WO2022024453A1 - Failure cause inference device and method - Google Patents

Failure cause inference device and method Download PDF

Info

Publication number
WO2022024453A1
WO2022024453A1 PCT/JP2021/012397 JP2021012397W WO2022024453A1 WO 2022024453 A1 WO2022024453 A1 WO 2022024453A1 JP 2021012397 W JP2021012397 W JP 2021012397W WO 2022024453 A1 WO2022024453 A1 WO 2022024453A1
Authority
WO
WIPO (PCT)
Prior art keywords
cause
defect
target device
drying
unit
Prior art date
Application number
PCT/JP2021/012397
Other languages
French (fr)
Japanese (ja)
Inventor
輝 米川
俊夫 大河内
陽子 國眼
憲次 飯澤
厚 吉田
友美 蛭田
Original Assignee
日立グローバルライフソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立グローバルライフソリューションズ株式会社 filed Critical 日立グローバルライフソリューションズ株式会社
Priority to CN202180032436.7A priority Critical patent/CN115552066A/en
Publication of WO2022024453A1 publication Critical patent/WO2022024453A1/en

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F33/00Control of operations performed in washing machines or washer-dryers 
    • D06F33/30Control of washing machines characterised by the purpose or target of the control 
    • D06F33/47Responding to irregular working conditions, e.g. malfunctioning of pumps 
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F33/00Control of operations performed in washing machines or washer-dryers 
    • D06F33/50Control of washer-dryers characterised by the purpose or target of the control
    • D06F33/74Responding to irregular working conditions, e.g. malfunctioning of pumps 
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F34/00Details of control systems for washing machines, washer-dryers or laundry dryers
    • D06F34/04Signal transfer or data transmission arrangements
    • D06F34/05Signal transfer or data transmission arrangements for wireless communication between components, e.g. for remote monitoring or control
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring

Definitions

  • the present invention relates to a defect cause estimation device and a method, and is suitable for application to, for example, a drying defect cause estimation device for estimating the cause of drying defects in a washer / dryer.
  • Patent Document 1 describes the current applied to the motor and the constant of the motor when the control unit that drives the motor by sensorless control starts the motor by forced commutation. It is disclosed that the rotation speed or the induced voltage of the motor is calculated as a determination parameter, and the rotation failure determination is performed depending on whether or not the determination parameter is in a vibration state.
  • Patent Document 2 for example, as a technique for determining the cause of failure of the voltage conversion unit of a motor drive device, after the operation of the voltage conversion unit is stopped, the discharge of the capacitor connected to the output side of the voltage conversion unit is completed. Then, a technique for determining a faulty part based on each voltage value on the input side and the output side of the voltage conversion unit is disclosed.
  • Patent Documents 1 and 2 are determination techniques specialized for failures of specific parts such as motors and voltage converters, and are causes of defects such as filters, ducts, blowers and heaters. There was a problem that it could not be applied to estimate the cause of poor drying.
  • the present invention has been made in consideration of the above points, and is an attempt to propose a defect cause estimation device and a method capable of efficiently estimating a defect cause.
  • the target device in the defect cause estimation device for estimating the defect cause of the target device, has a plurality of sensors for detecting the state of the target device, and has been learned in advance.
  • the storage unit that stores and holds a plurality of models and the sensor data in a specific data range that causes a state change of the target device among the sensor data output from the sensor, the target device is based on the model.
  • a cause estimation unit for estimating the cause of the defect is provided.
  • the target device in the defect cause estimation method executed by the defect cause estimation device for estimating the defect cause of the target device, has a plurality of sensors for detecting the state of the target device in advance.
  • the model is used. Based on this, a second step of estimating the cause of the defect of the target device is provided.
  • the defect cause estimation device and method it is possible to identify which part of the target device has the defect cause based on the state change of the target device.
  • the present invention it is possible to realize a defect cause estimation device and a method capable of efficiently estimating the defect cause.
  • FIG. 1 shows a drying defect cause estimation system according to the present embodiment as a whole.
  • the drying defect cause estimation system 1 is a system having a function of estimating the cause when a drying defect occurs in the washing / drying machine 2, and the washing / drying machine 2 installed in each household and these washing / drying machines are used.
  • the analysis server 3 installed by the manufacturer of the machine 2 is connected to the analysis server 3 via a network 4 such as the Internet.
  • the washer / dryer 2 is a home electric appliance that washes and dries an object such as clothes according to a user operation, and includes a controller 10, a clock 11, a drive / power unit 12, and various sensors 13.
  • the controller 10 is a processor that controls the operation of the entire washer / dryer 2.
  • the clock 11 is composed of a digital clock or the like, and has a function as a time counter for ticking the current time and a function as a timer for counting the elapsed time since the start of a certain operation.
  • the drive / power unit 12 is a washer / dryer 2 such as a motor that rotationally drives a drum in the washer / dryer 2, a blower that blows wind on an object during a drying operation, and a heater that heats the wind output from the blower. It is composed of drive parts and power parts arranged inside.
  • the sensor 13 is a measuring element that converts the state of the washing / drying machine 2 into a numerical value and outputs it as operation data.
  • a water level sensor for detecting the water level in the washing tub and a water temperature in the washing tub are detected. It is composed of a water temperature sensor for measuring the temperature, a temperature sensor for measuring the temperature of hot air output from the blower, a vibration sensor for measuring the vibration generated by the washing / drying machine 2, and the like.
  • the analysis server 3 collects operation data output from each sensor of each washer / dryer 2 connected via the network 4 from each washer / dryer 2, and based on the collected operation data, the analysis server 3 collects the operation data. It is a server device having a function of estimating the cause when a drying defect occurs in the washer-dryer 2.
  • the analysis server 3 is composed of a general-purpose server device including a CPU (Central Processing Unit) 20, a memory 21, a storage device 22, a communication device 23, and a display device 24.
  • CPU Central Processing Unit
  • the CPU 20 is a processor that controls the operation of the entire analysis server 3.
  • the memory 21 is composed of, for example, a volatile semiconductor memory and is used as a work memory of the CPU 20.
  • the memory 21 stores the cause estimation program 25 and the estimation result output program 26, which will be described later, read from the storage device 22 when the analysis server 3 is started or when necessary.
  • the storage device 22 is composed of, for example, a large-capacity non-volatile storage device such as a hard disk device or SSD (Solid State Drive), and stores various programs and various data requiring long-term storage.
  • the communication device 23 is composed of a NIC (Network Interface Card) or the like, and performs protocol control during communication with each washer / dryer 2 via the network 4.
  • the display device 24 is composed of, for example, a liquid crystal display or an organic EL (ElectroLuminescence) display, and is used for displaying necessary information.
  • FIG. 2 shows the logical configuration of the drying defect cause estimation system 1.
  • the washer / dryer 2 includes a clock 11, a drive / power unit 12, and various sensors 13, as well as a control unit 30 and a data acquisition unit 31.
  • the control unit 30 is a functional unit embodied by the controller 10 (FIG. 1) of the washer / dryer 2.
  • the control unit 30 controls the operation of the entire washer / dryer 2 by giving a required command value COM1 to the corresponding drive / power unit 12 at a necessary timing according to a user operation or a program.
  • control unit 30 controls the washing operation of the washing / drying machine 2 by appropriately giving a command value specifying the rotation speed and the rotation direction of the drum to the motor. Further, during the drying operation, the control unit 30 controls the drying operation of the washer / dryer 2 by appropriately giving command values such as the wind speed and temperature of the warm air blown to the object to the blower and the heater.
  • the data acquisition unit 31 is also a functional unit embodied by the controller 10 of the washer / dryer 2.
  • the data acquisition unit 31 is a functional unit having a function of acquiring the command value COM1 output by the control unit 30 to the drive / power unit 12 and the operation data DT1 output from each sensor 13.
  • the data acquisition unit 31 selectively acquires the operation data DT1 in a specific data range that causes the state change of the washing / drying machine 2 from the operation data DT1 output from each sensor 13. Specifically, the data acquisition unit 31 selectively selects only the operation data DT1 for a certain period before and after the control unit 30 outputs the command value COM1 to the drive / power unit 12 and / or in a predetermined specific time zone. To get to. Then, the data acquisition unit 31 combines these acquired command values COM1 and operation data DT1 and transmits them to the analysis server 3 via the network 4 (FIG. 1).
  • the analysis server 3 includes a cause estimation unit 33 including a plurality of determination units 32 and an estimation result output unit 34.
  • the cause estimation unit 33 and the determination unit 32 include a cause estimation program 25 (FIG. 1) in which the CPU 20 (FIG. 1) of the analysis server 3 is stored in the memory 21 (FIG. 1), and a determination program 25A (FIG. 1) which is a part thereof. It is a functional part embodied by executing 1).
  • the determination unit 32 is provided corresponding to each of the causes of drying defects such as clogging of the filter, clogging of the duct, and malfunction of the blower and the heater. Each determination unit 32 is based on the corresponding operation data DT1 of the various operation data DT1 transmitted from the washer / dryer 2, and the cause model 27 corresponding to the corresponding defect cause given in advance. It is determined whether the drying defect of the washer / dryer 2 is due to the corresponding defect cause, and the determination result is output to the estimation result output unit 34.
  • the estimation result output unit 34 is a functional unit embodied by executing the estimation result output program 26 (FIG. 1) stored in the memory 21 by the CPU 20 of the analysis server 3.
  • the estimation result output unit 34 sets all the causes of defects determined to be the cause of the drying defect by the corresponding determination unit 32 based on the determination result for each defect cause given by each determination unit 32 as the cause of the drying defect. Is displayed on the display device 24 (FIG. 1) as the estimation result of.
  • FIG. 3 shows the flow of learning of the cause model 27 when the cause model 27 is a CNN (Convolutional Neural Network).
  • the "cause model” here is based on the command value COM1 and the operation data DT1 acquired from the washer / dryer 2, and the probability that the cause of the poor drying of the washer / dryer 2 is the corresponding cause is calculated. Refers to a mathematical model that outputs the calculation results.
  • the washing / drying machine 40 shown in FIG. 3 is a washing / drying machine used for learning the cause model 27, and includes a clock 41, a drive / power unit 42, a plurality of sensors 43, a control unit 44, and a data acquisition unit 45. ..
  • the clock 41, the drive / power unit 42, each sensor 43, the control unit 44, and the data acquisition unit 45 are the corresponding parts (clock 11, drive / power unit 12, sensor 13, control) of the washer / dryer 2 described above with respect to FIG. Since it has the same function and configuration as the unit 30 or the data acquisition unit 31), the description thereof is omitted here.
  • the data acquisition unit 45 of the washing / drying machine 40 has a command value COM2 output by the control unit 44 to the drive / power unit 42 and a command value COM2 of the control unit 44.
  • the operation data DT2 is acquired only for a certain period before and after the output or in a preset time zone, and the acquired command value COM2 and the operation data DT2 are combined to form a learning device via the network 4 (FIG. 1). Output to 50.
  • the learning device 50 is a computer device provided with information processing resources such as a CPU, a memory, and a storage device (not shown).
  • the learning device 50 may be used in combination with the analysis server 3 (FIG. 1).
  • the learning device 50 is provided with a determination unit 51 and a cause model 27 corresponding to each cause of drying failure such as clogging of a filter, clogging of a duct, and failure of a blower or a heater.
  • each determination unit 51 is given a command for learning necessary for learning the drying defect caused by the corresponding defect cause among the command value COM2 and the operation data DT2 given by the data acquisition unit 45 of the washing / drying machine 40.
  • the value COM2 and the operation data DT2 are given respectively.
  • the determination unit 51 corresponding to the malfunction of the heater is given a command value COM2 for the heater, operation data DT2 from the temperature sensor that measures the temperature of the air warmed by the heater, and the like.
  • each determination unit 51 inputs the given command value COM2 and the operation data DT2 to the corresponding cause model 27.
  • each cause model 27 as shown in FIG. 4, the input command value COM2 and the operation data DT2 are captured via the input layer (S1), and the cause model 27 is based on the captured command value COM2 and the operation data DT2.
  • the probability that the cause of the drying defect is due to the corresponding defect cause is calculated (S2), and the calculated probability is output from the output layer as a determination result (S3).
  • the determination unit 51 determines whether or not the cause of the drying defect is due to the corresponding defect cause based on the probability output from the cause model 27, and outputs the determination result (S4).
  • each determination unit 51 is given an answer as to whether or not the cause of the drying defect is due to the corresponding defect cause based on the user operation or the like for the learning device 50.
  • the determination unit 51 updates the weight of the filter of the hidden layer of the cause model 27 as necessary based on this answer (S5).
  • FIG. 5 shows the flow of the determination process executed by the cause estimation unit 33 of the analysis server 3 using each cause model 27 learned as described above.
  • Each determination unit 32 (FIG. 2) of the analysis server 3 has command values COM1 and operation data DT1 given to each determination unit 32 (FIG. 2) from the data acquisition unit 31 (FIG. 2) of the washer / dryer 2 (FIG. 2) via the network 4.
  • the command value COM1 and the operation data DT1 according to the corresponding cause are given, respectively.
  • each determination unit 32 inputs the given command value COM1 and the operation data DT1 to the input layer of the corresponding cause model 27 (S10).
  • each cause model 27 the input command value COM1 and the operation data DT1 are taken in via the input layer (S11), and based on the taken-in command value COM1 and the operation data DT1, the cause of the drying defect is due to the corresponding defect cause.
  • the probability of being a thing is calculated in the hidden layer (S12), and the calculation result is output from the output layer (S13).
  • the determination unit 32 determines whether or not the cause of the drying defect is due to the corresponding defect cause based on the probability output from the cause model 27, and determines the determination result as the estimation result output unit 34 (FIG. 2). Is output to (S14).
  • FIGS. 6 to 8 show experimental results of cause estimation of drying defects of the washer / dryer 2 performed using CNN as the cause model 27. ..
  • the command values for the blower, heater and flap were used as the command values COM1 and COM2
  • the water level sensor and the sensor data of the two temperature sensors were used as the operation data DT1 and DT2.
  • the cause model 27 a CNN with 3 layers and 38,000 parameters was used.
  • FIG. 6 shows the experimental results of an experiment in which a part of the duct is clogged in order to cause the duct to dry poorly.
  • each numerical value in the state column 70B indicates the ratio of the cross-sectional area of the portion where the duct is clogged to the cross-sectional area of the duct. For example, "0" indicates a state in which the duct is not clogged, and "0.5” indicates a state in which half of the cross-sectional area of the duct is clogged.
  • the numerical value in the learning number column 70C indicates the number of data sets (number of training data sets) of the command value COM2 and the operation data DT2 in the corresponding state used for learning the cause model 27, and is shown in the verification number column 70D.
  • the numerical value indicates the number of data sets (the number of verification data sets) of the command value COM1 and the operation data DT1 in the corresponding state used for the cause determination process.
  • the numerical value in the correct answer number column 70E indicates the number of verification data sets in which the cause is correct among the number of such verification data sets, and the percentage in the accuracy column 70F indicates the correct answer rate (accuracy) by such verification.
  • FIG. 7 shows the experimental results of an experiment in which a part or all of the filter of the intake port is covered with the filter as a cause of poor drying.
  • each numerical value in the state column 71B indicates the ratio of the area of the portion covering the filter surface to the entire filter surface of the filter. For example, "0" indicates a state in which the filter surface is not covered at all, and "0.5” indicates a state in which half of the filter surface is covered. Further, "1" indicates a state in which the entire surface of the filter surface is covered.
  • the numerical values and percentage values in the learning quantity column 71C, the verification quantity column 71D, the correct answer number column 71E, and the accuracy column 71F are the same as in FIG.
  • FIG. 8 shows the experimental results of an experiment in which the exhaust amount of the blower is suppressed so that the failure of the blower is the cause of the poor drying.
  • each numerical value in the state column 72B indicates the ratio of the displacement in the experiment to the displacement in the normal state of the blower. For example, "0" indicates a state in which the exhaust amount of the blower is not suppressed, and "0.5” indicates a state in which the exhaust amount of the blower is suppressed to half of the normal state.
  • the numerical values and percentage values in the learning quantity column 72C, the verification quantity column 72D, the correct answer number column 72E, and the accuracy column 72F are the same as in FIG.
  • the accuracy of cause estimation due to ducts, filters and blowers is 83% when ducts are the cause, 96% when filters are the cause, and blowers when the cause is blowers. It was 83%.
  • the time required for estimating the cause was 1 ms or less per washer / dryer regardless of whether the cause was a duct, a filter, or a blower. From this experiment, it was confirmed that practically sufficient estimation accuracy and required time can be obtained by using CNN as the cause model 27.
  • the control unit 30 of the operation data DT1 output from each sensor 13 of the washer / dryer 2 is used. Defects in the washer / dryer 2 based on the operation data DT1 for a certain period before and after the command value COM1 is output to the drive / power unit 12 and a preset specific time zone, and the cause model 27 for each cause. specify a reason.
  • the present drying defect cause estimation system 1 it is specified which drive / power unit 12 the control unit 30 has acquired when the command value COM1 is output and the operation data DT1 shows an abnormal value. Along with this, it is possible to identify the cause of poor drying. Therefore, according to the present drying defect cause estimation system 1, it is possible to efficiently estimate the defect cause in which a plurality of possible causes exist.
  • Second Embodiment (2-1) Method for determining the cause of failure in consideration of operability
  • a washer / dryer when the internal air flow during the drying operation is obstructed, the air heated by the heater stays. Occurs, and the temperature distribution in the flow path deviates from the normal state. Therefore, it is considered that the comparison of the measured values of a plurality of temperature sensors is a clue when estimating the cause of the defect.
  • the drying operation is an unsteady process in which drying gradually progresses, and requires complicated control that combines sequence control and feedback control that are completed through multiple steps while constantly estimating the drying state, and the required time is also long. It fluctuates greatly depending on the quantity and quality of the object, outside air temperature, water temperature, etc. In addition, the operating time tends to be extended due to clogging of the filter, which causes poor drying.
  • the time-series data waveform of the operation data is classified (clustered) according to the cause of the drying defect based on its characteristics, and the clustering result is machine-learned to determine the cause of the drying defect (a model for determining the cause of the drying defect (clustering).
  • this is referred to as a discrimination rule
  • the cause of drying failure is estimated using the created discrimination rule.
  • DTW Dynamic Time Wrapping
  • Well-known time-series similarity scales can be broadly divided into those based on Euclidean distances and correlations of values and changes (difference series), those based on similarity to the distribution of periodic components, and ARIMA (Autoregressive Integrated Moving Average). Some are based on the similarity of linear time series models such as, and some are based on the mutual information of two time series.
  • the discrimination rule is derived in the following frameworks (A) and (B).
  • A) Clustering is performed using various similarity measures.
  • FIG. 9 shows the flow of deriving the discrimination rule according to such a framework.
  • Each operation data of the training sample is classified and labeled by time series clustering, and a vector of label values is assigned to each operation data (S20).
  • the discrimination rule RL is derived by machine learning using this vector as an explanatory variable and the presence or absence of a failure as an objective variable (S21). The above processing is performed for each cause of poor drying, and a discrimination rule RL for each cause is created.
  • 16 typical types of similarity scales shown in FIG. 10 are used as similarity scales for time series clustering, centering on those having a track record in discriminating sensor time series in literature and the like. ..
  • clustering is classified into, for example, 12 groups by hierarchical clustering. As a result, it becomes a 48-dimensional vector as an explanatory variable with 3 types of time series data and 16 types of clustering method.
  • Clustering may be classified into, for example, 4 groups and 12 groups using a plurality of divisions.
  • the explanatory variables are 96-dimensional vectors with 3 types of time series data, 16 types of clustering methods, and 2 types of divisions. Random forest and xgboost are used as the machine learning method for deriving the discrimination rule RL.
  • FIG. 9 shows the flow of determining the cause of poor drying using the discrimination rule RL created as described above.
  • Time-series data of operation data is acquired from the washer-dryer installed in each household, and clustering is performed to classify the time-series data into corresponding classification types for each of the above-mentioned 16 types of similarity scales (S22). Then, by comparing the classification results for each of the 16 types of similarity scales with the discrimination rule RL, it is determined whether or not the corresponding cause is the cause of the drying defect (S23).
  • Such a discrimination process is performed for each cause of poor drying, and the cause of poor drying is estimated based on the discrimination result for each cause.
  • FIG. 11 is shown with the same reference numerals as those corresponding to FIG. 2 is the logical configuration of the drying defect cause estimation system 80 according to the second embodiment. Is shown. Since the hardware configuration of the dry defect cause estimation system 80 of the present embodiment is the same as that of the dry defect cause estimation system 1 of the first embodiment, the description thereof is omitted here.
  • the drying defect cause estimation system 80 includes the data acquisition unit 31 (FIG. 2) and the cause estimation unit 33 in which the configuration of the data acquisition unit 82 of the washing / drying machine 81 and the cause estimation unit 84 of the analysis server 83 is the first embodiment.
  • the difference from FIG. 2 is different from the drying defect cause estimation system 1 of the first embodiment.
  • the data acquisition unit 82 of the washer / dryer 81 combines the acquired operation data DT1 of each sensor 13 for each sensor into time-series data for each sensor (hereinafter, this is referred to as operation data time-series data). ) It is transmitted to the analysis server 83 as DT3.
  • the analysis server 83 includes a cause estimation unit 84 including a plurality of determination units 85, and an estimation result output unit 86.
  • the determination unit 85 is provided corresponding to each cause of drying failure such as clogging of the filter, clogging of the duct, and malfunction of the blower and the heater. Further, in the storage device 22 (FIG. 1) of the analysis server 83, the determination rule RL for each cause described above for FIG. 9 is stored in advance.
  • each determination unit 85 describes the corresponding operation data time-series data DT3 among the various operation data time-series data DT3 transmitted from the washer-dryer 81, for example, with respect to FIG. Perform each clustering. Further, the determination unit 85 compares the clustering result of these clustering with the determination rule RL of the same cause, and determines whether the drying defect of the washer / dryer 81 is due to the corresponding cause based on the comparison result, and determines. The result is output to the estimation result output unit 86.
  • the estimation result output unit 86 estimates the cause of the drying failure in the corresponding washer / dryer 81 based on the determination result for each cause given by each determination unit 85, and displays the estimation result on the display device 24 (FIG. 1). Display etc.
  • FIG. 12 shows a configuration of a learning device 100 for learning the discrimination rule RL for each cause
  • FIG. 13 shows the learning device. The flow of learning in 100 is shown.
  • the washer / dryer 90 shown in FIG. 12 is a washer / dryer used for creating a determination rule RL for each cause, and is a clock 91, a drive / power unit 92, a plurality of sensors 93, a control unit 94, and a data acquisition unit. 95 is provided.
  • These clock 91, drive / power unit 92, each sensor 93, control unit 94, and data acquisition unit 95 correspond to the above-mentioned washing / drying machine 81 with respect to FIG. 11 (clock 11, drive / power unit 12, sensor 13, control). Since it has the same function and configuration as the unit 30 or the data acquisition unit 82), the description thereof is omitted here.
  • the data acquisition unit 95 of the washer / dryer 90 is preset for a certain period before and after the control unit 94 outputs the command value COM10 to the drive / power unit 92.
  • the operation data DT10 only in the time zone is acquired, the operation data time-series data DT11 combined with the acquired operation data DT10 is generated, and the generated operation data time-series data DT11 is output to the learning device 100.
  • the learning device 100 is a computer device provided with information processing resources such as a CPU, a memory, and a storage device (not shown).
  • the learning device 100 may be used in combination with the analysis server 83 (FIG. 11).
  • the cause estimation unit 101 of the learning device 100 is provided with a determination unit 102 and a determination rule RL corresponding to each cause of drying failure such as clogging of a filter, clogging of a duct, and failure of a blower or a heater.
  • each determination unit 102 among the operation data time series data DT11 given from the data acquisition unit 95 of the washing / drying machine 90, the operation data for learning necessary for learning the drying defect caused by the corresponding cause is used.
  • Series data DT11 is given respectively (S30 in FIG. 13).
  • the determination unit 102 corresponding to the malfunction of the heater is given the operation data time series data DT11 generated from the operation data DT10 from the temperature sensor that measures the temperature of the air warmed by the heater.
  • each determination unit 102 clusters the given operation data time series data DT11 with the above-mentioned 16 types of similarity scales with respect to FIG. At this time, each determination unit 102 is given an answer as to whether or not the cause of the drying defect is due to the corresponding cause, based on the user operation or the like for the learning device 100. Thus, each determination unit 102 creates the relationship information 104 between the classification type and the failure rate as shown in FIG. 9 based on this answer and the clustering result of the clustering of the 16 types of similarity scales described above. The created relationship information 104 is output to the corresponding machine learning unit 103 (S31 in FIG. 13).
  • the machine learning unit 103 learns the correlation between the clustering result of the above-mentioned 16 types of similarity scale clustering and the corresponding cause based on the relationship information 104 given by the corresponding determination unit 102 (FIG. 13). S32), the discrimination rule RL is updated as necessary based on the learning result (step S33 in FIG. 13).
  • each time the operation data time series data DT11 is given from the washing / drying machine 90 for learning the above-mentioned processes of steps S30 to S33 are repeated. As a result, learning of each discrimination rule RL corresponding to each cause is performed.
  • FIG. 14 shows the flow of the determination process executed on the analysis server 83 (FIG. 11) using each determination rule RL trained as described above.
  • Each determination unit 85 (FIG. 11) of the analysis server 83 is given each operation data time series from the data acquisition unit 82 (FIG. 11) of the washer / dryer 81 (FIG. 11) via the network 4 (FIG. 1).
  • operation data time-series data DT3 (FIG. 11) corresponding to the corresponding cause is given (S40).
  • each determination unit 85 performs clustering of 16 types of similarity scales on the given operation data time series data DT3 (S41), and based on the clustering results of the clustering of these 16 types of similarity scales. It is determined whether or not the drying defect is due to the corresponding cause, and the determination result is output to the estimation result output unit 86 (FIG. 11) (S42).
  • the control unit 30 of the operation data DT1 output from each sensor 13 of the washing / drying machine 2 is used.
  • the cause of failure of the washing / drying machine 2 is specified based on a certain period before and after the command value COM1 is output to the drive / power unit 12 and the time series data of the operation data DT1 in a predetermined specific time zone.
  • the control unit 30 gives a command value COM1 to which drive / power unit 12 as in the dry defect cause estimation system 1 of the first embodiment. It is possible to specify whether or not the operation data DT1 shows an abnormal value when the above is output, and it is possible to identify the cause of the poor drying accordingly. Therefore, according to the drying defect cause estimation system 80, it is possible to efficiently estimate the cause of the defect in which a plurality of possible causes exist.
  • the washer / dryer is a functional unit for estimating the cause of the drying failure of the washer / dryer 2,81 such as the cause estimation unit 33, 84 and the estimation result output unit 34, 86.
  • the analysis servers 3 and 83 are arranged separately from the 2,81 is described, the present invention is not limited to this, and these functional parts may be provided in the washer / dryer 2,81. ..
  • the estimation result of the cause estimation unit is acquired from the washing / drying machine via a smartphone or tablet equipped with a short-range communication function such as Bluetooth (registered trademark), and the acquired estimation result is obtained in the network 4. It may be possible to transfer to the center of the manufacturer via Bluetooth.
  • a short-range communication function such as Bluetooth (registered trademark)
  • the present invention is not limited to this, and can be widely applied to various defect cause estimation devices for estimating the causes of defects other than drying defects. It can also be applied to a defect cause estimation device for estimating a defect cause of an electric power device other than the washer / dryers 2 and 81.
  • the present invention can be widely applied to various defect cause estimation devices for estimating the defect cause of electric power equipment such as a washer / dryer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Washing Machine And Dryer (AREA)
  • Testing And Monitoring For Control Systems (AREA)

Abstract

In this failure cause inference device that is for inferring a failure cause of a target device and this failure cause inference method that is executed by said failure cause inference device, the target device is configured to: have a plurality of sensors each detecting the state of the target device; store and retain at least one model that has been trained in advance; use a sensor data item in a specific data range that brings a change in the state of the target device from among sensor data items outputted from the sensors; and infer a failure cause of the target device on the basis of the model.

Description

不良原因推定装置及び方法Defect cause estimation device and method
 本発明は不良原因推定装置及び方法に関し、例えば、洗濯乾燥機における乾燥不良の原因を推定する乾燥不良原因推定装置に適用して好適なものである。 The present invention relates to a defect cause estimation device and a method, and is suitable for application to, for example, a drying defect cause estimation device for estimating the cause of drying defects in a washer / dryer.
 従来、洗濯乾燥機に乾燥不良が発生した場合、幾つか考えられる不良原因のうちのいずれが原因となっているかを特定する必要がある。なお、乾燥不良の原因としては、外気を取り入れる吸気口に取り付けられたフィルタの目詰まり、排気口に取り付けられたダクトの詰まり、ブロワの不具合、ヒータの不具合などがある。しかしながら、このような不良原因の特定は煩雑であり、時間を要する問題があった。 Conventionally, when a washer / dryer has a drying defect, it is necessary to identify which of the several possible causes of the defect is the cause. The causes of poor drying include clogging of the filter attached to the intake port for taking in outside air, clogging of the duct attached to the exhaust port, malfunction of the blower, malfunction of the heater, and the like. However, identifying the cause of such a defect is complicated and takes time.
 なお、洗濯機の不良判定に関する技術として、特許文献1には、モータをセンサレス制御により駆動する制御部がモータを強制転流により起動する際に、モータに通電される電流及びモータの定数に基づいてモータの回転数又は誘起電圧を判定パラメータとして演算し、判定パラメータが振動状態にあるか否かによって回転不良判定を行うことが開示されている。 As a technique for determining a defect in a washing machine, Patent Document 1 describes the current applied to the motor and the constant of the motor when the control unit that drives the motor by sensorless control starts the motor by forced commutation. It is disclosed that the rotation speed or the induced voltage of the motor is calculated as a determination parameter, and the rotation failure determination is performed depending on whether or not the determination parameter is in a vibration state.
 また特許文献2には、例えばモータ駆動装置の電圧変換部の故障原因を判定する技術として、かかる電圧変換部の動作停止後、その電圧変換部の出力側に接続されたコンデンサの放電が完了してから当該電圧変換部の入力側及び出力側の各電圧値に基づいて故障部位を判定する技術が開示されている。 Further, in Patent Document 2, for example, as a technique for determining the cause of failure of the voltage conversion unit of a motor drive device, after the operation of the voltage conversion unit is stopped, the discharge of the capacitor connected to the output side of the voltage conversion unit is completed. Then, a technique for determining a faulty part based on each voltage value on the input side and the output side of the voltage conversion unit is disclosed.
特開2019-017179号公報Japanese Unexamined Patent Publication No. 2019-017179 特開2005-245067号公報Japanese Unexamined Patent Publication No. 2005-24567
 ところが、かかる特許文献1及び特許文献2に開示された技術は、モータや電圧変換部という特定部品の故障に特化した判定技術であり、例えば、フィルタや、ダクト、ブロワ及びヒータなど、不良原因が複数存在する乾燥不良の原因の推定には適用できない問題があった。 However, the techniques disclosed in Patent Documents 1 and 2 are determination techniques specialized for failures of specific parts such as motors and voltage converters, and are causes of defects such as filters, ducts, blowers and heaters. There was a problem that it could not be applied to estimate the cause of poor drying.
 本発明は以上の点を考慮してなされたもので、不良原因を効率良く推定し得る不良原因推定装置及び方法を提案しようとするものである。 The present invention has been made in consideration of the above points, and is an attempt to propose a defect cause estimation device and a method capable of efficiently estimating a defect cause.
 かかる課題を解決するため本発明においては、対象装置の不良原因を推定する不良原因推定装置において、前記対象装置は、それぞれ前記対象装置の状態を検出する複数のセンサを有し、予め学習した1又は複数のモデルを記憶保持する記憶部と、前記センサから出力されたセンサデータのうちの前記対象装置の状態変化をもたらす特定のデータ範囲の前記センサデータを用い、前記モデルに基づいて前記対象装置の前記不良原因を推定する原因推定部とを設けるようにした。 In order to solve this problem, in the present invention, in the defect cause estimation device for estimating the defect cause of the target device, the target device has a plurality of sensors for detecting the state of the target device, and has been learned in advance. Alternatively, using the storage unit that stores and holds a plurality of models and the sensor data in a specific data range that causes a state change of the target device among the sensor data output from the sensor, the target device is based on the model. A cause estimation unit for estimating the cause of the defect is provided.
 また本発明においては、対象装置の不良原因を推定する不良原因推定装置により実行される不良原因推定方法において、前記対象装置は、それぞれ前記対象装置の状態を検出する複数のセンサを有し、予め学習した1又は複数のモデルを記憶保持する第1のステップと、前記センサから出力されたセンサデータのうちの前記対象装置の状態変化をもたらす特定のデータ範囲の前記センサデータを用い、前記モデルに基づいて前記対象装置の前記不良原因を推定する第2のステップとを設けるようにした。 Further, in the present invention, in the defect cause estimation method executed by the defect cause estimation device for estimating the defect cause of the target device, the target device has a plurality of sensors for detecting the state of the target device in advance. Using the first step of storing and retaining one or more learned models and the sensor data in a specific data range that causes a state change of the target device among the sensor data output from the sensor, the model is used. Based on this, a second step of estimating the cause of the defect of the target device is provided.
 本不良原因推定装置及び方法によれば、対象装置の状態変化に基づいて当該対象装置のどの部位に不良原因があるかを特定することができる。 According to the defect cause estimation device and method, it is possible to identify which part of the target device has the defect cause based on the state change of the target device.
 本発明によれば、不良原因を効率良く推定し得る不良原因推定装置及び方法を実現できる。 According to the present invention, it is possible to realize a defect cause estimation device and a method capable of efficiently estimating the defect cause.
第1の実施の形態による乾燥不良原因推定システムの概略構成を示すブロック図である。It is a block diagram which shows the schematic structure of the drying defect cause estimation system by 1st Embodiment. 第1の実施の形態による洗濯乾燥機及び分析サーバの論理構成を示すブロック図である。It is a block diagram which shows the logical structure of the washing machine and the analysis server by 1st Embodiment. 原因モデルの学習システムの構成を示すブロック図である。It is a block diagram which shows the structure of the learning system of the cause model. 原因モデルの学習の流れを示すフローチャートである。It is a flowchart which shows the learning flow of the cause model. 原因モデルを用いた原因推定の流れを示すフローチャートである。It is a flowchart which shows the flow of cause estimation using a cause model. 原因モデルとしてCNNを用いた実験結果の説明に供する図表である。It is a chart which provides the explanation of the experimental result using CNN as a cause model. 原因モデルとしてCNNを用いた実験結果の説明に供する図表である。It is a chart which provides the explanation of the experimental result using CNN as a cause model. 原因モデルとしてCNNを用いた実験結果の説明に供する図表である。It is a chart which provides the explanation of the experimental result using CNN as a cause model. 第2の実施の形態の説明に供する概念図である。It is a conceptual diagram provided for the explanation of the 2nd Embodiment. 第2の実施の形態で利用するクラスタリングを示す図表である。It is a figure which shows the clustering used in the 2nd Embodiment. 第2の実施の形態による洗濯乾燥機及び分析サーバの論理構成を示すブロック図である。It is a block diagram which shows the logical structure of the washing machine and the analysis server by 2nd Embodiment. 判別ルールの作成システムの構成を示すブロック図である。It is a block diagram which shows the structure of the discriminant rule creation system. 判別ルール作成の流れを示すフローチャートである。It is a flowchart which shows the flow of making a discrimination rule. 判別ルールを用いた判定処理の流れを示すフローチャートである。It is a flowchart which shows the flow of the judgment process using the judgment rule. 他の実施の形態の説明に供するブロック図である。It is a block diagram provided for the explanation of another embodiment.
 以下図面について、本発明の一実施の形態を詳述する。 Hereinafter, one embodiment of the present invention will be described in detail with respect to the drawings.
(1)第1の実施の形態
(1―1)本実施の形態による乾燥不良原因推定システムの構成
 図1において、1は全体として本実施の形態による乾燥不良原因推定システムを示す。この乾燥不良原因推定システム1は、洗濯乾燥機2に乾燥不良が発生した場合に、その原因を推定する機能を有するシステムであり、各家庭にそれぞれ設置された洗濯乾燥機2と、これら洗濯乾燥機2のメーカが設置した分析サーバ3とがインターネットなどのネットワーク4を介して接続されて構成されている。
(1) First Embodiment (1-1) Configuration of Drying Defect Cause Estimating System According to the Present Embodiment In FIG. 1, 1 shows a drying defect cause estimation system according to the present embodiment as a whole. The drying defect cause estimation system 1 is a system having a function of estimating the cause when a drying defect occurs in the washing / drying machine 2, and the washing / drying machine 2 installed in each household and these washing / drying machines are used. The analysis server 3 installed by the manufacturer of the machine 2 is connected to the analysis server 3 via a network 4 such as the Internet.
 洗濯乾燥機2は、ユーザ操作に応じて衣類等の対象物の洗濯及び乾燥を行う家電機器であり、コントローラ10、時計11、駆動・動力部12及び各種センサ13を備えて構成される。 The washer / dryer 2 is a home electric appliance that washes and dries an object such as clothes according to a user operation, and includes a controller 10, a clock 11, a drive / power unit 12, and various sensors 13.
 コントローラ10は、洗濯乾燥機2全体の動作制御を司るプロセッサである。また時計11は、デジタル時計などから構成され、現在時刻を刻むタイムカウンタとしての機能と、ある動作を開始してからの経過時刻をカウントするタイマとしての機能とを備える。 The controller 10 is a processor that controls the operation of the entire washer / dryer 2. Further, the clock 11 is composed of a digital clock or the like, and has a function as a time counter for ticking the current time and a function as a timer for counting the elapsed time since the start of a certain operation.
 駆動・動力部12は、洗濯乾燥機2内のドラムを回転駆動するモータや、乾燥動作時に対象物に風を吹きかけるブロワ、及び、ブロワから出力される風を加熱するヒータなどの洗濯乾燥機2の内部に配設された駆動部品や動力部品から構成される。 The drive / power unit 12 is a washer / dryer 2 such as a motor that rotationally drives a drum in the washer / dryer 2, a blower that blows wind on an object during a drying operation, and a heater that heats the wind output from the blower. It is composed of drive parts and power parts arranged inside.
 センサ13は、洗濯乾燥機2の状態を数値に変換して運転データとして出力する計測素子であり、例えば、洗濯槽内の水位を検知するための水位センサや、洗濯槽内の水温を検知するための水温センサ、ブロワから出力される温風の温度を計測する温度センサ、洗濯乾燥機2が発生する振動を計測する振動センサなどから構成される。 The sensor 13 is a measuring element that converts the state of the washing / drying machine 2 into a numerical value and outputs it as operation data. For example, a water level sensor for detecting the water level in the washing tub and a water temperature in the washing tub are detected. It is composed of a water temperature sensor for measuring the temperature, a temperature sensor for measuring the temperature of hot air output from the blower, a vibration sensor for measuring the vibration generated by the washing / drying machine 2, and the like.
 一方、分析サーバ3は、ネットワーク4を介して接続された各洗濯乾燥機2の各センサからそれぞれ出力された運転データを各洗濯乾燥機2からそれぞれ収集し、収集した運転データに基づいて、その洗濯乾燥機2に乾燥不良が発生した場合にその原因を推定する機能を有するサーバ装置である。この分析サーバ3は、CPU(Central Processing Unit)20、メモリ21、記憶装置22、通信装置23及び表示装置24を備えた汎用のサーバ装置から構成される。 On the other hand, the analysis server 3 collects operation data output from each sensor of each washer / dryer 2 connected via the network 4 from each washer / dryer 2, and based on the collected operation data, the analysis server 3 collects the operation data. It is a server device having a function of estimating the cause when a drying defect occurs in the washer-dryer 2. The analysis server 3 is composed of a general-purpose server device including a CPU (Central Processing Unit) 20, a memory 21, a storage device 22, a communication device 23, and a display device 24.
 CPU20は、分析サーバ3全体の動作制御を司るプロセッサである。またメモリ21は、例えば揮発性の半導体メモリから構成され、CPU20のワークメモリとして利用される。メモリ21には、分析サーバ3の起動時や必要時に記憶装置22から読み出された後述の原因推定プログラム25や推定結果出力プログラム26などが格納される。 The CPU 20 is a processor that controls the operation of the entire analysis server 3. Further, the memory 21 is composed of, for example, a volatile semiconductor memory and is used as a work memory of the CPU 20. The memory 21 stores the cause estimation program 25 and the estimation result output program 26, which will be described later, read from the storage device 22 when the analysis server 3 is started or when necessary.
 記憶装置22は、例えば、ハードディスク装置やSSD(Solid State Drive)などの大容量の不揮発性の記憶装置から構成され、各種プログラムや長期保存が必要な各種データが格納される。後述する乾燥不良の原因として考えられる不良原因ごとの原因モデル27もこの記憶装置22に格納されて保持される。 The storage device 22 is composed of, for example, a large-capacity non-volatile storage device such as a hard disk device or SSD (Solid State Drive), and stores various programs and various data requiring long-term storage. A cause model 27 for each cause of failure, which will be described later as a cause of poor drying, is also stored and held in the storage device 22.
 通信装置23は、NIC(Network Interface Card)などから構成され、ネットワーク4を介した各洗濯乾燥機2との通信時におけるプロトコル制御を行う。また表示装置24は、例えば液晶ディスプレイや有機EL(Electro Luminescence)ディスプレイなどから構成され、必要な情報を表示するために利用される。 The communication device 23 is composed of a NIC (Network Interface Card) or the like, and performs protocol control during communication with each washer / dryer 2 via the network 4. Further, the display device 24 is composed of, for example, a liquid crystal display or an organic EL (ElectroLuminescence) display, and is used for displaying necessary information.
 図2は、かかる乾燥不良原因推定システム1の論理構成を示す。この図2に示すように、洗濯乾燥機2は、時計11、駆動・動力部12及び各種センサ13に加えて、制御部30及びデータ取得部31を備えて構成される。 FIG. 2 shows the logical configuration of the drying defect cause estimation system 1. As shown in FIG. 2, the washer / dryer 2 includes a clock 11, a drive / power unit 12, and various sensors 13, as well as a control unit 30 and a data acquisition unit 31.
 制御部30は、洗濯乾燥機2のコントローラ10(図1)により具現化される機能部である。制御部30は、ユーザ操作やプログラムに応じて必要な指令値COM1を必要なタイミングで対応する駆動・動力部12に与えるようにして洗濯乾燥機2全体の動作を制御する。 The control unit 30 is a functional unit embodied by the controller 10 (FIG. 1) of the washer / dryer 2. The control unit 30 controls the operation of the entire washer / dryer 2 by giving a required command value COM1 to the corresponding drive / power unit 12 at a necessary timing according to a user operation or a program.
 具体的に、制御部30は、例えば洗濯動作時には、ドラムの回転数や回転方向などを指定した指令値をモータに適宜与えるようにして洗濯乾燥機2の洗濯動作を制御する。また制御部30は、乾燥動作時には、対象物に吹きかける温風の風速や温度などを指定した指令値をブロワやヒータに適宜与えるようにして洗濯乾燥機2の乾燥動作を制御する。 Specifically, for example, during the washing operation, the control unit 30 controls the washing operation of the washing / drying machine 2 by appropriately giving a command value specifying the rotation speed and the rotation direction of the drum to the motor. Further, during the drying operation, the control unit 30 controls the drying operation of the washer / dryer 2 by appropriately giving command values such as the wind speed and temperature of the warm air blown to the object to the blower and the heater.
 データ取得部31も、洗濯乾燥機2のコントローラ10により具現化される機能部である。データ取得部31は、制御部30が駆動・動力部12に出力する指令値COM1や、各センサ13からそれぞれ出力された運転データDT1を取得する機能を有する機能部である。 The data acquisition unit 31 is also a functional unit embodied by the controller 10 of the washer / dryer 2. The data acquisition unit 31 is a functional unit having a function of acquiring the command value COM1 output by the control unit 30 to the drive / power unit 12 and the operation data DT1 output from each sensor 13.
 この際、データ取得部31は、各センサ13からそれぞれ出力された運転データDT1のうち、洗濯乾燥機2の状態変化をもたらす特定のデータ範囲の運転データDT1を選択的に取得する。具体的に、データ取得部31は、制御部30が駆動・動力部12に対して指令値COM1を出力した前後の一定期間及び又は予め設定された特定の時間帯の運転データDT1のみを選択的に取得する。そしてデータ取得部31は、取得したこれらの指令値COM1や運転データDT1をそれぞれ結合してネットワーク4(図1)を介して分析サーバ3に送信する。 At this time, the data acquisition unit 31 selectively acquires the operation data DT1 in a specific data range that causes the state change of the washing / drying machine 2 from the operation data DT1 output from each sensor 13. Specifically, the data acquisition unit 31 selectively selects only the operation data DT1 for a certain period before and after the control unit 30 outputs the command value COM1 to the drive / power unit 12 and / or in a predetermined specific time zone. To get to. Then, the data acquisition unit 31 combines these acquired command values COM1 and operation data DT1 and transmits them to the analysis server 3 via the network 4 (FIG. 1).
 一方、分析サーバ3は、複数の判定部32を含む原因推定部33と、推定結果出力部34とを備えて構成される。原因推定部33及び判定部32は、分析サーバ3のCPU20(図1)がメモリ21(図1)に格納された原因推定プログラム25(図1)や、その一部である判定プログラム25A(図1)を実行することによりそれぞれ具現化される機能部である。 On the other hand, the analysis server 3 includes a cause estimation unit 33 including a plurality of determination units 32 and an estimation result output unit 34. The cause estimation unit 33 and the determination unit 32 include a cause estimation program 25 (FIG. 1) in which the CPU 20 (FIG. 1) of the analysis server 3 is stored in the memory 21 (FIG. 1), and a determination program 25A (FIG. 1) which is a part thereof. It is a functional part embodied by executing 1).
 判定部32は、フィルタの目詰まり、ダクトの詰まり、ブロワやヒータの不具合などの乾燥不良の原因として考えられる各不良原因にそれぞれ対応させて設けられる。各判定部32は、それぞれ洗濯乾燥機2から送信されてきた各種運転データDT1のうちの対応する運転データDT1と、予め与えられた対応する不良原因に対応する原因モデル27とに基づいて、その洗濯乾燥機2の乾燥不良が対応する不良原因によるものであるかの判定を行い、判定結果を推定結果出力部34に出力する。 The determination unit 32 is provided corresponding to each of the causes of drying defects such as clogging of the filter, clogging of the duct, and malfunction of the blower and the heater. Each determination unit 32 is based on the corresponding operation data DT1 of the various operation data DT1 transmitted from the washer / dryer 2, and the cause model 27 corresponding to the corresponding defect cause given in advance. It is determined whether the drying defect of the washer / dryer 2 is due to the corresponding defect cause, and the determination result is output to the estimation result output unit 34.
 推定結果出力部34は、分析サーバ3のCPU20がメモリ21に格納された推定結果出力プログラム26(図1)を実行することにより具現化される機能部である。推定結果出力部34は、各判定部32からそれぞれ与えられた不良原因ごとの判定結果に基づいて、対応する判定部32により乾燥不良の原因と判定されたすべての不良原因を、乾燥不良の原因の推定結果として表示装置24(図1)に表示等させる。 The estimation result output unit 34 is a functional unit embodied by executing the estimation result output program 26 (FIG. 1) stored in the memory 21 by the CPU 20 of the analysis server 3. The estimation result output unit 34 sets all the causes of defects determined to be the cause of the drying defect by the corresponding determination unit 32 based on the determination result for each defect cause given by each determination unit 32 as the cause of the drying defect. Is displayed on the display device 24 (FIG. 1) as the estimation result of.
(1-2)原因モデルの学習の流れ及び原因モデルを用いた異常判定の流れ
 図3は、原因モデル27がCNN(Convolutional Neural Network)である場合における原因モデル27の学習の流れを示す。ここでの「原因モデル」とは、洗濯乾燥機2から取得した指令値COM1及び運転データDT1に基づいて、その洗濯乾燥機2の乾燥不良の不良原因が対応する原因である確率を算出し、算出結果を出力する数学モデルを指す。
(1-2) Flow of learning of the cause model and flow of abnormality determination using the cause model FIG. 3 shows the flow of learning of the cause model 27 when the cause model 27 is a CNN (Convolutional Neural Network). The "cause model" here is based on the command value COM1 and the operation data DT1 acquired from the washer / dryer 2, and the probability that the cause of the poor drying of the washer / dryer 2 is the corresponding cause is calculated. Refers to a mathematical model that outputs the calculation results.
 図3に示す洗濯乾燥機40は、原因モデル27の学習のために用いられる洗濯乾燥機であり、時計41、駆動・動力部42、複数のセンサ43、制御部44及びデータ取得部45を備える。これら時計41、駆動・動力部42、各センサ43、制御部44及びデータ取得部45は、図2について上述した洗濯乾燥機2の対応部位(時計11、駆動・動力部12,センサ13,制御部30又はデータ取得部31)と同様の機能及び構成を有するものであるため、ここでの説明は省略する。 The washing / drying machine 40 shown in FIG. 3 is a washing / drying machine used for learning the cause model 27, and includes a clock 41, a drive / power unit 42, a plurality of sensors 43, a control unit 44, and a data acquisition unit 45. .. The clock 41, the drive / power unit 42, each sensor 43, the control unit 44, and the data acquisition unit 45 are the corresponding parts (clock 11, drive / power unit 12, sensor 13, control) of the washer / dryer 2 described above with respect to FIG. Since it has the same function and configuration as the unit 30 or the data acquisition unit 31), the description thereof is omitted here.
 かかる洗濯乾燥機40のデータ取得部45は、図2のデータ取得部31と同様に、制御部44が駆動・動力部42に対して出力した指令値COM2と、制御部44がその指令値COM2を出力した前後の一定期間や予め設定された時間帯のみの運転データDT2とを取得し、取得したこれらの指令値COM2及び運転データDT2を結合してネットワーク4(図1)を介して学習装置50に出力する。 Similar to the data acquisition unit 31 of FIG. 2, the data acquisition unit 45 of the washing / drying machine 40 has a command value COM2 output by the control unit 44 to the drive / power unit 42 and a command value COM2 of the control unit 44. The operation data DT2 is acquired only for a certain period before and after the output or in a preset time zone, and the acquired command value COM2 and the operation data DT2 are combined to form a learning device via the network 4 (FIG. 1). Output to 50.
 学習装置50は、図示しないCPU、メモリ及び記憶装置などの情報処理資源を備えたコンピュータ装置である。なお学習装置50を分析サーバ3(図1)と併用するようにしてもよい。学習装置50には、フィルタの目詰まり、ダクトの詰まり、ブロワ又はヒータの故障などの乾燥不良の各原因にそれぞれ対応させた判定部51及び原因モデル27が設けられる。 The learning device 50 is a computer device provided with information processing resources such as a CPU, a memory, and a storage device (not shown). The learning device 50 may be used in combination with the analysis server 3 (FIG. 1). The learning device 50 is provided with a determination unit 51 and a cause model 27 corresponding to each cause of drying failure such as clogging of a filter, clogging of a duct, and failure of a blower or a heater.
 そして各判定部51には、洗濯乾燥機40のデータ取得部45から与えられた各指令値COM2及び運転データDT2のうち、対応する不良原因に起因する乾燥不良の学習に必要な学習用の指令値COM2及び運転データDT2がそれぞれ与えられる。例えば、ヒータの不具合に対応する判定部51には、ヒータに対する指令値COM2と、当該ヒータにより暖められた空気の温度を計測する温度センサからの運転データDT2となどが与えられる。そして、各判定部51は、与えられた指令値COM2及び運転データDT2を対応する原因モデル27に入力する。 Then, each determination unit 51 is given a command for learning necessary for learning the drying defect caused by the corresponding defect cause among the command value COM2 and the operation data DT2 given by the data acquisition unit 45 of the washing / drying machine 40. The value COM2 and the operation data DT2 are given respectively. For example, the determination unit 51 corresponding to the malfunction of the heater is given a command value COM2 for the heater, operation data DT2 from the temperature sensor that measures the temperature of the air warmed by the heater, and the like. Then, each determination unit 51 inputs the given command value COM2 and the operation data DT2 to the corresponding cause model 27.
 各原因モデル27では、図4に示すように、入力された指令値COM2及び運転データDT2を入力層を介して取り込み(S1)、取り込んだ指令値COM2及び運転データDT2に基づいて原因モデル27の隠れ層(畳込み層及びプーリング層)において、乾燥不良の原因が対応する不良原因よるものである確率を算出し(S2)、算出した確率を判定結果として出力層から出力する(S3)。そして判定部51は、原因モデル27から出力された確率に基づいて、乾燥不良の原因が対応する不良原因によるものである否かを判定し、判定結果を出力する(S4)。 In each cause model 27, as shown in FIG. 4, the input command value COM2 and the operation data DT2 are captured via the input layer (S1), and the cause model 27 is based on the captured command value COM2 and the operation data DT2. In the hidden layer (folding layer and pooling layer), the probability that the cause of the drying defect is due to the corresponding defect cause is calculated (S2), and the calculated probability is output from the output layer as a determination result (S3). Then, the determination unit 51 determines whether or not the cause of the drying defect is due to the corresponding defect cause based on the probability output from the cause model 27, and outputs the determination result (S4).
 このとき各判定部51には、学習装置50に対するユーザ操作等に基づいて、乾燥不良の原因が対応する不良原因によるものであるか否かの答えが与えられる。かくして、判定部51は、この答えに基づいて原因モデル27の隠れ層のフィルタの重みを必要に応じて更新する(S5)。 At this time, each determination unit 51 is given an answer as to whether or not the cause of the drying defect is due to the corresponding defect cause based on the user operation or the like for the learning device 50. Thus, the determination unit 51 updates the weight of the filter of the hidden layer of the cause model 27 as necessary based on this answer (S5).
 そして学習装置50では、学習用の洗濯乾燥機40から指令値COM2及び運転データDT2が与えられるごとに上述のステップS1~ステップS5の処理が繰り返される。これにより各不良原因にそれぞれ対応した各原因モデル27の学習が行われる。 Then, in the learning device 50, each time the command value COM2 and the operation data DT2 are given from the washing / drying machine 40 for learning, the above-mentioned processes of steps S1 to S5 are repeated. As a result, each cause model 27 corresponding to each defect cause is learned.
 一方、図5は、上述のようにして学習が行われた各原因モデル27を用いて分析サーバ3の原因推定部33において実行される判定処理の流れを示す。分析サーバ3の各判定部32(図2)には、洗濯乾燥機2(図2)のデータ取得部31(図2)からネットワーク4を介して与えられた各指令値COM1及び運転データDT1のうち、対応する原因に応じた指令値COM1及び運転データDT1がそれぞれ与えられる。そして各判定部32は、与えられた指令値COM1及び運転データDT1を対応する原因モデル27の入力層にそれぞれ入力する(S10)。 On the other hand, FIG. 5 shows the flow of the determination process executed by the cause estimation unit 33 of the analysis server 3 using each cause model 27 learned as described above. Each determination unit 32 (FIG. 2) of the analysis server 3 has command values COM1 and operation data DT1 given to each determination unit 32 (FIG. 2) from the data acquisition unit 31 (FIG. 2) of the washer / dryer 2 (FIG. 2) via the network 4. Of these, the command value COM1 and the operation data DT1 according to the corresponding cause are given, respectively. Then, each determination unit 32 inputs the given command value COM1 and the operation data DT1 to the input layer of the corresponding cause model 27 (S10).
 各原因モデル27では、入力された指令値COM1及び運転データDT1を入力層を介して取り込み(S11)、取り込んだ指令値COM1及び運転データDT1に基づいて、乾燥不良の原因が対応する不良原因によるものである確率を隠れ層において算出し(S12)、算出結果を出力層から出力する(S13)。そして判定部32は、原因モデル27から出力された確率に基づいて、乾燥不良の原因が対応する不良原因によるものであるか否かを判定し、判定結果を推定結果出力部34(図2)に出力する(S14)。 In each cause model 27, the input command value COM1 and the operation data DT1 are taken in via the input layer (S11), and based on the taken-in command value COM1 and the operation data DT1, the cause of the drying defect is due to the corresponding defect cause. The probability of being a thing is calculated in the hidden layer (S12), and the calculation result is output from the output layer (S13). Then, the determination unit 32 determines whether or not the cause of the drying defect is due to the corresponding defect cause based on the probability output from the cause model 27, and determines the determination result as the estimation result output unit 34 (FIG. 2). Is output to (S14).
(1-3)CNNを用いた原因推定の実験結果
 ここで、図6~図8は、原因モデル27としてCNNを用いて行った、洗濯乾燥機2の乾燥不良の原因推定の実験結果を示す。この実験では、指令値COM1,COM2としてブロワ、ヒータ及びフラップへの指令値を用い、運転データDT1,DT2として水位センサ及び2つの温度センサのセンサデータとを利用した。また原因モデル27としては、3層でパラメータ数が38000個のCNNを利用した。
(1-3) Experimental results of cause estimation using CNN Here, FIGS. 6 to 8 show experimental results of cause estimation of drying defects of the washer / dryer 2 performed using CNN as the cause model 27. .. In this experiment, the command values for the blower, heater and flap were used as the command values COM1 and COM2, and the water level sensor and the sensor data of the two temperature sensors were used as the operation data DT1 and DT2. As the cause model 27, a CNN with 3 layers and 38,000 parameters was used.
 図6は、ダクトを乾燥不良の原因とすべく、ダクトの一部を詰まらせる実験の実験結果である。図6において、状態欄70Bの各数値は、それぞれダクトの断面積に対する当該ダクトを詰まらせた部分の断面積の割合を示す。例えば、「0」はダクトを詰まらせていない状態を示し、「0.5」はダクトの断面積の半分の部分を詰まらせた状態を示す。 FIG. 6 shows the experimental results of an experiment in which a part of the duct is clogged in order to cause the duct to dry poorly. In FIG. 6, each numerical value in the state column 70B indicates the ratio of the cross-sectional area of the portion where the duct is clogged to the cross-sectional area of the duct. For example, "0" indicates a state in which the duct is not clogged, and "0.5" indicates a state in which half of the cross-sectional area of the duct is clogged.
 また、学習個数欄70Cの数値は、原因モデル27の学習に利用した対応する状態のときの指令値COM2及び運転データDT2のデータセットの個数(学習データセット個数)を示し、検証個数欄70Dの数値は、原因の判定処理に利用した対応する状態のときの指令値COM1及び運転データDT1のデータセットの個数(検証データセット個数)を示す。また正解数欄70Eの数値は、かかる検証データセット個数のうち、原因が正解した検証データセットの個数を示し、精度欄70Fの百分率には、かかる検証による正解率(精度)を示す。 Further, the numerical value in the learning number column 70C indicates the number of data sets (number of training data sets) of the command value COM2 and the operation data DT2 in the corresponding state used for learning the cause model 27, and is shown in the verification number column 70D. The numerical value indicates the number of data sets (the number of verification data sets) of the command value COM1 and the operation data DT1 in the corresponding state used for the cause determination process. Further, the numerical value in the correct answer number column 70E indicates the number of verification data sets in which the cause is correct among the number of such verification data sets, and the percentage in the accuracy column 70F indicates the correct answer rate (accuracy) by such verification.
 また図7は、吸気口のフィルタを乾燥不良の原因とすべく、フィルタの一部又は全部を覆う実験の実験結果である。図7において、状態欄71Bの各数値は、それぞれフィルタのフィルタ面全体に対する当該フィルタ面を覆った部分の面積の割合を示す。例えば、「0」はフィルタ面を全く覆っていない状態を示し、「0.5」はフィルタ面の半分の部分を覆った状態を示す。また「1」はフィルタ面の全面を覆った状態を示す。学習個数欄71C、検証個数欄71D、正解数欄71E及び精度欄71Fの各数値や百分率の値は図6と同様である。 In addition, FIG. 7 shows the experimental results of an experiment in which a part or all of the filter of the intake port is covered with the filter as a cause of poor drying. In FIG. 7, each numerical value in the state column 71B indicates the ratio of the area of the portion covering the filter surface to the entire filter surface of the filter. For example, "0" indicates a state in which the filter surface is not covered at all, and "0.5" indicates a state in which half of the filter surface is covered. Further, "1" indicates a state in which the entire surface of the filter surface is covered. The numerical values and percentage values in the learning quantity column 71C, the verification quantity column 71D, the correct answer number column 71E, and the accuracy column 71F are the same as in FIG.
 さらに図8は、ブロワの故障を乾燥不良の原因とすべく、ブロワの排気量を抑制する実験の実験結果である。図8において、状態欄72Bの各数値は、それぞれブロワの正常時の排気量に対する実験時の排気量の割合を示す。例えば、「0」はブロワの排気量を抑制していない状態を示し、「0.5」はブロワの排気量を正常時の半分に抑制した状態を示す。学習個数欄72C、検証個数欄72D、正解数欄72E及び精度欄72Fの各数値や百分率の値は図6と同様である。 Furthermore, FIG. 8 shows the experimental results of an experiment in which the exhaust amount of the blower is suppressed so that the failure of the blower is the cause of the poor drying. In FIG. 8, each numerical value in the state column 72B indicates the ratio of the displacement in the experiment to the displacement in the normal state of the blower. For example, "0" indicates a state in which the exhaust amount of the blower is not suppressed, and "0.5" indicates a state in which the exhaust amount of the blower is suppressed to half of the normal state. The numerical values and percentage values in the learning quantity column 72C, the verification quantity column 72D, the correct answer number column 72E, and the accuracy column 72F are the same as in FIG.
 以上の実験では、ダクト、フィルタ及びブロワを原因とする原因推定の精度は、ダクトを原因とする場合には83%、フィルタを原因とする場合には96%、ブロワを原因とする場合には83%であった。また原因推定に要する時間は、ダクト、フィルタ及びブロワのいずれを原因とする場合も洗濯乾燥機1台当たり1ms以下であった。この実験からも、原因モデル27としてCNNを用いることによっても実用上十分な推定精度及び所要時間を得られることが確認できた。 In the above experiments, the accuracy of cause estimation due to ducts, filters and blowers is 83% when ducts are the cause, 96% when filters are the cause, and blowers when the cause is blowers. It was 83%. In addition, the time required for estimating the cause was 1 ms or less per washer / dryer regardless of whether the cause was a duct, a filter, or a blower. From this experiment, it was confirmed that practically sufficient estimation accuracy and required time can be obtained by using CNN as the cause model 27.
(1-4)本実施の形態の効果
 以上のように本実施の形態の乾燥不良原因推定システム1では、洗濯乾燥機2の各センサ13から出力された運転データDT1のうち、制御部30が駆動・動力部12に対して指令値COM1を出力した前後の一定期間や、予め設定された特定の時間帯の運転データDT1と、原因ごとの原因モデル27とに基づいて洗濯乾燥機2の不良原因を特定する。
(1-4) Effect of the present embodiment As described above, in the drying defect cause estimation system 1 of the present embodiment, the control unit 30 of the operation data DT1 output from each sensor 13 of the washer / dryer 2 is used. Defects in the washer / dryer 2 based on the operation data DT1 for a certain period before and after the command value COM1 is output to the drive / power unit 12 and a preset specific time zone, and the cause model 27 for each cause. specify a reason.
 従って、本乾燥不良原因推定システム1では、制御部30がどの駆動・動力部12に対して指令値COM1を出力した場合に運転データDT1が異常な値を示したかを取得したかを特定することができ、これに伴って乾燥不良の不良原因を特定することができる。よって本乾燥不良原因推定システム1によれば、原因となり得る部位が複数存在する不良原因を効率良く推定することができる。 Therefore, in the present drying defect cause estimation system 1, it is specified which drive / power unit 12 the control unit 30 has acquired when the command value COM1 is output and the operation data DT1 shows an abnormal value. Along with this, it is possible to identify the cause of poor drying. Therefore, according to the present drying defect cause estimation system 1, it is possible to efficiently estimate the defect cause in which a plurality of possible causes exist.
(2)第2の実施の形態
(2-1)運用性を考慮した不良原因の判別手法
 洗濯乾燥機において、乾燥運転時における内部の空気流が阻害されると、ヒータで加熱した空気の滞留が起こり、流路内の温度分布が正常状態から乖離する。このため、複数の温度センサの測定値の比較が不良原因を推定する際の手がかりになると考えられる。
(2) Second Embodiment (2-1) Method for determining the cause of failure in consideration of operability In a washer / dryer, when the internal air flow during the drying operation is obstructed, the air heated by the heater stays. Occurs, and the temperature distribution in the flow path deviates from the normal state. Therefore, it is considered that the comparison of the measured values of a plurality of temperature sensors is a clue when estimating the cause of the defect.
 しかしながら乾燥運転は、徐々に乾燥が進む非定常な過程であり、乾燥状態を常時推定しながら複数の工程を経て完結するシーケンス制御とフィードバック制御とを組み合わせた複雑な制御を必要とし、所要時間も対象物の量・質、外気温、水温等によって大きく変動する。また乾燥不良の原因となるフィルタの目詰まり等によっても運転時間が伸びる傾向がある。 However, the drying operation is an unsteady process in which drying gradually progresses, and requires complicated control that combines sequence control and feedback control that are completed through multiple steps while constantly estimating the drying state, and the required time is also long. It fluctuates greatly depending on the quantity and quality of the object, outside air temperature, water temperature, etc. In addition, the operating time tends to be extended due to clogging of the filter, which causes poor drying.
 このため特定の瞬間の状態で乾燥不良の原因を判別しようとしても、比較すべき時刻を特定することが難しいだけでなく、故障状態以外にも温度計測値に影響を及ぼす原因が多数あるため、不良原因の判定が困難となる。例えば、流路の閉塞などの状態を運転動作時の運転データから推定するためには、温度の動的な挙動の特徴を用いる必要があると考えられる。 For this reason, even if an attempt is made to determine the cause of poor drying in a specific momentary state, not only is it difficult to specify the time to be compared, but there are many other causes that affect the temperature measurement value other than the failure state. It becomes difficult to determine the cause of the defect. For example, in order to estimate a state such as blockage of a flow path from operation data during operation, it is considered necessary to use the characteristics of the dynamic behavior of temperature.
 そこで本実施の形態においては、運転データの時系列データ波形をその特徴に基づいて乾燥不良の原因ごとに分類(クラスタリング)し、クラスタリング結果を機械学習して乾燥不良の原因判別のためのモデル(以下、これを判別ルールと呼ぶ)を作成し、作成した判別ルールを利用して乾燥不良の原因を推定する。 Therefore, in the present embodiment, the time-series data waveform of the operation data is classified (clustered) according to the cause of the drying defect based on its characteristics, and the clustering result is machine-learned to determine the cause of the drying defect (a model for determining the cause of the drying defect (clustering). Hereinafter, this is referred to as a discrimination rule), and the cause of drying failure is estimated using the created discrimination rule.
 ここで、時系列データを用いた故障判別に関してはこれまでに多くの研究が行われており、特に時系列間の差異・類似性を定量化する類似性尺度(dissimilarity measure)を用いたクラスタリングに関して多くの研究が行われている。 Here, many studies have been conducted on failure discrimination using time series data, especially on clustering using a similarity scale (dissimilaritymeasure) that quantifies differences and similarities between time series. Much research has been done.
 代表的な例としては、DTW(Dynamic Time Wrapping)が様々な応用で良好な結果を得ているほか、様々な類似性尺度が提案されている。よく知られている時系列類似性尺度は大別すると、値や変化(階差系列)のユークリッド距離や相関に基づくもの、周期成分の分布に類似性に基づくもの、ARIMA(Autoregressive Integrated Moving Average)などの線形時系列モデルの類似性に基づくもの、2つの時系列の相互情報量に基づくものなどがある。 As a typical example, DTW (Dynamic Time Wrapping) has obtained good results in various applications, and various similarity measures have been proposed. Well-known time-series similarity scales can be broadly divided into those based on Euclidean distances and correlations of values and changes (difference series), those based on similarity to the distribution of periodic components, and ARIMA (Autoregressive Integrated Moving Average). Some are based on the similarity of linear time series models such as, and some are based on the mutual information of two time series.
 乾燥不良の原因推定では、これらの実績を活用し類似性尺度を用いて判別ルールを作成するのが有効であると考えられる。一方で、類似性尺度は扱う対象によって有効に機能するものが異なる傾向があり、様々な製品、機種、故障種類がある家電製品に対して1つの製品・機種、故障種別ごとに評価を行って有効な尺度を選択するのは膨大な時間と人手を要し、システム運用が困難であることが予想される。このような考察から、以下の(A)及び(B)の枠組みで判別ルールを導出する。
(A)様々な類似性尺度を用いてクラスタリングを行う。
(B)クラスタリング結果(分類型)を説明変数とし、機械学習によって判別ルールを導出する。
In estimating the cause of poor drying, it is considered effective to utilize these achievements and create a discrimination rule using a similarity scale. On the other hand, the similarity scale tends to function differently depending on the object to be handled, and evaluation is performed for each product / model and failure type for home appliances with various products, models, and failure types. It takes a huge amount of time and manpower to select an effective scale, and it is expected that system operation will be difficult. From such consideration, the discrimination rule is derived in the following frameworks (A) and (B).
(A) Clustering is performed using various similarity measures.
(B) Using the clustering result (classification type) as an explanatory variable, a discrimination rule is derived by machine learning.
 図9の上段は、かかる枠組みに従った判別ルール導出の流れを示す。学習用サンプルの各運転データを時系列クラスタリングによりそれぞれ分類・ラベル付けし、各運転データにラベル値のベクトルを割り付ける(S20)。このベクトルを説明変数、故障の有無を目的変数として機械学習により判別ルールRLを導出する(S21)。以上の処理を乾燥不良の原因ごとにそれぞれ行い、原因ごとの判別ルールRLを作成する。 The upper part of FIG. 9 shows the flow of deriving the discrimination rule according to such a framework. Each operation data of the training sample is classified and labeled by time series clustering, and a vector of label values is assigned to each operation data (S20). The discrimination rule RL is derived by machine learning using this vector as an explanatory variable and the presence or absence of a failure as an objective variable (S21). The above processing is performed for each cause of poor drying, and a discrimination rule RL for each cause is created.
 本実施の形態においては、時系列クラスタリングのため類似性尺度として、文献等でセンサ時系列の判別での実績があるものを中心に図10に示す代表的な16種類の類似性尺度をそれぞれ用いる。またクラスタリングは階層クラスタリングにより、例えば12群に分類する。この結果、時系列データ3種、クラスタリング手法16種で説明変数としては48次元のベクトルとなる。クラスタリングは複数の分割数を用いて例えば4群と12群に分類してもよい。この場合、時系列データ3種、クラスタリング手法16種、分割数2種で説明変数としては96次元のベクトルとなる。判別ルールRLを導く機械学習方法としてはランダムフォレストやxgboostを用いる。 In this embodiment, 16 typical types of similarity scales shown in FIG. 10 are used as similarity scales for time series clustering, centering on those having a track record in discriminating sensor time series in literature and the like. .. In addition, clustering is classified into, for example, 12 groups by hierarchical clustering. As a result, it becomes a 48-dimensional vector as an explanatory variable with 3 types of time series data and 16 types of clustering method. Clustering may be classified into, for example, 4 groups and 12 groups using a plurality of divisions. In this case, the explanatory variables are 96-dimensional vectors with 3 types of time series data, 16 types of clustering methods, and 2 types of divisions. Random forest and xgboost are used as the machine learning method for deriving the discrimination rule RL.
 また図9の下段は、上述のようにして作成した判別ルールRLを用いた乾燥不良の原因判定の流れを示す。各家庭にそれぞれ設置された洗濯乾燥機から運転データの時系列データを取得し、その時系列データを上述の16種類の類似度尺度ごとにそれぞれ対応する分類型に分類するクラスタリングを行う(S22)。そして、16種類の類似度尺度ごとの分類結果を判別ルールRLと照らし合わせることにより対応する原因が乾燥不良の原因であるか否かを判別する(S23)。このような判別処理を乾燥不良の原因ごとに行い、原因ごとの判別結果に基づいて乾燥不良の原因を推定する。 The lower part of FIG. 9 shows the flow of determining the cause of poor drying using the discrimination rule RL created as described above. Time-series data of operation data is acquired from the washer-dryer installed in each household, and clustering is performed to classify the time-series data into corresponding classification types for each of the above-mentioned 16 types of similarity scales (S22). Then, by comparing the classification results for each of the 16 types of similarity scales with the discrimination rule RL, it is determined whether or not the corresponding cause is the cause of the drying defect (S23). Such a discrimination process is performed for each cause of poor drying, and the cause of poor drying is estimated based on the discrimination result for each cause.
(2-2)本実施の形態による乾燥不良原因推定システムの構成
 図2との対応部分に同一符号を付して示す図11は第2の実施の形態による乾燥不良原因推定システム80の論理構成を示す。なお本実施の形態の乾燥不良原因推定システム80のハードウェア構成は第1の実施の形態の乾燥不良原因推定システム1と同様であるため、ここでの説明は省略する。
(2-2) Configuration of Drying Defect Cause Estimating System According to the Second Embodiment FIG. 11 is shown with the same reference numerals as those corresponding to FIG. 2 is the logical configuration of the drying defect cause estimation system 80 according to the second embodiment. Is shown. Since the hardware configuration of the dry defect cause estimation system 80 of the present embodiment is the same as that of the dry defect cause estimation system 1 of the first embodiment, the description thereof is omitted here.
 この乾燥不良原因推定システム80は、洗濯乾燥機81のデータ取得部82及び分析サーバ83の原因推定部84の構成が第1の実施の形態のデータ取得部31(図2)及び原因推定部33(図2)と異なる点が第1の実施の形態の乾燥不良原因推定システム1と相違する。 The drying defect cause estimation system 80 includes the data acquisition unit 31 (FIG. 2) and the cause estimation unit 33 in which the configuration of the data acquisition unit 82 of the washing / drying machine 81 and the cause estimation unit 84 of the analysis server 83 is the first embodiment. The difference from FIG. 2 is different from the drying defect cause estimation system 1 of the first embodiment.
 実際上、洗濯乾燥機81のデータ取得部82は、取得した各センサ13の運転データDT1を、センサ13ごとにそれぞれ結合したセンサごとの時系列データ(以下、これを運転データ時系列データと呼ぶ)DT3として分析サーバ83に送信する。 In practice, the data acquisition unit 82 of the washer / dryer 81 combines the acquired operation data DT1 of each sensor 13 for each sensor into time-series data for each sensor (hereinafter, this is referred to as operation data time-series data). ) It is transmitted to the analysis server 83 as DT3.
 分析サーバ83は、複数の判定部85を含む原因推定部84と、推定結果出力部86とを備えて構成される。判定部85は、フィルタの目詰まり、ダクトの詰まり、ブロワやヒータの不具合などの乾燥不良の各原因にそれぞれ対応させて設けられる。また、分析サーバ83の記憶装置22(図1)には、図9について上述した原因ごとの判別ルールRLが予め格納される。 The analysis server 83 includes a cause estimation unit 84 including a plurality of determination units 85, and an estimation result output unit 86. The determination unit 85 is provided corresponding to each cause of drying failure such as clogging of the filter, clogging of the duct, and malfunction of the blower and the heater. Further, in the storage device 22 (FIG. 1) of the analysis server 83, the determination rule RL for each cause described above for FIG. 9 is stored in advance.
 そして各判定部85は、それぞれ洗濯乾燥機81から送信されてきた各種運転データ時系列データDT3のうちの対応する運転データ時系列データDT3について、例えば図10について上述した16種類の類似性尺度のクラスタリングをそれぞれ行う。また判定部85は、これらクラスタリングのクラスタリング結果を同じ原因の判別ルールRLと比較し、比較結果に基づいてその洗濯乾燥機81の乾燥不良が対応する原因によるものであるかの判定を行い、判定結果を推定結果出力部86に出力する。 Then, each determination unit 85 describes the corresponding operation data time-series data DT3 among the various operation data time-series data DT3 transmitted from the washer-dryer 81, for example, with respect to FIG. Perform each clustering. Further, the determination unit 85 compares the clustering result of these clustering with the determination rule RL of the same cause, and determines whether the drying defect of the washer / dryer 81 is due to the corresponding cause based on the comparison result, and determines. The result is output to the estimation result output unit 86.
 推定結果出力部86は、各判定部85からそれぞれ与えられた原因ごとの判定結果に基づいて対応する洗濯乾燥機81における乾燥不良の原因を推定し、推定結果を表示装置24(図1)に表示等させる。 The estimation result output unit 86 estimates the cause of the drying failure in the corresponding washer / dryer 81 based on the determination result for each cause given by each determination unit 85, and displays the estimation result on the display device 24 (FIG. 1). Display etc.
(2-3)判別ルールの学習の流れ及び判別ルールを用いた異常判定の流れ
 図12は、かかる原因ごとの判別ルールRLを学習する学習装置100の構成を示し、図13は、この学習装置100における学習の流れを示す。
(2-3) Learning flow of discrimination rule and flow of abnormality determination using discrimination rule FIG. 12 shows a configuration of a learning device 100 for learning the discrimination rule RL for each cause, and FIG. 13 shows the learning device. The flow of learning in 100 is shown.
 図12に示す洗濯乾燥機90は、原因ごとの判別ルールRLの作成のために用いられる洗濯乾燥機であり、時計91、駆動・動力部92、複数のセンサ93、制御部94及びデータ取得部95を備える。これら時計91、駆動・動力部92、各センサ93、制御部94及びデータ取得部95は、図11について上述した洗濯乾燥機81の対応部位(時計11、駆動・動力部12,センサ13,制御部30又はデータ取得部82)と同様の機能及び構成を有するものであるため、ここでの説明は省略する。 The washer / dryer 90 shown in FIG. 12 is a washer / dryer used for creating a determination rule RL for each cause, and is a clock 91, a drive / power unit 92, a plurality of sensors 93, a control unit 94, and a data acquisition unit. 95 is provided. These clock 91, drive / power unit 92, each sensor 93, control unit 94, and data acquisition unit 95 correspond to the above-mentioned washing / drying machine 81 with respect to FIG. 11 (clock 11, drive / power unit 12, sensor 13, control). Since it has the same function and configuration as the unit 30 or the data acquisition unit 82), the description thereof is omitted here.
 かかる洗濯乾燥機90のデータ取得部95は、図11のデータ取得部82と同様に、制御部94が駆動・動力部92に対して指令値COM10を出力した前後の一定期間や、予め設定された時間帯のみの運転データDT10を取得し、取得したこれらの運転データDT10を結合した運転データ時系列データDT11を生成し、生成した運転データ時系列データDT11を学習装置100に出力する。 Similar to the data acquisition unit 82 of FIG. 11, the data acquisition unit 95 of the washer / dryer 90 is preset for a certain period before and after the control unit 94 outputs the command value COM10 to the drive / power unit 92. The operation data DT10 only in the time zone is acquired, the operation data time-series data DT11 combined with the acquired operation data DT10 is generated, and the generated operation data time-series data DT11 is output to the learning device 100.
 学習装置100は、図示しないCPU、メモリ及び記憶装置などの情報処理資源を備えたコンピュータ装置である。なお学習装置100を分析サーバ83(図11)と併用するようにしてもよい。学習装置100の原因推定部101には、フィルタの目詰まり、ダクトの詰まり、ブロワ又はヒータの故障などの乾燥不良の各原因にそれぞれ対応させた判定部102及び判別ルールRLが設けられる。 The learning device 100 is a computer device provided with information processing resources such as a CPU, a memory, and a storage device (not shown). The learning device 100 may be used in combination with the analysis server 83 (FIG. 11). The cause estimation unit 101 of the learning device 100 is provided with a determination unit 102 and a determination rule RL corresponding to each cause of drying failure such as clogging of a filter, clogging of a duct, and failure of a blower or a heater.
 そして各判定部102には、洗濯乾燥機90のデータ取得部95から与えられた各運転データ時系列データDT11のうち、対応する原因に起因する乾燥不良の学習に必要な学習用の運転データ時系列データDT11がそれぞれ与えられる(図13のS30)。例えば、ヒータの不具合に対応する判定部102には、ヒータにより暖められた空気の温度を計測する温度センサからの運転データDT10から生成された運転データ時系列データDT11などが与えられる。 Then, in each determination unit 102, among the operation data time series data DT11 given from the data acquisition unit 95 of the washing / drying machine 90, the operation data for learning necessary for learning the drying defect caused by the corresponding cause is used. Series data DT11 is given respectively (S30 in FIG. 13). For example, the determination unit 102 corresponding to the malfunction of the heater is given the operation data time series data DT11 generated from the operation data DT10 from the temperature sensor that measures the temperature of the air warmed by the heater.
 そして、各判定部102は、与えられた運転データ時系列データDT11を図10について上述した16種類の類似度尺度のクラスタリングをそれぞれ行う。このとき各判定部102には、学習装置100に対するユーザ操作等に基づいて、乾燥不良の原因が対応する原因によるものであるか否かの答えが与えられる。かくして、各判定部102は、この答えと、上述の16種類の類似度尺度のクラスタリングのクラスタリング結果とに基づいて図9に示すような分類型と故障率との関係情報104をそれぞれ作成し、作成した関係情報104を対応する機械学習部103に出力する(図13のS31)。 Then, each determination unit 102 clusters the given operation data time series data DT11 with the above-mentioned 16 types of similarity scales with respect to FIG. At this time, each determination unit 102 is given an answer as to whether or not the cause of the drying defect is due to the corresponding cause, based on the user operation or the like for the learning device 100. Thus, each determination unit 102 creates the relationship information 104 between the classification type and the failure rate as shown in FIG. 9 based on this answer and the clustering result of the clustering of the 16 types of similarity scales described above. The created relationship information 104 is output to the corresponding machine learning unit 103 (S31 in FIG. 13).
 機械学習部103は、対応する判定部102から与えられた関係情報104に基づいて、上述の16種類の類似度尺度のクラスタリングのクラスタリング結果と、対応する原因との相関関係を学習し(図13のS32)、学習結果に基づいて判別ルールRLを必要に応じて更新する(図13のステップS33)。 The machine learning unit 103 learns the correlation between the clustering result of the above-mentioned 16 types of similarity scale clustering and the corresponding cause based on the relationship information 104 given by the corresponding determination unit 102 (FIG. 13). S32), the discrimination rule RL is updated as necessary based on the learning result (step S33 in FIG. 13).
 そして学習装置100では、学習用の洗濯乾燥機90から運転データ時系列データDT11が与えられるごとに上述のステップS30~ステップS33の処理が繰り返される。これにより各原因にそれぞれ対応した各判別ルールRLの学習が行われる。 Then, in the learning device 100, each time the operation data time series data DT11 is given from the washing / drying machine 90 for learning, the above-mentioned processes of steps S30 to S33 are repeated. As a result, learning of each discrimination rule RL corresponding to each cause is performed.
 一方、図14は、上述のようにして学習が行われた各判別ルールRLを用いて分析サーバ83(図11)において実行される判定処理の流れを示す。分析サーバ83の各判定部85(図11)には、洗濯乾燥機81(図11)のデータ取得部82(図11)からネットワーク4(図1)を介して与えられた各運転データ時系列データDT3のうち、対応する原因に応じた運転データ時系列データDT3(図11)がそれぞれ与えられる(S40)。 On the other hand, FIG. 14 shows the flow of the determination process executed on the analysis server 83 (FIG. 11) using each determination rule RL trained as described above. Each determination unit 85 (FIG. 11) of the analysis server 83 is given each operation data time series from the data acquisition unit 82 (FIG. 11) of the washer / dryer 81 (FIG. 11) via the network 4 (FIG. 1). Of the data DT3, operation data time-series data DT3 (FIG. 11) corresponding to the corresponding cause is given (S40).
 そして各判定部85は、与えられた運転データ時系列データDT3に対して16種類の類似度尺度のクラスタリングをそれぞれ行い(S41)、これら16種類の類似度尺度のクラスタリングのクラスタリング結果に基づいて、乾燥不良が対応する原因によるものであるか否かを判定し、判定結果を推定結果出力部86(図11)に出力する(S42)。 Then, each determination unit 85 performs clustering of 16 types of similarity scales on the given operation data time series data DT3 (S41), and based on the clustering results of the clustering of these 16 types of similarity scales. It is determined whether or not the drying defect is due to the corresponding cause, and the determination result is output to the estimation result output unit 86 (FIG. 11) (S42).
(2-4)本実施の形態の効果
 以上のように本実施の形態の乾燥不良原因推定システム80では、洗濯乾燥機2の各センサ13から出力された運転データDT1のうち、制御部30が駆動・動力部12に対して指令値COM1を出力した前後の一定期間や、予め設定された特定の時間帯の運転データDT1の時系列データに基づいて洗濯乾燥機2の不良原因を特定する。
(2-4) Effect of the present embodiment As described above, in the drying defect cause estimation system 80 of the present embodiment, the control unit 30 of the operation data DT1 output from each sensor 13 of the washing / drying machine 2 is used. The cause of failure of the washing / drying machine 2 is specified based on a certain period before and after the command value COM1 is output to the drive / power unit 12 and the time series data of the operation data DT1 in a predetermined specific time zone.
 従って、本実施の形態の乾燥不良原因推定システム80によれば、第1の実施の形態の乾燥不良原因推定システム1と同様に、制御部30がどの駆動・動力部12に対して指令値COM1を出力した場合に運転データDT1が異常な値を示したかを取得したかを特定することができ、これに伴って乾燥不良の不良原因を特定することができる。よって本乾燥不良原因推定システム80によれば、原因となり得る部位が複数存在する不良原因を効率良く推定することができる。 Therefore, according to the dry defect cause estimation system 80 of the present embodiment, the control unit 30 gives a command value COM1 to which drive / power unit 12 as in the dry defect cause estimation system 1 of the first embodiment. It is possible to specify whether or not the operation data DT1 shows an abnormal value when the above is output, and it is possible to identify the cause of the poor drying accordingly. Therefore, according to the drying defect cause estimation system 80, it is possible to efficiently estimate the cause of the defect in which a plurality of possible causes exist.
(3)他の実施の形態
 なお上述の第1の実施の形態においては、図2について上述したように、原因ごとの原因モデル27及び判定部32をそれぞれ設けるようにした場合について述べたが、本発明はこれに限らず、図2との対応部分に同一符号を付した図15に示すように、分析サーバ110の原因推定部111を、すべての原因を混在させて学習させた1つの混合原因モデル112及び判定部113により構成するようにしてもよい。このようにしても第1の実施の形態と同様の効果を得ることができる。これと同様に第2の実施の形態についてもすべての判別ルールRLを混在させた1つの判別ルール及び判別部により分析サーバの原因推定部を構成するようにしてもよい。
(3) Other Embodiments In the above-mentioned first embodiment, as described above with respect to FIG. 2, the case where the cause model 27 and the determination unit 32 for each cause are provided, respectively, has been described. The present invention is not limited to this, and as shown in FIG. 15 in which the corresponding portions corresponding to those in FIG. 2 are designated by the same reference numerals, one mixture in which the cause estimation unit 111 of the analysis server 110 is trained by mixing all the causes. It may be configured by the cause model 112 and the determination unit 113. Even in this way, the same effect as that of the first embodiment can be obtained. Similarly, in the second embodiment, the cause estimation unit of the analysis server may be configured by one discrimination rule and the discrimination unit in which all the discrimination rule RLs are mixed.
 また上述の第1及び第2の実施の形態においては、原因推定部33,84や推定結果出力部34,86といった洗濯乾燥機2,81の乾燥不良の原因を推定する機能部を洗濯乾燥機2,81とは別の分析サーバ3,83に配置するようにした場合について述べたが、本発明はこれに限らず、これらの機能部を洗濯乾燥機2,81に設けるようにしてもよい。 Further, in the first and second embodiments described above, the washer / dryer is a functional unit for estimating the cause of the drying failure of the washer / dryer 2,81 such as the cause estimation unit 33, 84 and the estimation result output unit 34, 86. Although the case where the analysis servers 3 and 83 are arranged separately from the 2,81 is described, the present invention is not limited to this, and these functional parts may be provided in the washer / dryer 2,81. ..
 この場合において、例えば、Bluetooth(登録商標)などの短距離通信機能が搭載されたスマートフォンやタブレットなどを経由して原因推定部の推定結果を洗濯乾燥機から取得し、取得した推定結果をネットワーク4を介してメーカのセンタなどに転送できるようにしてもよい。 In this case, for example, the estimation result of the cause estimation unit is acquired from the washing / drying machine via a smartphone or tablet equipped with a short-range communication function such as Bluetooth (registered trademark), and the acquired estimation result is obtained in the network 4. It may be possible to transfer to the center of the manufacturer via Bluetooth.
 さらに上述の第1及び第2の実施の形態においては、本発明を洗濯乾燥機2,81の乾燥不良の原因を推定する乾燥不良原因推定システム1,80に適用するようにした場合について述べたが、本発明はこれに限らず、乾燥不良以外の不良の原因を推定する種々の不良原因推定装置に広く適用することができる。また洗濯乾燥機2,81以外の電力機器の不良原因を推定する不良原因推定装置にも適用することができる。 Further, in the above-mentioned first and second embodiments, the case where the present invention is applied to the drying defect cause estimation system 1, 80 for estimating the cause of the drying defect of the washer / dryer 2,81 has been described. However, the present invention is not limited to this, and can be widely applied to various defect cause estimation devices for estimating the causes of defects other than drying defects. It can also be applied to a defect cause estimation device for estimating a defect cause of an electric power device other than the washer / dryers 2 and 81.
 さらに上述の第2の実施の形態においては、時系列クラスタリングのため類似性尺度として図10に示す16種類のものを適用するようにした場合について述べたが、本発明はこれに限らず、その一部又は全部をこれらの16種類の類似性尺度以外の類似性尺度を用いるようにしてもよく、また類似性尺度の個数としては16種類以外であってもよい。 Further, in the second embodiment described above, a case where 16 types of similarity measures shown in FIG. 10 are applied as a similarity scale for time series clustering has been described, but the present invention is not limited to this. Some or all of them may use a similarity scale other than these 16 types of similarity scales, and the number of similarity scales may be other than 16 types.
 本発明は、洗濯乾燥機などの電力機器の不良原因を推定する種々の不良原因推定装置に広く適用することができる。 The present invention can be widely applied to various defect cause estimation devices for estimating the defect cause of electric power equipment such as a washer / dryer.
 1,80,90……乾燥不良原因推定システム、2,81……洗濯乾燥機、3,83,111……分析サーバ、12,42,92……駆動・動力部、13,43,93……センサ、20……CPU、27,112……原因モデル、30,44,94……制御部、31,45,82,95……データ取得部、32,51,85,102,113……判定部、33,84,111……原因推定部、34,86……推定結果出力部、103……機械学習部、COM1,COM2……指令値、DT1,DT2,DT10……運転データ、DT3,DT11……運転データ時系列データ、RL……判別ルール。 1,80,90 ... Drying defect cause estimation system, 2,81 ... Washing and drying machine, 3,83,111 ... Analysis server, 12,42,92 ... Drive / power unit, 13,43,93 ... ... Sensor, 20 ... CPU, 27,112 ... Cause model, 30,44,94 ... Control unit, 31,45,82,95 ... Data acquisition unit, 32,51,85,102,113 ... Judgment unit, 33, 84, 111 ... Cause estimation unit, 34, 86 ... Estimated result output unit, 103 ... Machine learning unit, COM1, COM2 ... Command value, DT1, DT2, DT10 ... Operation data, DT3 , DT11 …… Operation data time series data, RL …… Discrimination rule.

Claims (8)

  1.  対象装置の不良原因を推定する不良原因推定装置において、
     前記対象装置は、
     それぞれ前記対象装置の状態を検出する複数のセンサ
     を有し、
     予め学習した1又は複数のモデルを記憶保持する記憶部と、
     前記センサから出力されたセンサデータのうちの前記対象装置の状態変化をもたらす特定のデータ範囲の前記センサデータを用い、前記モデルに基づいて前記対象装置の前記不良原因を推定する原因推定部と
     を備えることを特徴とする不良原因推定装置。
    In the defect cause estimation device that estimates the defect cause of the target device,
    The target device is
    Each has a plurality of sensors for detecting the state of the target device.
    A storage unit that stores one or more models learned in advance,
    Using the sensor data in a specific data range that causes a state change of the target device among the sensor data output from the sensor, a cause estimation unit that estimates the cause of the defect of the target device based on the model. A defect cause estimation device characterized by being provided.
  2.  前記対象装置は、
     必要な指令値を必要なタイミングで対応する制御対象に与えることにより当該制御対象の動作を制御する制御部を有し、
     前記対象装置の状態変化をもたらす前記特定のデータ範囲は、前記制御部が前記制御対象に前記指令値を与えた前後の所定期間及び又は予め設定された特定の時間帯の範囲である
     ことを特徴とする請求項1に記載の不良原因推定装置。
    The target device is
    It has a control unit that controls the operation of the controlled object by giving the required command value to the corresponding controlled object at the required timing.
    The specific data range that causes the state change of the target device is a range of a predetermined period before and after the control unit gives the command value to the control target and / or a preset specific time zone. The defect cause estimation device according to claim 1.
  3.  前記モデルは、CNN(Convolutional Neural Network)である
     ことを特徴とする請求項1に記載の不良原因推定装置。
    The defect cause estimation device according to claim 1, wherein the model is a CNN (Convolutional Neural Network).
  4.  前記モデルは、複数の類似性尺度を利用した時系列クラスタリングのための判別ルールである
     ことを特徴とする請求項1に記載の不良原因推定装置。
    The defect cause estimation device according to claim 1, wherein the model is a discrimination rule for time-series clustering using a plurality of similarity measures.
  5.  対象装置の不良原因を推定する不良原因推定装置により実行される不良原因推定方法において、
     前記対象装置は、
     それぞれ前記対象装置の状態を検出する複数のセンサ
     を有し、
     予め学習した1又は複数のモデルを記憶保持する第1のステップと、
     前記センサから出力されたセンサデータのうちの前記対象装置の状態変化をもたらす特定のデータ範囲の前記センサデータを用い、前記モデルに基づいて前記対象装置の前記不良原因を推定する第2のステップと
     を備えることを特徴とする不良原因推定方法。
    In the defect cause estimation method executed by the defect cause estimation device for estimating the defect cause of the target device,
    The target device is
    Each has a plurality of sensors for detecting the state of the target device.
    The first step of storing one or more pre-trained models,
    A second step of estimating the cause of failure of the target device based on the model using the sensor data in a specific data range that causes a state change of the target device among the sensor data output from the sensor. A method for estimating the cause of a defect, which comprises.
  6.  前記対象装置は、
     必要な指令値を必要なタイミングで対応する制御対象に与えることにより当該制御対象の動作を制御する制御部を有し、
     前記対象装置の状態変化をもたらす前記特定のデータ範囲は、前記制御部が前記制御対象に前記指令値を与えた前後の所定期間及び又は予め設定された特定の時間帯の範囲である
     ことを特徴とする請求項5に記載の不良原因推定方法。
    The target device is
    It has a control unit that controls the operation of the controlled object by giving the required command value to the corresponding controlled object at the required timing.
    The specific data range that causes the state change of the target device is a range of a predetermined period before and after the control unit gives the command value to the control target and / or a preset specific time zone. The defect cause estimation method according to claim 5.
  7.  前記モデルは、CNN(Convolutional Neural Network)である
     ことを特徴とする請求項5に記載の不良原因推定方法。
    The defect cause estimation method according to claim 5, wherein the model is a CNN (Convolutional Neural Network).
  8.  前記モデルは、複数の類似性尺度を利用した時系列クラスタリングのための判別ルールである
     ことを特徴とする請求項5に記載の不良原因推定方法。
    The defect cause estimation method according to claim 5, wherein the model is a discrimination rule for time-series clustering using a plurality of similarity measures.
PCT/JP2021/012397 2020-07-31 2021-03-24 Failure cause inference device and method WO2022024453A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202180032436.7A CN115552066A (en) 2020-07-31 2021-03-24 Failure cause estimation device and method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020130465A JP7496726B2 (en) 2020-07-31 2020-07-31 Defect cause estimation device and method
JP2020-130465 2020-07-31

Publications (1)

Publication Number Publication Date
WO2022024453A1 true WO2022024453A1 (en) 2022-02-03

Family

ID=80037913

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/012397 WO2022024453A1 (en) 2020-07-31 2021-03-24 Failure cause inference device and method

Country Status (3)

Country Link
JP (1) JP7496726B2 (en)
CN (1) CN115552066A (en)
WO (1) WO2022024453A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002323013A (en) * 2001-04-24 2002-11-08 Komatsu Ltd Abnormality diagnosis equipment of working vehicle
JP2019212131A (en) * 2018-06-06 2019-12-12 シャープ株式会社 Prediction device, electrical appliance, management system, prediction method, and control program

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002323013A (en) * 2001-04-24 2002-11-08 Komatsu Ltd Abnormality diagnosis equipment of working vehicle
JP2019212131A (en) * 2018-06-06 2019-12-12 シャープ株式会社 Prediction device, electrical appliance, management system, prediction method, and control program

Also Published As

Publication number Publication date
CN115552066A (en) 2022-12-30
JP7496726B2 (en) 2024-06-07
JP2022026825A (en) 2022-02-10

Similar Documents

Publication Publication Date Title
US7478486B2 (en) System and method for controlling a dryer appliance
CN111684119A (en) Personalized laundry and ironing device
BR112019007548B1 (en) METHOD FOR MONITORING A PRODUCTION PROCESS, METHOD FOR INDIRECTLY DEDUCING A SYSTEMATIC DEPENDENCE, METHOD FOR ADAPTING QUALITY, METHOD FOR INITIATING A PRODUCTION PROCESS, METHOD FOR PRODUCING AN EXTRUSION PRODUCT AND SYSTEM FOR PRODUCING AN EXTRUSION PRODUCT
EP3420127B1 (en) Method for the determination of a laundry weight in a laundry treatment appliance
US20200248354A1 (en) Washing machine and method for controlling the same
KR20070117911A (en) Washing machine and its operating method
CN104884700B (en) For the method for the drying cycles for controlling clothesdrier
CN109693146A (en) Service life estimating device and machine learning device
WO2022024453A1 (en) Failure cause inference device and method
BR112016001482B1 (en) METHOD FOR ESTIMATION, COMPUTER READable MEMORY AND DATA PROCESSING SYSTEM
Susto et al. A soft sensing approach for clothes load estimation in consumer washing machines
JP5949032B2 (en) Pre-processing method and abnormality diagnosis device
JP2019154481A (en) Control method for controlling washing machine, control device and program
EP0707107A1 (en) Improvement in the arrangement used in a clothes drying apparatus to determine the drying time
Susto et al. Machine Learning-based laundry weight estimation for vertical axis washing machines
EP3483327B1 (en) Laundry treating apparatus and control method thereof
WO2007105908A2 (en) Dryer and controlling method thereof
US20220349114A1 (en) Laundry drying machine and control method thereof
EP2610388A1 (en) Laundry drying machine and control method thereof
CN113622151A (en) Clothes treatment equipment, control method and device thereof, and storage medium
CN109234971A (en) Method and system for detecting cleanliness of air duct of washing and drying machine and washing and drying machine
WO2022180881A1 (en) Drying time prediction method, drying time prediction system, and dryer
Zambonin Development of Machine Learning-based technologies for major appliances: soft sensing for drying technology applications
KR100540142B1 (en) Method for reshaping detecting signal of detecting sensor of dry state
WO2023117124A1 (en) Method to estimate the time to end of a laundry-drying cycle and laundry drying machine to carry out said method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21849334

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21849334

Country of ref document: EP

Kind code of ref document: A1