WO2022024496A1 - Input element and switch - Google Patents

Input element and switch Download PDF

Info

Publication number
WO2022024496A1
WO2022024496A1 PCT/JP2021/018095 JP2021018095W WO2022024496A1 WO 2022024496 A1 WO2022024496 A1 WO 2022024496A1 JP 2021018095 W JP2021018095 W JP 2021018095W WO 2022024496 A1 WO2022024496 A1 WO 2022024496A1
Authority
WO
WIPO (PCT)
Prior art keywords
resistance value
electric resistance
conductive
elongation rate
input element
Prior art date
Application number
PCT/JP2021/018095
Other languages
French (fr)
Japanese (ja)
Inventor
晴彦 伊藤
Original Assignee
帝人株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 帝人株式会社 filed Critical 帝人株式会社
Publication of WO2022024496A1 publication Critical patent/WO2022024496A1/en

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D1/00Woven fabrics designed to make specified articles
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • D03D15/50Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the properties of the yarns or threads
    • D03D15/533Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the properties of the yarns or threads antistatic; electrically conductive
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • D03D15/50Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the properties of the yarns or threads
    • D03D15/56Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the properties of the yarns or threads elastic
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04BKNITTING
    • D04B1/00Weft knitting processes for the production of fabrics or articles not dependent on the use of particular machines; Fabrics or articles defined by such processes
    • D04B1/14Other fabrics or articles characterised primarily by the use of particular thread materials
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04BKNITTING
    • D04B21/00Warp knitting processes for the production of fabrics or articles not dependent on the use of particular machines; Fabrics or articles defined by such processes
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04BKNITTING
    • D04B21/00Warp knitting processes for the production of fabrics or articles not dependent on the use of particular machines; Fabrics or articles defined by such processes
    • D04B21/14Fabrics characterised by the incorporation by knitting, in one or more thread, fleece, or fabric layers, of reinforcing, binding, or decorative threads; Fabrics incorporating small auxiliary elements, e.g. for decorative purposes
    • D04B21/18Fabrics characterised by the incorporation by knitting, in one or more thread, fleece, or fabric layers, of reinforcing, binding, or decorative threads; Fabrics incorporating small auxiliary elements, e.g. for decorative purposes incorporating elastic threads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H13/00Switches having rectilinearly-movable operating part or parts adapted for pushing or pulling in one direction only, e.g. push-button switch

Definitions

  • This disclosure relates to input elements and switches.
  • Conductive fabrics are known as materials for electromagnetic wave shields, thin pressure sensors, static electricity removal sheets, and the like.
  • the conductive fabric has a characteristic that the electric resistance value increases or decreases according to the elongation rate because the contact area between the conductive portion, for example, the conductive thread or the metal-plated portion changes due to the elongation. Has been done. Further, sensors and the like utilizing such characteristics of the conductive fabric are also known.
  • Patent Document 1 is composed of a covering yarn in which an elastic yarn is used for the core portion and a conductive yarn is used for the covering portion covering the core portion, and the electric resistance value of the covering yarn changes in correlation with the elongation rate of the covering yarn.
  • a conductive stretchable yarn having variable resistance characteristics and a fabric woven using the same conductive stretchable yarn are disclosed.
  • Patent Document 2 includes a sensor portion fixed to the footwear or the insole so as to be in contact with a predetermined area of the sole of the foot, and detects slippage of the sole of the foot during walking inside the footwear depending on how a load is applied to the sensor portion.
  • the sensor unit is made of pile cloth in which a plurality of piles are erected on the base cloth, and the pile cloth is covered by winding conductive wound yarn around a core yarn made of elastic yarn. Formed by weaving yarn, the wound yarn is composed of pressure-sensitive conductive yarn whose electrical resistance value changes according to expansion and contraction by blending conductive fibers and non-conductive fibers, resulting in deformation of the pile.
  • a sole slip detecting device further comprising a measuring means for measuring a change in the electric resistance value of the pile fabric based on the expansion and contraction of the wound yarn.
  • the conductive fabric has a characteristic that the electric resistance value increases or decreases according to the elongation rate because the contact area between the conductive portion, for example, the conductive thread or the metal-plated portion changes due to the elongation.
  • the present discloser has focused on such characteristics of the conductive fabric and examined a new input element.
  • the present disclosure aims to provide a novel input element using a conductive cloth.
  • ⁇ Aspect 1 It has a conductive fabric whose electrical resistance value increases or decreases according to the elongation rate in the in-plane direction.
  • the conductive cloth is When not pressed, the in-plane extension rate becomes the first extension rate, and when pressed, the in-plane extension rate is smaller than the first extension rate.
  • the rate changes in the order of the third elongation rate larger than the first elongation rate.
  • the input element that is configured.
  • ⁇ Aspect 2 It also has an elastic member, The conductive fabric is arranged so as to cover at least a part of the elastic member, and the conductive fabric is arranged so as to cover at least a part of the elastic member.
  • the in-plane elongation rate of at least the portion of the conductive fabric covering the elastic member is the first elongation rate.
  • the portion of the conductive fabric covering the elastic member is pressed from the surface side of the conductive fabric that does not face the elastic member, at least the elastic member of the conductive fabric is coated.
  • the in-plane elongation rate of the portion is changed in the order of the second elongation rate smaller than the first extension rate and the third extension rate larger than the first extension rate. It is configured,
  • ⁇ Aspect 4 The input according to any one of aspects 1 to 3, wherein the conductive cloth is a cloth in which conductive fibers are woven or a non-conductive cloth whose surface is covered with a conductive material. element.
  • ⁇ Aspect 5 The electric resistance value of the conductive cloth when the in-plane elongation rate of the conductive cloth is the first elongation rate is defined as the first electric resistance value.
  • the electric resistance value of the conductive cloth when the in-plane elongation rate of the conductive cloth is the second elongation rate, the second electric resistance value, and the in-plane extension rate of the conductive cloth.
  • Aspect 6 The input element according to aspect 5, A detection unit that detects parameters according to the electrical resistance value of the conductive fabric, and a transmission unit that transmits a signal according to the parameters detected by the detection unit. Have and The transmitting unit transmits a first signal when the parameter is a parameter corresponding to an electric resistance value equal to or higher than the third electric resistance value. switch.
  • the electric resistance value of the conductive cloth when the in-plane elongation rate of the conductive cloth is the first elongation rate is defined as the first electric resistance value.
  • the electric resistance value of the conductive cloth when the in-plane elongation rate of the conductive cloth is the second elongation rate, the second electric resistance value, and the in-plane extension rate of the conductive cloth.
  • ⁇ Aspect 8 The input element according to aspect 7, A detection unit that detects parameters according to the electrical resistance value of the conductive fabric, and a transmission unit that transmits a signal according to the parameters detected by the detection unit. Have and The transmitting unit transmits a first signal when the parameter is a parameter corresponding to an electric resistance value equal to or lower than the third electric resistance value. switch.
  • ⁇ Aspect 9 The switch according to aspect 6 or 8, further comprising a control unit that controls a control target based on the signal transmitted from the transmission unit.
  • FIG. 1 is a schematic view showing a state in which the input element 1 according to the first embodiment of the present disclosure is not pressed.
  • FIG. 2 is a schematic diagram showing a state in which the input element 1 according to the first embodiment of the present disclosure is pressed.
  • FIG. 3 is a schematic view showing a state in which the input element 1 according to the first embodiment of the present disclosure is further pressed than in the state shown in FIG.
  • FIG. 4 is a graph showing changes in the electrical resistance value of the conductive fabric in the states of FIGS. 1 to 3 for the input element 1 according to the first embodiment of the present disclosure.
  • FIG. 5 is a graph showing changes in the electrical resistance value of the conductive fabric in the same state as in FIGS. 1 to 3 for the input element 1 according to the second embodiment of the present disclosure.
  • FIG. 6 is a schematic diagram showing a switch 2 according to the first embodiment of the present disclosure.
  • the input element of the present disclosure has a conductive cloth whose electric resistance value increases or decreases according to the elongation rate in the in-plane direction, and the conductive cloth has an extension rate in the in-plane direction when not pressed.
  • the first elongation rate, and when pressed, the in-plane extension rate is smaller than the first extension rate, the second extension rate, and the third extension rate, which is larger than the first extension rate.
  • the conductive cloth is arranged in a state where the conductive cloth has a first elongation rate in a state where the conductive cloth is not pressed. Then, in the input element of the present disclosure, when the conductive cloth is pressed, the elongation rate of the conductive cloth increases, and the magnitude of the pressing, more specifically, the pressing causes the portion of the conductive cloth of the input element.
  • the second elongation rate is smaller than the first elongation rate, and the first elongation rate is higher than the first elongation rate. It changes in the order of the large third elongation rate.
  • the conductive fabric has a characteristic that the electric resistance value increases or decreases according to the elongation rate because the contact area between the conductive portion, for example, the conductive thread or the metal-plated portion changes due to the elongation. Therefore, in the input element of the present disclosure, the increase / decrease of the electric resistance value in the case where the pressing is not pressed is reversed depending on the case where the pressing is small and the case where the pressing is large.
  • the elongation rate of the conductive cloth is smaller than that in the state where the conductive cloth is not pressed. Therefore, the electric resistance value is smaller than that in the state where the conductive cloth is not pressed.
  • the pressing is larger than a predetermined value
  • the elongation rate of the conductive fabric is larger than that in the state where the conductive fabric is not pressed. Therefore, the electric resistance value becomes larger than that in the state where the conductive cloth is not pressed.
  • the input element of the present disclosure includes, for example, an element capable of performing different input depending on whether or not the pressing magnitude is a predetermined value, or a pressing magnitude of a predetermined value or more. It can be used as an element or the like that can perform input only in the case of.
  • the input element of the present disclosure may further have an elastic member, for example, in addition to the above-mentioned configuration relating to the conductive fabric, and the conductive fabric is arranged so as to cover at least a part of the elastic member.
  • the in-plane elongation rate of at least the portion of the conductive fabric covering the elastic member is the first elongation rate and is conductive.
  • the portion of the woven fabric covering the elastic member is pressed from the surface side of the conductive fabric that does not face the elastic member, at least the portion of the conductive fabric covering the elastic member is in the plane.
  • the elongation rate in the direction can be configured to change in the order of a second elongation rate smaller than the first extension rate and a third extension rate larger than the first extension rate.
  • the elastic member can be arranged on the base material.
  • FIG. 1 is a schematic diagram showing a state in which the input element according to the first embodiment of the present disclosure is not pressed.
  • the input element 1 according to the first embodiment of the present disclosure has a base material 10, an elastic member 20, and a conductive cloth 30.
  • the elastic member 20 is arranged on the base material 10, and the surface of the elastic member 20 and the surface of the base material 10 are conductive.
  • the sex cloth 30 is covered.
  • the elastic member 20 is arranged so as to protrude from the base material 10, whereby at least the portion 31 of the conductive fabric 30 covering the elastic member 20 is up to the first elongation rate. It has been stretched.
  • the conductive cloth 30 has a first elongation ratio E 1 and a first electric resistance value R 1 .
  • the portion 31 of the conductive cloth 30 covering the elastic member 20 is further pressed from the surface side of the conductive cloth 30 that does not face the elastic member 20 to bring about the state of FIG. Then, the conductive fabric 30 is stretched in the in-plane direction, and the stretch rate thereof becomes a third stretch rate E3 which is larger than the first stretch rate E1. Therefore, the electric resistance value R 3 of the conductive cloth 30 at this time is larger than the first electric resistance value R 1 .
  • the input element according to the first embodiment of the present disclosure is, for example, an element capable of performing different input depending on whether or not the pressing magnitude is a predetermined value, or an element having a pressing magnitude of a predetermined value or more. It can be used as an element or the like that can input only in a certain case.
  • FIGS. 1 to 4 is intended to limit the input elements of the present disclosure.
  • the conductive cloth used for the input element of the present disclosure may be any conductive cloth having a property that the electric resistance value increases or decreases according to the elongation rate in the in-plane direction.
  • the conductive fabric used for the input element of the present disclosure may be a fabric having conductivity, flexibility, and breathability.
  • the conductive cloth used for the input element of the present disclosure is, for example, a cloth formed of conductive fibers and optionally non-conductive fibers, or a cloth obtained by subjecting a non-conductive cloth to a conductive treatment, for example, a metal-plated cloth.
  • a conductive treatment for example, a metal-plated cloth.
  • the conductive fiber include iron, copper, aluminum, stainless steel, gold, and silver, and a conductive metal thread made of an alloy or compound of these metals, a conductive carbon fiber, and the like.
  • the non-conductive fiber include resin fibers such as nylon, polyester, polyethylene, polystyrene, and polyethylene terephthalate.
  • the metal plating include the above-mentioned metal plating.
  • the conductive cloth used for the input element of the present disclosure may be a cloth in which conductive fibers are woven or knitted, or a non-conductive cloth whose surface is covered with a conductive material.
  • the in-plane elongation rate becomes the first elongation rate
  • the in-plane extension rate becomes the first. It is configured so that the second elongation rate smaller than the elongation rate of 1 and the third elongation rate larger than the first elongation rate change in this order.
  • the direction of pressing may be, for example, any direction that intersects the surface of the conductive fabric.
  • the conductive cloth has the electric resistance value of the conductive cloth when the elongation rate in the in-plane direction of the conductive cloth is the first elongation rate, and the first electric resistance value and the conductivity.
  • the electric resistance value of the conductive cloth when the in-plane elongation rate of the cloth is the second elongation rate, the second electric resistance value, and the in-plane extension rate of the conductive cloth are the third elongation rate.
  • the electric resistance value of the conductive cloth at the ratio is the third electric resistance value
  • the second electric resistance value ⁇ the first electric resistance value ⁇ the third electric resistance value is satisfied, or the third electric resistance value is satisfied. It is possible to satisfy the electric resistance value of 3 ⁇ the first electric resistance value ⁇ the second electric resistance value.
  • the conductive cloth 30 has a second electric resistance value ⁇ first electric resistance value ⁇ third electric resistance value.
  • the elongation rate of the conductive cloth 30 and the electric resistance value can show the relationship as shown in FIG. In FIG. 4, the first elongation rate, the second elongation rate, and the third elongation rate are E 1 , E 2 , and E 3 , respectively, and the first electric resistance value and the second electricity.
  • the resistance value and the third electric resistance value are R 1 , R 2 , and R 3 , respectively.
  • the conductive cloth 30 has a third electric resistance value ⁇ first electric resistance value ⁇ second electric power.
  • the elongation rate of the conductive cloth 30 and the electric resistance value can show the relationship as shown in FIG. In FIG. 4, the first elongation rate, the second elongation rate, and the third elongation rate are E 1 , E 2 , and E 3 , respectively, and the first electric resistance value and the second electricity.
  • the resistance value and the third electric resistance value are R'1, R'2 , and R'3 , respectively.
  • the electric resistance value increases as the elongation rate in the in-plane direction of the conductive cloth increases.
  • Examples include those that increase, more specifically, fabrics formed of conductive fibers and optionally non-conductive fibers, or fabrics obtained by subjecting non-conductive fabrics to a conductive treatment, such as metal plating. Yes, but not limited to this.
  • these conductive fabrics have an electric resistance value according to an increase in the elongation rate due to a decrease in the contact area between the conductive portions due to a gap between the fibers due to the elongation. Is expected to increase.
  • the electric resistance value increases as the elongation rate in the in-plane direction of the conductive cloth increases. What is reduced, more specifically, the contact area between the conductive fibers is small in the non-stretched state, and the contact area between the conductive fibers is increased when stretched. , But not limited to, fabrics formed of conductive fibers and optionally non-conductive fibers.
  • the elastic member may be any member that can be elastically deformed by pressing.
  • Examples of the elastic member include, but are not limited to, a cushioning material such as a spring, rubber, or a non-woven fabric, urethane, or a gel body.
  • the shape of the elastic member may be any three-dimensional shape, for example, a spherical shape, a hemispherical shape, a rectangular parallelepiped shape, a pillar shape, or the like.
  • the base material may be any base material on which the elastic member can be arranged.
  • the base material may be, for example, a plate, but the shape thereof is not particularly limited.
  • the switch of the present disclosure includes an input element of the present disclosure, a detection unit that detects parameters according to the electric resistance value of the conductive fabric, and a transmission unit that transmits a signal according to the parameters detected by the detection unit. ing.
  • the switch of the present disclosure may further have a control unit that controls a controlled object based on a signal transmitted from the transmitting unit.
  • the control target to be controlled by the switch of the present disclosure is not particularly limited.
  • the switch of the present disclosure can have a detection unit that detects a parameter according to the electric resistance value of the conductive fabric.
  • the parameter according to the electric resistance value may be an arbitrary parameter that changes according to the magnitude of the electric resistance value, the rate of change of the electric resistance value per predetermined time unit, and the like.
  • the electric resistance It may be the value itself, or it may be a voltage value, a current value, an impedance, or the like, but it is not limited thereto.
  • the switch of the present disclosure may be used in combination with an input element or the like that can obtain a change in the capacitance at the time of pressing or a change in the capacitance due to the pressing.
  • the detection unit can be appropriately selected according to the parameters to be detected.
  • the detection unit may be a device having a resistance measuring instrument, a voltmeter, an ammeter, an LCR meter, and the like.
  • the switch of the present disclosure has, in addition to a detection unit that detects a parameter according to the electric resistance value of the conductive fabric, further, a transmission unit that transmits a signal according to the parameter detected by the detection unit. Can be done.
  • the transmitter has a parameter of the third electric resistance value or more.
  • the parameter corresponds to the electric resistance value of
  • the first signal can be transmitted.
  • the parameter is a parameter corresponding to the electric resistance value less than the third electric resistance value
  • a second signal different from the first signal may be transmitted.
  • the transmitter has a parameter of the third electric resistance.
  • the parameter corresponds to the electric resistance value equal to or less than the value
  • the first signal can be transmitted.
  • the parameter is a parameter corresponding to the electric resistance value exceeding the third electric resistance value
  • a second signal different from the first signal may be transmitted.
  • the resistance value change can be associated with the operation of pressing the input element, and the feedback function for the operation of pressing the input element can be provided. It is thought that it will be possible to grant it. Furthermore, by providing the feedback function, depending on the degree of pressing, multiple types of deformation, discoloration, lighting / blinking of the light source, voice transmission, or information communication to other devices (and information communication from other devices) We believe that it will be possible to provide products in the fields of children's toys, rehabilitation applications, long-term care applications, etc. It is understood that the operation of pressing the input element includes the operation of the user consciously or unconsciously, directly or indirectly, pressing the input element.
  • FIG. 6 is a schematic diagram showing a switch 2 according to the first embodiment of the present disclosure.
  • the switch 2 As shown in FIG. 6, the switch 2 according to the first embodiment of the present disclosure has a detection unit 40, a transmission unit 50, and a control unit 60 in addition to the configuration shown in FIG. The switch 2 controls the control target 3 by the control unit 60.
  • FIG. 6 is not intended to limit the switches disclosed in the present disclosure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Push-Button Switches (AREA)
  • Knitting Of Fabric (AREA)
  • Woven Fabrics (AREA)

Abstract

Provided is a novel input element that uses a conductive fabric. This input element (1) includes a conductive fabric (30) that exhibits an increase or decrease in an electrical resistance value according to the elongation rate in the in-plane direction. The conductive fabric (30) is configured such that when the conductive fabric is not being pressed, the elongation rate in the in-plane direction is a first elongation rate, and such that when being pressed, the elongation rate in the in-plane direction changes in the order of a second elongation rate that is less than the first elongation rate, and then a third elongation rate that is greater than the first elongation rate.

Description

入力素子及びスイッチInput elements and switches
 本開示は、入力素子及びスイッチに関する。 This disclosure relates to input elements and switches.
 電磁波シールド、薄型の圧力センサ、及び静電気除去シート等の材料として、導電性布帛が知られている。 Conductive fabrics are known as materials for electromagnetic wave shields, thin pressure sensors, static electricity removal sheets, and the like.
 導電性布帛は、伸長によって導電性部分、例えば導電性の糸や金属メッキ部分間の接触面積が変化するため、伸長率に応じて電気抵抗値が増減するという特性を有しているものが知られている。また、導電性布帛のこのような特性を利用したセンサ類等も知られている。 It is known that the conductive fabric has a characteristic that the electric resistance value increases or decreases according to the elongation rate because the contact area between the conductive portion, for example, the conductive thread or the metal-plated portion changes due to the elongation. Has been done. Further, sensors and the like utilizing such characteristics of the conductive fabric are also known.
 特許文献1は、芯部に弾性糸を用い、芯部を被覆する被覆部に導電糸を用いたカバリング糸で構成され、カバリング糸の電気抵抗値がカバリング糸の伸長率と相関して変化する可変抵抗特性を備えている導電性伸縮糸、及び同導電性伸縮糸を用いて織成した布帛を開示している。 Patent Document 1 is composed of a covering yarn in which an elastic yarn is used for the core portion and a conductive yarn is used for the covering portion covering the core portion, and the electric resistance value of the covering yarn changes in correlation with the elongation rate of the covering yarn. A conductive stretchable yarn having variable resistance characteristics and a fabric woven using the same conductive stretchable yarn are disclosed.
 また、特許文献2は、足裏の所定領域に接するように履物またはインソールに固定されるセンサ部を備え、センサ部に対する荷重のかかり方により履物内部における歩行時の足裏の滑りを検出する足裏滑り検出装置であって、センサ部は、基布に複数のパイルが立設されたパイル布帛からなり、パイル布帛は、弾性糸からなる芯糸に導電性を有する巻糸を巻き付けてなるカバリング糸を織り成すことにより形成され、巻糸は、導電性繊維と非導電性繊維とを混紡することによって、伸縮に応じて電気抵抗値が変化する感圧導電性糸により構成され、パイルの変形に伴う巻糸の伸縮に基づいたパイル布帛の電気抵抗値の変化を計測する計測手段をさらに備える足裏滑り検出装置を開示している。 Further, Patent Document 2 includes a sensor portion fixed to the footwear or the insole so as to be in contact with a predetermined area of the sole of the foot, and detects slippage of the sole of the foot during walking inside the footwear depending on how a load is applied to the sensor portion. In the back slip detection device, the sensor unit is made of pile cloth in which a plurality of piles are erected on the base cloth, and the pile cloth is covered by winding conductive wound yarn around a core yarn made of elastic yarn. Formed by weaving yarn, the wound yarn is composed of pressure-sensitive conductive yarn whose electrical resistance value changes according to expansion and contraction by blending conductive fibers and non-conductive fibers, resulting in deformation of the pile. Disclosed is a sole slip detecting device further comprising a measuring means for measuring a change in the electric resistance value of the pile fabric based on the expansion and contraction of the wound yarn.
特開2017-125291号公報JP-A-2017-125291 特開2012-40236号公報Japanese Unexamined Patent Publication No. 2012-40236
 導電性布帛は、伸長によって導電性部分、例えば導電性の糸や金属メッキ部分間の接触面積が変化するため、伸長率に応じて電気抵抗値が増減するという特性を有している。本開示者は、導電性布帛が有しているこのような特性に着目して、新規の入力素子を検討した。 The conductive fabric has a characteristic that the electric resistance value increases or decreases according to the elongation rate because the contact area between the conductive portion, for example, the conductive thread or the metal-plated portion changes due to the elongation. The present discloser has focused on such characteristics of the conductive fabric and examined a new input element.
 本開示は、導電性布帛を利用した、新規の入力素子を提供することを目的とする。 The present disclosure aims to provide a novel input element using a conductive cloth.
 本開示者は、以下の手段により上記課題を達成することができることを見出した:
 《態様1》
 面内方向の伸長率に応じて電気抵抗値が増減する導電性布帛を有しており、
 前記導電性布帛は、
 押圧されていないときに、面内方向の伸長率が、第1の伸長率となり、かつ
 押圧されたときに、面内方向の伸長率が、前記第1の伸長率よりも小さい第2の伸長率、前記第1の伸長率よりも大きい第3の伸長率の順に変化するように、
構成されている、入力素子。
 《態様2》
 弾性部材を更に有しており、
 前記導電性布帛は、前記弾性部材の少なくとも一部分を被覆するようにして配置されており、かつ
 前記導電性布帛は、
 押圧されていないときに、前記導電性布帛のうち少なくとも前記弾性部材を被覆している部分の面内方向の伸長率は、前記第1の伸長率であり、
 前記導電性布帛のうち、前記弾性部材を被覆している部分を、前記導電性布帛のうち前記弾性部材と対向しない面側から押圧したときに、前記導電性布帛のうち少なくとも前記弾性部材を被覆している部分の面内方向の伸長率が、前記第1の伸長率よりも小さい第2の伸長率、前記第1の伸長率よりも大きい第3の伸長率の順に変化するように、
構成されている、
態様1に記載の入力素子。
 《態様3》
 前記弾性部材が基材上に配置されている、態様2に記載の入力素子。
 《態様4》
 前記導電性布帛は、導電性の繊維が織編されている布帛、又は導電性材料によって表面が被覆されている非導電性の布帛である、態様1~3のいずれか一つに記載の入力素子。
 《態様5》
 前記導電性布帛の面内方向の伸長率が第1の伸長率であるときの前記導電性布帛の電気抵抗値を、第1の電気抵抗値、
 前記導電性布帛の面内方向の伸長率が第2の伸長率であるときの前記導電性布帛の電気抵抗値を、第2の電気抵抗値、及び
 前記導電性布帛の面内方向の伸長率が第3の伸長率であるときの前記導電性布帛の電気抵抗値を、第3の電気抵抗値としたときに、
 第2の電気抵抗値<第1の電気抵抗値<第3の電気抵抗値である、
態様1~4のいずれか一つに記載の入力素子。
 《態様6》
 態様5に記載の入力素子、
 前記導電性布帛の電気抵抗値に応じたパラメータを検出する検出部、及び
 前記検出部によって検出された前記パラメータに応じた信号を発信する発信部、
を有しており、
 前記発信部は、前記パラメータが前記第3の電気抵抗値以上の電気抵抗値に応じたパラメータである場合には第1の信号を発信する、
スイッチ。
 《態様7》
 前記導電性布帛の面内方向の伸長率が第1の伸長率であるときの前記導電性布帛の電気抵抗値を、第1の電気抵抗値、
 前記導電性布帛の面内方向の伸長率が第2の伸長率であるときの前記導電性布帛の電気抵抗値を、第2の電気抵抗値、及び
 前記導電性布帛の面内方向の伸長率が第3の伸長率であるときの前記導電性布帛の電気抵抗値を、第3の電気抵抗値としたときに、
 第3の電気抵抗値<第1の電気抵抗値<第2の電気抵抗値である、
態様1~4のいずれか一つに記載の入力素子。
 《態様8》
 態様7に記載の入力素子、
 前記導電性布帛の電気抵抗値に応じたパラメータを検出する検出部、及び
 前記検出部によって検出された前記パラメータに応じた信号を発信する発信部、
を有しており、
 前記発信部は、前記パラメータが前記第3の電気抵抗値以下の電気抵抗値に応じたパラメータである場合には第1の信号を発信する、
スイッチ。
 《態様9》
 前記発信部から発信される前記信号に基づいて制御対象の制御を行う制御部を有する、態様6又は8に記載のスイッチ。
The Discloser has found that the above task can be achieved by the following means:
<< Aspect 1 >>
It has a conductive fabric whose electrical resistance value increases or decreases according to the elongation rate in the in-plane direction.
The conductive cloth is
When not pressed, the in-plane extension rate becomes the first extension rate, and when pressed, the in-plane extension rate is smaller than the first extension rate. The rate changes in the order of the third elongation rate larger than the first elongation rate.
The input element that is configured.
<< Aspect 2 >>
It also has an elastic member,
The conductive fabric is arranged so as to cover at least a part of the elastic member, and the conductive fabric is arranged so as to cover at least a part of the elastic member.
When not pressed, the in-plane elongation rate of at least the portion of the conductive fabric covering the elastic member is the first elongation rate.
When the portion of the conductive fabric covering the elastic member is pressed from the surface side of the conductive fabric that does not face the elastic member, at least the elastic member of the conductive fabric is coated. The in-plane elongation rate of the portion is changed in the order of the second elongation rate smaller than the first extension rate and the third extension rate larger than the first extension rate.
It is configured,
The input element according to the first aspect.
<< Aspect 3 >>
The input element according to aspect 2, wherein the elastic member is arranged on a base material.
<< Aspect 4 >>
The input according to any one of aspects 1 to 3, wherein the conductive cloth is a cloth in which conductive fibers are woven or a non-conductive cloth whose surface is covered with a conductive material. element.
<< Aspect 5 >>
The electric resistance value of the conductive cloth when the in-plane elongation rate of the conductive cloth is the first elongation rate is defined as the first electric resistance value.
The electric resistance value of the conductive cloth when the in-plane elongation rate of the conductive cloth is the second elongation rate, the second electric resistance value, and the in-plane extension rate of the conductive cloth. When the electric resistance value of the conductive cloth when is the third elongation rate is taken as the third electric resistance value,
The second electric resistance value <the first electric resistance value <the third electric resistance value,
The input element according to any one of aspects 1 to 4.
<< Aspect 6 >>
The input element according to aspect 5,
A detection unit that detects parameters according to the electrical resistance value of the conductive fabric, and a transmission unit that transmits a signal according to the parameters detected by the detection unit.
Have and
The transmitting unit transmits a first signal when the parameter is a parameter corresponding to an electric resistance value equal to or higher than the third electric resistance value.
switch.
<< Aspect 7 >>
The electric resistance value of the conductive cloth when the in-plane elongation rate of the conductive cloth is the first elongation rate is defined as the first electric resistance value.
The electric resistance value of the conductive cloth when the in-plane elongation rate of the conductive cloth is the second elongation rate, the second electric resistance value, and the in-plane extension rate of the conductive cloth. When the electric resistance value of the conductive cloth when is the third elongation rate is taken as the third electric resistance value,
Third electric resistance value <first electric resistance value <second electric resistance value,
The input element according to any one of aspects 1 to 4.
<< Aspect 8 >>
The input element according to aspect 7,
A detection unit that detects parameters according to the electrical resistance value of the conductive fabric, and a transmission unit that transmits a signal according to the parameters detected by the detection unit.
Have and
The transmitting unit transmits a first signal when the parameter is a parameter corresponding to an electric resistance value equal to or lower than the third electric resistance value.
switch.
<< Aspect 9 >>
The switch according to aspect 6 or 8, further comprising a control unit that controls a control target based on the signal transmitted from the transmission unit.
 本開示によれば、導電性布帛を利用した、新規の入力素子を提供することができる。 According to the present disclosure, it is possible to provide a novel input element using a conductive cloth.
図1は、本開示の第1の実施形態に従う入力素子1を押圧していない状態を示す模式図である。FIG. 1 is a schematic view showing a state in which the input element 1 according to the first embodiment of the present disclosure is not pressed. 図2は、本開示の第1の実施形態に従う入力素子1を押圧している状態を示す模式図である。FIG. 2 is a schematic diagram showing a state in which the input element 1 according to the first embodiment of the present disclosure is pressed. 図3は、本開示の第1の実施形態に従う入力素子1を図2に示す状態よりも更に押圧している状態を示す模式図である。FIG. 3 is a schematic view showing a state in which the input element 1 according to the first embodiment of the present disclosure is further pressed than in the state shown in FIG. 図4は、本開示の第1の実施形態に従う入力素子1について、図1~3の状態における導電性布帛の電気抵抗値の変化を示すグラフである。FIG. 4 is a graph showing changes in the electrical resistance value of the conductive fabric in the states of FIGS. 1 to 3 for the input element 1 according to the first embodiment of the present disclosure. 図5は、本開示の第2の実施形態に従う入力素子1について、図1~3と同様の状態における導電性布帛の電気抵抗値の変化を示すグラフである。FIG. 5 is a graph showing changes in the electrical resistance value of the conductive fabric in the same state as in FIGS. 1 to 3 for the input element 1 according to the second embodiment of the present disclosure. 図6は、本開示の第1の実施形態に従うスイッチ2を示す模式図である。FIG. 6 is a schematic diagram showing a switch 2 according to the first embodiment of the present disclosure.
 以下、本開示の実施の形態について詳述する。なお、本開示は、以下の実施の形態に限定されるのではなく、開示の本旨の範囲内で種々変形して実施できる。 Hereinafter, embodiments of the present disclosure will be described in detail. It should be noted that the present disclosure is not limited to the following embodiments, but can be variously modified and implemented within the scope of the main purpose of the disclosure.
 《入力素子》
 本開示の入力素子は、面内方向の伸長率に応じて電気抵抗値が増減する導電性布帛を有しており、導電性布帛は、押圧されていないときに、面内方向の伸長率が、第1の伸長率となり、かつ押圧されたときに、面内方向の伸長率が、第1の伸長率よりも小さい第2の伸長率、第1の伸長率よりも大きい第3の伸長率の順に変化するように、構成されている、入力素子である。
<< Input element >>
The input element of the present disclosure has a conductive cloth whose electric resistance value increases or decreases according to the elongation rate in the in-plane direction, and the conductive cloth has an extension rate in the in-plane direction when not pressed. , The first elongation rate, and when pressed, the in-plane extension rate is smaller than the first extension rate, the second extension rate, and the third extension rate, which is larger than the first extension rate. It is an input element configured so as to change in the order of.
 本開示の入力素子では、導電性布帛が押圧されていない状態において、導電性布帛が、第1の伸長率となる状態で配置されている。そして、本開示の入力素子では、導電性布帛が押圧されると、導電性布帛の伸長率が増加し、その押圧の大きさ、より具体的には押圧により入力素子の導電性布帛の部分に印加される圧力の大きさ又は押圧による導電性布帛の入力素子における相対的な変位の大きさ等に応じて、第1の伸長率よりも小さい第2の伸長率、第1の伸長率よりも大きい第3の伸長率の順に変化する。 In the input element of the present disclosure, the conductive cloth is arranged in a state where the conductive cloth has a first elongation rate in a state where the conductive cloth is not pressed. Then, in the input element of the present disclosure, when the conductive cloth is pressed, the elongation rate of the conductive cloth increases, and the magnitude of the pressing, more specifically, the pressing causes the portion of the conductive cloth of the input element. Depending on the magnitude of the applied pressure or the magnitude of the relative displacement of the conductive fabric due to the pressure in the input element, the second elongation rate is smaller than the first elongation rate, and the first elongation rate is higher than the first elongation rate. It changes in the order of the large third elongation rate.
 導電性布帛は、伸長によって導電性部分、例えば導電性の糸や金属メッキ部分間の接触面積が変化するため、伸長率に応じて電気抵抗値が増減するという特性を有している。そのため、本開示の入力素子では、押圧が小さい場合と押圧が大きい場合とで、押圧されていない場合における電気抵抗値の増減が逆転する。 The conductive fabric has a characteristic that the electric resistance value increases or decreases according to the elongation rate because the contact area between the conductive portion, for example, the conductive thread or the metal-plated portion changes due to the elongation. Therefore, in the input element of the present disclosure, the increase / decrease of the electric resistance value in the case where the pressing is not pressed is reversed depending on the case where the pressing is small and the case where the pressing is large.
 伸長率の増加に比例して電気抵抗値が増加する導電性布帛を採用した場合を例に、より具体的に説明する。 A more specific explanation will be given by taking as an example a case where a conductive fabric whose electric resistance value increases in proportion to an increase in the elongation rate is used.
 このような導電性布帛を採用した本開示の入力素子では、押圧が所定の値よりも小さい場合には、導電性布帛が押圧されていない状態よりも、導電性布帛の伸長率が小さくなる。そのため、電気抵抗値は、導電性布帛が押圧されていない状態よりも小さくなる。これに対して、押圧が所定の値よりも大きい場合には、導電性布帛が押圧されていない状態よりも、導電性布帛の伸長率が大きくなる。そのため、電気抵抗値は、導電性布帛が押圧されていない状態よりも大きくなる。 In the input element of the present disclosure using such a conductive cloth, when the pressing is smaller than a predetermined value, the elongation rate of the conductive cloth is smaller than that in the state where the conductive cloth is not pressed. Therefore, the electric resistance value is smaller than that in the state where the conductive cloth is not pressed. On the other hand, when the pressing is larger than a predetermined value, the elongation rate of the conductive fabric is larger than that in the state where the conductive fabric is not pressed. Therefore, the electric resistance value becomes larger than that in the state where the conductive cloth is not pressed.
 したがって、用途を限定するものではないが、本開示の入力素子は、例えば押圧の大きさが所定の値か否かによって異なる入力を行うことができる素子や、押圧の大きさが所定の値以上である場合にのみ入力を行うことができる素子等として利用することができる。 Therefore, although the application is not limited, the input element of the present disclosure includes, for example, an element capable of performing different input depending on whether or not the pressing magnitude is a predetermined value, or a pressing magnitude of a predetermined value or more. It can be used as an element or the like that can perform input only in the case of.
 本開示の入力素子の具体的な構成は、例えば以下のようなものを挙げることができるが、これらに限定されない。 Specific configurations of the input element of the present disclosure include, but are not limited to, the following, for example.
 本開示の入力素子は、例えば、上記の導電性布帛に関する構成に加えて、弾性部材を更に有していることができ、導電性布帛は、弾性部材の少なくとも一部分を被覆するようにして配置されていることができ、導電性布帛は、押圧されていないときに、導電性布帛のうち少なくとも弾性部材を被覆している部分の面内方向の伸長率は、第1の伸長率であり、導電性布帛のうち、弾性部材を被覆している部分を、導電性布帛のうち弾性部材と対向しない面側から押圧したときに、導電性布帛のうち少なくとも弾性部材を被覆している部分の面内方向の伸長率が、第1の伸長率よりも小さい第2の伸長率、第1の伸長率よりも大きい第3の伸長率の順に変化するように、構成されていることができる。ここで、弾性部材は、基材上に配置されていることができる。 The input element of the present disclosure may further have an elastic member, for example, in addition to the above-mentioned configuration relating to the conductive fabric, and the conductive fabric is arranged so as to cover at least a part of the elastic member. When the conductive fabric is not pressed, the in-plane elongation rate of at least the portion of the conductive fabric covering the elastic member is the first elongation rate and is conductive. When the portion of the woven fabric covering the elastic member is pressed from the surface side of the conductive fabric that does not face the elastic member, at least the portion of the conductive fabric covering the elastic member is in the plane. The elongation rate in the direction can be configured to change in the order of a second elongation rate smaller than the first extension rate and a third extension rate larger than the first extension rate. Here, the elastic member can be arranged on the base material.
 図1~4を用いて、本開示の入力素子の構成の例を、より具体的に説明する。 An example of the configuration of the input element of the present disclosure will be described more specifically with reference to FIGS. 1 to 4.
 図1は、本開示の第1の実施形態に従う入力素子を押圧していない状態を示す模式図である。 FIG. 1 is a schematic diagram showing a state in which the input element according to the first embodiment of the present disclosure is not pressed.
 図1に示すように、本開示の第1の実施形態に従う入力素子1は、基材10、弾性部材20、及び導電性布帛30を有している。図1に示すように、本開示の第1の実施形態に従う入力素子1では、基材10上に弾性部材20が配置されており、更に弾性部材20の表面及び基材10の表面を、導電性布帛30が被覆している。ここで、弾性部材20が基材10上から突出するようにして配置されており、それによって、導電性布帛30のうち少なくとも弾性部材20を被覆している部分31は、第1の伸長率まで引き延ばされている。 As shown in FIG. 1, the input element 1 according to the first embodiment of the present disclosure has a base material 10, an elastic member 20, and a conductive cloth 30. As shown in FIG. 1, in the input element 1 according to the first embodiment of the present disclosure, the elastic member 20 is arranged on the base material 10, and the surface of the elastic member 20 and the surface of the base material 10 are conductive. The sex cloth 30 is covered. Here, the elastic member 20 is arranged so as to protrude from the base material 10, whereby at least the portion 31 of the conductive fabric 30 covering the elastic member 20 is up to the first elongation rate. It has been stretched.
 次いで、図2における白い矢印で示すように、導電性布帛30のうち、弾性部材20を被覆している部分31を、導電性布帛30のうち弾性部材20と対向しない面側から押圧すると、弾性部材20が収縮して、押圧された部分31の伸長率は、第1の伸長率よりも小さい第2の伸長率となる。 Next, as shown by the white arrow in FIG. 2, when the portion 31 of the conductive fabric 30 covering the elastic member 20 is pressed from the surface side of the conductive fabric 30 that does not face the elastic member 20, it becomes elastic. The member 20 contracts, and the extension rate of the pressed portion 31 becomes a second extension rate smaller than the first extension rate.
 次いで、図3における白い矢印で示すように、導電性布帛30のうち、弾性部材20を被覆している部分31を、図2における押圧よりも更に押圧すると、弾性部材20が更に収縮して、押圧された部分31の伸長率は、第1の伸長率よりも大きい第3の伸長率となる。 Next, as shown by the white arrow in FIG. 3, when the portion 31 of the conductive fabric 30 covering the elastic member 20 is pressed further than the pressing in FIG. 2, the elastic member 20 further contracts. The elongation rate of the pressed portion 31 becomes a third extension rate larger than the first extension rate.
 ここで、伸長率の増加に比例して電気抵抗値が増加する導電性布帛30を採用した場合、図1~3における、導電性布帛30の電気抵抗値は、図4に示すように変化する。 Here, when the conductive cloth 30 whose electric resistance value increases in proportion to the increase in the elongation rate is adopted, the electric resistance value of the conductive cloth 30 in FIGS. 1 to 3 changes as shown in FIG. ..
 図1の状態において、導電性布帛30は第1の伸長率Eを有しており、また、第1の電気抵抗値Rを有している。 In the state of FIG. 1, the conductive cloth 30 has a first elongation ratio E 1 and a first electric resistance value R 1 .
 この状態から、導電性布帛30のうち、弾性部材20を被覆している部分31を、導電性布帛30のうち弾性部材20と対向しない面側から押圧して図2の状態になると、導電性布帛30は面内方向に関して収縮して、伸長率が第1の伸長率Eより小さい第2の伸長率Eになる。そのため、このときの導電性布帛30の電気抵抗値Rは、第1の電気抵抗値Rよりも小さい。 From this state, when the portion 31 of the conductive fabric 30 covering the elastic member 20 is pressed from the surface side of the conductive fabric 30 that does not face the elastic member 20, the state shown in FIG. 2 is obtained. The fabric 30 contracts in the in-plane direction to become a second elongation rate E2 whose elongation rate is smaller than the first extension rate E1. Therefore, the electric resistance value R 2 of the conductive cloth 30 at this time is smaller than the first electric resistance value R 1 .
 そして、図2の状態から更に、導電性布帛30のうち弾性部材20を被覆している部分31を導電性布帛30のうち弾性部材20と対向しない面側から押圧して、図3の状態にすると、導電性布帛30が面内方向に関して伸長して、その伸長率が、第1の伸長率Eより大きい第3の伸長率Eになる。そのため、このときの導電性布帛30の電気抵抗値Rは、第1の電気抵抗値Rよりも大きい。 Then, from the state of FIG. 2, the portion 31 of the conductive cloth 30 covering the elastic member 20 is further pressed from the surface side of the conductive cloth 30 that does not face the elastic member 20 to bring about the state of FIG. Then, the conductive fabric 30 is stretched in the in-plane direction, and the stretch rate thereof becomes a third stretch rate E3 which is larger than the first stretch rate E1. Therefore, the electric resistance value R 3 of the conductive cloth 30 at this time is larger than the first electric resistance value R 1 .
 このように、本開示の第1の実施形態に従う入力素子は、例えば押圧の大きさが所定の値か否かによって異なる入力を行うことができる素子や、押圧の大きさが所定の値以上である場合にのみ入力を行うことができる素子等として利用することができる。 As described above, the input element according to the first embodiment of the present disclosure is, for example, an element capable of performing different input depending on whether or not the pressing magnitude is a predetermined value, or an element having a pressing magnitude of a predetermined value or more. It can be used as an element or the like that can input only in a certain case.
 なお、図1~4は、いずれも本開示の入力素子を限定する趣旨ではない。 Note that none of FIGS. 1 to 4 is intended to limit the input elements of the present disclosure.
 〈導電性布帛〉
 本開示の入力素子に用いられる導電性布帛は、面内方向の伸長率に応じて電気抵抗値が増減する性質を有している任意の導電性布帛であってよい。
<Conductive fabric>
The conductive cloth used for the input element of the present disclosure may be any conductive cloth having a property that the electric resistance value increases or decreases according to the elongation rate in the in-plane direction.
 本開示の入力素子に用いられる導電性布帛は、導電性、柔軟性、及び通気性を有する布帛であってよい。本開示の入力素子に用いられる導電性布帛は、例えば導電性の繊維及び随意に非導電性の繊維によって形成された布帛、又は非導電性の布帛を導電化処理、例えば金属メッキ等された布帛を挙げることができる。導電性の繊維は、例えば鉄、銅、アルミニウム、ステンレス鋼、金、及び銀、並びにこれらの金属の合金若しくは化合物等からなる導電性の金属糸、又は導電性の炭素繊維等を挙げることができる。非導電性の繊維としては、例えばナイロン、ポリエステル、ポリエチレン、ポリスチレン、及びポリエチレンテレフタレート等の樹脂繊維等を挙げることができる。金属メッキとしては、上記の金属のメッキ等を挙げることができる。 The conductive fabric used for the input element of the present disclosure may be a fabric having conductivity, flexibility, and breathability. The conductive cloth used for the input element of the present disclosure is, for example, a cloth formed of conductive fibers and optionally non-conductive fibers, or a cloth obtained by subjecting a non-conductive cloth to a conductive treatment, for example, a metal-plated cloth. Can be mentioned. Examples of the conductive fiber include iron, copper, aluminum, stainless steel, gold, and silver, and a conductive metal thread made of an alloy or compound of these metals, a conductive carbon fiber, and the like. .. Examples of the non-conductive fiber include resin fibers such as nylon, polyester, polyethylene, polystyrene, and polyethylene terephthalate. Examples of the metal plating include the above-mentioned metal plating.
 本開示の入力素子に用いられる導電性布帛は、導電性の繊維が織編されている布帛、又は導電性材料によって表面が被覆されている非導電性の布帛であってよい。 The conductive cloth used for the input element of the present disclosure may be a cloth in which conductive fibers are woven or knitted, or a non-conductive cloth whose surface is covered with a conductive material.
 本開示の入力素子において、導電性布帛は、押圧されていないときに、面内方向の伸長率が、第1の伸長率となり、かつ押圧されたときに、面内方向の伸長率が、第1の伸長率よりも小さい第2の伸長率、第1の伸長率よりも大きい第3の伸長率の順に変化するように、構成されている。押圧の方向は、例えば導電性布帛の面と交差する任意の方向であってよい。 In the input element of the present disclosure, when the conductive fabric is not pressed, the in-plane elongation rate becomes the first elongation rate, and when pressed, the in-plane extension rate becomes the first. It is configured so that the second elongation rate smaller than the elongation rate of 1 and the third elongation rate larger than the first elongation rate change in this order. The direction of pressing may be, for example, any direction that intersects the surface of the conductive fabric.
 本開示の入力素子において、導電性布帛は、導電性布帛の面内方向の伸長率が第1の伸長率であるときの導電性布帛の電気抵抗値を、第1の電気抵抗値、導電性布帛の面内方向の伸長率が第2の伸長率であるときの導電性布帛の電気抵抗値を、第2の電気抵抗値、及び導電性布帛の面内方向の伸長率が第3の伸長率であるときの導電性布帛の電気抵抗値を、第3の電気抵抗値としたときに、第2の電気抵抗値<第1の電気抵抗値<第3の電気抵抗値を満たすか、第3の電気抵抗値<第1の電気抵抗値<第2の電気抵抗値を満たすことができる。 In the input element of the present disclosure, the conductive cloth has the electric resistance value of the conductive cloth when the elongation rate in the in-plane direction of the conductive cloth is the first elongation rate, and the first electric resistance value and the conductivity. The electric resistance value of the conductive cloth when the in-plane elongation rate of the cloth is the second elongation rate, the second electric resistance value, and the in-plane extension rate of the conductive cloth are the third elongation rate. When the electric resistance value of the conductive cloth at the ratio is the third electric resistance value, the second electric resistance value <the first electric resistance value <the third electric resistance value is satisfied, or the third electric resistance value is satisfied. It is possible to satisfy the electric resistance value of 3 <the first electric resistance value <the second electric resistance value.
 本開示の入力素子が、例えば図1~3のような構成を有している場合において、導電性布帛30が第2の電気抵抗値<第1の電気抵抗値<第3の電気抵抗値を満たす場合には、導電性布帛30の伸長率と電気抵抗値とは、図4のような関係を示すことができる。なお、図4において、第1の伸長率、第2の伸長率、及び第3の伸長率は、それぞれE、E、及びEであり、第1の電気抵抗値、第2の電気抵抗値、及び第3の電気抵抗値は、それぞれR、R、及びRである。 When the input element of the present disclosure has a configuration as shown in FIGS. 1 to 3, for example, the conductive cloth 30 has a second electric resistance value <first electric resistance value <third electric resistance value. When satisfied, the elongation rate of the conductive cloth 30 and the electric resistance value can show the relationship as shown in FIG. In FIG. 4, the first elongation rate, the second elongation rate, and the third elongation rate are E 1 , E 2 , and E 3 , respectively, and the first electric resistance value and the second electricity. The resistance value and the third electric resistance value are R 1 , R 2 , and R 3 , respectively.
 また、本開示の入力素子1が、例えば図1~3のような構成を有している場合において、導電性布帛30が第3の電気抵抗値<第1の電気抵抗値<第2の電気抵抗値を満たす場合には、導電性布帛30の伸長率と電気抵抗値とは、図5のような関係を示すことができる。なお、図4において、第1の伸長率、第2の伸長率、及び第3の伸長率は、それぞれE、E、及びEであり、第1の電気抵抗値、第2の電気抵抗値、及び第3の電気抵抗値は、それぞれR’、R’、及びR’である。 Further, when the input element 1 of the present disclosure has a configuration as shown in FIGS. 1 to 3, for example, the conductive cloth 30 has a third electric resistance value <first electric resistance value <second electric power. When the resistance value is satisfied, the elongation rate of the conductive cloth 30 and the electric resistance value can show the relationship as shown in FIG. In FIG. 4, the first elongation rate, the second elongation rate, and the third elongation rate are E 1 , E 2 , and E 3 , respectively, and the first electric resistance value and the second electricity. The resistance value and the third electric resistance value are R'1, R'2 , and R'3 , respectively.
 なお、第2の電気抵抗値<第1の電気抵抗値<第3の電気抵抗値を満たす導電性布帛としては、例えば導電性布帛の面内方向の伸長率の増加に応じて電気抵抗値が増加するもの、より具体的には、導電性の繊維及び随意に非導電性の繊維によって形成された布帛、又は非導電性の布帛を導電化処理、例えば金属メッキ等された布帛を挙げることができるが、これに限定されない。原理によって限定するものではないが、これらの導電性布帛は、伸長によって繊維間に間隙が生じることで導電性の部分間の接触面積が低下する等により、伸長率の増加に応じて電気抵抗値が増加すると考えられる。 As the conductive cloth satisfying the second electric resistance value <first electric resistance value <third electric resistance value, for example, the electric resistance value increases as the elongation rate in the in-plane direction of the conductive cloth increases. Examples include those that increase, more specifically, fabrics formed of conductive fibers and optionally non-conductive fibers, or fabrics obtained by subjecting non-conductive fabrics to a conductive treatment, such as metal plating. Yes, but not limited to this. Although not limited by the principle, these conductive fabrics have an electric resistance value according to an increase in the elongation rate due to a decrease in the contact area between the conductive portions due to a gap between the fibers due to the elongation. Is expected to increase.
 また、第3の電気抵抗値<第1の電気抵抗値<第2の電気抵抗値を満たす導電性布帛としては、例えば導電性布帛の面内方向の伸長率の増加に応じて電気抵抗値が低下するもの、より具体的には、伸長していない状態においては各導電性の繊維間の接触面積が小さく、かつ伸長した際には各導電性の繊維間の接触面積が増加するようにして、導電性の繊維及び随意に非導電性の繊維によって形成した布帛を挙げることができるが、これに限定されない。 Further, as the conductive cloth satisfying the third electric resistance value <first electric resistance value <second electric resistance value, for example, the electric resistance value increases as the elongation rate in the in-plane direction of the conductive cloth increases. What is reduced, more specifically, the contact area between the conductive fibers is small in the non-stretched state, and the contact area between the conductive fibers is increased when stretched. , But not limited to, fabrics formed of conductive fibers and optionally non-conductive fibers.
 〈弾性部材〉
 弾性部材は、押圧によって弾性変形することができる任意の部材であってよい。弾性部材は、例えば、ばね、ゴム、又は不織布、ウレタン、若しくはゲル体等のクッション材を挙げることができるが、これらに限定されない。
<Elastic member>
The elastic member may be any member that can be elastically deformed by pressing. Examples of the elastic member include, but are not limited to, a cushioning material such as a spring, rubber, or a non-woven fabric, urethane, or a gel body.
 弾性部材の形状は、任意の立体的形状であってよく、例えば球形状、半球形状、直方体形状、又は柱形状等であってよい。 The shape of the elastic member may be any three-dimensional shape, for example, a spherical shape, a hemispherical shape, a rectangular parallelepiped shape, a pillar shape, or the like.
 〈基材〉
 基材は、弾性部材を配置できる任意の基材であってよい。基材は、例えば板状であってよいが、その形状は特に限定されない。
<Base material>
The base material may be any base material on which the elastic member can be arranged. The base material may be, for example, a plate, but the shape thereof is not particularly limited.
 《スイッチ》
 本開示のスイッチは、本開示の入力素子、導電性布帛の電気抵抗値に応じたパラメータを検出する検出部、及び検出部によって検出されたパラメータに応じた信号を発信する発信部、を有している。本開示のスイッチは、更に発信部から発信される信号に基づいて制御対象の制御を行う制御部を有していることができる。
"switch"
The switch of the present disclosure includes an input element of the present disclosure, a detection unit that detects parameters according to the electric resistance value of the conductive fabric, and a transmission unit that transmits a signal according to the parameters detected by the detection unit. ing. The switch of the present disclosure may further have a control unit that controls a controlled object based on a signal transmitted from the transmitting unit.
 本開示のスイッチが制御の対象とする制御対象は、特に限定されない。 The control target to be controlled by the switch of the present disclosure is not particularly limited.
 〈検出部〉
 本開示のスイッチは、導電性布帛の電気抵抗値に応じたパラメータを検出する検出部を有していることができる。ここで、電気抵抗値に応じたパラメータとは、電気抵抗値の大小や、所定の時間単位当たりの電気抵抗値の変化率等に応じて変化する任意のパラメータであってよく、例えば、電気抵抗値そのものであってよく、又は電圧値、電流値、若しくはインピーダンス等であってよいが、これらに限定されない。本開示のスイッチは、本開示の入力素子以外に、別途の、押圧時の静電容量や押圧による静電容量の変化等を得ることができる入力素子等と組み合わせて用いてもよい。
<Detection unit>
The switch of the present disclosure can have a detection unit that detects a parameter according to the electric resistance value of the conductive fabric. Here, the parameter according to the electric resistance value may be an arbitrary parameter that changes according to the magnitude of the electric resistance value, the rate of change of the electric resistance value per predetermined time unit, and the like. For example, the electric resistance. It may be the value itself, or it may be a voltage value, a current value, an impedance, or the like, but it is not limited thereto. In addition to the input element of the present disclosure, the switch of the present disclosure may be used in combination with an input element or the like that can obtain a change in the capacitance at the time of pressing or a change in the capacitance due to the pressing.
 検出部は、検出するパラメータに応じて、適宜選択することができる。例えば、検出部は、抵抗測定器、電圧計、電流計、LCRメータ等を有している装置であってよい。 The detection unit can be appropriately selected according to the parameters to be detected. For example, the detection unit may be a device having a resistance measuring instrument, a voltmeter, an ammeter, an LCR meter, and the like.
 〈発信部〉
 本開示のスイッチは、導電性布帛の電気抵抗値に応じたパラメータを検出する検出部に加えて、更に、検出部によって検出されたパラメータに応じた信号を発信する発信部を有していることができる。
<Caller>
The switch of the present disclosure has, in addition to a detection unit that detects a parameter according to the electric resistance value of the conductive fabric, further, a transmission unit that transmits a signal according to the parameter detected by the detection unit. Can be done.
 本開示の入力素子において、第2の電気抵抗値<第1の電気抵抗値<第3の電気抵抗値となるように構成されている場合、発信部は、パラメータが第3の電気抵抗値以上の電気抵抗値に応じたパラメータである場合には第1の信号を発信することができる。更には、パラメータが第3の電気抵抗値未満の電気抵抗値に応じたパラメータである場合には、第1の信号とは異なる、第2の信号を発信してもよい。 When the input element of the present disclosure is configured such that the second electric resistance value <the first electric resistance value <the third electric resistance value, the transmitter has a parameter of the third electric resistance value or more. When the parameter corresponds to the electric resistance value of, the first signal can be transmitted. Further, when the parameter is a parameter corresponding to the electric resistance value less than the third electric resistance value, a second signal different from the first signal may be transmitted.
 また、本開示の入力素子において、第3の電気抵抗値<第1の電気抵抗値<第2の電気抵抗値となるように構成されている場合、発信部は、パラメータが第3の電気抵抗値以下の電気抵抗値に応じたパラメータである場合には第1の信号を発信することができる。更には、パラメータが第3の電気抵抗値超の電気抵抗値に応じたパラメータである場合には、第1の信号とは異なる、第2の信号を発信してもよい。 Further, when the input element of the present disclosure is configured such that the third electric resistance value <the first electric resistance value <the second electric resistance value, the transmitter has a parameter of the third electric resistance. When the parameter corresponds to the electric resistance value equal to or less than the value, the first signal can be transmitted. Further, when the parameter is a parameter corresponding to the electric resistance value exceeding the third electric resistance value, a second signal different from the first signal may be transmitted.
 これにより、入力素子に対する押圧の程度が小さい場合と大きい場合とで入力の切り替えを行うことができる。更には、例えば誤って入力素子に触れた場合等による誤作動を抑制することができる入力素子を構成することができる。 This makes it possible to switch the input depending on whether the degree of pressure on the input element is small or large. Further, it is possible to configure an input element capable of suppressing a malfunction due to, for example, accidentally touching the input element.
 また、押圧によって変化する電気抵抗値に応じたパラメータを検出することにより、抵抗値変化と入力素子を押圧する動作とを関連付けすることができ、 入力素子を押圧する動作に対してのフィードバック機能を付与させることも可能となると考えられる。更にそのフィードバック機能を持たせることにより、押圧の程度により、複数のタイプの変形、変色、光源部の点灯・点滅、音声発信、または他の機器への情報通信(更にその他の機器からの情報通信を受信する)を実施する子供用玩具、リハビリ用途、介護用途等の分野の製品の提供が可能となると考える。なお、入力素子を押圧する動作は、使用者が意識的に又は無意識的に、直接的に又は間接的に入力素子を押圧する動作を含んでいると理解される。 In addition, by detecting the parameter corresponding to the electric resistance value that changes due to pressing, the resistance value change can be associated with the operation of pressing the input element, and the feedback function for the operation of pressing the input element can be provided. It is thought that it will be possible to grant it. Furthermore, by providing the feedback function, depending on the degree of pressing, multiple types of deformation, discoloration, lighting / blinking of the light source, voice transmission, or information communication to other devices (and information communication from other devices) We believe that it will be possible to provide products in the fields of children's toys, rehabilitation applications, long-term care applications, etc. It is understood that the operation of pressing the input element includes the operation of the user consciously or unconsciously, directly or indirectly, pressing the input element.
 図6は、本開示の第1の実施形態に従うスイッチ2を示す模式図である。 FIG. 6 is a schematic diagram showing a switch 2 according to the first embodiment of the present disclosure.
 図6に示すように、本開示の第1の実施形態に従うスイッチ2は、図1に示す構成に加えて、検出部40、発信部50、及び制御部60を有している。スイッチ2は、制御部60によって、制御対象3を制御する。 As shown in FIG. 6, the switch 2 according to the first embodiment of the present disclosure has a detection unit 40, a transmission unit 50, and a control unit 60 in addition to the configuration shown in FIG. The switch 2 controls the control target 3 by the control unit 60.
 なお、図6は、本開示のスイッチを限定する趣旨ではない。 Note that FIG. 6 is not intended to limit the switches disclosed in the present disclosure.
 1  入力素子
 2  スイッチ
 3  制御対象
 10  基材
 20  弾性部材
 30  導電性布帛
 40  検出部
 50  発信部
 60  制御部
1 Input element 2 Switch 3 Control target 10 Base material 20 Elastic member 30 Conductive fabric 40 Detection unit 50 Transmission unit 60 Control unit

Claims (9)

  1.  面内方向の伸長率に応じて電気抵抗値が増減する導電性布帛を有しており、
     前記導電性布帛は、
     押圧されていないときに、面内方向の伸長率が、第1の伸長率となり、かつ
     押圧されたときに、面内方向の伸長率が、前記第1の伸長率よりも小さい第2の伸長率、前記第1の伸長率よりも大きい第3の伸長率の順に変化するように、
    構成されている、入力素子。
    It has a conductive fabric whose electrical resistance value increases or decreases according to the elongation rate in the in-plane direction.
    The conductive cloth is
    When not pressed, the in-plane extension rate becomes the first extension rate, and when pressed, the in-plane extension rate is smaller than the first extension rate. The rate changes in the order of the third elongation rate larger than the first elongation rate.
    The input element that is configured.
  2.  弾性部材を更に有しており、
     前記導電性布帛は、前記弾性部材の少なくとも一部分を被覆するようにして配置されており、かつ
     前記導電性布帛は、
     押圧されていないときに、前記導電性布帛のうち少なくとも前記弾性部材を被覆している部分の面内方向の伸長率は、前記第1の伸長率であり、
     前記導電性布帛のうち、前記弾性部材を被覆している部分を、前記導電性布帛のうち前記弾性部材と対向しない面側から押圧したときに、前記導電性布帛のうち少なくとも前記弾性部材を被覆している部分の面内方向の伸長率が、前記第1の伸長率よりも小さい第2の伸長率、前記第1の伸長率よりも大きい第3の伸長率の順に変化するように、
    構成されている、
    請求項1に記載の入力素子。
    It also has an elastic member,
    The conductive fabric is arranged so as to cover at least a part of the elastic member, and the conductive fabric is arranged so as to cover at least a part of the elastic member.
    When not pressed, the in-plane elongation rate of at least the portion of the conductive fabric covering the elastic member is the first elongation rate.
    When the portion of the conductive fabric covering the elastic member is pressed from the surface side of the conductive fabric that does not face the elastic member, at least the elastic member of the conductive fabric is coated. The in-plane elongation rate of the portion is changed in the order of the second elongation rate smaller than the first extension rate and the third extension rate larger than the first extension rate.
    It is configured,
    The input element according to claim 1.
  3.  前記弾性部材が基材上に配置されている、請求項2に記載の入力素子。 The input element according to claim 2, wherein the elastic member is arranged on a base material.
  4.  前記導電性布帛は、導電性の繊維が織編されている布帛、又は導電性材料によって表面が被覆されている非導電性の布帛である、請求項1~3のいずれか一項に記載の入力素子。 The one according to any one of claims 1 to 3, wherein the conductive cloth is a cloth in which conductive fibers are woven or a non-conductive cloth whose surface is covered with a conductive material. Input element.
  5.  前記導電性布帛の面内方向の伸長率が第1の伸長率であるときの前記導電性布帛の電気抵抗値を、第1の電気抵抗値、
     前記導電性布帛の面内方向の伸長率が第2の伸長率であるときの前記導電性布帛の電気抵抗値を、第2の電気抵抗値、及び
     前記導電性布帛の面内方向の伸長率が第3の伸長率であるときの前記導電性布帛の電気抵抗値を、第3の電気抵抗値としたときに、
     第2の電気抵抗値<第1の電気抵抗値<第3の電気抵抗値である、
    請求項1~4のいずれか一項に記載の入力素子。
    The electric resistance value of the conductive cloth when the in-plane elongation rate of the conductive cloth is the first elongation rate is defined as the first electric resistance value.
    The electric resistance value of the conductive cloth when the in-plane elongation rate of the conductive cloth is the second elongation rate, the second electric resistance value, and the in-plane extension rate of the conductive cloth. When the electric resistance value of the conductive cloth when is the third elongation rate is taken as the third electric resistance value,
    The second electric resistance value <the first electric resistance value <the third electric resistance value,
    The input element according to any one of claims 1 to 4.
  6.  請求項5に記載の入力素子、
     前記導電性布帛の電気抵抗値に応じたパラメータを検出する検出部、及び
     前記検出部によって検出された前記パラメータに応じた信号を発信する発信部、
    を有しており、
     前記発信部は、前記パラメータが前記第3の電気抵抗値以上の電気抵抗値に応じたパラメータである場合には第1の信号を発信する、スイッチ。
    The input element according to claim 5.
    A detection unit that detects parameters according to the electrical resistance value of the conductive fabric, and a transmission unit that transmits a signal according to the parameters detected by the detection unit.
    Have and
    The transmitting unit is a switch that transmits a first signal when the parameter is a parameter corresponding to an electric resistance value equal to or higher than the third electric resistance value.
  7.  前記導電性布帛の面内方向の伸長率が第1の伸長率であるときの前記導電性布帛の電気抵抗値を、第1の電気抵抗値、
     前記導電性布帛の面内方向の伸長率が第2の伸長率であるときの前記導電性布帛の電気抵抗値を、第2の電気抵抗値、及び
     前記導電性布帛の面内方向の伸長率が第3の伸長率であるときの前記導電性布帛の電気抵抗値を、第3の電気抵抗値としたときに、
     第3の電気抵抗値<第1の電気抵抗値<第2の電気抵抗値である、
    請求項1~4のいずれか一項に記載の入力素子。
    The electric resistance value of the conductive cloth when the in-plane elongation rate of the conductive cloth is the first elongation rate is defined as the first electric resistance value.
    The electric resistance value of the conductive cloth when the in-plane elongation rate of the conductive cloth is the second elongation rate, the second electric resistance value, and the in-plane extension rate of the conductive cloth. When the electric resistance value of the conductive cloth when is the third elongation rate is taken as the third electric resistance value,
    Third electric resistance value <first electric resistance value <second electric resistance value,
    The input element according to any one of claims 1 to 4.
  8.  請求項7に記載の入力素子、
     前記導電性布帛の電気抵抗値に応じたパラメータを検出する検出部、及び
     前記検出部によって検出された前記パラメータに応じた信号を発信する発信部、
    を有しており、
     前記発信部は、前記パラメータが前記第3の電気抵抗値以下の電気抵抗値に応じたパラメータである場合には第1の信号を発信する、
    スイッチ。
    The input element according to claim 7.
    A detection unit that detects parameters according to the electrical resistance value of the conductive fabric, and a transmission unit that transmits a signal according to the parameters detected by the detection unit.
    Have and
    The transmitting unit transmits a first signal when the parameter is a parameter corresponding to an electric resistance value equal to or lower than the third electric resistance value.
    switch.
  9.  前記発信部から発信される前記信号に基づいて制御対象の制御を行う制御部を有する、請求項6又は8に記載のスイッチ。 The switch according to claim 6 or 8, further comprising a control unit that controls a control target based on the signal transmitted from the transmission unit.
PCT/JP2021/018095 2020-07-30 2021-05-12 Input element and switch WO2022024496A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020129319A JP2022026045A (en) 2020-07-30 2020-07-30 Input element and switch
JP2020-129319 2020-07-30

Publications (1)

Publication Number Publication Date
WO2022024496A1 true WO2022024496A1 (en) 2022-02-03

Family

ID=80038047

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/018095 WO2022024496A1 (en) 2020-07-30 2021-05-12 Input element and switch

Country Status (2)

Country Link
JP (1) JP2022026045A (en)
WO (1) WO2022024496A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012040236A (en) * 2010-08-20 2012-03-01 Ritsumeikan Sole slippage detecting device and insole
JP2017026396A (en) * 2015-07-17 2017-02-02 帝人株式会社 Cloth-like sensor and device including the same
JP2017110307A (en) * 2015-12-14 2017-06-22 グンゼ株式会社 Clothing
JP2018198920A (en) * 2017-05-26 2018-12-20 パナソニックIpマネジメント株式会社 Biological sensor and method for manufacturing biological sensor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012040236A (en) * 2010-08-20 2012-03-01 Ritsumeikan Sole slippage detecting device and insole
JP2017026396A (en) * 2015-07-17 2017-02-02 帝人株式会社 Cloth-like sensor and device including the same
JP2017110307A (en) * 2015-12-14 2017-06-22 グンゼ株式会社 Clothing
JP2018198920A (en) * 2017-05-26 2018-12-20 パナソニックIpマネジメント株式会社 Biological sensor and method for manufacturing biological sensor

Also Published As

Publication number Publication date
JP2022026045A (en) 2022-02-10

Similar Documents

Publication Publication Date Title
Mun et al. Electro-active polymer based soft tactile interface for wearable devices
US11313743B2 (en) Tactile sensor
KR100938684B1 (en) Electronic fabric and preparing thereof
CN104866149B (en) Intelligent device with function of preventing false touch
JP2018109982A (en) Single sensor and haptic actuator
US20190178764A1 (en) Surface analysis device and method for analysing elasticity of a receiving surface
KR20170003101A (en) Pressure sensing sensor and pressure sensing apparatus comprising the same
CA3015904A1 (en) Fibre-based sensor for yarn
GB2494530A (en) Composite material comprising a layer of polymeric piezoelectric material matched with a textile substrate and method for making such a composite material
KR20180117893A (en) Pressure sensor
CN109661641A (en) Touch feedback control assembly
WO2022024496A1 (en) Input element and switch
EP1642308B1 (en) A proportional input interface
JP2018152066A (en) Bifunctional fiber for combined sensing and haptic feedback
CN109077730A (en) Muscle fine motion detecting element, switching device, man-machine interactive system and fore device
US7378608B2 (en) Stretchable fabric switch
KR101789876B1 (en) Textile type hybrid controller
US20190218691A1 (en) Temperature control based memory textile and wearable object using the same
KR20190125711A (en) Highly Stretchable and Flexible Piezoresistive CNT-Silicone Wire Sensors and Method For Manufacturing the same
Cho et al. Time-evolution of electrical resistance-strain hysteresis curve of embroidered stretch sensors and their application in reliable human motion tracking
Böse et al. Operation tools with dielectric elastomer pressure sensors
KR101711753B1 (en) Textile type slide controller
JP2018173292A (en) Bag-like tactile sensor
WO2022034722A1 (en) Sensor and controller
KR101542781B1 (en) Glove having the function of electrostatic touch

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21851462

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21851462

Country of ref document: EP

Kind code of ref document: A1