the temperature detecting means or the EGR gas flowing through the downstream EGR passage is detected by the temperature detecting means or the EGR gas flowing through the downstream EGR passage.
  • the first control means forcibly controls the EGR valve to the fully closed position or the intermediate opening degree. Therefore, the flow of EGR gas in the EGR passage is immediately cut off or reduced, and excessive heating exceeding the allowable heating temperature of the downstream EGR passage is immediately stopped.
  • temperature detection for detecting the temperature of the downstream EGR passage or the temperature of the EGR gas flowing through the downstream EGR passage.
  • the means and the second control means for controlling the EGR valve based on the detection value of the temperature detection means are further provided, and the second control means is downstream when the temperature detected by the temperature detection means is equal to or higher than the third predetermined value.
  • the temperature is lower than the heat resistant temperature of the EGR passage, it is preferable to control the EGR valve to a normal opening degree.
  • the temperature of the downstream EGR passage detected by the temperature detecting means or the EGR gas flowing through the downstream EGR passage is equal to or higher than the third predetermined value and is lower than the heat resistant temperature of the downstream EGR passage.
  • the second control means controls the EGR valve to a normal opening degree. Therefore, the flow rate of the EGR gas flowing through the EGR passage is appropriately adjusted, and the flow rate of the EGR gas flowing to the downstream EGR passage is suppressed to a flow rate that does not exceed the heat resistant temperature.
  • the actuator operates electrically to detect the temperature of the downstream EGR passage or the temperature of the EGR gas flowing through the downstream EGR passage. Further, a temperature detecting means and a third control means for controlling the bypass valve based on the detection value of the temperature detecting means are further provided. It is preferable to control the actuator so that the bypass valve is closed when the allowable temperature is exceeded.
  • the temperature of the downstream EGR passage detected by the temperature detecting means or the temperature of the EGR gas flowing through the downstream EGR passage is the temperature of the downstream EGR passage.
  • the third control means controls the actuator so as to close the bypass valve. Therefore, most of the EGR gas flowing through the EGR passage is cooled by the EGR cooler without flowing to the bypass passage, and then flows to the downstream EGR passage.
  • bypass valve is configured to be closed when the actuator is turned off and not operated in the configuration of the above (19).
  • the bypass valve is closed when the actuator is turned off and not operated, so that the bypass valve is bypassed even if the actuator fails and does not operate.
  • the valve is kept closed.
  • the high-temperature EGR gas flowing from the exhaust passage to the EGR passage can be lowered to an appropriate temperature and flowed to the downstream EGR passage made of a resin material. It is possible to suppress the melting damage of the downstream EGR passage and the generation of condensed water in the downstream EGR passage.
  • the valve body of the bypass valve when the bypass valve is closed, can be cooled with cooled EGR gas.
  • the rotating shaft can be cooled via the valve body, and the sealing member provided on the rotating shaft can be protected from heat damage of the EGR gas. Further, when the bypass valve is opened, the warm-up of the downstream EGR passage can be promoted by the amount of the increase in the bypass flow rate ratio.
  • the gap is narrowed to allow the EGR gas from the bypass passage to the heat exchanger side. Leakage can be suppressed, and a decrease in the cooling efficiency of EGR gas due to the heat exchanger can be suppressed. Further, when the valve body is opened, a large amount of condensed water discharged from the outlet of the heat exchanger can be discharged to the bypass passage through the gap by widening the gap.
  • the actuator of the bypass valve is used. Operates in response to changes in the temperature of the cooling water, so that it is not necessary to electrically control the bypass valve, and the configuration related to the bypass valve can be simplified.
  • a cooling water passage for flowing cooling water of the engine is provided in the housing of the EGR valve. Can open and close the bypass valve according to the temperature change of the cooling water.
  • the condensed water generated in the EGR passage or the EGR cooler is discharged to the exhaust passage through the bypass passage by its own weight. be able to.
  • the heat of the EGR gas flowing through the bypass passage can be released to the EGR cooler by that amount on the downstream side.
  • the temperature of the EGR gas flowing to the EGR passage can be lowered, and the melting damage of the downstream EGR passage can be suppressed more reliably.
  • the condensed water generated in the EGR passage, the EGR cooler, etc. can be efficiently flowed to the bypass passage by its own weight and discharged to the exhaust passage. can do.
  • the condensed water generated by the EGR cooler can be efficiently evaporated.
  • the EGR gas is recirculated to the engine through the downstream EGR passage and the downstream EGR passage is melted. And the generation of condensed water in the downstream EGR passage can be suppressed.
  • FIG. 6 is a cross-sectional view showing an EGR cooler, a bypass passage, a bypass valve (valve open state), and a part of the EGR valve cut along the longitudinal direction thereof according to the first embodiment.
  • FIG. 3 is a cross-sectional view showing an EGR cooler, a bypass passage, a bypass valve (valve closed state), and a part of the EGR valve cut along the longitudinal direction thereof according to the first embodiment.
  • FIG. 2 is a cross-sectional view showing a part of the EGR cooler and the bypass passage in FIGS. 2 and 3 according to the first embodiment.
  • FIG. 6 is a cross-sectional view showing a specific example of a bypass valve and a valve open state according to the first embodiment.
  • FIG. 6 is a cross-sectional view showing a specific example of a bypass valve and a closed state according to the first embodiment.
  • the graph which shows the change of the opening degree of the EGR valve after the start of EGR according to the 3rd Embodiment.
  • FIG. 5 is a cross-sectional view according to FIG. 5, which is a specific example of a bypass valve and shows a valve open state according to a fourth embodiment.
  • FIG. 6 is a cross-sectional view according to FIG. 6, which is a specific example of the bypass valve and shows a closed state according to the fourth embodiment.
  • FIG. 2 is a cross-sectional view according to FIG. 2 showing an EGR cooler, a bypass passage, a bypass valve (valve open state), and a part of the EGR valve according to the fifth embodiment.
  • FIG. 5 is a cross-sectional view according to FIG.
  • FIG. 6 is a cross-sectional view according to FIG. 3 showing an EGR cooler, a bypass passage, a bypass valve (valve closed state), and a part of the EGR valve according to the fifth embodiment.
  • FIG. 6 is a cross-sectional view according to FIG. 3 showing an EGR cooler, a bypass passage, a bypass valve (valve closed state), and a part of the EGR valve according to the sixth embodiment.
  • FIG. 6 is a cross-sectional view according to FIG. 3 showing an EGR cooler, a bypass passage, a bypass valve (valve closed state), and a part of the EGR valve according to the sixth embodiment.
  • FIG. 6 is a cross-sectional view according to FIG. 3 showing an EGR cooler, a bypass passage, a bypass valve (valve closed state), and a part of the EGR valve according to the sixth embodiment.
  • FIG. 7 is a cross-sectional view showing an EGR cooler, a bypass passage, a bypass valve (valve open state), and a part of the EGR valve cut along the longitudinal direction thereof according to the seventh embodiment.
  • FIG. 7 is a cross-sectional view showing an EGR cooler, a bypass passage, a bypass valve (valve closed state), and a part of the EGR valve cut along the longitudinal direction thereof according to the seventh embodiment.
  • FIG. 8 is a cross-sectional view showing an EGR cooler, a bypass passage, a bypass valve (valve open state), and a part of the EGR valve cut along the longitudinal direction thereof according to the eighth embodiment.
  • FIG. 7 is a cross-sectional view showing an EGR cooler, a bypass passage, a bypass valve (valve open state), and a part of the EGR valve cut along the longitudinal direction thereof according to the eighth embodiment.
  • FIG. 8 is a cross-sectional view showing an EGR cooler, a bypass passage, a bypass valve (valve closed state), and a part of the EGR valve cut along the longitudinal direction thereof according to the eighth embodiment.
  • FIG. 9 is a cross-sectional view showing an EGR cooler, a bypass passage, a bypass valve (valve open state), and a part of the EGR valve cut along the longitudinal direction thereof according to the ninth embodiment.
  • FIG. 10 is a cross-sectional view showing an EGR cooler, a bypass passage, a bypass valve (valve open state), and a part of the EGR valve cut along the longitudinal direction thereof according to the tenth embodiment.
  • FIG. 24 is a cross-sectional view according to FIG.
  • FIG. 24 showing an EGR cooler, a bypass passage, and a bypass valve (valve open state) according to the eleventh embodiment.
  • FIG. 26 is a sectional view taken along line BB of FIG. 26 showing heat radiation fins according to the eleventh embodiment.
  • FIG. 24 is a cross-sectional view according to FIG. 24 showing an EGR cooler, a bypass passage, and a bypass valve (valve open state) according to a twelfth embodiment.
  • FIG. 6 is a schematic configuration diagram showing an engine system according to a thirteenth embodiment.
  • FIG. 28 is a cross-sectional view according to FIG. 28 showing an EGR cooler, a bypass passage, and a bypass valve (valve closed state) according to the thirteenth embodiment.
  • FIG. 15 is a cross-sectional view showing the EGR cooler cut along the longitudinal direction thereof when the valve body of the bypass valve is fully closed according to the fifteenth embodiment.
  • FIG. 15 is an enlarged cross-sectional view showing a portion of the EGR cooler, which is enclosed by a one-dot chain line square in FIG. 35, according to the fifteenth embodiment.
  • FIG. 15 is a cross-sectional view according to FIG. 35 showing an EGR cooler when the valve body of the bypass valve is half-opened according to the fifteenth embodiment.
  • FIG. 15 is an enlarged cross-sectional view showing a portion of the EGR cooler, which is enclosed by a one-dot chain line square in FIG. 37, according to the fifteenth embodiment.
  • FIG. 15 is a cross-sectional view according to FIG. 35 showing an EGR cooler when the valve body of the bypass valve is fully opened according to the fifteenth embodiment.
  • FIG. 19 is an enlarged cross-sectional view showing a portion of the EGR cooler, which is enclosed by a two-dot chain line square in FIG. 39, according to the fifteenth embodiment.
  • FIG. 5 is a cross-sectional view showing a configuration of a valve assembly provided corresponding to an outlet of a bypass passage according to a fifteenth embodiment.
  • FIG. 5 is a flowchart showing the contents of opening / closing control of the bypass valve according to the fifteenth embodiment.
  • a target bypass opening degree map referred to in order to obtain a target bypass opening degree according to various parameters according to the fifteenth embodiment.
  • an EGR start permit water temperature map referred to for obtaining an EGR start permit water temperature according to an intake air temperature.
  • FIG. 5 is a graph showing the difference between the cooler flow rate ratio and the bypass flow rate ratio when the bypass valve is half-opened and fully opened according to the fifteenth embodiment.
  • Sectional view. 16th embodiment shows the relationship between the part of the EGR cooler, the outlet portion of the bypass passage adjacent to the outlet of the heat exchanger, the valve body (fully closed state) of the bypass valve, and the rotation shaft.
  • Sectional view. 16th embodiment shows the relationship between the part of the EGR cooler, the outlet portion of the bypass passage adjacent to the outlet of the heat exchanger, and the valve body (valve open state) and the rotating shaft of the bypass valve.
  • Sectional view. 17 is a cross-sectional view according to FIG. 46 showing a state in which the valve body of the bypass valve is fully closed, which is a part of the EGR cooler according to the 17th embodiment.
  • FIG. 17 is a cross-sectional view according to FIG.
  • FIG. 47 showing a state in which the valve body is opened, which is a part of the EGR cooler according to the 17th embodiment.
  • FIG. 18 is a cross-sectional view according to FIG. 48 showing a state in which the valve body of the bypass valve is fully closed, which is a part of the EGR cooler according to the eighteenth embodiment.
  • a cross-sectional view according to FIG. 49 showing a state in which the valve body of the bypass valve is opened, which is a part of the EGR cooler according to the eighteenth embodiment.
  • FIG. 19 is a cross-sectional view according to FIG. 41 showing a configuration of a valve assembly of a bypass valve according to a nineteenth embodiment.
  • FIG. 52 is a cross-sectional view according to FIG.
  • FIG. 2 is a perspective view showing an EGR cooler including an actuator and a link as viewed from the rear side according to the 21st embodiment.
  • 21st embodiment is a rear view which is an EGR cooler and which shows the state of the actuator and the link when the bypass valve is operated to open (fully open), according to FIG. 34.
  • 21st embodiment is a rear view which is an EGR cooler and which shows the state of the actuator and the link when the bypass valve is operated to close (fully closed), according to FIG. 34.
  • FIG. 21 is a cross-sectional view showing an actuator when the bypass valve is fully opened according to the 21st embodiment, cut along the axial direction thereof.
  • 21 is a cross-sectional view showing an actuator when the bypass valve is fully closed according to the 21st embodiment, cut along the axial direction thereof.
  • 21. A cross-sectional view according to FIG. 40 showing a part of the EGR cooler when the valve body of the bypass valve is fully opened according to the 21st embodiment.
  • 21. A cross-sectional view according to FIG. 36 showing a part of the EGR cooler when the valve body of the bypass valve is fully closed according to the 21st embodiment.
  • FIG. 21 is an enlarged cross-sectional view showing a part of a screwed state of a male screw and a female screw in a state where the valve body is fully opened according to the 21st embodiment.
  • 21 is an enlarged cross-sectional view showing a part of a screwed state of a male screw and a female screw in a “butted fully closed state” according to the 21st embodiment.
  • 22nd Embodiment is a flowchart which shows the content of the coil disconnection correspondence control.
  • a rear view according to FIG. 56 showing the state of the actuator and the link when the bypass valve is operated to be closed (fully closed) in the EGR cooler according to the 23rd embodiment.
  • FIG. 55 showing the state of the actuator and the link when the bypass valve is operated to open (fully open) the EGR cooler according to the 23rd embodiment.
  • FIG. 74 is a sectional view taken along line CC of FIG. 74 showing an EGR cooler according to the 24th embodiment.
  • FIG. 73 is a sectional view taken along line DD of FIG. 73 showing a part of the EGR cooler according to the 24th embodiment.
  • FIG. 81 is a sectional view taken along line EE of FIG. 81 showing an EGR cooler in a state in which the valve body of the bypass valve is fully closed according to the 25th embodiment.
  • FIG. 25 is a cross-sectional view according to FIG.
  • FIG. 82 showing an EGR cooler 13 in a state where the valve body of the bypass valve is opened according to the 25th embodiment.
  • the table which shows an example of the control content of the bypass valve fully open or fully closed corresponding to the condition of the Encopa temperature and the cooling water temperature at the time of restarting and after restarting EGR according to the 25th embodiment.
  • a table showing an example of control contents of energization (on) or non-energization (off) of the biometal corresponding to the conditions of the encopa temperature and the cooling water temperature at the time of resuming and after resuming the EGR according to the 25th embodiment.
  • FIG. 6 is a cross-sectional view showing an EGR cooler, a bypass passage and a bypass valve (valve closed state) and a part of the EGR valve cut along the longitudinal direction thereof according to another embodiment.
  • FIG. 5 is a cross-sectional view according to FIG. 52 showing a configuration of a valve assembly of a bypass valve according to another embodiment.
  • FIG. 11 is a cross-sectional view according to FIG. 41 showing a configuration of a valve assembly of a bypass valve according to another embodiment.
  • FIG. 1 shows a gasoline engine system of this embodiment (hereinafter, simply referred to as “engine system”) by a schematic configuration diagram.
  • the engine system mounted on the automobile includes an engine 1 having a plurality of cylinders.
  • the engine 1 is a 4-cylinder, 4-cycle reciprocating engine and includes well-known configurations such as a piston and a crankshaft.
  • the engine 1 is provided with an intake passage 2 for introducing intake air into each cylinder and an exhaust passage 3 for deriving exhaust gas from each cylinder of the engine 1.
  • the intake passage 2 is provided with an air cleaner 9, a throttle device 4, and an intake manifold 5 from the upstream side thereof.
  • the exhaust manifold 6 and the catalyst 7 are provided in the exhaust passage 3 in order from the upstream side thereof.
  • this engine system comprises a high pressure loop type exhaust gas recirculation device (EGR device) 11.
  • EGR device high pressure loop type exhaust gas recirculation device
  • the throttle device 4 is arranged in the intake passage 2 upstream of the intake manifold 5, and by driving the butterfly type throttle valve 4a to open and close with a variable opening according to the accelerator operation of the driver, the amount of intake air flowing through the intake passage 2 Is designed to be adjusted.
  • the intake manifold 5 is mainly composed of a resin material and is arranged in the intake passage 2 directly upstream of the engine 1.
  • One surge tank 5a into which the intake air is introduced and the intake air introduced in the surge tank 5a are used in the engine 1. It includes a plurality of (four) branch pipes 5b branched from the surge tank 5a for distribution to each cylinder.
  • a three-way catalyst is built in the catalyst 7 in order to purify the exhaust gas.
  • the engine 1 is provided with a fuel injection device (not shown) for injecting fuel corresponding to each cylinder.
  • the fuel injection device is configured to inject fuel supplied from a fuel supply device (not shown) into each cylinder of the engine 1.
  • a combustible air-fuel mixture is formed by the fuel injected from the fuel injection device and the intake air introduced from the intake manifold 5.
  • the engine 1 is provided with an ignition device (not shown) corresponding to each cylinder.
  • the igniter is configured to ignite the combustible mixture in each cylinder.
  • the combustible air-fuel mixture in each cylinder explodes and burns due to the ignition operation of the ignition device, and the exhaust gas after combustion is discharged from each cylinder to the outside via the exhaust manifold 6 and the catalyst 7.
  • the piston (not shown) moves up and down in each cylinder, and the crankshaft (not shown) rotates to obtain power to the engine 1.
  • the EGR system of this embodiment includes the EGR device 11 described above.
  • the EGR device 11 is configured to flow a part of the exhaust gas discharged from each cylinder of the engine 1 to the exhaust passage 3 as an exhaust gas recirculation gas (EGR gas) to the intake passage 2 and return the exhaust gas to each cylinder of the engine 1.
  • the EGR device 11 includes an exhaust gas recirculation passage (EGR passage) 12 for flowing EGR gas from the exhaust passage 3 to the intake passage 2, and an exhaust gas recirculation cooler (EGR cooler) 13 for cooling the EGR gas flowing through the EGR passage 12.
  • the exhaust gas recirculation valve (EGR valve) 14 provided downstream from the EGR cooler 13 in order to adjust the flow rate of the EGR gas flowing through the EGR passage 12, and the EGR gas flowing through the EGR passage 12 are distributed to each cylinder of the engine 1. Therefore, an exhaust gas recirculation gas distributor (EGR gas distributor) 15 for distributing EGR gas to each branch pipe 5b of the intake manifold 5 is provided.
  • the EGR gas distributor 15 is provided in the EGR cooler 13, the bypass passage 16, and the EGR passage 12 downstream of the EGR valve 14.
  • the EGR passage 12 includes an inlet 12a and an outlet 12b.
  • the inlet 12a of the EGR passage 12 is connected to the exhaust passage 3 upstream of the catalyst 7, and the outlet 12b of the passage 12 is connected to the EGR gas distributor 15.
  • the EGR gas distributor 15 is made of a resin material, is located downstream of the EGR cooler 13 and the bypass passage 16, and constitutes the final stage (part) of the downstream EGR passage in the disclosed technique.
  • the EGR valve 14 is provided adjacent to the EGR cooler 13 downstream of the EGR cooler 13.
  • the EGR cooler 13 is configured to exchange heat between the EGR gas and the cooling water of the engine 1 in order to cool the EGR gas flowing through the EGR passage 12.
  • a bypass passage 16 is provided between the EGR valve 14 and the EGR cooler 13.
  • the bypass passage 16 is a passage for bypassing a part of the EGR gas flowing to the EGR cooler 13 in the EGR passage 12.
  • the bypass passage 16 is provided with a bypass valve 17 for opening and closing the passage 16.
  • the EGR gas distributor 15 is mainly composed of a resin material, has a horizontally long shape as a whole, and has a plurality of branch pipes of the intake manifold 5 in the longitudinal direction (left-right direction in FIG. 1) as shown in FIG. Arranged so as to cross 5b.
  • the EGR gas distributor 15 is branched from one gas chamber 15a in which the EGR gas introduced from the outlet 12b of the EGR passage 12 collects, and the gas chamber 15a, and the EGR is branched from the gas chamber 15a to each branch pipe 5b. It includes a plurality (4) gas distribution passages 15b for distributing gas.
  • FIGS. 2 and 3 show a cross-sectional view of the EGR cooler 13, the bypass passage 16, the bypass valve 17, and a part of the EGR valve 14 cut along the longitudinal direction thereof.
  • FIG. 2 shows a state in which the bypass valve 17 is opened
  • FIG. 3 shows a state in which the bypass valve 17 is closed.
  • the inlet flange 18a of the EGR valve 14 is connected to the outlet flange 31d of the EGR cooler 13.
  • the bypass passage 16 is arranged vertically upward with respect to the EGR cooler 13 and the EGR valve 14 from the EGR cooler 13 to the housing 18 of the EGR valve 14.
  • arrow A1 indicates the flow of cooling water
  • arrow A2 indicates the flow of hot EGR gas
  • arrow A3 indicates the flow of cooled EGR gas (same below).
  • FIG. 4 shows a part of the EGR cooler 13 and the bypass passage 16 in FIGS. 2 and 3 by a cross-sectional view.
  • the EGR cooler 13 introduces the EGR gas from the housing 31, the heat exchanger 32 provided in the housing 31, the introduction port 33 for introducing the EGR gas into the housing 31, and the housing 31. Includes a derivation port 34 for derivation.
  • the EGR cooler 13 is obliquely arranged in the EGR passage 12 so that the EGR gas flows diagonally upward. In this diagonally arranged state, the outlet port 34 is arranged at a position higher in the vertical direction than the introduction port 33.
  • the housing 31 includes a main body portion 31a in which the heat exchanger 32 is provided, an introduction portion 31b between the main body portion 31a and the introduction port 33, a lead-out portion 31c between the main body portion 31a and the outlet port 34, and an outlet flange. Including 31d.
  • the introduction unit 31b has an introduction space 35 inside thereof.
  • the derivation unit 31c has a derivation space 36 inside thereof.
  • the heat exchanger 32 includes a water passage 41 through which cooling water flows and a gas passage 42 arranged in the water passage 41 through which EGR gas flows.
  • the gas passage 42 is composed of a plurality of small gas passages 42A having a flat shape.
  • Each small gas passage 42A is provided with a plurality of internal fins 44 so as to be in contact with the inner wall thereof.
  • the water passage 41 is composed of an internal space of the main body portion 31a, and both ends of the internal space in the axial direction are closed by partition walls 43A and 43B.
  • the main body 31a is formed with an intake port 38 for taking cooling water into the water passage 41 and an outlet 39 for taking out the cooling water from the water passage 41.
  • the plurality of small gas passages 42A are arranged in parallel with each other via the gaps constituting the water passage 41.
  • the openings at both ends of each small gas passage 42A are arranged so as to penetrate the partition walls 43A and 43B, and communicate with the introduction space 35 and the lead-out space 36, respectively.
  • a part of the bypass passage 16 is integrally formed in the EGR cooler 13.
  • the EGR cooler 13 and the bypass passage 16 are adjacent to each other via the partition wall 46.
  • the partition wall 46 includes a main wall portion 46a in contact with the heat exchanger 32 and a downstream wall portion 46b extending downstream from the heat exchanger 32.
  • the downstream wall portion 46b includes a wall portion 46ba integrally formed with the housing 31 of the EGR cooler 13, and a wall portion 46bb integrally formed with the housing 18 of the EGR valve 14.
  • bypass valve 17 is integrally attached to the housing 18 of the EGR valve 14 and opens and closes the bypass passage 16 provided in the housing 18.
  • the housing 18 of the EGR valve 14 is made of an aluminum material.
  • the bypass valve 17 includes a valve body 21 and an actuator 22 configured to close the valve body 21 from the open state when the temperature of the cooling water of the engine 1 becomes equal to or higher than the first predetermined value.
  • the first predetermined value is set to a temperature in the range of "40 ° C. or higher and lower than 65 ° C.”
  • the bypass valve 17 is configured by a thermowax valve.
  • FIGS. 5 and 6 show a specific example of the bypass valve 17 in a cross-sectional view.
  • FIG. 5 shows the bypass valve 17 in the valve open state
  • FIG. 6 shows the bypass valve 17 in the valve closed state.
  • the bypass valve 17 seals the casing 23, the thermowax 24 built in the casing 23, and the thermowax 24 in addition to the valve body 21, and expands the thermowax 24.
  • a diaphragm 25 that can be deformed according to shrinkage.
  • the valve body 21 has a shaft shape, one end thereof is fixed to the diaphragm 25, and the other end portion is provided so as to be reciprocating with respect to the casing 23.
  • the actuator 22 is composed of a thermowax 24 and a diaphragm 25, and is configured to operate in response to a change in temperature.
  • the thermowax 24 contracts as shown in FIG. 5, and the valve body 21 is pulled into the casing 23 via the diaphragm 25 to open the valve. That is, the bypass passage 16 is opened.
  • the thermowax 24 expands as shown in FIG. 6, so that the valve body 21 protrudes from the casing 23 via the diaphragm 25 and closes. That is, the bypass passage 16 is closed.
  • the housing 18 of the EGR valve 14 is formed with a cooling water passage (not shown) through which the cooling water of the engine 1 flows, and the cooling water heats or cools the housing 18.
  • the bypass valve 17 since the bypass valve 17 is attached to the housing 18 of the EGR valve 14, when the temperature of the cooling water is low, the housing 18 and the bypass valve 17 cannot be warmed, as shown in FIG. The bypass valve 17 opens.
  • the bypass valve 17 opens, as shown in FIG. 2, most of the EGR gas introduced from the introduction port 33 of the EGR cooler 13 flows through the bypass passage 16, and the remaining EGR gas flows through the EGR cooler 13 (heat). It flows through the exchanger 32) and joins at the EGR valve 14, respectively.
  • the merged EGR gas further flows to the EGR gas distributor 15, is distributed to each cylinder of the engine 1 via the intake manifold 5, and is recirculated.
  • the housing 18 and the bypass valve 17 are warmed, and the bypass valve 17 is closed as shown in FIG.
  • the bypass valve 17 is closed, as shown in FIG. 3
  • all of the EGR gas introduced from the introduction port 33 of the EGR cooler 13 flows to the EGR cooler 13 (heat exchanger 32) to be cooled, and further EGR. It flows to the valve 14 and the EGR gas distributor 15, is distributed to each cylinder of the engine 1 via the intake manifold 5, and is recirculated.
  • FIG. 7 shows the opening / closing characteristics of the bypass valve 17 graphically.
  • the horizontal axis shows the cooling water temperature THW
  • the vertical axis shows the opening degree of the bypass valve 17.
  • the bypass valve 17 is fully opened when the cooling water temperature THW is less than "40 ° C.” and is fully opened when the cooling water temperature THW is "65 ° C.” or higher due to the characteristics of the thermowax 24. It is fully closed, and the opening between fully open and fully closed is in the range of "40 ° C" or more and less than "65 ° C".
  • various sensors and the like 81 to 88 provided in this engine system constitute an operating state detecting means for detecting an operating state of the engine 1.
  • the water temperature sensor 81 provided in the engine 1 detects the temperature (cooling water temperature) THW of the cooling water flowing inside the engine 1 and outputs an electric signal according to the detected value.
  • the rotation speed sensor 82 provided in the engine 1 detects the rotation angle (crank angle) of the crankshaft of the engine 1 and uses the change in the crank angle (crank angle speed) as the rotation speed (engine rotation speed) NE of the engine 1. Detects and outputs an electric signal according to the detected value.
  • the air flow meter 83 provided in the vicinity of the air cleaner 9 detects the intake air amount Ga flowing through the air cleaner 9, and outputs an electric signal according to the detected value.
  • the intake pressure sensor 84 provided in the surge tank 5a detects the intake pressure PM in the intake passage 2 (surge tank 5a) downstream of the throttle device 4, and outputs an electric signal according to the detected value.
  • the throttle sensor 85 provided in the throttle device 4 detects the opening degree (throttle opening degree) TA of the throttle valve 4a and outputs an electric signal corresponding to the detected value.
  • the oxygen sensor 86 provided in the exhaust passage 3 between the inlet 12a of the EGR passage 12 and the catalyst 7 detects the oxygen concentration Ox in the exhaust and outputs an electric signal according to the detected value.
  • the intake air temperature sensor 87 provided at the inlet of the air cleaner 9 detects the temperature (intake air temperature) THA of the outside air sucked into the air cleaner 9, and outputs an electric signal according to the detected value.
  • the wall temperature sensor 88 provided in the EGR gas distributor 15 detects the wall temperature (wall temperature) THDW of the EGR gas distributor 15 and outputs an electric signal according to the detected value.
  • the wall temperature sensor 88 corresponds to an example of the temperature detection means in this disclosed technique.
  • This engine system further includes an electronic control unit (ECU) 90 that controls the system.
  • ECU electronice control unit
  • Various sensors and the like 81 to 88 are connected to the ECU 90, respectively.
  • an injector (not shown) and an ignition coil (not shown) are connected to the ECU 90.
  • the ECU 90 corresponds to an example of the first control means in this disclosure technique.
  • the ECU 90 includes a central processing unit (CPU), various memories, an external input circuit, an external output circuit, and the like.
  • a predetermined control program related to various controls is stored in the memory.
  • the CPU executes fuel injection control, ignition timing control, EGR control, and the like based on a predetermined control program based on the detection signals of various sensors and the like 81 to 88 input via the input circuit.
  • the ECU 90 controls the EGR valve 14 according to the operating state of the engine 1 in the EGR control. Specifically, the ECU 90 controls the EGR valve 14 to be fully closed when the engine 1 is stopped, idle operation, and deceleration operation, and obtains a target EGR opening degree according to the operating state at other times. , The EGR valve 14 is controlled to the target EGR opening degree. At this time, when the EGR valve 14 is opened, it is discharged from the engine 1 to the exhaust passage 3, and a part of the exhaust gas is used as EGR gas in the EGR passage 12, the EGR cooler 13, the EGR valve 14, and the EGR gas distributor 15. It flows to the intake passage 2 (intake manifold 5) via the above, and is distributed to each cylinder of the engine 1 to be circulated.
  • intake manifold 5 intake manifold 5
  • the opening and closing of the bypass passage 16 by the bypass valve 17 is switched depending on the temperature of the cooling water flowing through the housing 18 of the EGR valve 14, but may not be switched depending on the temperature of the EGR gas. That is, the bypass valve 17 may not close from the valve open state, and the high temperature EGR gas may continue to flow to the EGR valve 14 and the EGR gas distributor 15. Therefore, when the EGR is started when the cooling water temperature is low and the water temperature is low and the engine 1 is operated under conditions of high rotation and high load, the high temperature EGR gas flows into the resin EGR gas distributor 15. , The distributor 15 may be melted by heat. Therefore, in this embodiment, in order to prevent the EGR gas distributor 15 from being melted when the temperature of the EGR gas becomes higher than necessary, the ECU 90 performs the following first EGR control. It has become.
  • FIG. 8 shows the contents of the first EGR control by a flowchart.
  • step 110 the ECU 90 determines whether or not the wall temperature THDW is equal to or higher than the allowable heating temperature of the EGR gas distributor 15. "120 ° C.” is an example. If the determination result is affirmative, the ECU 90 shifts the process to step 120, and if the determination result is negative, the ECU 90 shifts the process to step 140.
  • step 120 the ECU 90 executes a forced EGR cut on the assumption that the EGR gas distributor 15 may be melted because the wall temperature THDW is "120 ° C.” or higher. That is, the ECU 90 controls the EGR valve 14 to be fully closed.
  • step 130 the ECU 90 sets the forced EGR cut flag XEGRC to "1" and returns the process to step 100.
  • step 140 after shifting from step 110, the ECU 90 determines whether or not the forced EGR cut flag XEGRC is "1", that is, whether or not the forced EGR cut has already been executed. If the determination result is affirmative, the ECU 90 shifts the process to step 150, and if the determination result is negative, the ECU 90 shifts the process to step 180.
  • step 150 the ECU 90 determines whether or not the wall temperature THDW is "100 ° C.” or higher. If the determination result is affirmative, the ECU 90 assumes that the wall temperature THDW is "100 ° C.” or higher and there is still a risk of melting damage to the EGR gas distributor 15, and the process proceeds to step 120. If this determination result is negative, the process proceeds to step 160, assuming that the EGR gas distributor 15 is not likely to be melted.
  • step 160 the ECU 90 releases the forced EGR cut. That is, the ECU 90 releases the fully closed control of the EGR valve 14.
  • step 170 the ECU 90 sets the forced EGR cut flag XEGRC to "0" and returns the process to step 100.
  • step 180 after shifting from step 140, the ECU 90 executes normal EGR control and returns the process to step 100.
  • the normal EGR control is to control the EGR valve 14 based on the target EGR opening degree calculated according to the operating state of the engine 1.
  • the ECU 90 EGR The valve 14 is forcibly controlled to be fully closed. Specifically, in the first EGR control, the ECU 90 avoids melting damage of the resin EGR gas distributor 15 when the wall temperature THDW of the EGR gas distributor 15 becomes a high temperature of "120 ° C.” or higher. It is designed to perform a forced EGR cut in order to do so. According to this first EGR control, even if the bypass valve 17 made of the thermowax valve remains open (open failure), the wall temperature THDW may become a high temperature of "120 ° C.” or higher. Therefore, the forced EGR cut will be executed. Therefore, this first EGR control functions as a fail-safe when the bypass valve 17 opens and fails.
  • the EGR gas flowing through the bypass passage 16 among the EGR gas is heat exchanged by the heat exchanger 32 with the EGR gas whose temperature has dropped.
  • the temperature drops due to the confluence of the EGR gas, and the EGR gas whose temperature has dropped to an appropriate temperature flows to the EGR gas distributor 15.
  • the valve body 21 of the bypass valve 17 is closed from the open state by the actuator 22 composed of the thermowax 24.
  • the actuator 22 of the bypass valve 17 is composed of the thermowax 24 and the diaphragm 25 and operates in response to a change in temperature, it is not necessary to electrically control the bypass valve 17.
  • the configuration of the bypass valve 17 is simplified. Therefore, the product cost as an EGR system can be suppressed.
  • the housing 18 of the EGR valve 14 is formed of an aluminum material, its thermal conductivity is good.
  • the bypass valve 17 is provided integrally with the housing 18 of the EGR valve 14, and the actuator 22 thereof is composed of the thermowax 24 and the diaphragm 25, and operates in response to a change in temperature. Therefore, the valve body 21 of the bypass valve 17 opens and closes according to the temperature change of the housing 18 of the EGR valve 14. Therefore, when the housing 18 of the EGR valve 14 is provided with a cooling water passage through which the cooling water of the engine 1 flows, the bypass valve 17 can be opened and closed according to the temperature change of the cooling water.
  • the EGR cooler 13 and the bypass passage 16 are adjacent to each other via the partition wall 46, heat exchange is possible between the EGR cooler 13 and the bypass passage 16 via the partition wall 46. .. Therefore, the heat of the EGR gas flowing through the bypass passage 16 can be released to the EGR cooler 13, and the temperature of the EGR gas flowing to the EGR gas distributor 15 can be lowered by that amount, and the EGR gas distributor 15 is melted. The loss can be suppressed more reliably.
  • the wall temperature THDW of the EGR gas distributor 15 detected by the wall temperature sensor 88 exceeds the allowable heating temperature (120 ° C.) of the EGR gas distributor 15. If so, the ECU 90 forcibly controls the EGR valve 14 to be fully closed, that is, executes a forced EGR cut. Therefore, the flow of EGR gas in the EGR passage 12 is immediately cut off, and excessive heating exceeding the allowable heating temperature of the EGR gas distributor 15 is immediately stopped. Therefore, even if the temperature of the EGR gas flowing to the EGR gas distributor 15 becomes higher than necessary, the EGR gas distributor 15 can be reliably prevented from being melted by stopping the flow of the EGR gas.
  • This embodiment is different from the "first EGR control" of the first embodiment in the content of the "second EGR control” executed by the ECU 90.
  • the ECU 90 corresponds to an example of a second control means in this disclosure technique.
  • FIG. 9 shows the contents of the second EGR control by a flowchart.
  • the ECU 90 sets the cooling water temperature THW and the engine rotation speed based on the detection values of the water temperature sensor 81, the rotation speed sensor 82, the throttle sensor 85, the intake air temperature sensor 87 and the wall temperature sensor 88.
  • the NE, intake air temperature THA, engine load KL, and wall temperature THDW are taken in, respectively.
  • the ECU 90 can obtain the engine load KL based on the throttle opening TA or the intake pressure PM.
  • step 210 the ECU 90 determines whether or not the EGR start permission condition is satisfied.
  • the ECU 90 can determine the establishment of the EGR start permission condition based on the various parameters THW and THA taken in. If the determination result is affirmative, the ECU 90 shifts the process to step 220, and if the determination result is negative, the ECU 90 shifts the process to step 290.
  • the ECU 90 obtains a target EGR opening degree TEGR according to the intake air temperature THA, the cooling water temperature THW, the engine speed NE, and the engine load KL.
  • the ECU 90 can obtain a target EGR opening TEGR according to various parameters THA, THW, NE, and KL by referring to a predetermined target EGR opening map (not shown), for example.
  • step 230 the ECU 90 determines whether or not the wall temperature THDW of the EGR gas distributor 15 is less than the heat resistant temperature of the EGR gas distributor 15, "140 ° C.”. "140 ° C” is an example. If the determination result is affirmative, the ECU 90 shifts the process to 240, and if the determination result is negative, the ECU 90 shifts the process to step 340.
  • step 240 the ECU 90 determines whether or not the forced EGR cut flag XEGRC is “0”. As will be described later, this flag XEGRC is set to "1" when the forced EGR cut is executed. If the determination result is affirmative, the ECU 90 shifts the process to 250, and if the determination result is negative, the ECU 90 shifts the process to step 310.
  • step 250 the ECU 90 determines whether or not the wall temperature THDW is equal to or higher than the allowable heating temperature of the EGR gas distributor 15. "120 ° C.” is an example. If the determination result is affirmative, the ECU 90 shifts the process to 260, and if the determination result is negative, the ECU 90 shifts the process to step 280.
  • the ECU 90 obtains the EGR allowable opening degree TEGRMX according to the cooling water temperature THW.
  • the ECU 90 can obtain the EGR allowable opening degree TEGRMX according to the cooling water temperature THW, for example, by referring to the EGR allowable opening degree map as shown in FIG. In this map, when the cooling water temperature THW is less than "40 ° C", the EGR allowable opening TEGRMX is "40 (%)", and the cooling water temperature THW is "65 ° C" or more.
  • the EGR allowable opening TEGRMX is fully opened at "100 (%)" and the cooling water temperature THW is "40 ° C" or more and less than "65 ° C"
  • the EGR allowable opening TEGRMX is "40 (%)".
  • the opening is between the opening and the full opening of "100%”.
  • step 270 the ECU 90 determines whether or not the target EGR opening degree TEGR is smaller than the EGR allowable opening degree TEGRMX. If the determination result is affirmative, the ECU 90 shifts the process to 280, and if the determination result is negative, the ECU 90 shifts the process to step 300.
  • step 280 the ECU 90 controls the EGR valve 14 to the target EGR opening degree TEGR, and returns the process to step 200.
  • the ECU 90 When shifting from step 270 to step 300, the ECU 90 sets the EGR allowable opening TEGRMX to the target EGR opening TEGR, and shifts the process to step 280.
  • step 340 after shifting from step 230, the ECU 90 sets the target EGR opening TEGR to "0" for forced EGR cut.
  • step 350 the ECU 90 sets the forced EGR cut flag XEGRC to "1" and shifts the process to step 280.
  • step 310 after shifting from step 240, the ECU 90 determines whether or not the wall temperature THDW of the EGR gas distributor 15 is less than "130 ° C.”. "130 ° C" is an example. If the determination result is affirmative, the ECU 90 shifts the process to 320, and if the determination result is negative, the ECU 90 shifts the process to step 340.
  • step 320 the ECU 90 releases the forced EGR cut that has already been executed. That is, the ECU 90 ends the control for forcibly closing the EGR valve 14.
  • step 330 the ECU 90 sets the forced EGR cut flag XEGRC to "0" and shifts the process to step 280.
  • step 290 after shifting from step 210, the ECU 90 sets the target EGR opening degree TEGR to "0" and shifts the process to step 280.
  • the ECU 90 determines the EGR when the wall temperature THDW detected by the wall temperature sensor 88 (temperature detection means) exceeds the heat resistant temperature (140 ° C.) of the EGR gas distributor 15.
  • the valve 14 is forcibly controlled to be fully closed (forced EGR cut).
  • the ECU 90 distributes EGR gas when the wall temperature THDW detected by the wall temperature sensor 88 (temperature detecting means) is equal to or higher than the third predetermined value (the allowable heating temperature (120 ° C.) or more and less than 130 ° C. of the EGR gas distributor 15).
  • the EGR valve 14 is controlled to a normal opening degree.
  • the second EGR control obtains the following actions and effects. That is, when the wall temperature THDW of the EGR gas distributor 15 detected by the wall temperature sensor 88 exceeds the heat resistant temperature (140 ° C.) of the EGR gas distributor 15, the ECU 90 forcibly fills the EGR valve 14. Control to close, i.e. perform a forced EGR cut. Therefore, the flow of EGR gas in the EGR passage 12 is immediately cut off, and excessive heating exceeding the heat resistant temperature (140 ° C.) of the EGR gas distributor 15 is immediately stopped.
  • the EGR gas distributor 15 can be reliably prevented from being melted by stopping the flow of the EGR gas. Further, when the wall temperature THDW detected by the wall temperature sensor 88 is equal to or higher than the third predetermined value (120 ° C. or higher and lower than 130 ° C.) and lower than the heat resistant temperature (140 ° C.) of the EGR gas distributor 15, the ECU 90 performs EGR.
  • the valve 14 is controlled to a normal opening degree.
  • the flow rate of the EGR gas flowing through the EGR passage 12 is appropriately adjusted, and the flow rate of the EGR gas flowing to the EGR gas distributor 15 is suppressed to a flow rate that does not exceed the heat resistant temperature (140 ° C.). Therefore, it is possible to suppress the melting damage of the EGR gas distributor 15 and the generation of condensed water in the EGR gas distributor 15 while recirculating the EGR gas to the engine 1 via the EGR gas distributor 15.
  • the forced EGR cut is not executed, so that the effect of EGR (for example, the fuel consumption reduction effect) can be obtained in the engine 1.
  • This embodiment is different from the “first EGR control" and the “second EGR control" of each of the above-described embodiments in terms of the content of the "third EGR control" executed by the ECU 90.
  • FIG. 11 shows the contents of the third EGR control by a flowchart.
  • the third EGR control shown in FIG. 11 is different from the second EGR control shown in FIG. 9 in that the process of step 250 is omitted.
  • step 310 the process of step 250 shown in FIG. 9, that is, the determination of whether or not the wall temperature THDW is “120 ° C.” or higher is omitted, and the process proceeds from step 240 to step 260.
  • Other processing contents are the same as those of the second EGR control shown in FIG.
  • the ECU 90 determines whether the wall temperature THDW is "120 ° C.” or higher. Regardless of this, by controlling the EGR valve 14 to the EGR allowable opening TEGRMX according to the cooling water temperature THW, the wall temperature THDW is suppressed to an EGR gas flow rate that does not exceed the heating allowable temperature "120 ° C”. ing.
  • the ECU 90 has the ECU 90 regardless of whether the wall temperature THDW is “120 ° C.” or higher.
  • the EGR valve 14 By controlling the EGR valve 14 to the EGR allowable opening degree TEGRMX according to the cooling water temperature THW, the wall temperature THDW is suppressed to an EGR gas flow rate that does not exceed "120 ° C.”.
  • FIG. 12 graphically shows the change in the opening degree of the EGR valve 14 after the start of EGR.
  • FIG. 13 also graphically shows the change in the wall temperature THDW after the start of EGR.
  • the thick line shows the case of the second EGR control of the second embodiment
  • the broken line shows the case of the third EGR control of the present embodiment.
  • the opening degree of the EGR valve 14 during a predetermined period from the start of EGR (time t1) to time t2 is the target EGR in the case of the second EGR control. Since the EGR allowable opening TEGRMX is controlled to be lower than the opening TEGR, the flow rate of the EGR gas flowing to the EGR gas distributor 15 is suppressed by that amount, and the wall temperature THDW of the EGR gas distributor 15 is increased even after the time t2. It can be suppressed to less than "120 ° C".
  • the opening degree of the EGR valve 14 is controlled to the target EGR opening degree TEGR larger than the EGR allowable opening degree TEGRMX from the time of EGR start (time t1), and the wall temperature THDW becomes higher after the time t2 elapses.
  • the EGR allowable opening degree TEGRMX is controlled to be lower than the target EGR opening degree TEGR. Therefore, the flow rate of the EGR gas flowing to the EGR gas distributor 15 increases by the amount controlled to the target EGR opening degree TEGR for the predetermined period, and the wall temperature THDW of the EGR gas distributor 15 increases by that amount to "120 ° C.” Will be exceeded once.
  • the effect of the EGR gas in the engine 1 is reduced by the amount of the decrease in the flow rate of the EGR gas as described above, but the wall temperature THDW is suppressed to less than "120 ° C". Therefore, it is possible to reliably prevent the EGR gas distributor 15 from being melted.
  • This embodiment differs from each of the above embodiments in that the structure of the bypass valve 17 made of a thermowax valve is different.
  • FIG. 14 shows the bypass valve 17 in the valve open state
  • FIG. 15 shows the bypass valve 17 in the valve closed state.
  • the bypass valve 17 made of a thermowax valve when the thermowax 24 is excessively expanded, the valve body 21 protrudes excessively, the tip of the bypass valve 17 hits the wall portion 46bb, and the valve body 21 or the wall portion 46bb may be damaged. .. Therefore, in this embodiment, even if the valve body 21 tries to protrude excessively, the damage to the valve body 21 or the wall portion 46bb is alleviated.
  • the cap 26 slidable with respect to the valve body 21 is attached to the tip of the valve body 21 of the bypass valve 17 so as not to fall off.
  • a cushioning spring 27 is provided between the cap 26 and the valve body 21.
  • This embodiment is different from the first embodiment in that the structure is related to the bypass valve 17 made of a thermowax valve.
  • [Bypass valve] 16 and 17 show a part of the EGR cooler 13, the bypass passage 16, the bypass valve 17, and the EGR valve 14 by a cross-sectional view according to FIGS. 2 and 3.
  • FIG. 16 shows a state in which the bypass valve 17 is opened
  • FIG. 17 shows a state in which the bypass valve 17 is closed. Also in this embodiment, even if the thermowax 24 is excessively expanded and the valve body 21 is excessively projected, the valve body 21 or the wall portion 46bb is not damaged.
  • a relief hole 47 for avoiding interference with the valve body 21 is provided in the wall portion 46bb of the partition wall 46 to which the tip of the valve body 21 of the bypass valve 17 abuts. Is formed.
  • This embodiment differs from each of the above embodiments in that the configuration is related to the bypass valve 17 including the thermowax valve.
  • [Bypass valve] 18 and 19 show a part of the EGR cooler 13, the bypass passage 16, the bypass valve 17, and the EGR valve 14 by a cross-sectional view according to FIG. 18 and 19 show a state in which the bypass valve 17 is closed when the cooling water temperature THW becomes “65 ° C.” or higher.
  • the bypass passage 16 is provided with a sub-bypass passage 48 for bypassing the EGR gas flowing to the bypass valve 17.
  • the sub-bypass passage 48 is arranged at a position exposed to the outside air.
  • the sub-bypass passage 48 is provided with a sub-bypass valve 49 made of a thermowax valve that opens when the outside air temperature becomes less than the second predetermined value.
  • the second predetermined value is set to a temperature in the range of "-10 ° C. or higher and lower than 5 ° C.”
  • the basic configuration of the sub-bypass valve 49 is the same as that of the bypass valve 17 shown in FIGS. 5 and 6.
  • the sub-bypass valve 49 is attached to the sub-bypass passage 48 via the heat insulating layer 50 so as not to transfer the heat transferred to the housing 18 of the EGR valve 14 to the thermowax.
  • FIG. 18 shows a state in which the sub-bypass valve 49 is opened
  • FIG. 19 shows a state in which the sub-bypass valve 49 is closed.
  • the sub-bypass valve 49 operates in response to a change in the outside air temperature. That is, the sub-bypass valve 49 opens as shown in FIG. 18 when the outside air temperature becomes less than "-10 ° C", and as shown in FIG. 19 when the outside air temperature becomes "5 ° C" or higher. It is designed to close the valve.
  • the operation and effect are different from those of each embodiment in the difference of the configuration related to the bypass valve 17. That is, in this embodiment, the bypass passage 16 is provided with a sub-bypass passage 48 that bypasses the EGR gas flowing to the bypass valve 17. Further, the sub-bypass valve 49 provided in the sub-bypass passage 48 is opened when the outside air temperature becomes less than the second predetermined value (-10 ° C.). Therefore, even when the bypass valve 17 is closed, when the outside air temperature becomes less than the second predetermined value, the sub-bypass valve 49 opens and EGR to the downstream side through the bypass passage 16 and the sub-bypass passage 48.
  • the bypass passage 16 is provided with a sub-bypass passage 48 that bypasses the EGR gas flowing to the bypass valve 17.
  • the sub-bypass valve 49 provided in the sub-bypass passage 48 is opened when the outside air temperature becomes less than the second predetermined value (-10 ° C.). Therefore, even when the bypass valve 17 is closed, when the outside air temperature becomes less than the second predetermined value, the sub-bypass
  • This embodiment is different from each of the above embodiments in terms of the arrangement and structure of the bypass valve 17 in the bypass passage 16.
  • FIG. 20 and 21 show a cross-sectional view of the EGR cooler 13, the bypass passage 16, the bypass valve 17, and a part of the EGR valve 14 cut along the longitudinal direction thereof.
  • FIG. 20 shows a state in which the bypass valve 17 is opened
  • FIG. 21 shows a state in which the bypass valve 17 is closed.
  • the bypass valve 17 is attached directly to the bypass passage 16 in the EGR cooler 13 rather than in the housing 18 of the EGR valve 14.
  • the housing 31 and the bypass passage 16 of the EGR cooler 13 are each made of a thin SUS plate, the heat transfer coefficient is poor, and the heat of the cooling water of the engine 1 flowing to the heat exchanger 32 is difficult to transfer.
  • the bypass valve 17 cannot be operated according to the temperature of the cooling water.
  • the bypass valve 17 in order to allow the cooling water of the engine 1 to flow around the bypass valve 17, the bypass valve 17 is provided with an adapter 51 including a cooling water passage 51a through which the cooling water flows.
  • the adapter 51 is made of a metal having a good heat transfer coefficient.
  • Other configurations are the same as the configurations of the above-described embodiments.
  • the operation and effect of the EGR system are different from those of each embodiment in the difference in the arrangement and structure of the bypass valve 17. That is, in this embodiment, the bypass valve 17 is provided in the bypass passage 16 provided integrally with the housing 31 of the EGR cooler 13, and the adapter 51 including the cooling water passage 51a through which the cooling water flows is provided around the bypass valve 17. It will be provided. Therefore, when the actuator 22 of the bypass valve 17 operates in response to a change in temperature, the actuator 22 operates in response to a change in the temperature of the cooling water flowing through the cooling water passage 51a, and the bypass valve 17 operates. The valve body 21 opens and closes according to a change in the temperature of the cooling water.
  • the actuator 22 of the bypass valve 17 operates in response to a change in the temperature of the cooling water, so that the bypass valve 17 is electrically operated. It is not necessary to control the bypass valve 17, and the configuration of the bypass valve 17 can be simplified.
  • FIGS. 22 and 23 show a cross-sectional view of the EGR cooler 13, the bypass passage 16, and a part of the bypass valve 17 and the EGR valve 14 cut along the longitudinal direction thereof.
  • FIG. 22 shows a state in which the bypass valve 17 is opened
  • FIG. 23 shows a state in which the bypass valve 17 is closed.
  • the bypass passage 16 is vertically downward with respect to the EGR valve 14 and the EGR cooler 13.
  • bypass passage 16 It is arranged so that the upstream side of the bypass passage 16 is inclined downward in the vertical direction toward the exhaust passage 3 of the engine 1.
  • the bypass passage 16 is different from each of the above-described embodiments provided on the upper side of the EGR valve 14 and the EGR cooler 13 in the vertical direction.
  • the bypass valve 17 made of a thermowax valve is attached to the housing 18 of the EGR valve 14 corresponding to the bypass passage 16 as in the first to sixth embodiments.
  • arrow A4 indicates the flow of condensed water.
  • the operation and effect are different from those of each embodiment in the difference in the arrangement of the bypass passage 16 with respect to the EGR cooler 13. That is, in this embodiment, in the state where the EGR cooler 13 is mounted on the vehicle, the bypass passage 16 is arranged on the lower side in the vertical direction with respect to the EGR cooler 13, so that the condensed water generated by the EGR cooler 13 is the same. Due to its own weight, it can flow down to the bypass passage 16. Further, since the upstream side of the bypass passage 16 is inclined downward in the vertical direction toward the exhaust passage 3, the condensed water flowing down to the bypass passage 16 can flow down to the exhaust passage 3 due to its own weight. Therefore, the condensed water generated in the EGR passage 12, the EGR cooler 13, and the like can be discharged to the exhaust passage 3 through the bypass passage 16 by its own weight.
  • FIG. 24 shows a cross-sectional view of the EGR cooler 13, the bypass passage 16, and the bypass valve 17 cut along the longitudinal direction thereof.
  • FIG. 24 shows a state in which the bypass valve 17 is opened.
  • the bypass passage 16 is formed integrally with the housing 31 made of SUS of the EGR cooler 13 from the inlet side to the outlet side thereof. Also in this embodiment, the EGR cooler 13 and the bypass passage 16 are adjacent to each other via the partition wall 46.
  • the partition wall 46 includes a main wall portion 46a in contact with the heat exchanger 32 and a downstream wall portion 46b extending downstream from the heat exchanger 32.
  • the bypass valve 17 is attached to the housing 31 of the EGR cooler 13 at a rising portion having a steep slope on the outlet side of the bypass passage 16.
  • a plurality of communication holes communicating with the bypass passage 16 from the outlet side of the EGR cooler 13 in order to drain the condensed water flowing on the outlet side of the EGR cooler 13. 53 is provided.
  • the bypass valve 17 in order to allow the cooling water of the engine 1 to flow around the bypass valve 17, the bypass valve 17 is provided with an adapter 51 including a cooling water passage 51a through which the cooling water flows.
  • the adapter 51 is made of a metal having a good heat transfer coefficient.
  • the operation and effect of the EGR system are different from those of the eighth embodiment in the difference between the configuration of the EGR cooler 13 and the arrangement of the bypass valve 17. That is, in this embodiment, the condensed water flowing out from the heat exchanger 32 on the outlet side of the EGR cooler 13 tends to flow down from the communication hole 53 to the bypass passage 16 at the downstream wall portion 46b of the partition wall 46 due to its own weight. .. Therefore, the condensed water generated in the EGR passage 12 or the EGR cooler 13 or the like can be efficiently flowed to the bypass passage 16 by its own weight, and can be discharged to the exhaust passage 3.
  • FIG. 25 shows a cross-sectional view of the EGR cooler 13, the bypass passage 16, and the bypass valve 17 cut along the longitudinal direction thereof.
  • FIG. 25 shows a state in which the bypass valve 17 is opened.
  • the bypass valve 17 is attached to the housing 31 of the EGR cooler 13 corresponding to near the outlet of the heat exchanger 32.
  • the communication hole 53 is formed in the partition wall 46 (downstream wall portion 46b) near the outlet of the heat exchanger 32.
  • the communication hole 53 is arranged at a position facing the tip of the valve body 21 of the bypass valve 17, and functions as a relief hole for avoiding interference between the tip of the valve body 21 extending when the bypass valve 17 is closed and the downstream wall portion 46b. It is designed to do.
  • the communication hole 53 functions as a relief hole for avoiding interference between the tip of the valve body 21 and the downstream wall portion 46b when the bypass valve 17 is closed, so that the valve body 21 is excessively used when the valve is closed. Even if it protrudes, the tip end portion of the valve body 21 does not abut (contact) with the downstream wall portion 46b. Therefore, in the bypass valve 17, even if the thermowax 24 is excessively expanded and the valve body 21 is excessively projected (operated), it is possible to prevent the valve body 21 or the downstream wall portion 46b from being damaged.
  • FIG. 26 shows the EGR cooler 13, the bypass passage 16, and the bypass valve 17 in a cross-sectional view according to FIG. 24.
  • FIG. 27 shows the heat radiating fin 55 with a sectional view taken along the line BB of FIG. 26.
  • a plurality of heat radiation fins 55 adjacent to the partition wall 46 (downstream wall portion 46b) and parallel to the flow direction of the EGR gas are provided in the lead-out space 36 on the outlet side of the EGR cooler 13. It will be provided.
  • the lower side of the heat radiating fins 55 is connected to the downstream wall portion 46b, and the upper side of the heat radiating fins 55 is not connected to the housing 31 of the EGR cooler 13 and is separated.
  • Other configurations are the same as those of the ninth embodiment.
  • FIG. 28 shows the EGR cooler 13, the bypass passage 16, and the bypass valve 17 in a cross-sectional view according to FIG. 24.
  • a plurality of heat radiation fins 56 which are in contact with the partition wall 46 (main wall portion 46a) and are parallel to the flow direction of the EGR gas in the middle portion of the bypass passage 16 and directly below the heat exchanger 32. Is provided.
  • the upper side of the heat radiation fins 56 is connected to the main wall portion 46a, and the lower side of the heat radiation fins 56 is connected to the housing 31 of the EGR cooler 13.
  • the communication hole is not provided in the downstream wall portion 46b of the partition wall 46.
  • This embodiment is different from each of the above embodiments in terms of the configuration of the bypass valve 17 and the content of EGR control.
  • FIG. 29 shows a schematic configuration diagram of the engine system of this embodiment.
  • FIG. 30 shows the EGR cooler 13, the bypass passage 16, and the bypass valve 19 in a cross-sectional view according to FIG. 28.
  • the arrangement of the EGR cooler 13, the bypass passage 16 and the bypass valve 19 (valve closed state) in this embodiment is the same as that of the twelfth embodiment except that there is no heat radiation fin.
  • the bypass valve 19 is configured by a solenoid valve and is controlled by the ECU 90.
  • the actuator 22 of the bypass valve 19 is composed of an electrically operated solenoid 29.
  • the bypass valve 17 made of a thermowax valve can be replaced with a bypass valve 19 having a solenoid as an actuator to implement this embodiment.
  • the bypass valve 19 is configured to be closed (normally closed) when the actuator 22 (solenoid 29) is turned off and not operated.
  • FIG. 31 shows the contents of the fourth EGR control by a flowchart. As shown in FIG. 31, the fourth EGR control omits the processing of steps 260, 270 and 300, and instead adds the processing of steps 400 and 410 between steps 250 and 280. The content is different from the second EGR control shown in 9.
  • step 410 the ECU 90 executes the processes of steps 200 to 250, and if the determination result of step 250 is affirmative, the process proceeds to step 400 and the determination result of step 250 is negative. If so, the process proceeds to step 410.
  • step 400 the ECU 90 closes the bypass valve 19, and then shifts the process to step 280.
  • step 410 the ECU 90 opens the bypass valve 19, and then shifts the process to step 280.
  • the ECU 90 executes a forced EGR cut when the wall temperature THDW detected by the wall temperature sensor 88 exceeds the heat resistant temperature (140 ° C.) of the EGR gas distributor 15. Therefore, the EGR valve 14 is controlled to be fully closed. On the other hand, the ECU 90 closes the bypass valve 19 when the detected wall temperature THDW exceeds the allowable heating temperature of "120 ° C.” of the EGR gas distributor 15 when the forced EGR cut is not executed. In addition to controlling the actuator 22 (solenoid 29), normal EGR control is executed. In this embodiment, the ECU 90 corresponds to an example of the third control means of the present disclosure technique.
  • the bypass valve 19 is controlled to close so as to lower the temperature of the EGR gas. It is possible to suppress the melting damage of the EGR gas distributor 15 and the generation of condensed water in the EGR gas distributor 15.
  • the bypass valve 19 is closed when the actuator 22 (solenoid 29) is turned off and not operated, so that the bypass valve 19 is closed even if the solenoid 29 fails and does not operate. It is kept in a state. Therefore, even if the actuator 22 (solenoid 29) of the bypass valve 19 fails, the flow of EGR gas in the bypass passage 16 can be blocked, and the EGR gas distributor 15 (downstream EGR passage) is suppressed from being melted. can do.
  • This embodiment is different from the thirteenth embodiment in that in addition to the fourth EGR control in the thirteenth embodiment, the bypass switching control for switching the opening and closing of the bypass valve 19 is executed.
  • the bypass valve 19 When the engine 1 is cold (when not warmed up), the bypass valve 19 is opened in order to allow a part of the EGR gas flowing from the EGR passage 12 to the EGR cooler 13 to flow to the bypass passage 16 to detour. After that, when the warm-up of the engine 1 is completed, the bypass valve 19 is closed in order to allow almost all of the EGR gas to flow to the EGR cooler 13. However, even if the warm-up is completed once, the condensed water CW may stay in the vicinity of the outlet of the bypass passage 16 or the like as shown in FIG. 30 at low temperature. Therefore, in this embodiment, the following bypass valve switching control is executed in order to discharge the condensed water CW accumulated in the vicinity of the outlet of the bypass passage 16 after the bypass valve 19 is closed. ..
  • FIG. 32 shows the contents of the bypass valve switching control in this embodiment by a flowchart.
  • the ECU 90 sets the cooling water temperature THW and engine rotation based on the detection values of the water temperature sensor 81, the rotation speed sensor 82, the throttle sensor 85, the intake air temperature sensor 87 and the wall temperature sensor 88.
  • the number NE, intake temperature THA, engine load KL, and wall temperature THDW are taken in, respectively.
  • step 510 the ECU 90 determines whether or not there is a valve opening request to the bypass valve 19. If the determination result is affirmative, the ECU 90 shifts the process to step 520, and if the determination result is negative, the ECU 90 shifts the process to step 530.
  • step 520 the ECU 90 opens the bypass valve 19 and then returns the process to step 500.
  • step 530 the ECU 90 determines whether or not the cooling water temperature THW is less than "80 ° C.”. "80 ° C" is an example. If the determination result is affirmative, the ECU 90 shifts the process to step 540, and if the determination result is negative, the ECU 90 shifts the process to step 550.
  • step 540 the ECU 90 determines whether or not the EGR is cut, that is, whether or not the EGR is stopped. If the determination result is affirmative, the ECU 90 shifts the process to step 520, and if the determination result is negative, the ECU 90 shifts the process to step 550.
  • step 550 after shifting from step 530 or step 540, the ECU 90 closes the bypass valve 19 and returns the process to step 500.
  • the ECU 90 forcibly opens the bypass valve 19 on condition that the EGR cut is executed when the bypass valve 19 is closed. That is, in this embodiment, the actuator 22 (solenoid 29) of the bypass valve 19 is configured to open the valve body 21 under the condition that the EGR valve 14 is fully closed.
  • the actuator 22 (solenoid 29) of the bypass valve 19 opens the valve body 21 of the bypass valve 19 under the condition that the EGR cut is executed (the EGR valve 14 is fully closed). Therefore, when the valve body 21 of the bypass valve 19 is opened under the condition that the EGR valve 14 is fully closed, it accumulates downstream of the bypass valve 19 (on the outlet side of the bypass passage 16) when the valve body 21 is closed. The flow of the condensed water CW upstream from the bypass valve 19 is allowed.
  • the bypass valve 19 when the bypass valve 19 is closed, the condensed water CW accumulated in the bypass passage 16 downstream of the bypass valve 19 is transferred to the bypass passage 16 upstream of the bypass valve 19 by its own weight when the EGR cut is executed. It can be flushed and discharged to the exhaust passage 3.
  • FIG. 33 shows a front view of an EGR cooler 13 in which a bypass passage 16 and a bypass valve 60 are integrally provided.
  • FIG. 34 also shows the EGR cooler 13 with a rear view.
  • FIG. 35 shows a cross-sectional view of the EGR cooler 13 cut along its longitudinal direction when the valve body 61 of the bypass valve 60 is fully closed.
  • FIG. 36 shows an enlarged cross-sectional view of the portion of the EGR cooler 13 surrounded by the alternate long and short dash line square X1 in FIG. 35.
  • FIG. 37 shows a cross-sectional view of the EGR cooler 13 when the valve body 61 of the bypass valve 60 is half-opened, according to FIG. 35.
  • FIG. 38 shows the portion of the EGR cooler 13 surrounded by the one-dot chain line square X2 in FIG. 37 by an enlarged cross-sectional view.
  • FIG. 39 shows a cross-sectional view of the EGR cooler 13 when the valve body 61 of the bypass valve 60 is fully opened, according to FIG. 35.
  • FIG. 40 shows the portion of the EGR cooler 13 surrounded by the one-dot chain line square X3 in FIG. 39 by an enlarged cross-sectional view.
  • the bypass passage 16 is the EGR cooler 13 in a state of being mounted on the vehicle, similarly to the EGR cooler 13 of the eighth to 14th embodiments. It is arranged on the lower side in the vertical direction with respect to the above, and is provided so that the upstream side of the EGR cooler 13 and the bypass passage 16 is inclined downward in the vertical direction toward the exhaust passage 3 of the engine 1. Further, the heat exchanger 32 includes an inlet 32a into which the EGR gas flows in and an outlet 32b in which the EGR gas flows out. The bypass passage 16 also includes an inlet 16a through which the EGR gas flows in and an outlet 16b through which the EGR gas flows out.
  • the outlet 16b of the bypass passage 16 is arranged adjacent to the outlet 32b of the heat exchanger 32.
  • the valve body 61 and the rotating shaft 62 of the bypass valve 60 are arranged in the housing 31 of the EGR cooler 13 corresponding to the outlet 16b of the bypass passage 16.
  • FIGS. 33 to 40 for convenience, the illustration of the inlet and outlet of the cooling water is omitted, and the illustration of the heat exchanger 32 and the bypass valve 60 is simplified.
  • the bypass valve 60 of this embodiment includes a valve body 61 having a substantially square plate shape and a rotating shaft 62 that rotates the valve body 61, and one side of the valve body 61 is included. The side is fixed to the rotating shaft 62, and the other side of the valve body 61 facing the one side is configured as a swing type swinging around the rotating shaft 62.
  • the bypass valve 60 includes an actuator 63 that electrically operates to rotate the rotating shaft 62.
  • the actuator 63 includes a drive shaft 63a that can reciprocate in the axial direction, and the tip end portion of the drive shaft 63a is driven and connected to the rotating shaft 62 via a link 64.
  • valve body 61 of the bypass valve 60 when the valve body 61 of the bypass valve 60 closes the outlet 16b of the bypass passage 16 when the valve is closed (when fully closed), the valve body 61 is a heat exchanger. It is arranged so as to be substantially parallel to the direction (axial direction) of the axis L1 of the 32, and the valve body 61 is arranged at a position where the flow path directly downstream of the outlet 32b of the heat exchanger 32 is fully opened. Further, as shown in FIGS. 37 and 38, when the valve body 61 is half-opened (when the valve is opened) with the outlet 16b of the bypass passage 16 half-opened, the valve body 61 is at the outlet 32b of the heat exchanger 32.
  • valve body 61 when the valve body 61 fully opens the outlet 16b of the bypass passage 16 (when the valve is opened), the valve body 61 is one of the outlets 32b of the heat exchanger 32. It is arranged at a position where the portion is further blocked and the flow path area of the outlet 32b is further narrowed.
  • FIG. 41 shows a cross-sectional view of the configuration of the valve assembly 65 provided corresponding to the outlet 16b of the bypass passage 16.
  • a bearing case 66 is provided in the housing 31 of the EGR cooler 13 constituting the bypass passage 16.
  • the bearing case 66 includes a tubular portion 66a, a bottom portion 66b of the tubular portion 66a, and a flange portion 66c provided on the outer periphery of the bottom portion 66b.
  • the flange portion 66c of the bearing case 66 is fixed to the housing 31 via bolts 67.
  • a gasket 68 for preventing gas leakage is provided at a portion where the flange portion 66c of the bearing case 66 abuts on the housing 31.
  • a ball bearing 69 is provided inside the tubular portion 66a of the bearing case 66.
  • a rotary shaft 62 is rotatably supported by the ball bearing 69.
  • the base end portion 62a of the rotating shaft 62 penetrates the bottom portion 66b of the bearing case 66 and is arranged in the vicinity of the outlet 16b of the bypass passage 16.
  • a valve body 61 is fixed to the base end portion 62a via a screw 70.
  • a lip seal 71 for preventing gas leakage is provided on the rotating shaft 62.
  • the lip seal 71 is formed of a flexible material such as rubber.
  • the lip seal 71 corresponds to an example of a seal member in this disclosure technique.
  • a lever 72 for rotating the rotating shaft 62 is fixed to the tip of the rotating shaft 62.
  • the lever 72 can rotate integrally with the rotating shaft 62 and the valve body 61.
  • a valve closing spring 73 for urging the valve body 61 in the valve closing direction is provided on the outer periphery of the tubular portion 66a.
  • the valve closing spring 73 is interposed between the bearing case 66 and the lever 72, and rotates and urges the valve body 61 in the valve closing direction via the rotating shaft 62.
  • the valve assembly 65 described above can be assembled by the following procedure. That is, (1) First, the inside of the ball bearing 69 is press-fitted to the outer circumference of the rotating shaft 62. (2) The lip seal 71 is press-fitted into the inner circumference of the tubular portion 66a of the bearing case 66. (3) The outer circumference of the ball bearing 69 is press-fitted into the inner circumference of the tubular portion 66a, and the base end portion 62a of the rotating shaft 62 is passed through the lip seal 71 and the bottom portion 66b of the bearing case 66. (4) After fixing the valve body 61 to the base end portion 62a of the rotating shaft 62 with a screw 70, the head of the screw 70 is spot-welded.
  • a valve closing spring 73 is attached to the outer periphery of the tubular portion 66a of the bearing case 66, and a lever 72 is attached to the tip of the rotating shaft 62 and fixed to form a sub valve assembly.
  • the lever 72 can be fixed to the rotating shaft 62 by tightening, welding, or caulking a nut.
  • the assembly of the valve assembly 65 is completed by fixing the bearing case 66 of the sub-valve assembly to the housing 31 via the gasket 68 with bolts 67.
  • FIG. 42 shows the control contents by a flowchart.
  • the engine system of this embodiment adopts the engine system shown in FIG. 29, the bypass valve 19 in FIG. 29 is replaced with the bypass valve 60 of the present embodiment, and the actuator 63 is used to control the bypass valve 60. It shall be controlled.
  • step 600 the ECU 90 determines the engine rotation speed NE, the engine load KL, based on the detection values of the water temperature sensor 81, the rotation speed sensor 82, the throttle sensor 85, and the intake air temperature sensor 87.
  • the cooling water temperature THW and the intake temperature THA are taken in, respectively.
  • the ECU 90 obtains the target bypass opening TECBV according to the engine speed NE, the engine load KL, the cooling water temperature THW, and the intake air temperature THA.
  • the ECU 90 can obtain the target bypass opening degree TECBV corresponding to various parameters NE, KL, THW, and THA by referring to the target bypass opening degree map shown in FIG. 43, for example.
  • this target bypass opening degree map covers three intake air temperature ranges in which the intake air temperature THA (which is also the outside air temperature) is “-10 ° C. or lower”, “0 ° C.”, and “25 ° C. or higher”.
  • the cooling water temperature THW is defined in four cooling water temperature ranges of "less than 40 ° C", “40 ° C", “60 ° C” and "80 ° C or higher”.
  • the target bypass opening degree TECBV corresponding to the engine load KL and the engine speed NE is set for each of the 12 combination regions combined in each intake air temperature range and each cooling water temperature range.
  • the target bypass opening degree TECBV is set to increase as the engine 1 rotates at a lower speed and has a lighter load.
  • the lower the intake air temperature THA the larger the target bypass opening TECBV is set.
  • the target bypass opening TECBV is set to be large.
  • the target bypass opening TECBV is set to increase as the cooling water temperature THW decreases. However, when the cooling water temperature THW becomes "less than 40 ° C.” which is the EGR starting water temperature, The target bypass opening TECBV is set to be "0".
  • the ECU 90 obtains the EGR start permitted water temperature SEGRTHW according to the intake air temperature THA.
  • the ECU 90 can obtain the EGR start permitted water temperature SEGRTHW according to the intake air temperature THA, for example, by referring to the EGR start permitted water temperature map shown in FIG. 44. This map is set so that the lower the intake air temperature THA from “25 ° C” to "-15 ° C", the higher the EGR start permitted water temperature SEGRTHW is from “40 ° C” to "85 ° C", and the intake temperature THA becomes. When the temperature rises above "25 ° C", the EGR start permitted water temperature SEGRTHW is set to "40 ° C".
  • step 630 the ECU 90 determines whether or not the EGR start permitted water temperature SEGRTHW is lower than the cooling water temperature THW. If the determination result is affirmative, the ECU 90 shifts the process to step 640, and if the determination result is negative, the ECU 90 shifts the process to step 660.
  • step 640 the ECU 90 determines whether or not the cooling water temperature THW is lower than "100 ° C.” If the determination result is affirmative, the ECU 90 shifts the process to step 650, and if the determination result is negative, the ECU 90 shifts the process to step 660.
  • step 650 the ECU 90 sets the target bypass opening degree TECBV as the final target bypass opening degree FTECBV.
  • step 660 after shifting from step 630 or step 640, the ECU 90 sets "0%" as the final target bypass opening degree FTECBV.
  • step 670 after shifting from step 650 or step 660, the ECU 90 controls the bypass valve 60 to the final target bypass opening degree FTECBV.
  • the ECU 90 controls the bypass valve 60 to be fully closed under the condition that the cooling water temperature THW is equal to or lower than the EGR start permitted water temperature SEGRTHW, and the cooling water temperature THW starts EGR.
  • the bypass valve 60 is controlled to be fully closed even if the intake air temperature THA (outside air temperature) is low, and the cooling water temperature THW permits EGR start.
  • the bypass valve 60 is controlled to the target bypass opening degree TECBV.
  • the outlet 16b of the bypass passage 16 is arranged adjacent to the outlet 32b of the heat exchanger 32, and the valve body 61 and the rotating shaft 62 of the bypass valve 60 are bypassed. It is arranged corresponding to the exit 16b of the passage 16. Further, in the bypass valve 60, when the valve body 61 closes the outlet 16b of the bypass passage 16 (when the valve is closed), the valve body 61 is arranged substantially parallel to the axial direction of the heat exchanger 32.
  • the valve body 61 blocks a part of the flow path area of the outlet 32b of the heat exchanger 32, and the flow path area becomes narrow. Therefore, the flow rate of the cooled EGR gas flowing out from the outlet 32b of the heat exchanger 32 decreases by the amount that the flow path area of the outlet 32b of the heat exchanger 32 becomes narrower, and the flow rate of the cooled EGR gas with respect to the flow rate decreases from the outlet 16b of the bypass passage 16.
  • the ratio of the flow rate of the uncooled EGR gas flowing out increases, and the temperature of the EGR gas flowing to the EGR valve 14 and the EGR gas distributor 15 (downstream EGR passage) increases. Therefore, when the bypass valve 60 is half-opened or fully opened, warm-up of the EGR valve 14 and the EGR gas distributor 15 (downstream EGR passage) can be promoted by the amount that the bypass flow rate ratio increases.
  • FIG. 45 shows the ratio of the flow rate of EGR gas flowing through the heat exchanger 32 (cooler flow rate ratio) and the bypass flow rate ratio to the total flow rate of EGR gas flowing to the downstream EGR passage when the bypass valve 60 is half-opened and fully opened.
  • the difference between the above is shown by a graph.
  • the cooler flow rate ratio when half-opened, the cooler flow rate ratio is "75%” and the bypass flow rate ratio is "25%”.
  • the cooler flow rate ratio is "60%” and the bypass flow rate ratio is "40%”.
  • the bypass flow rate ratio is increased by about 15% at the time of full opening as compared with the time of half opening.
  • the ECU 90 closes the EGR valve 14 and EGR to the EGR cooler 13 under the condition that the cooling water temperature THW is equal to or lower than the EGR start permitted water temperature SEGRTHW. Gas does not flow and the bypass valve 60 is controlled to be fully closed. Further, the ECU 90 fully closes the bypass valve 60 even if the intake air temperature THA (outside air temperature) is low under the condition that the cooling water temperature THW is higher than the EGR start permitted water temperature SEGRTHW and the temperature is as high as 100 ° C. or higher. To control.
  • THA outside air temperature
  • the EGR valve 14 is opened, and all of the EGR gas flowing to the EGR cooler 13 can be cooled by the heat exchanger 32, and the temperature of the EGR gas is lowered to the EGR gas distributor 15 (downstream EGR passage). Can be shed.
  • the ECU 90 controls the bypass valve 60 to the target bypass opening degree TECBV under the condition that the cooling water temperature THW is higher than the EGR start permitted water temperature SEGRTHW and lower than 100 ° C. Therefore, the bypass flow rate ratio in the EGR gas flowing to the EGR gas distributor 15 (downstream EGR passage) can be increased, the temperature of the EGR gas can be raised, and the EGR gas distributor 15 can be appropriately warmed up. can do.
  • the valve assembly 65 is provided by adopting the above-mentioned assembly procedure. That is, the bearing case 66 of the sub-valve assembly formed by assembling various parts 61, 62, 66, 69, 70 to 73 is finally fixed to the housing 31 via the gasket 68 with bolts 67, whereby the valve assembly 65 I tried to complete the assembly of. Therefore, although the gasket 68 and the bolt 67 are required to fix the bearing case 66 to the housing 31, the valve assembly 65 is provided to the housing 31 without providing an assembly window and without welding. This makes it possible to reduce the manufacturing cost of the EGR cooler 13.
  • This embodiment is different from the fifteenth embodiment in the configuration of the swing type bypass valve 60.
  • the outlet 16b of the bypass passage 16 is arranged adjacent to the outlet 32b of the heat exchanger 32, and the valve assembly 65 of the bypass valve 60 is arranged corresponding to the outlet 16b of the bypass passage 16. That is, the valve assembly 65 is arranged in the vicinity of the outlet 32b of the heat exchanger 32 and the outlet 16b of the bypass passage 16. Therefore, the rotating shaft 62 of the valve assembly 65 is arranged along one end edge 46c of the partition wall 46 between the heat exchanger 32 and the bypass passage 16. Here, a slight gap may be formed between one end edge 46c of the partition wall 46 and the rotating shaft 62.
  • the bypass valve 60 is configured as follows.
  • FIG. 46 and 47 show a portion of the EGR cooler 13 at the outlet 16b of the bypass passage 16 adjacent to the outlet 32b of the heat exchanger 32, and the valve body 61 and the rotating shaft 62 of the bypass valve 60.
  • the relationship is shown in cross-sectional view.
  • FIG. 46 shows a state in which the valve body 61 of the bypass valve 60 is fully closed
  • FIG. 47 shows a state in which the valve body 61 is fully opened.
  • a gap 59 is provided between the boundary portion 58 between the outlet 32b of the heat exchanger 32 and the outlet 16b of the bypass passage 16 and the rotating shaft 62.
  • the gap 59 is configured to be larger when the valve body 61 is opened than when the valve body 61 is closed (fully closed).
  • the boundary portion 58 is composed of one end edge 46c of the partition wall 46.
  • one end edge 46c of the partition wall 46 is flat, and the rotation shaft 62 is arranged adjacent to the one end edge 46c.
  • a notch 62b having an arcuate cross section is formed in a part of the rotating shaft 62, and the notch 62b is displaced with respect to the boundary portion 58 (one end edge 46c) as the rotating shaft 62 rotates. It has become. Specifically, as shown in FIG. 46, when the valve body 61 is fully closed, the notch 62b is displaced so that the gap 59 between the rotating shaft 62 and the boundary portion 58 (one end edge 46c) is minimized. On the other hand, as shown in FIG.
  • valve body 61 when the valve body 61 is opened, the notch 62b is displaced so that the gap 59 between the rotating shaft 62 and the boundary portion 58 (one end edge 46c) is maximized.
  • the valve body 61 is fixed in a state where its base is housed in the rotating shaft 62. Further, the valve body 61 has a tip end side projecting radially from the rotation shaft 62 to open and close the outlet 16b of the bypass passage 16. Here, the tip of the valve body 61 is inclined according to the inclination of the housing 31.
  • the gap 59 between the boundary portion 58 (one end edge 46c) between the outlet 32b of the heat exchanger 32 and the outlet 16b of the bypass passage 16 and the rotating shaft 62 is the valve body of the bypass valve 60. It is configured so that it is larger when the valve is opened than when the valve is closed. Therefore, as shown in FIG. 46, this gap 59 becomes smaller when the valve body 61 is closed than when the valve is opened, so that the EGR gas in the bypass passage 16 passes through the gap 59 in the heat exchanger 32.
  • this gap 59 becomes larger when the valve body 61 is opened than when the valve is closed, so that the condensed water discharged from the outlet 32b of the heat exchanger 32 (indicated by a white circle in FIG. 47). ) Makes it easier to flow into the gap 59.
  • FIG. 48 shows a state in which the valve body 61 of the bypass valve 60, which is a part of the EGR cooler 13, is fully closed, by a cross-sectional view according to FIG. 46.
  • FIG. 49 shows a state in which the valve body 61 is a part of the EGR cooler 13 and the valve body 61 is opened by a cross-sectional view according to FIG. 47.
  • the bypass valve 60 is provided with a gap 59 between the boundary portion 58 between the outlet 32b of the heat exchanger 32 and the outlet 16b of the bypass passage 16 and the rotating shaft 62.
  • the gap 59 is configured to be larger when the valve body 61 is fully closed than when the valve body 61 is fully closed.
  • the one end edge 46c of the partition wall 46 is flat, and the one end edge 46c constitutes the boundary portion 58.
  • the rotation shaft 62 is arranged adjacent to the boundary portion 58.
  • a notch is not formed in a part of the rotary shaft 62, and the rotary shaft 62 constituting the swing type bypass valve 60 has a predetermined gap 59 with respect to the boundary portion 58 (one end edge 46c). Placed through.
  • the base side of the valve body 61 is fixed to the rotating shaft 62, and the base end 61a thereof slightly protrudes in the radial direction of the rotating shaft 62.
  • valve body 61 has a tip end side projecting radially from the rotation shaft 62 to open and close the outlet 16b of the bypass passage 16.
  • the tip of the valve body 61 is inclined at an acute angle according to the inclination of the housing 31, and the base end 61a of the valve body 61 is also inclined at an acute angle.
  • FIG. 48 when the valve body 61 is fully closed, the gap 59 between the rotating shaft 62 and the boundary portion 58 is closed by the base end 61a of the valve body 61.
  • FIG. 48 when the valve body 61 is fully closed, the gap 59 between the rotating shaft 62 and the boundary portion 58 is closed by the base end 61a of the valve body 61.
  • valve body 61 rotates together with the rotating shaft 62, so that the base end 61a of the valve body 61 rotates and the boundary portion 58 (one end edge 46c). ), The gap 59 is opened.
  • FIG. 50 shows a state in which the valve body 61 of the bypass valve 60, which is a part of the EGR cooler 13, is fully closed, by a cross-sectional view according to FIG. 48.
  • FIG. 51 shows a state in which the valve body 61 of the bypass valve 60, which is a part of the EGR cooler 13, is opened, by a cross-sectional view according to FIG. 49.
  • the bypass valve 60 is provided with a gap 59 between the boundary portion 58 between the outlet 32b of the heat exchanger 32 and the outlet 16b of the bypass passage 16 and the valve body 61.
  • the gap 59 is configured to be larger when the valve body 61 is opened than when the valve body 61 is closed (fully closed).
  • the rotation shaft 62 is arranged adjacent to the boundary portion 58 (one end edge 46c of the partition wall 46). Since the bypass valve 60 of this embodiment has a butterfly type configuration, the rotating shaft 62 is arranged with respect to the boundary portion 58 (one end edge 46c) at a predetermined interval.
  • the intermediate portion of the valve body 61 is fixed to the rotating shaft 62, and one end side 61b and the other end side 61c of the valve body 61 project in the radial direction of the rotating shaft 62, respectively.
  • valve body 61 has one end side 61b in contact with the one end edge 46c of the partition wall 46, and the other end side 61c in contact with the inclined inner wall of the housing 31.
  • the one end side 61b of the valve body 61 is inclined at an acute angle according to the inclined one end edge 46c of the partition wall 46
  • the other end side 61c of the valve body 61 is inclined at an acute angle according to the inclination of the housing 31. .. Then, as shown in FIG.
  • valve body 61 when the valve body 61 is fully closed, the one end side 61b of the valve body 61 comes into contact with the boundary portion 58 (one end edge 46c), and the rotary shaft 62 and the boundary portion 58 (one end edge 46c) come into contact with each other. There is no gap 59 between them.
  • FIG. 51 when the valve body 61 is opened, the valve body 61 rotates together with the rotating shaft 62 between the one end side 61b of the valve body 61 and the boundary portion 58 (one end edge 46c). There is a gap 59 in the space.
  • FIG. 52 shows the configuration of the valve assembly 65 of the bypass valve 60 by a cross-sectional view according to FIG. 41.
  • the same components as those shown in FIG. 41 are designated by the same reference numerals, description thereof will be omitted, and different points will be mainly described (the same applies in the following description). .).
  • the housing 31 of the EGR cooler 13 includes an outer cylinder portion 31e protruding outward.
  • a plurality (four) press-fitting surface 31ea forming a flat surface are arranged at equal angular intervals in the circumferential direction. Since these press-fitting surface 31ea are formed by cutting the outer periphery of the outer cylinder portion 31e, the portion thereof appears to be concave in FIG. 52.
  • this press-fitting surface 31ea is for positioning the side of the housing 31 with a positioning jig when the sub-valve assembly including the rotary shaft 62 and the valve body 61 is press-fitted inside the outer cylinder portion 31e.
  • the bearing case 66 includes a tubular portion 66a and a bottom portion 66b, and does not include a flange portion.
  • the bearing case 66 is press-fitted and fixed to the inside of the outer cylinder portion 31e of the housing 31.
  • a rotary shaft 62 is rotatably supported on the tubular portion 66a of the bearing case 66 via a ball bearing 69, and the outer periphery of the rotary shaft 62 is sealed via a lip seal 71.
  • valve body 61 is fixed to the base end portion 62a of the rotating shaft 62 via a screw 70.
  • a lever 72 is fixed to the tip of the rotating shaft 62.
  • a cylindrical spring guide 74 is provided on the outer periphery of the outer cylinder portion 31e of the housing 31.
  • a valve closing spring 73 for urging the valve body 61 in the valve closing direction is provided between the spring guide 74 and the lever 72.
  • the procedure for assembling the valve assembly 65 described above is as follows. That is, (1) the inside of the ball bearing 69 is press-fitted to the outer circumference of the rotating shaft 62. (2) The lip seal 71 is press-fitted into the inside of the tubular portion 66a of the bearing case 66. (3) The outside of the ball bearing 69 into which the rotating shaft 62 is press-fitted is press-fitted into the inside of the tubular portion 66a. (4) The rotating shaft 62 is passed through the lip seal 71 and the bottom portion 66b of the bearing case 66, the valve body 61 is fixed to the base end portion 62a of the rotating shaft 62 with a screw 70, and then the head of the screw 70 is spot welded. do.
  • the bearing case 66 constituting the sub-valve assembly is press-fitted into the outer cylinder portion 31e of the housing 31 and fixed. At this time, the bearing case 66 can be easily press-fitted into the outer cylinder portion 31e by utilizing the recess of the press-fitting receiving surface 31ea formed on the outer periphery of the outer cylinder portion 31e of the housing 31.
  • a tubular spring guide 74 is attached to the outer periphery of the outer cylinder portion 31e of the housing 31, and a valve closing spring 73 is attached to the outer periphery of the spring guide 74.
  • the lever 72 can be fixed to the rotating shaft 62 by tightening, welding or caulking a nut.
  • the valve assembly 65 is provided by adopting the above-mentioned assembly procedure. That is, after the bearing case 66 of the sub-valve assembly to which various parts 61, 62, 66, 69, 71 are assembled is press-fitted into the outer cylinder portion 31e of the housing 31 and fixed, the remaining various parts 72 to 74 are assembled. This completes the assembly of the valve assembly 65. Therefore, in order to fix the bearing case 66 to the housing 31, the valve assembly 65 can be provided to the housing 31 without providing an assembly window and without welding, and the manufacturing cost of the EGR cooler 13 can be provided. Can be suppressed.
  • FIG. 53 shows the valve assembly 65 with a cross-sectional view according to FIG. 52.
  • the housing 31 of the EGR cooler 13 includes a long cylinder portion 31g having an outer cylinder portion 31e projecting outward from the housing 31 and an inner cylinder portion 31f fitted into the housing 31.
  • An opening 31fa through which EGR gas flows is formed in the inner cylinder portion 31f corresponding to the outlet 16b of the bypass passage 16.
  • the bearing case 66 includes a tubular portion 66a and a bottom portion 66b.
  • the bearing case 66 is press-fitted and fixed to the inside of the outer cylinder portion 31e of the housing 31.
  • a rotary shaft 62 is rotatably supported on the tubular portion 66a of the bearing case 66 via a ball bearing 69, and the outer periphery of the rotary shaft 62 is sealed via a lip seal 71.
  • the valve body 61 is fixed to the base end portion 62a of the rotating shaft 62 via a screw 70.
  • a lever 72 is fixed to the tip of the rotating shaft 62.
  • a valve closing spring 73 is provided on the outer periphery of the outer cylinder portion 31e of the housing 31 between the lever 72 and the outer cylinder portion 31e.
  • the procedure for assembling the valve assembly 65 described above is as follows. That is, (1) the inside of the ball bearing 69 is press-fitted to the outer circumference of the rotating shaft 62. (2) The lip seal 71 is press-fitted into the inside of the tubular portion 66a of the bearing case 66. (3) The outside of the ball bearing 69 to which the rotating shaft 62 is assembled is press-fitted inside the tubular portion 66a. (4) The rotating shaft 62 is passed through the bottom portion 66b of the bearing case 66, the valve body 61 is fixed to the base end portion 62a of the rotating shaft 62 with a screw 70, and the head of the screw 70 is spot-welded. This forms a sub-valve assembly.
  • the bearing case 66 of the sub valve assembly is press-fitted into the outer cylinder portion 31e of the housing 31.
  • a valve closing spring 73 is mounted on the outside of the outer cylinder portion 31e of the housing 31.
  • the lever 72 is attached and fixed to the tip of the rotating shaft 62, and the valve closing spring 73 is engaged with the lever 72. This completes the assembly of the valve assembly 65 of the bypass valve 60.
  • FIG. 54 shows a perspective view of the EGR cooler 13 including the actuator 63 and the link 64 as viewed from the rear side.
  • 55 and 56 show the EGR cooler 13 in a rear view according to FIG. 34.
  • FIG. 55 shows the state of the actuator 63 and the link 64 when the bypass valve 60 is operated to open (fully open), and
  • FIG. 56 shows the actuator when the bypass valve 60 is operated to close (fully closed).
  • the state of 63 and the link 64 are shown.
  • the bypass valve 60 has the same configuration as that shown in FIGS. 35 to 41, but the actuator 63 and the link 64 have different configurations.
  • the actuator 63 and the link 64 of this embodiment will be described below.
  • the actuator 63 of this embodiment is configured to operate electrically to rotate the rotating shaft 62.
  • the actuator 63 includes a drive shaft 63a that can reciprocate in the axial direction, and the tip of the drive shaft 63a is driven and connected to the rotating shaft 62 via a link 64.
  • the lever 72 is integrally rotatably fixed to the tip of the rotating shaft 62.
  • the base end of the lever 72 is fixed to the rotating shaft 62, and an elongated hole 72a is formed at the tip of the lever 72.
  • the link 64 is configured by movably connecting the tip of the drive shaft 63a to the elongated hole 72a.
  • the drive shaft 63a of the actuator 63 reciprocates in the axial direction, so that the rotating shaft 62 rotates in one direction and the opposite direction, and the valve body 61 opens and closes the outlet 16b of the bypass passage 16. It is designed to do.
  • FIG. 57 shows a cross-sectional view of the actuator 63 when the bypass valve 60 is fully opened, cut along the axial direction thereof.
  • FIG. 58 shows a cross-sectional view of the actuator 63 when the bypass valve 60 is fully closed, cut along the axial direction thereof.
  • FIG. 59 is a cross-sectional view according to FIG. 40 showing a part of the EGR cooler 13 when the valve body 61 of the bypass valve 60 is fully opened.
  • FIG. 60 is a cross-sectional view according to FIG. 36 showing a part of the EGR cooler 13 when the valve body 61 of the bypass valve 60 is fully closed.
  • the actuator 63 is provided in the housing 941 and the housing 941, and has an inner shaft portion 942 including a lower end portion (one end portion) and an upper end portion (the other end portion) and an inner shaft portion 942.
  • a drive shaft 63a integrally provided so as to be coaxial with the lower end portion of the housing 941 is provided in the housing 941 corresponding to the proximal end side of the inner shaft portion 942, and the inner shaft portion 942 and the drive shaft 63a reciprocate in the axial direction. It includes a step motor 944 for moving the inner shaft portion 942 and a shaft spring 945 for urging the inner shaft portion 942 and the drive shaft 63a in a direction away from the step motor 944.
  • the inner shaft portion 942 is arranged so as to penetrate the center of the housing 941, and a male screw 946 is provided at the upper end portion.
  • the housing 941 includes an outer housing 961 that covers the outside of the actuator 63, an inner housing 962 that is arranged inside the outer housing 961, and a bearing housing 963 that is arranged inside the lower part of the inner housing 962.
  • the upper portion of the inner housing 962 constitutes a stator 971 of the step motor 944, and a pair of upper layer coils 972A and lower layer coils 972B are provided on the outer periphery thereof.
  • the bearing housing 963 includes a thrust bearing portion 963a that reciprocally supports the inner shaft portion 942 in the thrust direction at the center thereof, and the periphery of the thrust bearing portion 963a is hollow. Inside the stator 971, a rotor 973 constituting the step motor 944 is arranged inside the stator 971.
  • the outer housing 961 is formed with a connector 961a projecting upward.
  • the connector 961a is provided with terminals 974 connected to the coils 972A and 972B.
  • a flange 961b is formed in the lower portion of the outer housing 961.
  • a bracket 75 is provided on the outside of the housing 31 of the EGR cooler 13.
  • the actuator 63 is fixed to the bracket 75 via bolts or the like (not shown) via its flange 961b.
  • the rotor 973 includes a rotor main body 973a and a magnet 973b provided on the outer periphery of the rotor main body 973a.
  • a sleeve 975 extending downward is provided at the lower end of the rotor main body 973a, and a radial bearing 976 is provided between the outer circumference of the sleeve 975 and the inner housing 962.
  • the rotor 973 is rotatably supported inside the stator 971 by a radial bearing 976.
  • a female screw 947 screwed into the male screw 946 of the inner shaft portion 942 is provided at the center of the rotor body 973a.
  • a predetermined backlash 949 (see FIGS. 61 and 62) is provided between the male screw 946 and the female screw 947 in the axial direction of the inner shaft portion 942.
  • the base portion 63ab of the drive shaft 63a is moved inward.
  • a lip seal 951 for sealing between the bearing housing 963 and the bearing housing 963 is provided to prevent foreign matter and moisture from entering.
  • a cylindrical outer shaft 952 that includes an outer peripheral portion 952c that can contact the lip seal 951 and extends from the base portion 63ab of the drive shaft 63a along the inner shaft portion 942 is provided. Be done.
  • the outer diameter of the outer peripheral portion 952c of the outer shaft 952 is set to be the same as the maximum outer diameter of the drive shaft 63a.
  • the actuator 63 is provided with an inner space 953 that is divided inside the housing 941 by sealing between the outer shaft 952 and the bearing housing 963 with a lip seal 951.
  • the upper end portion 952a (one end portion) of the outer shaft 952 is arranged so as to face the inner space 953.
  • the housing 941 (outer housing 961, inner housing 962 and bearing housing 963) is provided with an atmospheric passage 954 (scheme is shown by a two-dot chain line).
  • the actuator 63 of this embodiment is not provided with a stopper or a contact portion for defining an initial position as a reference for the inner shaft portion 942.
  • the step motor 944 constituting the actuator 63 described above has a screw mechanism with respect to the stator 971 including the upper layer coil 972A and the lower layer coil 972B, the rotor 973 rotatably arranged at the center of the stator 971, and the rotor 973.
  • a drive shaft 63a movably connected in the axial direction via (male screw 946 and female screw 947) and a shaft spring 945 for urging the drive shaft 63a in the axial direction are provided.
  • the rotary shaft 62 and the drive shaft 63a of the actuator 63 are connected via the link 64.
  • the shaft spring 945 is configured to urge the valve body 61 in the valve closing direction via the link 64 and the rotating shaft 62 by urging the drive shaft 63a in the axial direction.
  • the actuator 63 configured as described above converts the rotational motion into the stroke motion of the inner shaft portion 942 and the drive shaft 63a via the male screw 946 and the female screw 947 by driving the step motor 944 to rotate the rotor 973.
  • the rotating shaft 62 is rotated via the lever 72. That is, as shown in FIGS. 56 and 58, the actuator 63 rotates the rotor 973 in one direction from a state in which the drive shaft 63a protrudes from the housing 941 and the lever 72 is pushed down.
  • the inner shaft portion 942 and the drive shaft 63a make a stroke movement in the upward direction of FIG.
  • the actuator 63 rotates the rotor 973 in the opposite direction from the state where the drive shaft 63a is immersed in the housing 941 and the lever 72 is pulled up.
  • the inner shaft portion 942 and the drive shaft 63a make a stroke movement in the downward direction of FIG. 57, which is the thrust direction, in cooperation with the urging force of the shaft spring 945.
  • the drive shaft 63a protrudes from the housing 941
  • the lever 72 is pushed down by the drive shaft 63a
  • the valve body 61 is fully closed as shown in FIG. 60.
  • FIG. 61 shows a part of the screwed state of the male screw 946 and the female screw 947 in a state where the valve body 61 of the bypass valve 60 is fully opened by an enlarged cross-sectional view.
  • FIG. 62 shows a part of the screwed state of the male screw 946 and the female screw 947 in the “butted fully closed state” described later by an enlarged cross-sectional view.
  • the male screw 946 has a male screw thread 946a spirally connected in the axial direction of the inner shaft portion 942.
  • the male thread 946a includes a first male thread surface 946aa facing away from the step motor 944 (downward) and a second male thread surface 946ab located on the opposite side (upper side) of the first male thread surface 946aa. ..
  • the female thread 947 has a female thread 947a spirally connected in the axial direction of the inner shaft portion 942.
  • the female thread 947a includes a first female thread surface 947aa facing away from the step motor 944 (downward) and a second female thread surface 947ab located on the opposite side (upper side) of the first female thread surface 947aa. ..
  • the valve body 61 when the valve body 61 is opened or closed, the valve body 61 is urged in the valve closing direction by the urging force of the valve closing spring 73. Further, the drive shaft 63a of the actuator 63 is urged by the urging force of the shaft spring 945 in the direction in which the drive shaft 63a protrudes from the housing 941, that is, in the direction in which the valve body 61 is closed. Therefore, as shown in FIG. 61, the first male thread surface 946aa of the male thread 946 provided on the inner shaft portion 942 is in contact with the second female thread surface 947ab of the female thread 947 provided on the rotor main body 973a. Become.
  • valve body 61 is urged in the valve closing direction by the valve closing spring 73, and the drive shaft 63a of the actuator 63 is pushed out in the protruding direction (lever 72 and the rotating shaft 62) by the shaft spring 945. It is urged in the direction of closing the valve body 61).
  • the urging force of the valve closing spring 73 is set stronger than the urging force of the shaft spring 945 of the actuator 63.
  • the ECU 90 "butts and controls" the actuator 63, so that the male thread 946a of the male thread 946 and the female thread 947a of the female thread 947 are engaged with each other, and the drive shaft 63a (inner shaft portion) is engaged. The movement of 942) is locked.
  • the actuator 63 when the actuator 63 is stepped out, it is slightly between the male screw 946 and the female screw 947 (maximum 0. There is a gap (about 084 mm). Therefore, wear may occur between the male screw 946 and the female screw 947 due to vibration.
  • the male screw 946 and the female screw 947 are engaged with each other to lock the movement of the drive shaft 63a (inner shaft portion 942) at the time of step-out, so that the male screw 946 is locked.
  • the drive shaft 63a inner shaft portion 942
  • the male screw 946 is locked.
  • FIGS. 63 and 64 show the energization patterns for the coils 972A and 972B when the upper coil 972A and the lower coil 972B of the actuator 63 are normal by a time chart.
  • FIG. 63 shows the case where the pole S1 of the upper layer coil 972A is energized
  • FIG. 64 shows the case where the pole S2 of the lower layer coil 972B is energized.
  • a thick line arrow between each pole N of the rotor 973 and a pole S2 of the lower coil 972B indicates a case where the magnetic force is strong
  • a broken line arrow indicates a case where the magnetic force is weak.
  • FIGS. 63 and 64 show the energization patterns for the coils 972A and 972B when the upper coil 972A and the lower coil 972B of the actuator 63 are normal by a time chart.
  • FIG. 63 shows the case where the pole S1 of the upper layer coil 972A is energized
  • FIG. 64 shows the
  • FIGS. 65 and 66 show the energization patterns for the coils 972A and 972B when the lower coil 972B of the actuator 63 is disconnected by a time chart.
  • FIG. 65 shows the case where the pole S1 of the upper layer coil 972A is energized
  • FIG. 66 shows the case where the pole S3 of the upper layer coil 972A is energized.
  • the solid arrow between each pole N of the rotor 973 and the pole S3 of the upper coil 972A indicates a case where the magnetic force is medium.
  • the names of (a) to (c) in FIGS. 65 and 66 are the same as those in FIGS. 63 and 64.
  • the rotation direction of the rotor 973 of the step motor 944 corresponds to the closing of the valve body 61 by repeating the "pole S1 ⁇ pole S3 ⁇ " which is the energization pattern for the upper layer coil 972A. It can be controlled in the direction.
  • FIGS. 65 and 66 when the energization of the upper coil 972A is switched from the pole S1 to the pole S3, the magnetic force of the pole S3 with respect to each pole N of the rotor 973 is always “medium” and uniform. There is no difference in magnetic force attraction.
  • the rotor 973 can be rotated in the direction corresponding to the valve closing of the valve body 61 by the cooperation between the urging force of the shaft spring 945 of the actuator 63 and the urging force of the valve closing spring 73 of the valve assembly 65.
  • FIG. 67 shows the control contents by a flowchart.
  • the same engine system as in the fifteenth embodiment is adopted, and the bypass valve 60 (actuator 63) of this embodiment is controlled instead of the bypass valve 19 shown in FIG. 29.
  • step 700 the ECU 90 determines whether or not the upper coil 972A of the actuator 63 is disconnected.
  • the ECU 90 can detect the disconnection of the upper coil 972A and the lower coil 972B by monitoring the presence or absence of normal energization of the coils 972A and 972B when controlling the actuator 63. It has become.
  • the ECU 90 corresponds to an example of the disconnection detecting means of the disclosed technology. If the determination result of step 700 is affirmative, the ECU 90 shifts the process to step 710, and if the determination result is negative, the ECU 90 shifts the process to step 760.
  • step 710 the ECU 90 determines whether or not the lower coil 972B of the actuator 63 is disconnected. If the determination result is affirmative, the ECU 90 shifts the process to step 720, and if the determination result is negative, the ECU 90 shifts the process to step 740.
  • step 720 the ECU 90 changes the EGR start permitted water temperature SEGRTHW related to EGR control from “40 ° C” to "65 ° C". That is, the ECU 90 changes the EGR valve 14 in a direction of delaying the timing condition for starting the valve opening.
  • the ECU 90 is configured to start EGR when the cooling water temperature THW reaches the EGR start permitted water temperature SEGRTHW in a separately provided program for EGR control (the same applies hereinafter).
  • step 730 the ECU 90 guards the opening degree of the EGR valve 14 to be equal to or less than a predetermined upper limit opening degree. That is, the ECU 90 limits the opening degree of the EGR valve 14 to a predetermined upper limit opening degree or less in a separately provided EGR control program. That is, the ECU 90 changes in the direction of reducing the maximum opening degree of the EGR valve 14.
  • step 740 which is a transition from step 710, the ECU 90 controls the valve body 61 of the bypass valve 60 to be fully closed by energizing the lower coil 972B of the actuator 63.
  • step 750 the ECU 90 changes the EGR start permitted water temperature SEGRTHW related to EGR control from "40 ° C” to "65 ° C” as in step 720, and then returns the process to step 700.
  • step 760 after shifting from step 700, the ECU 90 determines whether or not the lower coil 972B of the actuator 63 is disconnected. If the determination result is affirmative, the ECU 90 shifts the process to step 770, and if the determination result is negative, the ECU 90 shifts the process to step 790.
  • step 770 the ECU 90 controls the valve body 61 of the bypass valve 60 to be fully closed by energizing the upper coil 972A of the actuator 63.
  • step 780 the ECU 90 changes the EGR start permitted water temperature SEGRTHW related to EGR control from "40 ° C” to "65 ° C” as in step 720, and then returns the process to step 700.
  • step 760 the normal opening / closing control of the bypass valve 60 is executed, and after the normal EGR control is executed, the process is returned to step 700.
  • the ECU 90 monitors the presence or absence of disconnection in the upper layer coil 972A and the lower layer coil 972B constituting the step motor 944 of the actuator 63.
  • the ECU 90 drives the step motor 944 (actuator 63) only by the normal lower layer coil 972B or the upper layer coil 972A, and the valve body of the bypass valve 60.
  • the 61 is controlled to be fully closed, and the EGR start permitted water temperature SEGRTHW in the EGR control is changed from "40 ° C" to "65 ° C". also.
  • EGR control is executed as follows. That is, the ECU 90 changes the EGR start permitted water temperature SEGRTHW in the EGR control from “40 ° C” to "65 ° C". This change is effective when both coils 972A and 972B are disconnected when the valve body 61 of the bypass valve 60 is near fully closed. Further, the ECU 90 guards the EGR valve 14 to a predetermined upper limit opening or less. This guard is effective when both coils 972A and 972B are disconnected when the valve body 61 of the bypass valve 60 is in the vicinity of full opening.
  • the ECU 90 changes at least one of the valve opening start and the maximum opening degree of the EGR valve 14 in order to control the recirculation of the EGR gas according to the disconnection detection result of the coils 972A and 972B.
  • the ECU 90 corresponds to an example of the EGR control means of this disclosed technology.
  • the bypass valve 60 includes a valve closing spring 73 that urges the valve body 61 in the valve closing direction, and the actuator 63 connects the drive shaft 63a via the link 64 and the rotary shaft 62.
  • a shaft spring 945 for urging the valve body 61 in the valve closing direction is included. Therefore, the urging force of the valve closing spring 73 and the urging force of the shaft spring 945 always act on the valve body 61 of the bypass valve 60 in the valve closing direction, and the valve closing of the valve body 61 is assisted.
  • the valve body 61 of the bypass valve 60 can be closed, the flow of the EGR gas in the bypass passage 16 is blocked, and the high temperature EGR gas that is not cooled is the EGR gas. It is possible to prevent the flow to the distributor 15 (downstream EGR passage), and it is possible to suppress heat damage to the EGR gas distributor 15.
  • the EGR start permitted water temperature SEGRTHW EGR valve 14 is opened in order to control the recirculation of the EGR gas. At least one of the valve start condition) and the upper limit opening (maximum opening) is changed by the ECU 90.
  • the actuator 63 when only the upper layer coil 972A is disconnected, the actuator 63 is operated by energizing the lower layer coil 972B to control the valve body 61 of the bypass valve 60 to be fully closed and the EGR start permission water.
  • the temperature SEGRTHW is changed from "40 ° C” to "65 ° C”. That is, by changing the direction of delaying the timing condition for starting the valve opening of the EGR valve 14, the EGR gas is prevented from flowing to the EGR cooler 13 before warming up.
  • the actuator 63 is operated by energizing the upper layer coil 972A to control the valve body 61 of the bypass valve 60 to be fully closed, and the EGR start permitted water temperature is the same as described above.
  • the EGR gas distributor 15 By controlling the flow of EGR gas to the downstream EGR passage, it is possible to suppress the generation of condensed water in the EGR cooler 13 and the generation of heat damage in the EGR gas distributor 15. ..
  • the ECU 90 executes "butting control” in which the drive shaft 63a is abutted against the lever 72 by tightening the actuator 63 by the rotor main body 973a from the state where the valve body 61 is fully closed. ..
  • the first female thread surface 947aa of the female thread 947a of the actuator 63 and the second male thread surface 946ab of the male thread 946a are engaged with each other, and the inner shaft portion 942 (drive shaft 63a) is stepped by the shaft spring 945. It is in a state of being maximally urged (fully engaged urging state) in a direction away from the motor 944 (valve closing direction).
  • the fully engaged urging state is maintained even if a force in the direction opposite to the urging direction acts on the inner shaft portion 942 (drive shaft 63a). Therefore, the valve body 61 of the bypass valve 60 can be locked to the fully closed state, and even if a high pressure for opening the valve body 61 acts on the valve body 61, the valve body 61 is fully closed. It can be kept closed and the leakage of EGR gas to the downstream side of the valve body 61 can be suppressed.
  • FIG. 68 shows the contents of the coil disconnection correspondence control of this embodiment by a flowchart.
  • the process of step 800 is provided before step 700
  • the process of step 810 is provided instead of step 720
  • the process of step 820 is provided instead of step 730. Is different.
  • processing different from the flowchart of FIG. 67 will be mainly described.
  • step 800 the ECU 90 takes in the final target bypass opening degree FTECBV and the actual bypass opening degree (actual bypass opening degree) ECBV step.
  • the final target bypass opening degree FTECBV can be obtained by opening / closing control of the bypass valve 60 shown in FIG. 42 described above.
  • the actual bypass opening degree ECBV step can be obtained from the command value of the ECU 90 for the actuator 63 (step motor 944).
  • step 700 executes the determination of step 700 and step 710, and if the determination result of step 700 is negative, the process shifts to step 760 and the processes of steps 760 to 790 are executed. If the determination result of step 710 is negative, the ECU 90 shifts the process to step 740 and executes the processes of step 740 and 750.
  • step 710 determines whether the determination result in step 710 is affirmative. If the determination result in step 710 is affirmative, the ECU 90 stores the actual bypass opening ECBV step as the final actual bypass opening FECBV step in step 810.
  • the ECU 90 calculates the EGR start permitted water temperature SEGRTHW according to the final actual bypass opening FECBV step and the EGR maximum opening EGRMAX step for the EGR valve 14.
  • the ECU 90 obtains the EGR start permitted water temperature SEGRTHW (solid line) and the EGR maximum opening EGRMAX step (broken line) according to the final actual bypass opening FECBV step, for example, by referring to the water temperature / opening map shown in FIG. Can be done.
  • the horizontal axis indicates the final actual bypass opening degree FECBV step
  • the vertical axis indicates the EGR start permitted water temperature SEGRTHW and the EGR maximum opening degree EGRMAX step.
  • the EGR start permitted water temperature SEGRTHW decreases from "65 ° C” to "40 ° C” as the final actual bypass opening FECBV step changes from fully closed (0%) to fully open (100%). Become. Further, in this water temperature / opening degree map, as the final actual bypass opening degree FECBV step changes from fully closed to fully open, the EGR maximum opening degree EGRMAX step becomes lower toward the predetermined value R1. After that, the ECU 90 returns the process to step 800.
  • the ECU 90 opens the actual bypass opening ECBV step immediately before the disconnection, unlike the 21st embodiment.
  • the degree FECBV step is set, and the EGR start permitted water temperature SEGRTHW in EGR control is calculated according to the same opening FECBV step, and the EGR maximum opening EGRMAX step of the EGR valve 14 is calculated. That is, when both the upper coil 972A and the lower coil 972B are disconnected, the ECU 90 changes the EGR start permitted water temperature SEGRTHW and the EGR maximum opening EGRMAX step according to the actual bypass opening ECBV step immediately before the coil disconnection. ing.
  • the overheating of the EGR gas flowing to the EGR gas distributor 15 can be precisely suppressed, the generation of condensed water in the EGR cooler 13 can be precisely suppressed, and the heat in the EGR gas distributor 15 can be suppressed. It is possible to precisely suppress the occurrence of harm.
  • FIG. 70 shows a perspective view of the EGR cooler 13 including the actuator 63 and the link 64 as viewed from the rear side.
  • FIG. 71 shows the state of the actuator 63 and the link 64 when the bypass valve 60 is operated to be closed (fully closed) in the EGR cooler 13 by a rear view according to FIG. 56.
  • FIG. 72 shows the state of the actuator 63 and the link 64 in the EGR cooler 13 when the bypass valve 60 is operated to open (fully open) by a rear view according to FIG. 55.
  • the configurations of the actuator 63 and the link 64 are different from those of the 21st and 22nd embodiments. The actuator 63 and the link 64 of this embodiment will be described below.
  • the actuator 63 of this embodiment is configured to operate electrically to rotate the rotating shaft 62.
  • the actuator 63 includes a drive shaft 63b that can reciprocate in the axial direction, and the tip of the drive shaft 63b is driven and connected to the rotating shaft 62 via a link 64.
  • the tip of the drive shaft 63b is always in contact with the lever 76 in order to rotate the lever 76.
  • the base end of the lever 76 is fixed to the rotation shaft 62, and a receiving plate 76a parallel to the axial direction of the rotation shaft 62 is formed on the tip end side of the lever 76.
  • the link 64 is configured by constantly pressing the receiving plate 76a with the tip of the drive shaft 63b.
  • the drive shaft 63b of the actuator 63 reciprocates in the axial direction, so that the rotating shaft 62 rotates in one direction and the opposite direction, and the valve body 61 opens and closes the outlet 16b of the bypass passage 16. It is designed to do.
  • the valve closing spring 73 for urging the valve body 61 in the valve closing direction is assembled to the lever 76, and the drive shaft 63a of the actuator 63 is housed.
  • a shaft spring 945 was provided to urge the valve body 61 in a direction protruding from 941 (a direction in which the valve body 61 is closed).
  • a valve closing spring 73 for urging the valve body 61 in the valve closing direction is assembled to the lever 76.
  • a shaft spring 945 for urging the drive shaft 63b of the actuator 63 in the direction protruding from the housing 941 (the direction in which the valve body 61 is opened) is provided. Further, the urging force of the valve closing spring 73 is set to be larger than the urging force of the shaft spring 945 of the actuator 63.
  • FIG. 73 shows a front view of the EGR cooler 13 including the actuator 77 and the link 64.
  • FIG. 74 shows the EGR cooler 13 of FIG. 73 with a top view seen from the direction of arrow Y1.
  • FIG. 75 shows the EGR cooler 13 with a cross-sectional view taken along the line CC of FIG.
  • FIG. 76 shows a part of the EGR cooler 13 with a cross-sectional view taken along the line DD of FIG. 73.
  • This embodiment differs from the 21st to 23rd embodiments in the configuration of the actuator 77 of the bypass valve 60 and the link 64.
  • the actuator 77 and the link 64 of this embodiment will be described below.
  • valve assembly 65, the actuator 77 and the link 64 of the bypass valve 60 are provided in the housing 31 on the front side of the EGR cooler 13. Further, the actuator 77 is the housing 31 of the EGR cooler 13, and is provided at a position corresponding to (overlapping) both the heat exchanger 32 and the bypass passage 16.
  • the actuator 77 of this embodiment has a built-in spiral bimetal 78, and the bimetal 78 contracts and expands due to the heat transferred from the EGR cooler 13, and the open end thereof is displaced (rotated) in the circumferential direction of the bypass valve 60. It is configured to rotate the lever 79.
  • FIG. 77 is a front view showing a state in which the bimetal 78 of the actuator 77 has cooled and contracted.
  • FIG. 78 shows a front view showing a state in which the bimetal 78 of the actuator 77 is expanded by heating and the open end 78a thereof is rotated in the circumferential direction.
  • the open end 78a reciprocates in the circumferential direction due to the contraction and expansion of the bimetal 78, so that the rotation shaft 62 rotates in one direction and the opposite direction, and the valve body 61 exits the bypass passage 16. It is designed to open and close 16b.
  • FIG. 77 when the bimetal 78 is contracted, the lever 79 is in the state shown by the two-dot chain line in FIG. 73, and the valve body 61 is in the valve open state shown by the two-dot chain line in FIG. 75. As the bimetal 78 further cools and contracts, the valve body 61 rotates to the fully open position.
  • FIG. 78 when the bimetal 78 is stretched by heating, the lever 79 rotates to the state shown by the solid line in FIG. 73, and the valve body 61 is in the fully closed state shown by the solid line in FIG. 75. ..
  • the open end 78a of the spiral bimetal 78 is driven and connected to the rotating shaft 62 of the valve assembly 65 via the link 64.
  • the open end 78a of the bimetal 78 is connected to the lever 79 in order to rotate the lever 79.
  • the base end of the lever 79 is fixed to the rotating shaft 62, and an arm 79a having a substantially L-shaped cross section is provided at the tip of the lever 79.
  • the open end 78a of the bimetal 78 constantly presses the tip of the arm 79a, and the open end 78a and the lever 79 form a link 64.
  • valve assembly 65 of this embodiment conforms to the configuration of the valve assembly 65 of the 19th embodiment shown in FIG. 52.
  • the valve assembly 65 of the bypass valve 60 is provided with a valve opening spring 80 that urges the valve body 61 in the valve opening direction instead of the valve closing spring 73.
  • the rotational force acting on the lever 79 from the open end 78a when the bimetal 78 becomes hot, that is, the force for closing the valve body 61 is larger than the urging force of the valve opening spring 80. Set large enough.
  • the actuator 77 is provided in the housing 31 of the EGR cooler 13 at a position corresponding to (overlapping) both the heat exchanger 32 and the bypass passage 16, so that the opening / closing characteristic of the bypass valve 60 is EGR. It will change according to the EGR flow rate flowing through the cooler 13 and the temperature of the cooling water circulating in the EGR cooler 13.
  • FIG. 79 shows the opening / closing characteristics of the bypass valve 60 of this embodiment with respect to the EGR flow rate and the cooling water temperature. In this table, for example, when the cooling water temperature THW is "40 ° C.” and the EGR flow rate is "low", the valve body 61 of the bypass valve 60 is "fully open".
  • FIG. 80 shows the opening / closing characteristics of the bypass valve 60 of this embodiment with respect to the cooling water temperature.
  • the actuator 77 is composed of a bimetal 78, and the opening / closing characteristics of the bypass valve 60 are configured to be changed according to the EGR flow rate and the cooling water temperature in the EGR cooler 13. Therefore, unlike the bypass valve 60 provided with the electric actuator 63, it is not necessary to electrically control the electric wiring to the actuator 77 and the actuator 77, and the configuration of the bypass valve 60 can be simplified. can.
  • This embodiment is different from the 24th embodiment in that the actuator 91 of the bypass valve 60 and the link 64 are configured.
  • the points different from those of the 24th embodiment will be mainly described.
  • the actuator 77 is made of the bimetal 78, heat is transferred to the bimetal 78, and it takes time for the open end 78a to rotate, and the operation responsiveness of the actuator 77 is not good.
  • the bimetal 78 could not be heated by energization. Further, it is conceivable to bring the entire lower surface of the bimetal 78 into contact with the heater to directly heat it, but it is also difficult to directly heat the entire bimetal 78 because sliding wear occurs between the bimetal 78 and the heater.
  • the actuator 91 is configured not with the bimetal 78 but with a "biometal” that can be operated by directly energizing and heating.
  • Biometal is a fibrous actuator that is tension-contracted-relaxed and stretched by itself and is characterized by flexible and quiet movement. Biometal is usually soft and supple, but when the temperature is raised by energization (for example, 60 to 70 ° C.), it becomes hard and shrinks with a strong force. When the power is turned off, it softens again and extends to its original length.
  • the biometal also operates by changing the atmospheric temperature, shrinks when the atmospheric temperature is about 70 ° C. or higher, and expands when the atmospheric temperature is lower than about 70 ° C.
  • the internal structure of the biometal has a stable structure, excellent durability and stable operating characteristics.
  • FIG. 81 shows a front view of the EGR cooler 13 including the actuator 91 and the link 64 of this embodiment.
  • FIG. 82 is an EGR cooler 13 in a state where the valve body 61 of the bypass valve 60 is fully closed, and is shown by a sectional view taken along line EE of FIG. 81.
  • FIG. 83 shows a cross-sectional view of the EGR cooler 13 in a state where the valve body 61 of the bypass valve 60 is opened, according to FIG. 82.
  • the valve assembly 65, the actuator 91, and the link 64 of the bypass valve 60 are provided in the housing 31 on the front side of the EGR cooler 13.
  • the actuator 91 of this embodiment includes a rod-shaped biometal 92, and a positive electrode 93 is provided at one end (base end) of the biometal 92.
  • the positive electrode 93 is supported by the bracket 95 via the insulating material 94.
  • the bracket 95 is fixed to the housing 31.
  • the other end (tip) of the biometal 92 is fixed to the tip of the lever 96 constituting the valve assembly 65.
  • the tip of the biometal 92 conducts to the housing 31 via the lever 96, the rotating shaft 62, and the like, and is electrically grounded. Then, when the biometal 92 is energized and heated via the positive electrode 93, the biometal 92 contracts from the stretched state, and the lever 96 of the valve assembly 65 rotates.
  • FIG. 82 shows a state in which the biometal 92 of the actuator 91 has shrunk due to energization and heating.
  • FIG. 83 shows a state in which the biometal 92 of the actuator 91 is stretched by non-energization.
  • the lever 96 rotates in one direction and the opposite direction due to the contraction and expansion of the biometal 92, and the valve body 61 passes through the outlet 16b of the bypass passage 16 via the rotation shaft 62. It is designed to open and close.
  • the lever 96 when the biometal 92 is contracted, the lever 96 is in the state shown by the solid line in FIG. 81, and the valve body 61 is in the fully closed state.
  • the tip 92a of the rod-shaped biometal 92 is driven and connected to the rotating shaft 62 of the valve assembly 65 via the link 64.
  • the tip 92a of the biometal 92 is connected to the lever 96 in order to rotate the lever 96.
  • the base end of the lever 96 is fixed to the rotating shaft 62, and the arm 96a is provided at the tip of the lever 96.
  • the tip 92a of the biometal 92 is fixed to the arm 96a, so that the link 64 is formed by the tip 92a of the biometal 92 and the lever 96.
  • the valve assembly 65 of this embodiment has the same configuration as the valve assembly 65 of the 24th embodiment, although the shape of the lever 96 is different.
  • this valve assembly 65 when the biometal 92 expands due to non-energization at a low temperature, the valve body 61 is opened via the lever 96 and the rotary shaft 62, and the valve body 61 is opened by the valve opening spring 80. It is urged in the valve opening direction.
  • this valve assembly 65 when the temperature is high or the biometal 92 contracts due to energization heating, the valve body 61 is closed via the lever 96 and the rotary shaft 62 against the urging force of the valve opening spring 80.
  • the high temperature EGR gas can flow to the EGR valve 14 and the EGR gas distributor 15 through the bypass passage 16.
  • the biometal 92 when the outside air is at a normal temperature and the engine 1 is in a completely warmed state, the biometal 92 is in a contracted state and the valve body 61 is closed. Therefore, when the EGR is restarted, the flow of the EGR gas in the bypass passage 16 can be cut off, and only the EGR gas cooled by the heat exchanger 32 can flow to the EGR valve 14 and the EGR gas distributor 15.
  • FIG. 84 shows an example of the control contents of the bypass valve 60 fully opened or fully closed corresponding to the conditions of the encopa temperature and the cooling water temperature at the time of restarting the EGR and after restarting.
  • the control content shown in FIG. 84 is performed to carry out the energization (on) or de-energization of the biometal 92 corresponding to the conditions of the encopa temperature and the cooling water temperature at the time of restarting and after restarting the EGR.
  • An example of the control content of (OFF) is shown in the table.
  • the bypass valve 60 can be fully closed even when the biometal 92 is not energized.
  • the biometal 92 contracts as the ambient temperature rises without being energized, and the valve body 61 of the bypass valve 60 can be closed from the valve open state. Therefore, even when it becomes difficult to energize the biometal 92 due to a failure, the valve body 61 of the bypass valve 60 can be closed, and the fail-safe function can be exhibited in the event of an energization failure.
  • bypass valves 17, 19, and 60 are configured to open or close according to the temperature of the cooling water, but the bypass valve is opened or closed according to the temperature of the EGR gas. It can also be configured to valve.
  • thermowax 24 is used as the actuator 22 that operates in response to a change in temperature for the bypass valve 17, but bimetal or shape memory is used instead of the thermowax 24. Alloys can also be used.
  • the bypass valve 19 made of a solenoid valve is provided on the outlet side of the bypass passage 16, and the bypass valve 19 is EGR cut in order to drain the condensed water accumulated on the downstream side of the bypass valve 19. It was configured to open the valve on condition of the execution of.
  • a bypass valve 20 made of a diaphragm type valve is provided on the inlet side of the bypass passage 16, and the EGR cut is used to drain the condensed water CW accumulated on the downstream side of the bypass valve 20. It can also be configured to open on condition of execution.
  • FIG. 86 is a cross-sectional view showing the EGR cooler 13, the bypass passage 16, and the bypass valve 20 (valve closed state) cut along the longitudinal direction thereof.
  • valve 14 when the wall temperature THDW (temperature) detected by the wall temperature sensor 88 (temperature detection means) exceeds the allowable heating temperature of the EGR gas distributor 15, EGR
  • the valve 14 can also be configured to be controlled to an intermediate opening degree (opening between fully closed and fully open) instead of being controlled to be fully closed. In this case, the flow of EGR gas in the EGR passage is reduced, and excessive heating exceeding the allowable heating temperature of the downstream EGR passage is immediately stopped. Therefore, it is possible to reliably prevent melting damage of the downstream EGR passage.
  • the EGR gas is configured to be distributed to each branch pipe 5b of the intake manifold 5 via the EGR gas distributor 15 constituting the downstream EGR passage.
  • the wall temperature sensor can be provided in the downstream EGR passage made of the resin material.
  • the valve body 61 is configured to be arranged parallel to the axial direction of the heat exchanger 32 when the bypass valve 60 is closed. ..
  • the valve body 61 when the bypass valve 60 is closed, the valve body 61 may be arranged at a position inclined toward the downstream side of the heat exchanger 32. In this case, as shown in FIG. 87, the plate area of the valve body 61 is larger than that of the valve body 61 of the fifteenth embodiment.
  • FIG. 87 is an enlarged cross-sectional view according to FIG. 36 showing a part of the EGR cooler 13.
  • FIG. 52 a plurality of press-fitting surfaces 31ea forming a flat surface are provided on the outer periphery of the outer cylinder portion 31e. These press-fitting receiving surfaces 31ea are formed by flatly cutting the outer periphery of the outer cylinder portion 31e, and the portion thereof has a concave shape.
  • a claw 74a is provided on the inner circumference of the spring guide 74 so that the claw 74a is engaged with the concave press-fitting surface 31ea of the outer cylinder portion 31e. You can also. In this case, it is possible to prevent the spring guide 74 from coming off.
  • FIG. 88 is a cross-sectional view according to FIG. 52 showing the configuration of the valve assembly 65 of the bypass valve 60.
  • the bypass valve 60 is embodied in a valve assembly 65 having a swing type valve body 61.
  • the valve assembly 65 having the same configuration as that of FIG. 41 can be embodied as a bypass valve 60 having a butterfly type valve body 61.
  • FIG. 89 is a cross-sectional view according to FIG. 41 showing the configuration of the valve assembly 65 of the bypass valve 60.
  • the inlet 12a of the EGR passage 12 is configured to be connected to the exhaust passage 3 upstream of the catalyst 7, but the inlet of the EGR passage is connected to the exhaust passage downstream of the catalyst. It can also be configured as follows.
  • This disclosure technology can be applied to gasoline engines and diesel engines mounted on vehicles.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Analytical Chemistry (AREA)
  • Exhaust-Gas Circulating Devices (AREA)

Abstract

This EGR system comprises an EGR valve (14) that adjusts the flow rate of an EGR gas in an EGR passage (12), an EGR cooler (13) including a heat exchanger (32) that conducts heat exchange between the EGR gas flowing through the EGR passage (12) and engine cooling water in order to cool the EGR gas, a bypass passage (16) that allows the EGR gas to bypass the heat exchanger (32) of the EGR cooler (13), a bypass valve (17) that opens and closes the bypass passage (16), and an EGR gas distributor (15) that is made of resin and is provided downstream of the EGR cooler (13) and the bypass passage (16). The bypass valve (17) includes a valve body (21) and an actuator (22) that is configured so as to change from opening the valve body (21) to closing the valve body (21) when the temperature of the EGR gas or the temperature of the cooling water is equal to or greater than a first prescribed value.

Description

EGRシステムEGR system
 この明細書に開示される技術は、エンジンから排気通路へ排出される排気の一部をEGRガスとしてEGR通路を介して吸気通路へ流してエンジンへ還流させるように構成したEGRシステムに関する。 The technology disclosed in this specification relates to an EGR system configured to flow a part of the exhaust gas discharged from the engine to the exhaust passage as EGR gas to the intake passage through the EGR passage and return it to the engine.
 従来、この種の技術として、例えば、下記の特許文献1に記載の技術「排気熱回収装置」が知られている。この排気熱回収装置は、内燃機関(エンジン)などの排気系で、排気ガスと媒体(冷却水)との間で熱交換を行う熱交換器と、排気ガスが熱交換器を迂回するバイパス経路(バイパス通路)と、バイパス通路を開閉する弁体(バイパス弁)とを備える。バイパス弁は、排気ガスの流量が所定値以上になると、付勢体(スプリング)の付勢力に抗してバイパス通路を閉状態から開動作する弁体と、冷却水の温度が所定値以上になると弁体を開動作する温度作動(温度感応式の)アクチュエータを含み、排気ガスの流量及び冷却水の温度の少なくとも一方が所定値以上になった際に弁体が開動作するようになっている。 Conventionally, as this kind of technology, for example, the technology "exhaust heat recovery device" described in Patent Document 1 below is known. This exhaust heat recovery device is a heat exchanger that exchanges heat between the exhaust gas and the medium (cooling water) in an exhaust system such as an internal combustion engine (engine), and a bypass path in which the exhaust gas bypasses the heat exchanger. It is provided with a (bypass passage) and a valve body (bypass valve) that opens and closes the bypass passage. The bypass valve has a valve body that opens the bypass passage from the closed state against the urging force of the urging body (spring) when the flow rate of the exhaust gas exceeds the predetermined value, and the temperature of the cooling water exceeds the predetermined value. It includes a temperature-operated (temperature-sensitive) actuator that opens the valve body, and the valve body opens when at least one of the exhaust gas flow rate and the cooling water temperature exceeds a predetermined value. There is.
国際公開第2006/090725号公報International Publication No. 2006/090725
 ところが、特許文献1に記載の排気熱回収装置では、排気ガスが大流量のとき、又は冷却水が高温のときにバイパス弁が開いて排気ガスが熱交換器を迂回するので、排気熱回収装置よりも下流に樹脂製の排気部品が設けられている場合に、その排気部品で高熱による溶損のおそれがある。 However, in the exhaust heat recovery device described in Patent Document 1, the bypass valve opens when the exhaust gas has a large flow rate or the cooling water is at a high temperature, and the exhaust gas bypasses the heat exchanger. If a resin exhaust component is provided downstream of the exhaust component, there is a risk of melting damage due to high heat in the exhaust component.
 ここで、上記した排気熱回収装置と同等の構成を、エンジンから排気通路へ排出される排気の一部をEGRガスとしてEGR通路を介して吸気通路へ流してエンジンへ還流させるEGRシステムに具体化することができる。このEGRシステムは、EGR通路に設けられ、エンジンの冷却水を媒体とした熱交換器を有するEGRクーラと、EGRクーラを迂回するバイパス通路と、バイパス通路を開閉するバイパス弁と、EGRクーラ及びバイパス通路より下流の下流側EGR通路を構成する樹脂製のEGR通路又は樹脂製のEGRガス分配器とを備える。このEGRシステムでは、EGRガスが高温のとき、又は冷却水が高温のときに、バイパス弁が開いて高温のEGRガスがEGRクーラ(熱交換器)を迂回してバイパス通路を流れ、下流側EGR通路を構成する樹脂製のEGR通路又は樹脂製のEGRガス分配器へ流れてそれらEGR通路又はEGRガス分配器が高熱により溶損するおそれがある。また、その下流側EGR通路では、未暖機のときにEGRガスが流れると、内部で凝縮水が発生するおそれがある。 Here, the same configuration as the exhaust heat recovery device described above is embodied in an EGR system in which a part of the exhaust gas discharged from the engine to the exhaust passage is passed as EGR gas to the intake passage through the EGR passage and returned to the engine. can do. This EGR system is provided in an EGR passage, and has an EGR cooler having a heat exchanger using engine cooling water as a medium, a bypass passage that bypasses the EGR cooler, a bypass valve that opens and closes the bypass passage, and an EGR cooler and a bypass. A resin EGR passage or a resin EGR gas distributor constituting the downstream EGR passage downstream from the passage is provided. In this EGR system, when the EGR gas is hot or the cooling water is hot, the bypass valve opens and the hot EGR gas bypasses the EGR cooler (heat exchanger) and flows through the bypass passage, and the downstream EGR There is a risk that the EGR passages or EGR gas distributors made of resin that constitute the passages will flow to the EGR passages or EGR gas distributors made of resin, and the EGR passages or EGR gas distributors will be melted due to high heat. Further, in the downstream EGR passage, if EGR gas flows during unwarming, condensed water may be generated inside.
 この開示技術は、上記事情に鑑みてなされたものであって、その目的は、上記したEGRシステムにおいて、排気通路からEGR通路へ流れる温度の高いEGRガスを適度な温度に低下させて樹脂製の下流側EGR通路へ流し、その下流側EGR通路の溶損とその下流側EGR通路での凝縮水の発生を抑制することにある。 This disclosure technique was made in view of the above circumstances, and the purpose is to reduce the high temperature EGR gas flowing from the exhaust passage to the EGR passage to an appropriate temperature in the above-mentioned EGR system, and to make the resin. The purpose is to allow the gas to flow into the downstream EGR passage and suppress the melting damage of the downstream EGR passage and the generation of condensed water in the downstream EGR passage.
 (1)上記目的を達成するために、本発明の態様は、エンジンから排気通路へ排出される排気の一部をEGRガスとしてEGR通路を介し吸気通路へ流してエンジンへ還流させるように構成したEGRシステムにおいて、EGR通路においてEGRガスの流量を調節するためのEGR弁と、EGR通路を流れるEGRガスを冷却するために、EGRガスとエンジンの冷却水との間で熱交換を行う熱交換器を含むEGRクーラと、EGR通路においてEGRクーラの熱交換器へ流れるEGRガスの一部を迂回させるためのバイパス通路と、バイパス通路を開閉するためのバイパス弁と、EGRクーラ及びバイパス通路より下流の下流側EGR通路が樹脂材により構成されることとを備え、バイパス弁は、弁体と、EGRガスの温度、下流側EGR通路の温度又は冷却水の温度が第1所定値以上となるときに弁体を開いた状態から閉じるように構成されたアクチュエータを含むことを趣旨とする。 (1) In order to achieve the above object, the aspect of the present invention is configured so that a part of the exhaust gas discharged from the engine to the exhaust passage is passed as EGR gas to the intake passage through the EGR passage and returned to the engine. In the EGR system, an EGR valve for adjusting the flow rate of EGR gas in the EGR passage and a heat exchanger that exchanges heat between the EGR gas and the cooling water of the engine to cool the EGR gas flowing in the EGR passage. An EGR cooler including, a bypass passage for bypassing a part of EGR gas flowing to the heat exchanger of the EGR cooler in the EGR passage, a bypass valve for opening and closing the bypass passage, and a downstream of the EGR cooler and the bypass passage. The downstream EGR passage is composed of a resin material, and the bypass valve is provided when the temperature of the valve body and the EGR gas, the temperature of the downstream EGR passage, or the temperature of the cooling water becomes equal to or higher than the first predetermined value. The purpose is to include an actuator configured to close the valve body from the open state.
 上記(1)の構成によれば、EGRガスの温度、下流側EGR通路の温度又は冷却水の温度が第1所定値未満となるEGRの実行時には、バイパス弁の弁体がアクチュエータにより開いた状態となる。このとき、排気通路からEGR通路へ流れるEGRガスの一部がバイパス通路へ流れると共に、残りが熱交換器へ流れる。そして、それら二つの流れが下流側EGR通路で合流し、同下流側EGR通路を流れる。従って、排気通路からEGR通路へ温度の高いEGRガスが流れても、そのEGRガスのうちバイパス通路を流れるEGRガスが、熱交換器で熱交換されて温度が低下したEGRガスとの合流によって温度が低下し、適度な温度に低下したEGRガスが下流側EGR通路へ流れる。一方、エンジンの暖機後にEGRガスの温度、下流側EGR通路の温度又は冷却水の温度が第1所定値以上になると、バイパス弁の弁体がアクチュエータにより開いた状態から閉じる。従って、排気通路からEGR通路へ流れるEGRガスのほぼ全部がEGRクーラの熱交換器へ流れ、熱交換器で熱交換されて適度な温度に低下し、適度な温度のEGRガスが下流側EGR通路へ流れる。 According to the configuration of (1) above, the valve body of the bypass valve is opened by the actuator when EGR is executed in which the temperature of the EGR gas, the temperature of the downstream EGR passage, or the temperature of the cooling water becomes less than the first predetermined value. It becomes. At this time, a part of the EGR gas flowing from the exhaust passage to the EGR passage flows to the bypass passage, and the rest flows to the heat exchanger. Then, these two flows merge at the downstream EGR passage and flow through the downstream EGR passage. Therefore, even if a high-temperature EGR gas flows from the exhaust passage to the EGR passage, the EGR gas flowing through the bypass passage among the EGR gas is heated by the heat exchanger and merges with the EGR gas whose temperature has dropped. EGR gas that has dropped to an appropriate temperature flows to the downstream EGR passage. On the other hand, when the temperature of the EGR gas, the temperature of the downstream EGR passage, or the temperature of the cooling water becomes equal to or higher than the first predetermined value after the engine is warmed up, the valve body of the bypass valve is closed from the opened state by the actuator. Therefore, almost all of the EGR gas flowing from the exhaust passage to the EGR passage flows to the heat exchanger of the EGR cooler, heat is exchanged by the heat exchanger and the temperature drops to an appropriate temperature, and the EGR gas having an appropriate temperature flows to the downstream EGR passage. Flow to.
 (2)上記目的を達成するために、上記(1)の構成において、アクチュエータは、温度の変化に感応して動作することが好ましい。 (2) In order to achieve the above object, it is preferable that the actuator operates in response to a change in temperature in the configuration of the above (1).
 上記(2)の構成によれば、上記(1)の構成の作用に加え、バイパス弁のアクチュエータが温度の変化に感応して動作するので、バイパス弁を電気的に制御する必要がなく、バイパス弁に関する構成が簡略化する。 According to the configuration of (2) above, in addition to the operation of the configuration of (1) above, the actuator of the bypass valve operates in response to a change in temperature, so that it is not necessary to electrically control the bypass valve and the bypass is bypassed. The configuration for the valve is simplified.
 (3)上記目的を達成するために、上記(1)の構成において、アクチュエータは、EGR弁を全閉にする条件において弁体を開くように構成されることが好ましい。 (3) In order to achieve the above object, in the configuration of the above (1), it is preferable that the actuator is configured to open the valve body under the condition that the EGR valve is fully closed.
 上記(3)の構成によれば、上記(1)の構成の作用に加え、バイパス弁のアクチュエータが、EGR弁を全閉にする条件において弁体を開いたときは、その弁体が閉じているときにバイパス弁より下流に溜まった凝縮水のバイパス弁より上流への流れが許容される。 According to the configuration of (3) above, in addition to the operation of the configuration of (1) above, when the actuator of the bypass valve opens the valve body under the condition that the EGR valve is fully closed, the valve body closes. When present, the flow of condensed water accumulated downstream of the bypass valve upstream of the bypass valve is allowed.
 (4)上記目的を達成するために、上記(1)乃至(3)のいずれかの構成において、熱交換器は、EGRガスが流れ出る出口を含み、バイパス通路は、熱交換器の出口に隣接して配置されEGRガスが流れ出る出口を含み、バイパス弁は、弁体が板状をなすことと、弁体を回動する回転軸とを更に含み、弁体と回転軸がバイパス通路の出口に対応して配置され、回転軸が回動することにより弁体がバイパス通路の出口を開閉するように構成され、回転軸には、EGRガスの外部への漏れを防止するためのシール部材が設けられ、バイパス弁は、弁体がバイパス通路の出口を閉じる閉弁時には、弁体が熱交換器の軸方向と平行又は熱交換器の側に下流へ向けて傾いた位置に配置され、弁体がバイパス通路の出口を開く開弁時には、弁体が熱交換器の出口の流路面積の一部を遮り流路面積を狭くする位置に配置されることが好ましい。 (4) In order to achieve the above object, in any of the above configurations (1) to (3), the heat exchanger includes an outlet through which the EGR gas flows, and the bypass passage is adjacent to the outlet of the heat exchanger. The bypass valve further includes a plate-like valve body and a rotating shaft that rotates the valve body, and the valve body and the rotating shaft are located at the outlet of the bypass passage. Correspondingly arranged, the valve body is configured to open and close the outlet of the bypass passage by rotating the rotating shaft, and the rotating shaft is provided with a sealing member for preventing leakage of EGR gas to the outside. The bypass valve is placed in a position where the valve body is parallel to the axial direction of the heat exchanger or tilted downstream toward the heat exchanger when the valve body closes the outlet of the bypass passage. At the time of opening the valve that opens the outlet of the bypass passage, it is preferable that the valve body is arranged at a position that blocks a part of the flow path area of the outlet of the heat exchanger and narrows the flow path area.
 上記(4)の構成によれば、上記(1)乃至(3)のいずれかの構成の作用に加え、バイパス弁の閉弁時には、排気通路からEGR通路へ流れるEGRガスのほぼ全てが熱交換器へ流れて冷やされ、その出口から流れ出てバイパス弁の弁体に沿って下流側EGR通路へ向けて流れる。一方、バイパス弁の開弁時には、弁体が熱交換器の出口の流路面積の一部を遮り流路面積が狭くなる。従って、熱交換器の出口の流路面積が狭くなる分だけ、熱交換器から流れ出る冷やされたEGRガスの流量が減少し、その流量に対する、バイパス通路から流れ出る冷やされないEGRガスの流量の割合が多くなり、下流側EGR通路へ流れるEGRガスの温度が高くなる。 According to the configuration of (4) above, in addition to the action of any of the configurations (1) to (3) above, when the bypass valve is closed, almost all of the EGR gas flowing from the exhaust passage to the EGR passage exchanges heat. It flows into the vessel, is cooled, flows out from its outlet, flows along the valve body of the bypass valve, and flows toward the downstream EGR passage. On the other hand, when the bypass valve is opened, the valve body blocks a part of the flow path area at the outlet of the heat exchanger and the flow path area becomes narrow. Therefore, the flow rate of the cooled EGR gas flowing out of the heat exchanger decreases as the flow path area at the outlet of the heat exchanger becomes narrower, and the ratio of the flow rate of the uncooled EGR gas flowing out of the bypass passage to the flow rate decreases. The amount increases, and the temperature of the EGR gas flowing to the downstream EGR passage becomes high.
 (5)上記目的を達成するために、上記(4)の構成において、熱交換器の出口とバイパス通路の出口との境部位と、弁体又は回転軸との間に隙間が設けられ、隙間は、弁体の閉弁時よりも開弁時の方が大きくなるように構成されることが好ましい。 (5) In order to achieve the above object, in the configuration of (4) above, a gap is provided between the boundary portion between the outlet of the heat exchanger and the outlet of the bypass passage and the valve body or the rotating shaft, and the gap is provided. Is preferably configured to be larger when the valve body is opened than when the valve body is closed.
 上記(5)の構成によれば、上記(4)の構成の作用に加え、境部位と弁体又は回転軸との間の隙間は、バイパス弁の弁体の閉弁時に開弁時よりも小さくなるので、バイパス通路の中のEGRガスが、隙間を介して熱交換器の出口の側へ漏れ難くなる。一方、その隙間は、その弁体の開弁時に閉弁時よりも大きくなるので、熱交換器の出口から放出される凝縮水が隙間へ流れ易くなる。また、熱交換器の出口の流路面積の一部が弁体により遮られるので、その出口から放出される凝縮水の飛散が抑えられる。 According to the configuration of the above (5), in addition to the action of the configuration of the above (4), the gap between the boundary portion and the valve body or the rotating shaft is larger than that at the time of opening the valve body of the bypass valve when the valve body is closed. As the size becomes smaller, the EGR gas in the bypass passage is less likely to leak to the outlet side of the heat exchanger through the gap. On the other hand, the gap becomes larger when the valve body is opened than when the valve is closed, so that the condensed water discharged from the outlet of the heat exchanger easily flows into the gap. Further, since a part of the flow path area at the outlet of the heat exchanger is blocked by the valve body, the scattering of the condensed water discharged from the outlet is suppressed.
 (6)上記目的を達成するために、上記(1)又は(3)乃至(5)のいずれかの構成において、バイパス弁は、弁体を閉弁方向へ付勢する閉弁スプリングを更に含み、アクチュエータは、コイルを含むステータと、ステータの中心にて回転可能に配置されたロータと、ロータに対しねじ機構を介して軸方向へ往復動可能に連結された駆動軸と、駆動軸をその軸方向へ付勢する軸スプリングとを備え、バイパス弁の回転軸を回動させるために回転軸とアクチュエータの駆動軸とがリンクを介して連結され、軸スプリングは、駆動軸をリンク及び回転軸を介して弁体を閉弁方向へ付勢するように構成されることが好ましい。 (6) In order to achieve the above object, in any of the above configurations (1) or (3) to (5), the bypass valve further includes a valve closing spring that urges the valve body in the valve closing direction. The actuator includes a stator including a coil, a rotor rotatably arranged at the center of the stator, a drive shaft rotatably connected to the rotor via a screw mechanism, and a drive shaft. It is equipped with a shaft spring that urges in the axial direction, and the rotation shaft and the drive shaft of the actuator are connected via a link in order to rotate the rotation shaft of the bypass valve, and the shaft spring links the drive shaft and the rotation shaft. It is preferable that the valve body is configured to urge the valve body in the valve closing direction.
 上記(6)の構成によれば、上記(1)又は(3)乃至(5)のいずれかの構成の作用に加え、バイパス弁は、弁体を閉弁方向へ付勢する閉弁スプリングを含み、アクチュエータは、駆動軸をリンク及び回転軸を介して弁体を閉弁方向へ付勢する軸スプリングを含む。従って、バイパス弁の弁体には、常に閉弁スプリングの付勢力と軸スプリングの付勢力とが閉弁方向に作用することになり、弁体の閉弁がアシストされる。 According to the configuration of (6) above, in addition to the action of any of the configurations (1) or (3) to (5) above, the bypass valve has a valve closing spring that urges the valve body in the valve closing direction. Including, the actuator includes a shaft spring that urges the valve body in the valve closing direction via the link and the rotating shaft of the drive shaft. Therefore, the urging force of the valve closing spring and the urging force of the shaft spring always act on the valve body of the bypass valve in the valve closing direction, and the valve closing of the valve body is assisted.
 (7)上記目的を達成するために、上記(6)の構成において、コイルの断線を検出するための断線検出手段と、EGRガスの還流を制御するためのEGR制御手段とを更に備え、EGR制御手段は、断線検出手段の検出結果に応じてEGRガスの還流を制御するために、EGR弁の開弁開始の条件及び最大開度の少なくとも一方を変更することが好ましい。 (7) In order to achieve the above object, in the configuration of the above (6), the disconnection detecting means for detecting the disconnection of the coil and the EGR control means for controlling the recirculation of the EGR gas are further provided, and EGR It is preferable that the control means changes at least one of the condition for starting the opening of the EGR valve and the maximum opening degree in order to control the recirculation of the EGR gas according to the detection result of the disconnection detecting means.
 上記(7)の構成によれば、上記(6)の構成の作用に加え、アクチュエータのコイルの断線が断線検出手段により検出された場合は、EGRガスの還流を制御するために、EGR弁の開弁開始の条件及び最大開度の少なくとも一方がEGR制御手段により変更される。従って、コイルの断線によりアクチュエータが正常動作しない場合は、EGR弁の開弁開始の条件が変更されることで、暖機前のEGRクーラへEGRガスが流れなくなり、EGR弁の最大開度が変更されることで、高温のEGRガスが大量に下流側EGR通路へ流れなくなる。 According to the configuration of (7) above, in addition to the operation of the configuration of (6) above, when the disconnection of the coil of the actuator is detected by the disconnection detecting means, the EGR valve is used to control the recirculation of the EGR gas. At least one of the valve opening start condition and the maximum opening degree is changed by the EGR control means. Therefore, if the actuator does not operate normally due to the disconnection of the coil, the condition for starting the valve opening of the EGR valve is changed, so that the EGR gas does not flow to the EGR cooler before warming up, and the maximum opening of the EGR valve is changed. As a result, a large amount of high-temperature EGR gas does not flow into the downstream EGR passage.
 (8)上記目的を達成するために、上記(1)乃至(3)のいずれかの構成において、EGRクーラは、ハウジングを含み、バイパス通路の少なくとも一部は、EGRクーラのハウジングと一体に設けられ、バイパス弁は、EGRクーラのハウジングと一体に設けられるバイパス通路に設けられ、バイパス弁の周囲には冷却水が流れる冷却水通路が設けられることが好ましい。 (8) In order to achieve the above object, in any of the above configurations (1) to (3), the EGR cooler includes a housing, and at least a part of the bypass passage is provided integrally with the housing of the EGR cooler. It is preferable that the bypass valve is provided in a bypass passage integrally provided with the housing of the EGR cooler, and a cooling water passage through which cooling water flows is provided around the bypass valve.
 上記(8)の構成によれば、上記(1)乃至(3)のいずれかの構成の作用に加え、バイパス弁がEGRクーラのハウジングと一体に設けられるバイパス通路に設けられ、バイパス弁の周囲には冷却水が流れる冷却水通路が設けられる。従って、バイパス弁のアクチュエータが温度の変化に感応して動作する場合は、冷却水通路を流れる冷却水の温度の変化に感応してアクチュエータが動作することになり、バイパス弁の弁体が冷却水の温度変化に応じて開閉動作することになる。 According to the configuration of (8) above, in addition to the operation of any of the configurations (1) to (3) above, a bypass valve is provided in the bypass passage provided integrally with the housing of the EGR cooler, and is around the bypass valve. Is provided with a cooling water passage through which cooling water flows. Therefore, when the actuator of the bypass valve operates in response to a change in temperature, the actuator operates in response to a change in the temperature of the cooling water flowing through the cooling water passage, and the valve body of the bypass valve operates as cooling water. It will open and close according to the temperature change of.
 (9)上記目的を達成するために、上記(1)乃至(3)のいずれか又は(8)の構成において、EGR弁は、アルミ材より形成されるハウジングを含み、バイパス弁は、EGR弁のハウジングと一体に設けられることが好ましい。 (9) In order to achieve the above object, in any one of the above (1) to (3) or the configuration of (8), the EGR valve includes a housing made of an aluminum material, and the bypass valve is an EGR valve. It is preferable that it is provided integrally with the housing of.
 上記(9)の構成によれば、上記(1)乃至(3)のいずれか又は(8)の構成の作用に加え、EGR弁のハウジングがアルミ材より形成されるので、熱伝導性がよい。また、バイパス弁がEGR弁のハウジングと一体に設けられる。従って、バイパス弁のアクチュエータが温度の変化に感応して動作する場合は、バイパス弁の弁体がEGR弁のハウジングの温度変化に応じて開閉動作することになる。 According to the configuration of the above (9), in addition to the action of any one of the above (1) to (3) or the configuration of (8), the housing of the EGR valve is formed of an aluminum material, so that the thermal conductivity is good. .. Further, the bypass valve is provided integrally with the housing of the EGR valve. Therefore, when the actuator of the bypass valve operates in response to a change in temperature, the valve body of the bypass valve opens and closes in response to the change in temperature of the housing of the EGR valve.
 (10)上記目的を達成するために、上記(1)乃至(9)のいずれかの構成において、EGRクーラが車両に搭載された状態において、バイパス通路は、EGRクーラに対し鉛直方向下側に配置され、その上流側が排気通路へ向かって鉛直方向下方へ傾斜することが好ましい。 (10) In order to achieve the above object, in any of the configurations (1) to (9) above, when the EGR cooler is mounted on the vehicle, the bypass passage is vertically downward with respect to the EGR cooler. It is preferably arranged so that its upstream side inclines vertically downward toward the exhaust passage.
 上記(10)の構成によれば、上記(1)乃至(9)のいずれかの構成の作用に加え、EGRクーラが車両に搭載された状態において、バイパス通路が、EGRクーラに対し鉛直方向下側に配置されるので、EGRクーラで発生した凝縮水は、その自重によりバイパス通路への流下が可能となる。また、バイパス通路の上流側が排気通路へ向かって鉛直方向下方へ傾斜するので、バイパス通路へ流下した凝縮水は、その自重により排気通路への流下が可能となる。 According to the configuration of (10) above, in addition to the action of any of the configurations (1) to (9) above, the bypass passage is vertically downward with respect to the EGR cooler when the EGR cooler is mounted on the vehicle. Since it is arranged on the side, the condensed water generated by the EGR cooler can flow down to the bypass passage due to its own weight. Further, since the upstream side of the bypass passage is inclined downward in the vertical direction toward the exhaust passage, the condensed water flowing down to the bypass passage can flow down to the exhaust passage due to its own weight.
 (11)上記目的を達成するために、上記(1)乃至(10)のいずれかの構成において、EGRクーラとバイパス通路は、仕切壁を介して隣接することが好ましい。 (11) In order to achieve the above object, in any of the above configurations (1) to (10), it is preferable that the EGR cooler and the bypass passage are adjacent to each other via a partition wall.
 上記(11)の構成によれば、上記(1)乃至(10)のいずれかの構成の作用に加え、EGRクーラとバイパス通路が仕切壁を介して隣接するので、EGRクーラとバイパス通路との間で仕切壁を介して熱交換が可能となる。 According to the configuration of (11) above, in addition to the action of any of the configurations (1) to (10) above, the EGR cooler and the bypass passage are adjacent to each other via the partition wall, so that the EGR cooler and the bypass passage are connected to each other. Heat exchange is possible through the partition wall between them.
 (12)上記目的を達成するために、上記(11)の構成において、仕切壁は、熱交換器に接する主壁部と、熱交換器より下流へ延びる下流壁部とを含み、下流壁部には、EGRクーラからバイパス通路に連通する少なくとも一つの連通孔が設けられることが好ましい。 (12) In order to achieve the above object, in the configuration of the above (11), the partition wall includes a main wall portion in contact with the heat exchanger and a downstream wall portion extending downstream from the heat exchanger, and the downstream wall portion. Is preferably provided with at least one communication hole that communicates from the EGR cooler to the bypass passage.
 上記(12)の構成によれば、上記(11)の構成の作用に加え、EGRクーラにて熱交換器から流れ出た凝縮水は、仕切壁の下流壁部にて連通孔からバイパス通路へ自重により流下し易くなる。 According to the configuration of the above (12), in addition to the action of the configuration of the above (11), the condensed water flowing out from the heat exchanger by the EGR cooler has its own weight from the communication hole to the bypass passage at the downstream wall portion of the partition wall. Makes it easier to flow down.
 (13)上記目的を達成するために、上記(12)の構成において、連通孔は、バイパス弁の弁体と対向する位置に配置され、バイパス弁の閉弁時に弁体と下流壁部との干渉を避ける逃がし孔として機能することが好ましい。 (13) In order to achieve the above object, in the configuration of the above (12), the communication hole is arranged at a position facing the valve body of the bypass valve, and when the bypass valve is closed, the valve body and the downstream wall portion are connected to each other. It is preferable to function as a relief hole to avoid interference.
 上記(13)の構成によれば、上記(12)の構成の作用に加え、連通孔が、バイパス弁の閉弁時に弁体と下流壁部との干渉を避ける逃がし孔として機能するので、閉弁時に弁体が過剰に作動しても下流壁部に接触することがない。 According to the configuration of the above (13), in addition to the action of the configuration of the above (12), the communication hole functions as a relief hole for avoiding interference between the valve body and the downstream wall portion when the bypass valve is closed. Even if the valve body operates excessively during valve operation, it does not come into contact with the downstream wall.
 (14)上記目的を達成するために、上記(11)乃至(13)のいずれかの構成において、EGRクーラには、仕切壁に隣接し、EGRガスの流れ方向に平行な複数のフィンが設けられることが好ましい。 (14) In order to achieve the above object, in any of the above configurations (11) to (13), the EGR cooler is provided with a plurality of fins adjacent to the partition wall and parallel to the flow direction of the EGR gas. It is preferable to be.
 上記(14)の構成によれば、上記(11)乃至(13)のいずれかの構成の作用に加え、EGRクーラにて、EGRガスの流れ方向に平行な複数のフィンが仕切壁に隣接して設けられる。従って、バイパス通路を流れるEGRガスの熱が仕切壁を介してフィンへ伝わり、フィンが暖められ、フィンに付着した凝縮水が暖められる。 According to the configuration of (14) above, in addition to the action of any of the configurations (11) to (13) above, in the EGR cooler, a plurality of fins parallel to the flow direction of the EGR gas are adjacent to the partition wall. Is provided. Therefore, the heat of the EGR gas flowing through the bypass passage is transferred to the fins through the partition wall, the fins are warmed, and the condensed water adhering to the fins is warmed.
 (15)上記目的を達成するために、上記(11)乃至(14)のいずれかの構成において、バイパス通路には、仕切壁に接し、EGRガスの流れ方向に平行な複数のフィンが設けられることが好ましい。 (15) In order to achieve the above object, in any of the above configurations (11) to (14), the bypass passage is provided with a plurality of fins in contact with the partition wall and parallel to the flow direction of the EGR gas. Is preferable.
 上記(15)の構成によれば、上記(11)乃至(14)のいずれかの構成の作用に加え、バイパス通路にて、EGRガスの流れ方向に平行な複数のフィンが仕切壁に隣接して設けられる。従って、バイパス通路を流れるEGRガスの熱がフィンを介して仕切壁へ伝わり、EGRクーラが暖められる。 According to the configuration of (15) above, in addition to the action of any of the configurations (11) to (14) above, a plurality of fins parallel to the flow direction of EGR gas are adjacent to the partition wall in the bypass passage. Is provided. Therefore, the heat of the EGR gas flowing through the bypass passage is transferred to the partition wall through the fins, and the EGR cooler is warmed.
 (16)上記目的を達成するために、上記(1)乃至(15)のいずれかの構成において、バイパス通路においてバイパス弁へ流れるEGRガスを迂回させるためのサブバイパス通路を更に備え、サブバイパス通路には、外気温度が第2所定値未満となるときに開弁するサブバイパス弁が設けられることが好ましい。 (16) In order to achieve the above object, in any of the above configurations (1) to (15), a sub-bypass passage for bypassing the EGR gas flowing to the bypass valve in the bypass passage is further provided, and the sub-bypass passage is provided. Is preferably provided with a sub-bypass valve that opens when the outside air temperature becomes less than the second predetermined value.
 上記(16)の構成によれば、上記(1)乃至(15)のいずれかの構成の作用に加え、バイパス通路にて、バイパス弁へ流れるEGRガスを迂回させるサブバイパス通路が設けられ、サブバイパス通路に設けられるサブバイパス弁が、外気温度が第2所定値未満となるときに開弁する。従って、バイパス弁が閉弁しているときでも、外気温度が第2所定値未満となるときは、サブバイパス弁が開弁し、バイパス通路及びサブバイパス通路を通じてその下流側へEGRガスが流れ、EGRクーラで冷却されたEGRガスと合流し、下流側EGR通路へ流れるEGRガスの温度が増す。 According to the configuration of (16) above, in addition to the operation of any of the configurations (1) to (15) above, a sub-bypass passage for bypassing the EGR gas flowing to the bypass valve is provided in the bypass passage, and the sub-bypass passage is provided. The sub-bypass valve provided in the bypass passage opens when the outside air temperature becomes less than the second predetermined value. Therefore, even when the bypass valve is closed, when the outside air temperature becomes less than the second predetermined value, the sub-bypass valve is opened and the EGR gas flows to the downstream side through the bypass passage and the sub-bypass passage. It merges with the EGR gas cooled by the EGR cooler, and the temperature of the EGR gas flowing to the downstream EGR passage increases.
 (17)上記目的を達成するために、上記(1)乃至(16)のいずれかの構成において、下流側EGR通路の温度又は下流側EGR通路を流れるEGRガスの温度を検出するための温度検出手段と、温度検出手段の検出値に基づきEGR弁を制御するための第1制御手段とを更に備え、第1制御手段は、温度検出手段により検出される温度が下流側EGR通路の加熱許容温度を超えた場合に、EGR弁を強制的に全閉又は中間開度に制御することが好ましい。 (17) In order to achieve the above object, in any of the above configurations (1) to (16), temperature detection for detecting the temperature of the downstream EGR passage or the temperature of the EGR gas flowing through the downstream EGR passage. Further, the means and the first control means for controlling the EGR valve based on the detection value of the temperature detecting means are further provided, and in the first control means, the temperature detected by the temperature detecting means is the allowable heating temperature of the downstream EGR passage. When the temperature exceeds the above, it is preferable to forcibly control the EGR valve to the fully closed position or the intermediate opening degree.
 上記(17)の構成によれば、上記(1)乃至(16)のいずれかの構成の作用に加え、温度検出手段により検出される下流側EGR通路の温度又は下流側EGR通路を流れるEGRガスの温度が、下流側EGR通路の加熱許容温度を超えた場合には、第1制御手段がEGR弁を強制的に全閉又は中間開度に制御する。従って、EGR通路におけるEGRガスの流れが直ちに遮断又は減量され、下流側EGR通路の加熱許容温度を超える過剰な加熱が直ちに停止する。 According to the configuration of (17) above, in addition to the action of any of the configurations (1) to (16) above, the temperature of the downstream EGR passage detected by the temperature detecting means or the EGR gas flowing through the downstream EGR passage. When the temperature of the EGR passage exceeds the allowable heating temperature of the downstream EGR passage, the first control means forcibly controls the EGR valve to the fully closed position or the intermediate opening degree. Therefore, the flow of EGR gas in the EGR passage is immediately cut off or reduced, and excessive heating exceeding the allowable heating temperature of the downstream EGR passage is immediately stopped.
 (18)上記目的を達成するために、上記(1)乃至(17)のいずれかの構成において、下流側EGR通路の温度又は下流側EGR通路を流れるEGRガスの温度を検出するための温度検出手段と、温度検出手段の検出値に基づきEGR弁を制御するための第2制御手段とを更に備え、第2制御手段は、温度検出手段により検出される温度が第3所定値以上で下流側EGR通路の耐熱温度未満となる場合に、EGR弁を通常の開度に制御することが好ましい。 (18) In order to achieve the above object, in any of the above configurations (1) to (17), temperature detection for detecting the temperature of the downstream EGR passage or the temperature of the EGR gas flowing through the downstream EGR passage. Further, the means and the second control means for controlling the EGR valve based on the detection value of the temperature detection means are further provided, and the second control means is downstream when the temperature detected by the temperature detection means is equal to or higher than the third predetermined value. When the temperature is lower than the heat resistant temperature of the EGR passage, it is preferable to control the EGR valve to a normal opening degree.
 上記(18)の構成によれば、上記(1)乃至(17)のいずれかの構成の作用に加え、温度検出手段により検出される下流側EGR通路の温度又は下流側EGR通路を流れるEGRガスの温度が第3所定値以上で下流側EGR通路の耐熱温度未満となる場合には、第2制御手段がEGR弁を通常の開度に制御する。従って、EGR通路を流れるEGRガスの流量が適度に調整され、下流側EGR通路へ流れるEGRガスが耐熱温度を超えない流量に抑制される。 According to the configuration of (18) above, in addition to the action of any of the configurations (1) to (17) above, the temperature of the downstream EGR passage detected by the temperature detecting means or the EGR gas flowing through the downstream EGR passage. When the temperature of the EGR valve is equal to or higher than the third predetermined value and is lower than the heat resistant temperature of the downstream EGR passage, the second control means controls the EGR valve to a normal opening degree. Therefore, the flow rate of the EGR gas flowing through the EGR passage is appropriately adjusted, and the flow rate of the EGR gas flowing to the downstream EGR passage is suppressed to a flow rate that does not exceed the heat resistant temperature.
 (19)上記目的を達成するために、上記(3)の構成において、アクチュエータは、電気的に動作し、下流側EGR通路の温度又は下流側EGR通路を流れるEGRガスの温度を検出するための温度検出手段と、温度検出手段の検出値に基づきバイパス弁を制御するための第3制御手段とを更に備え、第3制御手段は、温度検出手段により検出される温度が下流側EGR通路の加熱許容温度を超えた場合に、バイパス弁を閉弁させるようにアクチュエータを制御することが好ましい。 (19) In order to achieve the above object, in the configuration of the above (3), the actuator operates electrically to detect the temperature of the downstream EGR passage or the temperature of the EGR gas flowing through the downstream EGR passage. Further, a temperature detecting means and a third control means for controlling the bypass valve based on the detection value of the temperature detecting means are further provided. It is preferable to control the actuator so that the bypass valve is closed when the allowable temperature is exceeded.
 上記(19)の構成によれば、上記(3)の構成の作用に加え、温度検出手段により検出される下流側EGR通路の温度又は下流側EGR通路を流れるEGRガスの温度が下流側EGR通路の加熱許容温度を超えた場合には、第3制御手段がバイパス弁を閉弁させるようにアクチュエータを制御する。従って、EGR通路を流れる大部分のEGRガスがバイパス通路へ流れることなくEGRクーラで冷却されてから下流側EGR通路へ流れる。 According to the configuration of the above (19), in addition to the action of the configuration of the above (3), the temperature of the downstream EGR passage detected by the temperature detecting means or the temperature of the EGR gas flowing through the downstream EGR passage is the temperature of the downstream EGR passage. When the heating allowable temperature is exceeded, the third control means controls the actuator so as to close the bypass valve. Therefore, most of the EGR gas flowing through the EGR passage is cooled by the EGR cooler without flowing to the bypass passage, and then flows to the downstream EGR passage.
 (20)上記目的を達成するために、上記(19)の構成において、バイパス弁は、アクチュエータをオフして動作させないとき閉弁となるように構成されることが好ましい。 (20) In order to achieve the above object, it is preferable that the bypass valve is configured to be closed when the actuator is turned off and not operated in the configuration of the above (19).
 上記(20)の構成によれば、上記(19)の構成の作用に加え、バイパス弁は、アクチュエータをオフして動作させないとき閉弁となるので、アクチュエータが故障して動作しなくてもバイパス弁が閉弁状態に保たれる。 According to the configuration of (20) above, in addition to the operation of the configuration of (19) above, the bypass valve is closed when the actuator is turned off and not operated, so that the bypass valve is bypassed even if the actuator fails and does not operate. The valve is kept closed.
 上記(1)の構成によれば、EGRシステムにおいて、排気通路からEGR通路へ流れる温度の高いEGRガスを適度な温度に低下させて樹脂材より構成される下流側EGR通路へ流すことができ、その下流側EGR通路の溶損とその下流側EGR通路での凝縮水の発生を抑制することができる。 According to the configuration (1) above, in the EGR system, the high-temperature EGR gas flowing from the exhaust passage to the EGR passage can be lowered to an appropriate temperature and flowed to the downstream EGR passage made of a resin material. It is possible to suppress the melting damage of the downstream EGR passage and the generation of condensed water in the downstream EGR passage.
 上記(2)の構成によれば、上記(1)の構成の効果に加え、EGRシステムとしての製品コストを抑えることができる。 According to the configuration of (2) above, in addition to the effect of the configuration of (1) above, the product cost as an EGR system can be suppressed.
 上記(3)の構成によれば、上記(1)の構成の効果に加え、バイパス弁が閉弁しているときに、バイパス弁より下流に溜まった凝縮水を、EGR弁を全閉にする条件においてバイパス弁より上流へ自重により流すことができる。 According to the configuration of the above (3), in addition to the effect of the configuration of the above (1), when the bypass valve is closed, the condensed water accumulated downstream from the bypass valve is completely closed to the EGR valve. Under the conditions, it can flow upstream from the bypass valve by its own weight.
 上記(4)の構成によれば、上記(1)又は(3)の構成の効果に加え、バイパス弁の閉弁時には、バイパス弁の弁体を冷やされたEGRガスで冷やすことができ、その弁体を介して回転軸を冷やすことができ、回転軸に設けられたシール部材をEGRガスの熱害から保護することができる。また、バイパス弁の開弁時には、バイパス流量比が増えた分だけ下流側EGR通路の暖機を促進することができる。 According to the configuration of (4) above, in addition to the effect of the configuration of (1) or (3) above, when the bypass valve is closed, the valve body of the bypass valve can be cooled with cooled EGR gas. The rotating shaft can be cooled via the valve body, and the sealing member provided on the rotating shaft can be protected from heat damage of the EGR gas. Further, when the bypass valve is opened, the warm-up of the downstream EGR passage can be promoted by the amount of the increase in the bypass flow rate ratio.
 上記(5)の構成によれば、上記(4)の構成の効果に加え、バイパス弁の弁体の閉弁時には、隙間を狭くすることで、バイパス通路から熱交換器側へのEGRガスの漏れを抑えることができ、熱交換器によるEGRガスの冷却効率の低下を抑えることができる。また、その弁体の開弁時には、隙間を広くすることで、熱交換器の出口から放出される凝縮水を隙間を介して多量にバイパス通路へ排出することができる。 According to the configuration of (5) above, in addition to the effect of the configuration of (4) above, when the valve body of the bypass valve is closed, the gap is narrowed to allow the EGR gas from the bypass passage to the heat exchanger side. Leakage can be suppressed, and a decrease in the cooling efficiency of EGR gas due to the heat exchanger can be suppressed. Further, when the valve body is opened, a large amount of condensed water discharged from the outlet of the heat exchanger can be discharged to the bypass passage through the gap by widening the gap.
 上記(6)の構成によれば、上記(1)又は(3)乃至(5)のいずれかの構成の効果に加え、万が一、アクチュエータが故障しても、バイパス弁の弁体を閉弁することができ、バイパス通路でのEGRガスの流れを遮断し、冷却されない高温のEGRガスが下流側EGR通路へ流れないようにすることができ、下流側EGR通路の熱害を抑制することができる。 According to the configuration of (6) above, in addition to the effect of any of the configurations (1) or (3) to (5) above, even if the actuator should fail, the valve body of the bypass valve is closed. It is possible to block the flow of EGR gas in the bypass passage, prevent the uncooled high temperature EGR gas from flowing to the downstream EGR passage, and suppress heat damage in the downstream EGR passage. ..
 上記(7)の構成によれば、上記(6)の構成の効果に加え、バイパス弁のアクチュエータのコイルが断線してアクチュエータが正常に動作せず、バイパス弁を好適に制御できない場合には、それに対応して下流側EGR通路へのEGRガスの流れを制御することで、EGRクーラでの凝縮水の発生を抑制したり、下流側EGR通路での熱害の発生を抑制したりすることができる。 According to the configuration of (7) above, in addition to the effect of the configuration of (6) above, when the coil of the actuator of the bypass valve is broken and the actuator does not operate normally, the bypass valve cannot be controlled appropriately. Correspondingly, by controlling the flow of EGR gas to the downstream EGR passage, it is possible to suppress the generation of condensed water in the EGR cooler and the generation of heat damage in the downstream EGR passage. can.
 上記(8)の構成によれば、上記(1)乃至(3)のいずれかの構成の効果に加え、バイパス弁を熱伝達率の悪いEGRクーラのハウジングに取り付けた場合でも、バイパス弁のアクチュエータが冷却水の温度の変化に感応して動作するので、バイパス弁を電気的に制御する必要がなく、バイパス弁に関する構成を簡略化することができる。 According to the configuration of (8) above, in addition to the effect of any of the configurations (1) to (3) above, even when the bypass valve is attached to the housing of the EGR cooler having a poor heat transfer coefficient, the actuator of the bypass valve is used. Operates in response to changes in the temperature of the cooling water, so that it is not necessary to electrically control the bypass valve, and the configuration related to the bypass valve can be simplified.
 上記(9)の構成によれば、上記(1)乃至(3)のいずれか又は(8)の構成の効果に加え、EGR弁のハウジングにエンジンの冷却水を流す冷却水通路が設けられる場合は、バイパス弁を、冷却水の温度変化に応じて開閉動作させることができる。 According to the configuration of (9) above, in addition to the effect of any one of the above (1) to (3) or the configuration of (8), a cooling water passage for flowing cooling water of the engine is provided in the housing of the EGR valve. Can open and close the bypass valve according to the temperature change of the cooling water.
 上記(10)の構成によれば、上記(1)乃至(9)のいずれかの構成の効果に加え、EGR通路やEGRクーラで発生した凝縮水を、自重によりバイパス通路を通じて排気通路へ排出することができる。 According to the configuration of (10) above, in addition to the effect of any of the configurations (1) to (9) above, the condensed water generated in the EGR passage or the EGR cooler is discharged to the exhaust passage through the bypass passage by its own weight. be able to.
 上記(11)の構成によれば、上記(1)乃至(10)のいずれかの構成の効果に加え、バイパス通路を流れるEGRガスの熱をEGRクーラへ逃がすことができ、その分だけ下流側EGR通路へ流れるEGRガスの温度を低下させることができ、下流側EGR通路の溶損をより確かに抑制することができる。 According to the configuration of (11) above, in addition to the effect of any of the configurations (1) to (10) above, the heat of the EGR gas flowing through the bypass passage can be released to the EGR cooler by that amount on the downstream side. The temperature of the EGR gas flowing to the EGR passage can be lowered, and the melting damage of the downstream EGR passage can be suppressed more reliably.
 上記(12)の構成によれば、上記(11)の構成の効果に加え、EGR通路やEGRクーラ等で発生した凝縮水を、自重により効率良くバイパス通路へ流すことができ、排気通路へ排出することができる。 According to the configuration of the above (12), in addition to the effect of the configuration of the above (11), the condensed water generated in the EGR passage, the EGR cooler, etc. can be efficiently flowed to the bypass passage by its own weight and discharged to the exhaust passage. can do.
 上記(13)の構成によれば、上記(12)の構成の効果に加え、バイパス弁において弁体が過剰に作動しても、弁体又は下流壁部がダメージを受けることを防止することができる。 According to the configuration of (13) above, in addition to the effect of the configuration of (12) above, even if the valve body operates excessively in the bypass valve, it is possible to prevent the valve body or the downstream wall portion from being damaged. can.
 上記(14)の構成によれば、上記(11)乃至(13)のいずれかの構成の効果に加え、EGRクーラで発生した凝縮水を効率良く蒸発させることができる。 According to the configuration of (14) above, in addition to the effect of any of the configurations (11) to (13) above, the condensed water generated by the EGR cooler can be efficiently evaporated.
 上記(15)の構成によれば、上記(11)乃至(14)のいずれかの構成の効果に加え、バイパス通路の放熱を促進することができ、加えてEGRクーラの昇温を促進することができる。 According to the configuration of (15) above, in addition to the effect of any of the configurations (11) to (14) above, heat dissipation of the bypass passage can be promoted, and in addition, the temperature rise of the EGR cooler is promoted. Can be done.
 上記(16)の構成によれば、上記(1)乃至(15)のいずれかの構成の効果に加え、外気温度が氷点下となるような低温環境下で、バイパス弁が閉弁していても、下流側EGR通路へ流れるEGRガスにより下流側EGR通路を暖めることができ、下流側EGR通路の溶損と下流側EGR通路での凝縮水の発生を抑制することができる。 According to the configuration of (16) above, in addition to the effect of any of the configurations (1) to (15) above, even if the bypass valve is closed in a low temperature environment where the outside air temperature is below the freezing point. The EGR gas flowing to the downstream EGR passage can warm the downstream EGR passage, and the melting damage of the downstream EGR passage and the generation of condensed water in the downstream EGR passage can be suppressed.
 上記(17)の構成によれば、上記(1)乃至(16)のいずれかの構成の効果に加え、下流側EGR通路へ流れるEGRガスの温度が必要以上に高くなっても、EGRガスの流れを止める又は減量することで下流側EGR通路の溶損を確実に防止することができる。 According to the configuration of (17) above, in addition to the effect of any of the configurations (1) to (16) above, even if the temperature of the EGR gas flowing to the downstream EGR passage becomes higher than necessary, the EGR gas can be used. By stopping the flow or reducing the weight, it is possible to surely prevent the melting damage of the downstream EGR passage.
 上記(18)の構成によれば、上記(1)乃至(17)のいずれかの構成の効果に加え、EGRガスを下流側EGR通路を介してエンジンへ還流させながら下流側EGR通路の溶損と下流側EGR通路での凝縮水の発生を抑制することができる。 According to the configuration of (18) above, in addition to the effect of any of the configurations (1) to (17), the EGR gas is recirculated to the engine through the downstream EGR passage and the downstream EGR passage is melted. And the generation of condensed water in the downstream EGR passage can be suppressed.
 上記(19)の構成によれば、上記(3)の構成の効果に加え、下流側EGR通路へ流れるEGRガスの温度が下流側EGR通路の加熱許容温度を超えると、EGRガスの温度を低下させるようにバイパス弁を制御し、下流側EGR通路の溶損と下流側EGR通路での凝縮水の発生を抑制することができる。 According to the configuration of (19) above, in addition to the effect of the configuration of (3) above, when the temperature of the EGR gas flowing to the downstream EGR passage exceeds the allowable heating temperature of the downstream EGR passage, the temperature of the EGR gas is lowered. By controlling the bypass valve so as to be allowed to do so, it is possible to suppress the melting damage of the downstream EGR passage and the generation of condensed water in the downstream EGR passage.
 上記(20)の構成によれば、上記(19)の構成の効果に加え、バイパス弁のアクチュエータが故障してもバイパス通路のEGRガスの流れを遮断することができ、下流側EGR通路の溶損を抑制することができる。 According to the configuration of (20) above, in addition to the effect of the configuration of (19) above, even if the actuator of the bypass valve fails, the flow of EGR gas in the bypass passage can be blocked, and the EGR passage on the downstream side is melted. The loss can be suppressed.
第1実施形態に係り、エンジンシステムを示す概略構成図。A schematic configuration diagram showing an engine system according to the first embodiment. 第1実施形態に係り、EGRクーラ、バイパス通路及びバイパス弁(開弁状態)とEGR弁の一部をその長手方向に沿って切断して示す断面図。FIG. 6 is a cross-sectional view showing an EGR cooler, a bypass passage, a bypass valve (valve open state), and a part of the EGR valve cut along the longitudinal direction thereof according to the first embodiment. 第1実施形態に係り、EGRクーラ、バイパス通路及びバイパス弁(閉弁状態)とEGR弁の一部をその長手方向に沿って切断して示す断面図。FIG. 3 is a cross-sectional view showing an EGR cooler, a bypass passage, a bypass valve (valve closed state), and a part of the EGR valve cut along the longitudinal direction thereof according to the first embodiment. 第1実施形態に係り、図2、図3におけるEGRクーラとバイパス通路の一部を示す断面図。FIG. 2 is a cross-sectional view showing a part of the EGR cooler and the bypass passage in FIGS. 2 and 3 according to the first embodiment. 第1実施形態に係り、バイパス弁の具体例であって開弁状態を示す断面図。FIG. 6 is a cross-sectional view showing a specific example of a bypass valve and a valve open state according to the first embodiment. 第1実施形態に係り、バイパス弁の具体例であって閉弁状態を示す断面図。FIG. 6 is a cross-sectional view showing a specific example of a bypass valve and a closed state according to the first embodiment. 第1実施形態に係り、バイパス弁の開閉特性を示すグラフ。A graph showing the opening / closing characteristics of the bypass valve according to the first embodiment. 第1実施形態に係り、第1のEGR制御の内容を示すフローチャート。A flowchart showing the contents of the first EGR control according to the first embodiment. 第2実施形態に係り、第2のEGR制御の内容を示すフローチャート。A flowchart showing the contents of the second EGR control according to the second embodiment. 第2実施形態に係り、冷却水温度に応じたEGR許容開度を求めるために参照されるEGR許容開度マップ。An EGR allowable opening degree map referred to in order to obtain an EGR allowable opening degree according to a cooling water temperature according to a second embodiment. 第3実施形態に係り、第3のEGR制御の内容を示すフローチャート。A flowchart showing the contents of the third EGR control according to the third embodiment. 第3実施形態に係り、EGR開始後のEGR弁の開度の変化を示すグラフ。The graph which shows the change of the opening degree of the EGR valve after the start of EGR according to the 3rd Embodiment. 第3実施形態に係り、EGR開始後の壁温度の変化を示すグラフ。The graph which shows the change of the wall temperature after the start of EGR according to the 3rd Embodiment. 第4実施形態に係り、バイパス弁の具体例であって開弁状態を示す図5に準ずる断面図。FIG. 5 is a cross-sectional view according to FIG. 5, which is a specific example of a bypass valve and shows a valve open state according to a fourth embodiment. 第4実施形態に係り、バイパス弁の具体例であって閉弁状態を示す図6に準ずる断面図。FIG. 6 is a cross-sectional view according to FIG. 6, which is a specific example of the bypass valve and shows a closed state according to the fourth embodiment. 第5実施形態に係り、EGRクーラ、バイパス通路及びバイパス弁(開弁状態)とEGR弁の一部を示す図2に準ずる断面図。FIG. 2 is a cross-sectional view according to FIG. 2 showing an EGR cooler, a bypass passage, a bypass valve (valve open state), and a part of the EGR valve according to the fifth embodiment. 第5実施形態に係り、EGRクーラ、バイパス通路及びバイパス弁(閉弁状態)とEGR弁の一部を示す図3に準ずる断面図。FIG. 5 is a cross-sectional view according to FIG. 3 showing an EGR cooler, a bypass passage, a bypass valve (valve closed state), and a part of the EGR valve according to the fifth embodiment. 第6実施形態に係り、EGRクーラ、バイパス通路及びバイパス弁(閉弁状態)とEGR弁の一部を示す図3に準ずる断面図。FIG. 6 is a cross-sectional view according to FIG. 3 showing an EGR cooler, a bypass passage, a bypass valve (valve closed state), and a part of the EGR valve according to the sixth embodiment. 第6実施形態に係り、EGRクーラ、バイパス通路及びバイパス弁(閉弁状態)とEGR弁の一部を示す図3に準ずる断面図。FIG. 6 is a cross-sectional view according to FIG. 3 showing an EGR cooler, a bypass passage, a bypass valve (valve closed state), and a part of the EGR valve according to the sixth embodiment. 第7実施形態に係り、EGRクーラ、バイパス通路及びバイパス弁(開弁状態)とEGR弁の一部をその長手方向に沿って切断して示す断面図。FIG. 7 is a cross-sectional view showing an EGR cooler, a bypass passage, a bypass valve (valve open state), and a part of the EGR valve cut along the longitudinal direction thereof according to the seventh embodiment. 第7実施形態に係り、EGRクーラ、バイパス通路及びバイパス弁(閉弁状態)とEGR弁の一部をその長手方向に沿って切断して示す断面図。FIG. 7 is a cross-sectional view showing an EGR cooler, a bypass passage, a bypass valve (valve closed state), and a part of the EGR valve cut along the longitudinal direction thereof according to the seventh embodiment. 第8実施形態に係り、EGRクーラ、バイパス通路及びバイパス弁(開弁状態)とEGR弁の一部をその長手方向に沿って切断して示す断面図。FIG. 8 is a cross-sectional view showing an EGR cooler, a bypass passage, a bypass valve (valve open state), and a part of the EGR valve cut along the longitudinal direction thereof according to the eighth embodiment. 第8実施形態に係り、EGRクーラ、バイパス通路及びバイパス弁(閉弁状態)とEGR弁の一部をその長手方向に沿って切断して示す断面図。FIG. 8 is a cross-sectional view showing an EGR cooler, a bypass passage, a bypass valve (valve closed state), and a part of the EGR valve cut along the longitudinal direction thereof according to the eighth embodiment. 第9実施形態に係り、EGRクーラ、バイパス通路及びバイパス弁(開弁状態)とEGR弁の一部をその長手方向に沿って切断して示す断面図。FIG. 9 is a cross-sectional view showing an EGR cooler, a bypass passage, a bypass valve (valve open state), and a part of the EGR valve cut along the longitudinal direction thereof according to the ninth embodiment. 第10実施形態に係り、EGRクーラ、バイパス通路及びバイパス弁(開弁状態)とEGR弁の一部をその長手方向に沿って切断して示す断面図。FIG. 10 is a cross-sectional view showing an EGR cooler, a bypass passage, a bypass valve (valve open state), and a part of the EGR valve cut along the longitudinal direction thereof according to the tenth embodiment. 第11実施形態に係り、EGRクーラ、バイパス通路及びバイパス弁(開弁状態)を示す図24に準ずる断面図。FIG. 24 is a cross-sectional view according to FIG. 24 showing an EGR cooler, a bypass passage, and a bypass valve (valve open state) according to the eleventh embodiment. 第11実施形態に係り、放熱フィンを示す図26のB-B線断面図。FIG. 26 is a sectional view taken along line BB of FIG. 26 showing heat radiation fins according to the eleventh embodiment. 第12実施形態に係り、EGRクーラ、バイパス通路及びバイパス弁(開弁状態)を示す図24に準ずる断面図。FIG. 24 is a cross-sectional view according to FIG. 24 showing an EGR cooler, a bypass passage, and a bypass valve (valve open state) according to a twelfth embodiment. 第13実施形態に係り、エンジンシステムを示す概略構成図。FIG. 6 is a schematic configuration diagram showing an engine system according to a thirteenth embodiment. 第13実施形態に係り、EGRクーラ、バイパス通路及びバイパス弁(閉弁状態)を示す図28に準ずる断面図。FIG. 28 is a cross-sectional view according to FIG. 28 showing an EGR cooler, a bypass passage, and a bypass valve (valve closed state) according to the thirteenth embodiment. 第13実施形態に係り、第4のEGR制御の内容を示すフローチャート。A flowchart showing the contents of the fourth EGR control according to the thirteenth embodiment. 第14実施形態に係り、バイパス弁切換制御の内容を示すフローチャート。The flowchart which shows the content of the bypass valve switching control which concerns on 14th Embodiment. 第15実施形態に係り、バイパス通路とバイパス弁を一体に設けたEGRクーラを示す正面図。A front view showing an EGR cooler in which a bypass passage and a bypass valve are integrally provided according to the fifteenth embodiment. 第15実施形態に係り、EGRクーラを示す背面図。A rear view showing an EGR cooler according to a fifteenth embodiment. 第15実施形態に係り、バイパス弁の弁体が全閉となるときであって、EGRクーラをその長手方向に沿って切断して示す断面図。FIG. 15 is a cross-sectional view showing the EGR cooler cut along the longitudinal direction thereof when the valve body of the bypass valve is fully closed according to the fifteenth embodiment. 第15実施形態に係り、EGRクーラであって、図35に1点鎖線四角で囲った部分を示す拡大断面図。FIG. 15 is an enlarged cross-sectional view showing a portion of the EGR cooler, which is enclosed by a one-dot chain line square in FIG. 35, according to the fifteenth embodiment. 第15実施形態に係り、バイパス弁の弁体が半開となるときであって、EGRクーラを示す図35に準ずる断面図。FIG. 15 is a cross-sectional view according to FIG. 35 showing an EGR cooler when the valve body of the bypass valve is half-opened according to the fifteenth embodiment. 第15実施形態に係り、EGRクーラであって、図37に1点鎖線四角で囲った部分を示す拡大断面図。FIG. 15 is an enlarged cross-sectional view showing a portion of the EGR cooler, which is enclosed by a one-dot chain line square in FIG. 37, according to the fifteenth embodiment. 第15実施形態に係り、バイパス弁の弁体が全開となるときであって、EGRクーラを示す図35に準ずる断面図。FIG. 15 is a cross-sectional view according to FIG. 35 showing an EGR cooler when the valve body of the bypass valve is fully opened according to the fifteenth embodiment. 第15実施形態に係り、EGRクーラであって、図39に1点鎖線四角で囲った部分を示す拡大断面図。FIG. 19 is an enlarged cross-sectional view showing a portion of the EGR cooler, which is enclosed by a two-dot chain line square in FIG. 39, according to the fifteenth embodiment. 第15実施形態に係り、バイパス通路の出口に対応して設けられる弁アッセンブリの構成を示す断面図。FIG. 5 is a cross-sectional view showing a configuration of a valve assembly provided corresponding to an outlet of a bypass passage according to a fifteenth embodiment. 第15実施形態に係り、バイパス弁の開閉制御の内容を示すフローチャート。FIG. 5 is a flowchart showing the contents of opening / closing control of the bypass valve according to the fifteenth embodiment. 第15実施形態に係り、各種パラメータに応じた目標バイパス開度を求めるために参照される目標バイパス開度マップ。A target bypass opening degree map referred to in order to obtain a target bypass opening degree according to various parameters according to the fifteenth embodiment. 第15実施形態に係り、吸気温度に応じたEGR開始許可水温度を求めるために参照されるEGR開始許可水温度マップ。15th embodiment, an EGR start permit water temperature map referred to for obtaining an EGR start permit water temperature according to an intake air temperature. 第15実施形態に係り、バイパス弁の半開時と全開時における、クーラ流量比とバイパス流量比の違いを示すグラフ。FIG. 5 is a graph showing the difference between the cooler flow rate ratio and the bypass flow rate ratio when the bypass valve is half-opened and fully opened according to the fifteenth embodiment. 第16実施形態に係り、EGRクーラの一部であって、熱交換器の出口に隣接したバイパス通路の出口の部分と、バイパス弁の弁体(全閉状態)及び回転軸との関係を示す断面図。16th embodiment shows the relationship between the part of the EGR cooler, the outlet portion of the bypass passage adjacent to the outlet of the heat exchanger, the valve body (fully closed state) of the bypass valve, and the rotation shaft. Sectional view. 第16実施形態に係り、EGRクーラの一部であって、熱交換器の出口に隣接したバイパス通路の出口の部分と、バイパス弁の弁体(開弁状態)及び回転軸との関係を示す断面図。16th embodiment shows the relationship between the part of the EGR cooler, the outlet portion of the bypass passage adjacent to the outlet of the heat exchanger, and the valve body (valve open state) and the rotating shaft of the bypass valve. Sectional view. 第17実施形態に係り、EGRクーラの一部であって、バイパス弁の弁体が全閉となる状態を示す図46に準ずる断面図。17 is a cross-sectional view according to FIG. 46 showing a state in which the valve body of the bypass valve is fully closed, which is a part of the EGR cooler according to the 17th embodiment. 第17実施形態に係り、EGRクーラの一部であって、弁体が開弁した状態を示す図47に準ずる断面図。FIG. 17 is a cross-sectional view according to FIG. 47 showing a state in which the valve body is opened, which is a part of the EGR cooler according to the 17th embodiment. 第18実施形態に係り、EGRクーラの一部であって、バイパス弁の弁体が全閉した状態を示す図48に準ずる断面図。FIG. 18 is a cross-sectional view according to FIG. 48 showing a state in which the valve body of the bypass valve is fully closed, which is a part of the EGR cooler according to the eighteenth embodiment. 第18実施形態に係り、EGRクーラの一部であって、バイパス弁の弁体が開弁した状態を示す図49に準ずる断面図。A cross-sectional view according to FIG. 49 showing a state in which the valve body of the bypass valve is opened, which is a part of the EGR cooler according to the eighteenth embodiment. 第19実施形態に係り、バイパス弁の弁アッセンブリの構成を示す図41に準ずる断面図。FIG. 19 is a cross-sectional view according to FIG. 41 showing a configuration of a valve assembly of a bypass valve according to a nineteenth embodiment. 第20実施形態に係り、バイパス弁の弁アッセンブリの構成を示す図52に準ずる断面図。FIG. 52 is a cross-sectional view according to FIG. 52 showing a configuration of a valve assembly of a bypass valve according to a twentieth embodiment. 第21実施形態に係り、アクチュエータ及びリンクを含むEGRクーラを背面側から視て示す斜視図。FIG. 2 is a perspective view showing an EGR cooler including an actuator and a link as viewed from the rear side according to the 21st embodiment. 第21実施形態に係り、EGRクーラであって、バイパス弁を開弁(全開)に動作させたときのアクチュエータ及びリンクの状態を示す図34に準ずる背面図。21st embodiment is a rear view which is an EGR cooler and which shows the state of the actuator and the link when the bypass valve is operated to open (fully open), according to FIG. 34. 第21実施形態に係り、EGRクーラであって、バイパス弁を閉弁(全閉)に動作させたときのアクチュエータ及びリンクの状態を示す図34に準ずる背面図。21st embodiment is a rear view which is an EGR cooler and which shows the state of the actuator and the link when the bypass valve is operated to close (fully closed), according to FIG. 34. 第21実施形態に係り、バイパス弁を全開に動作させたときのアクチュエータを、その軸方向に沿って切断して示す断面図。FIG. 21 is a cross-sectional view showing an actuator when the bypass valve is fully opened according to the 21st embodiment, cut along the axial direction thereof. 第21実施形態に係り、バイパス弁を全閉に動作させたときのアクチュエータを、その軸方向に沿って切断して示す断面図。FIG. 21 is a cross-sectional view showing an actuator when the bypass valve is fully closed according to the 21st embodiment, cut along the axial direction thereof. 第21実施形態に係り、バイパス弁の弁体が全開となるときであって、EGRクーラの一部を示す図40に準ずる断面図。21. A cross-sectional view according to FIG. 40 showing a part of the EGR cooler when the valve body of the bypass valve is fully opened according to the 21st embodiment. 第21実施形態に係り、バイパス弁の弁体が全閉となるときであって、EGRクーラの一部を示す図36に準ずる断面図。21. A cross-sectional view according to FIG. 36 showing a part of the EGR cooler when the valve body of the bypass valve is fully closed according to the 21st embodiment. 第21実施形態に係り、弁体を全開にした状態における雄ねじと雌ねじとの螺合状態の一部を示す拡大断面図。FIG. 21 is an enlarged cross-sectional view showing a part of a screwed state of a male screw and a female screw in a state where the valve body is fully opened according to the 21st embodiment. 第21実施形態に係り、「突き当て全閉状態」における雄ねじと雌ねじとの螺合状態の一部を示す拡大断面図。FIG. 21 is an enlarged cross-sectional view showing a part of a screwed state of a male screw and a female screw in a “butted fully closed state” according to the 21st embodiment. 第21実施形態に係り、アクチュエータの上層コイルと下層コイルが正常な場合の各コイルに対する通電パターンを示すタイムチャート。A time chart showing an energization pattern for each coil when the upper coil and the lower coil of the actuator are normal according to the 21st embodiment. 第21実施形態に係り、アクチュエータの上層コイルと下層コイルが正常な場合の各コイルに対する通電パターンを示すタイムチャート。A time chart showing an energization pattern for each coil when the upper coil and the lower coil of the actuator are normal according to the 21st embodiment. 第21実施形態に係り、アクチュエータの下層コイルが断線した場合の各コイルに対する通電パターンを示すタイムチャート。A time chart showing an energization pattern for each coil when the lower coil of the actuator is disconnected according to the 21st embodiment. 第21実施形態に係り、アクチュエータの下層コイルが断線した場合の各コイルに対する通電パターンを示すタイムチャート。A time chart showing an energization pattern for each coil when the lower coil of the actuator is disconnected according to the 21st embodiment. 第21実施形態に係り、コイル断線対応制御の内容を示すフローチャート。The flowchart which concerns on 21st Embodiment and shows the content of the coil disconnection correspondence control. 第22実施形態に係り、コイル断線対応制御の内容を示すフローチャート。22nd Embodiment is a flowchart which shows the content of the coil disconnection correspondence control. 第22実施形態に係り、最終実バイパス開度に応じたEGR開始許可水温度(実線)とEGR最大開度(破線)を求めるために参照される水温・開度マップ。The water temperature / opening degree map referred to in accordance with the 22nd embodiment for obtaining the EGR start permitted water temperature (solid line) and the EGR maximum opening degree (broken line) according to the final actual bypass opening degree. 第23実施形態に係り、アクチュエータ及びリンクを含むEGRクーラを背面側から視て示す斜視図。A perspective view showing an EGR cooler including an actuator and a link as viewed from the rear side according to the 23rd embodiment. 第23実施形態に係り、EGRクーラであって、バイパス弁を閉弁(全閉)に動作させたときのアクチュエータ及びリンクの状態を示す図56に準ずる背面図。A rear view according to FIG. 56 showing the state of the actuator and the link when the bypass valve is operated to be closed (fully closed) in the EGR cooler according to the 23rd embodiment. 第23実施形態に係り、EGRクーラであって、バイパス弁を開弁(全開)に動作させたときのアクチュエータ及びリンクの状態を示す図55に準ずる背面図。A rear view according to FIG. 55 showing the state of the actuator and the link when the bypass valve is operated to open (fully open) the EGR cooler according to the 23rd embodiment. 第24実施形態に係り、アクチュエータ及びリンクを含むEGRクーラを示す正面図。A front view showing an EGR cooler including an actuator and a link according to the 24th embodiment. 第24実施形態に係り、図73のEGRクーラを、矢印の方向から視て示す上面図。Top view showing the EGR cooler of FIG. 73 as viewed from the direction of the arrow according to the 24th embodiment. 第24実施形態に係り、EGRクーラを示す図74のC-C線断面図。FIG. 74 is a sectional view taken along line CC of FIG. 74 showing an EGR cooler according to the 24th embodiment. 第24実施形態に係り、EGRクーラの一部を示す図73のD-D線断面図。FIG. 73 is a sectional view taken along line DD of FIG. 73 showing a part of the EGR cooler according to the 24th embodiment. 第24実施形態に係り、アクチュエータのバイメタルが冷えて収縮した状態を示す正面図。A front view showing a state in which the bimetal of the actuator has cooled and shrunk according to the 24th embodiment. 第24実施形態に係り、アクチュエータのバイメタルが加熱により伸張し、その開放端が周方向へ回動した状態を示す正面図。A front view showing a state in which the bimetal of the actuator is stretched by heating and the open end thereof is rotated in the circumferential direction according to the 24th embodiment. 第24実施形態に係り、バイパス弁につき、EGR流量及び冷却水温度に対する開閉特性を示す表。A table showing the opening / closing characteristics of the bypass valve with respect to the EGR flow rate and the cooling water temperature according to the 24th embodiment. 第24実施形態に係り、バイパス弁につき、冷却水温度に対する開閉特性を示す表。A table showing the opening / closing characteristics of the bypass valve with respect to the cooling water temperature according to the 24th embodiment. 第25実施形態に係り、アクチュエータ及びリンクを含むEGRクーラを示す正面図。A front view showing an EGR cooler including an actuator and a link according to a 25th embodiment. 第25実施形態に係り、バイパス弁の弁体が全閉となる状態であって、EGRクーラを示す図81のE-E線断面図。FIG. 81 is a sectional view taken along line EE of FIG. 81 showing an EGR cooler in a state in which the valve body of the bypass valve is fully closed according to the 25th embodiment. 第25実施形態に係り、バイパス弁の弁体が開弁した状態であって、EGRクーラ13を示す図82に準ずる断面図。FIG. 25 is a cross-sectional view according to FIG. 82 showing an EGR cooler 13 in a state where the valve body of the bypass valve is opened according to the 25th embodiment. 第25実施形態に係り、EGRの再開時及び再開後、エンコパ温度及び冷却水温度の条件に対応したバイパス弁の全開又は全閉の制御内容の一例を示す表。The table which shows an example of the control content of the bypass valve fully open or fully closed corresponding to the condition of the Encopa temperature and the cooling water temperature at the time of restarting and after restarting EGR according to the 25th embodiment. 第25実施形態に係り、EGRの再開時及び再開後、エンコパ温度及び冷却水温度の条件に対応したバイオメタルへの通電(オン)又は非通電(オフ)の制御内容の一例を示す表。A table showing an example of control contents of energization (on) or non-energization (off) of the biometal corresponding to the conditions of the encopa temperature and the cooling water temperature at the time of resuming and after resuming the EGR according to the 25th embodiment. 別の実施形態に係り、EGRクーラ、バイパス通路及びバイパス弁(閉弁状態)とEGR弁の一部をその長手方向に沿って切断して示す断面図。FIG. 6 is a cross-sectional view showing an EGR cooler, a bypass passage and a bypass valve (valve closed state) and a part of the EGR valve cut along the longitudinal direction thereof according to another embodiment. 別の実施形態に係り、EGRクーラの一部を示す図36に準ずる拡大断面図。An enlarged cross-sectional view according to FIG. 36 showing a part of the EGR cooler according to another embodiment. 別の実施形態に係り、バイパス弁の弁アッセンブリの構成を示す図52に準ずる断面図。FIG. 5 is a cross-sectional view according to FIG. 52 showing a configuration of a valve assembly of a bypass valve according to another embodiment. 別の実施形態に係り、バイパス弁の弁アッセンブリの構成を示す図41に準ずる断面図。FIG. 11 is a cross-sectional view according to FIG. 41 showing a configuration of a valve assembly of a bypass valve according to another embodiment.
 以下、EGRシステムをガソリンエンジンシステムに具体化したいくつかの実施形態について説明する。 Hereinafter, some embodiments in which the EGR system is embodied in a gasoline engine system will be described.
<第1実施形態>
 先ず、第1実施形態について図面を参照して詳細に説明する。
<First Embodiment>
First, the first embodiment will be described in detail with reference to the drawings.
[エンジンシステムについて]
 図1に、この実施形態のガソリンエンジンシステム(以下、単に「エンジンシステム」と言う。)を概略構成図により示す。自動車に搭載されたエンジンシステムは、複数の気筒を有するエンジン1を備える。このエンジン1は、4気筒、4サイクルのレシプロエンジンであり、ピストン及びクランクシャフト等の周知の構成を含む。エンジン1には、各気筒へ吸気を導入するための吸気通路2と、エンジン1の各気筒から排気を導出するための排気通路3が設けられる。吸気通路2には、その上流側からエアクリーナ9、スロットル装置4及び吸気マニホールド5が設けられる。また、排気通路3には、その上流側から順に排気マニホールド6及び触媒7が設けられる。加えて、このエンジンシステムは、高圧ループタイプの排気還流装置(EGR装置)11を備える。
[About the engine system]
FIG. 1 shows a gasoline engine system of this embodiment (hereinafter, simply referred to as “engine system”) by a schematic configuration diagram. The engine system mounted on the automobile includes an engine 1 having a plurality of cylinders. The engine 1 is a 4-cylinder, 4-cycle reciprocating engine and includes well-known configurations such as a piston and a crankshaft. The engine 1 is provided with an intake passage 2 for introducing intake air into each cylinder and an exhaust passage 3 for deriving exhaust gas from each cylinder of the engine 1. The intake passage 2 is provided with an air cleaner 9, a throttle device 4, and an intake manifold 5 from the upstream side thereof. Further, the exhaust manifold 6 and the catalyst 7 are provided in the exhaust passage 3 in order from the upstream side thereof. In addition, this engine system comprises a high pressure loop type exhaust gas recirculation device (EGR device) 11.
 スロットル装置4は、吸気マニホールド5より上流の吸気通路2に配置され、運転者のアクセル操作に応じてバタフライ式のスロットル弁4aを開度可変に開閉駆動させることで、吸気通路2を流れる吸気量を調節するようになっている。吸気マニホールド5は、主として樹脂材より構成され、エンジン1の直上流にて吸気通路2に配置され、吸気が導入される一つのサージタンク5aと、サージタンク5aに導入された吸気をエンジン1の各気筒へ分配するためにサージタンク5aから分岐した複数(4つ)の分岐管5bとを含む。触媒7には、排気を浄化するために、例えば、三元触媒が内蔵される。 The throttle device 4 is arranged in the intake passage 2 upstream of the intake manifold 5, and by driving the butterfly type throttle valve 4a to open and close with a variable opening according to the accelerator operation of the driver, the amount of intake air flowing through the intake passage 2 Is designed to be adjusted. The intake manifold 5 is mainly composed of a resin material and is arranged in the intake passage 2 directly upstream of the engine 1. One surge tank 5a into which the intake air is introduced and the intake air introduced in the surge tank 5a are used in the engine 1. It includes a plurality of (four) branch pipes 5b branched from the surge tank 5a for distribution to each cylinder. For example, a three-way catalyst is built in the catalyst 7 in order to purify the exhaust gas.
 エンジン1には、各気筒に対応して燃料を噴射するための燃料噴射装置(図示略)が設けられる。燃料噴射装置は、燃料供給装置(図示略)から供給される燃料をエンジン1の各気筒へ噴射するように構成される。各気筒では、燃料噴射装置から噴射される燃料と吸気マニホールド5から導入される吸気とにより可燃混合気が形成される。 The engine 1 is provided with a fuel injection device (not shown) for injecting fuel corresponding to each cylinder. The fuel injection device is configured to inject fuel supplied from a fuel supply device (not shown) into each cylinder of the engine 1. In each cylinder, a combustible air-fuel mixture is formed by the fuel injected from the fuel injection device and the intake air introduced from the intake manifold 5.
 エンジン1には、各気筒に対応して点火装置(図示略)が設けられる。点火装置は、各気筒で可燃混合気に点火するように構成される。各気筒内の可燃混合気は、点火装置の点火動作により爆発・燃焼し、燃焼後の排気は、各気筒から排気マニホールド6及び触媒7を経て外部へ排出される。このとき、各気筒でピストン(図示略)が上下運動し、クランクシャフト(図示略)が回転することにより、エンジン1に動力が得られる。 The engine 1 is provided with an ignition device (not shown) corresponding to each cylinder. The igniter is configured to ignite the combustible mixture in each cylinder. The combustible air-fuel mixture in each cylinder explodes and burns due to the ignition operation of the ignition device, and the exhaust gas after combustion is discharged from each cylinder to the outside via the exhaust manifold 6 and the catalyst 7. At this time, the piston (not shown) moves up and down in each cylinder, and the crankshaft (not shown) rotates to obtain power to the engine 1.
[EGRシステムについて]
 この実施形態のEGRシステムは、上記したEGR装置11を備える。EGR装置11は、エンジン1の各気筒から排気通路3へ排出される排気の一部を排気還流ガス(EGRガス)として吸気通路2へ流してエンジン1の各気筒へ還流させるように構成される。EGR装置11は、排気通路3から吸気通路2へEGRガスを流すための排気還流通路(EGR通路)12と、EGR通路12を流れるEGRガスを冷却するための排気還流クーラ(EGRクーラ)13と、EGR通路12を流れるEGRガスの流量を調節するためにEGRクーラ13より下流に設けられた排気還流弁(EGR弁)14と、EGR通路12を流れるEGRガスをエンジン1の各気筒へ分配するために、吸気マニホールド5の各分岐管5bへEGRガスを分配する排気還流ガス分配器(EGRガス分配器)15とを備える。EGRガス分配器15は、EGRクーラ13、バイパス通路16及びEGR弁14より下流のEGR通路12に設けられる。EGR通路12は、入口12aと出口12bを含む。EGR通路12の入口12aは、触媒7より上流の排気通路3に接続され、同通路12の出口12bは、EGRガス分配器15に接続される。この実施形態で、EGRガス分配器15は、樹脂材により構成され、EGRクーラ13及びバイパス通路16より下流に位置し、この開示技術における下流側EGR通路の終段(一部)を構成している。EGR通路12において、EGR弁14は、EGRクーラ13より下流にてEGRクーラ13に隣接して設けられる。EGRクーラ13は、EGR通路12を流れるEGRガスを冷却するために、EGRガスとエンジン1の冷却水との間で熱交換を行うように構成される。
[About the EGR system]
The EGR system of this embodiment includes the EGR device 11 described above. The EGR device 11 is configured to flow a part of the exhaust gas discharged from each cylinder of the engine 1 to the exhaust passage 3 as an exhaust gas recirculation gas (EGR gas) to the intake passage 2 and return the exhaust gas to each cylinder of the engine 1. .. The EGR device 11 includes an exhaust gas recirculation passage (EGR passage) 12 for flowing EGR gas from the exhaust passage 3 to the intake passage 2, and an exhaust gas recirculation cooler (EGR cooler) 13 for cooling the EGR gas flowing through the EGR passage 12. , The exhaust gas recirculation valve (EGR valve) 14 provided downstream from the EGR cooler 13 in order to adjust the flow rate of the EGR gas flowing through the EGR passage 12, and the EGR gas flowing through the EGR passage 12 are distributed to each cylinder of the engine 1. Therefore, an exhaust gas recirculation gas distributor (EGR gas distributor) 15 for distributing EGR gas to each branch pipe 5b of the intake manifold 5 is provided. The EGR gas distributor 15 is provided in the EGR cooler 13, the bypass passage 16, and the EGR passage 12 downstream of the EGR valve 14. The EGR passage 12 includes an inlet 12a and an outlet 12b. The inlet 12a of the EGR passage 12 is connected to the exhaust passage 3 upstream of the catalyst 7, and the outlet 12b of the passage 12 is connected to the EGR gas distributor 15. In this embodiment, the EGR gas distributor 15 is made of a resin material, is located downstream of the EGR cooler 13 and the bypass passage 16, and constitutes the final stage (part) of the downstream EGR passage in the disclosed technique. There is. In the EGR passage 12, the EGR valve 14 is provided adjacent to the EGR cooler 13 downstream of the EGR cooler 13. The EGR cooler 13 is configured to exchange heat between the EGR gas and the cooling water of the engine 1 in order to cool the EGR gas flowing through the EGR passage 12.
 このEGR装置11では、EGR弁14が開弁することにより、排気通路3を流れる排気の一部がEGRガスとしてEGR通路12を流れ、EGRクーラ13、EGR弁14及びEGRガス分配器15を介して吸気マニホールド5の各分岐管5bへ分配され、更にエンジン1の各気筒へ分配されて還流される。 In this EGR device 11, when the EGR valve 14 is opened, a part of the exhaust gas flowing through the exhaust passage 3 flows through the EGR passage 12 as EGR gas, and passes through the EGR cooler 13, the EGR valve 14, and the EGR gas distributor 15. It is distributed to each branch pipe 5b of the intake manifold 5, and further distributed to each cylinder of the engine 1 to be circulated.
 この実施形態において、EGR弁14とEGRクーラ13との間には、バイパス通路16が設けられる。バイパス通路16は、EGR通路12において、EGRクーラ13へ流れるEGRガスの一部を迂回させるための通路である。バイパス通路16には、同通路16を開閉するためのバイパス弁17が設けられる。 In this embodiment, a bypass passage 16 is provided between the EGR valve 14 and the EGR cooler 13. The bypass passage 16 is a passage for bypassing a part of the EGR gas flowing to the EGR cooler 13 in the EGR passage 12. The bypass passage 16 is provided with a bypass valve 17 for opening and closing the passage 16.
 EGRガス分配器15は、主として樹脂材により構成され、全体として横長な形状を有し、その長手方向(図1の左右方向)において、図1に示すように、吸気マニホールド5の複数の分岐管5bを横切るように配置される。この実施形態で、EGRガス分配器15は、EGR通路12の出口12bから導入されるEGRガスが集まる一つのガスチャンバ15aと、ガスチャンバ15aから分岐され、ガスチャンバ15aから各分岐管5bへEGRガスを分配する複数(4つ)のガス分配通路15bとを含む。 The EGR gas distributor 15 is mainly composed of a resin material, has a horizontally long shape as a whole, and has a plurality of branch pipes of the intake manifold 5 in the longitudinal direction (left-right direction in FIG. 1) as shown in FIG. Arranged so as to cross 5b. In this embodiment, the EGR gas distributor 15 is branched from one gas chamber 15a in which the EGR gas introduced from the outlet 12b of the EGR passage 12 collects, and the gas chamber 15a, and the EGR is branched from the gas chamber 15a to each branch pipe 5b. It includes a plurality (4) gas distribution passages 15b for distributing gas.
 図2、図3にEGRクーラ13、バイパス通路16及びバイパス弁17とEGR弁14の一部をその長手方向に沿って切断した断面図により示す。図2は、バイパス弁17が開弁した状態を示し、図3は、バイパス弁17が閉弁した状態を示す。図2、図3に示すように、EGRクーラ13の出口フランジ31dには、EGR弁14の入口フランジ18aが接続される。EGRクーラ13が車両に搭載された状態において、バイパス通路16は、EGRクーラ13からEGR弁14のハウジング18にわたって、EGRクーラ13及びEGR弁14に対し鉛直方向上側に配置される。図2、図3において、矢印A1は、冷却水の流れを示し、矢印A2は高温のEGRガスの流れを示し、矢印A3は冷却されたEGRガスの流れを示す(以下において同様。)。 2 and 3 show a cross-sectional view of the EGR cooler 13, the bypass passage 16, the bypass valve 17, and a part of the EGR valve 14 cut along the longitudinal direction thereof. FIG. 2 shows a state in which the bypass valve 17 is opened, and FIG. 3 shows a state in which the bypass valve 17 is closed. As shown in FIGS. 2 and 3, the inlet flange 18a of the EGR valve 14 is connected to the outlet flange 31d of the EGR cooler 13. With the EGR cooler 13 mounted on the vehicle, the bypass passage 16 is arranged vertically upward with respect to the EGR cooler 13 and the EGR valve 14 from the EGR cooler 13 to the housing 18 of the EGR valve 14. In FIGS. 2 and 3, arrow A1 indicates the flow of cooling water, arrow A2 indicates the flow of hot EGR gas, and arrow A3 indicates the flow of cooled EGR gas (same below).
 図4に、図2、図3におけるEGRクーラ13とバイパス通路16の一部を断面図により示す。図4に示すように、EGRクーラ13は、ハウジング31と、ハウジング31の中に設けられる熱交換器32と、ハウジング31にEGRガスを導入するための導入口33と、ハウジング31からEGRガスを導出するための導出口34とを含む。この実施形態では、EGRクーラ13は、EGRガスが斜め上方へ流れるようにEGR通路12において斜めに配置される。この斜めの配置状態において、導出口34は導入口33よりも鉛直方向において高い位置に配置される。 FIG. 4 shows a part of the EGR cooler 13 and the bypass passage 16 in FIGS. 2 and 3 by a cross-sectional view. As shown in FIG. 4, the EGR cooler 13 introduces the EGR gas from the housing 31, the heat exchanger 32 provided in the housing 31, the introduction port 33 for introducing the EGR gas into the housing 31, and the housing 31. Includes a derivation port 34 for derivation. In this embodiment, the EGR cooler 13 is obliquely arranged in the EGR passage 12 so that the EGR gas flows diagonally upward. In this diagonally arranged state, the outlet port 34 is arranged at a position higher in the vertical direction than the introduction port 33.
 ハウジング31は、熱交換器32が設けられる本体部31aと、本体部31aから導入口33までの間の導入部31bと、本体部31aから導出口34までの間の導出部31cと、出口フランジ31dとを含む。導入部31bは、その内部に導入空間35を有する。導出部31cは、その内部に導出空間36を有する。熱交換器32は、冷却水が流れる水通路41と、水通路41の中に配置され、EGRガスが流れるガス通路42とを含む。ガス通路42は、扁平形状をなす複数の小ガス通路42Aにより構成される。各小ガス通路42Aには、その内壁に接するように複数の内部フィン44が設けられる。水通路41は、本体部31aの内部空間により構成され、その内部空間の軸方向両端は隔壁43A,43Bにより封鎖される。本体部31aには、水通路41に冷却水を取り入れるための取入口38と、水通路41から冷却水を取り出すための取出口39が形成される。複数の小ガス通路42Aは、互いに水通路41を構成する隙間を介して平行に配置される。各小ガス通路42Aの両端開口部は、両隔壁43A,43Bを貫通して配置され、それぞれ導入空間35及び導出空間36に連通する。EGRクーラ13には、バイパス通路16の一部が一体に形成される。EGRクーラ13とバイパス通路16は、仕切壁46を介して隣接する。図2~図4に示すように、仕切壁46は、熱交換器32に接する主壁部46aと、熱交換器32より下流へ延びる下流壁部46bとを含む。下流壁部46bは、EGRクーラ13のハウジング31と一体に形成される壁部46baと、EGR弁14のハウジング18と一体に形成される壁部46bbとを含む。 The housing 31 includes a main body portion 31a in which the heat exchanger 32 is provided, an introduction portion 31b between the main body portion 31a and the introduction port 33, a lead-out portion 31c between the main body portion 31a and the outlet port 34, and an outlet flange. Including 31d. The introduction unit 31b has an introduction space 35 inside thereof. The derivation unit 31c has a derivation space 36 inside thereof. The heat exchanger 32 includes a water passage 41 through which cooling water flows and a gas passage 42 arranged in the water passage 41 through which EGR gas flows. The gas passage 42 is composed of a plurality of small gas passages 42A having a flat shape. Each small gas passage 42A is provided with a plurality of internal fins 44 so as to be in contact with the inner wall thereof. The water passage 41 is composed of an internal space of the main body portion 31a, and both ends of the internal space in the axial direction are closed by partition walls 43A and 43B. The main body 31a is formed with an intake port 38 for taking cooling water into the water passage 41 and an outlet 39 for taking out the cooling water from the water passage 41. The plurality of small gas passages 42A are arranged in parallel with each other via the gaps constituting the water passage 41. The openings at both ends of each small gas passage 42A are arranged so as to penetrate the partition walls 43A and 43B, and communicate with the introduction space 35 and the lead-out space 36, respectively. A part of the bypass passage 16 is integrally formed in the EGR cooler 13. The EGR cooler 13 and the bypass passage 16 are adjacent to each other via the partition wall 46. As shown in FIGS. 2 to 4, the partition wall 46 includes a main wall portion 46a in contact with the heat exchanger 32 and a downstream wall portion 46b extending downstream from the heat exchanger 32. The downstream wall portion 46b includes a wall portion 46ba integrally formed with the housing 31 of the EGR cooler 13, and a wall portion 46bb integrally formed with the housing 18 of the EGR valve 14.
[バイパス弁について]
 この実施形態において、図2、図3に示すように、バイパス弁17は、EGR弁14のハウジング18と一体に取り付けられ、同ハウジング18に設けられるバイパス通路16を開閉するようになっている。この実施形態で、EGR弁14のハウジング18はアルミ材より形成される。バイパス弁17は、弁体21と、エンジン1の冷却水の温度が第1所定値以上となるときに弁体21を開いた状態から閉じるように構成されたアクチュエータ22を含む。この実施形態では、第1所定値が「40℃以上65℃未満」の範囲の温度に設定される。この実施形態で、バイパス弁17は、サーモワックス弁により構成される。図5、図6に、そのバイパス弁17の具体例を断面図により示す。図5は、開弁状態のバイパス弁17を示し、図6は、閉弁状態のバイパス弁17を示す。図5、図6に示すように、バイパス弁17は、弁体21の他に、ケーシング23と、ケーシング23に内蔵されるサーモワックス24と、サーモワックス24を封止すると共にサーモワックス24の膨張及び収縮に応じて変形可能なダイアフラム25とを備える。弁体21は軸状をなし、一端がダイアフラム25に固定され、他端部がケーシング23に対し往復動可能に設けられる。この実施形態で、アクチュエータ22はサーモワックス24とダイアフラム25により構成され、温度の変化に感応して動作するように構成される。バイパス弁17は、低温時には、図5に示すようにサーモワックス24が収縮することで、ダイアフラム25を介して弁体21がケーシング23に引き込まれて開弁する。すなわち、バイパス通路16を開く。一方、バイパス弁17は、高温時には、図6に示すようにサーモワックス24が膨張することで、ダイアフラム25を介して弁体21がケーシング23から突出して閉弁する。すなわち、バイパス通路16を閉じる。
[Bypass valve]
In this embodiment, as shown in FIGS. 2 and 3, the bypass valve 17 is integrally attached to the housing 18 of the EGR valve 14 and opens and closes the bypass passage 16 provided in the housing 18. In this embodiment, the housing 18 of the EGR valve 14 is made of an aluminum material. The bypass valve 17 includes a valve body 21 and an actuator 22 configured to close the valve body 21 from the open state when the temperature of the cooling water of the engine 1 becomes equal to or higher than the first predetermined value. In this embodiment, the first predetermined value is set to a temperature in the range of "40 ° C. or higher and lower than 65 ° C.". In this embodiment, the bypass valve 17 is configured by a thermowax valve. 5 and 6 show a specific example of the bypass valve 17 in a cross-sectional view. FIG. 5 shows the bypass valve 17 in the valve open state, and FIG. 6 shows the bypass valve 17 in the valve closed state. As shown in FIGS. 5 and 6, the bypass valve 17 seals the casing 23, the thermowax 24 built in the casing 23, and the thermowax 24 in addition to the valve body 21, and expands the thermowax 24. And a diaphragm 25 that can be deformed according to shrinkage. The valve body 21 has a shaft shape, one end thereof is fixed to the diaphragm 25, and the other end portion is provided so as to be reciprocating with respect to the casing 23. In this embodiment, the actuator 22 is composed of a thermowax 24 and a diaphragm 25, and is configured to operate in response to a change in temperature. When the temperature of the bypass valve 17 is low, the thermowax 24 contracts as shown in FIG. 5, and the valve body 21 is pulled into the casing 23 via the diaphragm 25 to open the valve. That is, the bypass passage 16 is opened. On the other hand, when the temperature of the bypass valve 17 is high, the thermowax 24 expands as shown in FIG. 6, so that the valve body 21 protrudes from the casing 23 via the diaphragm 25 and closes. That is, the bypass passage 16 is closed.
 この実施形態において、EGR弁14のハウジング18には、エンジン1の冷却水が流れる冷却水通路(図示略)が形成されており、その冷却水によってハウジング18が加熱又は冷却されるようになっている。そして、この実施形態では、バイパス弁17がEGR弁14のハウジング18に取り付けられることから、冷却水の温度が低い場合には、ハウジング18とバイパス弁17が暖められず、図5に示すようにバイパス弁17が開弁する。バイパス弁17が開弁する場合は、図2に示すように、EGRクーラ13の導入口33から導入されるEGRガスの大部分がバイパス通路16を流れ、残りのEGRガスがEGRクーラ13(熱交換器32)を流れて、それぞれEGR弁14にて合流する。合流したEGRガスは、更にEGRガス分配器15へ流れ、吸気マニホールド5を介してエンジン1の各気筒へ分配され還流される。これに対し、冷却水の温度が高い場合には、ハウジング18とバイパス弁17が暖められ、図6に示すようにバイパス弁17が閉弁する。バイパス弁17が閉弁する場合は、図3に示すように、EGRクーラ13の導入口33から導入されるEGRガスの全部がEGRクーラ13(熱交換器32)へ流れて冷却され、更にEGR弁14及びEGRガス分配器15へ流れ、吸気マニホールド5を介してエンジン1の各気筒へ分配され還流される。 In this embodiment, the housing 18 of the EGR valve 14 is formed with a cooling water passage (not shown) through which the cooling water of the engine 1 flows, and the cooling water heats or cools the housing 18. There is. In this embodiment, since the bypass valve 17 is attached to the housing 18 of the EGR valve 14, when the temperature of the cooling water is low, the housing 18 and the bypass valve 17 cannot be warmed, as shown in FIG. The bypass valve 17 opens. When the bypass valve 17 opens, as shown in FIG. 2, most of the EGR gas introduced from the introduction port 33 of the EGR cooler 13 flows through the bypass passage 16, and the remaining EGR gas flows through the EGR cooler 13 (heat). It flows through the exchanger 32) and joins at the EGR valve 14, respectively. The merged EGR gas further flows to the EGR gas distributor 15, is distributed to each cylinder of the engine 1 via the intake manifold 5, and is recirculated. On the other hand, when the temperature of the cooling water is high, the housing 18 and the bypass valve 17 are warmed, and the bypass valve 17 is closed as shown in FIG. When the bypass valve 17 is closed, as shown in FIG. 3, all of the EGR gas introduced from the introduction port 33 of the EGR cooler 13 flows to the EGR cooler 13 (heat exchanger 32) to be cooled, and further EGR. It flows to the valve 14 and the EGR gas distributor 15, is distributed to each cylinder of the engine 1 via the intake manifold 5, and is recirculated.
 図7に、バイパス弁17の開閉特性をグラフにより示す。このグラフは、横軸に冷却水温度THWを、縦軸にバイパス弁17の開度を示す。このグラフからわかるように、バイパス弁17は、サーモワックス24の特性から、冷却水温度THWが「40℃」未満となる場合に全開となり、冷却水温度THWが「65℃」以上となる場合に全閉となり、「40℃」以上「65℃」未満の範囲で全開と全閉との間の開度となる。 FIG. 7 shows the opening / closing characteristics of the bypass valve 17 graphically. In this graph, the horizontal axis shows the cooling water temperature THW, and the vertical axis shows the opening degree of the bypass valve 17. As can be seen from this graph, the bypass valve 17 is fully opened when the cooling water temperature THW is less than "40 ° C." and is fully opened when the cooling water temperature THW is "65 ° C." or higher due to the characteristics of the thermowax 24. It is fully closed, and the opening between fully open and fully closed is in the range of "40 ° C" or more and less than "65 ° C".
[エンジンシステムの電気的構成について]
 次に、エンジンシステムの電気的構成の一例について説明する。図1において、このエンジンシステムに設けられる各種センサ等81~88は、エンジン1の運転状態を検出するための運転状態検出手段を構成する。エンジン1に設けられる水温センサ81は、エンジン1の内部を流れる冷却水の温度(冷却水温度)THWを検出し、その検出値に応じた電気信号を出力する。エンジン1に設けられる回転数センサ82は、エンジン1のクランクシャフトの回転角(クランク角度)を検出すると共に、そのクランク角度の変化(クランク角速度)をエンジン1の回転数(エンジン回転数)NEとして検出し、その検出値に応じた電気信号を出力する。エアクリーナ9の近傍に設けられるエアフローメータ83は、エアクリーナ9を流れる吸気量Gaを検出し、その検出値に応じた電気信号を出力する。サージタンク5aに設けられる吸気圧センサ84は、スロットル装置4より下流の吸気通路2(サージタンク5a)における吸気圧力PMを検出し、その検出値に応じた電気信号を出力する。スロットル装置4に設けられるスロットルセンサ85は、スロットル弁4aの開度(スロットル開度)TAを検出し、その検出値に応じた電気信号を出力する。EGR通路12の入口12aと触媒7との間の排気通路3に設けられる酸素センサ86は、排気中の酸素濃度Oxを検出し、その検出値に応じた電気信号を出力する。エアクリーナ9の入口に設けられる吸気温センサ87は、エアクリーナ9に吸入される外気の温度(吸気温度)THAを検出し、その検出値に応じた電気信号を出力する。EGRガス分配器15に設けられる壁温センサ88は、EGRガス分配器15の壁の温度(壁温度)THDWを検出し、その検出値に応じた電気信号を出力する。壁温センサ88は、この開示技術における温度検出手段の一例に相当する。
[About the electrical configuration of the engine system]
Next, an example of the electrical configuration of the engine system will be described. In FIG. 1, various sensors and the like 81 to 88 provided in this engine system constitute an operating state detecting means for detecting an operating state of the engine 1. The water temperature sensor 81 provided in the engine 1 detects the temperature (cooling water temperature) THW of the cooling water flowing inside the engine 1 and outputs an electric signal according to the detected value. The rotation speed sensor 82 provided in the engine 1 detects the rotation angle (crank angle) of the crankshaft of the engine 1 and uses the change in the crank angle (crank angle speed) as the rotation speed (engine rotation speed) NE of the engine 1. Detects and outputs an electric signal according to the detected value. The air flow meter 83 provided in the vicinity of the air cleaner 9 detects the intake air amount Ga flowing through the air cleaner 9, and outputs an electric signal according to the detected value. The intake pressure sensor 84 provided in the surge tank 5a detects the intake pressure PM in the intake passage 2 (surge tank 5a) downstream of the throttle device 4, and outputs an electric signal according to the detected value. The throttle sensor 85 provided in the throttle device 4 detects the opening degree (throttle opening degree) TA of the throttle valve 4a and outputs an electric signal corresponding to the detected value. The oxygen sensor 86 provided in the exhaust passage 3 between the inlet 12a of the EGR passage 12 and the catalyst 7 detects the oxygen concentration Ox in the exhaust and outputs an electric signal according to the detected value. The intake air temperature sensor 87 provided at the inlet of the air cleaner 9 detects the temperature (intake air temperature) THA of the outside air sucked into the air cleaner 9, and outputs an electric signal according to the detected value. The wall temperature sensor 88 provided in the EGR gas distributor 15 detects the wall temperature (wall temperature) THDW of the EGR gas distributor 15 and outputs an electric signal according to the detected value. The wall temperature sensor 88 corresponds to an example of the temperature detection means in this disclosed technique.
 このエンジンシステムは、同システムの制御を司る電子制御装置(ECU)90を更に備える。ECU90には、各種センサ等81~88がそれぞれ接続される。また、ECU90には、EGR弁14の他、インジェクタ(図示略)及びイグニションコイル(図示略)が接続される。ECU90は、この開示技術における第1制御手段の一例に相当する。周知のようにECU90は、中央処理装置(CPU)、各種メモリ、外部入力回路及び外部出力回路等を備える。メモリには、各種制御に関する所定の制御プログラムが格納される。CPUは、入力回路を介して入力される各種センサ等81~88の検出信号に基づき、所定の制御プログラムに基づいて燃料噴射制御、点火時期制御及びEGR制御等を実行するようになっている。 This engine system further includes an electronic control unit (ECU) 90 that controls the system. Various sensors and the like 81 to 88 are connected to the ECU 90, respectively. Further, in addition to the EGR valve 14, an injector (not shown) and an ignition coil (not shown) are connected to the ECU 90. The ECU 90 corresponds to an example of the first control means in this disclosure technique. As is well known, the ECU 90 includes a central processing unit (CPU), various memories, an external input circuit, an external output circuit, and the like. A predetermined control program related to various controls is stored in the memory. The CPU executes fuel injection control, ignition timing control, EGR control, and the like based on a predetermined control program based on the detection signals of various sensors and the like 81 to 88 input via the input circuit.
 この実施形態で、ECU90は、EGR制御において、エンジン1の運転状態に応じてEGR弁14を制御するようになっている。具体的には、ECU90は、エンジン1の停止時、アイドル運転時及び減速運転時には、EGR弁14を全閉に制御し、それ以外の運転時には、その運転状態に応じて目標EGR開度を求め、EGR弁14をその目標EGR開度に制御するようになっている。このときEGR弁14が開弁されることにより、エンジン1から排気通路3へ排出され、その排気の一部が、EGRガスとしてEGR通路12、EGRクーラ13、EGR弁14及びEGRガス分配器15等を介して吸気通路2(吸気マニホールド5)へ流れ、エンジン1の各気筒へ分配され還流される。 In this embodiment, the ECU 90 controls the EGR valve 14 according to the operating state of the engine 1 in the EGR control. Specifically, the ECU 90 controls the EGR valve 14 to be fully closed when the engine 1 is stopped, idle operation, and deceleration operation, and obtains a target EGR opening degree according to the operating state at other times. , The EGR valve 14 is controlled to the target EGR opening degree. At this time, when the EGR valve 14 is opened, it is discharged from the engine 1 to the exhaust passage 3, and a part of the exhaust gas is used as EGR gas in the EGR passage 12, the EGR cooler 13, the EGR valve 14, and the EGR gas distributor 15. It flows to the intake passage 2 (intake manifold 5) via the above, and is distributed to each cylinder of the engine 1 to be circulated.
[第1のEGR制御について]
 この実施形態で、バイパス弁17によるバイパス通路16の開閉は、EGR弁14のハウジング18を流れる冷却水の温度に依存して切り替えられるが、EGRガスの温度によっては切り替えられないことがある。すなわち、バイパス弁17が開弁状態から閉弁しないことがあり、温度の高いEGRガスがEGR弁14及びEGRガス分配器15へ流れ続けるおそれがある。そのため、冷却水の温度が低い低水温時にEGRを開始し、エンジン1が高回転高負荷となる条件下で運転されると、温度の高いEGRガスが樹脂製のEGRガス分配器15に流入し、同分配器15が熱で溶損するおそれがある。そこで、この実施形態では、EGRガスの温度が必要以上に高くなった場合にEGRガス分配器15の溶損を防止するために、ECU90は、次のような第1のEGR制御を実行するようになっている。
[About the first EGR control]
In this embodiment, the opening and closing of the bypass passage 16 by the bypass valve 17 is switched depending on the temperature of the cooling water flowing through the housing 18 of the EGR valve 14, but may not be switched depending on the temperature of the EGR gas. That is, the bypass valve 17 may not close from the valve open state, and the high temperature EGR gas may continue to flow to the EGR valve 14 and the EGR gas distributor 15. Therefore, when the EGR is started when the cooling water temperature is low and the water temperature is low and the engine 1 is operated under conditions of high rotation and high load, the high temperature EGR gas flows into the resin EGR gas distributor 15. , The distributor 15 may be melted by heat. Therefore, in this embodiment, in order to prevent the EGR gas distributor 15 from being melted when the temperature of the EGR gas becomes higher than necessary, the ECU 90 performs the following first EGR control. It has become.
 図8に、第1のEGR制御の内容をフローチャートにより示す。処理がこのルーチンへ移行すると、ステップ100で、ECU90は、壁温センサ88の検出値に基づきEGRガス分配器15の壁温度THDWを取り込む。 FIG. 8 shows the contents of the first EGR control by a flowchart. When the process shifts to this routine, in step 100, the ECU 90 takes in the wall temperature THDW of the EGR gas distributor 15 based on the detection value of the wall temperature sensor 88.
 次に、ステップ110で、ECU90は、壁温度THDWがEGRガス分配器15の加熱許容温度である「120℃」以上か否かを判断する。「120℃」は、一例である。ECU90は、この判断結果が肯定となる場合は処理をステップ120へ移行し、この判断結果が否定となる場合は処理をステップ140へ移行する。 Next, in step 110, the ECU 90 determines whether or not the wall temperature THDW is equal to or higher than the allowable heating temperature of the EGR gas distributor 15. "120 ° C." is an example. If the determination result is affirmative, the ECU 90 shifts the process to step 120, and if the determination result is negative, the ECU 90 shifts the process to step 140.
 ステップ120では、ECU90は、壁温度THDWが「120℃」以上であることから、EGRガス分配器15に溶損のおそれがあるものとして、強制EGRカットを実行する。すなわち、ECU90は、EGR弁14を全閉に制御する。 In step 120, the ECU 90 executes a forced EGR cut on the assumption that the EGR gas distributor 15 may be melted because the wall temperature THDW is "120 ° C." or higher. That is, the ECU 90 controls the EGR valve 14 to be fully closed.
 次に、ステップ130で、ECU90は、強制EGRカットフラグXEGRCを「1」に設定し、処理をステップ100へ戻す。 Next, in step 130, the ECU 90 sets the forced EGR cut flag XEGRC to "1" and returns the process to step 100.
 一方、ステップ110から移行してステップ140では、ECU90は、強制EGRカットフラグXEGRCが「1」か否か、すなわち既に強制EGRカットを実行したか否かを判断する。ECU90は、この判断結果が肯定となる場合は処理をステップ150へ移行し、この判断結果が否定となる場合は処理をステップ180へ移行する。 On the other hand, in step 140 after shifting from step 110, the ECU 90 determines whether or not the forced EGR cut flag XEGRC is "1", that is, whether or not the forced EGR cut has already been executed. If the determination result is affirmative, the ECU 90 shifts the process to step 150, and if the determination result is negative, the ECU 90 shifts the process to step 180.
 ステップ150では、ECU90は、壁温度THDWが「100℃」以上か否かを判断する。ECU90は、この判断結果が肯定となる場合は、壁温度THDWが「100℃」以上であり、依然としてEGRガス分配器15に溶損のおそれがあるものとして、処理をステップ120へ移行する。この判断結果が否定となる場合は、EGRガス分配器15に溶損のおそれがないもとして、処理をステップ160へ移行する。 In step 150, the ECU 90 determines whether or not the wall temperature THDW is "100 ° C." or higher. If the determination result is affirmative, the ECU 90 assumes that the wall temperature THDW is "100 ° C." or higher and there is still a risk of melting damage to the EGR gas distributor 15, and the process proceeds to step 120. If this determination result is negative, the process proceeds to step 160, assuming that the EGR gas distributor 15 is not likely to be melted.
 ステップ160では、ECU90は、強制EGRカットを解除する。すなわち、ECU90は、EGR弁14の全閉制御を解除する。 In step 160, the ECU 90 releases the forced EGR cut. That is, the ECU 90 releases the fully closed control of the EGR valve 14.
 次に、ステップ170で、ECU90は、強制EGRカットフラグXEGRCを「0」に設定し、処理をステップ100へ戻す。 Next, in step 170, the ECU 90 sets the forced EGR cut flag XEGRC to "0" and returns the process to step 100.
 一方、ステップ140から移行してステップ180では、ECU90は、通常のEGR制御を実行し、処理をステップ100へ戻す。通常のEGR制御は、エンジン1の運転状態に応じて算出される目標EGR開度に基づきEGR弁14を制御することである。 On the other hand, in step 180 after shifting from step 140, the ECU 90 executes normal EGR control and returns the process to step 100. The normal EGR control is to control the EGR valve 14 based on the target EGR opening degree calculated according to the operating state of the engine 1.
 上記した第1のEGR制御によれば、ECU90は、壁温センサ88(温度検出手段)により検出される壁温度THDW(温度)がEGRガス分配器15の加熱許容温度を超えた場合に、EGR弁14を強制的に全閉に制御するようになっている。具体的には、ECU90は、第1のEGR制御において、EGRガス分配器15の壁温度THDWが「120℃」以上の高温となる場合は、樹脂製のEGRガス分配器15の溶損を回避するために強制EGRカットを実行するようになっている。この第1のEGR制御によれば、サーモワックス弁よりなるバイパス弁17が開いたまま動かなくなった(開故障)場合にも、壁温度THDWが「120℃」以上の高温となることがあることから、強制EGRカットが実行されることになる。よって、この第1のEGR制御は、バイパス弁17が開故障した場合には、フェイルセーフとして機能することになる。 According to the first EGR control described above, when the wall temperature THDW (temperature) detected by the wall temperature sensor 88 (temperature detection means) exceeds the allowable heating temperature of the EGR gas distributor 15, the ECU 90 EGR The valve 14 is forcibly controlled to be fully closed. Specifically, in the first EGR control, the ECU 90 avoids melting damage of the resin EGR gas distributor 15 when the wall temperature THDW of the EGR gas distributor 15 becomes a high temperature of "120 ° C." or higher. It is designed to perform a forced EGR cut in order to do so. According to this first EGR control, even if the bypass valve 17 made of the thermowax valve remains open (open failure), the wall temperature THDW may become a high temperature of "120 ° C." or higher. Therefore, the forced EGR cut will be executed. Therefore, this first EGR control functions as a fail-safe when the bypass valve 17 opens and fails.
[EGRシステムの作用及び効果について]
 以上説明したように、この実施形態におけるEGRシステムの構成によれば、冷却水の温度が第1所定値(40℃)未満となるEGRの実行時には、バイパス弁17の弁体21がサーモワックス24より構成されるアクチュエータ22により開いた状態となる。このとき、排気通路3からEGR通路12へ流れるEGRガスの一部がバイパス通路16へ流れると共に、残りが熱交換器32へ流れる。そして、それら二つの流れが下流のEGR弁14にて合流し、更に下流のEGR通路12を経てEGRガス分配器15へ流れる。従って、排気通路3からEGR通路12へ温度の高いEGRガスが流れても、そのEGRガスのうちバイパス通路16を流れるEGRガスが、熱交換器32で熱交換されて温度が低下したEGRガスとの合流によって温度が低下し、適度な温度に低下したEGRガスがEGRガス分配器15へ流れる。一方、エンジン1の暖機後に冷却水の温度が第1所定値(65℃)以上になると、バイパス弁17の弁体21がサーモワックス24より構成されるアクチュエータ22により開いた状態から閉じる。従って、排気通路3からEGR通路12へ流れるEGRガスのほぼ全部がEGRクーラ13の熱交換器32へ流れ、熱交換器32で熱交換されて適度な温度に低下し、適度な温度のEGRガスがEGR弁14とEGR通路12を経てからEGRガス分配器15へ流れる。このため、EGRシステムにおいて、排気通路3からEGR通路12へ流れる温度の高いEGRガスを適度な温度に低下させて樹脂製のEGRガス分配器15(下流側EGR通路)へ流すことができ、EGRガス分配器15の溶損とEGRガス分配器15での凝縮水の発生を抑制することができる。
[About the action and effect of the EGR system]
As described above, according to the configuration of the EGR system in this embodiment, when the EGR in which the temperature of the cooling water is lower than the first predetermined value (40 ° C.) is executed, the valve body 21 of the bypass valve 17 is the thermowax 24. The actuator 22 is opened by the actuator 22. At this time, a part of the EGR gas flowing from the exhaust passage 3 to the EGR passage 12 flows to the bypass passage 16, and the rest flows to the heat exchanger 32. Then, these two flows merge at the downstream EGR valve 14, and further flow to the EGR gas distributor 15 via the downstream EGR passage 12. Therefore, even if a high temperature EGR gas flows from the exhaust passage 3 to the EGR passage 12, the EGR gas flowing through the bypass passage 16 among the EGR gas is heat exchanged by the heat exchanger 32 with the EGR gas whose temperature has dropped. The temperature drops due to the confluence of the EGR gas, and the EGR gas whose temperature has dropped to an appropriate temperature flows to the EGR gas distributor 15. On the other hand, when the temperature of the cooling water reaches the first predetermined value (65 ° C.) or higher after the engine 1 is warmed up, the valve body 21 of the bypass valve 17 is closed from the open state by the actuator 22 composed of the thermowax 24. Therefore, almost all of the EGR gas flowing from the exhaust passage 3 to the EGR passage 12 flows to the heat exchanger 32 of the EGR cooler 13, is heat exchanged by the heat exchanger 32, drops to an appropriate temperature, and is an EGR gas having an appropriate temperature. Flows to the EGR gas distributor 15 after passing through the EGR valve 14 and the EGR passage 12. Therefore, in the EGR system, the high-temperature EGR gas flowing from the exhaust passage 3 to the EGR passage 12 can be lowered to an appropriate temperature and flowed to the resin EGR gas distributor 15 (downstream side EGR passage), and the EGR can be flown. It is possible to suppress the melting damage of the gas distributor 15 and the generation of condensed water in the EGR gas distributor 15.
 この実施形態の構成によれば、バイパス弁17のアクチュエータ22がサーモワックス24とダイアフラム25により構成され、温度の変化に感応して動作するので、バイパス弁17を電気的に制御する必要がなく、バイパス弁17に関する構成が簡略化する。このため、EGRシステムとしての製品コストを抑えることができる。 According to the configuration of this embodiment, since the actuator 22 of the bypass valve 17 is composed of the thermowax 24 and the diaphragm 25 and operates in response to a change in temperature, it is not necessary to electrically control the bypass valve 17. The configuration of the bypass valve 17 is simplified. Therefore, the product cost as an EGR system can be suppressed.
 この実施形態の構成によれば、EGR弁14のハウジング18がアルミ材より形成されるので、その熱伝導性がよい。また、バイパス弁17がEGR弁14のハウジング18と一体に設けられ、そのアクチュエータ22がサーモワックス24とダイアフラム25により構成され、温度の変化に感応して動作する。従って、バイパス弁17の弁体21がEGR弁14のハウジング18の温度変化に応じて開閉動作することになる。このため、EGR弁14のハウジング18にエンジン1の冷却水を流す冷却水通路が設けられる場合は、バイパス弁17を、冷却水の温度変化に応じて開閉動作させることができる。 According to the configuration of this embodiment, since the housing 18 of the EGR valve 14 is formed of an aluminum material, its thermal conductivity is good. Further, the bypass valve 17 is provided integrally with the housing 18 of the EGR valve 14, and the actuator 22 thereof is composed of the thermowax 24 and the diaphragm 25, and operates in response to a change in temperature. Therefore, the valve body 21 of the bypass valve 17 opens and closes according to the temperature change of the housing 18 of the EGR valve 14. Therefore, when the housing 18 of the EGR valve 14 is provided with a cooling water passage through which the cooling water of the engine 1 flows, the bypass valve 17 can be opened and closed according to the temperature change of the cooling water.
 この実施形態の構成によれば、EGRクーラ13とバイパス通路16が仕切壁46を介して隣接するので、EGRクーラ13とバイパス通路16との間で仕切壁46を介して熱交換が可能となる。このため、バイパス通路16を流れるEGRガスの熱をEGRクーラ13へ逃がすことができ、その分だけEGRガス分配器15へ流れるEGRガスの温度を低下させることができ、EGRガス分配器15の溶損をより確かに抑制することができる。 According to the configuration of this embodiment, since the EGR cooler 13 and the bypass passage 16 are adjacent to each other via the partition wall 46, heat exchange is possible between the EGR cooler 13 and the bypass passage 16 via the partition wall 46. .. Therefore, the heat of the EGR gas flowing through the bypass passage 16 can be released to the EGR cooler 13, and the temperature of the EGR gas flowing to the EGR gas distributor 15 can be lowered by that amount, and the EGR gas distributor 15 is melted. The loss can be suppressed more reliably.
 この実施形態の構成によれば、第1のEGR制御において、壁温センサ88により検出されるEGRガス分配器15の壁温度THDWが、EGRガス分配器15の加熱許容温度(120℃)を超えた場合には、ECU90がEGR弁14を強制的に全閉に制御する、すなわち、強制EGRカットを実行する。従って、EGR通路12におけるEGRガスの流れが直ちに遮断され、EGRガス分配器15の加熱許容温度を超える過剰な加熱が直ちに停止する。このため、EGRガス分配器15へ流れるEGRガスの温度が必要以上に高くなっても、EGRガスの流れを止めることでEGRガス分配器15の溶損を確実に防止することができる。 According to the configuration of this embodiment, in the first EGR control, the wall temperature THDW of the EGR gas distributor 15 detected by the wall temperature sensor 88 exceeds the allowable heating temperature (120 ° C.) of the EGR gas distributor 15. If so, the ECU 90 forcibly controls the EGR valve 14 to be fully closed, that is, executes a forced EGR cut. Therefore, the flow of EGR gas in the EGR passage 12 is immediately cut off, and excessive heating exceeding the allowable heating temperature of the EGR gas distributor 15 is immediately stopped. Therefore, even if the temperature of the EGR gas flowing to the EGR gas distributor 15 becomes higher than necessary, the EGR gas distributor 15 can be reliably prevented from being melted by stopping the flow of the EGR gas.
<第2実施形態>
 次に、第2実施形態について図面を参照して詳細に説明する。なお、以下の説明において、第1実施形態と同等の構成要素については、同一の符号を付して説明を省略し、異なった点を中心に説明する。
<Second Embodiment>
Next, the second embodiment will be described in detail with reference to the drawings. In the following description, the components equivalent to those in the first embodiment are designated by the same reference numerals, the description thereof will be omitted, and the differences will be mainly described.
 この実施形態では、ECU90が実行する「第2のEGR制御」の内容の点で、第1実施形態の「第1のEGR制御」と異なる。この実施形態において、ECU90は、この開示技術における第2制御手段の一例に相当する。 This embodiment is different from the "first EGR control" of the first embodiment in the content of the "second EGR control" executed by the ECU 90. In this embodiment, the ECU 90 corresponds to an example of a second control means in this disclosure technique.
[第2のEGR制御]
 図9に、第2のEGR制御の内容をフローチャートにより示す。処理がこのルーチンへ移行すると、ステップ200で、ECU90は水温センサ81、回転数センサ82、スロットルセンサ85、吸気温センサ87及び壁温センサ88の検出値に基づき、冷却水温度THW、エンジン回転数NE、吸気温度THA、エンジン負荷KL及び壁温度THDWをそれぞれ取り込む。ECU90は、エンジン負荷KLを、スロットル開度TA又は吸気圧力PMに基づいて求めることができる。
[Second EGR control]
FIG. 9 shows the contents of the second EGR control by a flowchart. When the process shifts to this routine, in step 200, the ECU 90 sets the cooling water temperature THW and the engine rotation speed based on the detection values of the water temperature sensor 81, the rotation speed sensor 82, the throttle sensor 85, the intake air temperature sensor 87 and the wall temperature sensor 88. The NE, intake air temperature THA, engine load KL, and wall temperature THDW are taken in, respectively. The ECU 90 can obtain the engine load KL based on the throttle opening TA or the intake pressure PM.
 次に、ステップ210で、ECU90は、EGR開始許可条件が成立したか否かを判断する。ECU90は、取り込まれた上記各種パラメータTHW,THAに基づき、EGR開始許可条件の成立を判断することができる。ECU90は、この判断結果が肯定となる場合は処理をステップ220へ移行し、この判断結果が否定となる場合は処理をステップ290へ移行する。 Next, in step 210, the ECU 90 determines whether or not the EGR start permission condition is satisfied. The ECU 90 can determine the establishment of the EGR start permission condition based on the various parameters THW and THA taken in. If the determination result is affirmative, the ECU 90 shifts the process to step 220, and if the determination result is negative, the ECU 90 shifts the process to step 290.
 ステップ220では、ECU90は、吸気温度THA、冷却水温度THW、エンジン回転数NE及びエンジン負荷KLに応じた目標EGR開度TEGRを求める。ECU90は、例えば、所定の目標EGR開度マップ(図示略)を参照することにより各種パラメータTHA,THW,NE,KLに応じた目標EGR開度TEGRを求めることができる。 In step 220, the ECU 90 obtains a target EGR opening degree TEGR according to the intake air temperature THA, the cooling water temperature THW, the engine speed NE, and the engine load KL. The ECU 90 can obtain a target EGR opening TEGR according to various parameters THA, THW, NE, and KL by referring to a predetermined target EGR opening map (not shown), for example.
 次に、ステップ230で、ECU90は、EGRガス分配器15の壁温度THDWがEGRガス分配器15の耐熱温度である「140℃」未満か否かを判断する。「140℃」は、一例である。ECU90は、この判断結果が肯定となる場合は処理を240へ移行し、この判断結果が否定となる場合は処理をステップ340へ移行する。 Next, in step 230, the ECU 90 determines whether or not the wall temperature THDW of the EGR gas distributor 15 is less than the heat resistant temperature of the EGR gas distributor 15, "140 ° C.". "140 ° C" is an example. If the determination result is affirmative, the ECU 90 shifts the process to 240, and if the determination result is negative, the ECU 90 shifts the process to step 340.
 ステップ240では、ECU90は、強制EGRカットフラグXEGRCが「0」か否かを判断する。後述するように、このフラグXEGRCは、強制EGRカットが実行されるときに「1」に設定されるようになっている。ECU90は、この判断結果が肯定となる場合は処理を250へ移行し、この判断結果が否定となる場合は処理をステップ310へ移行する。 In step 240, the ECU 90 determines whether or not the forced EGR cut flag XEGRC is “0”. As will be described later, this flag XEGRC is set to "1" when the forced EGR cut is executed. If the determination result is affirmative, the ECU 90 shifts the process to 250, and if the determination result is negative, the ECU 90 shifts the process to step 310.
 ステップ250で、ECU90は、壁温度THDWがEGRガス分配器15の加熱許容温度である「120℃」以上か否かを判断する。「120℃」は、一例である。ECU90は、この判断結果が肯定となる場合は処理を260へ移行し、この判断結果が否定となる場合は処理をステップ280へ移行する。 In step 250, the ECU 90 determines whether or not the wall temperature THDW is equal to or higher than the allowable heating temperature of the EGR gas distributor 15. "120 ° C." is an example. If the determination result is affirmative, the ECU 90 shifts the process to 260, and if the determination result is negative, the ECU 90 shifts the process to step 280.
 ステップ260で、ECU90は、冷却水温度THWに応じたEGR許容開度TEGRMXを求める。ECU90は、例えば、図10に示すようなEGR許容開度マップを参照することにより、冷却水温度THWに応じたEGR許容開度TEGRMXを求めることができる。このマップでは、冷却水温度THWが「40℃」未満となる場合に、EGR許容開度TEGRMXが「40(%)」の開度となり、冷却水温度THWが「65℃」以上となる場合に、EGR許容開度TEGRMXが「100(%)」の全開となり、冷却水温度THWが「40℃」以上「65℃」未満となる範囲では、EGR許容開度TEGRMXが「40(%)」の開度から「100%」の全開の間の開度となる。 In step 260, the ECU 90 obtains the EGR allowable opening degree TEGRMX according to the cooling water temperature THW. The ECU 90 can obtain the EGR allowable opening degree TEGRMX according to the cooling water temperature THW, for example, by referring to the EGR allowable opening degree map as shown in FIG. In this map, when the cooling water temperature THW is less than "40 ° C", the EGR allowable opening TEGRMX is "40 (%)", and the cooling water temperature THW is "65 ° C" or more. In the range where the EGR allowable opening TEGRMX is fully opened at "100 (%)" and the cooling water temperature THW is "40 ° C" or more and less than "65 ° C", the EGR allowable opening TEGRMX is "40 (%)". The opening is between the opening and the full opening of "100%".
 次に、ステップ270で、ECU90は、目標EGR開度TEGRが、EGR許容開度TEGRMXより小さいか否かを判断する。ECU90は、この判断結果が肯定となる場合は処理を280へ移行し、この判断結果が否定となる場合は処理をステップ300へ移行する。 Next, in step 270, the ECU 90 determines whether or not the target EGR opening degree TEGR is smaller than the EGR allowable opening degree TEGRMX. If the determination result is affirmative, the ECU 90 shifts the process to 280, and if the determination result is negative, the ECU 90 shifts the process to step 300.
 ステップ280では、ECU90は、EGR弁14を目標EGR開度TEGRに制御し、処理をステップ200へ戻す。 In step 280, the ECU 90 controls the EGR valve 14 to the target EGR opening degree TEGR, and returns the process to step 200.
 ステップ270からステップ300へ移行した場合は、ECU90は、EGR許容開度TEGRMXを目標EGR開度TEGRに設定し、処理をステップ280へ移行する。 When shifting from step 270 to step 300, the ECU 90 sets the EGR allowable opening TEGRMX to the target EGR opening TEGR, and shifts the process to step 280.
 一方、ステップ230から移行してステップ340では、ECU90は、強制EGRカットのために目標EGR開度TEGRを「0」に設定する。 On the other hand, in step 340 after shifting from step 230, the ECU 90 sets the target EGR opening TEGR to "0" for forced EGR cut.
 次に、ステップ350で、ECU90は、強制EGRカットフラグXEGRCを「1」に設定し、処理をステップ280へ移行する。 Next, in step 350, the ECU 90 sets the forced EGR cut flag XEGRC to "1" and shifts the process to step 280.
 また、ステップ240から移行してステップ310では、ECU90は、EGRガス分配器15の壁温度THDWが「130℃」未満か否かを判断する。「130℃」は、一例である。ECU90は、この判断結果が肯定となる場合は処理を320へ移行し、この判断結果が否定となる場合は処理をステップ340へ移行する。 Further, in step 310 after shifting from step 240, the ECU 90 determines whether or not the wall temperature THDW of the EGR gas distributor 15 is less than "130 ° C.". "130 ° C" is an example. If the determination result is affirmative, the ECU 90 shifts the process to 320, and if the determination result is negative, the ECU 90 shifts the process to step 340.
 ステップ320では、ECU90は、既に実行されている強制EGRカットを解除する。すなわち、ECU90は、EGR弁14を強制的に全閉とする制御を終了する。 In step 320, the ECU 90 releases the forced EGR cut that has already been executed. That is, the ECU 90 ends the control for forcibly closing the EGR valve 14.
 次に、ステップ330で、ECU90は、強制EGRカットフラグXEGRCを「0」に設定し、処理をステップ280へ移行する。 Next, in step 330, the ECU 90 sets the forced EGR cut flag XEGRC to "0" and shifts the process to step 280.
 一方、ステップ210から移行してステップ290では、ECU90は、目標EGR開度TEGRを「0」に設定し、処理をステップ280へ移行する。 On the other hand, in step 290 after shifting from step 210, the ECU 90 sets the target EGR opening degree TEGR to "0" and shifts the process to step 280.
 上記した第2のEGR制御によれば、ECU90は、壁温センサ88(温度検出手段)により検出される壁温度THDWがEGRガス分配器15の耐熱温度(140℃)を超えた場合に、EGR弁14を強制的に全閉に制御(強制EGRカット)するようになっている。また、ECU90は、壁温センサ88(温度検出手段)により検出される壁温度THDWが第3所定値(EGRガス分配器15の加熱許容温度(120℃)以上130℃未満)以上でEGRガス分配器15の耐熱温度(140℃)未満となる場合に、EGR弁14を通常の開度に制御するようになっている。 According to the second EGR control described above, the ECU 90 determines the EGR when the wall temperature THDW detected by the wall temperature sensor 88 (temperature detection means) exceeds the heat resistant temperature (140 ° C.) of the EGR gas distributor 15. The valve 14 is forcibly controlled to be fully closed (forced EGR cut). Further, the ECU 90 distributes EGR gas when the wall temperature THDW detected by the wall temperature sensor 88 (temperature detecting means) is equal to or higher than the third predetermined value (the allowable heating temperature (120 ° C.) or more and less than 130 ° C. of the EGR gas distributor 15). When the temperature becomes lower than the heat resistant temperature (140 ° C.) of the vessel 15, the EGR valve 14 is controlled to a normal opening degree.
[EGRシステムの作用及び効果について]
 以上説明したこの実施形態のEGRシステムの構成によれば、第1実施形態の第1のEGR制御と異なり、第2のEGR制御により次のような作用及び効果が得られる。すなわち、壁温センサ88により検出されるEGRガス分配器15の壁温度THDWが、EGRガス分配器15の耐熱温度(140℃)を超えた場合には、ECU90がEGR弁14を強制的に全閉に制御する、すなわち、強制EGRカットを実行する。従って、EGR通路12におけるEGRガスの流れが直ちに遮断され、EGRガス分配器15の耐熱温度(140℃)を超える過剰な加熱が直ちに停止する。このため、EGRガス分配器15へ流れるEGRガスの温度が必要以上に高くなっても、EGRガスの流れを止めることでEGRガス分配器15の溶損を確実に防止することができる。また、壁温センサ88により検出される壁温度THDWが第3所定値(120℃以上130℃未満)以上でEGRガス分配器15の耐熱温度(140℃)未満となる場合には、ECU90がEGR弁14を通常の開度に制御する。従って、EGR通路12を流れるEGRガスの流量が適度に調整され、EGRガス分配器15へ流れるEGRガスが耐熱温度(140℃)を超えない流量に抑制される。このため、EGRガスをEGRガス分配器15を介してエンジン1へ還流させながらEGRガス分配器15の溶損とEGRガス分配器15での凝縮水の発生を抑制することができる。この場合は、第1のEGR制御と異なり、強制EGRカットが実行されないことから、エンジン1にてEGRによる効果(例えば、燃費低減効果)を得ることもできる。
[About the action and effect of the EGR system]
According to the configuration of the EGR system of this embodiment described above, unlike the first EGR control of the first embodiment, the second EGR control obtains the following actions and effects. That is, when the wall temperature THDW of the EGR gas distributor 15 detected by the wall temperature sensor 88 exceeds the heat resistant temperature (140 ° C.) of the EGR gas distributor 15, the ECU 90 forcibly fills the EGR valve 14. Control to close, i.e. perform a forced EGR cut. Therefore, the flow of EGR gas in the EGR passage 12 is immediately cut off, and excessive heating exceeding the heat resistant temperature (140 ° C.) of the EGR gas distributor 15 is immediately stopped. Therefore, even if the temperature of the EGR gas flowing to the EGR gas distributor 15 becomes higher than necessary, the EGR gas distributor 15 can be reliably prevented from being melted by stopping the flow of the EGR gas. Further, when the wall temperature THDW detected by the wall temperature sensor 88 is equal to or higher than the third predetermined value (120 ° C. or higher and lower than 130 ° C.) and lower than the heat resistant temperature (140 ° C.) of the EGR gas distributor 15, the ECU 90 performs EGR. The valve 14 is controlled to a normal opening degree. Therefore, the flow rate of the EGR gas flowing through the EGR passage 12 is appropriately adjusted, and the flow rate of the EGR gas flowing to the EGR gas distributor 15 is suppressed to a flow rate that does not exceed the heat resistant temperature (140 ° C.). Therefore, it is possible to suppress the melting damage of the EGR gas distributor 15 and the generation of condensed water in the EGR gas distributor 15 while recirculating the EGR gas to the engine 1 via the EGR gas distributor 15. In this case, unlike the first EGR control, the forced EGR cut is not executed, so that the effect of EGR (for example, the fuel consumption reduction effect) can be obtained in the engine 1.
<第3実施形態>
 次に、第3実施形態について図面を参照して詳細に説明する。
<Third Embodiment>
Next, the third embodiment will be described in detail with reference to the drawings.
 この実施形態では、ECU90が実行する「第3のEGR制御」の内容の点で、前記各実施形態の「第1のEGR制御」及び「第2のEGR制御」と異なる。 This embodiment is different from the "first EGR control" and the "second EGR control" of each of the above-described embodiments in terms of the content of the "third EGR control" executed by the ECU 90.
[第3のEGR制御]
 図11に、第3のEGR制御の内容をフローチャートにより示す。図11に示す第3のEGR制御は、ステップ250の処理を省略した点で図9に示す第2のEGR制御と内容が異なる。
[Third EGR control]
FIG. 11 shows the contents of the third EGR control by a flowchart. The third EGR control shown in FIG. 11 is different from the second EGR control shown in FIG. 9 in that the process of step 250 is omitted.
 処理がこのルーチンへ移行すると、ECU90は、ステップ200~ステップ240の処理を実行し、ステップ240の判断結果が肯定となる場合は、処理をステップ260へ移行し、ステップ240の判断結果が否定となる場合は、処理をステップ310へ移行する。すなわち、図11のフローチャートでは、図9に示すステップ250の処理、すなわち、壁温度THDWが「120℃」以上か否かの判断を省略し、ステップ240からステップ260へ移行する。その他の処理内容については、図9に示す第2のEGR制御と同じである。 When the process shifts to this routine, the ECU 90 executes the processes of steps 200 to 240, and if the determination result of step 240 is affirmative, the process proceeds to step 260, and the determination result of step 240 is negative. If so, the process proceeds to step 310. That is, in the flowchart of FIG. 11, the process of step 250 shown in FIG. 9, that is, the determination of whether or not the wall temperature THDW is “120 ° C.” or higher is omitted, and the process proceeds from step 240 to step 260. Other processing contents are the same as those of the second EGR control shown in FIG.
 上記した第3のEGR制御によれば、ECU90は、EGRガス分配器15の壁温度THDWが「140℃」未満となる場合には、壁温度THDWが「120℃」以上であるか否かにかかわらず、EGR弁14を冷却水温度THWに応じたEGR許容開度TEGRMXに制御することにより、壁温度THDWが加熱許容温度である「120℃」を超えないEGRガス流量に抑制するようになっている。 According to the third EGR control described above, when the wall temperature THDW of the EGR gas distributor 15 is less than "140 ° C.", the ECU 90 determines whether the wall temperature THDW is "120 ° C." or higher. Regardless of this, by controlling the EGR valve 14 to the EGR allowable opening TEGRMX according to the cooling water temperature THW, the wall temperature THDW is suppressed to an EGR gas flow rate that does not exceed the heating allowable temperature "120 ° C". ing.
[EGRシステムの作用及び効果について]
 以上説明したこの実施形態のEGRシステムの構成によれば、前記第2実施形態における第2のEGR制御とは異なり、ECU90は、壁温度THDWが「120℃」以上であるか否かにかかわらず、EGR弁14を冷却水温度THWに応じたEGR許容開度TEGRMXに制御することにより、壁温度THDWが「120℃」を超えないEGRガス流量に抑制するようになっている。図12には、EGR開始後のEGR弁14の開度の変化をグラフにより示す。図13には、同じくEGR開始後の壁温度THDWの変化をグラフにより示す。図12、図13において、太線は第2実施形態の第2のEGR制御の場合を示し、破線は本実施形態の第3のEGR制御の場合を示す。図12、図13に示すように、この第3実施形態では、EGR開始時(時刻t1)から時刻t2までの所定期間はEGR弁14の開度が、第2のEGR制御の場合の目標EGR開度TEGRより低いEGR許容開度TEGRMXに制御されるので、その分だけEGRガス分配器15へ流れるEGRガスの流量が抑制され、時刻t2を過ぎてもEGRガス分配器15の壁温度THDWが「120℃」未満に抑えられる。これに対し、第2実施形態では、EGR開始時(時刻t1)からEGR弁14の開度が、EGR許容開度TEGRMXより大きい目標EGR開度TEGRに制御され、時刻t2経過後に壁温度THDWが「120℃」以上となることで、目標EGR開度TEGRより低いEGR許容開度TEGRMXに制御される。このため、EGRガス分配器15へ流れるEGRガスの流量が、上記所定期間だけ目標EGR開度TEGRに制御した分だけ増加し、その分だけEGRガス分配器15の壁温度THDWが「120℃」を一旦超えることになる。この実施形態では、上記のようにEGRガスの流量が減った分だけ、エンジン1でのEGRガスによる効果(例えば、燃費低減効果)が減少するものの、壁温度THDWを「120℃」未満に抑えることができるので、EGRガス分配器15の溶損を確実に防止することができる。
[About the action and effect of the EGR system]
According to the configuration of the EGR system of this embodiment described above, unlike the second EGR control in the second embodiment, the ECU 90 has the ECU 90 regardless of whether the wall temperature THDW is “120 ° C.” or higher. By controlling the EGR valve 14 to the EGR allowable opening degree TEGRMX according to the cooling water temperature THW, the wall temperature THDW is suppressed to an EGR gas flow rate that does not exceed "120 ° C.". FIG. 12 graphically shows the change in the opening degree of the EGR valve 14 after the start of EGR. FIG. 13 also graphically shows the change in the wall temperature THDW after the start of EGR. In FIGS. 12 and 13, the thick line shows the case of the second EGR control of the second embodiment, and the broken line shows the case of the third EGR control of the present embodiment. As shown in FIGS. 12 and 13, in the third embodiment, the opening degree of the EGR valve 14 during a predetermined period from the start of EGR (time t1) to time t2 is the target EGR in the case of the second EGR control. Since the EGR allowable opening TEGRMX is controlled to be lower than the opening TEGR, the flow rate of the EGR gas flowing to the EGR gas distributor 15 is suppressed by that amount, and the wall temperature THDW of the EGR gas distributor 15 is increased even after the time t2. It can be suppressed to less than "120 ° C". On the other hand, in the second embodiment, the opening degree of the EGR valve 14 is controlled to the target EGR opening degree TEGR larger than the EGR allowable opening degree TEGRMX from the time of EGR start (time t1), and the wall temperature THDW becomes higher after the time t2 elapses. When the temperature becomes "120 ° C." or higher, the EGR allowable opening degree TEGRMX is controlled to be lower than the target EGR opening degree TEGR. Therefore, the flow rate of the EGR gas flowing to the EGR gas distributor 15 increases by the amount controlled to the target EGR opening degree TEGR for the predetermined period, and the wall temperature THDW of the EGR gas distributor 15 increases by that amount to "120 ° C." Will be exceeded once. In this embodiment, the effect of the EGR gas in the engine 1 (for example, the effect of reducing fuel consumption) is reduced by the amount of the decrease in the flow rate of the EGR gas as described above, but the wall temperature THDW is suppressed to less than "120 ° C". Therefore, it is possible to reliably prevent the EGR gas distributor 15 from being melted.
<第4実施形態>
 次に、第4実施形態について図面を参照して詳細に説明する。
<Fourth Embodiment>
Next, the fourth embodiment will be described in detail with reference to the drawings.
 この実施形態では、サーモワックス弁よりなるバイパス弁17の構造の点で前記各実施形態と異なる。 This embodiment differs from each of the above embodiments in that the structure of the bypass valve 17 made of a thermowax valve is different.
[バイパス弁について]
 図14、図15に、この実施形態のバイパス弁17の具体例を図5、図6に準ずる断面図により示す。図14は、開弁状態のバイパス弁17を示し、図15は、閉弁状態のバイパス弁17を示す。サーモワックス弁よりなるバイパス弁17は、サーモワックス24が過剰膨張したとき、その弁体21が過剰に突出し、先端が壁部46bbに突き当たり、弁体21又は壁部46bbがダメージを受けるおそれがある。そこで、この実施形態では、弁体21が過剰に突出しようとしても、弁体21又は壁部46bbのダメージを緩和するようになっている。
[Bypass valve]
14 and 15 show specific examples of the bypass valve 17 of this embodiment by a cross-sectional view according to FIGS. 5 and 6. FIG. 14 shows the bypass valve 17 in the valve open state, and FIG. 15 shows the bypass valve 17 in the valve closed state. In the bypass valve 17 made of a thermowax valve, when the thermowax 24 is excessively expanded, the valve body 21 protrudes excessively, the tip of the bypass valve 17 hits the wall portion 46bb, and the valve body 21 or the wall portion 46bb may be damaged. .. Therefore, in this embodiment, even if the valve body 21 tries to protrude excessively, the damage to the valve body 21 or the wall portion 46bb is alleviated.
 すなわち、この実施形態では、図14、図15に示すように、バイパス弁17の弁体21の先端部に、弁体21に対しスライド可能なキャップ26が脱落しないように取り付けられる。キャップ26の中には、弁体21との間に緩衝用のスプリング27が設けられる。 That is, in this embodiment, as shown in FIGS. 14 and 15, the cap 26 slidable with respect to the valve body 21 is attached to the tip of the valve body 21 of the bypass valve 17 so as not to fall off. A cushioning spring 27 is provided between the cap 26 and the valve body 21.
[EGRシステムの作用及び効果について]
 以上説明したこの実施形態のEGRシステムの構成によれば、バイパス弁17の構成の違いの点で前記各実施形態と作用及び効果が異なる。すなわち、この実施形態では、図14に示すように、バイパス弁17が開弁した状態では、キャップ26はケーシング23の先端に張り付き、キャップ26の中では、スプリング27が伸びている。一方、図15に示すように、バイパス弁17が閉弁した状態では、その弁体21の伸長に伴いキャップ26が壁部46bbに突き当たるが、キャップ26の中のスプリング27が縮むので、その縮んだ分だけキャップ26の壁部46bbに対する突き当りの衝撃が緩和される。このため、バイパス弁17において、サーモワックス24が過剰膨張して弁体21が過剰に突出しようとしても、弁体21と壁部46bbとの間で突き当たりによるダメージを緩和することができる。
[About the action and effect of the EGR system]
According to the configuration of the EGR system of this embodiment described above, the operation and effect are different from those of each embodiment in the difference in the configuration of the bypass valve 17. That is, in this embodiment, as shown in FIG. 14, when the bypass valve 17 is opened, the cap 26 is attached to the tip of the casing 23, and the spring 27 is extended in the cap 26. On the other hand, as shown in FIG. 15, when the bypass valve 17 is closed, the cap 26 abuts against the wall portion 46bb as the valve body 21 expands, but the spring 27 in the cap 26 contracts, so that the cap 26 contracts. By that amount, the impact of the end of the cap 26 on the wall portion 46bb is alleviated. Therefore, in the bypass valve 17, even if the thermowax 24 excessively expands and the valve body 21 tries to protrude excessively, the damage due to the abutment between the valve body 21 and the wall portion 46bb can be alleviated.
<第5実施形態>
 次に、第5実施形態について図面を参照して詳細に説明する。
<Fifth Embodiment>
Next, the fifth embodiment will be described in detail with reference to the drawings.
 この実施形態では、サーモワックス弁よりなるバイパス弁17に関連する構造の点で前記第1実施形態と異なる。 This embodiment is different from the first embodiment in that the structure is related to the bypass valve 17 made of a thermowax valve.
[バイパス弁について]
 図16、図17に、EGRクーラ13、バイパス通路16及びバイパス弁17とEGR弁14の一部を、図2,図3に準ずる断面図により示す。図16は、バイパス弁17が開弁した状態を示し、図17は、バイパス弁17が閉弁した状態を示す。この実施形態でも、サーモワックス24が過剰膨張して弁体21が過剰に突出しても、弁体21又は壁部46bbがダメージを受けないようになっている。
[Bypass valve]
16 and 17 show a part of the EGR cooler 13, the bypass passage 16, the bypass valve 17, and the EGR valve 14 by a cross-sectional view according to FIGS. 2 and 3. FIG. 16 shows a state in which the bypass valve 17 is opened, and FIG. 17 shows a state in which the bypass valve 17 is closed. Also in this embodiment, even if the thermowax 24 is excessively expanded and the valve body 21 is excessively projected, the valve body 21 or the wall portion 46bb is not damaged.
 すなわち、この実施形態では、図16、図17に示すように、バイパス弁17の弁体21の先端が突き当たる仕切壁46の壁部46bbに、弁体21との干渉を避けるための逃がし孔47が形成される。 That is, in this embodiment, as shown in FIGS. 16 and 17, a relief hole 47 for avoiding interference with the valve body 21 is provided in the wall portion 46bb of the partition wall 46 to which the tip of the valve body 21 of the bypass valve 17 abuts. Is formed.
[EGRシステムの作用及び効果について]
 以上説明したこの実施形態のEGRシステムの構成によれば、バイパス弁17に関連した構成の違いの点で前記各実施形態と作用及び効果が異なる。すなわち、この実施形態では、図17に示すように、バイパス弁17が閉弁した状態では、その弁体21の先端部が逃がし孔47を貫通するので、閉弁時に弁体21が過剰に突出しても弁体21の先端部が下流壁部46bの壁部46bbに突き当たることがない。このため、バイパス弁17において、サーモワックス24が過剰膨張して弁体21が過剰に突出しても、弁体21又は壁部46bbがダメージを受けることを防止することができる。
[About the action and effect of the EGR system]
According to the configuration of the EGR system of this embodiment described above, the operation and effect are different from those of each embodiment in the difference of the configuration related to the bypass valve 17. That is, in this embodiment, as shown in FIG. 17, when the bypass valve 17 is closed, the tip of the valve body 21 penetrates the relief hole 47, so that the valve body 21 excessively protrudes when the valve is closed. However, the tip end portion of the valve body 21 does not hit the wall portion 46bb of the downstream wall portion 46b. Therefore, in the bypass valve 17, even if the thermowax 24 is excessively expanded and the valve body 21 is excessively projected, it is possible to prevent the valve body 21 or the wall portion 46bb from being damaged.
<第6実施形態>
 次に、第6実施形態について図面を参照して詳細に説明する。
<Sixth Embodiment>
Next, the sixth embodiment will be described in detail with reference to the drawings.
 この実施形態では、サーモワックス弁よりなるバイパス弁17に関連した構成の点で前記各実施形態と異なる。 This embodiment differs from each of the above embodiments in that the configuration is related to the bypass valve 17 including the thermowax valve.
[バイパス弁について]
 図18、図19に、EGRクーラ13、バイパス通路16及びバイパス弁17とEGR弁14の一部を、図3に準ずる断面図により示す。図18及び図19は、冷却水温度THWが「65℃」以上となるときにバイパス弁17が閉弁した状態を示す。図18、図19に示すように、この実施形態で、バイパス通路16には、バイパス弁17へ流れるEGRガスを迂回させるためのサブバイパス通路48が設けられる。このサブバイパス通路48は、外気に曝される位置に配置される。サブバイパス通路48には、外気温度が第2所定値未満となるときに開弁するサーモワックス弁よりなるサブバイパス弁49が設けられる。この実施形態で、第2所定値は「-10℃以上5℃未満」の範囲の温度に設定される。サブバイパス弁49の基本構成は、図5、図6に示すバイパス弁17のそれと同じである。サブバイパス弁49には、EGR弁14のハウジング18に伝わる熱をサーモワックスに伝えないようにするために、断熱層50を介してサブバイパス通路48に取り付けられる。図18は、サブバイパス弁49が開弁した状態を示し、図19は、サブバイパス弁49が閉弁した状態を示す。このサブバイパス弁49は、外気温度の変化に感応して動作する。すなわち、サブバイパス弁49は、外気温度が「-10℃」未満となるときに、図18に示すように開弁し、外気温度が「5℃」以上となるときに、図19に示すように閉弁するようになっている。
[Bypass valve]
18 and 19 show a part of the EGR cooler 13, the bypass passage 16, the bypass valve 17, and the EGR valve 14 by a cross-sectional view according to FIG. 18 and 19 show a state in which the bypass valve 17 is closed when the cooling water temperature THW becomes “65 ° C.” or higher. As shown in FIGS. 18 and 19, in this embodiment, the bypass passage 16 is provided with a sub-bypass passage 48 for bypassing the EGR gas flowing to the bypass valve 17. The sub-bypass passage 48 is arranged at a position exposed to the outside air. The sub-bypass passage 48 is provided with a sub-bypass valve 49 made of a thermowax valve that opens when the outside air temperature becomes less than the second predetermined value. In this embodiment, the second predetermined value is set to a temperature in the range of "-10 ° C. or higher and lower than 5 ° C.". The basic configuration of the sub-bypass valve 49 is the same as that of the bypass valve 17 shown in FIGS. 5 and 6. The sub-bypass valve 49 is attached to the sub-bypass passage 48 via the heat insulating layer 50 so as not to transfer the heat transferred to the housing 18 of the EGR valve 14 to the thermowax. FIG. 18 shows a state in which the sub-bypass valve 49 is opened, and FIG. 19 shows a state in which the sub-bypass valve 49 is closed. The sub-bypass valve 49 operates in response to a change in the outside air temperature. That is, the sub-bypass valve 49 opens as shown in FIG. 18 when the outside air temperature becomes less than "-10 ° C", and as shown in FIG. 19 when the outside air temperature becomes "5 ° C" or higher. It is designed to close the valve.
[EGRシステムの作用及び効果について]
 以上説明したこの実施形態のEGRシステムの構成によれば、バイパス弁17に関連した構成の違いの点で前記各実施形態と作用及び効果が異なる。すなわち、この実施形態では、バイパス通路16にて、バイパス弁17へ流れるEGRガスを迂回させるサブバイパス通路48が設けられる。また、サブバイパス通路48に設けられるサブバイパス弁49が、外気温度が第2所定値(-10℃)未満となるときに開弁する。従って、バイパス弁17が閉弁しているときでも、外気温度が第2所定値未満となるときは、サブバイパス弁49が開弁し、バイパス通路16及びサブバイパス通路48を通じてその下流側へEGRガスが流れ、そのEGRガスがEGRクーラ13の熱交換器32で冷却されたEGRガスと合流し、EGRガス分配器15(下流側EGR通路)へ流れるEGRガスの温度が増す。このため、外気温度が氷点下となるような低温環境下で、バイパス弁17が閉弁していても、EGRガス分配器15(下流側EGR通路)へ流れるEGRガスによりEGRガス分配器15を暖めることができ、同分配器15での凝縮水の発生を抑制することができる。
[About the action and effect of the EGR system]
According to the configuration of the EGR system of this embodiment described above, the operation and effect are different from those of each embodiment in the difference of the configuration related to the bypass valve 17. That is, in this embodiment, the bypass passage 16 is provided with a sub-bypass passage 48 that bypasses the EGR gas flowing to the bypass valve 17. Further, the sub-bypass valve 49 provided in the sub-bypass passage 48 is opened when the outside air temperature becomes less than the second predetermined value (-10 ° C.). Therefore, even when the bypass valve 17 is closed, when the outside air temperature becomes less than the second predetermined value, the sub-bypass valve 49 opens and EGR to the downstream side through the bypass passage 16 and the sub-bypass passage 48. The gas flows, and the EGR gas merges with the EGR gas cooled by the heat exchanger 32 of the EGR cooler 13, and the temperature of the EGR gas flowing to the EGR gas distributor 15 (downstream EGR passage) increases. Therefore, even if the bypass valve 17 is closed in a low temperature environment where the outside air temperature is below the freezing point, the EGR gas distributor 15 is warmed by the EGR gas flowing to the EGR gas distributor 15 (downstream EGR passage). It is possible to suppress the generation of condensed water in the distributor 15.
<第7実施形態>
 次に、第7実施形態について図面を参照して詳細に説明する。
<7th Embodiment>
Next, the seventh embodiment will be described in detail with reference to the drawings.
 この実施形態では、バイパス通路16におけるバイパス弁17の配置と構造の点で前記各実施形態と異なる。 This embodiment is different from each of the above embodiments in terms of the arrangement and structure of the bypass valve 17 in the bypass passage 16.
[バイパス弁について]
 図20、図21にEGRクーラ13、バイパス通路16及びバイパス弁17とEGR弁14の一部をその長手方向に沿って切断した断面図により示す。図20は、バイパス弁17が開弁した状態を示し、図21は、バイパス弁17が閉弁した状態を示す。この実施形態では、バイパス弁17は、EGR弁14のハウジング18ではなく、EGRクーラ13において、バイパス通路16に直接取り付けられる。この場合、EGRクーラ13のハウジング31とバイパス通路16は、それぞれ薄いSUS板で形成されており、熱伝達率が悪く、熱交換器32へ流れるエンジン1の冷却水の熱が伝わり難いことから、バイパス弁17を冷却水の温度に応じて動作させることができない。そこで、この実施形態では、バイパス弁17の周囲にエンジン1の冷却水を流すために、バイパス弁17には冷却水が流れる冷却水通路51aを含むアダプタ51が設けられる。アダプタ51は、熱伝達率のよい金属より形成される。その他の構成は、前記各実施形態の構成と同じである。
[Bypass valve]
20 and 21 show a cross-sectional view of the EGR cooler 13, the bypass passage 16, the bypass valve 17, and a part of the EGR valve 14 cut along the longitudinal direction thereof. FIG. 20 shows a state in which the bypass valve 17 is opened, and FIG. 21 shows a state in which the bypass valve 17 is closed. In this embodiment, the bypass valve 17 is attached directly to the bypass passage 16 in the EGR cooler 13 rather than in the housing 18 of the EGR valve 14. In this case, the housing 31 and the bypass passage 16 of the EGR cooler 13 are each made of a thin SUS plate, the heat transfer coefficient is poor, and the heat of the cooling water of the engine 1 flowing to the heat exchanger 32 is difficult to transfer. The bypass valve 17 cannot be operated according to the temperature of the cooling water. Therefore, in this embodiment, in order to allow the cooling water of the engine 1 to flow around the bypass valve 17, the bypass valve 17 is provided with an adapter 51 including a cooling water passage 51a through which the cooling water flows. The adapter 51 is made of a metal having a good heat transfer coefficient. Other configurations are the same as the configurations of the above-described embodiments.
[EGRシステムの作用及び効果について]
 以上説明したこの実施形態のEGRシステムの構成によれば、バイパス弁17の配置と構造の違いの点で前記各実施形態と作用及び効果が異なる。すなわち、この実施形態では、バイパス弁17がEGRクーラ13のハウジング31と一体に設けられるバイパス通路16に設けられ、バイパス弁17の周囲には、冷却水が流れる冷却水通路51aを含むアダプタ51が設けられる。従って、バイパス弁17のアクチュエータ22が温度の変化に感応して動作する場合は、冷却水通路51aを流れる冷却水の温度の変化に感応してアクチュエータ22が動作することになり、バイパス弁17の弁体21が冷却水の温度変化に応じて開閉動作することになる。このため、バイパス弁17を熱伝達率の悪いEGRクーラ13のハウジング31に取り付けた場合でも、バイパス弁17のアクチュエータ22が冷却水の温度の変化に感応して動作するので、バイパス弁17を電気的に制御する必要がなく、バイパス弁17に関する構成を簡略化することができる。
[About the action and effect of the EGR system]
According to the configuration of the EGR system of this embodiment described above, the operation and effect are different from those of each embodiment in the difference in the arrangement and structure of the bypass valve 17. That is, in this embodiment, the bypass valve 17 is provided in the bypass passage 16 provided integrally with the housing 31 of the EGR cooler 13, and the adapter 51 including the cooling water passage 51a through which the cooling water flows is provided around the bypass valve 17. It will be provided. Therefore, when the actuator 22 of the bypass valve 17 operates in response to a change in temperature, the actuator 22 operates in response to a change in the temperature of the cooling water flowing through the cooling water passage 51a, and the bypass valve 17 operates. The valve body 21 opens and closes according to a change in the temperature of the cooling water. Therefore, even when the bypass valve 17 is attached to the housing 31 of the EGR cooler 13 having a poor heat transfer coefficient, the actuator 22 of the bypass valve 17 operates in response to a change in the temperature of the cooling water, so that the bypass valve 17 is electrically operated. It is not necessary to control the bypass valve 17, and the configuration of the bypass valve 17 can be simplified.
<第8実施形態>
 次に、第8実施形態について図面を参照して詳細に説明する。
<8th Embodiment>
Next, the eighth embodiment will be described in detail with reference to the drawings.
[バイパス通路の配置について]
 この実施形態では、EGRクーラ13に対するバイパス通路16の配置の点で前記各実施形態と異なる。すなわち、図22、図23に、EGRクーラ13、バイパス通路16及びバイパス弁17とEGR弁14の一部をその長手方向に沿って切断した断面図により示す。図22は、バイパス弁17が開弁した状態を示し、図23は、バイパス弁17が閉弁した状態を示す。図22、図23に示すように、この実施形態で、EGR弁14とEGRクーラ13が車両に搭載された状態において、バイパス通路16は、EGR弁14とEGRクーラ13に対し鉛直方向下側に配置され、そのバイパス通路16の上流側がエンジン1の排気通路3へ向かって鉛直方向下方へ傾斜するように設けられる。この点、バイパス通路16が、EGR弁14とEGRクーラ13の鉛直方向上側に設けられる前記各実施形態と異なる。この実施形態で、サーモワックス弁よりなるバイパス弁17は、前記第1~第6の実施形態と同様、EGR弁14のハウジング18にて、バイパス通路16に対応して取り付けられる。図22、図23において、矢印A4は凝縮水の流れを示す。
[About the arrangement of bypass passages]
This embodiment differs from each of the above embodiments in that the bypass passage 16 is arranged with respect to the EGR cooler 13. That is, FIGS. 22 and 23 show a cross-sectional view of the EGR cooler 13, the bypass passage 16, and a part of the bypass valve 17 and the EGR valve 14 cut along the longitudinal direction thereof. FIG. 22 shows a state in which the bypass valve 17 is opened, and FIG. 23 shows a state in which the bypass valve 17 is closed. As shown in FIGS. 22 and 23, in this embodiment, when the EGR valve 14 and the EGR cooler 13 are mounted on the vehicle, the bypass passage 16 is vertically downward with respect to the EGR valve 14 and the EGR cooler 13. It is arranged so that the upstream side of the bypass passage 16 is inclined downward in the vertical direction toward the exhaust passage 3 of the engine 1. In this respect, the bypass passage 16 is different from each of the above-described embodiments provided on the upper side of the EGR valve 14 and the EGR cooler 13 in the vertical direction. In this embodiment, the bypass valve 17 made of a thermowax valve is attached to the housing 18 of the EGR valve 14 corresponding to the bypass passage 16 as in the first to sixth embodiments. In FIGS. 22 and 23, arrow A4 indicates the flow of condensed water.
[EGRシステムの作用及び効果について]
 以上説明したこの実施形態のEGRシステムの構成によれば、EGRクーラ13に対するバイパス通路16の配置の違いの点で前記各実施形態と作用及び効果が異なる。すなわち、この実施形態では、EGRクーラ13が車両に搭載された状態において、バイパス通路16が、EGRクーラ13に対し鉛直方向下側に配置されるので、EGRクーラ13で発生した凝縮水は、その自重によりバイパス通路16への流下が可能となる。また、バイパス通路16の上流側が排気通路3へ向かって鉛直方向下方へ傾斜するので、バイパス通路16へ流下した凝縮水は、その自重により排気通路3への流下が可能となる。このため、EGR通路12やEGRクーラ13等で発生した凝縮水を、自重によりバイパス通路16通じて排気通路3へ排出することができる。
[About the action and effect of the EGR system]
According to the configuration of the EGR system of this embodiment described above, the operation and effect are different from those of each embodiment in the difference in the arrangement of the bypass passage 16 with respect to the EGR cooler 13. That is, in this embodiment, in the state where the EGR cooler 13 is mounted on the vehicle, the bypass passage 16 is arranged on the lower side in the vertical direction with respect to the EGR cooler 13, so that the condensed water generated by the EGR cooler 13 is the same. Due to its own weight, it can flow down to the bypass passage 16. Further, since the upstream side of the bypass passage 16 is inclined downward in the vertical direction toward the exhaust passage 3, the condensed water flowing down to the bypass passage 16 can flow down to the exhaust passage 3 due to its own weight. Therefore, the condensed water generated in the EGR passage 12, the EGR cooler 13, and the like can be discharged to the exhaust passage 3 through the bypass passage 16 by its own weight.
<第9実施形態>
 次に、第9実施形態について図面を参照して詳細に説明する。
<9th embodiment>
Next, the ninth embodiment will be described in detail with reference to the drawings.
[バイパス弁の配置について]
 この実施形態では、EGRクーラ13の構成とサーモワックス弁よりなるバイパス弁17の配置の点で前記第8実施形態と異なる。すなわち、図24に、EGRクーラ13、バイパス通路16及びバイパス弁17を、その長手方向に沿って切断した断面図により示す。図24は、バイパス弁17が開弁した状態を示す。この実施形態で、バイパス通路16は、その入口側から出口側まで、EGRクーラ13のSUSよりなるハウジング31と一体に形成される。この実施形態でも、EGRクーラ13とバイパス通路16は、仕切壁46を介して隣接する。仕切壁46は、熱交換器32に接する主壁部46aと、熱交換器32より下流へ延びる下流壁部46bとを含む。バイパス弁17は、バイパス通路16の出口側にて傾斜が急な立ち上がり部分にて、EGRクーラ13のハウジング31に取り付けられる。また、この実施形態では、仕切壁46の下流壁部46bには、EGRクーラ13の出口側を流れる凝縮水を抜くために、EGRクーラ13の出口側からバイパス通路16に連通する複数の連通孔53が設けられる。更に、この実施形態では、バイパス弁17の周囲にエンジン1の冷却水を流すために、バイパス弁17には冷却水が流れる冷却水通路51aを含むアダプタ51が設けられる。アダプタ51は、熱伝達率のよい金属より形成される。
[Bypass valve arrangement]
This embodiment differs from the eighth embodiment in that the configuration of the EGR cooler 13 and the arrangement of the bypass valve 17 including the thermowax valve are different. That is, FIG. 24 shows a cross-sectional view of the EGR cooler 13, the bypass passage 16, and the bypass valve 17 cut along the longitudinal direction thereof. FIG. 24 shows a state in which the bypass valve 17 is opened. In this embodiment, the bypass passage 16 is formed integrally with the housing 31 made of SUS of the EGR cooler 13 from the inlet side to the outlet side thereof. Also in this embodiment, the EGR cooler 13 and the bypass passage 16 are adjacent to each other via the partition wall 46. The partition wall 46 includes a main wall portion 46a in contact with the heat exchanger 32 and a downstream wall portion 46b extending downstream from the heat exchanger 32. The bypass valve 17 is attached to the housing 31 of the EGR cooler 13 at a rising portion having a steep slope on the outlet side of the bypass passage 16. Further, in this embodiment, in the downstream wall portion 46b of the partition wall 46, a plurality of communication holes communicating with the bypass passage 16 from the outlet side of the EGR cooler 13 in order to drain the condensed water flowing on the outlet side of the EGR cooler 13. 53 is provided. Further, in this embodiment, in order to allow the cooling water of the engine 1 to flow around the bypass valve 17, the bypass valve 17 is provided with an adapter 51 including a cooling water passage 51a through which the cooling water flows. The adapter 51 is made of a metal having a good heat transfer coefficient.
[EGRシステムの作用及び効果について]
 以上説明したこの実施形態のEGRシステムの構成によれば、EGRクーラ13の構成とバイパス弁17の配置の違いの点で前記第8実施形態と作用及び効果が異なる。すなわち、この実施形態では、EGRクーラ13の出口側にて熱交換器32から流れ出た凝縮水は、仕切壁46の下流壁部46bにて連通孔53からバイパス通路16へ自重により流下し易くなる。このため、EGR通路12やEGRクーラ13等で発生した凝縮水を、自重により効率良くバイパス通路16へ流すことができ、排気通路3へ排出することができる。
[About the action and effect of the EGR system]
According to the configuration of the EGR system of this embodiment described above, the operation and effect are different from those of the eighth embodiment in the difference between the configuration of the EGR cooler 13 and the arrangement of the bypass valve 17. That is, in this embodiment, the condensed water flowing out from the heat exchanger 32 on the outlet side of the EGR cooler 13 tends to flow down from the communication hole 53 to the bypass passage 16 at the downstream wall portion 46b of the partition wall 46 due to its own weight. .. Therefore, the condensed water generated in the EGR passage 12 or the EGR cooler 13 or the like can be efficiently flowed to the bypass passage 16 by its own weight, and can be discharged to the exhaust passage 3.
<第10実施形態>
 次に、第10実施形態について図面を参照して詳細に説明する。
<10th Embodiment>
Next, the tenth embodiment will be described in detail with reference to the drawings.
[バイパス弁の配置について]
 この実施形態では、サーモワックス弁よりなるバイパス弁17の配置の点で前記第9実施形態と異なる。すなわち、図25に、EGRクーラ13、バイパス通路16及びバイパス弁17を、その長手方向に沿って切断した断面図により示す。図25は、バイパス弁17が開弁した状態を示す。この実施形態で、バイパス弁17は、熱交換器32の出口近くに対応してEGRクーラ13のハウジング31に取り付けられる。この実施形態では、熱交換器32の出口近くの仕切壁46(下流壁部46b)に連通孔53が形成される。この連通孔53は、バイパス弁17の弁体21の先端と対向する位置に配置され、バイパス弁17の閉弁時に伸びる弁体21の先端と下流壁部46bとの干渉を避ける逃がし孔として機能するようになっている。
[Bypass valve arrangement]
This embodiment differs from the ninth embodiment in the arrangement of the bypass valve 17 composed of the thermowax valve. That is, FIG. 25 shows a cross-sectional view of the EGR cooler 13, the bypass passage 16, and the bypass valve 17 cut along the longitudinal direction thereof. FIG. 25 shows a state in which the bypass valve 17 is opened. In this embodiment, the bypass valve 17 is attached to the housing 31 of the EGR cooler 13 corresponding to near the outlet of the heat exchanger 32. In this embodiment, the communication hole 53 is formed in the partition wall 46 (downstream wall portion 46b) near the outlet of the heat exchanger 32. The communication hole 53 is arranged at a position facing the tip of the valve body 21 of the bypass valve 17, and functions as a relief hole for avoiding interference between the tip of the valve body 21 extending when the bypass valve 17 is closed and the downstream wall portion 46b. It is designed to do.
[EGRシステムの作用及び効果について]
 以上説明したこの実施形態のEGRシステムの構成によれば、前記第9実施形態の作用及び効果に加え次のような作用及び効果を有する。すなわち、この実施形態では、連通孔53が、バイパス弁17の閉弁時に弁体21の先端と下流壁部46bとの干渉を避ける逃がし孔として機能するので、閉弁時に弁体21が過剰に突出しても、弁体21の先端部が下流壁部46bに突き当たる(接触する)ことがない。このため、バイパス弁17において、サーモワックス24が過剰膨張して弁体21が過剰に突出(作動)しても、弁体21又は下流壁部46bがダメージを受けることを防止することができる。
[About the action and effect of the EGR system]
According to the configuration of the EGR system of this embodiment described above, it has the following actions and effects in addition to the actions and effects of the ninth embodiment. That is, in this embodiment, the communication hole 53 functions as a relief hole for avoiding interference between the tip of the valve body 21 and the downstream wall portion 46b when the bypass valve 17 is closed, so that the valve body 21 is excessively used when the valve is closed. Even if it protrudes, the tip end portion of the valve body 21 does not abut (contact) with the downstream wall portion 46b. Therefore, in the bypass valve 17, even if the thermowax 24 is excessively expanded and the valve body 21 is excessively projected (operated), it is possible to prevent the valve body 21 or the downstream wall portion 46b from being damaged.
<第11実施形態>
 次に、第11実施形態について図面を参照して詳細に説明する。
<11th Embodiment>
Next, the eleventh embodiment will be described in detail with reference to the drawings.
[放熱フィンについて]
 この実施形態では、EGRクーラ13の出口側の構成の点で前記第9実施形態と異なる。すなわち、図26に、EGRクーラ13、バイパス通路16及びバイパス弁17を図24に準ずる断面図により示す。図27に、放熱フィン55を、図26のB-B線断面図により示す。図26、図27に示すように、EGRクーラ13の出口側の導出空間36には、仕切壁46(下流壁部46b)に隣接し、EGRガスの流れ方向に平行な複数の放熱フィン55が設けられる。これら放熱フィン55の下側は、下流壁部46bに接続され、放熱フィン55の上側は、EGRクーラ13のハウジング31に接続されておらず離れている。その他の構成は、第9実施形態のそれと同じである。
[About heat dissipation fins]
This embodiment differs from the ninth embodiment in the configuration on the outlet side of the EGR cooler 13. That is, FIG. 26 shows the EGR cooler 13, the bypass passage 16, and the bypass valve 17 in a cross-sectional view according to FIG. 24. FIG. 27 shows the heat radiating fin 55 with a sectional view taken along the line BB of FIG. 26. As shown in FIGS. 26 and 27, in the lead-out space 36 on the outlet side of the EGR cooler 13, a plurality of heat radiation fins 55 adjacent to the partition wall 46 (downstream wall portion 46b) and parallel to the flow direction of the EGR gas are provided. It will be provided. The lower side of the heat radiating fins 55 is connected to the downstream wall portion 46b, and the upper side of the heat radiating fins 55 is not connected to the housing 31 of the EGR cooler 13 and is separated. Other configurations are the same as those of the ninth embodiment.
[EGRシステムの作用及び効果について]
 以上説明したこの実施形態のEGRシステムの構成によれば、前記第9実施形態の作用及び効果に加え次のような作用及び効果を有する。すなわち、この実施形態では、EGRクーラ13にて、EGRガスの流れ方向に平行な複数の放熱フィン55が仕切壁46の下流壁部46bに隣接し、接続されて設けられる。従って、バイパス通路16を流れるEGRガスの熱が下流壁部46bを介して放熱フィン55へ伝わり、放熱フィン55が暖められ、放熱フィン55に付着した凝縮水が暖められる。このため、EGRクーラ13で発生した凝縮水を効率良く蒸発させることができる。
[About the action and effect of the EGR system]
According to the configuration of the EGR system of this embodiment described above, it has the following actions and effects in addition to the actions and effects of the ninth embodiment. That is, in this embodiment, in the EGR cooler 13, a plurality of heat radiation fins 55 parallel to the flow direction of the EGR gas are provided adjacent to and connected to the downstream wall portion 46b of the partition wall 46. Therefore, the heat of the EGR gas flowing through the bypass passage 16 is transmitted to the heat radiation fin 55 via the downstream wall portion 46b, the heat radiation fin 55 is warmed, and the condensed water adhering to the heat radiation fin 55 is warmed. Therefore, the condensed water generated by the EGR cooler 13 can be efficiently evaporated.
<第12実施形態>
 次に、第12実施形態について図面を参照して詳細に説明する。
<12th Embodiment>
Next, the twelfth embodiment will be described in detail with reference to the drawings.
[放熱フィンについて]
 この実施形態では、放熱フィン56の配置の点で前記第11実施形態と異なる。すなわち、図28に、EGRクーラ13、バイパス通路16及びバイパス弁17を図24に準ずる断面図により示す。図28に示すように、バイパス通路16の中間部であって熱交換器32の直下には、仕切壁46(主壁部46a)に接し、EGRガスの流れ方向に平行な複数の放熱フィン56が設けられる。これら放熱フィン56の上側は、主壁部46aに接続され、放熱フィン56の下側はEGRクーラ13のハウジング31に接続される。この実施形態では、仕切壁46の下流壁部46bに連通孔は設けられていない。
[About heat dissipation fins]
This embodiment is different from the eleventh embodiment in that the heat radiation fins 56 are arranged. That is, FIG. 28 shows the EGR cooler 13, the bypass passage 16, and the bypass valve 17 in a cross-sectional view according to FIG. 24. As shown in FIG. 28, a plurality of heat radiation fins 56 which are in contact with the partition wall 46 (main wall portion 46a) and are parallel to the flow direction of the EGR gas in the middle portion of the bypass passage 16 and directly below the heat exchanger 32. Is provided. The upper side of the heat radiation fins 56 is connected to the main wall portion 46a, and the lower side of the heat radiation fins 56 is connected to the housing 31 of the EGR cooler 13. In this embodiment, the communication hole is not provided in the downstream wall portion 46b of the partition wall 46.
[EGRシステムの作用及び効果について]
 以上説明したこの実施形態のEGRシステムの構成によれば、次のような点で前記第11実施形態と作用及び効果が異なる。すなわち、この実施形態では、バイパス通路16にて、EGRガスの流れ方向に平行な複数の放熱フィン56が仕切壁46(主壁部46a)に隣接し、接続されて設けられる。従って、バイパス通路16を流れるEGRガスの熱が放熱フィン56を介して主壁部46aへ伝わり、EGRクーラ13が暖められる。このため、バイパス通路16の放熱を促進することができ、加えてEGRクーラ13の昇温を促進することができる。
[About the action and effect of the EGR system]
According to the configuration of the EGR system of this embodiment described above, the operation and effect are different from those of the eleventh embodiment in the following points. That is, in this embodiment, a plurality of heat radiation fins 56 parallel to the flow direction of the EGR gas are provided adjacent to and connected to the partition wall 46 (main wall portion 46a) in the bypass passage 16. Therefore, the heat of the EGR gas flowing through the bypass passage 16 is transmitted to the main wall portion 46a via the heat radiation fins 56, and the EGR cooler 13 is warmed. Therefore, the heat dissipation of the bypass passage 16 can be promoted, and in addition, the temperature rise of the EGR cooler 13 can be promoted.
<第13実施形態>
 次に、第13実施形態について図面を参照して詳細に説明する。
<13th Embodiment>
Next, the thirteenth embodiment will be described in detail with reference to the drawings.
 この実施形態では、バイパス弁17の構成とEGR制御の内容の点で前記各実施形態と異なる。 This embodiment is different from each of the above embodiments in terms of the configuration of the bypass valve 17 and the content of EGR control.
[エンジンシステムについて]
 図29に、この実施形態のエンジンシステムを概略構成図により示す。図30に、EGRクーラ13、バイパス通路16及びバイパス弁19を図28に準ずる断面図により示す。この実施形態におけるEGRクーラ13、バイパス通路16及びバイパス弁19(閉弁状態)の配置は、放熱フィンが無いことを除き、第12実施形態のそれと同じである。この実施形態で、バイパス弁19は、電磁弁により構成され、ECU90により制御されるようになっている。バイパス弁19のアクチュエータ22は、電気的に動作するソレノイド29により構成される。他の実施形態において、サーモワックス弁よりなるバイパス弁17を、ソレノイドをアクチュエータとするバイパス弁19に置き替えることで、この実施形態を実施することもできる。この実施形態で、バイパス弁19は、アクチュエータ22(ソレノイド29)をオフして動作させないとき閉弁となるよう(ノーマル閉弁)に構成される。
[About the engine system]
FIG. 29 shows a schematic configuration diagram of the engine system of this embodiment. FIG. 30 shows the EGR cooler 13, the bypass passage 16, and the bypass valve 19 in a cross-sectional view according to FIG. 28. The arrangement of the EGR cooler 13, the bypass passage 16 and the bypass valve 19 (valve closed state) in this embodiment is the same as that of the twelfth embodiment except that there is no heat radiation fin. In this embodiment, the bypass valve 19 is configured by a solenoid valve and is controlled by the ECU 90. The actuator 22 of the bypass valve 19 is composed of an electrically operated solenoid 29. In another embodiment, the bypass valve 17 made of a thermowax valve can be replaced with a bypass valve 19 having a solenoid as an actuator to implement this embodiment. In this embodiment, the bypass valve 19 is configured to be closed (normally closed) when the actuator 22 (solenoid 29) is turned off and not operated.
[第4のEGR制御]
 図31に、第4のEGR制御の内容をフローチャートにより示す。図31に示すように、第4のEGR制御は、ステップ260、270及び300の処理を省略し、その代わりにステップ250とステップ280との間にステップ400と410の処理を加えた点で図9に示す第2のEGR制御と内容が異なる。
[Fourth EGR control]
FIG. 31 shows the contents of the fourth EGR control by a flowchart. As shown in FIG. 31, the fourth EGR control omits the processing of steps 260, 270 and 300, and instead adds the processing of steps 400 and 410 between steps 250 and 280. The content is different from the second EGR control shown in 9.
 処理がこのルーチンへ移行すると、ECU90は、ステップ200~ステップ250の処理を実行し、ステップ250の判断結果が肯定となる場合は、処理をステップ400へ移行し、ステップ250の判断結果が否定となる場合は、処理をステップ410へ移行する。 When the process shifts to this routine, the ECU 90 executes the processes of steps 200 to 250, and if the determination result of step 250 is affirmative, the process proceeds to step 400 and the determination result of step 250 is negative. If so, the process proceeds to step 410.
 そして、ステップ400では、ECU90は、バイパス弁19を閉弁し、その後、処理をステップ280へ移行する。 Then, in step 400, the ECU 90 closes the bypass valve 19, and then shifts the process to step 280.
 一方、ステップ410では、ECU90は、バイパス弁19を開弁し、その後、処理をステップ280へ移行する。 On the other hand, in step 410, the ECU 90 opens the bypass valve 19, and then shifts the process to step 280.
 上記した第4のEGR制御によれば、ECU90は、壁温センサ88により検出される壁温度THDWがEGRガス分配器15の耐熱温度(140℃)を超えた場合に、強制EGRカットを実行するために、EGR弁14を全閉に制御するようになっている。一方、ECU90は、強制EGRカットを実行していないとき、検出される壁温度THDWがEGRガス分配器15の加熱許容温度である「120℃」を超えた場合に、バイパス弁19を閉弁させるようにアクチュエータ22(ソレノイド29)制御すると共に、通常のEGR制御を実行するようになっている。この実施形態では、ECU90は、本開示技術の第3制御手段の一例に相当する。 According to the fourth EGR control described above, the ECU 90 executes a forced EGR cut when the wall temperature THDW detected by the wall temperature sensor 88 exceeds the heat resistant temperature (140 ° C.) of the EGR gas distributor 15. Therefore, the EGR valve 14 is controlled to be fully closed. On the other hand, the ECU 90 closes the bypass valve 19 when the detected wall temperature THDW exceeds the allowable heating temperature of "120 ° C." of the EGR gas distributor 15 when the forced EGR cut is not executed. In addition to controlling the actuator 22 (solenoid 29), normal EGR control is executed. In this embodiment, the ECU 90 corresponds to an example of the third control means of the present disclosure technique.
[EGRシステムの作用及び効果について]
 以上説明したこの実施形態のEGRシステムの構成によれば、壁温センサ88により検出されるEGRガス分配器15の壁温度THDWがEGRガス分配器15の加熱許容温度(120℃)を超えた場合には、ECU90はバイパス弁19を閉弁させるようにアクチュエータ22(ソレノイド29)を制御する。従って、EGR通路12を流れる大部分のEGRガスがバイパス通路16へ流れることなくEGRクーラ13で冷却されてからEGRガス分配器15へ流れる。このため、EGR通路12をEGRガス分配器15へ流れるEGRガスの温度がEGRガス分配器15の加熱許容温度を超えると、EGRガスの温度を低下させるようにバイパス弁19を閉弁制御し、EGRガス分配器15の溶損とEGRガス分配器15での凝縮水の発生を抑制することができる。
[About the action and effect of the EGR system]
According to the configuration of the EGR system of this embodiment described above, when the wall temperature THDW of the EGR gas distributor 15 detected by the wall temperature sensor 88 exceeds the allowable heating temperature (120 ° C.) of the EGR gas distributor 15. The ECU 90 controls the actuator 22 (solenoid 29) so as to close the bypass valve 19. Therefore, most of the EGR gas flowing through the EGR passage 12 does not flow to the bypass passage 16 but is cooled by the EGR cooler 13 and then flows to the EGR gas distributor 15. Therefore, when the temperature of the EGR gas flowing through the EGR passage 12 to the EGR gas distributor 15 exceeds the allowable heating temperature of the EGR gas distributor 15, the bypass valve 19 is controlled to close so as to lower the temperature of the EGR gas. It is possible to suppress the melting damage of the EGR gas distributor 15 and the generation of condensed water in the EGR gas distributor 15.
 この実施形態の構成によれば、バイパス弁19は、アクチュエータ22(ソレノイド29)をオフして動作させないとき閉弁となるので、ソレノイド29が故障して動作しなくてもバイパス弁19が閉弁状態に保たれる。このため、バイパス弁19のアクチュエータ22(ソレノイド29)が故障しても、バイパス通路16のEGRガスの流れを遮断することができ、EGRガス分配器15(下流側EGR通路)の溶損を抑制することができる。 According to the configuration of this embodiment, the bypass valve 19 is closed when the actuator 22 (solenoid 29) is turned off and not operated, so that the bypass valve 19 is closed even if the solenoid 29 fails and does not operate. It is kept in a state. Therefore, even if the actuator 22 (solenoid 29) of the bypass valve 19 fails, the flow of EGR gas in the bypass passage 16 can be blocked, and the EGR gas distributor 15 (downstream EGR passage) is suppressed from being melted. can do.
<第14実施形態>
 次に、第14実施形態について図面を参照して詳細に説明する。
<14th Embodiment>
Next, the 14th embodiment will be described in detail with reference to the drawings.
 この実施形態では、第13実施形態における第4のEGR制御に加え、バイパス弁19の開閉を切り換えるバイパス切換制御を実行する点で第13実施形態と異なる。 This embodiment is different from the thirteenth embodiment in that in addition to the fourth EGR control in the thirteenth embodiment, the bypass switching control for switching the opening and closing of the bypass valve 19 is executed.
 エンジン1の冷間時(未暖機時)には、EGR通路12からEGRクーラ13へ流れるEGRガスの一部をバイパス通路16へ流して迂回させるために、バイパス弁19が開弁される。その後、エンジン1の暖機が完了すると、EGRクーラ13へEGRガスのほぼ全部を流すために、バイパス弁19が閉弁される。ところが、暖機が一旦完了しても、低温時には、図30に示すように、バイパス通路16の出口付近等に凝縮水CWが滞留することがある。そこで、この実施形態では、バイパス弁19が閉弁した後にバイパス通路16の出口付近等に滞留した凝縮水CWを排出するために、次のようなバイパス弁切換制御を実行するようになっている。 When the engine 1 is cold (when not warmed up), the bypass valve 19 is opened in order to allow a part of the EGR gas flowing from the EGR passage 12 to the EGR cooler 13 to flow to the bypass passage 16 to detour. After that, when the warm-up of the engine 1 is completed, the bypass valve 19 is closed in order to allow almost all of the EGR gas to flow to the EGR cooler 13. However, even if the warm-up is completed once, the condensed water CW may stay in the vicinity of the outlet of the bypass passage 16 or the like as shown in FIG. 30 at low temperature. Therefore, in this embodiment, the following bypass valve switching control is executed in order to discharge the condensed water CW accumulated in the vicinity of the outlet of the bypass passage 16 after the bypass valve 19 is closed. ..
[バイパス弁切換制御について]
 図32に、この実施形態におけるバイパス弁切換制御の内容をフローチャートにより示す。処理がこのルーチンへ移行すると、ステップ500で、ECU90は、水温センサ81、回転数センサ82、スロットルセンサ85、吸気温センサ87及び壁温センサ88の検出値に基づき、冷却水温度THW、エンジン回転数NE、吸気温度THA、エンジン負荷KL及び壁温度THDWをそれぞれ取り込む。
[Bypass valve switching control]
FIG. 32 shows the contents of the bypass valve switching control in this embodiment by a flowchart. When the process shifts to this routine, in step 500, the ECU 90 sets the cooling water temperature THW and engine rotation based on the detection values of the water temperature sensor 81, the rotation speed sensor 82, the throttle sensor 85, the intake air temperature sensor 87 and the wall temperature sensor 88. The number NE, intake temperature THA, engine load KL, and wall temperature THDW are taken in, respectively.
 次に、ステップ510で、ECU90は、バイパス弁19への開弁要求が有るか否かを判断する。ECU90は、この判断結果が肯定となる場合は処理をステップ520へ移行し、この判断結果が否定となる場合は処理をステップ530へ移行する。 Next, in step 510, the ECU 90 determines whether or not there is a valve opening request to the bypass valve 19. If the determination result is affirmative, the ECU 90 shifts the process to step 520, and if the determination result is negative, the ECU 90 shifts the process to step 530.
 ステップ520では、ECU90は、バイパス弁19を開弁し、その後に処理をステップ500へ戻す。 In step 520, the ECU 90 opens the bypass valve 19 and then returns the process to step 500.
 一方、ステップ530では、ECU90は、冷却水温度THWが「80℃」未満か否かを判断する。「80℃」は一例である。ECU90は、この判断結果が肯定となる場合は処理をステップ540へ移行し、この判断結果が否定となる場合は処理をステップ550へ移行する。 On the other hand, in step 530, the ECU 90 determines whether or not the cooling water temperature THW is less than "80 ° C.". "80 ° C" is an example. If the determination result is affirmative, the ECU 90 shifts the process to step 540, and if the determination result is negative, the ECU 90 shifts the process to step 550.
 ステップ540では、ECU90は、EGRカットか否か、すなわちEGRを停止したか否かを判断する。ECU90は、この判断結果が肯定となる場合は処理をステップ520へ移行し、この判断結果が否定となる場合は処理をステップ550へ移行する。 In step 540, the ECU 90 determines whether or not the EGR is cut, that is, whether or not the EGR is stopped. If the determination result is affirmative, the ECU 90 shifts the process to step 520, and if the determination result is negative, the ECU 90 shifts the process to step 550.
 そして、ステップ530又はステップ540から移行してステップ550では、ECU90は、バイパス弁19を閉弁し、処理をステップ500へ戻す。 Then, in step 550 after shifting from step 530 or step 540, the ECU 90 closes the bypass valve 19 and returns the process to step 500.
 上記したバイパス弁切換制御によれば、ECU90は、バイパス弁19を閉弁しているときに、EGRカットの実行を条件にバイパス弁19を強制的に開弁するようになっている。すなわち、この実施形態では、バイパス弁19のアクチュエータ22(ソレノイド29)は、EGR弁14を全閉にする条件において、弁体21を開くように構成される。 According to the above-mentioned bypass valve switching control, the ECU 90 forcibly opens the bypass valve 19 on condition that the EGR cut is executed when the bypass valve 19 is closed. That is, in this embodiment, the actuator 22 (solenoid 29) of the bypass valve 19 is configured to open the valve body 21 under the condition that the EGR valve 14 is fully closed.
[EGRシステムの作用及び効果について]
 以上説明したこの実施形態のEGRシステムの構成によれば、第13実施形態の作用及び効果に加え、次のような作用及び効果を得ることができる。すなわち、バイパス弁19のアクチュエータ22(ソレノイド29)は、EGRカットを実行する(EGR弁14を全閉にする)条件において、バイパス弁19の弁体21を開く。従って、EGR弁14を全閉にする条件においてバイパス弁19の弁体21が開いたときは、その弁体21が閉じているときにバイパス弁19より下流(バイパス通路16の出口側)に溜まった凝縮水CWのバイパス弁19より上流への流れが許容される。このため、バイパス弁19が閉弁しているときに、バイパス弁19より下流のバイパス通路16に溜まった凝縮水CWを、EGRカットの実行時に、バイパス弁19より上流のバイパス通路16へ自重により流すことができ、排気通路3へ排出することができる。
[About the action and effect of the EGR system]
According to the configuration of the EGR system of this embodiment described above, the following actions and effects can be obtained in addition to the actions and effects of the thirteenth embodiment. That is, the actuator 22 (solenoid 29) of the bypass valve 19 opens the valve body 21 of the bypass valve 19 under the condition that the EGR cut is executed (the EGR valve 14 is fully closed). Therefore, when the valve body 21 of the bypass valve 19 is opened under the condition that the EGR valve 14 is fully closed, it accumulates downstream of the bypass valve 19 (on the outlet side of the bypass passage 16) when the valve body 21 is closed. The flow of the condensed water CW upstream from the bypass valve 19 is allowed. Therefore, when the bypass valve 19 is closed, the condensed water CW accumulated in the bypass passage 16 downstream of the bypass valve 19 is transferred to the bypass passage 16 upstream of the bypass valve 19 by its own weight when the EGR cut is executed. It can be flushed and discharged to the exhaust passage 3.
<第15実施形態>
 次に、第15実施形態について図面を参照して詳細に説明する。
<15th Embodiment>
Next, the fifteenth embodiment will be described in detail with reference to the drawings.
 この実施形態では、EGRクーラ13に対するバイパス通路16の配置と、バイパス弁60の構成と、バイパス弁60の開閉制御の点で前記第8~第14の実施形態と構成が異なる。図33に、バイパス通路16とバイパス弁60を一体に設けたEGRクーラ13を正面図により示す。図34に、同じくEGRクーラ13を背面図により示す。図35に、バイパス弁60の弁体61が全閉となるときであって、EGRクーラ13をその長手方向に沿って切断した断面図により示す。図36に、EGRクーラ13であって、図35の1点鎖線四角X1で囲った部分を拡大断面図により示す。図37に、バイパス弁60の弁体61が半開となるときであって、EGRクーラ13を図35に準ずる断面図により示す。図38に、EGRクーラ13であって、図37に1点鎖線四角X2で囲った部分を拡大断面図により示す。図39に、バイパス弁60の弁体61が全開となるときであって、EGRクーラ13を図35に準ずる断面図により示す。図40に、EGRクーラ13であって、図39に1点鎖線四角X3で囲った部分を拡大断面図により示す。 In this embodiment, the arrangement of the bypass passage 16 with respect to the EGR cooler 13, the configuration of the bypass valve 60, and the opening / closing control of the bypass valve 60 are different from those of the eighth to fourteenth embodiments. FIG. 33 shows a front view of an EGR cooler 13 in which a bypass passage 16 and a bypass valve 60 are integrally provided. FIG. 34 also shows the EGR cooler 13 with a rear view. FIG. 35 shows a cross-sectional view of the EGR cooler 13 cut along its longitudinal direction when the valve body 61 of the bypass valve 60 is fully closed. FIG. 36 shows an enlarged cross-sectional view of the portion of the EGR cooler 13 surrounded by the alternate long and short dash line square X1 in FIG. 35. FIG. 37 shows a cross-sectional view of the EGR cooler 13 when the valve body 61 of the bypass valve 60 is half-opened, according to FIG. 35. FIG. 38 shows the portion of the EGR cooler 13 surrounded by the one-dot chain line square X2 in FIG. 37 by an enlarged cross-sectional view. FIG. 39 shows a cross-sectional view of the EGR cooler 13 when the valve body 61 of the bypass valve 60 is fully opened, according to FIG. 35. FIG. 40 shows the portion of the EGR cooler 13 surrounded by the one-dot chain line square X3 in FIG. 39 by an enlarged cross-sectional view.
[EGRクーラの構成について]
 図33~図40に示すように、この実施形態のEGRクーラ13は、第8~第14の実施形態のEGRクーラ13と同様、車両に搭載された状態において、バイパス通路16が、EGRクーラ13に対し鉛直方向下側に配置され、EGRクーラ13とバイパス通路16の上流側がエンジン1の排気通路3へ向かって鉛直方向下方へ傾斜するように設けられる。また、熱交換器32は、EGRガスが流れ入る入口32aと、EGRガスが流れ出る出口32bを含む。バイパス通路16も、EGRガスが流れ入る入口16aと、EGRガスが流れ出る出口16bを含む。バイパス通路16の出口16bは、熱交換器32の出口32bに隣接して配置される。この実施形態で、バイパス弁60の弁体61と回転軸62は、EGRクーラ13のハウジング31において、バイパス通路16の出口16bに対応して配置される。なお、図33~図40では、便宜上、冷却水の取入口や取出口の図示を省略すると共に、熱交換器32やバイパス弁60の図示を簡略化した。
[About the configuration of the EGR cooler]
As shown in FIGS. 33 to 40, in the EGR cooler 13 of this embodiment, the bypass passage 16 is the EGR cooler 13 in a state of being mounted on the vehicle, similarly to the EGR cooler 13 of the eighth to 14th embodiments. It is arranged on the lower side in the vertical direction with respect to the above, and is provided so that the upstream side of the EGR cooler 13 and the bypass passage 16 is inclined downward in the vertical direction toward the exhaust passage 3 of the engine 1. Further, the heat exchanger 32 includes an inlet 32a into which the EGR gas flows in and an outlet 32b in which the EGR gas flows out. The bypass passage 16 also includes an inlet 16a through which the EGR gas flows in and an outlet 16b through which the EGR gas flows out. The outlet 16b of the bypass passage 16 is arranged adjacent to the outlet 32b of the heat exchanger 32. In this embodiment, the valve body 61 and the rotating shaft 62 of the bypass valve 60 are arranged in the housing 31 of the EGR cooler 13 corresponding to the outlet 16b of the bypass passage 16. In FIGS. 33 to 40, for convenience, the illustration of the inlet and outlet of the cooling water is omitted, and the illustration of the heat exchanger 32 and the bypass valve 60 is simplified.
[バイパス弁の構成について]
 図35~図40に示すように、この実施形態のバイパス弁60は、略四角板状をなす弁体61と、その弁体61を回動する回転軸62とを含み、弁体61の一辺側が回転軸62に固定され、上記一辺に対向する弁体61の他辺側が回転軸62を中心に揺動するスイングタイプとして構成される。また、図34に示すように、このバイパス弁60は、回転軸62を回動するために電気的に動作するアクチュエータ63を含む。このアクチュエータ63は、軸方向へ往復動可能な駆動軸63aを備え、その駆動軸63aの先端部が、回転軸62に対しリンク64を介して駆動連結される。そして、アクチュエータ63の駆動軸63aが軸方向へ往復動することで、回転軸62がリンク64を介して一方向又はその反対方向へ回動し、その回転軸62の回動により弁体61がバイパス通路16の出口16bを開閉するように構成される。
[Bypass valve configuration]
As shown in FIGS. 35 to 40, the bypass valve 60 of this embodiment includes a valve body 61 having a substantially square plate shape and a rotating shaft 62 that rotates the valve body 61, and one side of the valve body 61 is included. The side is fixed to the rotating shaft 62, and the other side of the valve body 61 facing the one side is configured as a swing type swinging around the rotating shaft 62. Further, as shown in FIG. 34, the bypass valve 60 includes an actuator 63 that electrically operates to rotate the rotating shaft 62. The actuator 63 includes a drive shaft 63a that can reciprocate in the axial direction, and the tip end portion of the drive shaft 63a is driven and connected to the rotating shaft 62 via a link 64. Then, when the drive shaft 63a of the actuator 63 reciprocates in the axial direction, the rotating shaft 62 rotates in one direction or the opposite direction via the link 64, and the rotation of the rotating shaft 62 causes the valve body 61 to rotate. It is configured to open and close the exit 16b of the bypass passage 16.
 この実施形態では、図35、図36に示すように、バイパス弁60の弁体61がバイパス通路16の出口16bを閉じる閉弁時(全閉時)には、その弁体61が熱交換器32の軸線L1の方向(軸方向)とほぼ平行になるように配置され、その弁体61が熱交換器32の出口32bの直下流の流路を全開放する位置に配置される。また、図37、図38に示すように、その弁体61がバイパス通路16の出口16bを半開とする半開時(開弁時)には、その弁体61が熱交換器32の出口32bの直下流の流路の一部を遮り流路面積を狭くする位置に配置される。更に、図39、図40に示すように、その弁体61がバイパス通路16の出口16bを全開する全開時(開弁時)には、その弁体61が熱交換器32の出口32bの一部を更に遮りその出口32bの流路面積を更に狭くする位置に配置される。 In this embodiment, as shown in FIGS. 35 and 36, when the valve body 61 of the bypass valve 60 closes the outlet 16b of the bypass passage 16 when the valve is closed (when fully closed), the valve body 61 is a heat exchanger. It is arranged so as to be substantially parallel to the direction (axial direction) of the axis L1 of the 32, and the valve body 61 is arranged at a position where the flow path directly downstream of the outlet 32b of the heat exchanger 32 is fully opened. Further, as shown in FIGS. 37 and 38, when the valve body 61 is half-opened (when the valve is opened) with the outlet 16b of the bypass passage 16 half-opened, the valve body 61 is at the outlet 32b of the heat exchanger 32. It is placed at a position that blocks a part of the flow path directly downstream and narrows the flow path area. Further, as shown in FIGS. 39 and 40, when the valve body 61 fully opens the outlet 16b of the bypass passage 16 (when the valve is opened), the valve body 61 is one of the outlets 32b of the heat exchanger 32. It is arranged at a position where the portion is further blocked and the flow path area of the outlet 32b is further narrowed.
[バイパス弁を構成する弁アッセンブリとその組み付け手順について]
 ここで、EGRクーラ13のハウジング31については、一部にスポット溶接を実施した後、全体の締結をロウ付けで仕上げることが考えられる。この手順を採用する理由は、ロウ付け後に溶接加工を施すと、ロウ付け部分が溶けてしまい締結不良が発生するからである。また、バイパス弁60を構成する回転軸62には、ガス漏れを防止するために、一般にゴム製のリップシールを設けている。この場合、リップシールを回転軸62に組み付けた状態でロウ付けすることはできず、EGRクーラ13のハウジング31を仕上げた後にリップシールを組み付けた回転軸62をハウジング31に後付けすることが必要になる。ここで、回転軸62をハウジング31に組み付けた後、弁体61を回転軸62に締結するには、締結用の窓をハウジング31に設けなければならない。また、弁体61を回転軸62に締結した後、その締結用の窓を蓋等で封鎖する必要が生じる。この場合、蓋を溶接することは難しく、ガスケットによるシールが必要になり、製造コストアップにつながる。そこで、この実施形態では、バイパス弁60を構成する弁アッセンブリとその組み付け手順につき、以下のような構成を提案する。
[Valve assembly constituting the bypass valve and its assembly procedure]
Here, with respect to the housing 31 of the EGR cooler 13, it is conceivable to perform spot welding on a part of the housing 31 and then finish the entire fastening by brazing. The reason for adopting this procedure is that if welding is performed after brazing, the brazed portion melts and a fastening defect occurs. Further, the rotary shaft 62 constituting the bypass valve 60 is generally provided with a rubber lip seal in order to prevent gas leakage. In this case, the lip seal cannot be brazed in the state of being assembled to the rotary shaft 62, and it is necessary to retrofit the rotary shaft 62 to which the lip seal is assembled after finishing the housing 31 of the EGR cooler 13. Become. Here, in order to fasten the valve body 61 to the rotary shaft 62 after assembling the rotary shaft 62 to the housing 31, a fastening window must be provided in the housing 31. Further, after the valve body 61 is fastened to the rotating shaft 62, it becomes necessary to close the fastening window with a lid or the like. In this case, it is difficult to weld the lid, and a seal with a gasket is required, which leads to an increase in manufacturing cost. Therefore, in this embodiment, the following configurations are proposed for the valve assembly constituting the bypass valve 60 and the assembly procedure thereof.
 図41に、バイパス通路16の出口16bに対応して設けられる弁アッセンブリ65の構成を断面図により示す。図41に示すように、バイパス通路16を構成するEGRクーラ13のハウジング31には、ベアリングケース66が設けられる。ベアリングケース66は、筒部66aと、筒部66aの底部66bと、底部66bの外周に設けられるフランジ部66cとを含む。ベアリングケース66は、そのフランジ部66cがボルト67を介してハウジング31に固定される。ベアリングケース66のフランジ部66cがハウジング31に当接する部分には、ガス漏れを防止するガスケット68が設けられる。ベアリングケース66の筒部66aの内側には、ボールベアリング69が設けられる。ボールベアリング69には、回転軸62が回転可能に支持される。回転軸62の基端部62aは、ベアリングケース66の底部66bを貫通してバイパス通路16の出口16bの近傍に配置される。この基端部62aには、弁体61がねじ70を介して固定される。ボールベアリング69と底部66bとの間にて、回転軸62上には、ガス漏れを防止するためのリップシール71が設けられる。リップシール71は、ゴム等の可撓性材により形成される。リップシール71は、この開示技術におけるシール部材の一例に相当する。また、回転軸62の先端には、回転軸62を回動させるためのレバー72が固定される。このレバー72は、回転軸62及び弁体61と一体に回動可能となっている。また、筒部66aの外周には、弁体61を閉弁方向へ付勢するための閉弁スプリング73が設けられる。この閉弁スプリング73は、ベアリングケース66とレバー72との間に介在され、回転軸62を介して弁体61を閉弁方向へ回動付勢するようになっている。 FIG. 41 shows a cross-sectional view of the configuration of the valve assembly 65 provided corresponding to the outlet 16b of the bypass passage 16. As shown in FIG. 41, a bearing case 66 is provided in the housing 31 of the EGR cooler 13 constituting the bypass passage 16. The bearing case 66 includes a tubular portion 66a, a bottom portion 66b of the tubular portion 66a, and a flange portion 66c provided on the outer periphery of the bottom portion 66b. The flange portion 66c of the bearing case 66 is fixed to the housing 31 via bolts 67. A gasket 68 for preventing gas leakage is provided at a portion where the flange portion 66c of the bearing case 66 abuts on the housing 31. A ball bearing 69 is provided inside the tubular portion 66a of the bearing case 66. A rotary shaft 62 is rotatably supported by the ball bearing 69. The base end portion 62a of the rotating shaft 62 penetrates the bottom portion 66b of the bearing case 66 and is arranged in the vicinity of the outlet 16b of the bypass passage 16. A valve body 61 is fixed to the base end portion 62a via a screw 70. Between the ball bearing 69 and the bottom 66b, a lip seal 71 for preventing gas leakage is provided on the rotating shaft 62. The lip seal 71 is formed of a flexible material such as rubber. The lip seal 71 corresponds to an example of a seal member in this disclosure technique. Further, a lever 72 for rotating the rotating shaft 62 is fixed to the tip of the rotating shaft 62. The lever 72 can rotate integrally with the rotating shaft 62 and the valve body 61. Further, a valve closing spring 73 for urging the valve body 61 in the valve closing direction is provided on the outer periphery of the tubular portion 66a. The valve closing spring 73 is interposed between the bearing case 66 and the lever 72, and rotates and urges the valve body 61 in the valve closing direction via the rotating shaft 62.
 上記した弁アッセンブリ65は、次のような手順で組み付けることができる。すなわち、(1)初めに、回転軸62の外周にボールベアリング69の内側を圧入する。(2)ベアリングケース66の筒部66aの内周にリップシール71を圧入する。(3)筒部66aの内周にボールベアリング69の外周を圧入すると共に、回転軸62の基端部62aを、リップシール71とベアリングケース66の底部66bに貫通させる。(4)回転軸62の基端部62aに弁体61をねじ70により固定した後、ねじ70の頭部を点溶接する。(5)ベアリングケース66の筒部66aの外周に閉弁スプリング73を取り付け、回転軸62の先端にレバー72を取り付けて固定することで、サブ弁アッセンブリとする。ここで、回転軸62へのレバー72の固定は、ナットの締め付け、溶接又はカシメにより行うことができる。(6)サブ弁アッセンブリのベアリングケース66を、ガスケット68を介してハウジング31にボルト67で固定することにより、弁アッセンブリ65の組み付けを完了する。 The valve assembly 65 described above can be assembled by the following procedure. That is, (1) First, the inside of the ball bearing 69 is press-fitted to the outer circumference of the rotating shaft 62. (2) The lip seal 71 is press-fitted into the inner circumference of the tubular portion 66a of the bearing case 66. (3) The outer circumference of the ball bearing 69 is press-fitted into the inner circumference of the tubular portion 66a, and the base end portion 62a of the rotating shaft 62 is passed through the lip seal 71 and the bottom portion 66b of the bearing case 66. (4) After fixing the valve body 61 to the base end portion 62a of the rotating shaft 62 with a screw 70, the head of the screw 70 is spot-welded. (5) A valve closing spring 73 is attached to the outer periphery of the tubular portion 66a of the bearing case 66, and a lever 72 is attached to the tip of the rotating shaft 62 and fixed to form a sub valve assembly. Here, the lever 72 can be fixed to the rotating shaft 62 by tightening, welding, or caulking a nut. (6) The assembly of the valve assembly 65 is completed by fixing the bearing case 66 of the sub-valve assembly to the housing 31 via the gasket 68 with bolts 67.
[バイパス弁の開閉制御について]
 次に、上記のように構成したバイパス弁60の開閉制御について説明する。図42に、その制御内容をフローチャートにより示す。なお、この実施形態のエンジンシステムは、図29に示すエンジンシステムを採用するものとし、図29におけるバイパス弁19を本実施形態のバイパス弁60に置き換え、バイパス弁60を制御するためにアクチュエータ63を制御するものとする。
[Bypass valve open / close control]
Next, the opening / closing control of the bypass valve 60 configured as described above will be described. FIG. 42 shows the control contents by a flowchart. The engine system of this embodiment adopts the engine system shown in FIG. 29, the bypass valve 19 in FIG. 29 is replaced with the bypass valve 60 of the present embodiment, and the actuator 63 is used to control the bypass valve 60. It shall be controlled.
 処理が図42に示すルーチンへ移行すると、ステップ600で、ECU90は、水温センサ81、回転数センサ82、スロットルセンサ85及び吸気温センサ87の検出値に基づき、エンジン回転数NE、エンジン負荷KL、冷却水温度THW及び吸気温度THAをそれぞれ取り込む。 When the process shifts to the routine shown in FIG. 42, in step 600, the ECU 90 determines the engine rotation speed NE, the engine load KL, based on the detection values of the water temperature sensor 81, the rotation speed sensor 82, the throttle sensor 85, and the intake air temperature sensor 87. The cooling water temperature THW and the intake temperature THA are taken in, respectively.
 次に、ステップ610で、ECU90は、エンジン回転数NE、エンジン負荷KL、冷却水温度THW及び吸気温度THAに応じた目標バイパス開度TECBVを求める。ECU90は、例えば、図43に示す目標バイパス開度マップを参照することにより、各種パラメータNE,KL,THW,THAに応じた目標バイパス開度TECBVを求めることができる。図43に示すように、この目標バイパス開度マップは、吸気温度THA(外気温度でもある。)が「-10℃以下」、「0℃」及び「25℃以上」の3つの吸気温度範囲に規定され、それら各吸気温度範囲につき、冷却水温度THWが「40℃未満」、「40℃」、「60℃」及び「80℃以上」の4つの冷却水温度範囲に規定される。そして、各吸気温度範囲と各冷却水温度範囲とで組み合わされる12の組み合わせ領域毎に、エンジン負荷KLとエンジン回転数NEに応じた目標バイパス開度TECBVが設定される。このマップでは、エンジン1が低回転かつ軽負荷となるほど、目標バイパス開度TECBVが大きくなるように設定される。また、このマップでは、吸気温度THAが低くなるほど、目標バイパス開度TECBVが大きくなるように設定され、吸気温度THAが低くなる場合は、エンジン1の完全暖機後も低回転かつ軽負荷ほど、目標バイパス開度TECBVが大きくなるように設定される。更に、このマップでは、冷却水温度THWが低くなるほど、目標バイパス開度TECBVが大きくなるように設定されるが、冷却水温度THWがEGR開始水温度である「40℃未満」となる場合は、目標バイパス開度TECBVが「0」となるように設定される。 Next, in step 610, the ECU 90 obtains the target bypass opening TECBV according to the engine speed NE, the engine load KL, the cooling water temperature THW, and the intake air temperature THA. The ECU 90 can obtain the target bypass opening degree TECBV corresponding to various parameters NE, KL, THW, and THA by referring to the target bypass opening degree map shown in FIG. 43, for example. As shown in FIG. 43, this target bypass opening degree map covers three intake air temperature ranges in which the intake air temperature THA (which is also the outside air temperature) is “-10 ° C. or lower”, “0 ° C.”, and “25 ° C. or higher”. For each of these intake air temperature ranges, the cooling water temperature THW is defined in four cooling water temperature ranges of "less than 40 ° C", "40 ° C", "60 ° C" and "80 ° C or higher". Then, the target bypass opening degree TECBV corresponding to the engine load KL and the engine speed NE is set for each of the 12 combination regions combined in each intake air temperature range and each cooling water temperature range. In this map, the target bypass opening degree TECBV is set to increase as the engine 1 rotates at a lower speed and has a lighter load. Further, in this map, the lower the intake air temperature THA, the larger the target bypass opening TECBV is set. The target bypass opening TECBV is set to be large. Further, in this map, the target bypass opening TECBV is set to increase as the cooling water temperature THW decreases. However, when the cooling water temperature THW becomes "less than 40 ° C." which is the EGR starting water temperature, The target bypass opening TECBV is set to be "0".
 次に、ステップ620で、ECU90は、吸気温度THAに応じたEGR開始許可水温度SEGRTHWを求める。ECU90は、例えば、図44に示すEGR開始許可水温度マップを参照することにより、吸気温度THAに応じたEGR開始許可水温度SEGRTHWを求めることができる。このマップは、吸気温度THAが「25℃」から「-15℃」まで低くなるほど、EGR開始許可水温度SEGRTHWが「40℃」から「85℃」まで高くなるように設定され、吸気温度THAが「25℃」以上になるとEGR開始許可水温度SEGRTHWが「40℃」に設定されるようになっている。 Next, in step 620, the ECU 90 obtains the EGR start permitted water temperature SEGRTHW according to the intake air temperature THA. The ECU 90 can obtain the EGR start permitted water temperature SEGRTHW according to the intake air temperature THA, for example, by referring to the EGR start permitted water temperature map shown in FIG. 44. This map is set so that the lower the intake air temperature THA from "25 ° C" to "-15 ° C", the higher the EGR start permitted water temperature SEGRTHW is from "40 ° C" to "85 ° C", and the intake temperature THA becomes. When the temperature rises above "25 ° C", the EGR start permitted water temperature SEGRTHW is set to "40 ° C".
 次に、ステップ630で、ECU90は、EGR開始許可水温度SEGRTHWが冷却水温度THWより低いか否かを判断する。ECU90は、この判断結果が肯定となる場合は処理をステップ640へ移行し、この判断結果が否定となる場合は処理をステップ660へ移行する。 Next, in step 630, the ECU 90 determines whether or not the EGR start permitted water temperature SEGRTHW is lower than the cooling water temperature THW. If the determination result is affirmative, the ECU 90 shifts the process to step 640, and if the determination result is negative, the ECU 90 shifts the process to step 660.
 ステップ640では、ECU90は、冷却水温度THWが「100℃」より低いか否かを判断する。ECU90は、この判断結果が肯定となる場合は処理をステップ650へ移行し、この判断結果が否定となる場合は処理をステップ660へ移行する。 In step 640, the ECU 90 determines whether or not the cooling water temperature THW is lower than "100 ° C.". If the determination result is affirmative, the ECU 90 shifts the process to step 650, and if the determination result is negative, the ECU 90 shifts the process to step 660.
 ステップ650では、ECU90は、目標バイパス開度TECBVを、最終目標バイパス開度FTECBVとして設定する。 In step 650, the ECU 90 sets the target bypass opening degree TECBV as the final target bypass opening degree FTECBV.
 一方、ステップ630又はステップ640から移行してステップ660では、ECU90は、「0%」を、最終目標バイパス開度FTECBVとして設定する。 On the other hand, in step 660 after shifting from step 630 or step 640, the ECU 90 sets "0%" as the final target bypass opening degree FTECBV.
 そして、ステップ650又はステップ660から移行してステップ670では、ECU90は、バイパス弁60を最終目標バイパス開度FTECBVに制御する。 Then, in step 670 after shifting from step 650 or step 660, the ECU 90 controls the bypass valve 60 to the final target bypass opening degree FTECBV.
 上記したバイパス弁60の開閉制御によれば、ECU90は、冷却水温度THWが、EGR開始許可水温度SEGRTHW以下の条件では、バイパス弁60を全閉に制御し、冷却水温度THWが、EGR開始許可水温度SEGRTHWより高く、かつ、100℃以上の高温度となる条件では、吸気温度THA(外気温度)が低くてもバイパス弁60を全閉に制御し、冷却水温度THWが、EGR開始許可水温度SEGRTHWより高く、かつ、100℃より低くなる条件では、バイパス弁60を目標バイパス開度TECBVに制御するようになっている。 According to the above-mentioned open / close control of the bypass valve 60, the ECU 90 controls the bypass valve 60 to be fully closed under the condition that the cooling water temperature THW is equal to or lower than the EGR start permitted water temperature SEGRTHW, and the cooling water temperature THW starts EGR. Under the condition that the permitted water temperature is higher than SEGRTHW and the temperature is 100 ° C. or higher, the bypass valve 60 is controlled to be fully closed even if the intake air temperature THA (outside air temperature) is low, and the cooling water temperature THW permits EGR start. Under the condition that the water temperature is higher than SEGRTHW and lower than 100 ° C., the bypass valve 60 is controlled to the target bypass opening degree TECBV.
[EGRシステムの作用及び効果について]
 以上説明したこの実施形態のEGRシステムの構成によれば、第8~第14の実施形態の作用及び効果と同等の作用及び効果を得ることができる。加えて、この実施形態のEGRクーラ13の構成によれば、バイパス通路16の出口16bが熱交換器32の出口32bに隣接して配置され、バイパス弁60の弁体61と回転軸62がバイパス通路16の出口16bに対応して配置される。また、バイパス弁60は、弁体61がバイパス通路16の出口16bを閉じる全閉時(閉弁時)には、弁体61が熱交換器32の軸方向とほぼ平行に配置される。従って、バイパス弁60の全閉時には、排気通路3からEGR通路12へ流れるEGRガスのほぼ全てが熱交換器32へ流れて冷やされ、その出口32bから流れ出てバイパス弁60の弁体61に沿ってEGR弁14及びEGRガス分配器15(下流側EGR通路)へ向けて流れる。このため、バイパス弁の全閉時には、バイパス弁60の弁体61を冷やされたEGRガスで冷やすことができ、その弁体61を介して回転軸62を冷やすことができる。この結果、回転軸62に設けられたリップシール71をEGRガスの熱害から保護することができる。一方、バイパス弁60の半開時又は全開時(開弁時)には、弁体61が熱交換器32の出口32bの流路面積の一部を遮り流路面積が狭くなる。従って、熱交換器32の出口32bの流路面積が狭くなる分だけ、熱交換器32の出口32bから流れ出る冷やされたEGRガスの流量が減少し、その流量に対する、バイパス通路16の出口16bから流れ出る冷やされないEGRガスの流量の割合(バイパス流量比)が多くなり、EGR弁14及びEGRガス分配器15(下流側EGR通路)へ流れるEGRガスの温度が高くなる。このため、バイパス弁60の半開時又は全開時には、バイパス流量比が増える分だけEGR弁14及びEGRガス分配器15(下流側EGR通路)の暖機を促進することができる。
[About the action and effect of the EGR system]
According to the configuration of the EGR system of this embodiment described above, it is possible to obtain the same action and effect as the action and effect of the eighth to fourteenth embodiments. In addition, according to the configuration of the EGR cooler 13 of this embodiment, the outlet 16b of the bypass passage 16 is arranged adjacent to the outlet 32b of the heat exchanger 32, and the valve body 61 and the rotating shaft 62 of the bypass valve 60 are bypassed. It is arranged corresponding to the exit 16b of the passage 16. Further, in the bypass valve 60, when the valve body 61 closes the outlet 16b of the bypass passage 16 (when the valve is closed), the valve body 61 is arranged substantially parallel to the axial direction of the heat exchanger 32. Therefore, when the bypass valve 60 is fully closed, almost all of the EGR gas flowing from the exhaust passage 3 to the EGR passage 12 flows to the heat exchanger 32 to be cooled, flows out from the outlet 32b, and flows along the valve body 61 of the bypass valve 60. It flows toward the EGR valve 14 and the EGR gas distributor 15 (downstream EGR passage). Therefore, when the bypass valve is fully closed, the valve body 61 of the bypass valve 60 can be cooled with the cooled EGR gas, and the rotary shaft 62 can be cooled via the valve body 61. As a result, the lip seal 71 provided on the rotating shaft 62 can be protected from the heat damage of the EGR gas. On the other hand, when the bypass valve 60 is half-opened or fully opened (when the valve is opened), the valve body 61 blocks a part of the flow path area of the outlet 32b of the heat exchanger 32, and the flow path area becomes narrow. Therefore, the flow rate of the cooled EGR gas flowing out from the outlet 32b of the heat exchanger 32 decreases by the amount that the flow path area of the outlet 32b of the heat exchanger 32 becomes narrower, and the flow rate of the cooled EGR gas with respect to the flow rate decreases from the outlet 16b of the bypass passage 16. The ratio of the flow rate of the uncooled EGR gas flowing out (bypass flow rate ratio) increases, and the temperature of the EGR gas flowing to the EGR valve 14 and the EGR gas distributor 15 (downstream EGR passage) increases. Therefore, when the bypass valve 60 is half-opened or fully opened, warm-up of the EGR valve 14 and the EGR gas distributor 15 (downstream EGR passage) can be promoted by the amount that the bypass flow rate ratio increases.
 図45には、バイパス弁60の半開時と全開時における、下流側EGR通路へ流れるEGRガスの全流量に対する熱交換器32を流れたEGRガスの流量の割合(クーラ流量比)とバイパス流量比の違いをグラフにより示す。図45に示すように、半開時には、クーラ流量比は「75%」となり、バイパス流量比は「25%」となる。一方、全開時には、クーラ流量比は「60%」となり、バイパス流量比は「40%」となる。このように、半開時に比べ全開時には、バイパス流量比が約15%アップすることがわかる。 FIG. 45 shows the ratio of the flow rate of EGR gas flowing through the heat exchanger 32 (cooler flow rate ratio) and the bypass flow rate ratio to the total flow rate of EGR gas flowing to the downstream EGR passage when the bypass valve 60 is half-opened and fully opened. The difference between the above is shown by a graph. As shown in FIG. 45, when half-opened, the cooler flow rate ratio is "75%" and the bypass flow rate ratio is "25%". On the other hand, when fully open, the cooler flow rate ratio is "60%" and the bypass flow rate ratio is "40%". As described above, it can be seen that the bypass flow rate ratio is increased by about 15% at the time of full opening as compared with the time of half opening.
 ここで、この実施形態におけるバイパス弁60の開閉制御によれば、ECU90は、冷却水温度THWが、EGR開始許可水温度SEGRTHW以下の条件では、EGR弁14が閉弁し、EGRクーラ13にEGRガスが流れず、バイパス弁60を全閉に制御する。また、ECU90は、冷却水温度THWが、EGR開始許可水温度SEGRTHWより高く、かつ、100℃以上の高温度となる条件では、吸気温度THA(外気温度)が低くてもバイパス弁60を全閉に制御する。このため、EGR弁14が開弁し、EGRクーラ13へ流れるEGRガスの全てを熱交換器32で冷却することができ、EGRガス分配器15(下流側EGR通路)へ温度低下させたEGRガスを流すことができる。更に、ECU90は、冷却水温度THWが、EGR開始許可水温度SEGRTHWより高く、かつ、100℃より低くなる条件では、バイパス弁60を目標バイパス開度TECBVに制御する。このため、EGRガス分配器15(下流側EGR通路)へ流れるEGRガスにおけるバイパス流量比を増加させることができ、そのEGRガスを昇温させることができ、EGRガス分配器15を適度に暖機することができる。 Here, according to the open / close control of the bypass valve 60 in this embodiment, the ECU 90 closes the EGR valve 14 and EGR to the EGR cooler 13 under the condition that the cooling water temperature THW is equal to or lower than the EGR start permitted water temperature SEGRTHW. Gas does not flow and the bypass valve 60 is controlled to be fully closed. Further, the ECU 90 fully closes the bypass valve 60 even if the intake air temperature THA (outside air temperature) is low under the condition that the cooling water temperature THW is higher than the EGR start permitted water temperature SEGRTHW and the temperature is as high as 100 ° C. or higher. To control. Therefore, the EGR valve 14 is opened, and all of the EGR gas flowing to the EGR cooler 13 can be cooled by the heat exchanger 32, and the temperature of the EGR gas is lowered to the EGR gas distributor 15 (downstream EGR passage). Can be shed. Further, the ECU 90 controls the bypass valve 60 to the target bypass opening degree TECBV under the condition that the cooling water temperature THW is higher than the EGR start permitted water temperature SEGRTHW and lower than 100 ° C. Therefore, the bypass flow rate ratio in the EGR gas flowing to the EGR gas distributor 15 (downstream EGR passage) can be increased, the temperature of the EGR gas can be raised, and the EGR gas distributor 15 can be appropriately warmed up. can do.
 更に、この実施形態のEGRクーラ13の構成によれば、上記した組み付け手順を採用することで弁アッセンブリ65を設けた。すなわち、各種部品61,62,66,69,70~73を組み付けてなるサブ弁アッセンブリのベアリングケース66を、最後に、ガスケット68を介してハウジング31にボルト67で固定することで、弁アッセンブリ65の組み付けを完了するようにした。このため、ベアリングケース66をハウジング31に固定するためにガスケット68とボルト67が必要になるものの、組付け窓を設けることなく、かつ、溶接を施すことなく、ハウジング31に対し弁アッセンブリ65を設けることができ、EGRクーラ13の製造コストを抑えることができる。 Further, according to the configuration of the EGR cooler 13 of this embodiment, the valve assembly 65 is provided by adopting the above-mentioned assembly procedure. That is, the bearing case 66 of the sub-valve assembly formed by assembling various parts 61, 62, 66, 69, 70 to 73 is finally fixed to the housing 31 via the gasket 68 with bolts 67, whereby the valve assembly 65 I tried to complete the assembly of. Therefore, although the gasket 68 and the bolt 67 are required to fix the bearing case 66 to the housing 31, the valve assembly 65 is provided to the housing 31 without providing an assembly window and without welding. This makes it possible to reduce the manufacturing cost of the EGR cooler 13.
<第16実施形態>
 次に、第16実施形態について図面を参照して詳細に説明する。
<16th Embodiment>
Next, the 16th embodiment will be described in detail with reference to the drawings.
 この実施形態では、スイングタイプのバイパス弁60の構成の点で第15実施形態と異なる。第16実施形態では、バイパス通路16の出口16bを、熱交換器32の出口32bに隣接して配置すると共に、バイパス弁60の弁アッセンブリ65をバイパス通路16の出口16bに対応して配置した。すなわち、熱交換器32の出口32bとバイパス通路16の出口16bとの近傍に弁アッセンブリ65を配置した。このため、弁アッセンブリ65の回転軸62が、熱交換器32とバイパス通路16との間の仕切壁46の一端縁46cに沿って配置されることになった。ここで、仕切壁46の一端縁46cと回転軸62との間に多少の隙間ができることがある。この隙間が大きくなると、弁体61の全閉時に、バイパス通路16で遮断されたEGRガスが、その隙間を介して熱交換器32の出口32bの側へ漏れるおそれがある。その結果、漏れたEGRガスにより、熱交換器32で冷却されたEGRガスの冷却効率が低下するおそれがある。一方、上記隙間が大きくなれば、熱交換器32から流れ出る凝縮水を、その隙間を介してバイパス通路16へ排出することができる。そこで、この実施形態では、バイパス弁60を次のように構成した。 This embodiment is different from the fifteenth embodiment in the configuration of the swing type bypass valve 60. In the 16th embodiment, the outlet 16b of the bypass passage 16 is arranged adjacent to the outlet 32b of the heat exchanger 32, and the valve assembly 65 of the bypass valve 60 is arranged corresponding to the outlet 16b of the bypass passage 16. That is, the valve assembly 65 is arranged in the vicinity of the outlet 32b of the heat exchanger 32 and the outlet 16b of the bypass passage 16. Therefore, the rotating shaft 62 of the valve assembly 65 is arranged along one end edge 46c of the partition wall 46 between the heat exchanger 32 and the bypass passage 16. Here, a slight gap may be formed between one end edge 46c of the partition wall 46 and the rotating shaft 62. If this gap becomes large, the EGR gas blocked by the bypass passage 16 may leak to the outlet 32b side of the heat exchanger 32 through the gap when the valve body 61 is fully closed. As a result, the leaked EGR gas may reduce the cooling efficiency of the EGR gas cooled by the heat exchanger 32. On the other hand, if the gap becomes large, the condensed water flowing out of the heat exchanger 32 can be discharged to the bypass passage 16 through the gap. Therefore, in this embodiment, the bypass valve 60 is configured as follows.
[バイパス弁の構成について]
 図46、図47に、EGRクーラ13の一部であって、熱交換器32の出口32bに隣接したバイパス通路16の出口16bの部分と、バイパス弁60の弁体61及び回転軸62との関係を断面図により示す。図46は、バイパス弁60の弁体61が全閉となる状態を示し、図47は、弁体61が開弁した状態を示す。この実施形態で、熱交換器32の出口32bとバイパス通路16の出口16bとの境部位58と、回転軸62との間に隙間59が設けられる。その隙間59は、弁体61の閉弁時(全閉時)よりも開弁時の方が大きくなるように構成される。ここで、境部位58は、仕切壁46の一端縁46cにより構成される。
[Bypass valve configuration]
46 and 47 show a portion of the EGR cooler 13 at the outlet 16b of the bypass passage 16 adjacent to the outlet 32b of the heat exchanger 32, and the valve body 61 and the rotating shaft 62 of the bypass valve 60. The relationship is shown in cross-sectional view. FIG. 46 shows a state in which the valve body 61 of the bypass valve 60 is fully closed, and FIG. 47 shows a state in which the valve body 61 is fully opened. In this embodiment, a gap 59 is provided between the boundary portion 58 between the outlet 32b of the heat exchanger 32 and the outlet 16b of the bypass passage 16 and the rotating shaft 62. The gap 59 is configured to be larger when the valve body 61 is opened than when the valve body 61 is closed (fully closed). Here, the boundary portion 58 is composed of one end edge 46c of the partition wall 46.
 すなわち、この実施形態では、図46、図47に示すように、仕切壁46の一端縁46cが平坦をなし、その一端縁46cに隣接して回転軸62が配置される。この回転軸62の一部には、断面円弧状をなす切り欠き62bが形成され、この切り欠き62bが、回転軸62の回動に伴い境部位58(一端縁46c)に対し変位するようになっている。詳しくは、図46に示すように、弁体61の全閉時には、回転軸62と境部位58(一端縁46c)との間の隙間59が最小となるように切り欠き62bが変位する。一方、図47に示すように、弁体61の開弁時には、回転軸62と境部位58(一端縁46c)との間の隙間59が最大となるように切り欠き62bが変位する。弁体61は、その基部が回転軸62の中に収まった状態で固定される。また、弁体61は、その先部側が回転軸62から半径方向へ張り出し、バイパス通路16の出口16bを開閉するようになっている。ここで、弁体61の先端は、ハウジング31の傾斜に合わせて傾斜する。 That is, in this embodiment, as shown in FIGS. 46 and 47, one end edge 46c of the partition wall 46 is flat, and the rotation shaft 62 is arranged adjacent to the one end edge 46c. A notch 62b having an arcuate cross section is formed in a part of the rotating shaft 62, and the notch 62b is displaced with respect to the boundary portion 58 (one end edge 46c) as the rotating shaft 62 rotates. It has become. Specifically, as shown in FIG. 46, when the valve body 61 is fully closed, the notch 62b is displaced so that the gap 59 between the rotating shaft 62 and the boundary portion 58 (one end edge 46c) is minimized. On the other hand, as shown in FIG. 47, when the valve body 61 is opened, the notch 62b is displaced so that the gap 59 between the rotating shaft 62 and the boundary portion 58 (one end edge 46c) is maximized. The valve body 61 is fixed in a state where its base is housed in the rotating shaft 62. Further, the valve body 61 has a tip end side projecting radially from the rotation shaft 62 to open and close the outlet 16b of the bypass passage 16. Here, the tip of the valve body 61 is inclined according to the inclination of the housing 31.
[EGRシステムの作用及び効果について]
 以上説明したこの実施形態のEGRシステムの構成によれば、第15実施形態の作用及び効果に加え、次のような作用及び効果を得ることができる。すなわち、この実施形態では、熱交換器32の出口32bとバイパス通路16の出口16bとの境部位58(一端縁46c)と、回転軸62との間の隙間59が、バイパス弁60の弁体61の閉弁時よりも開弁時の方が大きくなるように構成される。従って、図46に示すように、この隙間59は、弁体61の閉弁時に開弁時よりも小さくなるので、バイパス通路16の中のEGRガスが、隙間59を介して熱交換器32の出口32bの側へ漏れ難くなる。このため、弁体61の閉弁時には、隙間59を狭くすることで、バイパス通路16から熱交換器32の側への隙間59によるEGRガスの漏れを抑えることができ、熱交換器32によるEGRガスの冷却効率の低下を抑えることができる。一方、図47に示すように、この隙間59は、弁体61の開弁時に閉弁時よりも大きくなるので、熱交換器32の出口32bから放出される凝縮水(図47に白丸で示す。)が隙間59へ流れ易くなる。また、熱交換器32の出口32bの流路面積の一部が弁体61により遮られるので、その出口32bから放出される凝縮水の飛散が抑えられる。このため、弁体61の開弁時には、隙間59を広くすることで、熱交換器32の出口32bから放出される凝縮水を隙間59を介して多量にバイパス通路16へ排出することができる。ここで、弁体61の開弁時には、バイパス通路16から流れ出るEGRガスが、熱交換器32で冷却されたEGRガスに合流するので、隙間59から熱交換器32の出口32bの側へ漏れたEGRガスにより、熱交換器32で冷却されたEGRガスの冷却効率の低下が問題になることはない。
[About the action and effect of the EGR system]
According to the configuration of the EGR system of this embodiment described above, the following actions and effects can be obtained in addition to the actions and effects of the fifteenth embodiment. That is, in this embodiment, the gap 59 between the boundary portion 58 (one end edge 46c) between the outlet 32b of the heat exchanger 32 and the outlet 16b of the bypass passage 16 and the rotating shaft 62 is the valve body of the bypass valve 60. It is configured so that it is larger when the valve is opened than when the valve is closed. Therefore, as shown in FIG. 46, this gap 59 becomes smaller when the valve body 61 is closed than when the valve is opened, so that the EGR gas in the bypass passage 16 passes through the gap 59 in the heat exchanger 32. It becomes difficult to leak to the side of the outlet 32b. Therefore, when the valve body 61 is closed, by narrowing the gap 59, it is possible to suppress the leakage of EGR gas due to the gap 59 from the bypass passage 16 to the side of the heat exchanger 32, and the EGR by the heat exchanger 32 can be suppressed. It is possible to suppress a decrease in gas cooling efficiency. On the other hand, as shown in FIG. 47, this gap 59 becomes larger when the valve body 61 is opened than when the valve is closed, so that the condensed water discharged from the outlet 32b of the heat exchanger 32 (indicated by a white circle in FIG. 47). ) Makes it easier to flow into the gap 59. Further, since a part of the flow path area of the outlet 32b of the heat exchanger 32 is blocked by the valve body 61, the scattering of the condensed water discharged from the outlet 32b is suppressed. Therefore, when the valve body 61 is opened, by widening the gap 59, a large amount of condensed water discharged from the outlet 32b of the heat exchanger 32 can be discharged to the bypass passage 16 through the gap 59. Here, when the valve body 61 is opened, the EGR gas flowing out of the bypass passage 16 joins the EGR gas cooled by the heat exchanger 32, so that the EGR gas leaks from the gap 59 to the outlet 32b side of the heat exchanger 32. Due to the EGR gas, the decrease in the cooling efficiency of the EGR gas cooled by the heat exchanger 32 does not become a problem.
<第17実施形態>
 次に、第17実施形態について図面を参照して詳細に説明する。
<17th Embodiment>
Next, the 17th embodiment will be described in detail with reference to the drawings.
[バイパス弁の構成について]
 この実施形態では、スイングタイプのバイパス弁60の構成の点で第16実施形態と異なる。図48に、EGRクーラ13の一部であって、バイパス弁60の弁体61が全閉となる状態を、図46に準ずる断面図により示す。図49に、EGRクーラ13の一部であって、弁体61が開弁した状態を、図47に準ずる断面図により示す。この実施形態でも、バイパス弁60は、熱交換器32の出口32bとバイパス通路16の出口16bとの境部位58と、回転軸62との間に隙間59が設けられる。その隙間59は、弁体61の全閉時よりも開弁時の方が大きくなるように構成される。
[Bypass valve configuration]
This embodiment differs from the 16th embodiment in that the swing type bypass valve 60 is configured. FIG. 48 shows a state in which the valve body 61 of the bypass valve 60, which is a part of the EGR cooler 13, is fully closed, by a cross-sectional view according to FIG. 46. FIG. 49 shows a state in which the valve body 61 is a part of the EGR cooler 13 and the valve body 61 is opened by a cross-sectional view according to FIG. 47. Also in this embodiment, the bypass valve 60 is provided with a gap 59 between the boundary portion 58 between the outlet 32b of the heat exchanger 32 and the outlet 16b of the bypass passage 16 and the rotating shaft 62. The gap 59 is configured to be larger when the valve body 61 is fully closed than when the valve body 61 is fully closed.
 すなわち、図48、図49に示すように、この実施形態でも、仕切壁46の一端縁46cが平坦をなし、その一端縁46cにより境部位58が構成される。そして、その境部位58に隣接して回転軸62が配置される。この実施形態では、回転軸62の一部に切り欠きは形成されておらず、スイングタイプのバイパス弁60を構成する回転軸62は、境部位58(一端縁46c)に対し所定の隙間59を介して配置される。弁体61は、その基部側が回転軸62に固定され、その基端61aが回転軸62の半径方向へわずかに突出する。また、弁体61は、その先部側が回転軸62から半径方向へ張り出し、バイパス通路16の出口16bを開閉するようになっている。ここで、弁体61の先端は、ハウジング31の傾斜に合わせて鋭角に傾斜し、弁体61の基端61aも鋭角に傾斜する。そして、図48に示すように、弁体61の全閉時には、回転軸62と境部位58との間の隙間59は、弁体61の基端61aにより封鎖される。一方、図49に示すように、弁体61の開弁時には、回転軸62と共に弁体61が回動することで、弁体61の基端61aが回動し、境部位58(一端縁46c)との間の隙間59が開放されるようになっている。 That is, as shown in FIGS. 48 and 49, even in this embodiment, the one end edge 46c of the partition wall 46 is flat, and the one end edge 46c constitutes the boundary portion 58. Then, the rotation shaft 62 is arranged adjacent to the boundary portion 58. In this embodiment, a notch is not formed in a part of the rotary shaft 62, and the rotary shaft 62 constituting the swing type bypass valve 60 has a predetermined gap 59 with respect to the boundary portion 58 (one end edge 46c). Placed through. The base side of the valve body 61 is fixed to the rotating shaft 62, and the base end 61a thereof slightly protrudes in the radial direction of the rotating shaft 62. Further, the valve body 61 has a tip end side projecting radially from the rotation shaft 62 to open and close the outlet 16b of the bypass passage 16. Here, the tip of the valve body 61 is inclined at an acute angle according to the inclination of the housing 31, and the base end 61a of the valve body 61 is also inclined at an acute angle. Then, as shown in FIG. 48, when the valve body 61 is fully closed, the gap 59 between the rotating shaft 62 and the boundary portion 58 is closed by the base end 61a of the valve body 61. On the other hand, as shown in FIG. 49, when the valve body 61 is opened, the valve body 61 rotates together with the rotating shaft 62, so that the base end 61a of the valve body 61 rotates and the boundary portion 58 (one end edge 46c). ), The gap 59 is opened.
[EGRシステムの作用及び効果について]
 以上説明したこの実施形態のEGRシステムの構成によれば、第16実施形態の構成と多少の違いはあるものの、第16実施形態と同等の作用及び効果を得ることができる。
[About the action and effect of the EGR system]
According to the configuration of the EGR system of this embodiment described above, the same operation and effect as those of the 16th embodiment can be obtained, although there are some differences from the configuration of the 16th embodiment.
<第18実施形態>
 次に、第18実施形態について図面を参照して詳細に説明する。
<18th Embodiment>
Next, the eighteenth embodiment will be described in detail with reference to the drawings.
[バイパス弁の構成について]
 この実施形態では、バイパス弁60がバタフライタイプの構成を有する点でスイングタイプの構成を有する第16及び第17の実施形態のそれと異なる。図50に、EGRクーラ13の一部であって、バイパス弁60の弁体61が全閉した状態を、図48に準ずる断面図により示す。図51に、EGRクーラ13の一部であって、バイパス弁60の弁体61が開弁した状態を、図49に準ずる断面図により示す。この実施形態でも、バイパス弁60は、熱交換器32の出口32bとバイパス通路16の出口16bとの境部位58と、弁体61との間に隙間59が設けられるようになっている。その隙間59は、弁体61の閉弁時(全閉時)よりも開弁時の方が大きくなるように構成される。
[Bypass valve configuration]
This embodiment differs from that of the 16th and 17th embodiments having a swing type configuration in that the bypass valve 60 has a butterfly type configuration. FIG. 50 shows a state in which the valve body 61 of the bypass valve 60, which is a part of the EGR cooler 13, is fully closed, by a cross-sectional view according to FIG. 48. FIG. 51 shows a state in which the valve body 61 of the bypass valve 60, which is a part of the EGR cooler 13, is opened, by a cross-sectional view according to FIG. 49. Also in this embodiment, the bypass valve 60 is provided with a gap 59 between the boundary portion 58 between the outlet 32b of the heat exchanger 32 and the outlet 16b of the bypass passage 16 and the valve body 61. The gap 59 is configured to be larger when the valve body 61 is opened than when the valve body 61 is closed (fully closed).
 すなわち、図50、図51に示すように、この実施形態では、境部位58(仕切壁46の一端縁46c)に隣接して回転軸62が配置される。この実施形態のバイパス弁60は、バタフライタイプの構成を有することから、回転軸62は、境部位58(一端縁46c)に対し所定の間隔を介して配置される。弁体61は、その中間部が回転軸62に固定され、その一端側61bと他端側61cが、それぞれ回転軸62の半径方向へ張り出している。また、弁体61は、その一端側61bが仕切壁46の一端縁46cに対し接触可能となり、その他端側61cがハウジング31の傾斜する内壁に対し接触可能となっている。ここで、弁体61の一端側61bは、仕切壁46の傾斜する一端縁46cに合わせて鋭角に傾斜し、弁体61の他端側61cは、ハウジング31の傾斜に合わせて鋭角に傾斜する。そして、図50に示すように、弁体61の全閉時には、弁体61の一端側61bが境部位58(一端縁46c)に接触し、回転軸62と境部位58(一端縁46c)との間に隙間59はできない。一方、図51に示すように、弁体61の開弁時には、回転軸62と共に弁体61が回動することで、弁体61の一端側61bと境部位58(一端縁46c)との間に隙間59ができるようになっている。 That is, as shown in FIGS. 50 and 51, in this embodiment, the rotation shaft 62 is arranged adjacent to the boundary portion 58 (one end edge 46c of the partition wall 46). Since the bypass valve 60 of this embodiment has a butterfly type configuration, the rotating shaft 62 is arranged with respect to the boundary portion 58 (one end edge 46c) at a predetermined interval. The intermediate portion of the valve body 61 is fixed to the rotating shaft 62, and one end side 61b and the other end side 61c of the valve body 61 project in the radial direction of the rotating shaft 62, respectively. Further, the valve body 61 has one end side 61b in contact with the one end edge 46c of the partition wall 46, and the other end side 61c in contact with the inclined inner wall of the housing 31. Here, the one end side 61b of the valve body 61 is inclined at an acute angle according to the inclined one end edge 46c of the partition wall 46, and the other end side 61c of the valve body 61 is inclined at an acute angle according to the inclination of the housing 31. .. Then, as shown in FIG. 50, when the valve body 61 is fully closed, the one end side 61b of the valve body 61 comes into contact with the boundary portion 58 (one end edge 46c), and the rotary shaft 62 and the boundary portion 58 (one end edge 46c) come into contact with each other. There is no gap 59 between them. On the other hand, as shown in FIG. 51, when the valve body 61 is opened, the valve body 61 rotates together with the rotating shaft 62 between the one end side 61b of the valve body 61 and the boundary portion 58 (one end edge 46c). There is a gap 59 in the space.
[EGRシステムの作用及び効果について]
 以上説明したこの実施形態のEGRシステムの構成によれば、第16及び第17の実施形態とバイパス弁60のタイプは異なるものの、第16及び第17の実施形態と同等の作用及び効果を得ることができる。
[About the action and effect of the EGR system]
According to the configuration of the EGR system of this embodiment described above, although the types of the bypass valve 60 are different from those of the 16th and 17th embodiments, the same operations and effects as those of the 16th and 17th embodiments can be obtained. Can be done.
<第19実施形態>
 次に、第19実施形態について図面を参照して詳細に説明する。
<19th Embodiment>
Next, the 19th embodiment will be described in detail with reference to the drawings.
[バイパス弁の弁アッセンブリの構成と弁アッセンブリの組み付け手順について]
 この実施形態では、バタフライタイプのバイパス弁60に係る弁アッセンブリ65の構成と弁アッセンブリ65の組み付け手順の点で、第15実施形態のスイングタイプのバイパス弁60と異なる。図52に、バイパス弁60の弁アッセンブリ65の構成を図41に準ずる断面図により示す。図52に示す弁アッセンブリ65おいて、図41に示す構成要素と同等の構成要素については、同一の符号を付して説明を省略し、異なった点を中心に説明する(以下の説明において同様。)。
[Bypass valve valve assembly configuration and valve assembly assembly procedure]
This embodiment is different from the swing type bypass valve 60 of the fifteenth embodiment in that the configuration of the valve assembly 65 according to the butterfly type bypass valve 60 and the procedure for assembling the valve assembly 65 are different. FIG. 52 shows the configuration of the valve assembly 65 of the bypass valve 60 by a cross-sectional view according to FIG. 41. In the valve assembly 65 shown in FIG. 52, the same components as those shown in FIG. 41 are designated by the same reference numerals, description thereof will be omitted, and different points will be mainly described (the same applies in the following description). .).
 図52に示すように、EGRクーラ13のハウジング31は、外側へ突出する外筒部31eを含む。外筒部31eの外周には、平坦面をなす圧入受け面31eaが、周方向に複数(4つ)等角度間隔に配置される。これら圧入受け面31eaは、外筒部31eの外周を切削するかたちで形成されるので、図52では、その部分が凹状をなして見える。この圧入受け面31eaは、後述するように、回転軸62及び弁体61等を含むサブ弁アッセンブリを外筒部31eの内側に圧入するときに、ハウジング31の側を位置決め治具で位置決めするために使用される。ベアリングケース66は、筒部66aと底部66bを含み、フランジ部は含まない。ベアリングケース66は、ハウジング31の外筒部31eの内側に圧入されて固定される。ベアリングケース66の筒部66aには、回転軸62がボールベアリング69を介して回転可能に支持され、回転軸62の外周がリップシール71を介してシールされる。ハウジング31の内部にて、回転軸62の基端部62aには、弁体61がねじ70を介して固定される。回転軸62の先端部には、レバー72が固定される。ハウジング31の外筒部31eの外周には、筒状をなすスプリングガイド74が設けられる。スプリングガイド74の外周にて、スプリングガイド74とレバー72との間には、弁体61を閉弁方向へ付勢するための閉弁スプリング73が設けられる。 As shown in FIG. 52, the housing 31 of the EGR cooler 13 includes an outer cylinder portion 31e protruding outward. On the outer periphery of the outer cylinder portion 31e, a plurality (four) press-fitting surface 31ea forming a flat surface are arranged at equal angular intervals in the circumferential direction. Since these press-fitting surface 31ea are formed by cutting the outer periphery of the outer cylinder portion 31e, the portion thereof appears to be concave in FIG. 52. As will be described later, this press-fitting surface 31ea is for positioning the side of the housing 31 with a positioning jig when the sub-valve assembly including the rotary shaft 62 and the valve body 61 is press-fitted inside the outer cylinder portion 31e. Used for. The bearing case 66 includes a tubular portion 66a and a bottom portion 66b, and does not include a flange portion. The bearing case 66 is press-fitted and fixed to the inside of the outer cylinder portion 31e of the housing 31. A rotary shaft 62 is rotatably supported on the tubular portion 66a of the bearing case 66 via a ball bearing 69, and the outer periphery of the rotary shaft 62 is sealed via a lip seal 71. Inside the housing 31, the valve body 61 is fixed to the base end portion 62a of the rotating shaft 62 via a screw 70. A lever 72 is fixed to the tip of the rotating shaft 62. A cylindrical spring guide 74 is provided on the outer periphery of the outer cylinder portion 31e of the housing 31. On the outer periphery of the spring guide 74, a valve closing spring 73 for urging the valve body 61 in the valve closing direction is provided between the spring guide 74 and the lever 72.
 上記した弁アッセンブリ65の組み付け手順は以下の通りである。すなわち、(1)回転軸62の外周にボールベアリング69の内側を圧入する。(2)ベアリングケース66の筒部66aの内側にリップシール71を圧入する。(3)筒部66aの内側に、回転軸62を圧入したボールベアリング69の外側を圧入する。(4)回転軸62をリップシール71とベアリングケース66の底部66bに貫通させ、その回転軸62の基端部62aに弁体61をねじ70で固定した後、ねじ70の頭部を点溶接する。このようにバイパス弁60のサブ弁アッセンブリの組み付けを完了する。(5)サブ弁アッセンブリを構成するベアリングケース66を、ハウジング31の外筒部31eに圧入して固定する。このとき、ハウジング31の外筒部31eの外周に形成される圧入受け面31eaの凹みを利用することで、ベアリングケース66を外筒部31eに容易に圧入できる。(6)ハウジング31の外筒部31eの外周に、筒状のスプリングガイド74を取り付けると共に、スプリングガイド74の外周に閉弁スプリング73を取り付ける。(7)回転軸62の先端にレバー72を固定することにより、弁アッセンブリ65の組み付けを完了する。回転軸62へのレバー72の固定は、ナットの締め付け、溶接又はカシメにより行うことができる。 The procedure for assembling the valve assembly 65 described above is as follows. That is, (1) the inside of the ball bearing 69 is press-fitted to the outer circumference of the rotating shaft 62. (2) The lip seal 71 is press-fitted into the inside of the tubular portion 66a of the bearing case 66. (3) The outside of the ball bearing 69 into which the rotating shaft 62 is press-fitted is press-fitted into the inside of the tubular portion 66a. (4) The rotating shaft 62 is passed through the lip seal 71 and the bottom portion 66b of the bearing case 66, the valve body 61 is fixed to the base end portion 62a of the rotating shaft 62 with a screw 70, and then the head of the screw 70 is spot welded. do. In this way, the assembly of the sub-valve assembly of the bypass valve 60 is completed. (5) The bearing case 66 constituting the sub-valve assembly is press-fitted into the outer cylinder portion 31e of the housing 31 and fixed. At this time, the bearing case 66 can be easily press-fitted into the outer cylinder portion 31e by utilizing the recess of the press-fitting receiving surface 31ea formed on the outer periphery of the outer cylinder portion 31e of the housing 31. (6) A tubular spring guide 74 is attached to the outer periphery of the outer cylinder portion 31e of the housing 31, and a valve closing spring 73 is attached to the outer periphery of the spring guide 74. (7) By fixing the lever 72 to the tip of the rotating shaft 62, the assembly of the valve assembly 65 is completed. The lever 72 can be fixed to the rotating shaft 62 by tightening, welding or caulking a nut.
[EGRシステムの作用及び効果について]
 以上説明したこの実施形態のEGRシステムの構成によれば、バイパス弁60の弁アッセンブリ65の構成が第15実施形態のそれと多少異なるものの、第15実施形態と同等の作用及び効果を得ることができる。また、この実施形態の構成によれば、上記した組み付け手順を採用することで弁アッセンブリ65を設けた。すなわち、各種部品61,62,66,69,71を組み付けてなるサブ弁アッセンブリのベアリングケース66を、ハウジング31の外筒部31eに圧入して固定した後、残りの各種部品72~74を組み付けることで、弁アッセンブリ65の組み付けを完了する。このため、ベアリングケース66をハウジング31に固定するために、組付け窓を設けることなく、かつ、溶接を施すことなく、ハウジング31に対し弁アッセンブリ65を設けることができ、EGRクーラ13の製造コストを抑えることができる。
[About the action and effect of the EGR system]
According to the configuration of the EGR system of this embodiment described above, although the configuration of the valve assembly 65 of the bypass valve 60 is slightly different from that of the fifteenth embodiment, the same operation and effect as those of the fifteenth embodiment can be obtained. .. Further, according to the configuration of this embodiment, the valve assembly 65 is provided by adopting the above-mentioned assembly procedure. That is, after the bearing case 66 of the sub-valve assembly to which various parts 61, 62, 66, 69, 71 are assembled is press-fitted into the outer cylinder portion 31e of the housing 31 and fixed, the remaining various parts 72 to 74 are assembled. This completes the assembly of the valve assembly 65. Therefore, in order to fix the bearing case 66 to the housing 31, the valve assembly 65 can be provided to the housing 31 without providing an assembly window and without welding, and the manufacturing cost of the EGR cooler 13 can be provided. Can be suppressed.
<第20実施形態>
 次に、第20実施形態について図面を参照して詳細に説明する。
<20th Embodiment>
Next, the twentieth embodiment will be described in detail with reference to the drawings.
[バイパス弁の弁アッセンブリの構成と弁アッセンブリの組み付け手順について]
 この実施形態では、バイパス弁60に係る弁アッセンブリ65の構成と弁アッセンブリの組み付け手順の点で第19実施形態と異なる。図53に、弁アッセンブリ65を図52に準ずる断面図により示す。図53に示すように、EGRクーラ13のハウジング31は、ハウジング31の外側へ突出する外筒部31eと、ハウジング31の中に嵌入する内筒部31fとを有する長筒部31gを含む。内筒部31fには、バイパス通路16の出口16bに対応して、EGRガスが流れる開口31faが形成される。ベアリングケース66は、筒部66aと底部66bを含む。ベアリングケース66は、ハウジング31の外筒部31eの内側に圧入されて固定される。ベアリングケース66の筒部66aには、回転軸62がボールベアリング69を介して回転可能に支持され、回転軸62の外周がリップシール71を介してシールされる。ハウジング31の内筒部31fの中にて、回転軸62の基端部62aには、弁体61がねじ70を介して固定される。回転軸62の先端には、レバー72が固定される。ハウジング31の外筒部31eの外周には、レバー72との間に、閉弁スプリング73が設けられる。
[Bypass valve valve assembly configuration and valve assembly assembly procedure]
This embodiment differs from the 19th embodiment in the configuration of the valve assembly 65 according to the bypass valve 60 and the procedure for assembling the valve assembly. FIG. 53 shows the valve assembly 65 with a cross-sectional view according to FIG. 52. As shown in FIG. 53, the housing 31 of the EGR cooler 13 includes a long cylinder portion 31g having an outer cylinder portion 31e projecting outward from the housing 31 and an inner cylinder portion 31f fitted into the housing 31. An opening 31fa through which EGR gas flows is formed in the inner cylinder portion 31f corresponding to the outlet 16b of the bypass passage 16. The bearing case 66 includes a tubular portion 66a and a bottom portion 66b. The bearing case 66 is press-fitted and fixed to the inside of the outer cylinder portion 31e of the housing 31. A rotary shaft 62 is rotatably supported on the tubular portion 66a of the bearing case 66 via a ball bearing 69, and the outer periphery of the rotary shaft 62 is sealed via a lip seal 71. In the inner cylinder portion 31f of the housing 31, the valve body 61 is fixed to the base end portion 62a of the rotating shaft 62 via a screw 70. A lever 72 is fixed to the tip of the rotating shaft 62. A valve closing spring 73 is provided on the outer periphery of the outer cylinder portion 31e of the housing 31 between the lever 72 and the outer cylinder portion 31e.
 上記した弁アッセンブリ65の組み付け手順は以下の通りである。すなわち、(1)回転軸62の外周にボールベアリング69の内側を圧入する。(2)ベアリングケース66の筒部66aの内側にリップシール71を圧入する。(3)筒部66aの内側に回転軸62を組み付けたボールベアリング69の外側を圧入する。(4)ベアリングケース66の底部66bに回転軸62を貫通させ、その回転軸62の基端部62aに、弁体61をねじ70で固定し、ねじ70の頭部を点溶接する。これによりサブ弁アッセンブリを形成する。(5)サブ弁アッセンブリのベアリングケース66を、ハウジング31の外筒部31eに圧入する。(6)ハウジング31の外筒部31eの外側に、閉弁スプリング73を装着する。(7)回転軸62の先端に、レバー72を取り付けて固定すると共に、レバー72に閉弁スプリング73を係合させる。これにより、バイパス弁60の弁アッセンブリ65の組み付けを完了する。 The procedure for assembling the valve assembly 65 described above is as follows. That is, (1) the inside of the ball bearing 69 is press-fitted to the outer circumference of the rotating shaft 62. (2) The lip seal 71 is press-fitted into the inside of the tubular portion 66a of the bearing case 66. (3) The outside of the ball bearing 69 to which the rotating shaft 62 is assembled is press-fitted inside the tubular portion 66a. (4) The rotating shaft 62 is passed through the bottom portion 66b of the bearing case 66, the valve body 61 is fixed to the base end portion 62a of the rotating shaft 62 with a screw 70, and the head of the screw 70 is spot-welded. This forms a sub-valve assembly. (5) The bearing case 66 of the sub valve assembly is press-fitted into the outer cylinder portion 31e of the housing 31. (6) A valve closing spring 73 is mounted on the outside of the outer cylinder portion 31e of the housing 31. (7) The lever 72 is attached and fixed to the tip of the rotating shaft 62, and the valve closing spring 73 is engaged with the lever 72. This completes the assembly of the valve assembly 65 of the bypass valve 60.
[EGRシステムの作用及び効果について]
 以上説明したこの実施形態のEGRシステムの構成によれば、第19実施形態と多少の構成の違いはあるものの、第19実施形態と同等の作用及び効果を得ることができる。
[About the action and effect of the EGR system]
According to the configuration of the EGR system of this embodiment described above, the same operation and effect as those of the 19th embodiment can be obtained, although there are some differences in the configuration from the 19th embodiment.
<第21実施形態>
 次に、第21実施形態について図面を参照して詳細に説明する。
<21st Embodiment>
Next, the 21st embodiment will be described in detail with reference to the drawings.
 この実施形態では、バイパス弁60の構成とコイル断線対応制御等の点で前記第15実施形態と構成が異なる。図54に、アクチュエータ63及びリンク64を含むEGRクーラ13を背面側から視た斜視図により示す。図55、図56に、そのEGRクーラ13を図34に準ずる背面図により示す。図55は、バイパス弁60を開弁(全開)に動作させたときのアクチュエータ63及びリンク64の状態を示し、図56は、バイパス弁60を閉弁(全閉)に動作させたときのアクチュエータ63及びリンク64の状態を示す。なお、この実施形態では、図35~図41に示すバイパス弁60と同等の構成を有し、アクチュエータ63及びリンク64の構成が異なる。以下に、この実施形態のアクチュエータ63及びリンク64について説明する。 In this embodiment, the configuration is different from that of the fifteenth embodiment in terms of the configuration of the bypass valve 60 and the control for dealing with coil disconnection. FIG. 54 shows a perspective view of the EGR cooler 13 including the actuator 63 and the link 64 as viewed from the rear side. 55 and 56 show the EGR cooler 13 in a rear view according to FIG. 34. FIG. 55 shows the state of the actuator 63 and the link 64 when the bypass valve 60 is operated to open (fully open), and FIG. 56 shows the actuator when the bypass valve 60 is operated to close (fully closed). The state of 63 and the link 64 are shown. In this embodiment, the bypass valve 60 has the same configuration as that shown in FIGS. 35 to 41, but the actuator 63 and the link 64 have different configurations. The actuator 63 and the link 64 of this embodiment will be described below.
[アクチュエータ及びリンクの構成について]
 この実施形態のアクチュエータ63は、回転軸62を回動するために電気的に動作するように構成される。図54~図56に示すように、アクチュエータ63は、軸方向へ往復動可能な駆動軸63aを備え、その駆動軸63aの先端が回転軸62に対しリンク64を介して駆動連結される。この実施形態では、回転軸62の先端にレバー72が一体回転可能に固定される。レバー72は、その基端部が回転軸62に固定され、その先端部に長孔72aが形成される。この長孔72aに駆動軸63aの先端が移動可能に連結されることでリンク64が構成される。このバイパス弁60では、アクチュエータ63の駆動軸63aが、その軸方向へ往復動することにより、回転軸62が一方向及び逆方向へ回動し、弁体61がバイパス通路16の出口16bを開閉するようになっている。
[About the configuration of actuators and links]
The actuator 63 of this embodiment is configured to operate electrically to rotate the rotating shaft 62. As shown in FIGS. 54 to 56, the actuator 63 includes a drive shaft 63a that can reciprocate in the axial direction, and the tip of the drive shaft 63a is driven and connected to the rotating shaft 62 via a link 64. In this embodiment, the lever 72 is integrally rotatably fixed to the tip of the rotating shaft 62. The base end of the lever 72 is fixed to the rotating shaft 62, and an elongated hole 72a is formed at the tip of the lever 72. The link 64 is configured by movably connecting the tip of the drive shaft 63a to the elongated hole 72a. In this bypass valve 60, the drive shaft 63a of the actuator 63 reciprocates in the axial direction, so that the rotating shaft 62 rotates in one direction and the opposite direction, and the valve body 61 opens and closes the outlet 16b of the bypass passage 16. It is designed to do.
 図57に、バイパス弁60を全開に動作させたときのアクチュエータ63を、その軸方向に沿って切断した断面図により示す。図58に、バイパス弁60を全閉に動作させたときのアクチュエータ63を、その軸方向に沿って切断した断面図により示す。図59は、バイパス弁60の弁体61が全開となるときであって、EGRクーラ13の一部を示す図40に準ずる断面図である。図60は、バイパス弁60の弁体61が全閉となるときであって、EGRクーラ13の一部を示す図36に準ずる断面図である。 FIG. 57 shows a cross-sectional view of the actuator 63 when the bypass valve 60 is fully opened, cut along the axial direction thereof. FIG. 58 shows a cross-sectional view of the actuator 63 when the bypass valve 60 is fully closed, cut along the axial direction thereof. FIG. 59 is a cross-sectional view according to FIG. 40 showing a part of the EGR cooler 13 when the valve body 61 of the bypass valve 60 is fully opened. FIG. 60 is a cross-sectional view according to FIG. 36 showing a part of the EGR cooler 13 when the valve body 61 of the bypass valve 60 is fully closed.
 図57、図58に示すように、アクチュエータ63は、ハウジング941と、ハウジング941に設けられ、下端部(一端部)と上端部(他端部)を含む内軸部942と、内軸部942の下端部にて同軸をなすように一体に設けられる駆動軸63aと、内軸部942の基端側に対応してハウジング941に設けられ、内軸部942及び駆動軸63aを軸線方向へ往復動させるためのステップモータ944と、内軸部942及び駆動軸63aをステップモータ944から遠ざかる方向へ付勢するための軸スプリング945とを含む。内軸部942は、ハウジング941の中心を貫通して配置され、上端部に雄ねじ946が設けられる。 As shown in FIGS. 57 and 58, the actuator 63 is provided in the housing 941 and the housing 941, and has an inner shaft portion 942 including a lower end portion (one end portion) and an upper end portion (the other end portion) and an inner shaft portion 942. A drive shaft 63a integrally provided so as to be coaxial with the lower end portion of the housing 941 is provided in the housing 941 corresponding to the proximal end side of the inner shaft portion 942, and the inner shaft portion 942 and the drive shaft 63a reciprocate in the axial direction. It includes a step motor 944 for moving the inner shaft portion 942 and a shaft spring 945 for urging the inner shaft portion 942 and the drive shaft 63a in a direction away from the step motor 944. The inner shaft portion 942 is arranged so as to penetrate the center of the housing 941, and a male screw 946 is provided at the upper end portion.
 ハウジング941は、アクチュエータ63の外側を覆う外ハウジング961と、外ハウジング961の内側に配置される内ハウジング962と、内ハウジング962の下部内側に配置される軸受ハウジング963とを含む。内ハウジング962の上部は、ステップモータ944のステータ971を構成し、その外周には一対をなす上層コイル972A及び下層コイル972Bが設けられる。軸受ハウジング963は、その中心部に内軸部942をスラスト方向へ往復動可能に支持するスラスト軸受部963aを含み、スラスト軸受部963aの周囲は中空となっている。ステータ971の内側には、ステップモータ944を構成するロータ973が配置される。外ハウジング961には、上方へ突出するコネクタ961aが形成される。コネクタ961aには、各コイル972A,972Bに接続される端子974が設けられる。外ハウジング961の下部には、フランジ961bが形成される。図54~図56に示すように、EGRクーラ13のハウジング31の外側には、ブラケット75が設けられる。アクチュエータ63は、そのフランジ961bを介してボルト等(図示略)によりブラケット75に固定される。 The housing 941 includes an outer housing 961 that covers the outside of the actuator 63, an inner housing 962 that is arranged inside the outer housing 961, and a bearing housing 963 that is arranged inside the lower part of the inner housing 962. The upper portion of the inner housing 962 constitutes a stator 971 of the step motor 944, and a pair of upper layer coils 972A and lower layer coils 972B are provided on the outer periphery thereof. The bearing housing 963 includes a thrust bearing portion 963a that reciprocally supports the inner shaft portion 942 in the thrust direction at the center thereof, and the periphery of the thrust bearing portion 963a is hollow. Inside the stator 971, a rotor 973 constituting the step motor 944 is arranged. The outer housing 961 is formed with a connector 961a projecting upward. The connector 961a is provided with terminals 974 connected to the coils 972A and 972B. A flange 961b is formed in the lower portion of the outer housing 961. As shown in FIGS. 54 to 56, a bracket 75 is provided on the outside of the housing 31 of the EGR cooler 13. The actuator 63 is fixed to the bracket 75 via bolts or the like (not shown) via its flange 961b.
 ロータ973は、ロータ本体973aと、ロータ本体973aの外周に設けられるマグネット973bとを含む。ロータ本体973aの下端には、下方へ伸びるスリーブ975が設けられ、スリーブ975の外周と内ハウジング962との間には、ラジアル軸受976が設けられる。ロータ973は、ラジアル軸受976によりステータ971の内側にて回転可能に支持される。ロータ本体973aの中心には、内軸部942の雄ねじ946に螺合される雌ねじ947が設けられる。雄ねじ946と雌ねじ947との間には、内軸部942の軸線方向において所定のバックラッシ949(図61、図62参照)が設けられる。 The rotor 973 includes a rotor main body 973a and a magnet 973b provided on the outer periphery of the rotor main body 973a. A sleeve 975 extending downward is provided at the lower end of the rotor main body 973a, and a radial bearing 976 is provided between the outer circumference of the sleeve 975 and the inner housing 962. The rotor 973 is rotatably supported inside the stator 971 by a radial bearing 976. At the center of the rotor body 973a, a female screw 947 screwed into the male screw 946 of the inner shaft portion 942 is provided. A predetermined backlash 949 (see FIGS. 61 and 62) is provided between the male screw 946 and the female screw 947 in the axial direction of the inner shaft portion 942.
 図57、図58に示すように、この実施形態において、駆動軸63aの基部63abには、軸受ハウジング963の内側にて、駆動軸63a及び内軸部942が往復動するときに、内部への異物や水分の侵入を防止するために軸受ハウジング963との間をシールするためのリップシール951が設けられる。この実施形態で、内軸部942の周囲には、リップシール951に接触可能な外周部952cを含み、駆動軸63aの基部63abから内軸部942に沿って伸びる円筒状の外軸952が設けられる。この実施形態で、外軸952の外周部952cの外径は、駆動軸63aの最大外径と同じに設定される。 As shown in FIGS. 57 and 58, in this embodiment, when the drive shaft 63a and the inner shaft portion 942 reciprocate inside the bearing housing 963, the base portion 63ab of the drive shaft 63a is moved inward. A lip seal 951 for sealing between the bearing housing 963 and the bearing housing 963 is provided to prevent foreign matter and moisture from entering. In this embodiment, around the inner shaft portion 942, a cylindrical outer shaft 952 that includes an outer peripheral portion 952c that can contact the lip seal 951 and extends from the base portion 63ab of the drive shaft 63a along the inner shaft portion 942 is provided. Be done. In this embodiment, the outer diameter of the outer peripheral portion 952c of the outer shaft 952 is set to be the same as the maximum outer diameter of the drive shaft 63a.
 このアクチュエータ63には、外軸952と軸受ハウジング963との間をリップシール951によりシールすることでハウジング941の内側に区分される内側空間953が設けられる。外軸952の上端部952a(一端部)は、この内側空間953に面して配置される。そして、この内側空間953を大気に連通させるために、ハウジング941(外ハウジング961、内ハウジング962及び軸受ハウジング963)には、大気通路954(二点鎖線で概形を示す。)が設けられる。なお、この実施形態のアクチュエータ63には、従来のアクチュエータと異なり、内軸部942の基準となる初期位置を規定するためのストッパや当接部は設けられていない。 The actuator 63 is provided with an inner space 953 that is divided inside the housing 941 by sealing between the outer shaft 952 and the bearing housing 963 with a lip seal 951. The upper end portion 952a (one end portion) of the outer shaft 952 is arranged so as to face the inner space 953. Then, in order to communicate the inner space 953 to the atmosphere, the housing 941 (outer housing 961, inner housing 962 and bearing housing 963) is provided with an atmospheric passage 954 (scheme is shown by a two-dot chain line). Note that, unlike the conventional actuator, the actuator 63 of this embodiment is not provided with a stopper or a contact portion for defining an initial position as a reference for the inner shaft portion 942.
 すなわち、上記したアクチュエータ63を構成するステップモータ944は、上層コイル972A及び下層コイル972Bを含むステータ971と、ステータ971の中心にて回転可能に配置されたロータ973と、ロータ973に対し、ねじ機構(雄ねじ946及び雌ねじ947)を介して軸方向へ往復動可能に連結された駆動軸63aと、駆動軸63aをその軸方向へ付勢する軸スプリング945とを備える。そして、バイパス弁60の回転軸62を回動させるために回転軸62とアクチュエータ63の駆動軸63aとがリンク64を介して連結される。軸スプリング945は、駆動軸63aを軸方向へ付勢することで、リンク64及び回転軸62を介して弁体61を閉弁方向へ付勢するように構成される。 That is, the step motor 944 constituting the actuator 63 described above has a screw mechanism with respect to the stator 971 including the upper layer coil 972A and the lower layer coil 972B, the rotor 973 rotatably arranged at the center of the stator 971, and the rotor 973. A drive shaft 63a movably connected in the axial direction via (male screw 946 and female screw 947) and a shaft spring 945 for urging the drive shaft 63a in the axial direction are provided. Then, in order to rotate the rotary shaft 62 of the bypass valve 60, the rotary shaft 62 and the drive shaft 63a of the actuator 63 are connected via the link 64. The shaft spring 945 is configured to urge the valve body 61 in the valve closing direction via the link 64 and the rotating shaft 62 by urging the drive shaft 63a in the axial direction.
 上記のように構成したアクチュエータ63は、ステップモータ944を駆動させてロータ973を回転させることにより、その回転運動を雄ねじ946と雌ねじ947を介して内軸部942及び駆動軸63aのストローク運動に変換し、レバー72を介して回転軸62を回動させるようになっている。すなわち、アクチュエータ63は、図56、図58に示すように、駆動軸63aをハウジング941から突出させてレバー72を押し下げた状態から、ロータ973を一方向へ回転させる。これにより、雄ねじ946と雌ねじ947の螺合関係により、軸スプリング945の付勢力に抗して、内軸部942及び駆動軸63aがスラスト方向である図58の上方向へストローク運動する。これにより、図54、図55及び図57に示すように、内軸部942がハウジング941の中に没入し、駆動軸63aによりレバー72が引き上げられて、図59に示すように弁体61が全開状態となる。 The actuator 63 configured as described above converts the rotational motion into the stroke motion of the inner shaft portion 942 and the drive shaft 63a via the male screw 946 and the female screw 947 by driving the step motor 944 to rotate the rotor 973. The rotating shaft 62 is rotated via the lever 72. That is, as shown in FIGS. 56 and 58, the actuator 63 rotates the rotor 973 in one direction from a state in which the drive shaft 63a protrudes from the housing 941 and the lever 72 is pushed down. As a result, due to the screwing relationship between the male screw 946 and the female screw 947, the inner shaft portion 942 and the drive shaft 63a make a stroke movement in the upward direction of FIG. 58, which is the thrust direction, against the urging force of the shaft spring 945. As a result, as shown in FIGS. 54, 55 and 57, the inner shaft portion 942 is immersed in the housing 941, the lever 72 is pulled up by the drive shaft 63a, and the valve body 61 is as shown in FIG. 59. It will be fully open.
 一方、アクチュエータ63は、図54、図55及び図57に示すように、駆動軸63aをハウジング941に没入させてレバー72を引き上げた状態から、ロータ973を反対方向へ回転させる。これにより、雄ねじ946と雌ねじ947の螺合関係により、軸スプリング945の付勢力との協働により、内軸部942及び駆動軸63aがスラスト方向である図57の下方向へストローク運動する。これにより、図56、図58に示すように、駆動軸63aがハウジング941から突出し、駆動軸63aによりレバー72が押し下げられて、図60に示すように弁体61が全閉状態となる。 On the other hand, as shown in FIGS. 54, 55 and 57, the actuator 63 rotates the rotor 973 in the opposite direction from the state where the drive shaft 63a is immersed in the housing 941 and the lever 72 is pulled up. As a result, due to the screwing relationship between the male screw 946 and the female screw 947, the inner shaft portion 942 and the drive shaft 63a make a stroke movement in the downward direction of FIG. 57, which is the thrust direction, in cooperation with the urging force of the shaft spring 945. As a result, as shown in FIGS. 56 and 58, the drive shaft 63a protrudes from the housing 941, the lever 72 is pushed down by the drive shaft 63a, and the valve body 61 is fully closed as shown in FIG. 60.
 図61に、バイパス弁60の弁体61を全開にした状態における雄ねじ946と雌ねじ947との螺合状態の一部を拡大断面図により示す。図62に、後述する「突き当て全閉状態」における雄ねじ946と雌ねじ947との螺合状態の一部を拡大断面図により示す。図61、図62に示すように、雄ねじ946は、内軸部942の軸線方向において螺旋状に連なる雄ねじ山946aを有する。この雄ねじ山946aは、ステップモータ944から遠ざかる方(下方)へ向いた第1雄ねじ山面946aaと、その第1雄ねじ山面946aaの反対側(上側)に位置する第2雄ねじ山面946abを含む。また、雌ねじ947は、内軸部942の軸線方向において螺旋状に連なる雌ねじ山947aを有する。この雌ねじ山947aは、ステップモータ944から遠ざかる方(下方)へ向いた第1雌ねじ山面947aaと、その第1雌ねじ山面947aaの反対側(上側)に位置する第2雌ねじ山面947abを含む。そして、図61、図62に示すように、この雄ねじ946と雌ねじ947との間には、内軸部942の軸線方向において所定のバックラッシ949(あそび)がある。 FIG. 61 shows a part of the screwed state of the male screw 946 and the female screw 947 in a state where the valve body 61 of the bypass valve 60 is fully opened by an enlarged cross-sectional view. FIG. 62 shows a part of the screwed state of the male screw 946 and the female screw 947 in the “butted fully closed state” described later by an enlarged cross-sectional view. As shown in FIGS. 61 and 62, the male screw 946 has a male screw thread 946a spirally connected in the axial direction of the inner shaft portion 942. The male thread 946a includes a first male thread surface 946aa facing away from the step motor 944 (downward) and a second male thread surface 946ab located on the opposite side (upper side) of the first male thread surface 946aa. .. Further, the female thread 947 has a female thread 947a spirally connected in the axial direction of the inner shaft portion 942. The female thread 947a includes a first female thread surface 947aa facing away from the step motor 944 (downward) and a second female thread surface 947ab located on the opposite side (upper side) of the first female thread surface 947aa. .. Then, as shown in FIGS. 61 and 62, there is a predetermined backlash 949 (play) between the male screw 946 and the female screw 947 in the axial direction of the inner shaft portion 942.
 この実施形態のバイパス弁60は、その弁体61が開弁する状態又は閉弁する状態では、弁体61が閉弁スプリング73の付勢力により閉弁方向へ付勢される。また、アクチュエータ63の駆動軸63aは、軸スプリング945の付勢力により駆動軸63aがハウジング941から突出する方向、すなわち弁体61を閉弁させる方向へ付勢される。そのため、図61に示すように、内軸部942に設けられた雄ねじ946の第1雄ねじ山面946aaが、ロータ本体973aに設けられた雌ねじ947の第2雌ねじ山面947abに当接した状態となる。一方、弁体61が全閉した状態から、ロータ本体973aによる締め込みにより駆動軸63aをレバー72に突き当てる「突き当て制御」を実行する。これにより、図62に示すように、雌ねじ山947aの第1雌ねじ山面947aaと雄ねじ山946aの第2雄ねじ山面946abとが係合し、かつ、軸スプリング945により内軸部942及び駆動軸63aがステップモータ944から遠ざかる方向(閉弁方向)へ最大限に付勢された状態(完全係合付勢状態)となる。この完全係合付勢状態では、内軸部942及び駆動軸63aに上記付勢方向と反対方向の力が作用しても完全係合付勢状態が維持されることになる。これにより、バイパス弁60の弁体61が全閉状態に維持されることになる。ただし、完全係合付勢状態からアクチュエータ63のロータ本体973aを更に締め込むと、ステップモータ944に「脱調」が発生し、最大「2step」だけ開弁側へ脱調することになる。この場合も、内軸部942及び駆動軸63aは、軸スプリング945の付勢力により完全係合付勢状態が保たれ、バイパス弁60の弁体61は全閉状態に保たれる。 In the bypass valve 60 of this embodiment, when the valve body 61 is opened or closed, the valve body 61 is urged in the valve closing direction by the urging force of the valve closing spring 73. Further, the drive shaft 63a of the actuator 63 is urged by the urging force of the shaft spring 945 in the direction in which the drive shaft 63a protrudes from the housing 941, that is, in the direction in which the valve body 61 is closed. Therefore, as shown in FIG. 61, the first male thread surface 946aa of the male thread 946 provided on the inner shaft portion 942 is in contact with the second female thread surface 947ab of the female thread 947 provided on the rotor main body 973a. Become. On the other hand, from the state where the valve body 61 is fully closed, "butting control" is executed in which the drive shaft 63a is abutted against the lever 72 by tightening with the rotor main body 973a. As a result, as shown in FIG. 62, the first female thread surface 947aa of the female thread 947a and the second male thread surface 946ab of the male thread 946a are engaged with each other, and the inner shaft portion 942 and the drive shaft are engaged by the shaft spring 945. The 63a is maximally urged in the direction away from the step motor 944 (valve closing direction) (fully engaged urging state). In this fully engaged urged state, the fully engaged urged state is maintained even if a force in the direction opposite to the urging direction acts on the inner shaft portion 942 and the drive shaft 63a. As a result, the valve body 61 of the bypass valve 60 is maintained in the fully closed state. However, if the rotor body 973a of the actuator 63 is further tightened from the fully engaged urged state, "step-out" occurs in the step motor 944, and step-out is performed by a maximum of "2 steps" to the valve opening side. Also in this case, the inner shaft portion 942 and the drive shaft 63a are kept in a fully engaged urging state by the urging force of the shaft spring 945, and the valve body 61 of the bypass valve 60 is kept in a fully closed state.
 上記したバイパス弁60によれば、その弁体61が、閉弁スプリング73により閉弁方向へ付勢され、アクチュエータ63の駆動軸63aが、軸スプリング945により突出方向(レバー72及び回転軸62を介して弁体61を閉弁させる方向)へ付勢される。ここで、閉弁スプリング73の付勢力は、アクチュエータ63の軸スプリング945の付勢力よりも強く設定される。また、弁体61の全閉時には、ECU90がアクチュエータ63を「突き当て制御」することにより、雄ねじ946の雄ねじ山946aと雌ねじ947の雌ねじ山947aとが係合し、駆動軸63a(内軸部942)の移動がロックされる。ここで、バイパス弁60の閉弁スプリング73の付勢力が、アクチュエータ63の駆動軸63aに作用しない構成では、アクチュエータ63の脱調時に、雄ねじ946と雌ねじ947との間に微少(最大で0.084mm程度)な隙間ができる。そのため、雄ねじ946と雌ねじ947との間で、振動により摩耗が発生するおそれがある。これに対し、この実施形態のアクチュエータ63の構成によれば、脱調時に、雄ねじ946と雌ねじ947とが係合して駆動軸63a(内軸部942)の移動がロックされるので、雄ねじ946と雌ねじ947との間に微少な隙間ができることがなく、雄ねじ946と雌ねじ947との間で、振動により摩耗が発生するおそれがない。 According to the bypass valve 60 described above, the valve body 61 is urged in the valve closing direction by the valve closing spring 73, and the drive shaft 63a of the actuator 63 is pushed out in the protruding direction (lever 72 and the rotating shaft 62) by the shaft spring 945. It is urged in the direction of closing the valve body 61). Here, the urging force of the valve closing spring 73 is set stronger than the urging force of the shaft spring 945 of the actuator 63. Further, when the valve body 61 is fully closed, the ECU 90 "butts and controls" the actuator 63, so that the male thread 946a of the male thread 946 and the female thread 947a of the female thread 947 are engaged with each other, and the drive shaft 63a (inner shaft portion) is engaged. The movement of 942) is locked. Here, in the configuration in which the urging force of the valve closing spring 73 of the bypass valve 60 does not act on the drive shaft 63a of the actuator 63, when the actuator 63 is stepped out, it is slightly between the male screw 946 and the female screw 947 (maximum 0. There is a gap (about 084 mm). Therefore, wear may occur between the male screw 946 and the female screw 947 due to vibration. On the other hand, according to the configuration of the actuator 63 of this embodiment, the male screw 946 and the female screw 947 are engaged with each other to lock the movement of the drive shaft 63a (inner shaft portion 942) at the time of step-out, so that the male screw 946 is locked. There is no slight gap between the male screw 946 and the female screw 947, and there is no risk of wear due to vibration between the male screw 946 and the female screw 947.
[アクチュエータのコイルの断線について]
 この実施形態のアクチュエータ63では、上層コイル972Aと下層コイル972Bのうち、一方が断線したときは他方により駆動軸63aを動作させて回転軸62を回動させ、弁体61を閉弁方向へ駆動し、全閉にすることができる。このとき、アクチュエータ63の制御性は低下するものの、閉弁スプリング73が弁体61の動きを閉弁方向へアシストするので、上層コイル972A又は下層コイル972Bのみによってバイパス弁60を全閉に制御することができる。
[About disconnection of actuator coil]
In the actuator 63 of this embodiment, when one of the upper coil 972A and the lower coil 972B is disconnected, the drive shaft 63a is operated by the other to rotate the rotary shaft 62, and the valve body 61 is driven in the valve closing direction. And it can be fully closed. At this time, although the controllability of the actuator 63 is reduced, the valve closing spring 73 assists the movement of the valve body 61 in the valve closing direction, so that the bypass valve 60 is controlled to be fully closed only by the upper layer coil 972A or the lower layer coil 972B. be able to.
 図63、図64に、アクチュエータ63の上層コイル972Aと下層コイル972Bが正常な場合の各コイル972A,972Bに対する通電パターンをタイムチャートにより示す。図63は、上層コイル972Aの極S1へ通電した場合を示し、図64は、下層コイル972Bの極S2へ通電した場合を示す。図64において、ロータ973の各極Nと下層コイル972Bの極S2との間の太線矢印は磁力が強くなる場合を、破線矢印は磁力が弱くなる場合をそれぞれ示す。図63、図64において、(a)はロータ973における複数の極Nを示し、(b)は極S1,S3となる上層コイル972Aのオン・オフを示し、(c)は極S2,S4となる下層コイル972Bのオン・オフを示す。 FIGS. 63 and 64 show the energization patterns for the coils 972A and 972B when the upper coil 972A and the lower coil 972B of the actuator 63 are normal by a time chart. FIG. 63 shows the case where the pole S1 of the upper layer coil 972A is energized, and FIG. 64 shows the case where the pole S2 of the lower layer coil 972B is energized. In FIG. 64, a thick line arrow between each pole N of the rotor 973 and a pole S2 of the lower coil 972B indicates a case where the magnetic force is strong, and a broken line arrow indicates a case where the magnetic force is weak. In FIGS. 63 and 64, (a) shows a plurality of poles N in the rotor 973, (b) shows the on / off of the upper layer coil 972A which becomes the poles S1 and S3, and (c) shows the poles S2 and S4. The on / off of the lower layer coil 972B is shown.
 各コイル972A,972Bが正常な場合は、各コイル972A,972Bへの通電パターンである「極S1→極S2→極S3→極S4」を繰り返すことで、ステップモータ944のロータ973の回転方向を弁体61の閉弁に対応する方向に制御することができる。図63、図64に示すように、各コイル972A,972Bへの通電を上層コイル972Aの極S1から下層コイル972Bの極S2へ切り換えた場合、ロータ973の各極Nに対する極S2の磁力は「強」から「弱」へ繰り返し変化する。そのため、その磁力の引き合い差により、ロータ973が弁体61の閉弁に対応する方向へ回転することになる。 When each coil 972A and 972B is normal, the rotation direction of the rotor 973 of the step motor 944 is changed by repeating "pole S1 → pole S2 → pole S3 → pole S4" which is an energization pattern for each coil 972A and 972B. It can be controlled in the direction corresponding to the closing of the valve body 61. As shown in FIGS. 63 and 64, when the energization of the coils 972A and 972B is switched from the pole S1 of the upper coil 972A to the pole S2 of the lower coil 972B, the magnetic force of the pole S2 with respect to each pole N of the rotor 973 is ". It changes repeatedly from "strong" to "weak". Therefore, the rotor 973 rotates in the direction corresponding to the closing of the valve body 61 due to the attractiveness difference of the magnetic force.
 図65、図66に、アクチュエータ63の下層コイル972Bが断線した場合の各コイル972A,972Bに対する通電パターンをタイムチャートにより示す。図65は、上層コイル972Aの極S1へ通電した場合を示し、図66は、上層コイル972Aの極S3へ通電した場合を示す。図66において、ロータ973の各極Nと上層コイル972Aの極S3との間の実線矢印は磁力が中程度となる場合を示す。図65、図66における(a)~(c)の名目は、図63、図64におけるそれと同じである。 FIGS. 65 and 66 show the energization patterns for the coils 972A and 972B when the lower coil 972B of the actuator 63 is disconnected by a time chart. FIG. 65 shows the case where the pole S1 of the upper layer coil 972A is energized, and FIG. 66 shows the case where the pole S3 of the upper layer coil 972A is energized. In FIG. 66, the solid arrow between each pole N of the rotor 973 and the pole S3 of the upper coil 972A indicates a case where the magnetic force is medium. The names of (a) to (c) in FIGS. 65 and 66 are the same as those in FIGS. 63 and 64.
 下層コイル972Bが断線した場合は、上層コイル972Aへの通電パターンである「極S1→極S3→」を繰り返すことで、ステップモータ944のロータ973の回転方向を弁体61の閉弁に対応する方向に制御することができる。図65、図66に示すように、上層コイル972Aへの通電を極S1から極S3へ切り換えた場合、ロータ973の各極Nに対する極S3の磁力は常に「中程度」で均等となるので、磁力の引き合い差が生じない。しかし、アクチュエータ63の軸スプリング945の付勢力と、弁アッセンブリ65の閉弁スプリング73の付勢力との協働により、ロータ973を弁体61の閉弁に対応する方向へ回転させることができる。 When the lower layer coil 972B is disconnected, the rotation direction of the rotor 973 of the step motor 944 corresponds to the closing of the valve body 61 by repeating the "pole S1 → pole S3 →" which is the energization pattern for the upper layer coil 972A. It can be controlled in the direction. As shown in FIGS. 65 and 66, when the energization of the upper coil 972A is switched from the pole S1 to the pole S3, the magnetic force of the pole S3 with respect to each pole N of the rotor 973 is always "medium" and uniform. There is no difference in magnetic force attraction. However, the rotor 973 can be rotated in the direction corresponding to the valve closing of the valve body 61 by the cooperation between the urging force of the shaft spring 945 of the actuator 63 and the urging force of the valve closing spring 73 of the valve assembly 65.
[コイル断線対応制御について]
 次に、アクチュエータ63の各コイル972A,972Bの断線に対処するためのコイル断線対応制御について説明する。図67に、この制御内容をフローチャートにより示す。なお、この実施形態では、第15実施形態と同じエンジンシステムを採用するものとし、図29に示すバイパス弁19の代わりに、この実施形態のバイパス弁60(アクチュエータ63)を制御するものとする。
[Control for coil disconnection]
Next, coil disconnection correspondence control for dealing with disconnection of each coil 972A and 972B of the actuator 63 will be described. FIG. 67 shows the control contents by a flowchart. In this embodiment, the same engine system as in the fifteenth embodiment is adopted, and the bypass valve 60 (actuator 63) of this embodiment is controlled instead of the bypass valve 19 shown in FIG. 29.
 処理がこのルーチンへ移行すると、ステップ700で、ECU90は、アクチュエータ63の上層コイル972Aが断線したか否かを判断する。この実施形態で、ECU90は、アクチュエータ63を制御するとき、各コイル972A,972Bへの正常な通電の有無を監視することで、上層コイル972A及び下層コイル972Bの断線を検出することができるようになっている。この実施形態で、ECU90は、この開示技術の断線検出手段の一例に相当する。ECU90は、このステップ700の判断結果が肯定となる場合は処理をステップ710へ移行し、この判断結果が否定となる場合は処理をステップ760へ移行する。 When the process shifts to this routine, in step 700, the ECU 90 determines whether or not the upper coil 972A of the actuator 63 is disconnected. In this embodiment, the ECU 90 can detect the disconnection of the upper coil 972A and the lower coil 972B by monitoring the presence or absence of normal energization of the coils 972A and 972B when controlling the actuator 63. It has become. In this embodiment, the ECU 90 corresponds to an example of the disconnection detecting means of the disclosed technology. If the determination result of step 700 is affirmative, the ECU 90 shifts the process to step 710, and if the determination result is negative, the ECU 90 shifts the process to step 760.
 ステップ710では、ECU90は、アクチュエータ63の下層コイル972Bが断線したか否かを判断する。ECU90は、この判断結果が肯定となる場合は処理をステップ720へ移行し、この判断結果が否定となる場合は処理をステップ740へ移行する。 In step 710, the ECU 90 determines whether or not the lower coil 972B of the actuator 63 is disconnected. If the determination result is affirmative, the ECU 90 shifts the process to step 720, and if the determination result is negative, the ECU 90 shifts the process to step 740.
 ステップ720では、ECU90は、EGR制御に関するEGR開始許可水温度SEGRTHWを「40℃」から「65℃」に変更する。すなわち、ECU90は、EGR弁14の開弁開始の時期的条件を遅らせる方向へ変更する。ECU90は、別途設けられたEGR制御のためのプログラムにおいて、冷却水温度THWがEGR開始許可水温度SEGRTHWになったときにEGRを開始するようになっている(以下において同様。)。 In step 720, the ECU 90 changes the EGR start permitted water temperature SEGRTHW related to EGR control from "40 ° C" to "65 ° C". That is, the ECU 90 changes the EGR valve 14 in a direction of delaying the timing condition for starting the valve opening. The ECU 90 is configured to start EGR when the cooling water temperature THW reaches the EGR start permitted water temperature SEGRTHW in a separately provided program for EGR control (the same applies hereinafter).
 次に、ステップ730で、ECU90は、EGR弁14の開度を所定の上限開度以下でガードする。すなわち、ECU90は、別途設けられたEGR制御のプログラムにおいて、EGR弁14の開度を所定の上限開度以下に制限するようになっている。つまり、ECU90は、EGR弁14の最大開度を小さくする方向へ変更する。 Next, in step 730, the ECU 90 guards the opening degree of the EGR valve 14 to be equal to or less than a predetermined upper limit opening degree. That is, the ECU 90 limits the opening degree of the EGR valve 14 to a predetermined upper limit opening degree or less in a separately provided EGR control program. That is, the ECU 90 changes in the direction of reducing the maximum opening degree of the EGR valve 14.
 一方、ステップ710から移行したステップ740では、ECU90は、アクチュエータ63の下層コイル972Bを通電することでバイパス弁60の弁体61を全閉に制御する。 On the other hand, in step 740, which is a transition from step 710, the ECU 90 controls the valve body 61 of the bypass valve 60 to be fully closed by energizing the lower coil 972B of the actuator 63.
 次に、ステップ750で、ECU90は、ステップ720と同様、EGR制御に関するEGR開始許可水温度SEGRTHWを「40℃」から「65℃」に変更した後、処理をステップ700へ戻す。 Next, in step 750, the ECU 90 changes the EGR start permitted water temperature SEGRTHW related to EGR control from "40 ° C" to "65 ° C" as in step 720, and then returns the process to step 700.
 一方、ステップ700から移行してステップ760では、ECU90は、アクチュエータ63の下層コイル972Bが断線したか否かを判断する。ECU90は、この判断結果が肯定となる場合は処理をステップ770へ移行し、この判断結果が否定となる場合は処理をステップ790へ移行する。 On the other hand, in step 760 after shifting from step 700, the ECU 90 determines whether or not the lower coil 972B of the actuator 63 is disconnected. If the determination result is affirmative, the ECU 90 shifts the process to step 770, and if the determination result is negative, the ECU 90 shifts the process to step 790.
 ステップ770では、ECU90は、アクチュエータ63の上層コイル972Aを通電することでバイパス弁60の弁体61を全閉に制御する。 In step 770, the ECU 90 controls the valve body 61 of the bypass valve 60 to be fully closed by energizing the upper coil 972A of the actuator 63.
 次に、ステップ780で、ECU90は、ステップ720と同様、EGR制御に関するEGR開始許可水温度SEGRTHWを「40℃」から「65℃」に変更した後、処理をステップ700へ戻す。 Next, in step 780, the ECU 90 changes the EGR start permitted water temperature SEGRTHW related to EGR control from "40 ° C" to "65 ° C" as in step 720, and then returns the process to step 700.
 また、ステップ760から移行してステップ790では、バイパス弁60の通常の開閉制御を実行すると共に、通常のEGR制御を実行した後、処理をステップ700へ戻す。 Further, in the transition from step 760 to step 790, the normal opening / closing control of the bypass valve 60 is executed, and after the normal EGR control is executed, the process is returned to step 700.
 上記したコイル断線対応制御において、ECU90は、アクチュエータ63のステップモータ944を構成する上層コイル972Aと下層コイル972Bにおける断線の有無を監視する。そして、上層コイル972A又は下層コイル972Bの断線を検出した場合は、ECU90は、正常な方の下層コイル972B又は上層コイル972Aのみによりステップモータ944(アクチュエータ63)を駆動させ、バイパス弁60の弁体61を全閉に制御すると共に、EGR制御におけるEGR開始許可水温度SEGRTHWを「40℃」から「65℃」へ変更するようになっている。また。上層コイル972Aと下層コイル972Bの両方の断線を検出した場合は、ECU90は、ステップモータ944(アクチュエータ63)を駆動させることが困難なため、次のようにEGR制御を実行する。すなわち、ECU90は、EGR制御におけるEGR開始許可水温度SEGRTHWを「40℃」から「65℃」へ変更する。この変更は、バイパス弁60の弁体61が全閉付近で両コイル972A,972Bが断線した場合に有効である。また、ECU90は、EGR弁14を所定の上限開度以下にガードする。このガードは、バイパス弁60の弁体61が全開付近で両コイル972A,972Bが断線した場合に有効である。このように、ECU90は、各コイル972A,972Bの断線検出結果に応じてEGRガスの還流を制御するために、EGR弁14の開弁開始及び最大開度の少なくとも一方を変更するようになっている。ここで、ECU90は、この開示技術のEGR制御手段の一例に相当する。 In the coil disconnection correspondence control described above, the ECU 90 monitors the presence or absence of disconnection in the upper layer coil 972A and the lower layer coil 972B constituting the step motor 944 of the actuator 63. When the disconnection of the upper layer coil 972A or the lower layer coil 972B is detected, the ECU 90 drives the step motor 944 (actuator 63) only by the normal lower layer coil 972B or the upper layer coil 972A, and the valve body of the bypass valve 60. The 61 is controlled to be fully closed, and the EGR start permitted water temperature SEGRTHW in the EGR control is changed from "40 ° C" to "65 ° C". also. When both the upper layer coil 972A and the lower layer coil 972B are detected to be disconnected, it is difficult for the ECU 90 to drive the step motor 944 (actuator 63), so EGR control is executed as follows. That is, the ECU 90 changes the EGR start permitted water temperature SEGRTHW in the EGR control from "40 ° C" to "65 ° C". This change is effective when both coils 972A and 972B are disconnected when the valve body 61 of the bypass valve 60 is near fully closed. Further, the ECU 90 guards the EGR valve 14 to a predetermined upper limit opening or less. This guard is effective when both coils 972A and 972B are disconnected when the valve body 61 of the bypass valve 60 is in the vicinity of full opening. In this way, the ECU 90 changes at least one of the valve opening start and the maximum opening degree of the EGR valve 14 in order to control the recirculation of the EGR gas according to the disconnection detection result of the coils 972A and 972B. There is. Here, the ECU 90 corresponds to an example of the EGR control means of this disclosed technology.
[EGRシステムの作用及び効果について]
 以上説明したこの実施形態のEGRシステムの構成によれば、第20実施形態と異なり次のような作用及び効果を得ることができる。すなわち、この実施形態の構成によれば、バイパス弁60は、弁体61を閉弁方向へ付勢する閉弁スプリング73を含み、アクチュエータ63は、駆動軸63aをリンク64及び回転軸62を介して弁体61を閉弁方向へ付勢する軸スプリング945を含む。従って、バイパス弁60の弁体61には、常に閉弁スプリング73の付勢力と軸スプリング945の付勢力とが閉弁方向に作用することになり、弁体61の閉弁がアシストされる。このため、万が一、アクチュエータ63が故障しても、バイパス弁60の弁体61を閉弁することができ、バイパス通路16でのEGRガスの流れを遮断し、冷却されない高温のEGRガスがEGRガス分配器15(下流側EGR通路)へ流れないようにすることができ、EGRガス分配器15の熱害を抑制することができる。
[About the action and effect of the EGR system]
According to the configuration of the EGR system of this embodiment described above, the following actions and effects can be obtained unlike the 20th embodiment. That is, according to the configuration of this embodiment, the bypass valve 60 includes a valve closing spring 73 that urges the valve body 61 in the valve closing direction, and the actuator 63 connects the drive shaft 63a via the link 64 and the rotary shaft 62. A shaft spring 945 for urging the valve body 61 in the valve closing direction is included. Therefore, the urging force of the valve closing spring 73 and the urging force of the shaft spring 945 always act on the valve body 61 of the bypass valve 60 in the valve closing direction, and the valve closing of the valve body 61 is assisted. Therefore, even if the actuator 63 should fail, the valve body 61 of the bypass valve 60 can be closed, the flow of the EGR gas in the bypass passage 16 is blocked, and the high temperature EGR gas that is not cooled is the EGR gas. It is possible to prevent the flow to the distributor 15 (downstream EGR passage), and it is possible to suppress heat damage to the EGR gas distributor 15.
 この実施形態の構成によれば、アクチュエータ63の各コイル972A,972Bの断線がECU90により検出された場合は、EGRガスの還流を制御するために、EGR開始許可水温度SEGRTHW(EGR弁14の開弁開始の条件)及び上限開度(最大開度)の少なくとも一方がECU90により変更される。従って、各コイル972A,972Bの断線によりアクチュエータ63が正常動作しない場合は、EGR開始許可水温度SEGRTHWが変更されることで、暖機前のEGRクーラ13へEGRガスが流れなくなり、EGR弁14の上限開度が変更されることで、高温のEGRガスが大量にEGRガス分配器15(下流側EGR通路)へ流れなくなる。 According to the configuration of this embodiment, when the disconnection of the coils 972A and 972B of the actuator 63 is detected by the ECU 90, the EGR start permitted water temperature SEGRTHW (EGR valve 14 is opened) in order to control the recirculation of the EGR gas. At least one of the valve start condition) and the upper limit opening (maximum opening) is changed by the ECU 90. Therefore, when the actuator 63 does not operate normally due to the disconnection of each coil 972A and 972B, the EGR start permitted water temperature SEGRTHW is changed, so that the EGR gas does not flow to the EGR cooler 13 before warming up, and the EGR valve 14 By changing the upper limit opening, a large amount of high temperature EGR gas does not flow to the EGR gas distributor 15 (downstream side EGR passage).
 すなわち、この実施形態では、上層コイル972Aのみが断線した場合は、下層コイル972Bを通電することでアクチュエータ63を動作させてバイパス弁60の弁体61を全閉に制御すると共に、EGR開始許可水温度SEGRTHWを「40℃」から「65℃」へ変更する。つまり、EGR弁14の開弁開始の時期的条件を遅れさせる方向へ変更することで、暖機前のEGRクーラ13へEGRガスを流さないようにする。また、下層コイル972Bのみが断線した場合は、上層コイル972Aを通電することでアクチュエータ63を動作させてバイパス弁60の弁体61を全閉に制御すると共に、上記と同様、EGR開始許可水温度SEGRTHWを「40℃」から「65℃」へ変更する。更に、上層コイル972Aと下層コイル972Bの両方が断線した場合は、アクチュエータ63を動作させることなく、EGR開始許可水温度SEGRTHWを「40℃」から「65℃」へ変更すると共に、EGR弁14の開度を所定の上限開度以下にガードする。つまり、EGR弁14の最大開度を全開にならないように制限することで、高温のEGRガスを大量にEGRガス分配器15へ流さないようにする。このため、バイパス弁60のアクチュエータ63の各コイル972A,972Bが断線してアクチュエータ63が正常に動作せず、バイパス弁60を好適に制御できない場合には、それに対応してEGRガス分配器15(下流側EGR通路)へのEGRガスの流れを制御することで、EGRクーラ13での凝縮水の発生を抑制したり、EGRガス分配器15での熱害の発生を抑制したりすることができる。 That is, in this embodiment, when only the upper layer coil 972A is disconnected, the actuator 63 is operated by energizing the lower layer coil 972B to control the valve body 61 of the bypass valve 60 to be fully closed and the EGR start permission water. The temperature SEGRTHW is changed from "40 ° C" to "65 ° C". That is, by changing the direction of delaying the timing condition for starting the valve opening of the EGR valve 14, the EGR gas is prevented from flowing to the EGR cooler 13 before warming up. When only the lower layer coil 972B is disconnected, the actuator 63 is operated by energizing the upper layer coil 972A to control the valve body 61 of the bypass valve 60 to be fully closed, and the EGR start permitted water temperature is the same as described above. Change SEGRTHW from "40 ° C" to "65 ° C". Further, when both the upper coil 972A and the lower coil 972B are disconnected, the EGR start permitted water temperature SEGRTHW is changed from "40 ° C" to "65 ° C" without operating the actuator 63, and the EGR valve 14 is used. The opening is guarded to be equal to or less than the predetermined upper limit opening. That is, by limiting the maximum opening degree of the EGR valve 14 so as not to be fully opened, a large amount of high temperature EGR gas is prevented from flowing into the EGR gas distributor 15. Therefore, if the coils 972A and 972B of the actuator 63 of the bypass valve 60 are disconnected and the actuator 63 does not operate normally and the bypass valve 60 cannot be controlled appropriately, the EGR gas distributor 15 ( By controlling the flow of EGR gas to the downstream EGR passage), it is possible to suppress the generation of condensed water in the EGR cooler 13 and the generation of heat damage in the EGR gas distributor 15. ..
 この実施形態の構成によれば、弁体61が全閉した状態から、アクチュエータ63のロータ本体973aによる締め込みにより駆動軸63aをレバー72に突き当てる「突き当て制御」をECU90が実行したとする。この場合、アクチュエータ63の雌ねじ山947aの第1雌ねじ山面947aaと雄ねじ山946aの第2雄ねじ山面946abとが係合し、かつ、軸スプリング945により内軸部942(駆動軸63a)がステップモータ944から遠ざかる方向(閉弁方向)へ最大限に付勢された状態(完全係合付勢状態)となる。この完全係合付勢状態では、内軸部942(駆動軸63a)に上記付勢方向と反対方向の力が作用しても完全契合付勢状態が維持されることになる。このため、バイパス弁60の弁体61を全閉状態にロックすることができ、その弁体61に、弁体61を開弁させようとする高圧力が作用しても、弁体61を全閉に維持することができ、弁体61の下流側へのEGRガスの漏れを抑制することができる。 According to the configuration of this embodiment, it is assumed that the ECU 90 executes "butting control" in which the drive shaft 63a is abutted against the lever 72 by tightening the actuator 63 by the rotor main body 973a from the state where the valve body 61 is fully closed. .. In this case, the first female thread surface 947aa of the female thread 947a of the actuator 63 and the second male thread surface 946ab of the male thread 946a are engaged with each other, and the inner shaft portion 942 (drive shaft 63a) is stepped by the shaft spring 945. It is in a state of being maximally urged (fully engaged urging state) in a direction away from the motor 944 (valve closing direction). In this fully engaged urging state, the fully engaged urging state is maintained even if a force in the direction opposite to the urging direction acts on the inner shaft portion 942 (drive shaft 63a). Therefore, the valve body 61 of the bypass valve 60 can be locked to the fully closed state, and even if a high pressure for opening the valve body 61 acts on the valve body 61, the valve body 61 is fully closed. It can be kept closed and the leakage of EGR gas to the downstream side of the valve body 61 can be suppressed.
<第22実施形態>
 次に、第22実施形態について図面を参照して詳細に説明する。
<22nd Embodiment>
Next, the 22nd embodiment will be described in detail with reference to the drawings.
[コイル断線対応制御について]
 この実施形態では、アクチュエータ63に関するコイル断線対応制御の内容の点で第21実施形態と構成が異なる。図68に、この実施形態のコイル断線対応制御の内容をフローチャートにより示す。図68のフローチャートでは、ステップ700より前にステップ800の処理が設けられ、ステップ720の変わりにステップ810の処理が、ステップ730の変わりにステップ820の処理が設けられる点で図67のフローチャートと構成が異なる。以下には、図67のフローチャートと異なる処理を中心に説明する。
[Control for coil disconnection]
This embodiment differs from the 21st embodiment in the content of the coil disconnection correspondence control regarding the actuator 63. FIG. 68 shows the contents of the coil disconnection correspondence control of this embodiment by a flowchart. In the flowchart of FIG. 68, the process of step 800 is provided before step 700, the process of step 810 is provided instead of step 720, and the process of step 820 is provided instead of step 730. Is different. Hereinafter, processing different from the flowchart of FIG. 67 will be mainly described.
 処理がこのルーチンへ移行すると、ステップ800で、ECU90は、最終目標バイパス開度FTECBVと実際のバイパス開度(実バイパス開度)ECBVstepを取り込む。最終目標バイパス開度FTECBVは、上記した図42に示すバイパス弁60の開閉制御により求めることができる。実バイパス開度ECBVstepは、アクチュエータ63(ステップモータ944)に対するECU90の指令値から求めることができる。 When the process shifts to this routine, in step 800, the ECU 90 takes in the final target bypass opening degree FTECBV and the actual bypass opening degree (actual bypass opening degree) ECBV step. The final target bypass opening degree FTECBV can be obtained by opening / closing control of the bypass valve 60 shown in FIG. 42 described above. The actual bypass opening degree ECBV step can be obtained from the command value of the ECU 90 for the actuator 63 (step motor 944).
 次に、ECU90は、ステップ700及びステップ710の判断を実行し、ステップ700の判断結果が否定となる場合は、処理をステップ760へ移行し、ステップ760~ステップ790の処理を実行する。また、ECU90は、ステップ710の判断結果が否定となる場合は、処理をステップ740へ移行し、ステップ740及びステップ750の処理を実行する。 Next, the ECU 90 executes the determination of step 700 and step 710, and if the determination result of step 700 is negative, the process shifts to step 760 and the processes of steps 760 to 790 are executed. If the determination result of step 710 is negative, the ECU 90 shifts the process to step 740 and executes the processes of step 740 and 750.
 一方、ステップ710の判断結果が肯定となる場合、ECU90は、ステップ810で、実バイパス開度ECBVstepを最終実バイパス開度FECBVstepとして記憶する。 On the other hand, if the determination result in step 710 is affirmative, the ECU 90 stores the actual bypass opening ECBV step as the final actual bypass opening FECBV step in step 810.
 次に、ステップ820で、ECU90は、最終実バイパス開度FECBVstepに応じたEGR開始許可水温度SEGRTHWと、EGR弁14に関するEGR最大開度EGRMAXstepを算出する。ECU90は、例えば、図69に示す水温・開度マップを参照することにより、最終実バイパス開度FECBVstepに応じたEGR開始許可水温度SEGRTHW(実線)とEGR最大開度EGRMAXstep(破線)を求めることができる。図69において、横軸は最終実バイパス開度FECBVstepを示し、縦軸はEGR開始許可水温度SEGRTHWとEGR最大開度EGRMAXstepを示す。この水温・開度マップでは、最終実バイパス開度FECBVstepが全閉(0%)から全開(100%)になるほど、EGR開始許可水温度SEGRTHWが「65℃」から「40℃」へ向けて低くなる。また、この水温・開度マップでは、最終実バイパス開度FECBVstepが全閉から全開になるほど、EGR最大開度EGRMAXstepが所定値R1へ向けて低くなる。その後、ECU90は、処理をステップ800へ戻す。 Next, in step 820, the ECU 90 calculates the EGR start permitted water temperature SEGRTHW according to the final actual bypass opening FECBV step and the EGR maximum opening EGRMAX step for the EGR valve 14. The ECU 90 obtains the EGR start permitted water temperature SEGRTHW (solid line) and the EGR maximum opening EGRMAX step (broken line) according to the final actual bypass opening FECBV step, for example, by referring to the water temperature / opening map shown in FIG. Can be done. In FIG. 69, the horizontal axis indicates the final actual bypass opening degree FECBV step, and the vertical axis indicates the EGR start permitted water temperature SEGRTHW and the EGR maximum opening degree EGRMAX step. In this water temperature / opening map, the EGR start permitted water temperature SEGRTHW decreases from "65 ° C" to "40 ° C" as the final actual bypass opening FECBV step changes from fully closed (0%) to fully open (100%). Become. Further, in this water temperature / opening degree map, as the final actual bypass opening degree FECBV step changes from fully closed to fully open, the EGR maximum opening degree EGRMAX step becomes lower toward the predetermined value R1. After that, the ECU 90 returns the process to step 800.
 上記したコイル断線対応制御によれば、上層コイル972Aと下層コイル972Bの両方の断線を検出した場合は、第21実施形態と異なり、ECU90は、断線直前の実バイパス開度ECBVstepを最終実バイパス開度FECBVstepとし、同開度FECBVstepに応じてEGR制御におけるEGR開始許可水温度SEGRTHWを算出すると共に、EGR弁14のEGR最大開度EGRMAXstepを算出する。すなわち、ECU90は、上層コイル972Aと下層コイル972Bの両方が断線した場合は、コイル断線直前の実バイパス開度ECBVstepに応じてEGR開始許可水温度SEGRTHWとEGR最大開度EGRMAXstepを変更するようになっている。 According to the coil disconnection correspondence control described above, when both the upper layer coil 972A and the lower layer coil 972B are detected to be disconnected, the ECU 90 opens the actual bypass opening ECBV step immediately before the disconnection, unlike the 21st embodiment. The degree FECBV step is set, and the EGR start permitted water temperature SEGRTHW in EGR control is calculated according to the same opening FECBV step, and the EGR maximum opening EGRMAX step of the EGR valve 14 is calculated. That is, when both the upper coil 972A and the lower coil 972B are disconnected, the ECU 90 changes the EGR start permitted water temperature SEGRTHW and the EGR maximum opening EGRMAX step according to the actual bypass opening ECBV step immediately before the coil disconnection. ing.
[EGRシステムの作用及び効果について]
 以上説明したこの実施形態のEGRシステムの構成によれば、第21実施形態と異なり次のような作用及び効果を得ることができる。すなわち、ECU90は、上層コイル972Aと下層コイル972Bの両方が断線した場合は、実バイパス開度ECBVstepに応じてEGR開始許可水温度SEGRTHWとEGR最大開度EGRMAXstepを変更する。このため、コイル断線直前の実バイパス開度ECBVstepに(実際のバイパス弁60の弁体61の開度)に応じて好適なEGR開始許可水温度SEGRTHWとEGR最大開度EGRMAXstepを求めることができ、EGRガス分配器15(下流側EGR通路)へ流れるEGRガスの過熱を精密に抑制することができ、EGRクーラ13での凝縮水の発生を精密に抑制したり、EGRガス分配器15での熱害の発生を精密に抑制したりすることができる。
[About the action and effect of the EGR system]
According to the configuration of the EGR system of this embodiment described above, the following actions and effects can be obtained unlike the 21st embodiment. That is, when both the upper layer coil 972A and the lower layer coil 972B are disconnected, the ECU 90 changes the EGR start permitted water temperature SEGRTHW and the EGR maximum opening EGRMAX step according to the actual bypass opening degree ECBV step. Therefore, the suitable EGR start permitted water temperature SEGRTHW and the EGR maximum opening EGRMAX step can be obtained according to the actual bypass opening ECBV step immediately before the coil disconnection (the opening of the valve body 61 of the actual bypass valve 60). The overheating of the EGR gas flowing to the EGR gas distributor 15 (downstream EGR passage) can be precisely suppressed, the generation of condensed water in the EGR cooler 13 can be precisely suppressed, and the heat in the EGR gas distributor 15 can be suppressed. It is possible to precisely suppress the occurrence of harm.
<第23実施形態>
 次に、第23実施形態について図面を参照して詳細に説明する。
<23rd Embodiment>
Next, the 23rd embodiment will be described in detail with reference to the drawings.
 この実施形態では、バイパス弁60のアクチュエータ63及びリンク64の構成の点で第21実施形態と構成が異なる。図70に、アクチュエータ63及びリンク64を含むEGRクーラ13を背面側から視た斜視図により示す。図71に、EGRクーラ13であって、バイパス弁60を閉弁(全閉)に動作させたときのアクチュエータ63及びリンク64の状態を図56に準ずる背面図により示す。図72に、EGRクーラ13であって、バイパス弁60を開弁(全開)に動作させたときのアクチュエータ63及びリンク64の状態を図55に準ずる背面図により示す。この実施形態では、アクチュエータ63及びリンク64の構成が第21及び第22の実施形態と異なる。以下に、この実施形態のアクチュエータ63及びリンク64について説明する。 This embodiment differs from the 21st embodiment in the configuration of the actuator 63 and the link 64 of the bypass valve 60. FIG. 70 shows a perspective view of the EGR cooler 13 including the actuator 63 and the link 64 as viewed from the rear side. FIG. 71 shows the state of the actuator 63 and the link 64 when the bypass valve 60 is operated to be closed (fully closed) in the EGR cooler 13 by a rear view according to FIG. 56. FIG. 72 shows the state of the actuator 63 and the link 64 in the EGR cooler 13 when the bypass valve 60 is operated to open (fully open) by a rear view according to FIG. 55. In this embodiment, the configurations of the actuator 63 and the link 64 are different from those of the 21st and 22nd embodiments. The actuator 63 and the link 64 of this embodiment will be described below.
[アクチュエータ及びリンクの構成について]
 この実施形態のアクチュエータ63は、回転軸62を回動するために電気的に動作するように構成される。図70~図72に示すように、このアクチュエータ63は、軸方向へ往復動可能な駆動軸63bを備え、その駆動軸63bの先端が回転軸62に対しリンク64を介して駆動連結される。この実施形態では、駆動軸63bの先端がレバー76を回動させるために、レバー76に対し常に当接するようになっている。レバー76は、その基端部が回転軸62に固定され、その先端側に回転軸62の軸方向と平行をなす受け板76aが形成される。この受け板76aを駆動軸63bの先端が常に押圧することでリンク64が構成される。このバイパス弁60では、アクチュエータ63の駆動軸63bが、その軸方向へ往復動することにより、回転軸62が一方向及び逆方向へ回動し、弁体61がバイパス通路16の出口16bを開閉するようになっている。なお、第21実施形態におけるアクチュエータ63とバイパス弁60の弁アッセンブリ65では、弁体61を閉弁方向へ付勢する閉弁スプリング73がレバー76に組み付けられると共に、アクチュエータ63の駆動軸63aをハウジング941から突出する方向(弁体61を閉弁させる方向)へ付勢する軸スプリング945が設けられていた。これに対し、この実施形態では、レバー76の受け板76aを駆動軸63bの先端に常に当接させるために、弁体61を閉弁方向へ付勢する閉弁スプリング73がレバー76に組み付けられると共に、アクチュエータ63の駆動軸63bをハウジング941から突出する方向(弁体61を開弁させる方向)へ付勢する軸スプリング945が設けられる。また、閉弁スプリング73の付勢力は、アクチュエータ63の軸スプリング945の付勢力よりも大きく設定される。
[About the configuration of actuators and links]
The actuator 63 of this embodiment is configured to operate electrically to rotate the rotating shaft 62. As shown in FIGS. 70 to 72, the actuator 63 includes a drive shaft 63b that can reciprocate in the axial direction, and the tip of the drive shaft 63b is driven and connected to the rotating shaft 62 via a link 64. In this embodiment, the tip of the drive shaft 63b is always in contact with the lever 76 in order to rotate the lever 76. The base end of the lever 76 is fixed to the rotation shaft 62, and a receiving plate 76a parallel to the axial direction of the rotation shaft 62 is formed on the tip end side of the lever 76. The link 64 is configured by constantly pressing the receiving plate 76a with the tip of the drive shaft 63b. In this bypass valve 60, the drive shaft 63b of the actuator 63 reciprocates in the axial direction, so that the rotating shaft 62 rotates in one direction and the opposite direction, and the valve body 61 opens and closes the outlet 16b of the bypass passage 16. It is designed to do. In the valve assembly 65 of the actuator 63 and the bypass valve 60 in the 21st embodiment, the valve closing spring 73 for urging the valve body 61 in the valve closing direction is assembled to the lever 76, and the drive shaft 63a of the actuator 63 is housed. A shaft spring 945 was provided to urge the valve body 61 in a direction protruding from 941 (a direction in which the valve body 61 is closed). On the other hand, in this embodiment, in order to keep the receiving plate 76a of the lever 76 in contact with the tip of the drive shaft 63b, a valve closing spring 73 for urging the valve body 61 in the valve closing direction is assembled to the lever 76. At the same time, a shaft spring 945 for urging the drive shaft 63b of the actuator 63 in the direction protruding from the housing 941 (the direction in which the valve body 61 is opened) is provided. Further, the urging force of the valve closing spring 73 is set to be larger than the urging force of the shaft spring 945 of the actuator 63.
[EGRシステムの作用及び効果について]
 以上説明したこの実施形態のEGRシステムの構成によれば、開弁スプリングが弁体61を開弁方向へ付勢するので、閉弁スプリング73が弁体61を閉弁方向へ付勢する第21実施形態と違いはあるものの、第21実施形態とほぼ同等の作用及び効果を得ることができる。
[About the action and effect of the EGR system]
According to the configuration of the EGR system of this embodiment described above, since the valve opening spring urges the valve body 61 in the valve opening direction, the valve closing spring 73 urges the valve body 61 in the valve closing direction. Although there are differences from the embodiment, almost the same operation and effect as those of the 21st embodiment can be obtained.
<第24実施形態>
 次に、第24実施形態について図面を参照して詳細に説明する。
<24th Embodiment>
Next, the 24th embodiment will be described in detail with reference to the drawings.
 この実施形態では、バイパス弁60のアクチュエータ77及びリンク64の構成の点で第21~第23の実施形態と構成が異なる。図73に、アクチュエータ77及びリンク64を含むEGRクーラ13を正面図により示す。図74に、図73のEGRクーラ13を、矢印Y1の方向から視た上面図により示す。図75に、EGRクーラ13を図74のC-C線断面図により示す。図76に、EGRクーラ13の一部を、図73のD-D線断面図により示す。この実施形態では、バイパス弁60のアクチュエータ77及びリンク64の構成の点で第21~第23の実施形態と構成が異なる。以下に、この実施形態のアクチュエータ77及びリンク64について説明する。 This embodiment differs from the 21st to 23rd embodiments in the configuration of the actuator 77 of the bypass valve 60 and the link 64. FIG. 73 shows a front view of the EGR cooler 13 including the actuator 77 and the link 64. FIG. 74 shows the EGR cooler 13 of FIG. 73 with a top view seen from the direction of arrow Y1. FIG. 75 shows the EGR cooler 13 with a cross-sectional view taken along the line CC of FIG. FIG. 76 shows a part of the EGR cooler 13 with a cross-sectional view taken along the line DD of FIG. 73. This embodiment differs from the 21st to 23rd embodiments in the configuration of the actuator 77 of the bypass valve 60 and the link 64. The actuator 77 and the link 64 of this embodiment will be described below.
[アクチュエータ及びリンクの構成について]
 図73、図74に示すように、バイパス弁60の弁アッセンブリ65、アクチュエータ77及びリンク64は、EGRクーラ13の正面側にてハウジング31に設けられる。また、アクチュエータ77は、EGRクーラ13のハウジング31であって、熱交換器32とバイパス通路16の両方に対応する(重なる)位置に設けられる。
[About the configuration of actuators and links]
As shown in FIGS. 73 and 74, the valve assembly 65, the actuator 77 and the link 64 of the bypass valve 60 are provided in the housing 31 on the front side of the EGR cooler 13. Further, the actuator 77 is the housing 31 of the EGR cooler 13, and is provided at a position corresponding to (overlapping) both the heat exchanger 32 and the bypass passage 16.
 この実施形態のアクチュエータ77は、渦巻き状のバイメタル78を内蔵し、EGRクーラ13から伝わる熱によりバイメタル78が収縮及び伸張し、その開放端が周方向へ変位(回動)し、バイパス弁60のレバー79を回動するように構成される。図77に、アクチュエータ77のバイメタル78が冷えて収縮した状態を正面図により示す。図78に、アクチュエータ77のバイメタル78が加熱により伸張し、その開放端78aが周方向へ回動した状態を正面図により示す。この実施形態では、バイメタル78の収縮及び伸張により開放端78aが、その周方向に往復動することにより、回転軸62が一方向及び逆方向へ回動し、弁体61がバイパス通路16の出口16bを開閉するようになっている。図77に示すように、バイメタル78が収縮した状態では、レバー79が、図73に2点鎖線で示す状態となり、弁体61が図75に2点鎖線で示す開弁状態となる。バイメタル78が更に冷えて収縮することにより、弁体61は全開位置まで回動する。一方、図78に示すように、バイメタル78が加熱により伸張した状態では、レバー79が、図73に実線で示す状態へ回動し、弁体61が図75に実線で示す全閉状態となる。 The actuator 77 of this embodiment has a built-in spiral bimetal 78, and the bimetal 78 contracts and expands due to the heat transferred from the EGR cooler 13, and the open end thereof is displaced (rotated) in the circumferential direction of the bypass valve 60. It is configured to rotate the lever 79. FIG. 77 is a front view showing a state in which the bimetal 78 of the actuator 77 has cooled and contracted. FIG. 78 shows a front view showing a state in which the bimetal 78 of the actuator 77 is expanded by heating and the open end 78a thereof is rotated in the circumferential direction. In this embodiment, the open end 78a reciprocates in the circumferential direction due to the contraction and expansion of the bimetal 78, so that the rotation shaft 62 rotates in one direction and the opposite direction, and the valve body 61 exits the bypass passage 16. It is designed to open and close 16b. As shown in FIG. 77, when the bimetal 78 is contracted, the lever 79 is in the state shown by the two-dot chain line in FIG. 73, and the valve body 61 is in the valve open state shown by the two-dot chain line in FIG. 75. As the bimetal 78 further cools and contracts, the valve body 61 rotates to the fully open position. On the other hand, as shown in FIG. 78, when the bimetal 78 is stretched by heating, the lever 79 rotates to the state shown by the solid line in FIG. 73, and the valve body 61 is in the fully closed state shown by the solid line in FIG. 75. ..
 図76に示すように、この実施形態のアクチュエータ77は、渦巻き状のバイメタル78の開放端78aが、弁アッセンブリ65の回転軸62に対しリンク64を介して駆動連結される。バイメタル78の開放端78aは、レバー79を回動するために、レバー79に接続される。レバー79は、その基端部が回転軸62に固定され、その先端に断面略L形をなすアーム79aが設けられる。この実施形態では、バイメタル78の開放端78aがアーム79aの先端を常に押圧するようになっており、その開放端78aとレバー79とによりリンク64が構成される。この実施形態の弁アッセンブリ65は、図52に示す第19実施形態の弁アッセンブリ65の構成に準ずる。この実施形態で、バイパス弁60の弁アッセンブリ65には、閉弁スプリング73ではなく、弁体61を開弁方向へ付勢する開弁スプリング80が設けられる。そして、この実施形態でも、バイメタル78が高温となるときに開放端78aからレバー79に作用する回動力、すなわち弁体61を閉弁させようとする力が、開弁スプリング80の付勢力よりも十分に大きく設定される。 As shown in FIG. 76, in the actuator 77 of this embodiment, the open end 78a of the spiral bimetal 78 is driven and connected to the rotating shaft 62 of the valve assembly 65 via the link 64. The open end 78a of the bimetal 78 is connected to the lever 79 in order to rotate the lever 79. The base end of the lever 79 is fixed to the rotating shaft 62, and an arm 79a having a substantially L-shaped cross section is provided at the tip of the lever 79. In this embodiment, the open end 78a of the bimetal 78 constantly presses the tip of the arm 79a, and the open end 78a and the lever 79 form a link 64. The valve assembly 65 of this embodiment conforms to the configuration of the valve assembly 65 of the 19th embodiment shown in FIG. 52. In this embodiment, the valve assembly 65 of the bypass valve 60 is provided with a valve opening spring 80 that urges the valve body 61 in the valve opening direction instead of the valve closing spring 73. Also in this embodiment, the rotational force acting on the lever 79 from the open end 78a when the bimetal 78 becomes hot, that is, the force for closing the valve body 61 is larger than the urging force of the valve opening spring 80. Set large enough.
 この実施形態では、アクチュエータ77が、EGRクーラ13のハウジング31であって、熱交換器32とバイパス通路16の両方に対応する(重なる)位置に設けられるので、バイパス弁60の開閉特性は、EGRクーラ13を流れるEGR流量と、EGRクーラ13を循環する冷却水温度に応じて変化することになる。図79に、この実施形態のバイパス弁60につき、EGR流量及び冷却水温度に対する開閉特性を表に示す。この表において、例えば、冷却水温度THWが「40℃」で、EGR流量が「低」となる場合は、バイパス弁60の弁体61は「全開」となる。冷却水温度THWが「40℃」で、EGR流量が「中」となる場合は、弁体61は「全開」となる。冷却水温度THWが「40℃」で、EGR流量が「高」となる場合は、弁体61は「半開」となる。冷却水温度THWが「60℃」又は「80℃」となる場合は、同表に示す通りである。 In this embodiment, the actuator 77 is provided in the housing 31 of the EGR cooler 13 at a position corresponding to (overlapping) both the heat exchanger 32 and the bypass passage 16, so that the opening / closing characteristic of the bypass valve 60 is EGR. It will change according to the EGR flow rate flowing through the cooler 13 and the temperature of the cooling water circulating in the EGR cooler 13. FIG. 79 shows the opening / closing characteristics of the bypass valve 60 of this embodiment with respect to the EGR flow rate and the cooling water temperature. In this table, for example, when the cooling water temperature THW is "40 ° C." and the EGR flow rate is "low", the valve body 61 of the bypass valve 60 is "fully open". When the cooling water temperature THW is "40 ° C." and the EGR flow rate is "medium", the valve body 61 is "fully open". When the cooling water temperature THW is "40 ° C." and the EGR flow rate is "high", the valve body 61 is "half open". When the cooling water temperature THW is "60 ° C" or "80 ° C", it is as shown in the same table.
 ここで、対比例として、アクチュエータ77が、EGRクーラ13のハウジング31であって、熱交換器32のみに対応する位置に設けられた場合を想定する。この場合、バイパス弁60の開閉特性は、冷却水温度のみに応じて変化することになる。図80に、この実施形態のバイパス弁60につき、冷却水温度に対する開閉特性を表に示す。この表において、冷却水温度THWが「40℃」の場合は、バイパス弁60の弁体61は「全開」となり、「60℃」の場合は、弁体61は「閉じ始め」となり、「80℃」の場合は、弁体61は「全閉」となる。 Here, as a inverse proportion, it is assumed that the actuator 77 is provided in the housing 31 of the EGR cooler 13 at a position corresponding only to the heat exchanger 32. In this case, the opening / closing characteristics of the bypass valve 60 will change depending only on the cooling water temperature. FIG. 80 shows the opening / closing characteristics of the bypass valve 60 of this embodiment with respect to the cooling water temperature. In this table, when the cooling water temperature THW is "40 ° C", the valve body 61 of the bypass valve 60 is "fully open", and when it is "60 ° C", the valve body 61 is "starting to close" and "80". In the case of "° C.", the valve body 61 is "fully closed".
[EGRシステムの作用及び効果について]
 以上説明したこの実施形態のEGRシステムの構成によれば、第15実施形態と異なり次のような作用及び効果を得ることができる。すなわち、アクチュエータ77をバイメタル78で構成し、バイパス弁60の開閉特性を、EGRクーラ13におけるEGR流量及び冷却水温度に応じて変化させるように構成した。このため、電動式のアクチュエータ63を備えたバイパス弁60と異なり、アクチュエータ77への電気的配線とアクチュエータ77を電気的に制御することが不要となり、バイパス弁60の構成の簡略化を図ることができる。
[About the action and effect of the EGR system]
According to the configuration of the EGR system of this embodiment described above, the following actions and effects can be obtained unlike the fifteenth embodiment. That is, the actuator 77 is composed of a bimetal 78, and the opening / closing characteristics of the bypass valve 60 are configured to be changed according to the EGR flow rate and the cooling water temperature in the EGR cooler 13. Therefore, unlike the bypass valve 60 provided with the electric actuator 63, it is not necessary to electrically control the electric wiring to the actuator 77 and the actuator 77, and the configuration of the bypass valve 60 can be simplified. can.
<第25実施形態>
 次に、第25実施形態について図面を参照して詳細に説明する。
<25th Embodiment>
Next, the 25th embodiment will be described in detail with reference to the drawings.
 この実施形態では、バイパス弁60のアクチュエータ91及びリンク64の構成の点で第24実施形態と異なる。以下には、第24実施形態と異なる点を中心に説明する。第24実施形態では、アクチュエータ77をバイメタル78で構成したことから、バイメタル78に熱が伝わり、その開放端78aが回動するまでに時間がかかり、アクチュエータ77としての動作応答性がよくなかった。また、バイメタル78を通電により加熱することができなかった。また、バイメタル78の下面全体をヒータに接触させて直接加熱することも考えられるが、ヒータとの間で摺動摩耗が発生するので、バイメタル78の全体を直接加熱することも困難であった。 This embodiment is different from the 24th embodiment in that the actuator 91 of the bypass valve 60 and the link 64 are configured. Hereinafter, the points different from those of the 24th embodiment will be mainly described. In the 24th embodiment, since the actuator 77 is made of the bimetal 78, heat is transferred to the bimetal 78, and it takes time for the open end 78a to rotate, and the operation responsiveness of the actuator 77 is not good. In addition, the bimetal 78 could not be heated by energization. Further, it is conceivable to bring the entire lower surface of the bimetal 78 into contact with the heater to directly heat it, but it is also difficult to directly heat the entire bimetal 78 because sliding wear occurs between the bimetal 78 and the heater.
 そこで、この実施形態では、アクチュエータの動作応答性を高めるために、アクチュエータ91を、バイメタル78ではなく、直接に通電加熱することで動作させることができる「バイオメタル」により構成する。バイオメタルは、それ自体で緊張収縮-弛緩伸長する繊維状アクチュエータであり、柔軟で静かな動きが特徴である。バイオメタルは、通常は柔らかくしなやかであるが、通電により温度を高める(例えば、60~70℃)ことで硬くなって強い力で収縮する。通電を止めると、再び柔らかくなって元の長さまで伸長する。また、バイオメタルは、雰囲気温度の変化によっても動作し、雰囲気温度が約70℃以上になると収縮し、約70℃未満になると伸長する。バイオメタルの内部組織は、安定的な構造を有し、優れた耐久性と安定した動作特性を有する。 Therefore, in this embodiment, in order to enhance the operation responsiveness of the actuator, the actuator 91 is configured not with the bimetal 78 but with a "biometal" that can be operated by directly energizing and heating. Biometal is a fibrous actuator that is tension-contracted-relaxed and stretched by itself and is characterized by flexible and quiet movement. Biometal is usually soft and supple, but when the temperature is raised by energization (for example, 60 to 70 ° C.), it becomes hard and shrinks with a strong force. When the power is turned off, it softens again and extends to its original length. The biometal also operates by changing the atmospheric temperature, shrinks when the atmospheric temperature is about 70 ° C. or higher, and expands when the atmospheric temperature is lower than about 70 ° C. The internal structure of the biometal has a stable structure, excellent durability and stable operating characteristics.
[アクチュエータ及びリンクの構成について]
 図81に、この実施形態のアクチュエータ91及びリンク64を含むEGRクーラ13を正面図により示す。図82に、バイパス弁60の弁体61が全閉となる状態のEGRクーラ13であって、図81のE-E線断面図により示す。図83に、バイパス弁60の弁体61が開弁した状態であって、EGRクーラ13を図82に準ずる断面図により示す。
[About the configuration of actuators and links]
FIG. 81 shows a front view of the EGR cooler 13 including the actuator 91 and the link 64 of this embodiment. FIG. 82 is an EGR cooler 13 in a state where the valve body 61 of the bypass valve 60 is fully closed, and is shown by a sectional view taken along line EE of FIG. 81. FIG. 83 shows a cross-sectional view of the EGR cooler 13 in a state where the valve body 61 of the bypass valve 60 is opened, according to FIG. 82.
 図81~図83に示すように、この実施形態では、バイパス弁60の弁アッセンブリ65、アクチュエータ91及びリンク64は、EGRクーラ13の正面側にてハウジング31に設けられる。この実施形態のアクチュエータ91は、棒状のバイオメタル92を含み、バイオメタル92の一端(基端)にはプラス電極93が設けられる。プラス電極93は、絶縁材94を介してブラケット95に支持される。ブラケット95は、ハウジング31に固定される。バイオメタル92の他端(先端)は、弁アッセンブリ65を構成するレバー96の先端部に固定される。バイオメタル92の先端は、レバー96及び回転軸62等を介してハウジング31に導通し、電気的にアースされる。そして、プラス電極93を介してバイオメタル92が通電加熱されることで、バイオメタル92が伸張状態から収縮し、弁アッセンブリ65のレバー96が回動するようになっている。 As shown in FIGS. 81 to 83, in this embodiment, the valve assembly 65, the actuator 91, and the link 64 of the bypass valve 60 are provided in the housing 31 on the front side of the EGR cooler 13. The actuator 91 of this embodiment includes a rod-shaped biometal 92, and a positive electrode 93 is provided at one end (base end) of the biometal 92. The positive electrode 93 is supported by the bracket 95 via the insulating material 94. The bracket 95 is fixed to the housing 31. The other end (tip) of the biometal 92 is fixed to the tip of the lever 96 constituting the valve assembly 65. The tip of the biometal 92 conducts to the housing 31 via the lever 96, the rotating shaft 62, and the like, and is electrically grounded. Then, when the biometal 92 is energized and heated via the positive electrode 93, the biometal 92 contracts from the stretched state, and the lever 96 of the valve assembly 65 rotates.
 図82は、アクチュエータ91のバイオメタル92が通電加熱により収縮した状態を示す。図83は、アクチュエータ91のバイオメタル92が非通電により伸張した状態を示す。この実施形態のバイパス弁60では、バイオメタル92が収縮及び伸張することにより、レバー96が一方向及び逆方向へ回動し、回転軸62を介して弁体61がバイパス通路16の出口16bを開閉するようになっている。図82に示すように、バイオメタル92が収縮した状態では、レバー96が、図81に実線で示す状態となり、弁体61が全閉状態となる。一方、図83に示すように、バイオメタル92が非通電により伸張した状態では、レバー96が、図81に2点鎖線で示す状態へ回動し、弁体61が開弁状態となる。 FIG. 82 shows a state in which the biometal 92 of the actuator 91 has shrunk due to energization and heating. FIG. 83 shows a state in which the biometal 92 of the actuator 91 is stretched by non-energization. In the bypass valve 60 of this embodiment, the lever 96 rotates in one direction and the opposite direction due to the contraction and expansion of the biometal 92, and the valve body 61 passes through the outlet 16b of the bypass passage 16 via the rotation shaft 62. It is designed to open and close. As shown in FIG. 82, when the biometal 92 is contracted, the lever 96 is in the state shown by the solid line in FIG. 81, and the valve body 61 is in the fully closed state. On the other hand, as shown in FIG. 83, when the biometal 92 is stretched due to non-energization, the lever 96 rotates to the state shown by the two-dot chain line in FIG. 81, and the valve body 61 is in the valve open state.
 図81~図83に示すように、このアクチュエータ91は、棒状のバイオメタル92の先端92aが、弁アッセンブリ65の回転軸62に対しリンク64を介して駆動連結される。この実施形態では、レバー96を回動するために、バイオメタル92の先端92aがレバー96に接続される。レバー96は、その基端部が回転軸62に固定され、その先端部にアーム96aが設けられる。この実施形態では、バイオメタル92の先端92aがアーム96aに固定されることで、バイオメタル92の先端92aとレバー96とによりリンク64が構成される。この実施形態の弁アッセンブリ65は、レバー96の形状は異なるものの、第24実施形態の弁アッセンブリ65と同じ構成を有するものとする。そして、この弁アッセンブリ65は、低温時にバイオメタル92が非通電により伸張するときは、レバー96及び回転軸62を介して弁体61が開弁されると共に、弁体61が開弁スプリング80により開弁方向へ付勢される。一方、この弁アッセンブリ65は、高温時又はバイオメタル92が通電加熱により収縮するときは、開弁スプリング80の付勢力に抗してレバー96及び回転軸62を介して弁体61が閉弁される。 As shown in FIGS. 81 to 83, in this actuator 91, the tip 92a of the rod-shaped biometal 92 is driven and connected to the rotating shaft 62 of the valve assembly 65 via the link 64. In this embodiment, the tip 92a of the biometal 92 is connected to the lever 96 in order to rotate the lever 96. The base end of the lever 96 is fixed to the rotating shaft 62, and the arm 96a is provided at the tip of the lever 96. In this embodiment, the tip 92a of the biometal 92 is fixed to the arm 96a, so that the link 64 is formed by the tip 92a of the biometal 92 and the lever 96. The valve assembly 65 of this embodiment has the same configuration as the valve assembly 65 of the 24th embodiment, although the shape of the lever 96 is different. In this valve assembly 65, when the biometal 92 expands due to non-energization at a low temperature, the valve body 61 is opened via the lever 96 and the rotary shaft 62, and the valve body 61 is opened by the valve opening spring 80. It is urged in the valve opening direction. On the other hand, in this valve assembly 65, when the temperature is high or the biometal 92 contracts due to energization heating, the valve body 61 is closed via the lever 96 and the rotary shaft 62 against the urging force of the valve opening spring 80. To.
 この実施形態のEGRシステムにおいて、外気が極低温度の場合、EGR弁14が全閉となるEGRカットが長くなると、エンコパにおいてEGR通路12やEGRガス分配器15が冷えてしまう。ここで、第24実施形態におけるバイメタル78を使用したアクチュエータ77では、EGRカットからのEGR再開時に、全閉状態のバイパス弁60を応答性よく再開弁することは困難であった。これに対し、本実施形態のバイオメタル92を使用したアクチュエータ91では、エンコパの雰囲気温度が極低温度の場合には、バイオメタル92が伸長状態となり、弁体61が開弁する。このため、EGR再開時に、バイパス通路16を通じてEGR弁14やEGRガス分配器15へ高温のEGRガスを流すことができる。一方、本実施形態のバイオメタル92を使用したアクチュエータ91では、外気が常温度でエンジン1が完全暖機状態にある場合には、バイオメタル92が収縮状態となり、弁体61を閉弁する。このため、EGR再開時に、バイパス通路16でのEGRガスの流れを遮断し、熱交換器32で冷却されたEGRガスのみをEGR弁14やEGRガス分配器15へ流すことができる。 In the EGR system of this embodiment, when the outside air temperature is extremely low, if the EGR cut in which the EGR valve 14 is fully closed becomes long, the EGR passage 12 and the EGR gas distributor 15 will be cooled in the Encopa. Here, in the actuator 77 using the bimetal 78 in the 24th embodiment, it is difficult to responsively restart the bypass valve 60 in the fully closed state when the EGR is restarted from the EGR cut. On the other hand, in the actuator 91 using the biometal 92 of the present embodiment, when the atmospheric temperature of the encopa is extremely low, the biometal 92 is in an extended state and the valve body 61 is opened. Therefore, when the EGR is restarted, the high temperature EGR gas can flow to the EGR valve 14 and the EGR gas distributor 15 through the bypass passage 16. On the other hand, in the actuator 91 using the biometal 92 of the present embodiment, when the outside air is at a normal temperature and the engine 1 is in a completely warmed state, the biometal 92 is in a contracted state and the valve body 61 is closed. Therefore, when the EGR is restarted, the flow of the EGR gas in the bypass passage 16 can be cut off, and only the EGR gas cooled by the heat exchanger 32 can flow to the EGR valve 14 and the EGR gas distributor 15.
 図84には、EGRの再開時及び再開後、エンコパ温度及び冷却水温度の条件に対応したバイパス弁60の全開又は全閉の制御内容の一例を表に示す。図85には、図84に示す制御内容を実施するために行われ、EGRの再開時及び再開後、エンコパ温度及び冷却水温度の条件に対応したバイオメタル92への通電(オン)又は非通電(オフ)の制御内容の一例を表に示す。図85において、エンコパ温度と冷却水温度が共に「70℃」以上となる場合は、バイオメタル92へ非通電でもバイパス弁60を全閉にすることができる。 FIG. 84 shows an example of the control contents of the bypass valve 60 fully opened or fully closed corresponding to the conditions of the encopa temperature and the cooling water temperature at the time of restarting the EGR and after restarting. In FIG. 85, the control content shown in FIG. 84 is performed to carry out the energization (on) or de-energization of the biometal 92 corresponding to the conditions of the encopa temperature and the cooling water temperature at the time of restarting and after restarting the EGR. An example of the control content of (OFF) is shown in the table. In FIG. 85, when both the encopa temperature and the cooling water temperature are “70 ° C.” or higher, the bypass valve 60 can be fully closed even when the biometal 92 is not energized.
[EGRシステムの作用及び効果について]
 以上説明したこの実施形態のEGRシステムの構成によれば、第24実施形態と異なり次のような作用及び効果を得ることができる。すなわち、この実施形態では、アクチュエータ77をバイオメタル92により構成したので、バイオメタル92を通電により応答性良く収縮させ、バイパス弁60の弁体61を開弁状態から応答性よく閉弁することができる。このため、熱交換器32から流れ出るEGRガスへの、バイパス通路16からのEGRガスの流れ込み(合流)を応答性良く停止することができる。その結果、EGRクーラ13からEGRガス分配器15(下流側EGR通路)へ流れるEGRガスの温度を速やかに低下させることができる。また、バイオメタル92は、通電しなくても雰囲気温度の上昇に伴い収縮し、バイパス弁60の弁体61を開弁状態から閉弁することができる。このため、バイオメタル92への通電が故障により困難になった場合にも、バイパス弁60の弁体61を閉弁することができ、通電故障時にフェイルセーフ機能を発揮させることができる。
[About the action and effect of the EGR system]
According to the configuration of the EGR system of this embodiment described above, the following actions and effects can be obtained unlike the 24th embodiment. That is, in this embodiment, since the actuator 77 is made of the biometal 92, the biometal 92 can be responsively contracted by energization, and the valve body 61 of the bypass valve 60 can be responsively closed from the valve open state. can. Therefore, the flow (merging) of the EGR gas from the bypass passage 16 into the EGR gas flowing out from the heat exchanger 32 can be stopped with good responsiveness. As a result, the temperature of the EGR gas flowing from the EGR cooler 13 to the EGR gas distributor 15 (downstream EGR passage) can be rapidly lowered. Further, the biometal 92 contracts as the ambient temperature rises without being energized, and the valve body 61 of the bypass valve 60 can be closed from the valve open state. Therefore, even when it becomes difficult to energize the biometal 92 due to a failure, the valve body 61 of the bypass valve 60 can be closed, and the fail-safe function can be exhibited in the event of an energization failure.
 なお、この開示技術は前記各実施形態に限定されるものではなく、開示技術の趣旨を逸脱することのない範囲で構成の一部を適宜変更して実施することもできる。 Note that this disclosure technique is not limited to each of the above-described embodiments, and a part of the configuration may be appropriately modified and implemented within a range that does not deviate from the purpose of the disclosure technique.
 (1)前記各実施形態では、バイパス弁17,19,60を冷却水の温度に応じて開弁又は閉弁させるように構成したが、EGRガスの温度に応じてバイパス弁を開弁又は閉弁させるように構成することもできる。 (1) In each of the above embodiments, the bypass valves 17, 19, and 60 are configured to open or close according to the temperature of the cooling water, but the bypass valve is opened or closed according to the temperature of the EGR gas. It can also be configured to valve.
 (2)前記第1~第12の実施形態では、バイパス弁17につき、温度の変化に感応して動作するアクチュエータ22として、サーモワックス24を使用したが、サーモワックス24の代わりにバイメタルや形状記憶合金を使用することもできる。 (2) In the first to twelfth embodiments, the thermowax 24 is used as the actuator 22 that operates in response to a change in temperature for the bypass valve 17, but bimetal or shape memory is used instead of the thermowax 24. Alloys can also be used.
 (3)前記第14実施形態では、電磁弁よりなるバイパス弁19をバイパス通路16の出口側に設け、バイパス弁19の下流側に滞留した凝縮水を排水するために、バイパス弁19をEGRカットの実行を条件に開弁するように構成した。これに対し、図86に示すように、ダイアフラム式弁よりなるバイパス弁20をバイパス通路16の入口側に設け、バイパス弁20の下流側に滞留した凝縮水CWを排水するために、EGRカットの実行を条件に開弁するように構成することもできる。図86は、EGRクーラ13、バイパス通路16及びバイパス弁20(閉弁状態)をその長手方向に沿って切断して示す断面図である。 (3) In the 14th embodiment, the bypass valve 19 made of a solenoid valve is provided on the outlet side of the bypass passage 16, and the bypass valve 19 is EGR cut in order to drain the condensed water accumulated on the downstream side of the bypass valve 19. It was configured to open the valve on condition of the execution of. On the other hand, as shown in FIG. 86, a bypass valve 20 made of a diaphragm type valve is provided on the inlet side of the bypass passage 16, and the EGR cut is used to drain the condensed water CW accumulated on the downstream side of the bypass valve 20. It can also be configured to open on condition of execution. FIG. 86 is a cross-sectional view showing the EGR cooler 13, the bypass passage 16, and the bypass valve 20 (valve closed state) cut along the longitudinal direction thereof.
 (4)前記第1及び第2の実施形態では、壁温センサ88(温度検出手段)により検出される壁温度THDW(温度)がEGRガス分配器15の加熱許容温度を超えた場合に、EGR弁14を強制的に全閉に制御するように構成したが、全閉に制御するのではなく中間開度(全閉から全開の間の開度)に制御するように構成することもできる。この場合は、EGR通路におけるEGRガスの流れが減量され、下流側EGR通路の加熱許容温度を超える過剰な加熱が直ちに停止する。このため、下流側EGR通路の溶損を確実に防止することができる。 (4) In the first and second embodiments, when the wall temperature THDW (temperature) detected by the wall temperature sensor 88 (temperature detection means) exceeds the allowable heating temperature of the EGR gas distributor 15, EGR Although the valve 14 is forcibly controlled to be fully closed, it can also be configured to be controlled to an intermediate opening degree (opening between fully closed and fully open) instead of being controlled to be fully closed. In this case, the flow of EGR gas in the EGR passage is reduced, and excessive heating exceeding the allowable heating temperature of the downstream EGR passage is immediately stopped. Therefore, it is possible to reliably prevent melting damage of the downstream EGR passage.
 (5)前記各実施形態では、下流側EGR通路を構成するEGRガス分配器15を介して吸気マニホールド5の各分岐管5bにEGRガスを分配するように構成した。これに対し、EGRガス分配器を設けることなく下流側EGR通路から吸気マニホールドのサージタンクへEGRガスを導入するように構成することもできる。この場合、樹脂材より構成された下流側EGR通路に壁温センサを設けることができる。 (5) In each of the above-described embodiments, the EGR gas is configured to be distributed to each branch pipe 5b of the intake manifold 5 via the EGR gas distributor 15 constituting the downstream EGR passage. On the other hand, it is also possible to introduce the EGR gas from the downstream EGR passage into the surge tank of the intake manifold without providing the EGR gas distributor. In this case, the wall temperature sensor can be provided in the downstream EGR passage made of the resin material.
 (6)前記第15実施形態では、図35、図36に示すように、バイパス弁60の閉弁時に、その弁体61が熱交換器32の軸方向と平行に配置されるように構成した。これに対し、図87に示すように、バイパス弁60の閉弁時に、その弁体61が熱交換器32の側に下流へ向けて傾いた位置に配置されるように構成することもできる。この場合、図87に示すように、弁体61の板面積が、第15実施形態の弁体61のそれより大きくなる。そのため、弁体61の開弁時に弁体61が熱交換器32の出口32bの流路面積を遮る面積が大きくなり、出口32bから流れ出るEGRガスの流量を更に減少させることができる。また、閉弁時と開弁時との間の弁体61の揺動角度が、第15実施形態のそれよりも小さくなるので、アクチュエータ63の駆動軸63aの移動量(ストローク量)を小さくすることができる。加えて、バイパス弁60の閉弁時には、熱交換器32を経て冷やされたEGRガスが弁体61に当たりやすくなるので、弁体61を介してリップシール(シール部材)が冷やされやすくなる。図87は、EGRクーラ13の一部を示す図36に準ずる拡大断面図である。 (6) In the fifteenth embodiment, as shown in FIGS. 35 and 36, the valve body 61 is configured to be arranged parallel to the axial direction of the heat exchanger 32 when the bypass valve 60 is closed. .. On the other hand, as shown in FIG. 87, when the bypass valve 60 is closed, the valve body 61 may be arranged at a position inclined toward the downstream side of the heat exchanger 32. In this case, as shown in FIG. 87, the plate area of the valve body 61 is larger than that of the valve body 61 of the fifteenth embodiment. Therefore, when the valve body 61 is opened, the area where the valve body 61 blocks the flow path area of the outlet 32b of the heat exchanger 32 becomes large, and the flow rate of the EGR gas flowing out from the outlet 32b can be further reduced. Further, since the swing angle of the valve body 61 between the valve closing time and the valve opening time is smaller than that of the fifteenth embodiment, the movement amount (stroke amount) of the drive shaft 63a of the actuator 63 is reduced. be able to. In addition, when the bypass valve 60 is closed, the EGR gas cooled through the heat exchanger 32 is likely to hit the valve body 61, so that the lip seal (seal member) is easily cooled via the valve body 61. FIG. 87 is an enlarged cross-sectional view according to FIG. 36 showing a part of the EGR cooler 13.
 (7)前記第18実施形態では、図52に示すように、外筒部31eの外周に平坦面をなす複数の圧入受け面31eaを設けた。これら圧入受け面31eaは、外筒部31eの外周を平坦に切削することで形成され、その部分が凹状をなす。これに対し、図88に示すように、スプリングガイド74の内周に爪74aを設け、外筒部31eの凹状をなす圧入受け面31eaの部分にその爪74aを係合させるように構成することもできる。この場合、スプリングガイド74の外れ防止を図ることができる。図88は、バイパス弁60の弁アッセンブリ65の構成を示す図52に準ずる断面図である。 (7) In the eighteenth embodiment, as shown in FIG. 52, a plurality of press-fitting surfaces 31ea forming a flat surface are provided on the outer periphery of the outer cylinder portion 31e. These press-fitting receiving surfaces 31ea are formed by flatly cutting the outer periphery of the outer cylinder portion 31e, and the portion thereof has a concave shape. On the other hand, as shown in FIG. 88, a claw 74a is provided on the inner circumference of the spring guide 74 so that the claw 74a is engaged with the concave press-fitting surface 31ea of the outer cylinder portion 31e. You can also. In this case, it is possible to prevent the spring guide 74 from coming off. FIG. 88 is a cross-sectional view according to FIG. 52 showing the configuration of the valve assembly 65 of the bypass valve 60.
 (8)前記第15実施形態では、図41に示すように、バイパス弁60をスイングタイプの弁体61を有する弁アッセンブリ65に具体化した。これに対し、図89に示すように、図41と同等の構成を有する弁アッセンブリ65につき、バタフライタイプの弁体61を有するバイパス弁60に具体化することもできる。図89は、バイパス弁60の弁アッセンブリ65の構成を示す図41に準ずる断面図である。 (8) In the fifteenth embodiment, as shown in FIG. 41, the bypass valve 60 is embodied in a valve assembly 65 having a swing type valve body 61. On the other hand, as shown in FIG. 89, the valve assembly 65 having the same configuration as that of FIG. 41 can be embodied as a bypass valve 60 having a butterfly type valve body 61. FIG. 89 is a cross-sectional view according to FIG. 41 showing the configuration of the valve assembly 65 of the bypass valve 60.
 (9)前記各実施形態のエンジンシステムでは、EGR通路12の入口12aを触媒7より上流の排気通路3に接続するように構成したが、EGR通路の入口を触媒より下流の排気通路に接続するように構成することもできる。 (9) In the engine system of each of the above embodiments, the inlet 12a of the EGR passage 12 is configured to be connected to the exhaust passage 3 upstream of the catalyst 7, but the inlet of the EGR passage is connected to the exhaust passage downstream of the catalyst. It can also be configured as follows.
 この開示技術は、車両に搭載されるガソリンエンジンやディーゼルエンジンに適用することができる。 This disclosure technology can be applied to gasoline engines and diesel engines mounted on vehicles.
1 エンジン
2 吸気通路
3 排気通路
5 吸気マニホールド(吸気通路)
12 EGR通路
13 EGRクーラ
14 EGR弁
15 EGRガス分配器(下流側EGR通路)
16 バイパス通路
16b 出口
17 バイパス弁
18 ハウジング
19 バイパス弁
20 バイパス弁
21 弁体
22 アクチュエータ
31 ハウジング
32 熱交換器
32b 出口
46 仕切壁
46a 主壁部
46b 下流壁部
48 サブバイパス通路
49 サブバイパス弁
51a 冷却水通路
53 連通孔
55 放熱フィン
56 放熱フィン
58 境部位
59 隙間
60 バイパス弁
61 弁体
63 アクチュエータ
63a 駆動軸
63b 駆動軸
64 リンク
71 リップシール(シール部材)
73 閉弁スプリング
77 アクチュエータ
88 壁温センサ(温度検出手段)
90 ECU(第1制御手段、第2制御手段、第3制御手段、EGR制御手段,断線検出手段)
91 アクチュエータ
945 軸スプリング
946 雄ねじ
947 雌ねじ
971 ステータ
972A 上層コイル
972B 下層コイル
973 ロータ
1 Engine 2 Intake passage 3 Exhaust passage 5 Intake manifold (intake passage)
12 EGR passage 13 EGR cooler 14 EGR valve 15 EGR gas distributor (downstream EGR passage)
16 Bypass passage 16b Outlet 17 Bypass valve 18 Housing 19 Bypass valve 20 Bypass valve 21 Valve body 22 Actuator 31 Housing 32 Heat exchanger 32b Outlet 46 Partition wall 46a Main wall 46b Downstream wall 48 Sub bypass passage 49 Sub bypass valve 51a Cooling Water passage 53 Communication hole 55 Heat dissipation fin 56 Heat dissipation fin 58 Boundary part 59 Gap 60 Bypass valve 61 Valve body 63 Actuator 63a Drive shaft 63b Drive shaft 64 Link 71 Lip seal (seal member)
73 Valve closing spring 77 Actuator 88 Wall temperature sensor (temperature detection means)
90 ECU (1st control means, 2nd control means, 3rd control means, EGR control means, disconnection detection means)
91 Actuator 945 Shaft spring 946 Male thread 947 Female thread 971 Stator 972A Upper layer coil 972B Lower layer coil 973 Rotor

Claims (20)

  1.  エンジンから排気通路へ排出される排気の一部をEGRガスとしてEGR通路を介し吸気通路へ流して前記エンジンへ還流させるように構成したEGRシステムにおいて、
     前記EGR通路において前記EGRガスの流量を調節するためのEGR弁と、
     前記EGR通路を流れる前記EGRガスを冷却するために、前記EGRガスと前記エンジンの冷却水との間で熱交換を行う熱交換器を含むEGRクーラと、
     前記EGR通路において前記EGRクーラの前記熱交換器へ流れる前記EGRガスの一部を迂回させるためのバイパス通路と、
     前記バイパス通路を開閉するためのバイパス弁と、
     前記EGRクーラ及び前記バイパス通路より下流の下流側EGR通路が樹脂材により構成されることと
    を備え、
     前記バイパス弁は、弁体と、アクチュエータとを含み、
     前記アクチュエータは、前記EGRガスの温度、前記下流側EGR通路の温度又は前記冷却水の温度が第1所定値以上となるときに前記弁体を開いた状態から閉じるように構成される
    ことを特徴とするEGRシステム。
    In the EGR system configured to flow a part of the exhaust gas discharged from the engine to the exhaust passage as EGR gas to the intake passage through the EGR passage and return it to the engine.
    An EGR valve for adjusting the flow rate of the EGR gas in the EGR passage, and
    An EGR cooler including a heat exchanger that exchanges heat between the EGR gas and the cooling water of the engine in order to cool the EGR gas flowing through the EGR passage.
    A bypass passage for bypassing a part of the EGR gas flowing to the heat exchanger of the EGR cooler in the EGR passage.
    A bypass valve for opening and closing the bypass passage and
    The EGR cooler and the downstream EGR passage downstream of the bypass passage are made of a resin material.
    The bypass valve includes a valve body and an actuator.
    The actuator is characterized in that the valve body is configured to close from an open state when the temperature of the EGR gas, the temperature of the downstream EGR passage, or the temperature of the cooling water becomes equal to or higher than a first predetermined value. EGR system.
  2.  請求項1に記載のEGRシステムにおいて、
     前記アクチュエータは、温度の変化に感応して動作する
    ことを特徴とするEGRシステム。
    In the EGR system according to claim 1,
    The actuator is an EGR system characterized in that it operates in response to a change in temperature.
  3.  請求項1に記載のEGRシステムにおいて、
     前記アクチュエータは、前記EGR弁を全閉にする条件において前記弁体を開くように構成される
    ことを特徴とするEGRシステム。
    In the EGR system according to claim 1,
    The EGR system is characterized in that the actuator is configured to open the valve body under the condition that the EGR valve is fully closed.
  4.  請求項1乃至3のいずれかに記載のEGRシステムにおいて、
     前記熱交換器は、前記EGRガスが流れ出る出口を含み、前記バイパス通路は、前記熱交換器の前記出口に隣接して配置され前記EGRガスが流れ出る出口を含み、
     前記バイパス弁は、前記弁体が板状をなすことと、前記弁体を回動する回転軸とを更に含み、前記弁体と前記回転軸が前記バイパス通路の前記出口に対応して配置され、前記回転軸が回動することにより前記弁体が前記バイパス通路の前記出口を開閉するように構成され、
     前記回転軸には、前記EGRガスの外部への漏れを防止するためのシール部材が設けられ、
     前記バイパス弁は、前記弁体が前記バイパス通路の前記出口を閉じる閉弁時には、前記弁体が前記熱交換器の軸方向と平行又は前記熱交換器の側に下流へ向けて傾いた位置に配置され、前記弁体が前記バイパス通路の前記出口を開く開弁時には、前記弁体が前記熱交換器の前記出口の流路面積の一部を遮り前記流路面積を狭くする位置に配置される
    ことを特徴とするEGRシステム。
    In the EGR system according to any one of claims 1 to 3.
    The heat exchanger includes an outlet from which the EGR gas flows out, and the bypass passage includes an outlet arranged adjacent to the outlet of the heat exchanger and from which the EGR gas flows out.
    The bypass valve further includes a plate-shaped valve body and a rotating shaft that rotates the valve body, and the valve body and the rotating shaft are arranged so as to correspond to the outlet of the bypass passage. , The valve body is configured to open and close the outlet of the bypass passage by rotating the rotating shaft.
    The rotating shaft is provided with a sealing member for preventing the EGR gas from leaking to the outside.
    The bypass valve is located at a position where the valve body is parallel to the axial direction of the heat exchanger or tilted downstream toward the heat exchanger when the valve body closes the outlet of the bypass passage. Arranged, the valve body is arranged at a position where the valve body blocks a part of the flow path area of the outlet of the heat exchanger and narrows the flow path area when the valve body opens the outlet of the bypass passage. EGR system characterized by that.
  5.  請求項4に記載のEGRシステムにおいて、
     前記熱交換器の前記出口と前記バイパス通路の前記出口との境部位と、前記弁体又は前記回転軸との間に隙間が設けられ、前記隙間は、前記弁体の前記閉弁時よりも前記開弁時の方が大きくなるように構成される
    ことを特徴とするEGRシステム。
    In the EGR system according to claim 4,
    A gap is provided between the boundary portion between the outlet of the heat exchanger and the outlet of the bypass passage and the valve body or the rotating shaft, and the gap is larger than that when the valve body is closed. An EGR system characterized in that it is configured to be larger when the valve is opened.
  6.  請求項1又は3乃至5のいずれかに記載のEGRシステムにおいて、
     前記バイパス弁は、前記弁体を閉弁方向へ付勢する閉弁スプリングを更に含み、
     前記アクチュエータは、コイルを含むステータと、前記ステータの中心にて回転可能に配置されたロータと、前記ロータに対しねじ機構を介して軸方向へ往復動可能に連結された駆動軸と、前記駆動軸をその軸方向へ付勢する軸スプリングとを備え、
     前記バイパス弁の前記回転軸を回動させるために前記回転軸と前記アクチュエータの前記駆動軸とがリンクを介して連結され、
     前記軸スプリングは、前記駆動軸を前記リンク及び前記回転軸を介して前記弁体を閉弁方向へ付勢するように構成される
    ことを特徴とするEGRシステム。
    In the EGR system according to any one of claims 1 or 3 to 5.
    The bypass valve further includes a valve closing spring that urges the valve body in the valve closing direction.
    The actuator includes a stator including a coil, a rotor rotatably arranged at the center of the stator, a drive shaft rotatably connected to the rotor via a screw mechanism in the axial direction, and the drive. Equipped with a shaft spring that urges the shaft in the axial direction,
    In order to rotate the rotating shaft of the bypass valve, the rotating shaft and the driving shaft of the actuator are connected via a link.
    The EGR system is characterized in that the shaft spring is configured to urge the valve body in the valve closing direction via the link and the rotating shaft.
  7.  請求項6に記載のEGRシステムにおいて、
     前記コイルの断線を検出するための断線検出手段と、
     前記EGRガスの還流を制御するためのEGR制御手段と
    を更に備え、
     前記EGR制御手段は、前記断線検出手段の検出結果に応じて前記EGRガスの還流を制御するために、前記EGR弁の開弁開始の条件及び最大開度の少なくとも一方を変更する
    ことを特徴とするEGRシステム。
    In the EGR system according to claim 6,
    The disconnection detecting means for detecting the disconnection of the coil and the disconnection detecting means.
    Further provided with an EGR control means for controlling the recirculation of the EGR gas, the EGR control means is further provided.
    The EGR control means is characterized in that at least one of a valve opening start condition and a maximum opening degree of the EGR valve is changed in order to control the recirculation of the EGR gas according to the detection result of the disconnection detection means. EGR system to do.
  8.  請求項1乃至3のいずれかに記載のEGRシステムにおいて、
     前記EGRクーラは、ハウジングを含み、
     前記バイパス通路の少なくとも一部は、前記EGRクーラの前記ハウジングと一体に設けられ、
     前記バイパス弁は、前記EGRクーラの前記ハウジングと一体に設けられる前記バイパス通路に設けられ、
     前記バイパス弁の周囲には前記冷却水が流れる冷却水通路が設けられる
    ことを特徴とするEGRシステム。
    In the EGR system according to any one of claims 1 to 3.
    The EGR cooler includes a housing and
    At least a portion of the bypass passage is provided integrally with the housing of the EGR cooler.
    The bypass valve is provided in the bypass passage provided integrally with the housing of the EGR cooler.
    An EGR system characterized in that a cooling water passage through which the cooling water flows is provided around the bypass valve.
  9.  請求項1乃至3のいずれか又は8に記載のEGRシステムにおいて、
     前記EGR弁は、アルミ材より形成されるハウジングを含み、
     前記バイパス弁は、前記EGR弁の前記ハウジングと一体に設けられる
     ことを特徴とするEGRシステム。
    In the EGR system according to any one of claims 1 to 3 or 8.
    The EGR valve includes a housing made of aluminum material.
    The EGR system is characterized in that the bypass valve is provided integrally with the housing of the EGR valve.
  10.  請求項1乃至9のいずれかに記載のEGRシステムにおいて、
     前記EGRクーラが車両に搭載された状態において、前記バイパス通路は、前記EGRクーラに対し鉛直方向下側に配置され、その上流側が前記排気通路へ向かって鉛直方向下方へ傾斜する
    ことを特徴とするEGRシステム。
    In the EGR system according to any one of claims 1 to 9.
    When the EGR cooler is mounted on a vehicle, the bypass passage is arranged vertically downward with respect to the EGR cooler, and the upstream side thereof is inclined vertically downward toward the exhaust passage. EGR system.
  11.  請求項1乃至10のいずれかに記載のEGRシステムにおいて、
     前記EGRクーラと前記バイパス通路は、仕切壁を介して隣接する
    ことを特徴とするEGRシステム。
    In the EGR system according to any one of claims 1 to 10.
    An EGR system characterized in that the EGR cooler and the bypass passage are adjacent to each other via a partition wall.
  12.  請求項11に記載のEGRシステムにおいて、
     前記仕切壁は、前記熱交換器に接する主壁部と、前記熱交換器より下流へ延びる下流壁部とを含み、前記下流壁部には、前記EGRクーラから前記バイパス通路に連通する少なくとも一つの連通孔が設けられる
    ことを特徴とするEGRシステム。
    In the EGR system according to claim 11,
    The partition wall includes a main wall portion in contact with the heat exchanger and a downstream wall portion extending downstream from the heat exchanger, and the downstream wall portion includes at least one communicating from the EGR cooler to the bypass passage. An EGR system characterized in that two communication holes are provided.
  13.  請求項12に記載のEGRシステムにおいて、
     前記連通孔は、前記バイパス弁の前記弁体と対向する位置に配置され、前記バイパス弁の閉弁時に前記弁体と前記下流壁部との干渉を避ける逃がし孔として機能する
    ことを特徴とするEGRシステム。
    In the EGR system according to claim 12,
    The communication hole is arranged at a position facing the valve body of the bypass valve, and functions as a relief hole for avoiding interference between the valve body and the downstream wall portion when the bypass valve is closed. EGR system.
  14.  請求項11乃至13のいずれかに記載のEGRシステムにおいて、
     前記EGRクーラには、前記仕切壁に隣接し、前記EGRガスの流れ方向に平行な複数のフィンが設けられる
    ことを特徴とするEGRシステム。
    In the EGR system according to any one of claims 11 to 13.
    The EGR system is characterized in that the EGR cooler is provided with a plurality of fins adjacent to the partition wall and parallel to the flow direction of the EGR gas.
  15.  請求項11乃至14のいずれかに記載のEGRシステムにおいて、
     前記バイパス通路には、前記仕切壁に接し、前記EGRガスの流れ方向に平行な複数のフィンが設けられる
    ことを特徴とするEGRシステム。
    In the EGR system according to any one of claims 11 to 14,
    The EGR system is characterized in that the bypass passage is provided with a plurality of fins in contact with the partition wall and parallel to the flow direction of the EGR gas.
  16.  請求項1乃至15のいずれかに記載のEGRシステムにおいて、
     前記バイパス通路において前記バイパス弁へ流れる前記EGRガスを迂回させるためのサブバイパス通路を更に備え、
     前記サブバイパス通路には、外気温度が第2所定値未満となるときに開弁するサブバイパス弁が設けられる
    ことを特徴とするEGRシステム。
    In the EGR system according to any one of claims 1 to 15,
    Further provided with a sub-bypass passage for bypassing the EGR gas flowing to the bypass valve in the bypass passage.
    The EGR system is characterized in that the sub-bypass passage is provided with a sub-bypass valve that opens when the outside air temperature becomes less than a second predetermined value.
  17.  請求項1乃至16のいずれかに記載のEGRシステムにおいて、
     前記下流側EGR通路の温度又は前記下流側EGR通路を流れる前記EGRガスの温度を検出するための温度検出手段と、
     前記温度検出手段の検出値に基づき前記EGR弁を制御するための第1制御手段と
    を更に備え、
     前記第1制御手段は、前記温度検出手段により検出される温度が前記下流側EGR通路の加熱許容温度を超えた場合に、前記EGR弁を強制的に全閉又は中間開度に制御する
    ことを特徴とするEGRシステム。
    In the EGR system according to any one of claims 1 to 16.
    A temperature detecting means for detecting the temperature of the downstream EGR passage or the temperature of the EGR gas flowing through the downstream EGR passage, and
    Further provided with a first control means for controlling the EGR valve based on the detection value of the temperature detecting means.
    The first control means forcibly controls the EGR valve to a fully closed position or an intermediate opening degree when the temperature detected by the temperature detecting means exceeds the allowable heating temperature of the downstream EGR passage. Characterized EGR system.
  18.  請求項1乃至17のいずれかに記載のEGRシステムにおいて、
     前記下流側EGR通路の温度又は前記下流側EGR通路を流れる前記EGRガスの温度を検出するための温度検出手段と、
     前記温度検出手段の検出値に基づき前記EGR弁を制御するための第2制御手段と
    を更に備え、
     前記第2制御手段は、前記温度検出手段により検出される温度が第3所定値以上で前記下流側EGR通路の耐熱温度未満となる場合に、前記EGR弁を通常の開度に制御する
    ことを特徴とするEGRシステム。
    In the EGR system according to any one of claims 1 to 17.
    A temperature detecting means for detecting the temperature of the downstream EGR passage or the temperature of the EGR gas flowing through the downstream EGR passage, and
    Further provided with a second control means for controlling the EGR valve based on the detection value of the temperature detecting means.
    The second control means controls the EGR valve to a normal opening degree when the temperature detected by the temperature detecting means is equal to or higher than the third predetermined value and is lower than the heat resistant temperature of the downstream EGR passage. Characterized EGR system.
  19.  請求項3に記載のEGRシステムにおいて、
     前記アクチュエータは、電気的に動作し、
     前記下流側EGR通路の温度又は前記下流側EGR通路を流れる前記EGRガスの温度を検出するための温度検出手段と、
     前記温度検出手段の検出値に基づき前記バイパス弁を制御するための第3制御手段と
    を更に備え、
     前記第3制御手段は、前記温度検出手段により検出される温度が前記下流側EGR通路の加熱許容温度を超えた場合に、前記バイパス弁を閉弁させるように前記アクチュエータを制御する
    ことを特徴とするEGRシステム。
    In the EGR system according to claim 3,
    The actuator operates electrically and
    A temperature detecting means for detecting the temperature of the downstream EGR passage or the temperature of the EGR gas flowing through the downstream EGR passage, and
    Further provided with a third control means for controlling the bypass valve based on the detection value of the temperature detecting means.
    The third control means is characterized in that the actuator is controlled so as to close the bypass valve when the temperature detected by the temperature detecting means exceeds the allowable heating temperature of the downstream EGR passage. EGR system to do.
  20.  請求項19に記載のEGRシステムにおいて、
     前記バイパス弁は、前記アクチュエータをオフして動作させないとき閉弁となるように構成される
    ことを特徴とするEGRシステム。
    In the EGR system of claim 19,
    The EGR system is characterized in that the bypass valve is configured to be closed when the actuator is turned off and not operated.
PCT/JP2021/023079 2020-07-27 2021-06-17 Egr system WO2022024578A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2020-126219 2020-07-27
JP2020126219 2020-07-27
JP2021-048848 2021-03-23
JP2021048848A JP2022023773A (en) 2020-07-27 2021-03-23 EGR system

Publications (1)

Publication Number Publication Date
WO2022024578A1 true WO2022024578A1 (en) 2022-02-03

Family

ID=80035381

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/023079 WO2022024578A1 (en) 2020-07-27 2021-06-17 Egr system

Country Status (1)

Country Link
WO (1) WO2022024578A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005273564A (en) * 2004-03-25 2005-10-06 Denso Corp Exhaust gas recirculation device
JP2007009724A (en) * 2005-06-28 2007-01-18 Denso Corp Heat exchange device for exhaust gas
JP2008309133A (en) * 2007-06-18 2008-12-25 Toyota Motor Corp Exhaust gas recirculation system for internal combustion engine
JP2009156115A (en) * 2007-12-26 2009-07-16 Aisan Ind Co Ltd Exhaust gas recirculation device
JP2010285897A (en) * 2009-06-10 2010-12-24 Honda Motor Co Ltd Exhaust gas recirculation device
JP2016070141A (en) * 2014-09-29 2016-05-09 マツダ株式会社 Engine control device
JP2019085936A (en) * 2017-11-08 2019-06-06 愛三工業株式会社 EGR gas distributor
JP2019094845A (en) * 2017-11-23 2019-06-20 愛三工業株式会社 Egr cooler bypass valve and control device for the same
JP2019157800A (en) * 2018-03-15 2019-09-19 ダイハツ工業株式会社 Internal combustion engine

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005273564A (en) * 2004-03-25 2005-10-06 Denso Corp Exhaust gas recirculation device
JP2007009724A (en) * 2005-06-28 2007-01-18 Denso Corp Heat exchange device for exhaust gas
JP2008309133A (en) * 2007-06-18 2008-12-25 Toyota Motor Corp Exhaust gas recirculation system for internal combustion engine
JP2009156115A (en) * 2007-12-26 2009-07-16 Aisan Ind Co Ltd Exhaust gas recirculation device
JP2010285897A (en) * 2009-06-10 2010-12-24 Honda Motor Co Ltd Exhaust gas recirculation device
JP2016070141A (en) * 2014-09-29 2016-05-09 マツダ株式会社 Engine control device
JP2019085936A (en) * 2017-11-08 2019-06-06 愛三工業株式会社 EGR gas distributor
JP2019094845A (en) * 2017-11-23 2019-06-20 愛三工業株式会社 Egr cooler bypass valve and control device for the same
JP2019157800A (en) * 2018-03-15 2019-09-19 ダイハツ工業株式会社 Internal combustion engine

Similar Documents

Publication Publication Date Title
US9222398B2 (en) Cooling system
JP5799963B2 (en) Exhaust circulation device for internal combustion engine
US10738730B2 (en) Cooling device for engine
JP2000320389A (en) Thermostat failure diagnostic device for internal combustion engine
CN108691632B (en) Engine control device
US11401882B2 (en) Method for detecting heater core isolation valve status
KR19990036479A (en) Internal injection fuel control system of internal combustion engine
JP2006057635A (en) Mounting arrangement for electric water pump
JP2020176579A (en) Cooling device for engine
WO2022024578A1 (en) Egr system
US10961884B1 (en) Exhaust gas heat recovery device system and method
JP2022023773A (en) EGR system
JP2021188540A (en) EGR system
JP2009127543A (en) Heating device for pcv valve
JP5200923B2 (en) Control method and apparatus for compression self-ignition engine
WO2009113366A1 (en) Cooling system for internal combustion engine
JP6544376B2 (en) Internal combustion engine cooling system
JP2011220235A (en) Control device of internal combustion engine
JP4042274B2 (en) Fuel injection valve heating device for internal combustion engine
JP5845619B2 (en) Exhaust gas recirculation device for internal combustion engine
JP2006105105A (en) Engine cooling device
WO2022102561A1 (en) Egr device
JP7435075B2 (en) engine cooling system
WO2022024551A1 (en) Egr system
JP2008157102A (en) Cooling device for internal combustion engine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21849144

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21849144

Country of ref document: EP

Kind code of ref document: A1