WO2022024446A9 - Solid food and solid milk - Google Patents

Solid food and solid milk Download PDF

Info

Publication number
WO2022024446A9
WO2022024446A9 PCT/JP2021/009958 JP2021009958W WO2022024446A9 WO 2022024446 A9 WO2022024446 A9 WO 2022024446A9 JP 2021009958 W JP2021009958 W JP 2021009958W WO 2022024446 A9 WO2022024446 A9 WO 2022024446A9
Authority
WO
WIPO (PCT)
Prior art keywords
milk
solid
compression
food
solid milk
Prior art date
Application number
PCT/JP2021/009958
Other languages
French (fr)
Japanese (ja)
Other versions
WO2022024446A1 (en
Inventor
哲 神谷
圭吾 羽生
彩 加藤
Original Assignee
株式会社明治
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社明治 filed Critical 株式会社明治
Priority to JP2022540010A priority Critical patent/JPWO2022024446A1/ja
Priority to CN202180058346.5A priority patent/CN116056583A/en
Publication of WO2022024446A1 publication Critical patent/WO2022024446A1/en
Publication of WO2022024446A9 publication Critical patent/WO2022024446A9/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23CDAIRY PRODUCTS, e.g. MILK, BUTTER OR CHEESE; MILK OR CHEESE SUBSTITUTES; MAKING THEREOF
    • A23C9/00Milk preparations; Milk powder or milk powder preparations
    • A23C9/18Milk in dried and compressed or semi-solid form
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L5/00Preparation or treatment of foods or foodstuffs, in general; Food or foodstuffs obtained thereby; Materials therefor

Definitions

  • the present invention relates to solid foods and solid milk.
  • solid milk obtained by compression molding powdered milk is known (see Patent Document 1 and Patent Document 2).
  • This solid milk is required to have solubility that dissolves quickly when put into warm water, and is also required to have transportability, that is, fracture resistance that does not cause breakage or collapse during transportation or carrying. ing.
  • Patent Document 3 As a tableting machine for compression-molding food powder such as milk powder, a tableting machine that reciprocates a slide plate having two mortar holes in a horizontal direction is known (see Patent Document 3).
  • the adhesive force When solid food or solid milk adheres to a manufacturing device or the like, the force required to peel off the solid food or solid milk is called the adhesive force.
  • An object of the present invention is to provide a solid food product and a solid milk product having an adhesive strength and a strength that is easy to handle.
  • the solid food of the present invention is a solid solid food obtained by compression-molding food powder, and the breaking stress of the solid food is 0.067 N / mm 2 or more, and the peel shear stress on a flat surface is 0. It exceeds 015 N / mm 2 .
  • the solid milk of the present invention is a solid milk obtained by compression molding powdered milk, and the breaking stress of the solid milk is 0.067 N / mm 2 or more, and the peel shear stress for a flat surface is 0.015 N /. Exceeds mm 2 .
  • the present invention is a solid solid food obtained by compression molding food powder, and the breaking stress of the solid food is 0.067 N / mm 2 or more, and the peel shear stress on a flat surface is 0.015 N / mm. Exceeds mm 2 .
  • the peel shear stress is a value obtained by dividing the adhesive force by the peel area.
  • the above-mentioned solid food has high adhesive strength and has strength that is easy to handle.
  • the solid milk is a solid milk obtained by compression molding powdered milk, and the breaking stress of the solid milk is 0.067 N / mm 2 or more, and the peel shear stress for a flat surface is 0.015 N / mm. Exceeds mm 2 .
  • the above-mentioned solid milk has an enhanced adhesive force and has a strength that is easy to handle.
  • FIG. 1 It is a perspective view of the solid milk which concerns on 1st Embodiment. It is sectional drawing of the solid milk of FIG. 1 in X1-X2. It is sectional drawing in Y1-Y2 of the solid milk of FIG. It is explanatory drawing explaining the position of the slide plate, the upper pestle and the lower pestle of a lock locking machine. It is explanatory drawing explaining the position of the upper pestle and the lower pestle at the start of the 1st compression. It is explanatory drawing explaining the position of the upper pestle and the lower pestle after the completion of the 1st compression and at the start of the 2nd compression.
  • FIG. 1 is a perspective view of the solid milk 10S according to the present embodiment.
  • FIG. 2 is a cross-sectional view of the solid milk 10S of FIG. 1 in X1-X2.
  • FIG. 3 is a cross-sectional view of the solid milk 10S of FIG. 1 in Y1-Y2.
  • the solid milk 10S has a solid main body 10 obtained by compression molding powdered milk.
  • the main body 10 has a first surface 10A parallel to the XY plane and flat, and a second surface 10B parallel to the XY plane and flat.
  • the first surface 10A and the second surface 10B are back-to-back surfaces.
  • the shape of the main body 10 is determined by the shape of the mold (mortar of the locking machine) used for compression molding, but is not particularly limited as long as it has a certain size (size, thickness, angle).
  • the schematic shape of the main body 10 is a columnar shape, an elliptical columnar shape, a cube shape, a rectangular parallelepiped shape, a plate shape, a polygonal columnar shape, a polygonal pyramid-shaped shape, a polyhedral shape, or the like. From the viewpoint of ease of molding, convenience of transportation, and the like, columnar, elliptical, and rectangular parallelepiped shapes are preferable.
  • the schematic shape of the main body 10 of the solid milk 10S shown in FIGS. 1 to 3 is a rectangular parallelepiped having dimensions a ⁇ b ⁇ c (see FIG. 1), and the main body 10 has a side surface parallel to an XZ plane or a YZ plane. Has 10C.
  • the corner portion composed of the first surface 10A and the side surface 10C and the corner portion composed of the second surface 10B and the side surface 10C may each have a chamfered tapered shape. When chamfered, it is possible to prevent the solid milk 10S from being broken during transportation or the like.
  • the surface is the surface that forms the outside of the substance.
  • the surface layer is a layer near the surface including the surface.
  • the surface layer is a layer formed by compression molding of milk powder and further cured by a curing treatment.
  • the surface layer of this embodiment is a harder layer than the inside.
  • the fact that the surface layer is harder than the inside means that the force required to separate only the surface layer is relatively larger than the force required to separate the inside.
  • the solid milk 10S of the present embodiment is a solid milk obtained by compression molding and hardening milk powder, and the breaking stress of the solid milk is 0.067 N / mm 2 or more.
  • the peel shear stress on a flat surface exceeds 0.015 N / mm 2 .
  • the peeling shear stress of 0.015 N / mm 2 is converted into the adhesive force of 6 N as described later.
  • the solid milk 10S of the above embodiment has an adhesive force of more than 6N on a flat surface.
  • the force with which solid milk adheres to the contact surface of manufacturing equipment such as a belt conveyor during the manufacturing process is increased, which suppresses the solid milk from being blown off even if the transport speed of the solid milk is increased, and stabilizes the solid milk. It becomes possible to carry it, and the manufacturing efficiency can be improved.
  • the adhesive force means that the solid milk adheres to the flat surface when the curing process is performed on a flat surface such as a punching screen in the solid milk manufacturing process, and the solid milk is peeled off from the flat surface.
  • the force (load) [N] required for the above is shown.
  • uncured milk powder compression molded product is punched screen (manufactured by Nunobiki Seisakusho Co., Ltd., material SUS304, plate thickness 1.5 mm, hole diameter 2.5 mm, hole center spacing 3.0 mm to 3.5 mm, It is placed on a punching screen (opening area ratio of 45 to 47%) and cured to obtain solid milk. Only the bottom surface of the solid milk is attached to the punching screen.
  • a load is applied to the side surface of the solid milk on the punching screen immediately after the curing process by applying the terminal of a load measuring device (load cell type tablet hardness tester (portable checker PC-30) manufactured by Okada Seiko Co., Ltd.). Apply and measure the load required for the solid milk to peel off the punching screen.
  • load measuring device load cell type tablet hardness tester (portable checker PC-30) manufactured by Okada Seiko Co., Ltd.
  • the punching screen is fixed to the load measuring device in a state where the bottom surface, the long side surface, and the short side surface are in contact with each other.
  • the bottom surface is attached to the punching screen with the second surface 10B of the solid milk 10S as the bottom surface, and the side surface pressed by the breaking terminal of the hardness tester of the solid milk (on one XZ plane of the side surface 10C). Install so that the distance between the opposite side surface paired with the parallel surface) and the wall surface of the load measuring device is 5 mm.
  • the breaking terminal incorporated in the hardness tester has a contact surface that comes into contact with the solid milk 10S and does not come into contact with the punching screen.
  • the contact surface of the breaking terminal is a rectangle of 1 mm ⁇ 24 mm, and the long axis of this rectangle is arranged so as to be parallel to the Z axis.
  • the contact surface of the break terminal is configured to push the measurement point of the solid milk 10S at least in part.
  • the speed at which the breaking terminal pushes the solid milk 10S from the side parallel to one XZ plane of the side surface 10C in the short axis direction (Y-axis direction in FIG. 1) of the first surface 10A with the breaking terminal of the hardness tester is 0.5 mm. Set to / s.
  • the maximum load [N] when the solid milk 10S is pushed by the breaking terminal and peeled off from the punching screen is defined as the adhesive force [N] of the solid milk 10S.
  • peeling refers to peeling when a static load is applied to a sample such as solid milk 10S.
  • the adhesive force [N] is a physical quantity that depends on the dimensions of the solid milk sample.
  • Detachment shear stress [N / m 2 ] is a physical quantity that does not depend on the dimensions of the solid milk sample.
  • the adhesive force [N] may be briefly described, but these may be expressed as the peel shear stress [N / m 2 ] divided by the peel area.
  • the peeling area is 0.54 (punching), which is the area where 10S is in contact with the punching screen, and the ratio of the punching screen in contact with 10S to the bottom area of 10s of 31 mm ⁇ 24 mm.
  • mm 2 ) [molded body bottom area (mm 2 ) ⁇ (1-punching screen opening ratio)]).
  • the peeling area is 402 mm 2 (31 mm (a) ⁇ 24 mm (b)). ) ⁇ (1-0.46).
  • the range in which the adhesive force of the solid milk 10S exceeds 6 N corresponds to the range of the peeling shear stress exceeding 0.015 N / mm 2 by dividing the adhesive force by the peeling area (402 mm 2 ).
  • the peel shear stress of the solid milk 10S exceeds 0.015 N / mm 2 in consideration of the range of the peel area.
  • the above-mentioned peel shear stress preferably exceeds 0.015 N / mm 2 , more preferably 0.020 N / mm 2 or more, further preferably 0.025 N / mm 2 or more, and further preferably 0.030 N / mm 2 . That is all.
  • the peeling shear stress preferably exceeds 6N, more preferably 8N or more, further preferably 10N or more, and further preferably 12N or more in terms of adhesive force. Is.
  • the solid milk of the above embodiment preferably contains ⁇ -lactose crystals and ⁇ -lactose crystals, and the difference between the ratio of ⁇ -lactose crystals to the total weight on the surface of solid milk and the ratio of ⁇ -lactose crystals inside solid milk.
  • the solid milk of the above embodiment preferably has an increase ratio ⁇ / ( ⁇ + ⁇ ) of crystallization rate of 0.3 or less.
  • the increase ratio ⁇ / ( ⁇ + ⁇ ) of the crystallization rate is more preferably 0.25 or less, still more preferably 0.2 or less, and further preferably 0.15 or less.
  • the increase ratio ⁇ / ( ⁇ + ⁇ ) of the crystallization rate is preferably 0 or more, more preferably 0.05 or more, still more preferably 0.065 or more, and further preferably 0.08 or more.
  • the total crystallization rate is the ratio of crystals to the total weight (% by weight).
  • the increase in the total crystallization rate is the crystallization rate of the sum of the crystals that existed before the curing treatment and the crystals that increased according to the magnitude of the influence of humidification received in the curing treatment, and exists before the curing treatment. It is defined as the difference obtained by subtracting the crystallization rate of the crystal.
  • the crystallization rate of the crystals that existed before the curing treatment corresponds to the crystallization rate of the crystals inside the solid milk that has no or substantially no influence of humidification in the present embodiment in the curing treatment.
  • the increase in the total crystallization rate is the difference between the ratio of crystals to the total weight at each depth from the surface of the solid milk to the ratio of crystals inside the solid milk.
  • crystals include ⁇ -lactose crystals, which are monohydrate crystals of lactose, and ⁇ -lactose crystals, which are anhydrous crystals of lactose, and the crystallization rate of ⁇ -lactose crystals is increased and ⁇ -lactose crystals are crystallized.
  • the rate is also defined as above.
  • the sum of the increase in the crystallization rate of ⁇ -lactose crystals and the increase in the crystallization rate of ⁇ -lactose crystals ( ⁇ + ⁇ ) is the increase in the total crystallization rate.
  • the increase in the crystallization rate of ⁇ -lactose crystals ⁇ is the sum of the ⁇ -lactose crystals that existed before the curing treatment and the ⁇ -lactose crystals that increased according to the magnitude of the influence of humidification in the curing treatment. It is the difference obtained by subtracting the crystallization rate of ⁇ -lactose crystals that existed before the curing treatment from the crystallization rate of.
  • the crystallization rate of ⁇ -lactose crystals that existed before the curing treatment corresponds to the crystallization rate of ⁇ -lactose crystals inside solid milk that has no or substantially no influence of humidification in the present embodiment in the curing treatment. ..
  • the increase in the crystallization rate of ⁇ -lactose is the difference between the ratio of ⁇ -lactose crystals to the total weight at each depth from the surface of solid milk and the ratio of ⁇ -lactose crystals inside solid milk.
  • the increase ⁇ (% by weight) in the crystallization rate of ⁇ -lactose crystals is the sum of ⁇ -lactose crystals that existed before the curing treatment and ⁇ -lactose crystals that increased according to the magnitude of the influence of humidification in the curing treatment. It is the difference obtained by subtracting the crystallization rate of ⁇ lactose crystals that existed before the curing treatment from the crystallization rate of.
  • the crystallization rate of ⁇ -lactose crystals that existed before the curing treatment corresponds to the crystallization rate of ⁇ -lactose crystals inside solid milk that has no or substantially no influence of humidification in the present embodiment in the curing treatment. ..
  • the increase in the crystallization rate of ⁇ -lactose is the difference between the ratio of ⁇ -lactose crystals to the total weight at each depth from the surface of solid milk and the ratio of ⁇ -lactose crystals inside solid milk.
  • the increase in the crystallization rate on the surface of the solid milk is the increase in the crystallization rate obtained for the measurement region including the surface.
  • the measurement region can be appropriately selected when measuring the increase in the crystallization rate.
  • the inside of the solid milk refers to a region where the total crystallization rate does not fluctuate or substantially does not fluctuate before and after the curing treatment, and is, for example, a central portion or a portion near the center of the solid milk. Specifically, it is a cubic range of ⁇ 1 mm in the XYZ direction from the center of the solid milk, or a spherical range with a radius of 1 mm from the center of the solid milk.
  • the above-mentioned curing treatment which will be described in detail later, is a treatment performed to cure the milk powder compression molded product when producing solid milk.
  • the above refers to a region where the total crystallization rate does not fluctuate or substantially does not fluctuate before and after the curing treatment, and is described as, for example, a central portion or a portion near the center of the solid milk. Regardless of whether the total crystallization rate fluctuates before and after the curing treatment, it may simply be the central portion or the portion near the center of the solid milk.
  • the increase in the total crystallization rate is obtained as the total crystallization rate of the entire surface by cutting by the thickness of 0.1 mm from the surface for each XRD measurement of the measurement surface of the sample by, for example, the XRD (X-ray diffraction) method. be able to. Further, in the XRD measuring device capable of two-dimensional mapping, the increase in the total crystallization rate can be measured with an accuracy of, for example, about 0.05 mm to 0.1 mm in the depth direction of the sample.
  • the main body 10 may be provided with one or two or more holes that reach from the first surface 10A to the second surface 10B and penetrate the main body 10.
  • the shape of the hole is, for example, an oval, a rounded rectangle, an ellipse, a circle, a rectangle, a square, or any other polygon in a cross section parallel to the XY plane.
  • the position of the hole is preferably a position where there is no large bias when viewed from the central position of the first surface 10A, for example, an arrangement that is point-symmetrical with respect to the central position of the first surface 10A, or the first.
  • the arrangement is line-symmetrical with respect to a line parallel to the X-axis or a line parallel to the Y-axis passing through the center of the surface 10A.
  • the edge of the hole may be a tapered slope.
  • the inner wall surface of the hole is a harder surface than the inside similar to the first surface 10A.
  • the components of solid milk 10S are basically the same as the components of milk powder as a raw material.
  • the components of the solid milk 10S are, for example, fat, protein, sugar, mineral, vitamin, water and the like.
  • Milk powder is produced from liquid milk (liquid milk) containing milk components (for example, milk components).
  • Milk components are, for example, raw milk (whole fat milk), skim milk, cream and the like.
  • the water content of the liquid milk is, for example, 40% by weight to 95% by weight.
  • the water content of the milk powder is, for example, 1% by weight to 5% by weight.
  • the milk powder may be supplemented with the nutritional components described below.
  • the milk powder may be whole milk powder, skim milk powder, or creamy powder as long as it is suitable for producing solid milk 10S.
  • the fat content of the milk powder is preferably, for example, 5% by weight to 70% by weight.
  • the milk component that is the raw material of the above milk powder is, for example, derived from raw milk. Specifically, it is derived from raw milk of cows (Holstein, Jersey, etc.), goats, sheep and buffalo. Although the above-mentioned raw milk contains fat, it may be milk in which a part or all of the fat is removed by centrifugation or the like and the fat content is adjusted.
  • the milk component that is the raw material of the above-mentioned milk powder is, for example, plant-derived vegetable milk. Specifically, it is derived from plants such as soy milk, rice milk, coconut milk, almond milk, hemp milk, and peanut milk.
  • the above-mentioned vegetable milk contains fat, it may be milk in which a part or all of the fat is removed by centrifugation or the like and the fat content is adjusted.
  • the nutritional components that are the raw materials for milk powder are, for example, fats, proteins, sugars, minerals, vitamins and the like. One or more of these may be added.
  • the proteins that can be used as raw materials for milk powder are, for example, milk proteins and milk protein fractions, animal proteins, vegetable proteins, and peptides obtained by decomposing these proteins into various chain lengths by enzymes or the like. And amino acids and the like. One or more of these may be added.
  • the milk protein is, for example, casein, whey protein ( ⁇ -lactalbumin, ⁇ -lactoglobulin, etc.), whey protein concentrate (WPC), whey protein isolate (WPI), and the like.
  • the animal protein is, for example, egg protein.
  • Vegetable proteins are, for example, soybean protein and wheat protein.
  • Amino acids are, for example, taurine, cystine, cysteine, arginine, glutamine and the like.
  • the fats (fats) that can be used as raw materials for the above-mentioned milk powder are animal fats and oils, vegetable fats and oils, their fractionated oils, hydrogenated oils and transesterified oils. One or more of these may be added.
  • Animal fats and oils are, for example, milk fat, lard, beef tallow, fish oil and the like.
  • the vegetable oils and fats are, for example, soybean oil, rapeseed oil, corn oil, palm oil, palm oil, palm kernel oil, safflower oil, cottonseed oil, flaxseed oil and MCT (Medium Chain Triglyceride) oil. ..
  • the sugars that can be used as raw materials for the above-mentioned milk powder are, for example, oligosaccharides, monosaccharides, polysaccharides, artificial sweeteners and the like. One or more of these may be added.
  • the oligosaccharide is, for example, lactose, sucrose, maltose, galactooligosaccharide, fructooligosaccharide, lactulose and the like.
  • Monosaccharides are, for example, glucose, fructose, galactose and the like.
  • the polysaccharides are, for example, starch, soluble polysaccharides and dextrins.
  • a non-sugar artificial sweetener may be used in place of or in addition to the sugar artificial sweetener.
  • Minerals that can be used as raw materials for milk powder are, for example, sodium, potassium, calcium, magnesium, iron, copper, zinc and the like. One or more of these may be added. In addition, one or both of phosphorus and chlorine may be used in place of or in addition to the minerals sodium, potassium, calcium, magnesium, iron, copper, and zinc.
  • the solid milk 10S has a large number of voids (for example, pores) generated when powdered milk, which is the raw material of the solid milk 10S, is compression-molded. These plurality of voids are dispersed (distributed) corresponding to the filling rate profile in the depth direction of the solid milk 10S. The larger (wider) the voids, the easier it is for a solvent such as water to enter, so that the solid milk 10S can be dissolved quickly. On the other hand, if the voids are too large, the hardness of the solid milk 10S may be weakened or the surface of the solid milk 10S may be rough.
  • the dimension (size) of each void is, for example, 10 ⁇ m to 500 ⁇ m.
  • Solid milk 10S needs to have some solubility in a solvent such as water. Solubility is evaluated by the time until the solid milk 10S is completely dissolved or the amount of undissolved residue in a predetermined time when, for example, solid milk 10S as a solute and water as a solvent are prepared so as to have a predetermined concentration. can do.
  • the solid milk 10S preferably has a hardness within a predetermined range. Hardness can be measured by a known method. In the present specification, the hardness is measured using a load cell type tablet hardness tester. The second surface 10B of the rectangular parallelepiped solid milk 10S was placed on the load cell type tablet hardness tester as the bottom surface, and fixed using one surface parallel to the XZ plane and one surface parallel to the YZ plane of the side surface 10C. From the side parallel to the other unfixed XZ plane of the side surface 10C, the YZ plane becomes the fracture surface in the short axis direction (Y axis direction in FIG. 1) of the first surface 10A at the breaking terminal of the hardness tester.
  • the hardness (tablet hardness) [N] of the solid milk 10S is determined by the load [N] when the solid milk 10S is broken by pushing at a constant speed.
  • the measurement points are the first surface 10A and the second surface 10B on a line segment in which a plane parallel to the YZ plane equidistant from the pair of YZ planes of the side surface 10C intersects the XZ plane of the side surface 10C.
  • a load cell type tablet hardness tester (portable checker PC-30) manufactured by Okada Seiko Co., Ltd. is used.
  • the breaking terminal incorporated in the hardness tester has a contact surface in contact with the solid milk 10S.
  • the contact surface of the breaking terminal is a rectangle of 1 mm ⁇ 24 mm, and the long axis of this rectangle is arranged so as to be parallel to the Z axis.
  • the contact surface of the break terminal is configured to push the measurement point of the solid milk 10S at least in part.
  • the speed at which the breaking terminal pushes the solid milk 10S is 0.5 mm / s.
  • the above-mentioned hardness measurement is not limited to the solid milk 10S, but can also be applied to the case of measuring the hardness of the milk powder compression molded product (uncured solid milk 10S) described later.
  • the hardness of the solid milk 10S is preferably 20 N or more, more preferably 40 N or more. be. On the other hand, if the hardness of the solid milk 10S is too high, the solubility of the solid milk 10S deteriorates. Therefore, the hardness of the solid milk 10S is preferably 130 N or less.
  • the hardness used here is a physical quantity of a force having a unit of [N (Newton)].
  • the hardness increases as the breaking area of the solid milk sample increases.
  • break refers to breakage when a vertical load is statically applied to a sample such as solid milk 10S, and the cross-sectional area formed at the time of this breakage is referred to as "break area”. That is, the hardness [N] is a physical quantity that depends on the dimensions of the solid milk sample.
  • breaking stress [N / m 2 ] is a physical quantity that does not depend on the dimensions of the solid milk sample.
  • the breaking stress is a force applied per unit breaking area at the time of breaking, and is an index that does not depend on the size of the solid milk sample and can compare the mechanical action applied to the solid milk sample even between the solid milk samples having different dimensions.
  • Breaking stress hardness / breaking area.
  • the hardness [N] may be briefly described, but these may be expressed as the breaking stress [N / m 2 ] obtained by dividing the hardness by the breaking area.
  • the ideal breaking area is represented by the dimension b ⁇ c which is the breaking area on the plane including the line passing through the center of the solid milk and parallel to the Z axis.
  • the ideal breaking area is 300 mm 2 (24 mm (b) ⁇ 12). .5 mm (c)).
  • the preferable hardness range of 20 N or more and 130 N or less of the solid milk 10S corresponds to the preferable breaking stress range of 0.067 N / mm 2 or more and 0.43 N / mm 2 or less by dividing the hardness by the breaking area (300 mm 2 ).
  • the range of preferable breaking stress of the solid milk 10S is 0.067 N / mm 2 or more in consideration of the range of the breaking area. Further, it is preferably 0.961 N / mm 2 or less.
  • milk powder which is a raw material for solid milk 10S
  • milk powder is produced.
  • milk powder is produced by a liquid milk preparation step, a liquid milk clarification step, a sterilization step, a homogenization step, a concentration step, a gas dispersion step, and a spray drying step.
  • the liquid milk preparation step is a step of preparing liquid milk having the above components.
  • the clarification process is a process for removing fine foreign substances contained in liquid milk.
  • a centrifuge, a filter or the like may be used.
  • the sterilization process is a process for killing microorganisms such as bacteria contained in water of liquid milk and milk components. Since the microorganisms actually contained vary depending on the type of liquid milk, the sterilization conditions (sterilization temperature and holding time) are appropriately set according to the microorganisms.
  • the homogenization step is a step for homogenizing liquid milk. Specifically, the particle size of solid components such as fat globules contained in the liquid milk is reduced, and they are uniformly dispersed in the liquid milk. In order to reduce the particle size of the solid component of the liquid milk, for example, the liquid milk may be pressurized and passed through a narrow gap.
  • the concentration step is a step for concentrating the liquid milk prior to the spray drying step described later.
  • a vacuum evaporator or an evaporator may be used for the concentration of liquid milk.
  • Concentration conditions are appropriately set within a range in which the components of the liquid milk are not excessively deteriorated. Thereby, concentrated milk can be obtained from liquid milk.
  • the water content of the concentrated milk is, for example, 35% by weight to 60% by weight, preferably 40% by weight to 60% by weight, and more preferably 40% by weight to 55% by weight.
  • the density of the concentrated milk is reduced to make it bulky, and the concentrated milk in such a bulky state is spray-dried to produce solid milk. In doing so, milk powder with favorable properties can be obtained. If the water content of the liquid milk is low or the amount of the liquid milk to be treated in the spray drying step is small, this step may be omitted.
  • the gas dispersion step is a step for dispersing a predetermined gas in liquid milk.
  • the predetermined gas may be dispersed in a volume of, for example, 1 ⁇ 10 ⁇ 2 times or more and 7 times or less the volume of the liquid milk, preferably 1 ⁇ 10 ⁇ 2 times or more the volume of the liquid milk.
  • the volume is 5 times or less, more preferably 1 ⁇ 10 ⁇ 2 times or more and 4 times or less the volume of liquid milk, and most preferably 1 ⁇ 10 ⁇ 2 times or more and 3 times or less.
  • the pressure for pressurizing the predetermined gas is not particularly limited as long as the gas can be effectively dispersed in the liquid milk, but the pressure of the predetermined gas is, for example, 1.5 atm or more and 10 atm or less. It is preferably 2 atm or more and 5 atm or less. Since the liquid milk is sprayed in the following spray drying step, it flows along a predetermined flow path. In this gas dispersion step, a pressurized predetermined gas is poured into this flow path to make the gas liquid. Disperse (mix) in milk. By doing so, the predetermined gas can be easily and surely dispersed in the liquid milk.
  • the density of the liquid milk may be determined by dividing the weight of the liquid milk by the total volume of the liquid milk in the liquid state and the foam state. Further, it may be measured by using a device for measuring the density by a bulk density measuring method (pigment: JISK5101 compliant) based on the JIS method.
  • liquid milk in which a predetermined gas is dispersed flows through the above flow path.
  • the volumetric flow rate of the liquid milk is controlled to be constant in the flow path.
  • carbon dioxide carbonic acid gas
  • the ratio of the volumetric flow rate of carbon dioxide to the volumetric flow rate of liquid milk (hereinafter, the percentage thereof is also referred to as "CO 2 mixing ratio [%]") is, for example, 1% or more and 700% or less. % Or more and 300% or less are preferable, 3% or more and 100% or less are more preferable, and 5% or more and 45% or less are most preferable. In this way, by controlling the volumetric flow rate of carbon dioxide to be constant with respect to the volumetric flow rate of the liquid milk, the uniformity of the milk powder produced from the liquid milk can be improved.
  • the upper limit of the CO 2 mixing ratio is preferably 700%.
  • the pressure for pressurizing carbon dioxide is not particularly limited as long as it can effectively disperse carbon dioxide in liquid milk, but the pressure of carbon dioxide is, for example, 1.5 atm or more and 10 atm or less. It is preferably 2 atm or more and 5 atm or less.
  • the predetermined gas used in the gas dispersion step is carbon dioxide (carbon dioxide gas).
  • One or more gases selected from the group consisting of air, nitrogen (N 2 ), and oxygen (O 2 ) may be used in place of or with carbon dioxide, or noble gases (eg, argon). (Ar), helium (He)) may be used.
  • noble gases eg, argon
  • Ar helium
  • the gas dispersion step can be easily performed by using an easily available gas.
  • an inert gas such as nitrogen or a rare gas is used in the gas dispersion step, there is no risk of reacting with the nutritional components of the liquid milk, so that there is less possibility of deteriorating the liquid milk than using air or oxygen, which is preferable. ..
  • the ratio of the volume flow rate of the gas to the volume flow rate of the liquid milk is, for example, 1% or more and 700% or less, preferably 1% or more and 500% or less, more preferably 1% or more and 400% or less, and most preferable. Is 1% or more and 300% or less.
  • Bell et al. R. W. BELL, F. P. HANRAHAN, B. H. WEBB: “FOAM SPRAY DRYING METHODS OF MAKING READILY DISPERSIBLE NONFAT DRY MILK”, J. Dairy Sci, 46 (12) 1963. Pp1352-1356
  • the predetermined gas is dissolved in a gas that easily disperses in the liquid milk or in the liquid milk. It is preferable to use an easy gas. Therefore, it is preferable to use a gas having a high solubility in water (water solubility) , and a gas having a solubility in 1 cm 3 of water at 20 ° C. and 1 atm is preferable.
  • the carbon dioxide is not limited to gas, and may be dry ice or a mixture of dry ice and gas. That is, in the gas dispersion step, a solid may be used as long as a predetermined gas can be dispersed in the liquid milk. By using dry ice in the gas dispersion step, carbon dioxide can be rapidly dispersed in the cooled liquid milk, and as a result, milk powder having preferable properties for producing solid milk can be obtained.
  • the spray drying process is a process for obtaining powdered milk (food powder) by evaporating the water content in the liquid milk.
  • the milk powder obtained in this spray drying step is the milk powder obtained through the gas dispersion step and the spray drying step.
  • This milk powder is bulkier than the milk powder obtained without the gas dispersion step.
  • the former preferably has a volume of 1.01 times or more and 10 times or less of the latter, and may be 1.02 times or more and 10 times or less, or 1.03 times or more and 9 times or less.
  • the spray drying step a predetermined gas is dispersed in the liquid milk in the gas dispersion step, and the liquid milk is spray-dried while the density of the liquid milk is reduced.
  • the volume of the liquid milk after the gas is dispersed is 1.05 times or more and 3 times or less, preferably 1.1 times or more and 2 times or less as compared with the liquid milk before the gas is dispersed.
  • the spray drying step is performed in 0.1 seconds or more and 5 seconds or less, preferably 0.5 seconds or more and 3 seconds or less. That is, the gas dispersion step and the spray drying step may be continuous. By doing so, the liquid milk is continuously charged into the gas disperser to disperse the gas, and the liquid milk in which the gas is dispersed is continuously supplied to the spray dryer and can be continuously spray-dried. ..
  • a spray dryer may be used to evaporate the water.
  • the spray dryer is wider than the flow path for flowing the liquid milk, the pressurizing pump for pressurizing the liquid milk for flowing the liquid milk along the flow path, and the flow path connected to the opening of the flow path. It has a drying chamber and a spraying device (nozzle, atomizer, etc.) provided at the opening of the flow path. Then, the spray dryer sends the liquid milk toward the drying chamber along the flow path so as to have the volume flow rate described above by the pressure pump, and in the vicinity of the opening of the flow path, the concentrated milk is sent to the drying chamber by the spray device.
  • the liquid milk in the state of droplets (atomization) is dried at a high temperature (for example, hot air) in the drying chamber.
  • the concentrated milk becomes a powdery solid, that is, powdered milk.
  • the water content of the milk powder and the like can be adjusted to make it difficult for the milk powder to aggregate.
  • the surface area per unit volume of the droplet is increased to improve the drying efficiency, and at the same time, the particle size of the milk powder is adjusted.
  • milk powder suitable for producing solid milk can be produced.
  • the milk powder obtained as described above is compression molded to form a milk powder compression molded product.
  • the obtained powdered milk compression molded product is subjected to a curing treatment including, for example, a humidification treatment and a drying treatment. From the above, solid milk 10S can be produced.
  • compression means In the process of compression molding milk powder, compression means are used.
  • the compression means is, for example, a pressure molding machine such as a lock press or a compression test device.
  • the locker is a device equipped with a mortar that can be used to insert powdered milk and a pestle that can be struck toward the mortar.
  • the compression molding process using the lock press will be described.
  • FIG. 4 is an explanatory diagram illustrating the positions of the slide plate, the upper and lower pestle of the locker.
  • the lower pestle 31 is arranged below the mortar 30A of the slide plate 30 so as to be movable up and down by an actuator.
  • an upper pestle 32 is arranged above the mortar 30A of the slide plate 30 so as to be movable up and down by an actuator.
  • FIG. 4 shows the positions where the lower pestle 31 and the upper pestle 32 are inserted into the mortar 30A of the slide plate 30, and the lower pestle 31 and the upper pestle 32 are closest to each other. At this position, the distance between the lower pestle 31 and the upper pestle 32 is the final pestle only spacing L.
  • the inner wall surface of the mortar 30A of the slide plate 30, the upper end surface of the lower pestle 31 and the lower end surface of the upper pestle 32 are compression molding molds.
  • compressive pressure is applied to the powdered milk and the slide plate 30.
  • Milk powder is compression-molded in the space SP surrounded by the inner wall surface of the mortar 30A, the upper end surface of the lower pestle 31 and the lower end surface of the upper pestle 32, and a milk powder compression molded product can be obtained.
  • the actuator that drives the lower pestle 31 and the upper pestle 32 up and down is composed of, for example, a servomotor.
  • a servomotor by changing the speed of the servomotor as an actuator, the compression speed at the time of compression molding, that is, the moving speed of the lower pestle 31 and the upper pestle 32 can be changed, as will be described in detail later.
  • the actuator is not limited to the servomotor, and the method of changing the moving speed of the lower pestle 31 and the upper pestle 32 is not limited to this.
  • a hydraulic cylinder or the like may be used.
  • the lower pestle 31 and the upper pestle 32 may be moved in a direction close to each other, or one may be fixed and only the other may be moved.
  • the process of compression molding by changing the compression speed at the time of compression molding that is, the moving speed of the lower punch 31 and the upper punch 32 will be described.
  • the compression speed at which the upper end surface of the lower pestle 31 and the lower end surface of the upper pestle 32 approach is changed (switched). That is, first, the first compression is performed at the first compression rate V 1 , and then the second compression is performed at the second compression rate V 2 following the first compression.
  • the second compression speed V 2 is set to be slower than the first compression speed V 1 .
  • the compression distances of the first compression and the second compression are based on the state at the end of the second compression, that is, at the end of the entire compression step, as shown in FIG.
  • the compression by the lower pestle 31 and the upper pestle 32 is performed until the pestle distance between the upper end surface of the lower pestle 31 and the lower end surface of the upper pestle 32 becomes the final pestle only distance L.
  • the final pestle only interval L is the final thickness of the milk powder compression molded product in a state of being compressed in the entire compression step.
  • the final pestle interval L is determined in consideration of the expansion of the milk powder compression molded product when the compression is released, and is smaller than the target thickness of the milk powder compression molded product or has the same value as the target thickness.
  • both sides of the lower pestle 31 and the upper pestle 32 are brought into close contact with the compressed material, and control is performed so as not to relieve the pressure applied to the compressed material.
  • a conventionally known locking machine for example, the locking machine described in Japanese Patent Application Laid-Open No. 2008-290145
  • the tableting machine of the embodiment is different from the conventional tableting machine in that the pressure is not relaxed between the first compression and the second compression, and both sides of the lower pestle 31 and the upper pestle 32 are in close contact with the compressed material. Since the compressed product is compressed, it is possible to impart sufficient hardness to the compressed product.
  • FIG. 5 shows the positions of the lower pestle 31 and the upper pestle 32 at the start of the first compression.
  • FIG. 6 shows the positions of the lower pestle 31 and the upper pestle 32 after the end of the first compression and at the start of the second compression.
  • the first compression is the compression from the state of the pestle only interval (L + L 1 + L 2 ) shown in FIG. 5 to the state of the pestle only interval (L + L 2 ) shown in FIG.
  • the compression from the state of the pestle only interval (L + L 2 ) shown in FIG. 6 to the state of the final pestle only interval L shown in FIG. 4 is the second compression.
  • the first compression distance L 1 of the first compression is a distance at which the pestle only interval decreases in the first compression.
  • the second compression distance L 2 of the second compression is a distance at which the pestle only interval decreases in the second compression. Since the second compression is continuously performed from the first compression without decompressing, the second compression distance L 2 is from the pestle only interval (L + L 2 ) compressed by the first compression to the final pestle only interval (L). The compression distance.
  • the rate of change of the pestle interval in the first compression is the first compression rate V1
  • the rate of change of the pestle interval in the second compression is the second compression rate V 2 .
  • the average speed is set to the first compression speed V1 and the second compression speed V2.
  • the same compression speed and the same compression distance (L 1 + L 2 ) as the first compression speed V 1 are performed. It is possible to increase the hardness of the powdered milk compression molded product and secure the fracture resistance as compared with the case where the compression is performed with. Moreover, since the second compression can be performed following the first compression and the second compression distance L 2 can be shortened, the strength is as high as that in the case of manufacturing only at the second compression speed V 2 . , It is possible to manufacture with higher production efficiency.
  • the rate of change in the hardness of the powdered milk compressed molded product with respect to the compression distance when the powdered milk compressed molded product is compressed from the state compressed by the first compression is determined so as to satisfy the second compression condition of compressing to a reduced state.
  • the compression molding step is performed by combining the first compression and the second compression, but all of the compression molding steps may be performed only at the first compression speed V1. Further, it may be performed only at the second compression speed V2.
  • the present inventors have investigated each powdered milk compression molded product obtained from various combinations of a first compression rate V 1 , a first compression distance L 1 , a second compression rate V 2 , and a second compression distance L 2 . Therefore, when the second compression rate V 2 is made smaller than the first compression rate V 1 , the rate of change (increase rate) in the hardness of the powdered milk compressed product with respect to the change in the second compression distance L 2 is specific. It was found that there are points (hereinafter referred to as hardness singular points). The inventors have also found that the second compression distance L 2 corresponding to the hardness singularity changes depending on the first compression rate V 1 and is also affected by the second compression rate V 2 .
  • the hardness singularity exists because the compression state in which the rearrangement of the milk powder particles inside the milk powder compression molding is dominant changes to the compression state in which the plastic deformation is dominant inside the milk powder compression molding. It is presumed that there is. Further, as the first compression rate V 1 is larger, the energy required for plastic deformation inside the powdered milk compression molded product is larger. Therefore, the second compression distance L corresponding to the hardness singularity is increased according to the first compression rate V 1 . It is presumed that 2 changes and that the second compression distance L 2 is affected by the second compression speed V 2 .
  • the compression rate ratio may be 5 or more, but is, for example, 10 or more, 20 or more, 25 or more, 50 or more, 100 or more, 250 or more, and 500 or more.
  • the first compression speed V 1 is set in the range of 1.0 mm / S or more and 100.0 mm / S or less, and the first compression distance L 1 is set in the range of 5.0 mm or more and 10.0 mm or less.
  • the compression speed V 2 is set in the range of 0.25 mm / S or more and 50.0 mm / S or less, and the second compression distance L 2 is set in the range of 0.2 mm or more and 1.6 mm or less.
  • the configuration of the lock locking machine is an example, and the configuration is not limited as long as it can be compressed by changing the compression speed between the first compression and the second compression. Further, in this example, in the second compression, the compression is performed to the final thickness, but the second compression may be followed by further compression in which the speed is changed from the second compression speed. In this case, the milk powder compression molded product is compressed to the final thickness by compression after the second compression.
  • the configuration of the lock press other than the above is the same as that of the lock press described in Patent Document 3, for example.
  • the compression-molded slide plate mortar 30A moves to the take-out zone.
  • the take-out zone of the tableting machine the lower pestle 31 and the upper pestle 32 are removed from the mortar 30A of the slide plate 30, and the milk powder compression molded product is extruded by the extrusion portion.
  • the extruded milk powder compression molded product is collected in a collection tray.
  • the milk powder supply unit of the slide plate 30 to the mortar 30A is realized by, for example, a device including a funnel that supplies milk powder to the mortar 30A from the bottom opening.
  • the temperature of the environment is not particularly limited, and may be, for example, room temperature. Specifically, the temperature of the environment is, for example, 5 ° C to 35 ° C.
  • the humidity of the environment is, for example, a relative humidity of 0% RH to 60% RH.
  • the compression pressure is, for example, 1 MPa to 30 MPa, preferably 1 MPa to 20 MPa. In particular, when solidifying milk powder, it is preferable to adjust the compression pressure within the range of 1 MPa to 30 MPa so that the hardness of the milk powder compressed molded product is within the range of 4 N or more and less than 20 N. This makes it possible to produce a highly practical solid milk 10S that is convenient (easy to handle).
  • the milk powder compression molded product has at least a hardness (for example, 4N or more) that does not lose its shape in the subsequent humidification step or drying step.
  • a hardness for example, 4N or more
  • the range of preferable breaking stress of the milk powder compression molded product is 0.014 N / mm 2 or more and less than 0.067 N / mm 2 in consideration of the range of the breaking area.
  • the humidification treatment is a step of humidifying the powdered milk compression molded product obtained in the compression molding step.
  • tack stickinginess
  • a part of the powder particles near the surface of the milk powder compression molded product becomes liquid or gel-like and crosslinks with each other.
  • the strength near the surface of the milk powder compression molded product can be increased higher than the internal strength.
  • the desired hardness for example, 40N
  • the range (width) of hardness that can be increased by adjusting the humidification time is limited. That is, since the milk powder compression molded product after compression molding is humidified, the shape of the solid milk 10S cannot be maintained unless the hardness of the milk powder compression molded product is sufficient when it is transported by a belt conveyor or the like. Further, if the hardness of the powdered milk compression molded product is too high during compression molding, only solid milk 10S having a small porosity and poor solubility can be obtained. Therefore, it is preferable to perform compression molding so that the hardness of the milk powder compression molded product (uncured solid milk 10S) before the humidification step is sufficiently high and the solubility of the solid milk 10S is sufficiently maintained.
  • the method for humidifying the milk powder compression molding is not particularly limited, for example, a method of placing the milk powder compression molding in a high humidity environment, a method of directly spraying water or the like on the milk powder compression molding, and a milk powder. There is a method of spraying steam on the compression molded product.
  • Humidifying means are used to humidify the milk powder compression molded product, and such humidifying means include, for example, a high humidity chamber, a spray, and steam.
  • the humidity of the environment is, for example, in the range of 60% RH to 100% RH relative humidity.
  • the temperature in a high humidity environment is, for example, 30 ° C to 100 ° C.
  • the treatment time of the humidification treatment is arbitrary, but is, for example, 5 seconds to 1 hour.
  • the temperature may exceed 100 ° C.
  • the temperature when the milk powder compression molded product is placed in a high humidity environment is preferably 330 ° C. or lower, preferably 110 ° C. or higher and 280 ° C.
  • the relative humidity is preferably 0.1% RH or more and 20% RH or less, more preferably 1% RH or more and 15% RH or less, and further preferably 1.5%. RH or more and 12% RH or less, most preferably 2% RH or more and 10% RH or less.
  • the treatment time when the milk powder compression molded product is placed in a high humidity environment is arbitrary, but is, for example, 0.1 seconds or more and 30 seconds or less, preferably 4.4 seconds or more and 20 seconds or less, and more preferably 4.
  • Humidification conditions include temperature, humidity, and time. The higher the temperature, the higher the humidity, and the longer the time, the higher the humidifying effect, and the lower the temperature, the lower the humidity, and the shorter the time, the weaker the humidifying effect.
  • the relative humidity can be measured with a commercially available hygrometer. For example, up to 180 ° C can be measured with a Vaisala hygrometer HMT330, and up to 350 ° C can be measured with a Vaisala dew point meter DMT345.
  • absolute humidity volume absolute humidity (unit: g / m 3 ) or weight absolute humidity (unit: kg / kg (DA), where DA is dry air) is measured, and the saturated water vapor pressure at that temperature is measured.
  • Relative humidity may be converted by calculating the ratio (%) of the partial pressure of water vapor.
  • the amount of water added to the milk powder compression molded product in the humidification treatment (hereinafter, also referred to as "humidification amount”) can be appropriately adjusted.
  • the amount of humidification is preferably 0.5% by weight to 3% by weight of the mass of the milk powder compression molded product after the compression molding step. If the amount of humidification is less than 0.5% by weight, sufficient hardness (tablet hardness) cannot be given to the solid milk 10S, which is not preferable. Further, if the amount of humidification exceeds 3% by weight, the milk powder compression molded product may be excessively liquid or gelled and dissolved, and may be deformed from the compression molded shape, which is not preferable.
  • the drying process is a process for drying the milk powder compression molded product that has been humidified by the humidifying process.
  • the surface tack (stickiness) of the powdered milk compression molded product is eliminated, and the solid milk 10S becomes easier to handle.
  • the humidification treatment and the drying treatment correspond to a step of increasing the hardness of the powdered milk compression molded product after compression molding to impart the desired characteristics and quality of the solid milk 10S.
  • the method for drying the powdered milk compression molded product is not particularly limited, and a known method capable of drying the milk powder compressed molded product that has undergone the humidification treatment can be adopted.
  • a method of placing in a low humidity / high temperature environment there are a method of placing in a low humidity / high temperature environment, a method of contacting dry air / high temperature dry air, and the like.
  • the milk powder compression molded product When the milk powder compression molded product is placed in an environment of low humidity and high temperature, it is placed in an environment of relative humidity of 0% RH or more and 30% RH or less and a temperature of 20 ° C or more and 330 ° C or less.
  • the temperature when placed in an environment of low humidity and high temperature is, for example, 330 ° C.
  • the processing time when the powdered milk compression molded product is placed in an environment of low humidity and high temperature is arbitrary, but is, for example, 0.1 seconds or more and 2 hours or less.
  • the above-mentioned humidification treatment and drying treatment can be performed as separate steps under conditions where the temperature and humidity are different from each other as described above, and in that case, they can be continuously performed. Further, the humidification treatment and the drying treatment can be performed at the same temperature and humidity, and in this case, the humidification treatment and the drying treatment can be performed at the same time.
  • the milk powder compression molding is placed in a first temperature / humidity environment in which humidification and drying occur at the same time, and then the milk powder compression molding is placed in a second temperature / humidity environment in which only drying occurs.
  • the transition from the first temperature / humidity to the second temperature / humidity is a period of transition from a state in which humidification and drying of the milk powder compression molding occur at the same time to a state in which only the drying of the milk powder compression molding occurs.
  • the water content of the solid milk 10S can be controlled (adjusted) within 1% before and after the water content of the milk powder used as a raw material by controlling the conditions such as the drying temperature and the drying time. preferable.
  • the solid milk 10S thus produced is generally dissolved in warm water and used for drinking. Specifically, after pouring hot water into a container with a lid, a required number of solid milk 10S is added, or after adding solid milk 10S, hot water is poured. Then, preferably, by gently shaking the container, the solid milk 10S is quickly dissolved and drunk at an appropriate temperature. Further, preferably, one to several solid milk 10S (more preferably one solid milk 10S) is dissolved in warm water so that the amount of liquid milk required for one drinking is obtained.
  • the volume may be adjusted to be, for example, 1 cm 3 to 50 cm 3 .
  • the volume of the solid milk 10S can be adjusted by changing the amount of milk powder used in the compression molding step.
  • a hardening treatment including a humidification treatment and a drying treatment as described above.
  • the solid milk 10S of the present embodiment is a solid milk that is hardened by compression molding of powdered milk, and the breaking stress of the solid milk 10S is 0.067 N / mm 2 or more, and the peel shear stress with respect to a flat surface. Exceeds 0.015 N / mm 2 .
  • the solid milk of the present embodiment described above can secure a strength that is easy to handle and can realize a peel shear stress exceeding 0.015 N / mm 2 .
  • the peel shear stress is a value obtained by dividing the adhesive force by the peel area.
  • the above-mentioned solid milk has an enhanced adhesive force, and the force of the solid milk during the manufacturing process to adhere to the contact surface of a manufacturing device such as a belt conveyor is enhanced, so that the solid milk is solid even if the transport speed of the solid milk is increased. The milk is suppressed from being blown off, the solid milk can be stably transported, and the production efficiency can be improved.
  • Solid milk is an example of solid food.
  • the first embodiment described above is a milk powder compression molded product obtained by compression-molding milk powder and a solid milk obtained by curing the milk powder, but the present invention is not limited thereto. This embodiment is applied to a food powder compression molded product obtained by compression-molding food powder and a solid food product obtained by curing the food powder.
  • protein powders such as whey protein, soybean protein and collagen peptide, amino acid powders, and fat-containing powders such as MCT oil can be used.
  • Lactose or other sugars may be appropriately added to the food powder.
  • nutritional components such as fats, proteins, minerals and vitamins and food additives may be added to the food powder.
  • a food powder compression molded product can be formed by compression molding into a desired shape using food powder. By curing the obtained food powder compression molded product, a solid food can be formed. It can be produced by performing a curing treatment including a humidifying treatment similar to that of the first embodiment, except that the above food powder is used as a raw material.
  • the hardness of the food powder compression molded product obtained by compression-molding the food powder and the solid food obtained by curing the food powder can be measured by using the hardness tester described in the first embodiment.
  • the preferable hardness of the food powder compression molded product is 4N or more and less than 20N, and the preferable hardness of the solid food is 20N or more and 130N or less.
  • the preferable breaking stress of the food powder compression molded product is 0.014 N / mm 2 or more and less than 0.067 N / mm 2
  • the preferable breaking stress of the solid food is 0.067 N / mm 2 or more and 0.961 N / mm 2 . It is as follows.
  • the solid food of the present embodiment is a solid food obtained by compression-molding food powder and hardening it, and the breaking stress of the solid food is 0.067 N / mm 2 or more.
  • the peel shear stress on a flat surface exceeds 0.015 N / mm 2 .
  • the solid food of the present embodiment described above can secure a strength that is easy to handle and can realize a peel shear stress exceeding 0.015 N / mm 2 .
  • the peel shear stress is a value obtained by dividing the adhesive force by the peel area.
  • the above-mentioned solid food has an enhanced adhesive force, and the force of the solid food during the manufacturing process to adhere to the contact surface of a manufacturing device such as a belt conveyor is enhanced, whereby the solid food is solid even if the transportation speed of the solid food is increased. Blow-off of food is suppressed, solid food can be stably transported, and production efficiency can be improved.
  • the solid food of the present embodiment described above preferably contains monohydrate crystals and anhydrous crystals, and the ratio of the monohydrate crystals to the total weight on the surface of the solid food is the monohydration inside the solid food.
  • Crystallization which is the difference between the increase in crystallization rate ⁇ (% by weight), which is the difference with respect to the ratio of physical crystals, and the ratio of anhydrous crystals with respect to the total weight on the surface of the solid food, with respect to the ratio of anhydrous crystals inside the solid food.
  • the increase ratio ⁇ / ( ⁇ + ⁇ ) of the crystallization rate of the sum ( ⁇ + ⁇ ) of the increase ⁇ (% by weight) of the rate and the increase ⁇ (% by weight) of the crystallization rate is Xa, and the peel shear against the flat surface of the solid food.
  • the stress is Ya (N)
  • Xa and Ya satisfy the following formula (1A).
  • the solid food of the present embodiment described above has an increase ratio ⁇ / ( ⁇ + ⁇ ) of crystallization rate of 0.3 or less.
  • Such a solid food can be produced by performing a curing treatment including, for example, a humidification treatment and a drying treatment, as described above, on the food powder compression molded product obtained by compression molding the food powder, and is easy to handle. It is possible to further increase the adhesive force while providing strength.
  • the protein powder of the above food powder may be milk casein, meat powder, fish powder, egg powder, wheat protein, wheat protein decomposition product or the like. These protein powders may be used alone or in two or more kinds.
  • the above-mentioned food powder whey protein is a general term for proteins excluding casein in milk. It may be classified as whey protein.
  • Whey protein is composed of a plurality of components such as lactoglobulin, lactalbumin, and lactoferrin.
  • a milk raw material such as milk is adjusted to be acidic
  • the protein that precipitates becomes casein
  • the protein that does not precipitate becomes whey protein.
  • the powder raw material containing whey protein include WPC (whey protein concentrate, protein content of 75 to 85% by mass) and WPI (whey protein isolate, protein content of 85% by mass or more). These may be used alone or in two or more kinds.
  • soybean protein (soybean protein) of the above food powder may be any protein contained in soybean and may be extracted from soybean. Further, those refined from raw soybeans can also be used.
  • the purification method is not particularly limited, and a conventionally known method can be used. As such soy protein, powders commercially available as food and drink materials, medical materials, and supplement foods can be used. These may be used alone or in two or more kinds.
  • amino acids contained in the amino acid powder of the above food powder are not particularly limited, and for example, arginine, lysine, ornithine, phenylalanine, tyrosine, valine, methionine, leucine, isoleucine, tryptophan, histidine, proline, cysteine, etc.
  • Glutamic acid, aspartic acid, aspartic acid, serine, glutamine, citrulin, creatine, methyllysine, acetyllysine, hydroxylysine, hydroxyproline, glycine, alanine, threonine, cystine and the like can be used. These may be used alone or in two or more kinds.
  • amino acid contained in the amino acid powder of the above-mentioned food powder may be either a natural product or a synthetic product, and a single amino acid or a mixture of a plurality of amino acids can be used.
  • amino acid not only free amino acids but also salts such as sodium salts, hydrochlorides and acetates and derivatives such as carnitine and ornithine can be used.
  • amino acid includes ⁇ -amino acid, ⁇ -amino acid and ⁇ -amino acid.
  • the amino acid may be either L-form or D-form.
  • the fats and oils contained in the fats and oils-containing powder of the above-mentioned food powder are animal fats and oils, vegetable fats and oils, their fractionated oils, hydrogenated oils and transesterified oils in addition to the above-mentioned MCT oils.
  • animal fats and oils are, for example, milk fat, lard, beef tallow, fish oil and the like.
  • the vegetable oils and fats are, for example, soybean oil, rapeseed oil, corn oil, palm oil, palm oil, palm kernel oil, safflower oil, cottonseed oil, flaxseed oil, MCT oil and the like.
  • the sugar of the above-mentioned food powder is, for example, oligosaccharide, monosaccharide, polysaccharide, artificial sweetener and the like in addition to the above-mentioned lactose.
  • oligosaccharide is, for example, lactose, sucrose, maltose, galactooligosaccharide, fructooligosaccharide, lactulose and the like.
  • Monosaccharides are, for example, glucose, fructose, galactose and the like.
  • the polysaccharides are, for example, starch, soluble polysaccharides and dextrins.
  • a sweetener can be exemplified.
  • any sweetener usually used in foods and pharmaceuticals can be used, and either a natural sweetener or a synthetic sweetener may be used.
  • the sweetener is not particularly limited, but is, for example, glucose, fructose, malt sugar, saccharin, oligosaccharide, sugar, granulated sugar, maple syrup, honey, sugar honey, trehalose, palatinose, maltitol, xylitol, sorbitol, glycerin, aspartame, advantame. Includes tame, neotame, sucralose, acesulfame potassium and saccharin.
  • an acidulant can be exemplified.
  • the acidulant is not particularly limited, and includes, for example, acetic acid, citric acid, anhydrous citric acid, adipic acid, succinic acid, lactic acid, malic acid, phosphoric acid, gluconic acid, tartrate acid, and salts thereof.
  • the acidulant can suppress (mask) the bitterness caused by the type of amino acid.
  • any component such as fat, protein, mineral and vitamin may be contained.
  • fats examples include animal fats and oils, vegetable fats and oils, their fractionated oils, hydrogenated oils, transesterified oils and the like. One or more of these may be added.
  • Animal fats and oils are, for example, milk fat, lard, beef tallow, fish oil and the like.
  • the vegetable oils and fats are, for example, soybean oil, rapeseed oil, corn oil, palm oil, palm oil, palm kernel oil, safflower oil, cottonseed oil, flaxseed oil, MCT oil and the like.
  • proteins examples include milk proteins and milk protein fractions, animal proteins, vegetable proteins, peptides and amino acids obtained by decomposing these proteins into various chain lengths by enzymes and the like. One or more of these may be added.
  • Milk proteins include, for example, casein, whey protein ( ⁇ -lactalbumin, ⁇ -lactoglobulin, etc.), whey protein concentrate (WPC), whey protein isolate (WPI), and the like.
  • the animal protein is, for example, egg protein (egg powder), meat powder, fish powder and the like.
  • the vegetable protein is, for example, soybean protein, wheat protein and the like.
  • the peptide is, for example, a collagen peptide or the like.
  • Amino acids are, for example, taurine, cystine, cysteine, arginine, glutamine and the like. One or more of these may be added.
  • Minerals include iron, sodium, potassium, calcium, magnesium, phosphorus, chlorine, zinc, iron, copper and selenium. One or more of these may be added.
  • Vitamin includes vitamin A, vitamin D, vitamin E, vitamin K, vitamin B1, vitamin B2, vitamin B6, vitamin B12, vitamin C, niacin, folic acid, pantothenic acid, biotin and the like. One or more of these may be added.
  • cocoa powder for example, cocoa powder, cocoa powder, chocolate powder, microbial powder containing useful microorganisms such as lactic acid bacteria and bifidus bacteria, and cultures obtained by adding microorganisms to milk and fermenting them were used as powders.
  • the solid food according to the present invention can be in the form of daily foods, health foods, health supplements, health functional foods, specified health foods, nutritional functional foods, supplements, foods with functional claims, and the like.
  • Solid foods that have the property of dissolving in water are also called solid-dissolved foods.
  • the surface of the food powder compression molded product is tacked (sticky).
  • examples of such food powders include food powders containing sugars, dextrins, natural sugars (trehalose and the like), polysaccharides and the like.
  • any food powder that can cause tack (stickiness) on the surface of the food powder compression molded product when the food powder compression molded product is humidified can be preferably applied.
  • the solid food of the present embodiment is a solid food that is hardened by compression molding of food powder, and the breaking stress of the solid food is 0.067 N / mm 2 or more, and the peel shear stress with respect to a flat surface. Exceeds 0.015 N / mm 2 .
  • the solid food of the present embodiment described above can secure a strength that is easy to handle and can realize a peel shear stress exceeding 0.015 N / mm 2 .
  • the peel shear stress is a value obtained by dividing the adhesive force by the peel area.
  • the above-mentioned solid food has an enhanced adhesive force, and the force of the solid food during the manufacturing process to adhere to the contact surface of a manufacturing device such as a belt conveyor is enhanced, whereby the solid food is solid even if the transportation speed of the solid food is increased. Blow-off of food is suppressed, solid food can be stably transported, and production efficiency can be improved.
  • Example> (Creation of Example 1) A rectangular parallelepiped solid milk sample having a side a in the X-axis direction of 31 mm, a side b in the Y-axis direction of 24 mm, and a side c in the Z-axis direction of 12.5 mm was prepared as an example. The size of the usuki of the locker having such a size was adjusted, and 5.4 g of milk powder was compression-molded to form a milk powder compression-molded product. Compression was performed with a compression rate V of 1 mm / s.
  • the milk powder compression molded product obtained above was subjected to a humidification treatment having a temperature, a relative humidity, and a treatment time of 75 ° C., 95% RH, and 90 seconds.
  • a drying treatment at a drying temperature of 80 ° C. was performed to obtain a solid milk sample according to Example 1 which had been subjected to a curing treatment. The drying time was adjusted so that the weight increase during humidification could be completely dried.
  • Example 1 Hardness of the sample of Example 1 Using the above load cell type tablet hardness tester, the hardness of the solid milk sample according to Example 1 was evaluated. The hardness of the sample of Example 1 was 128 N (breaking stress was about 0.427 N / mm 2 ), which was sufficiently secured and had a hardness that was easy to handle.
  • the increase ⁇ (% by weight) in the crystallization rate of ⁇ -lactose crystals and the increase in the total crystallization rate (the sum of the increase ⁇ in the crystallization rate and the increase ⁇ in the crystallization rate ( ⁇ + ⁇ )) (% by weight) were determined.
  • the increase in the crystallization rate of ⁇ -lactose crystals, the increase in the crystallization rate of ⁇ -lactose crystals, and the increase in the total crystallization rate are the ⁇ -lactose crystals, ⁇ -lactose crystals, and ⁇ -lactose and ⁇ -lactose crystals with respect to the total weight, respectively.
  • the increase ratio ⁇ / ( ⁇ + ⁇ ) of the crystallization rate on the surface of the solid milk sample of Example 1 was 0.237.
  • the surface of each sample was cut for each XRD measurement to obtain an increase in the crystallization rate of the entire surface.
  • the measurement surface has a cross section having a size of 12.5 mm ⁇ 24 mm.
  • the increase in the total crystallization rate was measured by cutting and exposing the surface of the solid milk by a thickness of 0.1 mm using a powder X-ray diffractometer (XRD, SmartLab, Rigaku). It was measured by the diffraction intensity.
  • the measurement method is general-purpose (concentrated method), and the slit conditions are scan axis (2 ⁇ / ⁇ ), mode (step), range specification (absolute), start (9.0000 deg), end (13.5000 deg), step (0.0200 deg). ), Speed counting time (2.4), IS (1.000deg), RSI (1.000deg), RS2 (0.300mm), attenuator (open), tube voltage (40kv), tube current (30mA). ..
  • the analysis method is to use the analysis software "SmartLab Studio II” to perform weighted average (smoothing 7 points) BG removal (sonneveld-Visser method), and then calculate the integrated intensity (natural peak of ⁇ -lactose crystals: 12.5, ⁇ .
  • the intrinsic peak of lactose crystals: 10.5) was performed.
  • the increase in total crystallization rate is the difference between the ratio of crystals to the total weight at each depth from the surface of the solid milk to the ratio of crystals inside the solid milk. Here, it was determined as the weight (% by weight) of ⁇ -lactose crystals and ⁇ -lactose crystals per unit weight as crystals.
  • Example 2 A solid milk sample was prepared in the same manner as in Example 1 except that the humidification treatment was performed in which the temperature, relative humidity, and treatment time were 75 ° C., 75% RH, and 60 seconds, and the sample was designated as Example 2.
  • the hardness, the increase ratio ⁇ / ( ⁇ + ⁇ ) of the crystallization rate of the solid milk surface, and the adhesive force were measured.
  • the hardness of the solid milk sample of Example 2 was 68.8 N (breaking stress was 0.229 N / mm 2 ), the increase ratio ⁇ / ( ⁇ + ⁇ ) of the crystallization rate of the solid milk surface was 0.108, and the adhesive force was 6. It was 9N (peeling shear stress was 0.0172N / mm 2 ).
  • Example 3 A solid milk sample was prepared in the same manner as in Example 1 except that the humidification treatment was performed in which the temperature, relative humidity, and treatment time were 75 ° C., 75% RH, and 80 seconds, and the sample was designated as Example 3.
  • the hardness, the increase ratio ⁇ / ( ⁇ + ⁇ ) of the crystallization rate of the solid milk surface, and the adhesive force were measured.
  • the hardness of the solid milk sample of Example 3 was 75.2 N (breaking stress was 0.251 N / mm 2 ), the increase ratio ⁇ / ( ⁇ + ⁇ ) of the crystallization rate of the solid milk surface was 0.136, and the adhesive force was 8. It was 5N (peeling shear stress was 0.0212N / mm 2 ).
  • Example 4 A solid milk sample was prepared in the same manner as in Example 1 except that the humidification treatment was performed in which the temperature, relative humidity, and treatment time were 75 ° C., 75% RH, and 95 seconds, and the sample was designated as Example 4.
  • the hardness, the increase ratio ⁇ / ( ⁇ + ⁇ ) of the crystallization rate of the solid milk surface, and the adhesive force were measured.
  • the hardness of the solid milk sample of Example 4 was 90.1 N (breaking stress was 0.300 N / mm 2 ), the increase ratio ⁇ / ( ⁇ + ⁇ ) of the crystallization rate of the solid milk surface was 0.156, and the adhesive force was 9. It was 6N (peeling shear stress was 0.0239N / mm 2 ).
  • Comparative Example 1 A solid milk sample was prepared in the same manner as in Example 1 except that the humidification treatment was performed at a temperature, relative humidity, and a treatment time of 75 ° C., 50% RH, and 30 seconds, and used as Comparative Example 1.
  • the hardness, the increase ratio ⁇ / ( ⁇ + ⁇ ) of the crystallization rate of the solid milk surface, and the adhesive force were measured.
  • the hardness of the solid milk sample of Comparative Example 1 was 32.7 N (breaking stress was 0.109 N / mm 2 ), the increase ratio ⁇ / ( ⁇ + ⁇ ) of the crystallization rate of the solid milk surface was 0.054, and the adhesive force was 4. It was 0 N (peeling shear stress was 0.00995 N / mm 2 ).
  • Example 2 A solid milk sample was prepared in the same manner as in Example 1 except that the humidification treatment was performed at a temperature, relative humidity, and a treatment time of 75 ° C., 75% RH, and 30 seconds, and used as Comparative Example 2.
  • the hardness, the increase ratio ⁇ / ( ⁇ + ⁇ ) of the crystallization rate of the solid milk surface, and the adhesive force were measured.
  • the hardness of the solid milk sample of Comparative Example 2 was 49.8 N (breaking stress was 0.166 N / mm 2 ), the increase ratio ⁇ / ( ⁇ + ⁇ ) of the crystallization rate of the solid milk surface was 0.074, and the adhesive force was 6. It was 0 N (peeling shear stress was 0.0149 N / mm 2 ).
  • FIG. 7 is a graph showing the relationship between the increase ratio ⁇ / ( ⁇ + ⁇ ) of the crystallization rate on the surface of the solid milk and the breaking stress (N / mm 2 ) of the solid milk according to Examples and Comparative Examples.
  • the results of Example 1 are shown in black.
  • the results of Comparative Examples 1 and 2 are indicated by ⁇ .
  • the increase ratio ⁇ / ( ⁇ + ⁇ ) of the crystallization rate was 0.237, and the hardness was 128 N (breaking stress was 0.427 N / mm 2 ).
  • FIG. 8 is a graph showing the relationship between the peel shear stress (N / mm 2 ) of solid milk and the increase ratio ⁇ / ( ⁇ + ⁇ ) of the crystallization rate of the surface of solid milk according to Examples and Comparative Examples.
  • the results of Examples 1 to 4 are shown in black.
  • the results of Comparative Examples 1 and 2 are indicated by ⁇ .
  • the adhesive force is 6.9 N to 14 N (peeling shear stress is 0.0172 N / mm). It maintained a high value of 2 to 0.0349 N / mm 2 ).
  • the peel shear stress of the solid milk sample of the example exceeded 0.015 N / mm 2 , which was higher than that of the comparative example.
  • the solid milk of the example was able to increase the force with which the solid milk in the manufacturing process adheres to the contact surface of the manufacturing apparatus such as a belt conveyor.
  • the adhesive force of the solid milk obtained is such that the increase ratio ⁇ / ( ⁇ + ⁇ ) of the crystallization rate is Xb.
  • the peel shear stress on the flat surface of the solid milk was Yb (N), it could be adjusted within the range of the following formula (1).
  • Comparative Example 3 In compression molding, after performing the first compression with the first compression distance L 1 being 5 to 15 mm and the first compression speed V 1 being 1 to 150 mm / s, the second compression distance L 2 is 0.1 to 1. The second compression was performed at a ratio of 0.6 mm and a second compression rate V2 of 0.25 to 15 mm / s.
  • the present invention relates to Comparative Example 3 in which the milk powder compression molded product obtained above was subjected to a humidification treatment at a humidification temperature of 80 ° C., 50% RH, and 20 seconds, and further subjected to a drying treatment at a drying temperature of 80 ° C. and a curing treatment. A solid milk sample was used.
  • the solid milk of Comparative Example 3 had a breaking stress of 0.739 N / mm 2 or less and a peeling shear stress of 0.015 N / mm 2 or less.
  • the peel shear stress on the flat surface of the obtained solid milk was 0.015 N / mm 2 or less.
  • the present disclosure may have the following configuration. If it has the following configuration, it can have an adhesive force and a strength that is easy to handle.
  • the solid food contains monohydrate crystals and anhydrous crystals, and the monohydrate inside the solid food is the ratio of the monohydrate crystals to the total weight on the surface of the solid food.
  • the increase ratio ⁇ / ( ⁇ + ⁇ ) of the crystallization rate of the sum ( ⁇ + ⁇ ) of the increase ⁇ (% by weight) of a certain crystallization rate and the increase ⁇ (% by weight) of the crystallization rate is Xa, and the flatness of the solid food.
  • the solid milk contains ⁇ -lactose crystals and ⁇ -lactose crystals, and is the difference between the ratio of the ⁇ -lactose crystals to the total weight on the surface of the solid milk and the ratio of the ⁇ -lactose crystals inside the solid milk.
  • the increase ratio ⁇ / ( ⁇ + ⁇ ) of the sum of ⁇ (% by weight) and the increase ⁇ (% by weight) of the crystallization rate is Xb, and the peel shear stress on the flat surface of the solid milk.
  • a solid solid food obtained by compression-molding food powder, the breaking stress of the solid food is 0.067 N / mm 2 or more, and the peel shear stress on a flat surface is 0.015 N / mm 2 .
  • Solid milk obtained by compression molding powdered milk the breaking stress of the solid milk is 0.067 N / mm 2 or more, and the peel shear stress for a flat surface exceeds 0.015 N / mm 2 .
  • Solid milk formed by compression-molding powdered milk so as to have a constitution and subjecting the obtained powdered milk compression-molded product to a hardening treatment.
  • a solid solid-dissolved food obtained by compression-molding food powder the solid-dissolved food has a breaking stress of 0.067 N / mm 2 or more, and a peel shear stress on a flat surface is 0.015 N / mm. Solid-dissolved foods over mm 2 .
  • a solid solid food obtained by compression-molding food powder, the breaking stress of the solid food is 0.067 N / mm 2 or more, and the peel shear stress on a flat surface is 0.015 N / mm 2 . Solid foods that can be tacked by the hardening process.

Abstract

Provided are a solid food having enhanced stickiness and easily manageable strength and a solid milk. This solid food, which is a solid form food obtained by compression-molding a food powder, has a breaking stress of 0.067 N/mm2 or more and a peeling shear stress on a flat surface of more than 0.015 N/mm2.

Description

固形食品及び固形乳Solid foods and solid milk
 本発明は、固形食品及び固形乳に関する。 The present invention relates to solid foods and solid milk.
 固形食品として、粉乳を圧縮成型した固形乳が知られている(特許文献1及び特許文献2参照)。この固形乳は、温水中に投入することで速やかに溶解する溶解性が要求されるとともに、輸送適性、即ち輸送中や携行中に割れたり崩れたりする破壊が生じないような破壊耐性が要求されている。 As a solid food, solid milk obtained by compression molding powdered milk is known (see Patent Document 1 and Patent Document 2). This solid milk is required to have solubility that dissolves quickly when put into warm water, and is also required to have transportability, that is, fracture resistance that does not cause breakage or collapse during transportation or carrying. ing.
 粉乳をはじめとする食品粉体を圧縮成型する打錠機として、2つの臼穴部を有するスライドプレートを水平方向に往復動する打錠機が知られている(特許文献3参照)。 As a tableting machine for compression-molding food powder such as milk powder, a tableting machine that reciprocates a slide plate having two mortar holes in a horizontal direction is known (see Patent Document 3).
特許第5350799号公報Japanese Patent No. 5350799 特許第5688020号公報Japanese Patent No. 5688020 特開2007-307592号公報Japanese Unexamined Patent Publication No. 2007-307592
 固形食品あるいは固形乳が製造装置等に付着したときに固形食品あるいは固形乳を剥離するのに必要な力を付着力と称する。 When solid food or solid milk adheres to a manufacturing device or the like, the force required to peel off the solid food or solid milk is called the adhesive force.
 食品粉体又は粉乳を圧縮成型し、扱いやすい強度を備えながら、さらに付着力を高めた固形食品および固形乳が望まれている。 There is a demand for solid foods and milk powders that are compression-molded from food powders or milk powders to have strength that is easy to handle and have even higher adhesive strength.
 本発明は、付着力を高め、扱いやすい強度を有する固形食品及び固形乳を提供することを目的とする。 An object of the present invention is to provide a solid food product and a solid milk product having an adhesive strength and a strength that is easy to handle.
 本発明の固形食品は、食品粉体を圧縮成型した固形状の固形食品であって、前記固形食品の破断応力は0.067N/mm以上であり、平坦な面に対する剥離せん断応力が0.015N/mmを超える。 The solid food of the present invention is a solid solid food obtained by compression-molding food powder, and the breaking stress of the solid food is 0.067 N / mm 2 or more, and the peel shear stress on a flat surface is 0. It exceeds 015 N / mm 2 .
 本発明の固形乳は、粉乳を圧縮成型した固形状の固形乳であって、前記固形乳の破断応力は0.067N/mm以上であり、平坦な面に対する剥離せん断応力が0.015N/mmを超える。 The solid milk of the present invention is a solid milk obtained by compression molding powdered milk, and the breaking stress of the solid milk is 0.067 N / mm 2 or more, and the peel shear stress for a flat surface is 0.015 N /. Exceeds mm 2 .
 本発明によれば、食品粉体を圧縮成型した固形状の固形食品であって、固形食品の破断応力は0.067N/mm以上であり、平坦な面に対する剥離せん断応力が0.015N/mmを超える。剥離せん断応力は、付着力を剥離面積で除した値である。上記の固形食品は、付着力が高められており、扱いやすい強度を有する。 According to the present invention, it is a solid solid food obtained by compression molding food powder, and the breaking stress of the solid food is 0.067 N / mm 2 or more, and the peel shear stress on a flat surface is 0.015 N / mm. Exceeds mm 2 . The peel shear stress is a value obtained by dividing the adhesive force by the peel area. The above-mentioned solid food has high adhesive strength and has strength that is easy to handle.
 また、本発明によれば、粉乳を圧縮成型した固形状の固形乳であって、固形乳の破断応力は0.067N/mm以上であり、平坦な面に対する剥離せん断応力が0.015N/mmを超える。上記の固形乳は、付着力が高められており、扱いやすい強度を有する。 Further, according to the present invention, the solid milk is a solid milk obtained by compression molding powdered milk, and the breaking stress of the solid milk is 0.067 N / mm 2 or more, and the peel shear stress for a flat surface is 0.015 N / mm. Exceeds mm 2 . The above-mentioned solid milk has an enhanced adhesive force and has a strength that is easy to handle.
第1実施形態に係る固形乳の斜視図である。It is a perspective view of the solid milk which concerns on 1st Embodiment. 図1の固形乳のX1-X2における断面図である。It is sectional drawing of the solid milk of FIG. 1 in X1-X2. 図1の固形乳のY1-Y2における断面図である。It is sectional drawing in Y1-Y2 of the solid milk of FIG. 打錠機のスライドプレート、上杵及び下杵の位置を説明する説明図である。It is explanatory drawing explaining the position of the slide plate, the upper pestle and the lower pestle of a lock locking machine. 第1圧縮開始時の上杵及び下杵の位置を説明する説明図である。It is explanatory drawing explaining the position of the upper pestle and the lower pestle at the start of the 1st compression. 第1圧縮終了後かつ第2圧縮開始時の上杵及び下杵の位置を説明する説明図である。It is explanatory drawing explaining the position of the upper pestle and the lower pestle after the completion of the 1st compression and at the start of the 2nd compression. 実施例に係る固形乳の表面における結晶化率の増加比β/(α+β)及び固形乳の破断応力(N/mm)の関係を示すグラフである。It is a graph which shows the relationship between the increase ratio β / (α + β) of the crystallization rate on the surface of solid milk and the breaking stress (N / mm 2 ) of solid milk which concerns on an Example. 実施例に係る固形乳の表面における結晶化率の増加比β/(α+β)及び固形乳の剥離せん断応力(N/mm)の関係を示すグラフである。It is a graph which shows the relationship between the increase ratio β / (α + β) of the crystallization rate on the surface of solid milk and the peel shear stress (N / mm 2 ) of solid milk which concerns on an Example.
 以下、本発明の実施形態について説明する。しかしながら、以下説明する形態は、あくまで例示であって、当業者にとって自明な範囲で適宜修正することができる。 Hereinafter, embodiments of the present invention will be described. However, the form described below is merely an example and can be appropriately modified to the extent that it is obvious to those skilled in the art.
<第1実施形態>
(固形乳10Sの構成)
 図1は、本実施形態に係る固形乳10Sの斜視図である。図2は図1の固形乳10SのX1-X2における断面図である。図3は図1の固形乳10SのY1-Y2における断面図である。
<First Embodiment>
(Composition of solid milk 10S)
FIG. 1 is a perspective view of the solid milk 10S according to the present embodiment. FIG. 2 is a cross-sectional view of the solid milk 10S of FIG. 1 in X1-X2. FIG. 3 is a cross-sectional view of the solid milk 10S of FIG. 1 in Y1-Y2.
 固形乳10Sは、粉乳を圧縮成型した固形状の本体10を有する。本体10は、XY平面に平行で平坦な第1面10Aと、XY平面に平行で平坦な第2面10Bとを有する。第1面10Aと第2面10Bとは背中合わせの面である。本体10の形状は、圧縮成型に用いる型(打錠機の臼)の形状によって定まるが、ある程度の寸法(大きさ、厚さ、角度)をもつ形状であれば特に限定されない。本体10の概略形状は、円柱状、楕円柱状、立方体状、直方体状、板状、多角柱状、多角錐台状あるいは多面体状等である。成型の簡便さや運搬の便利さ等の観点から、円柱状、楕円柱状及び直方体状が好ましい。図1~図3に示した固形乳10Sの本体10の概略形状は、寸法がa×b×c(図1参照)である直方体状であり、本体10はXZ平面又はYZ平面に平行な側面10Cを有する。第1面10A及び側面10Cから構成される角部及び第2面10B及び側面10Cから構成される角部は、それぞれ面取りされたテーパー形状であってもよい。面取りされている場合、運搬する際等で固形乳10Sが壊れる事態を抑制することができる。 The solid milk 10S has a solid main body 10 obtained by compression molding powdered milk. The main body 10 has a first surface 10A parallel to the XY plane and flat, and a second surface 10B parallel to the XY plane and flat. The first surface 10A and the second surface 10B are back-to-back surfaces. The shape of the main body 10 is determined by the shape of the mold (mortar of the locking machine) used for compression molding, but is not particularly limited as long as it has a certain size (size, thickness, angle). The schematic shape of the main body 10 is a columnar shape, an elliptical columnar shape, a cube shape, a rectangular parallelepiped shape, a plate shape, a polygonal columnar shape, a polygonal pyramid-shaped shape, a polyhedral shape, or the like. From the viewpoint of ease of molding, convenience of transportation, and the like, columnar, elliptical, and rectangular parallelepiped shapes are preferable. The schematic shape of the main body 10 of the solid milk 10S shown in FIGS. 1 to 3 is a rectangular parallelepiped having dimensions a × b × c (see FIG. 1), and the main body 10 has a side surface parallel to an XZ plane or a YZ plane. Has 10C. The corner portion composed of the first surface 10A and the side surface 10C and the corner portion composed of the second surface 10B and the side surface 10C may each have a chamfered tapered shape. When chamfered, it is possible to prevent the solid milk 10S from being broken during transportation or the like.
 表面とは、物質の外側を成す面である。表層とは、表面を含む表面近傍の層である。例えば、表層とは、粉乳の圧縮成型により形成され、さらに硬化処理により硬化された層である。本実施形態の表層は、内部より硬い層となっている。ここで、表層が内部より硬い層であるとは、表層だけを分離するのに必要となる力が、内部を分離するのに必要となる力よりも相対的に大きいことを指す。 The surface is the surface that forms the outside of the substance. The surface layer is a layer near the surface including the surface. For example, the surface layer is a layer formed by compression molding of milk powder and further cured by a curing treatment. The surface layer of this embodiment is a harder layer than the inside. Here, the fact that the surface layer is harder than the inside means that the force required to separate only the surface layer is relatively larger than the force required to separate the inside.
 本実施形態の固形乳10Sは、粉乳を圧縮成型して硬化した固形状の固形乳であって、固形乳の破断応力は0.067N/mm以上である。ここで、平坦な面に対する剥離せん断応力が0.015N/mmを超える。本実施形態の固形乳10Sの大きさの場合、後述のように0.015N/mmの剥離せん断応力は6Nの付着力に換算される。 The solid milk 10S of the present embodiment is a solid milk obtained by compression molding and hardening milk powder, and the breaking stress of the solid milk is 0.067 N / mm 2 or more. Here, the peel shear stress on a flat surface exceeds 0.015 N / mm 2 . In the case of the size of the solid milk 10S of the present embodiment, the peeling shear stress of 0.015 N / mm 2 is converted into the adhesive force of 6 N as described later.
 上記の本実施形態の固形乳10Sは、平坦な面に対する付着力が6Nを超える。製造工程中の固形乳がベルトコンベアー等の製造装置の接触面へ付着する力が高められ、これにより固形乳の運搬速度を高めても固形乳が吹き飛ばされることが抑制され、固形乳を安定して運搬することが可能となり、製造効率を高めることができる。ここで、付着力とは、固形乳の製造工程においてパンチングスクリーン等の平坦な面上で硬化処理を行った際に固形乳が平坦な面に付着し、固形乳を平坦な面から剥離するのに要する力(荷重)[N]を示す。具体的には、未硬化の粉乳圧縮成型物をパンチングスクリーン((株)布引製作所製、材質SUS304、板厚1.5mm、穴径2.5mm、穴中心の間隔3.0mm~3.5mm、パンチングスクリーンの開口面積比:45~47%)上に載せ、硬化処理を行って固形乳を得る。固形乳は底面のみがパンチングスクリーンに付着した状態となっている。次に、硬化処理直後のパンチングスクリーン上の固形乳の側面に対して、荷重測定装置(岡田精工(株)製のロードセル式錠剤硬度計(ポータブルチェッカーPC-30))の端子をあてて荷重をかけ、固形乳がパンチングスクリーンから剥離するのに必要な荷重を測定する。ここで、パンチングスクリーンは、荷重測定装置に対して、底面、長側面、短側面のそれぞれ3面が接触した状態で固定されている。また、固形乳は、固形乳10Sの第2面10Bを底面として底面だけがパンチグスクリーンに付着しており、固形乳の硬度計の破断端子で押される側面(側面10Cの一方のXZ平面に平行な面)と一対をなす反対側の側面と荷重測定装置の壁面の距離が5mmになるように設置する。硬度計に組み込まれた破断端子は、固形乳10Sに接触する接触面を有し、パンチングスクリーンには接触しない。破断端子の有する接触面は、1mm×24mmの長方形であり、この長方形の長軸がZ軸に平行となる向きに配置される。この破断端子の有する接触面は、少なくとも一部で固形乳10Sの測定点を押すように構成されている。側面10Cの一方のXZ平面に平行な面側から硬度計の破断端子で第1面10Aの短軸方向(図1のY軸方向)に、破断端子が固形乳10Sを押す速度を0.5mm/sとする。固形乳10Sが破断端子に押され、パンチングスクリーンから剥離した時の最大荷重[N]をもって固形乳10Sの付着力[N]とする。 The solid milk 10S of the above embodiment has an adhesive force of more than 6N on a flat surface. The force with which solid milk adheres to the contact surface of manufacturing equipment such as a belt conveyor during the manufacturing process is increased, which suppresses the solid milk from being blown off even if the transport speed of the solid milk is increased, and stabilizes the solid milk. It becomes possible to carry it, and the manufacturing efficiency can be improved. Here, the adhesive force means that the solid milk adheres to the flat surface when the curing process is performed on a flat surface such as a punching screen in the solid milk manufacturing process, and the solid milk is peeled off from the flat surface. The force (load) [N] required for the above is shown. Specifically, uncured milk powder compression molded product is punched screen (manufactured by Nunobiki Seisakusho Co., Ltd., material SUS304, plate thickness 1.5 mm, hole diameter 2.5 mm, hole center spacing 3.0 mm to 3.5 mm, It is placed on a punching screen (opening area ratio of 45 to 47%) and cured to obtain solid milk. Only the bottom surface of the solid milk is attached to the punching screen. Next, a load is applied to the side surface of the solid milk on the punching screen immediately after the curing process by applying the terminal of a load measuring device (load cell type tablet hardness tester (portable checker PC-30) manufactured by Okada Seiko Co., Ltd.). Apply and measure the load required for the solid milk to peel off the punching screen. Here, the punching screen is fixed to the load measuring device in a state where the bottom surface, the long side surface, and the short side surface are in contact with each other. Further, in the solid milk, only the bottom surface is attached to the punching screen with the second surface 10B of the solid milk 10S as the bottom surface, and the side surface pressed by the breaking terminal of the hardness tester of the solid milk (on one XZ plane of the side surface 10C). Install so that the distance between the opposite side surface paired with the parallel surface) and the wall surface of the load measuring device is 5 mm. The breaking terminal incorporated in the hardness tester has a contact surface that comes into contact with the solid milk 10S and does not come into contact with the punching screen. The contact surface of the breaking terminal is a rectangle of 1 mm × 24 mm, and the long axis of this rectangle is arranged so as to be parallel to the Z axis. The contact surface of the break terminal is configured to push the measurement point of the solid milk 10S at least in part. The speed at which the breaking terminal pushes the solid milk 10S from the side parallel to one XZ plane of the side surface 10C in the short axis direction (Y-axis direction in FIG. 1) of the first surface 10A with the breaking terminal of the hardness tester is 0.5 mm. Set to / s. The maximum load [N] when the solid milk 10S is pushed by the breaking terminal and peeled off from the punching screen is defined as the adhesive force [N] of the solid milk 10S.
 ここで、「剥離」とは固形乳10S等の試料に静的に荷重をかけたときに剥離することを指す。付着力[N]は固形乳試料の寸法に依存する物理量である。固形乳試料の寸法に依存しない物理量として剥離せん断応力[N/m]がある。剥離せん断応力は剥離時に単位剥離面積あたりにかかる力であり、固形乳試料の寸法に依存せず、寸法の異なる固形乳試料間でも固形乳試料にかかる力学的な作用を比較できる指標である。剥離せん断応力=付着力/剥離面積となる。本明細書では簡易的に付着力[N]を用いて説明をしている場合があるが、これらは剥離面積で除した剥離せん断応力[N/m]として表してもよい。剥離せん断応力を算出する際には、剥離面積を用いて算出する。例えば固形乳10Sの場合、剥離面積は、10Sがパンチングスクリーンに接触している面積であって、10sの底面積31mm×24mmにパンチングスクリーンが10Sに接触している割合である0.54(パンチングスクリーンの開口率の46%であるため、パンチングスクリーンが10Sに接触している割合は1-0.46=0.54)の積から求める面積であり、次式で表される(剥離面積(mm)=[成型体底面積(mm)×(1-パンチングスクリーンの開口割合)])。 Here, "peeling" refers to peeling when a static load is applied to a sample such as solid milk 10S. The adhesive force [N] is a physical quantity that depends on the dimensions of the solid milk sample. Detachment shear stress [N / m 2 ] is a physical quantity that does not depend on the dimensions of the solid milk sample. The peeling shear stress is a force applied per unit peeling area at the time of peeling, and is an index that does not depend on the size of the solid milk sample and can compare the mechanical action applied to the solid milk sample even between solid milk samples having different dimensions. Peeling shear stress = adhesive force / peeling area. In the present specification, the adhesive force [N] may be briefly described, but these may be expressed as the peel shear stress [N / m 2 ] divided by the peel area. When calculating the peel shear stress, it is calculated using the peel area. For example, in the case of solid milk 10S, the peeling area is 0.54 (punching), which is the area where 10S is in contact with the punching screen, and the ratio of the punching screen in contact with 10S to the bottom area of 10s of 31 mm × 24 mm. Since it is 46% of the aperture ratio of the screen, the ratio of the punching screen in contact with 10S is the area obtained from the product of 1-0.46 = 0.54) and is expressed by the following equation (peeling area (peeling area (peeling area)). mm 2 ) = [molded body bottom area (mm 2 ) × (1-punching screen opening ratio)]).
 例えば、固形乳10Sの概略形状の寸法が、31mm(a)×24mm(b)×12.5mm(c)の直方体状である場合、剥離面積は402mm(31mm(a)×24mm(b))×(1-0.46)である。固形乳10Sの付着力が6Nを超える範囲は、付着力を剥離面積(402mm)で除して、0.015N/mmを超える剥離せん断応力の範囲に対応する。固形乳10Sの剥離せん断応力は、剥離面積の範囲を考慮すると、0.015N/mmを超える。 For example, when the approximate shape of the solid milk 10S is a rectangular parallelepiped of 31 mm (a) × 24 mm (b) × 12.5 mm (c), the peeling area is 402 mm 2 (31 mm (a) × 24 mm (b)). ) × (1-0.46). The range in which the adhesive force of the solid milk 10S exceeds 6 N corresponds to the range of the peeling shear stress exceeding 0.015 N / mm 2 by dividing the adhesive force by the peeling area (402 mm 2 ). The peel shear stress of the solid milk 10S exceeds 0.015 N / mm 2 in consideration of the range of the peel area.
 上記の剥離せん断応力は、好ましくは0.015N/mmを超え、より好ましくは0.020N/mm以上、さらに好ましくは0.025N/mm以上、またさらに好ましくは0.030N/mm以上である。上記の剥離せん断応力は、本実施形態の固形乳10Sの大きさの場合、付着力に換算すると、好ましくは6Nを超え、より好ましくは8N以上、さらに好ましくは10N以上、またさらに好ましくは12N以上である。 The above-mentioned peel shear stress preferably exceeds 0.015 N / mm 2 , more preferably 0.020 N / mm 2 or more, further preferably 0.025 N / mm 2 or more, and further preferably 0.030 N / mm 2 . That is all. In the case of the size of the solid milk 10S of the present embodiment, the peeling shear stress preferably exceeds 6N, more preferably 8N or more, further preferably 10N or more, and further preferably 12N or more in terms of adhesive force. Is.
 上記のように、付着力が上記の範囲内であれば、後述の製造効率を高める効果を享受できる。 As described above, if the adhesive force is within the above range, the effect of increasing the manufacturing efficiency described later can be enjoyed.
 上記の本実施形態の固形乳は、好ましくは、α乳糖結晶及びβ乳糖結晶を含み、固形乳の表面における全重量に対するα乳糖結晶の比率の、固形乳の内部のα乳糖結晶の比率に対する差分である結晶化率の増加α(重量%)及び固形乳の表面における全重量に対するβ乳糖結晶の比率の、固形乳の内部のβ乳糖結晶の比率に対する差分である結晶化率の増加β(重量%)の和(α+β)と、結晶化率の増加β(重量%)との結晶化率の増加比β/(α+β)をXb、固形乳の平坦な面に対する剥離せん断応力をYb(N)としたときに、Xb及びYbが下記式(1)を満たす。 The solid milk of the above embodiment preferably contains α-lactose crystals and β-lactose crystals, and the difference between the ratio of α-lactose crystals to the total weight on the surface of solid milk and the ratio of α-lactose crystals inside solid milk. Increase in crystallization rate α (% by weight) and increase in crystallization rate β (weight), which is the difference between the ratio of β lactose crystals to the total weight on the surface of solid milk and the ratio of β lactose crystals inside solid milk. %) The sum of (α + β) and the increase β (% by weight) of the crystallization rate, the increase ratio β / (α + β) of the crystallization rate is Xb, and the peel shear stress on the flat surface of the solid milk is Yb (N). When, Xb and Yb satisfy the following equation (1).
 0.1326Xb-0.0013<Yb<0.1326Xb+0.0087  ・・・(1) 0.1326Xb-0.0013 <Yb <0.1326Xb + 0.0087 ... (1)
 上記の本実施形態の固形乳は、好ましくは、結晶化率の増加比β/(α+β)が、0.3以下である。結晶化率の増加比β/(α+β)は、より好ましくは0.25以下、さらに好ましくは0.2以下、またさらに好ましくは0.15以下である。また、結晶化率の増加比β/(α+β)は、好ましくは0以上、より好ましくは0.05以上、さらに好ましくは0.065以上、またさらに好ましくは0.08以上である。 The solid milk of the above embodiment preferably has an increase ratio β / (α + β) of crystallization rate of 0.3 or less. The increase ratio β / (α + β) of the crystallization rate is more preferably 0.25 or less, still more preferably 0.2 or less, and further preferably 0.15 or less. The increase ratio β / (α + β) of the crystallization rate is preferably 0 or more, more preferably 0.05 or more, still more preferably 0.065 or more, and further preferably 0.08 or more.
 総結晶化率とは全重量に対する結晶の比率(重量%)である。総結晶化率の増加とは、硬化処理前から存在していた結晶と、硬化処理において受ける加湿の影響の大きさに応じて増加した結晶との和の結晶化率から、硬化処理前から存在していた結晶の結晶化率を差し引いた差分として定義される。硬化処理前から存在していた結晶の結晶化率は、硬化処理で、本実施形態では加湿の影響がないあるいは実質的にない固形乳の内部の結晶の結晶化率に相当する。即ち、総結晶化率の増加は、固形乳の表面からの各深さにおける全重量に対する結晶の比率の、固形乳の内部の結晶の比率に対する差分である。上記の結晶としては、例えば乳糖の一水和物結晶であるα乳糖結晶や乳糖の無水物結晶であるβ乳糖結晶があげられ、α乳糖結晶の結晶化率の増加及びβ乳糖結晶の結晶化率も上記と同様に定義される。α乳糖結晶の結晶化率の増加及びβ乳糖結晶の結晶化率の増加の和(α+β)は総結晶化率の増加である。 The total crystallization rate is the ratio of crystals to the total weight (% by weight). The increase in the total crystallization rate is the crystallization rate of the sum of the crystals that existed before the curing treatment and the crystals that increased according to the magnitude of the influence of humidification received in the curing treatment, and exists before the curing treatment. It is defined as the difference obtained by subtracting the crystallization rate of the crystal. The crystallization rate of the crystals that existed before the curing treatment corresponds to the crystallization rate of the crystals inside the solid milk that has no or substantially no influence of humidification in the present embodiment in the curing treatment. That is, the increase in the total crystallization rate is the difference between the ratio of crystals to the total weight at each depth from the surface of the solid milk to the ratio of crystals inside the solid milk. Examples of the above crystals include α-lactose crystals, which are monohydrate crystals of lactose, and β-lactose crystals, which are anhydrous crystals of lactose, and the crystallization rate of α-lactose crystals is increased and β-lactose crystals are crystallized. The rate is also defined as above. The sum of the increase in the crystallization rate of α-lactose crystals and the increase in the crystallization rate of β-lactose crystals (α + β) is the increase in the total crystallization rate.
 α乳糖結晶の結晶化率の増加α(重量%)は、硬化処理前から存在していたα乳糖結晶と、硬化処理において受ける加湿の影響の大きさに応じて増加したα乳糖結晶との和の結晶化率から、硬化処理前から存在していたα乳糖結晶の結晶化率を差し引いた差分である。硬化処理前から存在していたα乳糖結晶の結晶化率は、硬化処理で、本実施形態では加湿の影響がないあるいは実質的にない固形乳の内部のα乳糖結晶の結晶化率に相当する。即ち、α乳糖の結晶化率の増加は、固形乳の表面からの各深さにおける全重量に対するα乳糖結晶の比率の、固形乳の内部のα乳糖結晶の比率に対する差分である。 The increase in the crystallization rate of α-lactose crystals α (% by weight) is the sum of the α-lactose crystals that existed before the curing treatment and the α-lactose crystals that increased according to the magnitude of the influence of humidification in the curing treatment. It is the difference obtained by subtracting the crystallization rate of α-lactose crystals that existed before the curing treatment from the crystallization rate of. The crystallization rate of α-lactose crystals that existed before the curing treatment corresponds to the crystallization rate of α-lactose crystals inside solid milk that has no or substantially no influence of humidification in the present embodiment in the curing treatment. .. That is, the increase in the crystallization rate of α-lactose is the difference between the ratio of α-lactose crystals to the total weight at each depth from the surface of solid milk and the ratio of α-lactose crystals inside solid milk.
 β乳糖結晶の結晶化率の増加β(重量%)は、硬化処理前から存在していたβ乳糖結晶と、硬化処理において受ける加湿の影響の大きさに応じて増加したβ乳糖結晶との和の結晶化率から、硬化処理前から存在していたβ乳糖結晶の結晶化率を差し引いた差分である。硬化処理前から存在していたβ乳糖結晶の結晶化率は、硬化処理で、本実施形態では加湿の影響がないあるいは実質的にない固形乳の内部のβ乳糖結晶の結晶化率に相当する。即ち、β乳糖の結晶化率の増加は、固形乳の表面からの各深さにおける全重量に対するβ乳糖結晶の比率の、固形乳の内部のβ乳糖結晶の比率に対する差分である。 The increase β (% by weight) in the crystallization rate of β-lactose crystals is the sum of β-lactose crystals that existed before the curing treatment and β-lactose crystals that increased according to the magnitude of the influence of humidification in the curing treatment. It is the difference obtained by subtracting the crystallization rate of β lactose crystals that existed before the curing treatment from the crystallization rate of. The crystallization rate of β-lactose crystals that existed before the curing treatment corresponds to the crystallization rate of β-lactose crystals inside solid milk that has no or substantially no influence of humidification in the present embodiment in the curing treatment. .. That is, the increase in the crystallization rate of β-lactose is the difference between the ratio of β-lactose crystals to the total weight at each depth from the surface of solid milk and the ratio of β-lactose crystals inside solid milk.
 上記の固形乳の表面の結晶化率の増加とは、表面を含む測定領域に対して得られる結晶化率の増加である。測定領域は、結晶化率の増加の測定時に適宜選択可能である。 The increase in the crystallization rate on the surface of the solid milk is the increase in the crystallization rate obtained for the measurement region including the surface. The measurement region can be appropriately selected when measuring the increase in the crystallization rate.
 上記の固形乳の内部とは、硬化処理の前後において総結晶化率が変動しないあるいは実質的に変動しない領域を指し、例えば固形乳の中心部分あるいは中心近傍部分である。具体的には、固形乳の中心からXYZ方向に±1mmの立方体状の範囲、あるいは、固形乳の中心から半径1mmの球状の範囲である。上記の硬化処理とは、詳細は後述するが、固形乳を製造するときに粉乳圧縮成型物を硬化するために行われる処理である。 The inside of the solid milk refers to a region where the total crystallization rate does not fluctuate or substantially does not fluctuate before and after the curing treatment, and is, for example, a central portion or a portion near the center of the solid milk. Specifically, it is a cubic range of ± 1 mm in the XYZ direction from the center of the solid milk, or a spherical range with a radius of 1 mm from the center of the solid milk. The above-mentioned curing treatment, which will be described in detail later, is a treatment performed to cure the milk powder compression molded product when producing solid milk.
 固形乳の内部について、上記では、硬化処理の前後において総結晶化率が変動しないあるいは実質的に変動しない領域を指し、例えば固形乳の中心部分あるいは中心近傍部分であると説明しているが、硬化処理の前後において総結晶化率が変動の有無を問わず、単に固形乳の中心部分あるいは中心近傍部分であってもよい。 Regarding the inside of the solid milk, the above refers to a region where the total crystallization rate does not fluctuate or substantially does not fluctuate before and after the curing treatment, and is described as, for example, a central portion or a portion near the center of the solid milk. Regardless of whether the total crystallization rate fluctuates before and after the curing treatment, it may simply be the central portion or the portion near the center of the solid milk.
 総結晶化率の増加は、例えばXRD(X線回折)法により、試料の測定面のXRD測定毎に表面から0.1mmの厚さの分ずつ切削して面全体の総結晶化率として求めることができる。また、2次元のマッピングを行えるXRD測定装置では、試料の深さ方向に例えば0.05mm~0.1mm程度の精度で総結晶化率の増加を測定することができる。 The increase in the total crystallization rate is obtained as the total crystallization rate of the entire surface by cutting by the thickness of 0.1 mm from the surface for each XRD measurement of the measurement surface of the sample by, for example, the XRD (X-ray diffraction) method. be able to. Further, in the XRD measuring device capable of two-dimensional mapping, the increase in the total crystallization rate can be measured with an accuracy of, for example, about 0.05 mm to 0.1 mm in the depth direction of the sample.
 本体10には、第1面10Aから第2面10Bに達して本体10を貫通する孔が1つ又は2つ以上設けられていてもよい。孔の形状は、例えばXY平面に平行な断面において、長円形、角丸長方形、楕円形、円形、長方形、正方形、あるいはその他の多角形である。孔の位置は、第1面10Aの中央の位置から見たときに大きな偏りがない位置であることが好ましく、例えば第1面10Aの中央の位置に対して点対称となる配置、あるいは第1面10Aの中央を通るX軸と平行な線又はY軸と平行な線に対して線対称となる配置である。孔が1つの場合は、例えば第1面10Aの中央に設けられる。孔が設けられている場合、孔の縁はテーパー状の斜面となっていてよい。なお、孔が設けられた場合、孔の内壁面は第1面10Aと同様の内部より硬い表面である。 The main body 10 may be provided with one or two or more holes that reach from the first surface 10A to the second surface 10B and penetrate the main body 10. The shape of the hole is, for example, an oval, a rounded rectangle, an ellipse, a circle, a rectangle, a square, or any other polygon in a cross section parallel to the XY plane. The position of the hole is preferably a position where there is no large bias when viewed from the central position of the first surface 10A, for example, an arrangement that is point-symmetrical with respect to the central position of the first surface 10A, or the first. The arrangement is line-symmetrical with respect to a line parallel to the X-axis or a line parallel to the Y-axis passing through the center of the surface 10A. When there is one hole, it is provided in the center of the first surface 10A, for example. If the hole is provided, the edge of the hole may be a tapered slope. When the hole is provided, the inner wall surface of the hole is a harder surface than the inside similar to the first surface 10A.
 固形乳10Sの成分は、基本的には原料となる粉乳の成分と同様である。固形乳10Sの成分は、例えば、脂肪、たん白質、糖質、ミネラル、ビタミン及び水分等である。 The components of solid milk 10S are basically the same as the components of milk powder as a raw material. The components of the solid milk 10S are, for example, fat, protein, sugar, mineral, vitamin, water and the like.
 粉乳は、乳成分(例えば牛乳の成分)を含む液体状の乳類(液状乳)から製造されたものである。乳成分は、例えば、生乳(全脂乳)、脱脂乳及びクリーム等である。液状乳の水分含有率は、例えば40重量%~95重量%である。粉乳の水分含有率は、例えば1重量%~5重量%である。粉乳は、後述の栄養成分が添加されていてよい。粉乳は、固形乳10Sを製造するために適したものであれば、全粉乳、脱脂粉乳、又はクリーミーパウダーであってもよい。粉乳の脂肪含有率は、例えば5重量%~70重量%であることが好ましい。 Milk powder is produced from liquid milk (liquid milk) containing milk components (for example, milk components). Milk components are, for example, raw milk (whole fat milk), skim milk, cream and the like. The water content of the liquid milk is, for example, 40% by weight to 95% by weight. The water content of the milk powder is, for example, 1% by weight to 5% by weight. The milk powder may be supplemented with the nutritional components described below. The milk powder may be whole milk powder, skim milk powder, or creamy powder as long as it is suitable for producing solid milk 10S. The fat content of the milk powder is preferably, for example, 5% by weight to 70% by weight.
 上記の粉乳の原料となる乳成分は、例えば生乳由来のものである。具体的には、牛(ホルスタイン、ジャージー種その他)、山羊、羊及び水牛等の生乳由来のものである。上記の生乳には脂肪分が含まれているが、脂肪分の一部又は全部が遠心分離等により取り除かれた脂肪含有率が調節された乳であってもよい。 The milk component that is the raw material of the above milk powder is, for example, derived from raw milk. Specifically, it is derived from raw milk of cows (Holstein, Jersey, etc.), goats, sheep and buffalo. Although the above-mentioned raw milk contains fat, it may be milk in which a part or all of the fat is removed by centrifugation or the like and the fat content is adjusted.
 さらに、上記の粉乳の原料となる乳成分は、例えば植物由来の植物性乳である。具体的には、豆乳、ライスミルク、ココナッツミルク、アーモンドミルク、ヘンプミルク、ピーナッツミルク等の植物由来のものである。上記の植物性乳には脂肪分が含まれているが、脂肪分の一部又は全部が遠心分離等により取り除かれた脂肪含有率が調節された乳であってもよい。 Furthermore, the milk component that is the raw material of the above-mentioned milk powder is, for example, plant-derived vegetable milk. Specifically, it is derived from plants such as soy milk, rice milk, coconut milk, almond milk, hemp milk, and peanut milk. Although the above-mentioned vegetable milk contains fat, it may be milk in which a part or all of the fat is removed by centrifugation or the like and the fat content is adjusted.
 上記粉乳の原料となる栄養成分は、例えば、脂肪、たん白質、糖質、ミネラル及びビタミン等である。これらのうちの一種又は二種以上が添加されていてよい。 The nutritional components that are the raw materials for milk powder are, for example, fats, proteins, sugars, minerals, vitamins and the like. One or more of these may be added.
 上記の粉乳の原料となり得るたん白質は、例えば、乳たん白質及び乳たん白質分画物、動物性たん白質、植物性たん白質、それらのたん白質を酵素等により種々の鎖長に分解したペプチド及びアミノ酸等である。これらのうちの一種又は二種以上が添加されていてよい。乳たん白質は、例えば、カゼイン、乳清たん白質(α-ラクトアルブミン、β-ラクトグロブリン等)、乳清たん白質濃縮物(WPC)及び乳清たん白質分離物(WPI)等である。動物性たん白質は、例えば、卵たん白質である。植物性たん白質は、例えば、大豆たん白質及び小麦たん白質である。アミノ酸は、例えば、タウリン、シスチン、システイン、アルギニン及びグルタミン等である。 The proteins that can be used as raw materials for milk powder are, for example, milk proteins and milk protein fractions, animal proteins, vegetable proteins, and peptides obtained by decomposing these proteins into various chain lengths by enzymes or the like. And amino acids and the like. One or more of these may be added. The milk protein is, for example, casein, whey protein (α-lactalbumin, β-lactoglobulin, etc.), whey protein concentrate (WPC), whey protein isolate (WPI), and the like. The animal protein is, for example, egg protein. Vegetable proteins are, for example, soybean protein and wheat protein. Amino acids are, for example, taurine, cystine, cysteine, arginine, glutamine and the like.
 上記の粉乳の原料となり得る脂肪(油脂)は、動物性油脂、植物性油脂、それらの分別油、水素添加油及びエステル交換油である。これらのうちの一種又は二種以上が添加されていてよい。動物性油脂は、例えば、乳脂肪、ラード、牛脂及び魚油等である。植物性油脂は、例えば、大豆油、ナタネ油、コーン油、ヤシ油、パーム油、パーム核油、サフラワー油、綿実油、アマニ油及びMCT(Medium Chain Triglyceride, 中鎖脂肪酸トリグリセリド)油等である。 The fats (fats) that can be used as raw materials for the above-mentioned milk powder are animal fats and oils, vegetable fats and oils, their fractionated oils, hydrogenated oils and transesterified oils. One or more of these may be added. Animal fats and oils are, for example, milk fat, lard, beef tallow, fish oil and the like. The vegetable oils and fats are, for example, soybean oil, rapeseed oil, corn oil, palm oil, palm oil, palm kernel oil, safflower oil, cottonseed oil, flaxseed oil and MCT (Medium Chain Triglyceride) oil. ..
 上記の粉乳の原料となり得る糖質は、例えば、オリゴ糖、単糖類、多糖類及び人工甘味料等である。これらのうちの一種又は二種以上が添加されていてよい。オリゴ糖は、例えば、乳糖、ショ糖、麦芽糖、ガラクトオリゴ糖、フルクトオリゴ糖、ラクチュロース等である。単糖類は、例えば、ブドウ糖、果糖及びガラクトース等である。多糖類は、例えば、デンプン、可溶性多糖類及びデキストリン等である。なお、糖質の人工甘味料に替えて、あるいは加えて、非糖質の人工甘味料を用いてもよい。 The sugars that can be used as raw materials for the above-mentioned milk powder are, for example, oligosaccharides, monosaccharides, polysaccharides, artificial sweeteners and the like. One or more of these may be added. The oligosaccharide is, for example, lactose, sucrose, maltose, galactooligosaccharide, fructooligosaccharide, lactulose and the like. Monosaccharides are, for example, glucose, fructose, galactose and the like. The polysaccharides are, for example, starch, soluble polysaccharides and dextrins. In addition, a non-sugar artificial sweetener may be used in place of or in addition to the sugar artificial sweetener.
 上記の粉乳の原料となり得るミネラル類は、例えば、ナトリウム、カリウム、カルシウム、マグネシウム、鉄、銅、及び亜鉛等である。これらのうちの一種又は二種以上が添加されていてよい。なお、ミネラル類のナトリウム、カリウム、カルシウム、マグネシウム、鉄、銅、及び亜鉛に替えて、あるいは加えて、リン及び塩素の一方又は両方を用いてもよい。 Minerals that can be used as raw materials for milk powder are, for example, sodium, potassium, calcium, magnesium, iron, copper, zinc and the like. One or more of these may be added. In addition, one or both of phosphorus and chlorine may be used in place of or in addition to the minerals sodium, potassium, calcium, magnesium, iron, copper, and zinc.
 固形乳10Sには、固形乳10Sの原料である粉乳を圧縮成型した時に生じた空隙(例えば細孔)が多数存在している。これら複数の空隙は、固形乳10Sの深さ方向の充填率プロファイルに対応して分散(分布)している。空隙が大きい(広い)ほど、水等の溶媒の侵入が容易となるため、固形乳10Sを速く溶解させることができる。一方、空隙が大きすぎると、固形乳10Sの硬度が弱くなるか、固形乳10Sの表面が粗くなることがある。各空隙の寸法(大きさ)は、例えば10μm~500μmである。 The solid milk 10S has a large number of voids (for example, pores) generated when powdered milk, which is the raw material of the solid milk 10S, is compression-molded. These plurality of voids are dispersed (distributed) corresponding to the filling rate profile in the depth direction of the solid milk 10S. The larger (wider) the voids, the easier it is for a solvent such as water to enter, so that the solid milk 10S can be dissolved quickly. On the other hand, if the voids are too large, the hardness of the solid milk 10S may be weakened or the surface of the solid milk 10S may be rough. The dimension (size) of each void is, for example, 10 μm to 500 μm.
 固形乳10Sは、水等の溶媒に対してある程度の溶解性を持っている必要がある。溶解性は、例えば溶質としての固形乳10Sと、溶媒としての水とを所定の濃度となるように用意したときに、固形乳10Sが完全に溶けるまでの時間や所定時間における溶け残り量で評価することができる。 Solid milk 10S needs to have some solubility in a solvent such as water. Solubility is evaluated by the time until the solid milk 10S is completely dissolved or the amount of undissolved residue in a predetermined time when, for example, solid milk 10S as a solute and water as a solvent are prepared so as to have a predetermined concentration. can do.
 固形乳10Sは所定範囲の硬度を有することが好ましい。硬度は、公知の方法で測定できる。本明細書においては、ロードセル式錠剤硬度計を用いて硬度を測定する。ロードセル式錠剤硬度計に直方体状をなす固形乳10Sの第2面10Bを底面として載置し、側面10CのXZ平面に平行な1面およびYZ平面に平行な1面を用いて固定して、側面10Cの固定していないもう一方のXZ平面に平行な面側から硬度計の破断端子で第1面10Aの短軸方向(図1のY軸方向)にYZ平面が破断面となる向きに一定速度で押し、固形乳10Sが破断した時の荷重[N]をもって固形乳10Sの硬度(錠剤硬度)[N]とする。測定点は固形乳10Sの場合、側面10Cの一対のYZ平面から等距離となるYZ平面に平行な面が、側面10CのXZ平面と交差した線分上で第1面10Aと第2面10Bから等距離となる点から選択する。例えば、岡田精工(株)製のロードセル式錠剤硬度計(ポータブルチェッカーPC-30)を用いる。硬度計に組み込まれた破断端子は、固形乳10Sに接触する接触面を有する。破断端子の有する接触面は、1mm×24mmの長方形であり、この長方形の長軸がZ軸に平行となる向きに配置される。この破断端子の有する接触面は、少なくとも一部で固形乳10Sの測定点を押すように構成されている。破断端子が固形乳10Sを押す速度を0.5mm/sとする。上記の硬度の測定は、固形乳10Sに限らず、後述の粉乳圧縮成型物(未硬化の固形乳10S)の硬度を測定する場合にも適用できる。上記のように測定される硬度に関して、固形乳10Sを運搬する際等に固形乳10Sが壊れる事態を極力避けるため、固形乳10Sの硬度は20N以上であることが好ましく、より好ましくは40N以上である。一方、固形乳10Sの硬度が高すぎると固形乳10Sの溶解性が悪くなることから、固形乳10Sの硬度は130N以下であることが好ましい。 The solid milk 10S preferably has a hardness within a predetermined range. Hardness can be measured by a known method. In the present specification, the hardness is measured using a load cell type tablet hardness tester. The second surface 10B of the rectangular parallelepiped solid milk 10S was placed on the load cell type tablet hardness tester as the bottom surface, and fixed using one surface parallel to the XZ plane and one surface parallel to the YZ plane of the side surface 10C. From the side parallel to the other unfixed XZ plane of the side surface 10C, the YZ plane becomes the fracture surface in the short axis direction (Y axis direction in FIG. 1) of the first surface 10A at the breaking terminal of the hardness tester. The hardness (tablet hardness) [N] of the solid milk 10S is determined by the load [N] when the solid milk 10S is broken by pushing at a constant speed. In the case of solid milk 10S, the measurement points are the first surface 10A and the second surface 10B on a line segment in which a plane parallel to the YZ plane equidistant from the pair of YZ planes of the side surface 10C intersects the XZ plane of the side surface 10C. Select from points equidistant from. For example, a load cell type tablet hardness tester (portable checker PC-30) manufactured by Okada Seiko Co., Ltd. is used. The breaking terminal incorporated in the hardness tester has a contact surface in contact with the solid milk 10S. The contact surface of the breaking terminal is a rectangle of 1 mm × 24 mm, and the long axis of this rectangle is arranged so as to be parallel to the Z axis. The contact surface of the break terminal is configured to push the measurement point of the solid milk 10S at least in part. The speed at which the breaking terminal pushes the solid milk 10S is 0.5 mm / s. The above-mentioned hardness measurement is not limited to the solid milk 10S, but can also be applied to the case of measuring the hardness of the milk powder compression molded product (uncured solid milk 10S) described later. Regarding the hardness measured as described above, in order to avoid the situation where the solid milk 10S is broken when the solid milk 10S is transported, the hardness of the solid milk 10S is preferably 20 N or more, more preferably 40 N or more. be. On the other hand, if the hardness of the solid milk 10S is too high, the solubility of the solid milk 10S deteriorates. Therefore, the hardness of the solid milk 10S is preferably 130 N or less.
 ここで使用する硬度は、[N(ニュートン)]の単位を持つ力の物理量である。硬度は固形乳試料の破断面積が大きいほど大きくなる。ここで、「破断」とは固形乳10S等の試料に静的に垂直荷重をかけたときに破損することを指し、この破損した際にできた断面積を「破断面積」と称する。つまり、硬度[N]は固形乳試料の寸法に依存する物理量である。固形乳試料の寸法に依存しない物理量として破断応力[N/m]がある。破断応力は破断時に単位破断面積あたりにかかる力であり、固形乳試料の寸法に依存せず、寸法の異なる固形乳試料間でも固形乳試料にかかる力学的な作用を比較できる指標である。破断応力=硬度/破断面積となる。本明細書では簡易的に硬度[N]を用いて説明をしている場合があるが、これらは硬度を破断面積で除した破断応力[N/m]として表してもよい。破断応力を算出する際には、破断面を想定し、想定した破断面での最小の破断面積を用いて算出する。例えば固形乳10Sの場合、理想的な破断面積は、固形乳の中心を通り、Z軸と平行な線を含む面での破断面積となる寸法b×cで表される。例えば、固形乳10Sの概略形状の寸法が、31mm(a)×24mm(b)×12.5mm(c)の直方体状である場合、理想的な破断面積は300mm(24mm(b)×12.5mm(c))である。固形乳10Sの20N以上130N以下という好ましい硬度範囲は、硬度を破断面積(300mm)で除して、0.067N/mm以上0.43N/mm以下という好ましい破断応力範囲に対応する。例えば、固形乳10Sの好ましい破断応力の範囲は、破断面積の範囲を考慮すると、0.067N/mm以上である。また、0.961N/mm以下であることが好ましい。 The hardness used here is a physical quantity of a force having a unit of [N (Newton)]. The hardness increases as the breaking area of the solid milk sample increases. Here, "break" refers to breakage when a vertical load is statically applied to a sample such as solid milk 10S, and the cross-sectional area formed at the time of this breakage is referred to as "break area". That is, the hardness [N] is a physical quantity that depends on the dimensions of the solid milk sample. There is a breaking stress [N / m 2 ] as a physical quantity that does not depend on the dimensions of the solid milk sample. The breaking stress is a force applied per unit breaking area at the time of breaking, and is an index that does not depend on the size of the solid milk sample and can compare the mechanical action applied to the solid milk sample even between the solid milk samples having different dimensions. Breaking stress = hardness / breaking area. In the present specification, the hardness [N] may be briefly described, but these may be expressed as the breaking stress [N / m 2 ] obtained by dividing the hardness by the breaking area. When calculating the fracture stress, the fracture surface is assumed and the minimum fracture area in the assumed fracture surface is used. For example, in the case of solid milk 10S, the ideal breaking area is represented by the dimension b × c which is the breaking area on the plane including the line passing through the center of the solid milk and parallel to the Z axis. For example, when the approximate shape of the solid milk 10S is a rectangular parallelepiped of 31 mm (a) × 24 mm (b) × 12.5 mm (c), the ideal breaking area is 300 mm 2 (24 mm (b) × 12). .5 mm (c)). The preferable hardness range of 20 N or more and 130 N or less of the solid milk 10S corresponds to the preferable breaking stress range of 0.067 N / mm 2 or more and 0.43 N / mm 2 or less by dividing the hardness by the breaking area (300 mm 2 ). For example, the range of preferable breaking stress of the solid milk 10S is 0.067 N / mm 2 or more in consideration of the range of the breaking area. Further, it is preferably 0.961 N / mm 2 or less.
(固形乳10Sの製造方法)
 続いて固形乳10Sの製造方法について説明する。まず、固形乳10Sの原料となる粉乳を製造する。粉乳の製造工程では、例えば液状乳調製工程、液状乳清澄化工程、殺菌工程、均質化工程、濃縮工程、気体分散工程及び噴霧乾燥工程により、粉乳を製造する。
(Manufacturing method of solid milk 10S)
Subsequently, a method for producing the solid milk 10S will be described. First, milk powder, which is a raw material for solid milk 10S, is produced. In the milk powder production process, for example, milk powder is produced by a liquid milk preparation step, a liquid milk clarification step, a sterilization step, a homogenization step, a concentration step, a gas dispersion step, and a spray drying step.
 液状乳調製工程は、上記の成分の液状乳を調製する工程である。 The liquid milk preparation step is a step of preparing liquid milk having the above components.
 清澄化工程は、液状乳に含まれる微細な異物を除去するための工程である。この異物を除去するためには、例えば遠心分離機やフィルター等を用いればよい。 The clarification process is a process for removing fine foreign substances contained in liquid milk. In order to remove this foreign matter, for example, a centrifuge, a filter or the like may be used.
 殺菌工程は、液状乳の水や乳成分等に含まれている細菌等の微生物を死滅させるための工程である。液状乳の種類によって、実際に含まれていると考えられる微生物が変わるため、殺菌条件(殺菌温度や保持時間)は、微生物に応じて適宜設定される。 The sterilization process is a process for killing microorganisms such as bacteria contained in water of liquid milk and milk components. Since the microorganisms actually contained vary depending on the type of liquid milk, the sterilization conditions (sterilization temperature and holding time) are appropriately set according to the microorganisms.
 均質化工程は、液状乳を均質化するための工程である。具体的には、液状乳に含まれている脂肪球等の固形成分の粒子径を小さくして、それらを液状乳に一様に分散させる。液状乳の固形成分の粒子径を小さくするためには、例えば液状乳を加圧しながら狭い間隙を通過させればよい。 The homogenization step is a step for homogenizing liquid milk. Specifically, the particle size of solid components such as fat globules contained in the liquid milk is reduced, and they are uniformly dispersed in the liquid milk. In order to reduce the particle size of the solid component of the liquid milk, for example, the liquid milk may be pressurized and passed through a narrow gap.
 濃縮工程は、後述の噴霧乾燥工程に先立って、液状乳を濃縮するための工程である。液状乳の濃縮には、たとえば真空蒸発缶やエバポレーターを用いればよい。濃縮条件は、液状乳の成分が過剰に変質しない範囲内で適宜設定される。これにより、液状乳から濃縮乳を得ることができる。続いて、本発明では、濃縮された液状乳(濃縮乳)に気体を分散させ、噴霧乾燥することが好ましい。このとき、濃縮乳の水分含有率として、例えば、35重量%~60重量%があげられ、好ましくは、40重量%~60重量%であり、より好ましくは40重量%~55重量%である。このような濃縮乳を用いて、気体を分散させた際に、濃縮乳の密度を低下させて嵩高くし、そのように嵩高くした状態の濃縮乳を噴霧乾燥することで、固形乳を製造する際に、好ましい特質を有する粉乳を得ることができる。なお、液状乳の水分が少ない場合や噴霧乾燥工程の対象となる液状乳の処理量が少ない場合には、本工程を省略してもよい。 The concentration step is a step for concentrating the liquid milk prior to the spray drying step described later. For the concentration of liquid milk, for example, a vacuum evaporator or an evaporator may be used. Concentration conditions are appropriately set within a range in which the components of the liquid milk are not excessively deteriorated. Thereby, concentrated milk can be obtained from liquid milk. Subsequently, in the present invention, it is preferable to disperse the gas in the concentrated liquid milk (concentrated milk) and spray-dry it. At this time, the water content of the concentrated milk is, for example, 35% by weight to 60% by weight, preferably 40% by weight to 60% by weight, and more preferably 40% by weight to 55% by weight. When the gas is dispersed using such concentrated milk, the density of the concentrated milk is reduced to make it bulky, and the concentrated milk in such a bulky state is spray-dried to produce solid milk. In doing so, milk powder with favorable properties can be obtained. If the water content of the liquid milk is low or the amount of the liquid milk to be treated in the spray drying step is small, this step may be omitted.
 気体分散工程は、液状乳に、所定の気体を分散させるための工程である。このとき、所定の気体としては、たとえば液状乳の体積の1×10-2倍以上7倍以下の体積で分散させることがあげられ、好ましくは、液状乳の体積の1×10-2倍以上5倍以下の体積であり、より好ましくは、液状乳の体積の1×10-2倍以上4倍以下であり、最も好ましくは、1×10-2倍以上3倍以下である。 The gas dispersion step is a step for dispersing a predetermined gas in liquid milk. At this time, the predetermined gas may be dispersed in a volume of, for example, 1 × 10 −2 times or more and 7 times or less the volume of the liquid milk, preferably 1 × 10 − 2 times or more the volume of the liquid milk. The volume is 5 times or less, more preferably 1 × 10 −2 times or more and 4 times or less the volume of liquid milk, and most preferably 1 × 10 − 2 times or more and 3 times or less.
 所定の気体を液状乳に分散させるために、所定の気体を加圧することが好ましい。所定の気体を加圧する圧力は、当該気体を液状乳へ効果的に分散させることができる範囲内であれば特に限定されないが、所定の気体の気圧として、例えば1.5気圧以上10気圧以下があげられ、好ましくは2気圧以上5気圧以下である。液状乳は以下の噴霧乾燥工程において噴霧されるため、所定の流路に沿って流れており、この気体分散工程では、この流路に加圧した所定の気体を流し込むことで、当該気体を液状乳に分散(混合)させる。このようにすることで、所定の気体を液状乳に容易にかつ確実に分散させることができる。 It is preferable to pressurize the predetermined gas in order to disperse the predetermined gas in the liquid milk. The pressure for pressurizing the predetermined gas is not particularly limited as long as the gas can be effectively dispersed in the liquid milk, but the pressure of the predetermined gas is, for example, 1.5 atm or more and 10 atm or less. It is preferably 2 atm or more and 5 atm or less. Since the liquid milk is sprayed in the following spray drying step, it flows along a predetermined flow path. In this gas dispersion step, a pressurized predetermined gas is poured into this flow path to make the gas liquid. Disperse (mix) in milk. By doing so, the predetermined gas can be easily and surely dispersed in the liquid milk.
 このように、気体分散工程を経ることにより、液状乳の密度は低くなり、見かけの体積(嵩)は大きくなる。なお、液状乳の密度は、液状乳の重さを、液体状態と泡状態の液状乳全体の体積で除したものとして求めてもよい。また、JIS法に準拠したカサ密度測定(顔料:JISK5101準拠)方法により、密度を測定する装置を用いて測定してもよい。 In this way, by going through the gas dispersion step, the density of the liquid milk becomes low and the apparent volume (bulk) becomes large. The density of the liquid milk may be determined by dividing the weight of the liquid milk by the total volume of the liquid milk in the liquid state and the foam state. Further, it may be measured by using a device for measuring the density by a bulk density measuring method (pigment: JISK5101 compliant) based on the JIS method.
 したがって、上記の流路には、所定の気体が分散状態にある液状乳が流れることになる。ここで、当該流路において、液状乳の体積流量は、一定となるように制御されていることが好ましい。 Therefore, liquid milk in which a predetermined gas is dispersed flows through the above flow path. Here, it is preferable that the volumetric flow rate of the liquid milk is controlled to be constant in the flow path.
 本実施形態では、所定の気体として二酸化炭素(炭酸ガス)を用いることができる。当該流路において、液状乳の体積流量に対する二酸化炭素の体積流量の比率(以下、その百分率を「CO混合比率[%]」ともいう)として、例えば1%以上700%以下があげられ、2%以上300%以下が好ましく、3%以上100%以下がより好ましく、最も好ましくは、5%以上45%以下である。このように、二酸化炭素の体積流量が液状乳の体積流量に対して一定となるように制御することで、そこから製造される粉乳の均一性を高めることができる。但し、CO混合比率が大きすぎると、液状乳が流路を流れる割合が低くなって、粉乳の製造効率が悪化する。したがって、CO混合比率の上限は700%であることが好ましい。また、二酸化炭素を加圧する圧力は、二酸化炭素を液状乳へ効果的に分散させることができる範囲内であれば特に限定されないが、二酸化炭素の気圧として、たとえば1.5気圧以上10気圧以下があげられ、好ましくは2気圧以上5気圧以下である。なお、二酸化炭素と液状乳を密閉系で連続的に(インラインで)混合することにより、細菌等の混入を確実に防止して、粉乳の衛生状態を高めること(又は高い清浄度を維持すること)ができる。 In this embodiment, carbon dioxide (carbonic acid gas) can be used as a predetermined gas. In the flow path, the ratio of the volumetric flow rate of carbon dioxide to the volumetric flow rate of liquid milk (hereinafter, the percentage thereof is also referred to as "CO 2 mixing ratio [%]") is, for example, 1% or more and 700% or less. % Or more and 300% or less are preferable, 3% or more and 100% or less are more preferable, and 5% or more and 45% or less are most preferable. In this way, by controlling the volumetric flow rate of carbon dioxide to be constant with respect to the volumetric flow rate of the liquid milk, the uniformity of the milk powder produced from the liquid milk can be improved. However, if the CO 2 mixing ratio is too large, the ratio of liquid milk flowing through the flow path becomes low, and the production efficiency of milk powder deteriorates. Therefore, the upper limit of the CO 2 mixing ratio is preferably 700%. The pressure for pressurizing carbon dioxide is not particularly limited as long as it can effectively disperse carbon dioxide in liquid milk, but the pressure of carbon dioxide is, for example, 1.5 atm or more and 10 atm or less. It is preferably 2 atm or more and 5 atm or less. By continuously (in-line) mixing carbon dioxide and liquid milk in a closed system, it is necessary to reliably prevent the contamination of bacteria and improve the hygiene of milk powder (or maintain high cleanliness). ) Can be done.
 本実施形態では、気体分散工程において用いる所定の気体は、二酸化炭素(炭酸ガス)とした。二酸化炭素に代えて、又は二酸化炭素とともに、空気、窒素(N)、及び酸素(O)からなる群から選択された1又は2以上の気体を用いてもよいし、希ガス(例えばアルゴン(Ar)、ヘリウム(He))を用いてもよい。このように、さまざまな気体を選択肢とすることができるので、容易に入手できる気体を用いることで、気体分散工程を容易に行うことができる。気体分散工程において、窒素や希ガス等の不活性ガスを用いると、液状乳の栄養成分等と反応するおそれがないため、空気や酸素を用いるよりも、液状乳を劣化させる可能性が少なく好ましい。このとき、液状乳の体積流量に対する当該気体の体積流量の比率として、例えば1%以上700%以下があげられ、1%以上500%以下が好ましく、1%以上400%以下がより好ましく、最も好ましくは、1%以上300%以下である。例えば、ベルら(R. W. BELL, F. P. HANRAHAN, B. H. WEBB: “FOAM SPRAY DRYING METHODS OF MAKING READILY DISPERSIBLE NONFAT DRY MILK”, J. Dairy Sci, 46 (12) 1963. pp1352-1356)は、脱脂粉乳を得るために無脂肪乳の約18.7倍の体積の空気を吹き込んだとされている。本発明では、上記の範囲で気体を分散させることにより、固形乳を製造するために好ましい特性を有する粉乳を得ることができる。但し、気体分散工程において液状乳に所定の気体を分散させた結果として液状乳の密度を確実に低くするためには、所定の気体として、液状乳に分散しやすい気体や、液状乳に溶解しやすい気体を用いることが好ましい。このため、水への溶解度(水溶性)が高い気体を用いることが好ましく、20℃、1気圧下において、水1cmへの溶解度が0.1cm以上である気体が好ましい。なお、二酸化炭素は、気体に限られることはなく、ドライアイスであってもよいし、ドライアイスと気体の混合物であってもよい。即ち、気体分散工程では、液状乳へ所定の気体を分散させることができるのであれば、固体を用いてもよい。気体分散工程において、ドライアイスを用いることで、冷却状態の液状乳に急速に二酸化炭素を分散させることができ、この結果、固形乳を製造するために好ましい特性を有する粉乳を得ることができる。 In the present embodiment, the predetermined gas used in the gas dispersion step is carbon dioxide (carbon dioxide gas). One or more gases selected from the group consisting of air, nitrogen (N 2 ), and oxygen (O 2 ) may be used in place of or with carbon dioxide, or noble gases (eg, argon). (Ar), helium (He)) may be used. As described above, since various gases can be selected, the gas dispersion step can be easily performed by using an easily available gas. When an inert gas such as nitrogen or a rare gas is used in the gas dispersion step, there is no risk of reacting with the nutritional components of the liquid milk, so that there is less possibility of deteriorating the liquid milk than using air or oxygen, which is preferable. .. At this time, the ratio of the volume flow rate of the gas to the volume flow rate of the liquid milk is, for example, 1% or more and 700% or less, preferably 1% or more and 500% or less, more preferably 1% or more and 400% or less, and most preferable. Is 1% or more and 300% or less. For example, Bell et al. (R. W. BELL, F. P. HANRAHAN, B. H. WEBB: “FOAM SPRAY DRYING METHODS OF MAKING READILY DISPERSIBLE NONFAT DRY MILK”, J. Dairy Sci, 46 (12) 1963. Pp1352-1356) to obtain skim milk powder. It is said that about 18.7 times as much air as non-fat milk was blown into the body. In the present invention, by dispersing the gas in the above range, milk powder having preferable properties for producing solid milk can be obtained. However, in order to surely reduce the density of the liquid milk as a result of dispersing the predetermined gas in the liquid milk in the gas dispersion step, the predetermined gas is dissolved in a gas that easily disperses in the liquid milk or in the liquid milk. It is preferable to use an easy gas. Therefore, it is preferable to use a gas having a high solubility in water (water solubility) , and a gas having a solubility in 1 cm 3 of water at 20 ° C. and 1 atm is preferable. The carbon dioxide is not limited to gas, and may be dry ice or a mixture of dry ice and gas. That is, in the gas dispersion step, a solid may be used as long as a predetermined gas can be dispersed in the liquid milk. By using dry ice in the gas dispersion step, carbon dioxide can be rapidly dispersed in the cooled liquid milk, and as a result, milk powder having preferable properties for producing solid milk can be obtained.
 噴霧乾燥工程は、液状乳中の水分を蒸発させて粉乳(食品粉体)を得るための工程である。この噴霧乾燥工程で得られる粉乳は、気体分散工程及び噴霧乾燥工程を経て得られた粉乳である。この粉乳は、気体分散工程を経ずに得られた粉乳に比べて、嵩高くなる。前者は、後者の1.01倍以上10倍以下の体積となることが好ましく、1.02倍以上10倍以下でもよく、1.03倍以上9倍以下でもよい。 The spray drying process is a process for obtaining powdered milk (food powder) by evaporating the water content in the liquid milk. The milk powder obtained in this spray drying step is the milk powder obtained through the gas dispersion step and the spray drying step. This milk powder is bulkier than the milk powder obtained without the gas dispersion step. The former preferably has a volume of 1.01 times or more and 10 times or less of the latter, and may be 1.02 times or more and 10 times or less, or 1.03 times or more and 9 times or less.
 噴霧乾燥工程では、気体分散工程において液状乳に所定の気体が分散され、液状乳の密度が小さくなった状態のまま、液状乳を噴霧乾燥する。具体的には、気体を分散する前の液状乳に比べて、気体を分散した後の液状乳の体積が1.05倍以上3倍以下、好ましくは1.1倍以上2倍以下の状態で、噴霧乾燥することが好ましい。つまり、噴霧乾燥工程は、気体分散工程が終了した後に噴霧乾燥を行う。但し、気体分散工程が終了した直後は、液状乳が均一な状態ではない。このため、気体分散工程が終了した後0.1秒以上5秒以下、好ましくは0.5秒以上3秒以下で噴霧乾燥工程を行う。つまり、気体分散工程と噴霧乾燥工程が連続的であればよい。このようにすることで、液状乳が連続的に気体分散装置に投入されて気体が分散され、気体が分散された液状乳が連続的に噴霧乾燥装置に供給され、噴霧乾燥され続けることができる。 In the spray drying step, a predetermined gas is dispersed in the liquid milk in the gas dispersion step, and the liquid milk is spray-dried while the density of the liquid milk is reduced. Specifically, the volume of the liquid milk after the gas is dispersed is 1.05 times or more and 3 times or less, preferably 1.1 times or more and 2 times or less as compared with the liquid milk before the gas is dispersed. , It is preferable to spray dry. That is, in the spray drying step, spray drying is performed after the gas dispersion step is completed. However, immediately after the gas dispersion step is completed, the liquid milk is not in a uniform state. Therefore, after the gas dispersion step is completed, the spray drying step is performed in 0.1 seconds or more and 5 seconds or less, preferably 0.5 seconds or more and 3 seconds or less. That is, the gas dispersion step and the spray drying step may be continuous. By doing so, the liquid milk is continuously charged into the gas disperser to disperse the gas, and the liquid milk in which the gas is dispersed is continuously supplied to the spray dryer and can be continuously spray-dried. ..
 水分を蒸発させるためには、噴霧乾燥機(スプレードライヤー)を用いればよい。ここで、スプレードライヤーは、液状乳を流すための流路と、液状乳を流路に沿って流すために液状乳を加圧する加圧ポンプと、流路の開口部につながる流路よりも広い乾燥室と、流路の開口部に設けられた噴霧装置(ノズル、アトマイザー等)とを有するものである。そして、スプレードライヤーは、加圧ポンプで液状乳を上述した体積流量となるように流路に沿って乾燥室に向かって送り、流路の開口部の近傍において、噴霧装置で濃縮乳を乾燥室内に拡散させ、液滴(微粒化)状態にある液状乳を乾燥室内の高温(例えば熱風)で乾燥させる。つまり、乾燥室で液状乳を乾燥することで、水分が取り除かれ、その結果、濃縮乳は粉末状の固体、即ち粉乳となる。なお、乾燥室における乾燥条件を適宜設定することで、粉乳の水分量等を調整して、粉乳を凝集しにくくする。また、噴霧装置を用いることで、液滴の単位体積当たりの表面積を増加させて、乾燥効率を向上させるのと同時に、粉乳の粒径等を調整する。 A spray dryer may be used to evaporate the water. Here, the spray dryer is wider than the flow path for flowing the liquid milk, the pressurizing pump for pressurizing the liquid milk for flowing the liquid milk along the flow path, and the flow path connected to the opening of the flow path. It has a drying chamber and a spraying device (nozzle, atomizer, etc.) provided at the opening of the flow path. Then, the spray dryer sends the liquid milk toward the drying chamber along the flow path so as to have the volume flow rate described above by the pressure pump, and in the vicinity of the opening of the flow path, the concentrated milk is sent to the drying chamber by the spray device. The liquid milk in the state of droplets (atomization) is dried at a high temperature (for example, hot air) in the drying chamber. That is, by drying the liquid milk in the drying chamber, the water is removed, and as a result, the concentrated milk becomes a powdery solid, that is, powdered milk. By appropriately setting the drying conditions in the drying chamber, the water content of the milk powder and the like can be adjusted to make it difficult for the milk powder to aggregate. Further, by using a spraying device, the surface area per unit volume of the droplet is increased to improve the drying efficiency, and at the same time, the particle size of the milk powder is adjusted.
 上述したような工程を経ることにより、固形乳を製造するのに適した粉乳を製造することができる。 By going through the steps described above, milk powder suitable for producing solid milk can be produced.
 上記のようにして得られた粉乳を圧縮成型して、粉乳圧縮成型物を形成する。次に、得られた粉乳圧縮成型物に対して、例えば加湿処理及び乾燥処理を含む硬化処理を行う。以上により、固形乳10Sを製造することができる。 The milk powder obtained as described above is compression molded to form a milk powder compression molded product. Next, the obtained powdered milk compression molded product is subjected to a curing treatment including, for example, a humidification treatment and a drying treatment. From the above, solid milk 10S can be produced.
 粉乳を圧縮成型する工程では、圧縮手段が用いられる。圧縮手段は、例えば、打錠機、圧縮試験装置等の加圧成型機である。打錠機は、粉乳を入れる型となる臼と、臼に向かって打ち付け可能な杵とを備えた装置である。以下では、打錠機による圧縮成型工程について説明する。 In the process of compression molding milk powder, compression means are used. The compression means is, for example, a pressure molding machine such as a lock press or a compression test device. The locker is a device equipped with a mortar that can be used to insert powdered milk and a pestle that can be struck toward the mortar. Hereinafter, the compression molding process using the lock press will be described.
 図4は、打錠機のスライドプレート、上杵及び下杵の位置を説明する説明図である。打錠機の成型ゾーンにおいて、スライドプレート30の臼30Aの下方にアクチュエータで上下動可能に下杵31が配されている。また、スライドプレート30の臼30Aの上方に上杵32がアクチュエータで上下動可能に配されている。図4は、スライドプレート30の臼30Aに下杵31及び上杵32が挿入され、下杵31及び上杵32が互いに最も近づいた位置を示す。この位置で、下杵31及び上杵32の間の距離は最終杵間隔Lである。スライドプレート30の臼30Aの内壁面、下杵31の上端面及び上杵32下端面が圧縮成型の型となる。例えばスライドプレート30の臼30Aの内壁面及び下杵31の上面で構成された凹部に粉乳を供給し、臼30Aの上方から上杵32を打ち付けることにより、粉乳に圧縮圧力が加わり、スライドプレート30の臼30Aの内壁面、下杵31の上端面及び上杵32下端面で囲まれた空間SPで粉乳が圧縮成型され、粉乳圧縮成型物を得ることができる。 FIG. 4 is an explanatory diagram illustrating the positions of the slide plate, the upper and lower pestle of the locker. In the molding zone of the locker, the lower pestle 31 is arranged below the mortar 30A of the slide plate 30 so as to be movable up and down by an actuator. Further, an upper pestle 32 is arranged above the mortar 30A of the slide plate 30 so as to be movable up and down by an actuator. FIG. 4 shows the positions where the lower pestle 31 and the upper pestle 32 are inserted into the mortar 30A of the slide plate 30, and the lower pestle 31 and the upper pestle 32 are closest to each other. At this position, the distance between the lower pestle 31 and the upper pestle 32 is the final pestle only spacing L. The inner wall surface of the mortar 30A of the slide plate 30, the upper end surface of the lower pestle 31 and the lower end surface of the upper pestle 32 are compression molding molds. For example, by supplying powdered milk to the inner wall surface of the mortar 30A of the slide plate 30 and the concave portion formed by the upper surface of the lower pestle 31 and striking the upper pestle 32 from above the mortar 30A, compressive pressure is applied to the powdered milk and the slide plate 30. Milk powder is compression-molded in the space SP surrounded by the inner wall surface of the mortar 30A, the upper end surface of the lower pestle 31 and the lower end surface of the upper pestle 32, and a milk powder compression molded product can be obtained.
 下杵31及び上杵32を上下に駆動するアクチュエータは、例えばサーボモータで構成されている。本実施形態では、アクチュエータとしてのサーボモータの速度を変化させることで、詳細を後述するように、圧縮成型する際の圧縮速度即ち下杵31及び上杵32の移動速度を変化できるように構成されている。アクチュエータとしては、サーボモータに限定されず、また下杵31及び上杵32の移動速度を変化させる手法もこれに限定されるものではない。例えば、油圧シリンダー等を用いてもよい。また、圧縮成型の際には、下杵31及び上杵32が互いに近づく方向に移動させてもよく、一方を固定し他方だけを移動させてもよい。 The actuator that drives the lower pestle 31 and the upper pestle 32 up and down is composed of, for example, a servomotor. In the present embodiment, by changing the speed of the servomotor as an actuator, the compression speed at the time of compression molding, that is, the moving speed of the lower pestle 31 and the upper pestle 32 can be changed, as will be described in detail later. ing. The actuator is not limited to the servomotor, and the method of changing the moving speed of the lower pestle 31 and the upper pestle 32 is not limited to this. For example, a hydraulic cylinder or the like may be used. Further, in the case of compression molding, the lower pestle 31 and the upper pestle 32 may be moved in a direction close to each other, or one may be fixed and only the other may be moved.
 圧縮成型する際の圧縮速度即ち下杵31及び上杵32の移動速度を変化させて圧縮成型する工程について説明する。この圧縮成型の際には、下杵31の上端面と上杵32の下端面とが近づく圧縮速度を変化させる(切り替える)。即ち、まず第1圧縮速度Vで第1圧縮を行い、この第1圧縮から続けて第2圧縮速度Vで第2圧縮を行う。本実施形態では、第1圧縮速度Vよりも第2圧縮速度Vが遅く設定されている。 The process of compression molding by changing the compression speed at the time of compression molding, that is, the moving speed of the lower punch 31 and the upper punch 32 will be described. At the time of this compression molding, the compression speed at which the upper end surface of the lower pestle 31 and the lower end surface of the upper pestle 32 approach is changed (switched). That is, first, the first compression is performed at the first compression rate V 1 , and then the second compression is performed at the second compression rate V 2 following the first compression. In the present embodiment, the second compression speed V 2 is set to be slower than the first compression speed V 1 .
 第1圧縮及び第2圧縮の圧縮距離は、この例においては、図4に示すように、第2圧縮の終了時即ち全圧縮工程の終了時における状態を基準にしている。下杵31と上杵32とによる圧縮は、下杵31の上端面と上杵32の下端面との間の杵間隔が最終杵間隔Lとなるまで行われる。最終杵間隔Lは、全圧縮工程で圧縮された状態の粉乳圧縮成型物の最終の厚みである。この最終杵間隔Lは、圧縮を解除したときに粉乳圧縮成型物が膨張することを考慮して決められており、粉乳圧縮成型物の目標厚みよりも小さい、もしくは目標厚みと同じ値を持つ。 In this example, the compression distances of the first compression and the second compression are based on the state at the end of the second compression, that is, at the end of the entire compression step, as shown in FIG. The compression by the lower pestle 31 and the upper pestle 32 is performed until the pestle distance between the upper end surface of the lower pestle 31 and the lower end surface of the upper pestle 32 becomes the final pestle only distance L. The final pestle only interval L is the final thickness of the milk powder compression molded product in a state of being compressed in the entire compression step. The final pestle interval L is determined in consideration of the expansion of the milk powder compression molded product when the compression is released, and is smaller than the target thickness of the milk powder compression molded product or has the same value as the target thickness.
 実施形態の打錠機は、第1圧縮と第2圧縮の切り替え中に、下杵31および上杵32の両面と圧縮物とを密着させ、圧縮物にかかる圧力を緩和させないように制御を行う。一方、従来知られている打錠機(例えば特開2008-290145号公報に記載の打錠機)は、圧縮物に含まれるエアを抜くなどを目的として予圧を加えた後に、いったん圧力を緩和させ、その後に圧縮物を成形する本圧をかける制御を行っている。実施形態の打錠機は、従来の打錠機とは異なり、第1圧縮と第2圧縮の間に圧力を緩和させずに、また下杵31および上杵32の両面と圧縮物とを密着させて、圧縮物を圧縮するので、圧縮物に対して十分な硬度を付与することが可能となる。 In the locking machine of the embodiment, during switching between the first compression and the second compression, both sides of the lower pestle 31 and the upper pestle 32 are brought into close contact with the compressed material, and control is performed so as not to relieve the pressure applied to the compressed material. .. On the other hand, a conventionally known locking machine (for example, the locking machine described in Japanese Patent Application Laid-Open No. 2008-290145) applies a preload for the purpose of removing air contained in a compressed product, and then temporarily relieves the pressure. Then, the main pressure for forming the compressed product is applied. The tableting machine of the embodiment is different from the conventional tableting machine in that the pressure is not relaxed between the first compression and the second compression, and both sides of the lower pestle 31 and the upper pestle 32 are in close contact with the compressed material. Since the compressed product is compressed, it is possible to impart sufficient hardness to the compressed product.
 図5は第1圧縮開始時の下杵31及び上杵32の位置を示す。図6は第1圧縮終了後かつ第2圧縮開始時の下杵31及び上杵32の位置を示す。図5に示される杵間隔(L+L+L)の状態から、図6に示される杵間隔(L+L)の状態になるまでの圧縮が第1圧縮である。また、図6に示される杵間隔(L+L)の状態から、図4に示される最終杵間隔Lの状態になるまでの圧縮が第2圧縮である。 FIG. 5 shows the positions of the lower pestle 31 and the upper pestle 32 at the start of the first compression. FIG. 6 shows the positions of the lower pestle 31 and the upper pestle 32 after the end of the first compression and at the start of the second compression. The first compression is the compression from the state of the pestle only interval (L + L 1 + L 2 ) shown in FIG. 5 to the state of the pestle only interval (L + L 2 ) shown in FIG. Further, the compression from the state of the pestle only interval (L + L 2 ) shown in FIG. 6 to the state of the final pestle only interval L shown in FIG. 4 is the second compression.
 第1圧縮の第1圧縮距離Lは、第1圧縮において杵間隔の減少する距離となる。第2圧縮の第2圧縮距離Lは、第2圧縮において杵間隔の減少する距離となる。圧縮を解除することなく第1圧縮から続けて第2圧縮を行うので、この第2圧縮距離Lは、第1圧縮で圧縮された杵間隔(L+L)から最終杵間隔(L)までの圧縮距離である。 The first compression distance L 1 of the first compression is a distance at which the pestle only interval decreases in the first compression. The second compression distance L 2 of the second compression is a distance at which the pestle only interval decreases in the second compression. Since the second compression is continuously performed from the first compression without decompressing, the second compression distance L 2 is from the pestle only interval (L + L 2 ) compressed by the first compression to the final pestle only interval (L). The compression distance.
 また、第1圧縮における杵間隔の変化速度が第1圧縮速度Vであり、第2圧縮における杵間隔の変化速度が第2圧縮速度Vである。なお、第1圧縮の間、第2圧縮の間に杵間隔の変化速度が変動するような場合では、平均速度を第1圧縮速度V、第2圧縮速度Vとする。 Further, the rate of change of the pestle interval in the first compression is the first compression rate V1, and the rate of change of the pestle interval in the second compression is the second compression rate V 2 . When the change speed of the pestle interval fluctuates between the first compression and the second compression, the average speed is set to the first compression speed V1 and the second compression speed V2.
 第1圧縮の後に第1圧縮速度Vよりも遅い第2圧縮速度Vで第2圧縮を行うことで、その第1圧縮速度Vと同じ圧縮速度及び同じ圧縮距離(L+L)で圧縮を行った場合よりも、粉乳圧縮成型物の硬度を高めて破壊耐性を確保することができる。しかも、第2圧縮を第1圧縮に続けて行い、また第2圧縮距離Lを短くすることができるので、第2圧縮速度Vのみで製造する場合と同程度の高い強度を持たせつつ、より生産効率を向上して製造することが可能である。 By performing the second compression at the second compression speed V 2 which is slower than the first compression speed V 1 after the first compression, the same compression speed and the same compression distance (L 1 + L 2 ) as the first compression speed V 1 are performed. It is possible to increase the hardness of the powdered milk compression molded product and secure the fracture resistance as compared with the case where the compression is performed with. Moreover, since the second compression can be performed following the first compression and the second compression distance L 2 can be shortened, the strength is as high as that in the case of manufacturing only at the second compression speed V 2 . , It is possible to manufacture with higher production efficiency.
 本実施形態では、粉乳圧縮成型物の硬度を効率的に高めるために、第1圧縮で圧縮された状態から粉乳圧縮成型物を圧縮した際に、圧縮距離に対する粉乳圧縮成型物の硬度の変化率が低下した状態にまで圧縮するという第2圧縮条件を満たすように、第2圧縮の態様即ち第2圧縮速度V及び第2圧縮距離Lの組み合わせを決めている。 In the present embodiment, in order to efficiently increase the hardness of the powdered milk compression molded product, the rate of change in the hardness of the powdered milk compressed molded product with respect to the compression distance when the powdered milk compressed molded product is compressed from the state compressed by the first compression. The combination of the second compression mode, that is, the second compression rate V2 and the second compression distance L2 is determined so as to satisfy the second compression condition of compressing to a reduced state.
 上記のように第1圧縮速度Vによる第1圧縮及び第1圧縮速度Vより小さい第2圧縮速度Vによる第2圧縮を組み合わせて圧縮成型工程を行うことで、圧縮時間の増加を抑えながら、効率的に粉乳圧縮成型物の硬度を大きく向上させることができる。 By performing the compression molding process by combining the first compression with the first compression speed V1 and the second compression with the second compression speed V2 smaller than the first compression speed V1 as described above, the increase in the compression time is suppressed. However, it is possible to efficiently greatly improve the hardness of the powdered milk compression molded product.
 上記では第1圧縮及び第2圧縮を組み合わせて圧縮成型工程を行うように説明したが、圧縮成型工程のすべてを第1圧縮速度Vのみで行ってもよい。また、第2圧縮速度Vのみで行ってもよい。 In the above description, the compression molding step is performed by combining the first compression and the second compression, but all of the compression molding steps may be performed only at the first compression speed V1. Further, it may be performed only at the second compression speed V2.
 本発明者らは、第1圧縮速度V、第1圧縮距離L、第2圧縮速度V、第2圧縮距離Lの種々の組み合わせから得られた各粉乳圧縮成型物を調べた結果から、第1圧縮速度Vよりも第2圧縮速度Vを小さくしたときに、第2圧縮距離Lの変化に対する粉乳圧縮成型物の硬度の変化率(増加率)が低下する特異的な点(以下、硬度特異点と称する)が存在することを見出した。また、発明者らは、その硬度特異点に対応する第2圧縮距離Lは、第1圧縮速度Vによって変化し、第2圧縮速度Vの影響も受けることも見出した。 The present inventors have investigated each powdered milk compression molded product obtained from various combinations of a first compression rate V 1 , a first compression distance L 1 , a second compression rate V 2 , and a second compression distance L 2 . Therefore, when the second compression rate V 2 is made smaller than the first compression rate V 1 , the rate of change (increase rate) in the hardness of the powdered milk compressed product with respect to the change in the second compression distance L 2 is specific. It was found that there are points (hereinafter referred to as hardness singular points). The inventors have also found that the second compression distance L 2 corresponding to the hardness singularity changes depending on the first compression rate V 1 and is also affected by the second compression rate V 2 .
 硬度特異点が存在するのは、粉乳圧縮成型物の内部の粉乳の粒子の再配列が支配的な圧縮状態から、粉乳圧縮成型物の内部で塑性変形が支配的な圧縮状態に変化するためであると推察される。また、第1圧縮速度Vが大きいほど、粉乳圧縮成型物の内部の塑性変形に必要なエネルギーが大きくなるため、第1圧縮速度Vに応じて硬度特異点に対応する第2圧縮距離Lが変化し、またその第2圧縮距離Lが第2圧縮速度Vの影響を受けるものと推察される。 The hardness singularity exists because the compression state in which the rearrangement of the milk powder particles inside the milk powder compression molding is dominant changes to the compression state in which the plastic deformation is dominant inside the milk powder compression molding. It is presumed that there is. Further, as the first compression rate V 1 is larger, the energy required for plastic deformation inside the powdered milk compression molded product is larger. Therefore, the second compression distance L corresponding to the hardness singularity is increased according to the first compression rate V 1 . It is presumed that 2 changes and that the second compression distance L 2 is affected by the second compression speed V 2 .
 上記の知見に基づき、上記第2圧縮条件を満たすように第2圧縮を行うことで、圧縮時間の増加を抑えながら、効率的に粉乳圧縮成型物の硬度を大きく向上させている。 Based on the above findings, by performing the second compression so as to satisfy the above second compression condition, the hardness of the milk powder compressed molded product is efficiently greatly improved while suppressing the increase in the compression time.
 また、第1圧縮速度Vの第2圧縮速度Vに対する比率である圧縮速度比(=V/V)を5以上とすることも好ましい。圧縮速度比を5以上とすることにより、粉乳圧縮成型物の硬度を大きく増大させることができる。圧縮速度比は5以上であれば良いが、例えば、10以上、20以上、25以上、50以上、100以上、250以上、500以上である。 Further, it is also preferable that the compression rate ratio (= V 1 / V 2 ), which is the ratio of the first compression rate V 1 to the second compression rate V 2 , is 5 or more. By setting the compression rate ratio to 5 or more, the hardness of the milk powder compression molded product can be greatly increased. The compression rate ratio may be 5 or more, but is, for example, 10 or more, 20 or more, 25 or more, 50 or more, 100 or more, 250 or more, and 500 or more.
 好ましくは、第1圧縮速度Vは1.0mm/S以上100.0mm/S以下の範囲に設定され、第1圧縮距離Lは5.0mm以上10.0mm以下の範囲に設定され、第2圧縮速度Vは0.25mm/S以上50.0mm/S以下の範囲に設定され、第2圧縮距離Lは0.2mm以上1.6mm以下の範囲に設定される。 Preferably, the first compression speed V 1 is set in the range of 1.0 mm / S or more and 100.0 mm / S or less, and the first compression distance L 1 is set in the range of 5.0 mm or more and 10.0 mm or less. 2 The compression speed V 2 is set in the range of 0.25 mm / S or more and 50.0 mm / S or less, and the second compression distance L 2 is set in the range of 0.2 mm or more and 1.6 mm or less.
 上記打錠機の構成は、一例であり、第1圧縮と第2圧縮とで圧縮速度を変化させて圧縮できるものであれば、その構成は限定されない。また、この例では、第2圧縮において、最終厚みまで圧縮を行っているが、第2圧縮に続けて、第2圧縮速度から速度を変化させた圧縮をさらに行ってもよい。この場合、第2圧縮よりも後の圧縮で最終の厚みまで粉乳圧縮成型物を圧縮する。 The configuration of the lock locking machine is an example, and the configuration is not limited as long as it can be compressed by changing the compression speed between the first compression and the second compression. Further, in this example, in the second compression, the compression is performed to the final thickness, but the second compression may be followed by further compression in which the speed is changed from the second compression speed. In this case, the milk powder compression molded product is compressed to the final thickness by compression after the second compression.
 上記以外の打錠機の構成は、例えば特許文献3に記載の打錠機と同様である。例えば、圧縮成型が行われたスライドプレートの臼30Aは取り出しゾーンに移動する。打錠機の取り出しゾーンにおいて、スライドプレート30の臼30Aから下杵31及び上杵32が取り外され、押出部によって粉乳圧縮成型物が押し出される。押し出された粉乳圧縮成型物は、回収トレーで回収される。上記の打錠機で、スライドプレート30の臼30Aへの粉乳供給部は、例えば底部開口から臼30Aに粉乳を供給する漏斗を含む装置により実現されている。 The configuration of the lock press other than the above is the same as that of the lock press described in Patent Document 3, for example. For example, the compression-molded slide plate mortar 30A moves to the take-out zone. In the take-out zone of the tableting machine, the lower pestle 31 and the upper pestle 32 are removed from the mortar 30A of the slide plate 30, and the milk powder compression molded product is extruded by the extrusion portion. The extruded milk powder compression molded product is collected in a collection tray. In the above-mentioned locking machine, the milk powder supply unit of the slide plate 30 to the mortar 30A is realized by, for example, a device including a funnel that supplies milk powder to the mortar 30A from the bottom opening.
 粉乳を圧縮成型する工程において、環境の温度は特に限定されず、例えば室温でも良い。具体的には、環境の温度は、例えば5℃~35℃である。環境の湿度は、例えば0%RH~60%RHの相対湿度である。圧縮圧力は、例えば1MPa~30MPa、好ましくは1MPa~20MPaである。特に粉乳を固形化させる際に、圧縮圧力を1MPa~30MPaの範囲内で調整して、粉乳圧縮成型物の硬度が4N以上20N未満の範囲内となるように制御することが好ましい。これにより、利便性(扱いやすさ)のある実用性の高い固形乳10Sを製造することができる。なお、粉乳圧縮成型物は、少なくとも後続の加湿工程や乾燥工程で型崩れしないような硬度(例えば4N以上)を有する。例えば、粉乳圧縮成型物の好ましい破断応力の範囲は、破断面積の範囲を考慮すると、0.014N/mm以上0.067N/mm未満である。 In the step of compression molding the milk powder, the temperature of the environment is not particularly limited, and may be, for example, room temperature. Specifically, the temperature of the environment is, for example, 5 ° C to 35 ° C. The humidity of the environment is, for example, a relative humidity of 0% RH to 60% RH. The compression pressure is, for example, 1 MPa to 30 MPa, preferably 1 MPa to 20 MPa. In particular, when solidifying milk powder, it is preferable to adjust the compression pressure within the range of 1 MPa to 30 MPa so that the hardness of the milk powder compressed molded product is within the range of 4 N or more and less than 20 N. This makes it possible to produce a highly practical solid milk 10S that is convenient (easy to handle). The milk powder compression molded product has at least a hardness (for example, 4N or more) that does not lose its shape in the subsequent humidification step or drying step. For example, the range of preferable breaking stress of the milk powder compression molded product is 0.014 N / mm 2 or more and less than 0.067 N / mm 2 in consideration of the range of the breaking area.
 加湿処理は、圧縮成型する工程で得られた粉乳圧縮成型物を加湿処理する工程である。粉乳圧縮成型物を加湿すると、粉乳圧縮成型物の表面には、タック(べとつき)が生じる。その結果、粉乳圧縮成型物の表面近傍の粉体粒子の一部が液状やゲル状となり、相互に架橋することとなる。そして、この状態で乾燥すると、粉乳圧縮成型物の表面近傍の強度を内部の強度よりも高めることができる。高湿度の環境下に置く時間(加湿時間)を調整することで、架橋の程度(拡がり具合)を調整し、これにより、加湿工程前の粉乳圧縮成型物(未硬化の固形乳10S)の硬度(例えば4N以上20N未満)を、固形乳10Sとして必要な目的の硬度(例えば40N)にまで高めることができる。但し、加湿時間の調整によって高めることができる硬度の範囲(幅)は限られている。即ち、圧縮成型後の粉乳圧縮成型物を加湿するため、ベルトコンベアー等で運搬する際に、粉乳圧縮成型物の硬度が十分でないと、固形乳10Sの形状を保てなくなる。また、圧縮成型時に粉乳圧縮成型物の硬度が高すぎると、空隙率が小さく、溶解性に乏しい固形乳10Sしか得られなくなる。このため、加湿工程前の粉乳圧縮成型物(未硬化の固形乳10S)の硬度が十分に高くなり、かつ固形乳10Sの溶解性を十分に保てるように、圧縮成型されることが好ましい。 The humidification treatment is a step of humidifying the powdered milk compression molded product obtained in the compression molding step. When the milk powder compression molding is humidified, tack (stickiness) occurs on the surface of the milk powder compression molding. As a result, a part of the powder particles near the surface of the milk powder compression molded product becomes liquid or gel-like and crosslinks with each other. Then, when dried in this state, the strength near the surface of the milk powder compression molded product can be increased higher than the internal strength. By adjusting the time (humidification time) of placing in a high humidity environment, the degree of cross-linking (spreading degree) is adjusted, and thereby the hardness of the milk powder compression molded product (uncured solid milk 10S) before the humidification process. (For example, 4N or more and less than 20N) can be increased to the desired hardness (for example, 40N) required for solid milk 10S. However, the range (width) of hardness that can be increased by adjusting the humidification time is limited. That is, since the milk powder compression molded product after compression molding is humidified, the shape of the solid milk 10S cannot be maintained unless the hardness of the milk powder compression molded product is sufficient when it is transported by a belt conveyor or the like. Further, if the hardness of the powdered milk compression molded product is too high during compression molding, only solid milk 10S having a small porosity and poor solubility can be obtained. Therefore, it is preferable to perform compression molding so that the hardness of the milk powder compression molded product (uncured solid milk 10S) before the humidification step is sufficiently high and the solubility of the solid milk 10S is sufficiently maintained.
 加湿処理において、粉乳圧縮成型物の加湿方法は特に限定されず、例えば粉乳圧縮成型物を高湿度の環境下に置く方法、粉乳圧縮成型物に対して水等を直接噴霧する方法、及び、粉乳圧縮成型物に対して蒸気を吹き付ける方法等がある。粉乳圧縮成型物を加湿するためには、加湿手段を用いるが、そのような加湿手段としては、例えば、高湿度室、スプレー及びスチーム等がある。 In the humidification treatment, the method for humidifying the milk powder compression molding is not particularly limited, for example, a method of placing the milk powder compression molding in a high humidity environment, a method of directly spraying water or the like on the milk powder compression molding, and a milk powder. There is a method of spraying steam on the compression molded product. Humidifying means are used to humidify the milk powder compression molded product, and such humidifying means include, for example, a high humidity chamber, a spray, and steam.
 粉乳圧縮成型物を高湿度の環境下に置く場合、環境の湿度は、例えば60%RH~100%RHの相対湿度の範囲内である。そして、高湿度環境における温度は、例えば30℃~100℃である。加湿処理の処理時間は任意であるが、例えば5秒~1時間である。粉乳圧縮成型物を高湿度の環境下に置く際には100℃を超える温度とすることもできる。100℃を超える環境下に置く場合、100%RH以下の相対湿度の環境下に置く。粉乳圧縮成型物を高湿度の環境下に置く場合の温度は、好ましくは330℃以下であり、好ましくは110℃以上280℃以下、より好ましくは120℃以上240℃以下、さらに好ましくは130℃以上210℃以下である。粉乳圧縮成型物を高湿度の環境下に置く場合の相対湿度は、好ましくは0.1%RH以上20%RH以下、より好ましくは1%RH以上15%RH以下、さらに好ましくは1.5%RH以上12%RH以下、最も好ましくは2%RH以上10%RH以下である。粉乳圧縮成型物を高湿度の環境下に置く場合の処理時間は任意であるが、例えば0.1秒以上30秒以下であり、好ましくは4.4秒以上20秒以下、より好ましくは4.4秒以上12秒以下、さらに好ましくは5秒以上10秒以下である。処理時間は、後述の乾燥処理後に得られる固形乳の硬度が所定の範囲となるように、適宜設定できる。加湿条件には、温度・湿度・時間があり、温度が高く、湿度が高く、時間が長くなるほど、加湿効果が高まり、温度が低く、湿度が低く、時間が短いほど、加湿効果が弱まる。 When the milk powder compression molded product is placed in a high humidity environment, the humidity of the environment is, for example, in the range of 60% RH to 100% RH relative humidity. The temperature in a high humidity environment is, for example, 30 ° C to 100 ° C. The treatment time of the humidification treatment is arbitrary, but is, for example, 5 seconds to 1 hour. When the powdered milk compression molded product is placed in a high humidity environment, the temperature may exceed 100 ° C. When placed in an environment exceeding 100 ° C, place in an environment with a relative humidity of 100% RH or less. The temperature when the milk powder compression molded product is placed in a high humidity environment is preferably 330 ° C. or lower, preferably 110 ° C. or higher and 280 ° C. or lower, more preferably 120 ° C. or higher and 240 ° C. or lower, and further preferably 130 ° C. or higher. It is 210 ° C or lower. When the powdered milk compression molded product is placed in a high humidity environment, the relative humidity is preferably 0.1% RH or more and 20% RH or less, more preferably 1% RH or more and 15% RH or less, and further preferably 1.5%. RH or more and 12% RH or less, most preferably 2% RH or more and 10% RH or less. The treatment time when the milk powder compression molded product is placed in a high humidity environment is arbitrary, but is, for example, 0.1 seconds or more and 30 seconds or less, preferably 4.4 seconds or more and 20 seconds or less, and more preferably 4. It is 4 seconds or more and 12 seconds or less, more preferably 5 seconds or more and 10 seconds or less. The treatment time can be appropriately set so that the hardness of the solid milk obtained after the drying treatment described later is within a predetermined range. Humidification conditions include temperature, humidity, and time. The higher the temperature, the higher the humidity, and the longer the time, the higher the humidifying effect, and the lower the temperature, the lower the humidity, and the shorter the time, the weaker the humidifying effect.
 なお、相対湿度は、市販の湿度計で測定することができる。例えば、180℃まではヴァイサラ社の湿度計HMT330、350℃まではヴァイサラ社の露点計DMT345で測定できる。また、絶対湿度(容積絶対湿度(単位はg/m)、又は、重量絶対湿度(単位はkg/kg(DA)、但しDAは乾燥空気)を測定し、その温度での飽和水蒸気圧に対する水蒸気分圧の比率(%)を算出することで、相対湿度を換算しても良い。 The relative humidity can be measured with a commercially available hygrometer. For example, up to 180 ° C can be measured with a Vaisala hygrometer HMT330, and up to 350 ° C can be measured with a Vaisala dew point meter DMT345. In addition, absolute humidity (volume absolute humidity (unit: g / m 3 ) or weight absolute humidity (unit: kg / kg (DA), where DA is dry air) is measured, and the saturated water vapor pressure at that temperature is measured. Relative humidity may be converted by calculating the ratio (%) of the partial pressure of water vapor.
 加湿処理において粉乳圧縮成型物に加えられる水分量(以下、「加湿量」ともいう)は、適宜調整可能である。加湿量は、圧縮成型工程後の粉乳圧縮成型物の質量の0.5重量%~3重量%が好ましい。加湿量を0.5重量%よりも少なくすると、固形乳10Sに十分な硬度(錠剤硬度)を与えることができず、好ましくない。また、加湿量が3重量%を超えると、粉乳圧縮成型物が過剰に液状やゲル状となって溶解し、圧縮成型した形状から変形することがあり、好ましくない。 The amount of water added to the milk powder compression molded product in the humidification treatment (hereinafter, also referred to as "humidification amount") can be appropriately adjusted. The amount of humidification is preferably 0.5% by weight to 3% by weight of the mass of the milk powder compression molded product after the compression molding step. If the amount of humidification is less than 0.5% by weight, sufficient hardness (tablet hardness) cannot be given to the solid milk 10S, which is not preferable. Further, if the amount of humidification exceeds 3% by weight, the milk powder compression molded product may be excessively liquid or gelled and dissolved, and may be deformed from the compression molded shape, which is not preferable.
 乾燥処理は、加湿処理で加湿された粉乳圧縮成型物を乾燥させるための工程である。これにより、粉乳圧縮成型物の表面タック(べとつき)がなくなり、固形乳10Sを扱いやすくなる。つまり、加湿処理と乾燥処理は、圧縮成型後の粉乳圧縮成型物の硬度を高めて、固形乳10Sとして望まれる特性や品質を付与する工程に相当する。 The drying process is a process for drying the milk powder compression molded product that has been humidified by the humidifying process. As a result, the surface tack (stickiness) of the powdered milk compression molded product is eliminated, and the solid milk 10S becomes easier to handle. That is, the humidification treatment and the drying treatment correspond to a step of increasing the hardness of the powdered milk compression molded product after compression molding to impart the desired characteristics and quality of the solid milk 10S.
 乾燥処理において、粉乳圧縮成型物の乾燥方法は特に限定されず、加湿処理を経た粉乳圧縮成型物を乾燥させることができる公知の方法を採用できる。例えば、低湿度・高温度環境下に置く方法、乾燥空気・高温乾燥空気を接触させる方法等がある。 In the drying treatment, the method for drying the powdered milk compression molded product is not particularly limited, and a known method capable of drying the milk powder compressed molded product that has undergone the humidification treatment can be adopted. For example, there are a method of placing in a low humidity / high temperature environment, a method of contacting dry air / high temperature dry air, and the like.
 粉乳圧縮成型物を低湿度・高温度の環境下に置く場合、0%RH以上30%RH以下の相対湿度及び20℃以上330℃以下の温度の環境下に置く。低湿度・高温度の環境下に置く場合の温度は、例えば330℃である。粉乳圧縮成型物を低湿度・高温度の環境下に置く場合の処理時間は任意であるが、例えば0.1秒以上2時間以下である。 When the milk powder compression molded product is placed in an environment of low humidity and high temperature, it is placed in an environment of relative humidity of 0% RH or more and 30% RH or less and a temperature of 20 ° C or more and 330 ° C or less. The temperature when placed in an environment of low humidity and high temperature is, for example, 330 ° C. The processing time when the powdered milk compression molded product is placed in an environment of low humidity and high temperature is arbitrary, but is, for example, 0.1 seconds or more and 2 hours or less.
 尚、上記の加湿処理と乾燥処理とは、上記のように温度や湿度が互いに異なる条件で別の工程として行うことが可能であり、その場合には連続的に行うことが可能である。また、加湿処理と乾燥処理とを同じ温度及び湿度で行うことも可能であり、この場合には加湿処理と乾燥処理とを同時に行うことができる。例えば、加湿と乾燥が同時に起こるような第1の温度湿度環境下に粉乳圧縮成型物を置き、続いて乾燥のみが起きるような第2の温度湿度環境下に粉乳圧縮成型物を置く。第1の温度湿度から第2の温度湿度に移行する間は、粉乳圧縮成型物の加湿と乾燥が同時に起こる状態から、粉乳圧縮成型物の乾燥のみが起こる状態へと移行する期間である。 It should be noted that the above-mentioned humidification treatment and drying treatment can be performed as separate steps under conditions where the temperature and humidity are different from each other as described above, and in that case, they can be continuously performed. Further, the humidification treatment and the drying treatment can be performed at the same temperature and humidity, and in this case, the humidification treatment and the drying treatment can be performed at the same time. For example, the milk powder compression molding is placed in a first temperature / humidity environment in which humidification and drying occur at the same time, and then the milk powder compression molding is placed in a second temperature / humidity environment in which only drying occurs. The transition from the first temperature / humidity to the second temperature / humidity is a period of transition from a state in which humidification and drying of the milk powder compression molding occur at the same time to a state in which only the drying of the milk powder compression molding occurs.
 ところで、固形乳10Sに含まれる水分が多いと、保存性が悪くなり、風味の劣化や外観の変色が進行しやすくなる。したがって、乾燥工程において、乾燥温度や乾燥時間等の条件を制御することによって、固形乳10Sの水分含有率を、原料として用いる粉乳の水分含有率の前後1%以内に制御(調整)することが好ましい。 By the way, if the solid milk 10S contains a large amount of water, the storage stability is deteriorated, and the deterioration of the flavor and the discoloration of the appearance are likely to proceed. Therefore, in the drying step, the water content of the solid milk 10S can be controlled (adjusted) within 1% before and after the water content of the milk powder used as a raw material by controlling the conditions such as the drying temperature and the drying time. preferable.
 このようにして製造された固形乳10Sは、一般的に、温水に溶かして飲用に供される。具体的には、蓋のできる容器等へ温水を注いだ後に、固形乳10Sを必要な個数で投入するか、固形乳10Sを投入した後に温水を注ぐ。そして、好ましくは容器を軽く振ることにより、固形乳10Sを速く溶解させ、適温の状態で飲用する。また、好ましくは1個~数個の固形乳10S(より好ましくは1個の固形乳10S)を温水に溶かして、1回の飲用に必要な分量の液状乳となるように、固形乳10Sの体積として、例えば1cm~50cmとなるように調製してもよい。なお、圧縮成型工程で用いる粉乳の分量を変更することで、固形乳10Sの体積を調整できる。 The solid milk 10S thus produced is generally dissolved in warm water and used for drinking. Specifically, after pouring hot water into a container with a lid, a required number of solid milk 10S is added, or after adding solid milk 10S, hot water is poured. Then, preferably, by gently shaking the container, the solid milk 10S is quickly dissolved and drunk at an appropriate temperature. Further, preferably, one to several solid milk 10S (more preferably one solid milk 10S) is dissolved in warm water so that the amount of liquid milk required for one drinking is obtained. The volume may be adjusted to be, for example, 1 cm 3 to 50 cm 3 . The volume of the solid milk 10S can be adjusted by changing the amount of milk powder used in the compression molding step.
 上記のように例えば加湿処理及び乾燥処理を含む硬化処理を行うことにより、破断応力は0.067N/mm以上であり、平坦な面に対する剥離せん断応力が0.015N/mmを超える固形乳を製造できる。 Solid milk having a breaking stress of 0.067 N / mm 2 or more and a peeling shear stress of a flat surface of more than 0.015 N / mm 2 by performing a hardening treatment including a humidification treatment and a drying treatment as described above. Can be manufactured.
(固形乳10Sの作用・効果)
 本実施形態の固形乳10Sは、粉乳を圧縮成型して硬化した固形状の固形乳であって、固形乳10Sの破断応力は0.067N/mm以上であり、平坦な面に対する剥離せん断応力が0.015N/mmを超える。
(Action / effect of solid milk 10S)
The solid milk 10S of the present embodiment is a solid milk that is hardened by compression molding of powdered milk, and the breaking stress of the solid milk 10S is 0.067 N / mm 2 or more, and the peel shear stress with respect to a flat surface. Exceeds 0.015 N / mm 2 .
 これまで、結晶化率の増加比β/(α+β)が高く、付着力が高い領域の固形乳は存在しなかった。上記の本実施形態の固形乳は、扱いやすい強度を確保して、0.015N/mmを超える剥離せん断応力を実現できる。剥離せん断応力は、付着力を剥離面積で除した値である。上記の固形乳は、付着力が高められており、製造工程中の固形乳がベルトコンベアー等の製造装置の接触面へ付着する力が高められ、これにより固形乳の運搬速度を高めても固形乳が吹き飛ばされることが抑制され、固形乳を安定して運搬することが可能となり、製造効率を高めることができる。 So far, there has been no solid milk in the region where the increase ratio β / (α + β) of the crystallization rate is high and the adhesive force is high. The solid milk of the present embodiment described above can secure a strength that is easy to handle and can realize a peel shear stress exceeding 0.015 N / mm 2 . The peel shear stress is a value obtained by dividing the adhesive force by the peel area. The above-mentioned solid milk has an enhanced adhesive force, and the force of the solid milk during the manufacturing process to adhere to the contact surface of a manufacturing device such as a belt conveyor is enhanced, so that the solid milk is solid even if the transport speed of the solid milk is increased. The milk is suppressed from being blown off, the solid milk can be stably transported, and the production efficiency can be improved.
<第2実施形態>
 固形乳は、固形食品の一例である。上記の第1実施形態は、粉乳を圧縮成型した粉乳圧縮成型物と、それを硬化した固形乳であるが、本発明はこれらに限定されない。本実施形態は、食品粉体を圧縮成型した食品粉体圧縮成型物と、それを硬化した固形食品に適用したものである。
<Second Embodiment>
Solid milk is an example of solid food. The first embodiment described above is a milk powder compression molded product obtained by compression-molding milk powder and a solid milk obtained by curing the milk powder, but the present invention is not limited thereto. This embodiment is applied to a food powder compression molded product obtained by compression-molding food powder and a solid food product obtained by curing the food powder.
 上記の食品粉体は、粉乳のほかには、例えば、ホエイプロテイン、大豆プロテイン及びコラーゲンペプチド等のタンパク質粉体、アミノ酸粉体、及びMCT油等の油脂含有粉体を用いることができる。食品粉体には、乳糖あるいはその他の糖質が適宜添加されていてもよい。食品粉体には、乳糖あるいはその他の糖質の他に、脂肪、たん白質、ミネラル及びビタミン等の栄養成分や食品添加物が添加されていてもよい。 As the above food powder, in addition to milk powder, for example, protein powders such as whey protein, soybean protein and collagen peptide, amino acid powders, and fat-containing powders such as MCT oil can be used. Lactose or other sugars may be appropriately added to the food powder. In addition to lactose or other sugars, nutritional components such as fats, proteins, minerals and vitamins and food additives may be added to the food powder.
 食品粉体を用いて所望の形状に圧縮成型して食品粉体圧縮成型物を形成できる。得られた食品粉体圧縮成型物を硬化することで、固形食品を形成できる。上記の食品粉体を原料として用いることを除いて、第1実施形態と同様の加湿処理を含む硬化処理を行うことで製造可能である。 A food powder compression molded product can be formed by compression molding into a desired shape using food powder. By curing the obtained food powder compression molded product, a solid food can be formed. It can be produced by performing a curing treatment including a humidifying treatment similar to that of the first embodiment, except that the above food powder is used as a raw material.
 食品粉体を圧縮成型した食品粉体圧縮成型物と、それを硬化した固形食品とは、第1実施形態に記載した硬度計を用いて硬度を測定可能である。食品粉体圧縮成型物の好ましい硬度は4N以上20N未満であり、固形食品の好ましい硬度は20N以上130N以下である。また、食品粉体圧縮成型物の好ましい破断応力は0.014N/mm以上0.067N/mm未満であり、固形食品の好ましい破断応力は0.067N/mm以上0.961N/mm以下である。 The hardness of the food powder compression molded product obtained by compression-molding the food powder and the solid food obtained by curing the food powder can be measured by using the hardness tester described in the first embodiment. The preferable hardness of the food powder compression molded product is 4N or more and less than 20N, and the preferable hardness of the solid food is 20N or more and 130N or less. The preferable breaking stress of the food powder compression molded product is 0.014 N / mm 2 or more and less than 0.067 N / mm 2 , and the preferable breaking stress of the solid food is 0.067 N / mm 2 or more and 0.961 N / mm 2 . It is as follows.
 本実施形態の固形食品は、食品粉体を圧縮成型して硬化した固形状の固形食品であって、固形食品の破断応力は0.067N/mm以上である。ここで、平坦な面に対する剥離せん断応力が0.015N/mmを超える。 The solid food of the present embodiment is a solid food obtained by compression-molding food powder and hardening it, and the breaking stress of the solid food is 0.067 N / mm 2 or more. Here, the peel shear stress on a flat surface exceeds 0.015 N / mm 2 .
 上記の本実施形態の固形食品は、扱いやすい強度を確保して、0.015N/mmを超える剥離せん断応力を実現できる。剥離せん断応力は、付着力を剥離面積で除した値である。上記の固形食品は、付着力が高められており、製造工程中の固形食品がベルトコンベアー等の製造装置の接触面へ付着する力が高められ、これにより固形食品の運搬速度を高めても固形食品が吹き飛ばされることが抑制され、固形食品を安定して運搬することが可能となり、製造効率を高めることができる。 The solid food of the present embodiment described above can secure a strength that is easy to handle and can realize a peel shear stress exceeding 0.015 N / mm 2 . The peel shear stress is a value obtained by dividing the adhesive force by the peel area. The above-mentioned solid food has an enhanced adhesive force, and the force of the solid food during the manufacturing process to adhere to the contact surface of a manufacturing device such as a belt conveyor is enhanced, whereby the solid food is solid even if the transportation speed of the solid food is increased. Blow-off of food is suppressed, solid food can be stably transported, and production efficiency can be improved.
 上記の本実施形態の固形食品は、好ましくは、一水和物結晶及び無水物結晶を含み、固形食品の表面における全重量に対する一水和物結晶の比率の、固形食品の内部の一水和物結晶の比率に対する差分である結晶化率の増加α(重量%)及び固形食品の表面における全重量に対する無水物結晶の比率の、固形食品の内部の無水物結晶の比率に対する差分である結晶化率の増加β(重量%)の和(α+β)と、結晶化率の増加β(重量%)との結晶化率の増加比β/(α+β)をXa、固形食品の平坦な面に対する剥離せん断応力をYa(N)としたときに、Xa及びYaが下記式(1A)を満たす。 The solid food of the present embodiment described above preferably contains monohydrate crystals and anhydrous crystals, and the ratio of the monohydrate crystals to the total weight on the surface of the solid food is the monohydration inside the solid food. Crystallization, which is the difference between the increase in crystallization rate α (% by weight), which is the difference with respect to the ratio of physical crystals, and the ratio of anhydrous crystals with respect to the total weight on the surface of the solid food, with respect to the ratio of anhydrous crystals inside the solid food. The increase ratio β / (α + β) of the crystallization rate of the sum (α + β) of the increase β (% by weight) of the rate and the increase β (% by weight) of the crystallization rate is Xa, and the peel shear against the flat surface of the solid food. When the stress is Ya (N), Xa and Ya satisfy the following formula (1A).
 0.1326Xa-0.0013<Ya<0.1326Xa+0.0087  ・・・(1A) 0.1326Xa-0.0013 <Ya <0.1326Xa + 0.0087 ... (1A)
 上記の本実施形態の固形食品は、さらに好ましくは、結晶化率の増加比β/(α+β)が、0.3以下である。 More preferably, the solid food of the present embodiment described above has an increase ratio β / (α + β) of crystallization rate of 0.3 or less.
 このような固形食品は、食品粉体を圧縮成型して得られた食品粉体圧縮成型物を上記のように例えば加湿処理及び乾燥処理を含む硬化処理を行うことにより製造可能であり、扱いやすい強度を備えながら、さらに付着力を高めることができる。 Such a solid food can be produced by performing a curing treatment including, for example, a humidification treatment and a drying treatment, as described above, on the food powder compression molded product obtained by compression molding the food powder, and is easy to handle. It is possible to further increase the adhesive force while providing strength.
 さらに、上記の食品粉体のタンパク質粉体は、ミルクカゼイン、ミートパウダー、フィッシュパウダー、エッグパウダー、小麦タンパク質、小麦タンパク質分解物等であっても良い。これらのタンパク質粉体は単独で用いてもよいし、二種以上で用いてもよい。 Further, the protein powder of the above food powder may be milk casein, meat powder, fish powder, egg powder, wheat protein, wheat protein decomposition product or the like. These protein powders may be used alone or in two or more kinds.
 さらに、上記の食品粉体のホエイプロテイン(ホエイタンパク質)とは、乳中で、カゼインを除くタンパク質の総称である。乳清タンパク質として分類されるものであってもよい。ホエイタンパク質は、ラクトグロブリン、ラクトアルブミン、ラクトフェリン等の複数の成分から構成されている。牛乳などの乳原料を酸性に調整した際に、沈殿するタンパク質がカゼイン、沈殿しないタンパク質がホエイタンパク質となる。ホエイプロテインを含む粉末原料として、例えば、WPC(ホエイタンパク濃縮物、タンパク質含有量が75~85質量%)、WPI(ホエイタンパク分離物、タンパク質含有量が85質量%以上)があげられる。これらは単独で用いてもよいし、二種以上で用いてもよい。 Furthermore, the above-mentioned food powder whey protein (whey protein) is a general term for proteins excluding casein in milk. It may be classified as whey protein. Whey protein is composed of a plurality of components such as lactoglobulin, lactalbumin, and lactoferrin. When a milk raw material such as milk is adjusted to be acidic, the protein that precipitates becomes casein, and the protein that does not precipitate becomes whey protein. Examples of the powder raw material containing whey protein include WPC (whey protein concentrate, protein content of 75 to 85% by mass) and WPI (whey protein isolate, protein content of 85% by mass or more). These may be used alone or in two or more kinds.
 さらに、上記の食品粉体の大豆プロテイン(大豆タンパク質)は、大豆に含まれるタンパク質であればよく、大豆から抽出されたものでもよい。また、原料大豆から精製したものを用いることもできる。精製方法としては特に限定されず、従来公知の方法を使用できる。このような大豆プロテインとしては、飲食品用素材、医療用素材、サプリメント食品として市販されている粉体を使用することができる。これらは単独で用いてもよいし、二種以上で用いてもよい。 Further, the soybean protein (soybean protein) of the above food powder may be any protein contained in soybean and may be extracted from soybean. Further, those refined from raw soybeans can also be used. The purification method is not particularly limited, and a conventionally known method can be used. As such soy protein, powders commercially available as food and drink materials, medical materials, and supplement foods can be used. These may be used alone or in two or more kinds.
 さらに、上記の食品粉体のアミノ酸粉体に含まれるアミノ酸としては、特に限定されないが、例えばアルギニン、リジン、オルニチン、フェニルアラニン、チロシン、バリン、メチオニン、ロイシン、イソロイシン、トリプトファン、ヒスチジン、プロリン、システイン、グルタミン酸、アスパラギン、アスパラギン酸、セリン、グルタミン、シトルリン、クレアチン、メチルリジン、アセチルリジン、ヒドロキシリジン、ヒドロキシプロリン、グリシン、アラニン、スレオニン、シスチンなどを用いることができる。これらは単独で用いてもよいし、二種以上で用いてもよい。 Further, the amino acids contained in the amino acid powder of the above food powder are not particularly limited, and for example, arginine, lysine, ornithine, phenylalanine, tyrosine, valine, methionine, leucine, isoleucine, tryptophan, histidine, proline, cysteine, etc. Glutamic acid, aspartic acid, aspartic acid, serine, glutamine, citrulin, creatine, methyllysine, acetyllysine, hydroxylysine, hydroxyproline, glycine, alanine, threonine, cystine and the like can be used. These may be used alone or in two or more kinds.
 また、上記の食品粉体のアミノ酸粉体に含まれるアミノ酸は、天然物および合成体のいずれでもよく、単体のアミノ酸もしくは複数のアミノ酸の混合物を用いることができる。また、アミノ酸として、遊離アミノ酸のみならず、ナトリウム塩、塩酸塩および酢酸塩等の塩ならびにカルニチンおよびオルニチン等の誘導体を用いることができる。
 本明細書において「アミノ酸」には、α-アミノ酸、β-アミノ酸およびγ-アミノ酸が含まれる。また、アミノ酸は、L-体およびD-体のいずれであってもよい。
Further, the amino acid contained in the amino acid powder of the above-mentioned food powder may be either a natural product or a synthetic product, and a single amino acid or a mixture of a plurality of amino acids can be used. Further, as the amino acid, not only free amino acids but also salts such as sodium salts, hydrochlorides and acetates and derivatives such as carnitine and ornithine can be used.
As used herein, "amino acid" includes α-amino acid, β-amino acid and γ-amino acid. Further, the amino acid may be either L-form or D-form.
 さらに、上記の食品粉体の油脂含有粉体に含まれる油脂は、上述のMCT油の他、動物性油脂、植物性油脂、それらの分別油、水素添加油及びエステル交換油である。これらのうちの一種又は二種以上が添加されていてよい。動物性油脂は、例えば、乳脂肪、ラード、牛脂及び魚油等である。植物性油脂は、例えば、大豆油、ナタネ油、コーン油、ヤシ油、パーム油、パーム核油、サフラワー油、綿実油、アマニ油及びMCT油等である。 Further, the fats and oils contained in the fats and oils-containing powder of the above-mentioned food powder are animal fats and oils, vegetable fats and oils, their fractionated oils, hydrogenated oils and transesterified oils in addition to the above-mentioned MCT oils. One or more of these may be added. Animal fats and oils are, for example, milk fat, lard, beef tallow, fish oil and the like. The vegetable oils and fats are, for example, soybean oil, rapeseed oil, corn oil, palm oil, palm oil, palm kernel oil, safflower oil, cottonseed oil, flaxseed oil, MCT oil and the like.
 さらに、上記の食品粉体の糖質は、上述の乳糖の他、例えば、オリゴ糖、単糖類、多糖類及び人工甘味料等である。これらのうちの一種又は二種以上が添加されていてよい。オリゴ糖は、例えば、乳糖、ショ糖、麦芽糖、ガラクトオリゴ糖、フルクトオリゴ糖、ラクチュロース等である。単糖類は、例えば、ブドウ糖、果糖及びガラクトース等である。多糖類は、例えば、デンプン、可溶性多糖類及びデキストリン等である。 Further, the sugar of the above-mentioned food powder is, for example, oligosaccharide, monosaccharide, polysaccharide, artificial sweetener and the like in addition to the above-mentioned lactose. One or more of these may be added. The oligosaccharide is, for example, lactose, sucrose, maltose, galactooligosaccharide, fructooligosaccharide, lactulose and the like. Monosaccharides are, for example, glucose, fructose, galactose and the like. The polysaccharides are, for example, starch, soluble polysaccharides and dextrins.
 さらに、上記の食品粉体の食品添加物の一例としては甘味料が例示できる。この甘味料としては、食品および医薬品に通常使用される任意の甘味料を用いることができ、天然の甘味料および合成甘味料のいずれであってもよい。甘味料は、特に限定されないが、例えばブドウ糖、果糖、麦芽糖、ショ糖、オリゴ糖、砂糖、グラニュー糖、メープルシロップ、蜂蜜、糖蜜、トレハロース、パラチノース、マルチトール、キシリトール、ソルビトール、グリセリン、アスパルテーム、アドバンテーム、ネオテーム、スクラロース、アセスルファムカリウムおよびサッカリンなどを含む。 Further, as an example of the food additive of the above-mentioned food powder, a sweetener can be exemplified. As the sweetener, any sweetener usually used in foods and pharmaceuticals can be used, and either a natural sweetener or a synthetic sweetener may be used. The sweetener is not particularly limited, but is, for example, glucose, fructose, malt sugar, saccharin, oligosaccharide, sugar, granulated sugar, maple syrup, honey, sugar honey, trehalose, palatinose, maltitol, xylitol, sorbitol, glycerin, aspartame, advantame. Includes tame, neotame, sucralose, acesulfame potassium and saccharin.
 さらに、上記の食品粉体の食品添加物の一例としては酸味料が例示できる。酸味料は、特に限定されないが、例えば、酢酸、クエン酸、無水クエン酸、アジピン酸、コハク酸、乳酸、リンゴ酸、リン酸、グルコン酸、酒石酸およびこれらの塩などを含む。酸味料は、アミノ酸の種類によって生じる苦みを抑制(マスキング)することができる。 Further, as an example of the food additive of the above-mentioned food powder, an acidulant can be exemplified. The acidulant is not particularly limited, and includes, for example, acetic acid, citric acid, anhydrous citric acid, adipic acid, succinic acid, lactic acid, malic acid, phosphoric acid, gluconic acid, tartrate acid, and salts thereof. The acidulant can suppress (mask) the bitterness caused by the type of amino acid.
 さらに、上記の食品粉体の栄養成分としては、脂肪、タンパク質、ミネラル及びビタミン等いかなる成分を含んでも良い。 Further, as the nutritional component of the above food powder, any component such as fat, protein, mineral and vitamin may be contained.
 脂肪としては、例えば、動物性油脂、植物性油脂、それらの分別油、水素添加油及びエステル交換油等である。これらのうちの一種又は二種以上が添加されていてよい。動物性油脂は、例えば、乳脂肪、ラード、牛脂及び魚油等である。植物性油脂は、例えば、大豆油、ナタネ油、コーン油、ヤシ油、パーム油、パーム核油、サフラワー油、綿実油、アマニ油及びMCT油等である。 Examples of fats include animal fats and oils, vegetable fats and oils, their fractionated oils, hydrogenated oils, transesterified oils and the like. One or more of these may be added. Animal fats and oils are, for example, milk fat, lard, beef tallow, fish oil and the like. The vegetable oils and fats are, for example, soybean oil, rapeseed oil, corn oil, palm oil, palm oil, palm kernel oil, safflower oil, cottonseed oil, flaxseed oil, MCT oil and the like.
 タンパク質としては、例えば、乳タンパク質及び乳タンパク質分画物、動物性タンパク質、植物性タンパク質、それらのタンパク質を酵素等により種々の鎖長に分解したペプチド及びアミノ酸等である。これらのうちの一種又は二種以上が添加されていてよい。乳タンパク質は、例えば、カゼイン、乳清タンパク質(α-ラクトアルブミン、β-ラクトグロブリン等)、乳清タンパク質濃縮物(WPC)及び乳清タンパク質分離物(WPI)等である。動物性タンパク質は、例えば、卵タンパク質(エッグパウダー)、ミートパウダー、フィッシュパウダー等である。植物性タンパク質は、例えば、大豆タンパク質及び小麦タンパク質等である。ペプチドは、例えば、コラーゲンペプチド等である。アミノ酸は、例えば、タウリン、シスチン、システイン、アルギニン及びグルタミン等である。これらのうちの一種又は二種以上が添加されていてよい。 Examples of proteins include milk proteins and milk protein fractions, animal proteins, vegetable proteins, peptides and amino acids obtained by decomposing these proteins into various chain lengths by enzymes and the like. One or more of these may be added. Milk proteins include, for example, casein, whey protein (α-lactalbumin, β-lactoglobulin, etc.), whey protein concentrate (WPC), whey protein isolate (WPI), and the like. The animal protein is, for example, egg protein (egg powder), meat powder, fish powder and the like. The vegetable protein is, for example, soybean protein, wheat protein and the like. The peptide is, for example, a collagen peptide or the like. Amino acids are, for example, taurine, cystine, cysteine, arginine, glutamine and the like. One or more of these may be added.
 ミネラルとしては、鉄、ナトリウム、カリウム、カルシウム、マグネシウム、リン、塩素、亜鉛、鉄、銅およびセレン等である。これらのうちの一種又は二種以上が添加されていてよい。 Minerals include iron, sodium, potassium, calcium, magnesium, phosphorus, chlorine, zinc, iron, copper and selenium. One or more of these may be added.
 ビタミンとしては、ビタミンA、ビタミンD、ビタミンE、ビタミンK、ビタミンB1、ビタミンB2、ビタミンB6、ビタミンB12、ビタミンC、ナイアシン、葉酸、パントテン酸およびビオチン等である。これらのうちの一種又は二種以上が添加されていてよい。 Vitamin includes vitamin A, vitamin D, vitamin E, vitamin K, vitamin B1, vitamin B2, vitamin B6, vitamin B12, vitamin C, niacin, folic acid, pantothenic acid, biotin and the like. One or more of these may be added.
 また、その他の食品素材としては、例えば、ココアパウダー、カカオパウダー、チョコレートパウダー、乳酸菌・ビフィズス菌等の有用微生物を含む微生物粉体、乳に微生物を加えて発酵させた培養物を粉体とした乳発酵成分粉体、チーズを粉体としたチーズ粉体、機能性食品を粉体とした機能性食品粉体、総合栄養食を粉体とした総合栄養食粉体等である。これらのうちの一種又は二種以上が添加されていてよい。 As other food materials, for example, cocoa powder, cocoa powder, chocolate powder, microbial powder containing useful microorganisms such as lactic acid bacteria and bifidus bacteria, and cultures obtained by adding microorganisms to milk and fermenting them were used as powders. Milk fermented ingredient powder, cheese powder made from cheese powder, functional food powder made from functional food powder, general nutrition food powder made from general nutrition food, and the like. One or more of these may be added.
 本発明に係る固形食品は、日常摂取する食品、健康食品、健康補助食品、保健機能食品、特定保健用食品、栄養機能食品、サプリメント、機能性表示食品などの形態であることができる。 The solid food according to the present invention can be in the form of daily foods, health foods, health supplements, health functional foods, specified health foods, nutritional functional foods, supplements, foods with functional claims, and the like.
 水に溶解する特性を有する固形食品は、固形溶解食品とも称せられる。 Solid foods that have the property of dissolving in water are also called solid-dissolved foods.
 食品粉体が水溶性原料や吸湿性のある原料を含む場合、食品粉体を圧縮成型してなる食品粉体圧縮成型物を加湿した際に、食品粉体圧縮成型物の表面にタック(べとつき)が生じ得る。このような食品粉体としては、例えば糖、デキストリン、天然糖質(トレハロース等)、多糖類等を含む食品粉体があげられる。その他、食品粉体圧縮成型物を加湿した際に、食品粉体圧縮成型物の表面にタック(べとつき)が生じ得る食品粉体であれば好ましく適用できる。 When the food powder contains a water-soluble raw material or a hygroscopic raw material, when the food powder compression molded product obtained by compression molding the food powder is humidified, the surface of the food powder compression molded product is tacked (sticky). ) Can occur. Examples of such food powders include food powders containing sugars, dextrins, natural sugars (trehalose and the like), polysaccharides and the like. In addition, any food powder that can cause tack (stickiness) on the surface of the food powder compression molded product when the food powder compression molded product is humidified can be preferably applied.
(固形食品の作用・効果)
 本実施形態の固形食品は、食品粉体を圧縮成型して硬化した固形状の固形食品であって、固形食品の破断応力は0.067N/mm以上であり、平坦な面に対する剥離せん断応力が0.015N/mmを超える。
(Action / effect of solid food)
The solid food of the present embodiment is a solid food that is hardened by compression molding of food powder, and the breaking stress of the solid food is 0.067 N / mm 2 or more, and the peel shear stress with respect to a flat surface. Exceeds 0.015 N / mm 2 .
 これまで、結晶化率の増加比β/(α+β)が高く、付着力が高い領域の固形食品は存在しなかった。上記の本実施形態の固形食品は、扱いやすい強度を確保して、0.015N/mmを超える剥離せん断応力を実現できる。剥離せん断応力は、付着力を剥離面積で除した値である。上記の固形食品は、付着力が高められており、製造工程中の固形食品がベルトコンベアー等の製造装置の接触面へ付着する力が高められ、これにより固形食品の運搬速度を高めても固形食品が吹き飛ばされることが抑制され、固形食品を安定して運搬することが可能となり、製造効率を高めることができる。 So far, there has been no solid food in the region where the increase ratio β / (α + β) of the crystallization rate is high and the adhesive force is high. The solid food of the present embodiment described above can secure a strength that is easy to handle and can realize a peel shear stress exceeding 0.015 N / mm 2 . The peel shear stress is a value obtained by dividing the adhesive force by the peel area. The above-mentioned solid food has an enhanced adhesive force, and the force of the solid food during the manufacturing process to adhere to the contact surface of a manufacturing device such as a belt conveyor is enhanced, whereby the solid food is solid even if the transportation speed of the solid food is increased. Blow-off of food is suppressed, solid food can be stably transported, and production efficiency can be improved.
<実施例>
(実施例1の作成)
 X軸方向の辺aが31mm、Y軸方向の辺bが24mm、Z軸方向の辺cが12.5mmである直方体状の固形乳試料を実施例として作成した。このような大きさとなる打錠機の臼杵の大きさを調整し、粉乳5.4gを圧縮成型して粉乳圧縮成型物を形成した。圧縮速度Vを1mm/sとし圧縮を行った。上記で得られた粉乳圧縮成型物に、温度、相対湿度、処理時間が、75℃、95%RH、90秒である加湿処理を施した。加湿処理の後に乾燥温度80℃の乾燥処理を施し、硬化処理が施された実施例1に係る固形乳試料とした。乾燥時間については加湿時の重量増加分が乾燥しきれるように時間を調整した。
<Example>
(Creation of Example 1)
A rectangular parallelepiped solid milk sample having a side a in the X-axis direction of 31 mm, a side b in the Y-axis direction of 24 mm, and a side c in the Z-axis direction of 12.5 mm was prepared as an example. The size of the usuki of the locker having such a size was adjusted, and 5.4 g of milk powder was compression-molded to form a milk powder compression-molded product. Compression was performed with a compression rate V of 1 mm / s. The milk powder compression molded product obtained above was subjected to a humidification treatment having a temperature, a relative humidity, and a treatment time of 75 ° C., 95% RH, and 90 seconds. After the humidification treatment, a drying treatment at a drying temperature of 80 ° C. was performed to obtain a solid milk sample according to Example 1 which had been subjected to a curing treatment. The drying time was adjusted so that the weight increase during humidification could be completely dried.
(実施例1の試料の硬度)
 上記のロードセル式錠剤硬度計を用いて、実施例1に係る固形乳試料の硬度評価を行った。実施例1の試料の硬度は128N(破断応力は0.427N/mm程度)であり、十分確保され、扱いやすい硬度を有していた。
(Hardness of the sample of Example 1)
Using the above load cell type tablet hardness tester, the hardness of the solid milk sample according to Example 1 was evaluated. The hardness of the sample of Example 1 was 128 N (breaking stress was about 0.427 N / mm 2 ), which was sufficiently secured and had a hardness that was easy to handle.
(実施例1の試料のα乳糖結晶の結晶化率の増加α及びβ乳糖結晶の結晶化率の増加βの測定、結晶化率の増加α及び結晶化率の増加βの和(α+β)とβ乳糖結晶の結晶化率の増加βとの結晶化率の増加比β/(α+β)の算出)
 上記の実施例1に係る固形乳の試料に対して、XRD(X線回折)法により、表面からの深さ方向の単位重量当たりのα乳糖結晶の結晶化率の増加α(重量%)、β乳糖結晶の結晶化率の増加β(重量%)、総結晶化率の増加(結晶化率の増加α及び結晶化率の増加βの和(α+β))(重量%)を求めた。α乳糖結晶の結晶化率の増加、β乳糖結晶の結晶化率の増加、及び総結晶化率の増加は、それぞれ、全重量に対するα乳糖結晶、β乳糖結晶、及びα乳糖及びβ乳糖の結晶の和の比率(重量%)であり、固形乳の内部の結晶化率を差し引いて得られる内部に対する増加分として算出した値である。実施例1の固形乳試料の表面の結晶化率の増加比β/(α+β)は0.237であった。尚、XRD法による測定では、各試料の測定面をXRD測定毎に表面を切削して面全体の結晶化率の増加を求めた。測定面は、12.5mm×24mmの大きさの断面とした。
(Increase in crystallization rate of α lactose crystals in the sample of Example 1 α and β Increase in crystallization rate of lactose crystals β measurement, increase in crystallization rate α and increase in crystallization rate β sum (α + β) Increase in crystallization rate of β lactose crystals Calculation of increase ratio β / (α + β) of crystallization rate with β)
Increase in α lactose crystal crystallization rate per unit weight in the depth direction from the surface α (% by weight) with respect to the solid milk sample according to Example 1 above by the XRD (X-ray diffraction) method. The increase β (% by weight) in the crystallization rate of β-lactose crystals and the increase in the total crystallization rate (the sum of the increase α in the crystallization rate and the increase β in the crystallization rate (α + β)) (% by weight) were determined. The increase in the crystallization rate of α-lactose crystals, the increase in the crystallization rate of β-lactose crystals, and the increase in the total crystallization rate are the α-lactose crystals, β-lactose crystals, and α-lactose and β-lactose crystals with respect to the total weight, respectively. It is the ratio (% by weight) of the sum of the above, and is a value calculated as an increase with respect to the inside obtained by subtracting the crystallization rate inside the solid milk. The increase ratio β / (α + β) of the crystallization rate on the surface of the solid milk sample of Example 1 was 0.237. In the measurement by the XRD method, the surface of each sample was cut for each XRD measurement to obtain an increase in the crystallization rate of the entire surface. The measurement surface has a cross section having a size of 12.5 mm × 24 mm.
 総結晶化率の増加の測定は、粉末X線回折装置(XRD、SmartLab、リガク社)を用いて、固形乳の表面から0.1mmの厚さの分ずつ切削して露出させた面において、回折強度により測定した。測定方法は汎用(集中法)、スリット条件はスキャン軸(2θ/θ)、モード(ステップ)、範囲指定(絶対)、開始(9.0000deg)、終了(13.5000deg)、ステップ(0.0200deg)、スピード計数時間(2.4)、IS(1.000deg)、RSI(1.000deg)、RS2(0.300mm)、アッテネータ(open)、管電圧(40kv)、管電流(30mA)とした。 The increase in the total crystallization rate was measured by cutting and exposing the surface of the solid milk by a thickness of 0.1 mm using a powder X-ray diffractometer (XRD, SmartLab, Rigaku). It was measured by the diffraction intensity. The measurement method is general-purpose (concentrated method), and the slit conditions are scan axis (2θ / θ), mode (step), range specification (absolute), start (9.0000 deg), end (13.5000 deg), step (0.0200 deg). ), Speed counting time (2.4), IS (1.000deg), RSI (1.000deg), RS2 (0.300mm), attenuator (open), tube voltage (40kv), tube current (30mA). ..
 解析方法は、解析ソフトウェア「SmartLab StudioII」を用いて、加重平均(平滑化7点)BG除去(sonneveld-Visser法)処理した後、積分強度計算(α乳糖結晶の固有ピーク:12.5、β乳糖結晶の固有ピーク:10.5)を行った。総結晶化率の増加は、固形乳の表面からの各深さにおける全重量に対する結晶の比率の固形乳の内部の結晶の比率に対する差分である。ここでは、結晶として単位重量当たりのα乳糖結晶及びβ乳糖結晶の重量(重量%)として求めた。 The analysis method is to use the analysis software "SmartLab Studio II" to perform weighted average (smoothing 7 points) BG removal (sonneveld-Visser method), and then calculate the integrated intensity (natural peak of α-lactose crystals: 12.5, β. The intrinsic peak of lactose crystals: 10.5) was performed. The increase in total crystallization rate is the difference between the ratio of crystals to the total weight at each depth from the surface of the solid milk to the ratio of crystals inside the solid milk. Here, it was determined as the weight (% by weight) of α-lactose crystals and β-lactose crystals per unit weight as crystals.
(実施例1の試料の付着力の測定)
 硬化条件による付着力の評価を行うために、上記のように作成した実施例1の固形乳試料について付着力試験を行った。付着力試験は、上述のロードセル式錠剤硬度計を用い、パンチングスクリーン上で硬化処理が施された固形乳に対して、パンチングスクリーンから剥離可能な方向に荷重を印加して、剥離するのに要する力を測定して、付着力[N]とした。付着力は、製造された固形乳が平坦な面に付着する強度を示す。実施例1の固形乳試料の付着力は14N(剥離せん断応力は0.0349N/mm)であった。
(Measurement of Adhesive Force of Sample of Example 1)
In order to evaluate the adhesive force under the curing conditions, the adhesive force test was performed on the solid milk sample of Example 1 prepared as described above. The adhesive force test is required to peel off solid milk that has been cured on the punching screen by applying a load in a direction that allows it to be peeled off from the punching screen using the above-mentioned load cell type tablet hardness tester. The force was measured and used as the adhesive force [N]. Adhesive strength indicates the strength with which the produced solid milk adheres to a flat surface. The adhesive force of the solid milk sample of Example 1 was 14 N (peeling shear stress was 0.0349 N / mm 2 ).
[規則91に基づく訂正 13.01.2022] 
(実施例2)
 温度、相対湿度、処理時間が、75℃、75%RH、60秒である加湿処理を施したことを除いて、実施例1と同様に固形乳試料を作成し、実施例2とした。実施例1と同様にして、硬度、固形乳表面の結晶化率の増加比β/(α+β)、及び付着力を測定した。実施例2の固形乳試料の硬度は68.8N(破断応力は0.229N/mm)、固形乳表面の結晶化率の増加比β/(α+β)は0.108、付着力は6.9N(剥離せん断応力は0.0172N/mm)であった。
[Correction under Rule 91 13.01.2022]
(Example 2)
A solid milk sample was prepared in the same manner as in Example 1 except that the humidification treatment was performed in which the temperature, relative humidity, and treatment time were 75 ° C., 75% RH, and 60 seconds, and the sample was designated as Example 2. In the same manner as in Example 1, the hardness, the increase ratio β / (α + β) of the crystallization rate of the solid milk surface, and the adhesive force were measured. The hardness of the solid milk sample of Example 2 was 68.8 N (breaking stress was 0.229 N / mm 2 ), the increase ratio β / (α + β) of the crystallization rate of the solid milk surface was 0.108, and the adhesive force was 6. It was 9N (peeling shear stress was 0.0172N / mm 2 ).
[規則91に基づく訂正 13.01.2022] 
(実施例3)
 温度、相対湿度、処理時間が、75℃、75%RH、80秒である加湿処理を施したことを除いて、実施例1と同様に固形乳試料を作成し、実施例3とした。実施例1と同様にして、硬度、固形乳表面の結晶化率の増加比β/(α+β)、及び付着力を測定した。実施例3の固形乳試料の硬度は75.2N(破断応力は0.251N/mm)、固形乳表面の結晶化率の増加比β/(α+β)は0.136、付着力は8.5N(剥離せん断応力は0.0212N/mm)であった。
[Correction under Rule 91 13.01.2022]
(Example 3)
A solid milk sample was prepared in the same manner as in Example 1 except that the humidification treatment was performed in which the temperature, relative humidity, and treatment time were 75 ° C., 75% RH, and 80 seconds, and the sample was designated as Example 3. In the same manner as in Example 1, the hardness, the increase ratio β / (α + β) of the crystallization rate of the solid milk surface, and the adhesive force were measured. The hardness of the solid milk sample of Example 3 was 75.2 N (breaking stress was 0.251 N / mm 2 ), the increase ratio β / (α + β) of the crystallization rate of the solid milk surface was 0.136, and the adhesive force was 8. It was 5N (peeling shear stress was 0.0212N / mm 2 ).
[規則91に基づく訂正 13.01.2022] 
(実施例4)
 温度、相対湿度、処理時間が、75℃、75%RH、95秒である加湿処理を施したことを除いて、実施例1と同様に固形乳試料を作成し、実施例4とした。実施例1と同様にして、硬度、固形乳表面の結晶化率の増加比β/(α+β)、及び付着力を測定した。実施例4の固形乳試料の硬度は90.1N(破断応力は0.300N/mm)、固形乳表面の結晶化率の増加比β/(α+β)は0.156、付着力は9.6N(剥離せん断応力は0.0239N/mm)であった。
[Correction under Rule 91 13.01.2022]
(Example 4)
A solid milk sample was prepared in the same manner as in Example 1 except that the humidification treatment was performed in which the temperature, relative humidity, and treatment time were 75 ° C., 75% RH, and 95 seconds, and the sample was designated as Example 4. In the same manner as in Example 1, the hardness, the increase ratio β / (α + β) of the crystallization rate of the solid milk surface, and the adhesive force were measured. The hardness of the solid milk sample of Example 4 was 90.1 N (breaking stress was 0.300 N / mm 2 ), the increase ratio β / (α + β) of the crystallization rate of the solid milk surface was 0.156, and the adhesive force was 9. It was 6N (peeling shear stress was 0.0239N / mm 2 ).
[規則91に基づく訂正 13.01.2022] 
(比較例1)
 温度、相対湿度、処理時間が、75℃、50%RH、30秒である加湿処理を施したことを除いて、実施例1と同様に固形乳試料を作成し、比較例1とした。実施例1と同様にして、硬度、固形乳表面の結晶化率の増加比β/(α+β)、及び付着力を測定した。比較例1の固形乳試料の硬度は32.7N(破断応力は0.109N/mm)、固形乳表面の結晶化率の増加比β/(α+β)は0.054、付着力は4.0N(剥離せん断応力は0.00995N/mm)であった。
[Correction under Rule 91 13.01.2022]
(Comparative Example 1)
A solid milk sample was prepared in the same manner as in Example 1 except that the humidification treatment was performed at a temperature, relative humidity, and a treatment time of 75 ° C., 50% RH, and 30 seconds, and used as Comparative Example 1. In the same manner as in Example 1, the hardness, the increase ratio β / (α + β) of the crystallization rate of the solid milk surface, and the adhesive force were measured. The hardness of the solid milk sample of Comparative Example 1 was 32.7 N (breaking stress was 0.109 N / mm 2 ), the increase ratio β / (α + β) of the crystallization rate of the solid milk surface was 0.054, and the adhesive force was 4. It was 0 N (peeling shear stress was 0.00995 N / mm 2 ).
[規則91に基づく訂正 13.01.2022] 
(比較例2)
 温度、相対湿度、処理時間が、75℃、75%RH、30秒である加湿処理を施したことを除いて、実施例1と同様に固形乳試料を作成し、比較例2とした。実施例1と同様にして、硬度、固形乳表面の結晶化率の増加比β/(α+β)、及び付着力を測定した。比較例2の固形乳試料の硬度は49.8N(破断応力は0.166N/mm)、固形乳表面の結晶化率の増加比β/(α+β)は0.074、付着力は6.0N(剥離せん断応力は0.0149N/mm)であった。
[Correction under Rule 91 13.01.2022]
(Comparative Example 2)
A solid milk sample was prepared in the same manner as in Example 1 except that the humidification treatment was performed at a temperature, relative humidity, and a treatment time of 75 ° C., 75% RH, and 30 seconds, and used as Comparative Example 2. In the same manner as in Example 1, the hardness, the increase ratio β / (α + β) of the crystallization rate of the solid milk surface, and the adhesive force were measured. The hardness of the solid milk sample of Comparative Example 2 was 49.8 N (breaking stress was 0.166 N / mm 2 ), the increase ratio β / (α + β) of the crystallization rate of the solid milk surface was 0.074, and the adhesive force was 6. It was 0 N (peeling shear stress was 0.0149 N / mm 2 ).
 図7は、実施例及び比較例に係る固形乳の表面の結晶化率の増加比β/(α+β)及び固形乳の破断応力(N/mm)の関係を示すグラフである。実施例1の結果を黒塗り△で示す。比較例1~2の結果を●で示す。実施例1では、結晶化率の増加比β/(α+β)が0.237であり、硬度は128N(破断応力は0.427N/mm)であった。比較例1及び比較例2では、硬度が32.7N~49.8N(破断応力が0.109N/mm~0.166N/mm)であったが、結晶化率の増加比β/(α+β)は0.054~0.074であった。 FIG. 7 is a graph showing the relationship between the increase ratio β / (α + β) of the crystallization rate on the surface of the solid milk and the breaking stress (N / mm 2 ) of the solid milk according to Examples and Comparative Examples. The results of Example 1 are shown in black. The results of Comparative Examples 1 and 2 are indicated by ●. In Example 1, the increase ratio β / (α + β) of the crystallization rate was 0.237, and the hardness was 128 N (breaking stress was 0.427 N / mm 2 ). In Comparative Example 1 and Comparative Example 2, the hardness was 32.7N to 49.8N (breaking stress was 0.109N / mm 2 to 0.166N / mm 2 ), but the increase ratio of the crystallization rate β / ( α + β) was 0.054 to 0.074.
 図8は、実施例及び比較例に係る固形乳の剥離せん断応力(N/mm)及び固形乳の表面の結晶化率の増加比β/(α+β)の関係を示すグラフである。実施例1~4の結果を黒塗り△で示す。比較例1~2の結果を●で示す。実施例1~4では、結晶化率の増加比β/(α+β)が0.108~0.237の範囲であるときに付着力が6.9N~14N(剥離せん断応力が0.0172N/mm~0.0349N/mm)と高い値を維持していた。比較例1~2では、結晶化率の増加比β/(α+β)が0.054~0.074であり、付着力が4.0N~6.0N(剥離せん断応力が0.00995N/mm~0.0149N/mm)であった。実施例1~4の剥離せん断応力(N/mm)及び固形乳の表面の結晶化率の増加比β/(α+β)を最小二乗法により近似したグラフが直線(y=0.1326x+0.0037)で示される。 FIG. 8 is a graph showing the relationship between the peel shear stress (N / mm 2 ) of solid milk and the increase ratio β / (α + β) of the crystallization rate of the surface of solid milk according to Examples and Comparative Examples. The results of Examples 1 to 4 are shown in black. The results of Comparative Examples 1 and 2 are indicated by ●. In Examples 1 to 4, when the increase ratio β / (α + β) of the crystallization rate is in the range of 0.108 to 0.237, the adhesive force is 6.9 N to 14 N (peeling shear stress is 0.0172 N / mm). It maintained a high value of 2 to 0.0349 N / mm 2 ). In Comparative Examples 1 and 2, the increase ratio β / (α + β) of the crystallization rate is 0.054 to 0.074, the adhesive force is 4.0 N to 6.0 N (the peel shear stress is 0.00995 N / mm 2 ). It was ~ 0.0149 N / mm 2 ). The graph in which the peel shear stress (N / mm 2 ) of Examples 1 to 4 and the increase ratio β / (α + β) of the crystallization rate on the surface of the solid milk are approximated by the least squares method is a straight line (y = 0.1326x + 0.0037). ).
 実施例の固形乳試料の剥離せん断応力は0.015N/mmを超えており、比較例より高いことが確認された。これにより、実施例の固形乳は、製造工程中の固形乳がベルトコンベアー等の製造装置の接触面へ付着する力を高めることができた。硬化処理における温度、湿度及び処理時間、特に加湿処理における温度、湿度及び処理時間を調整することで、得られる固形乳の付着力は、結晶化率の増加比β/(α+β)をXb、前記固形乳の平坦な面に対する剥離せん断応力をYb(N)としたときに、下記式(1)の範囲内で調節可能であった。 It was confirmed that the peel shear stress of the solid milk sample of the example exceeded 0.015 N / mm 2 , which was higher than that of the comparative example. As a result, the solid milk of the example was able to increase the force with which the solid milk in the manufacturing process adheres to the contact surface of the manufacturing apparatus such as a belt conveyor. By adjusting the temperature, humidity and treatment time in the curing treatment, particularly the temperature, humidity and treatment time in the humidification treatment, the adhesive force of the solid milk obtained is such that the increase ratio β / (α + β) of the crystallization rate is Xb. When the peel shear stress on the flat surface of the solid milk was Yb (N), it could be adjusted within the range of the following formula (1).
 0.1326Xb-0.0013<Yb<0.1326Xb+0.0087  ・・・(1) 0.1326Xb-0.0013 <Yb <0.1326Xb + 0.0087 ... (1)
(比較例3)
 圧縮成型においては、第1圧縮距離Lを5~15mm、第1圧縮速度Vを1~150mm/sとした第1圧縮を行った後、第2圧縮距離Lを0.1~1.6mm、第2圧縮速度Vを0.25~15mm/sとした第2圧縮を行った。上記で得られた粉乳圧縮成型物に、加湿温度80℃、50%RH、20秒の加湿処理を施し、さらに乾燥温度80℃の乾燥処理を施し、硬化処理が施された比較例3に係る固形乳の試料とした。比較例3の固形乳は、破断応力が0.739N/mm以下であり、剥離せん断応力は0.015N/mm以下であった。得られた固形乳の平坦な面に対する剥離せん断応力は、0.015N/mm以下であった。
(Comparative Example 3)
In compression molding, after performing the first compression with the first compression distance L 1 being 5 to 15 mm and the first compression speed V 1 being 1 to 150 mm / s, the second compression distance L 2 is 0.1 to 1. The second compression was performed at a ratio of 0.6 mm and a second compression rate V2 of 0.25 to 15 mm / s. The present invention relates to Comparative Example 3 in which the milk powder compression molded product obtained above was subjected to a humidification treatment at a humidification temperature of 80 ° C., 50% RH, and 20 seconds, and further subjected to a drying treatment at a drying temperature of 80 ° C. and a curing treatment. A solid milk sample was used. The solid milk of Comparative Example 3 had a breaking stress of 0.739 N / mm 2 or less and a peeling shear stress of 0.015 N / mm 2 or less. The peel shear stress on the flat surface of the obtained solid milk was 0.015 N / mm 2 or less.
<実施形態の一例>
 尚、本開示は以下のような構成であってもよい。以下の構成を有するならば、付着力を高め、扱いやすい強度を有することができる。
<Example of Embodiment>
The present disclosure may have the following configuration. If it has the following configuration, it can have an adhesive force and a strength that is easy to handle.
(1)食品粉体を圧縮成型した固形状の固形食品であって、前記固形食品の破断応力は0.067N/mm以上であり、平坦な面に対する剥離せん断応力が0.015N/mmを超える固形食品。 (1) A solid solid food obtained by compression-molding food powder, the breaking stress of the solid food is 0.067 N / mm 2 or more, and the peel shear stress on a flat surface is 0.015 N / mm 2 . More than solid food.
(2)前記固形食品は、一水和物結晶及び無水物結晶を含み、前記固形食品の表面における全重量に対する前記一水和物結晶の比率の、前記固形食品の内部の前記一水和物結晶の比率に対する差分である結晶化率の増加α(重量%)及び前記固形食品の表面における全重量に対する前記無水物結晶の比率の、前記固形食品の内部の前記無水物結晶の比率に対する差分である結晶化率の増加β(重量%)の和(α+β)と、前記結晶化率の増加β(重量%)との結晶化率の増加比β/(α+β)をXa、前記固形食品の平坦な面に対する剥離せん断応力をYa(N)としたときに、Xa及びYaが下記式(1A)を満たす、前記(1)に記載の固形食品。
 0.1326Xa-0.0013<Ya<0.1326Xa+0.0087  ・・・(1A)
(2) The solid food contains monohydrate crystals and anhydrous crystals, and the monohydrate inside the solid food is the ratio of the monohydrate crystals to the total weight on the surface of the solid food. The difference between the increase α (% by weight) of the crystallization rate, which is the difference with respect to the crystal ratio, and the ratio of the anhydrous crystals to the total weight on the surface of the solid food, with respect to the ratio of the anhydrous crystals inside the solid food. The increase ratio β / (α + β) of the crystallization rate of the sum (α + β) of the increase β (% by weight) of a certain crystallization rate and the increase β (% by weight) of the crystallization rate is Xa, and the flatness of the solid food. The solid food according to (1) above, wherein Xa and Ya satisfy the following formula (1A) when the peeling shear stress on the surface is Ya (N).
0.1326Xa-0.0013 <Ya <0.1326Xa + 0.0087 ... (1A)
 (3)前記結晶化率の増加比β/(α+β)が、0.3以下である、前記(2)に記載の固形食品。 (3) The solid food according to (2) above, wherein the increase ratio β / (α + β) of the crystallization rate is 0.3 or less.
(4)粉乳を圧縮成型した固形状の固形乳であって、前記固形乳の破断応力は0.067N/mm以上であり、平坦な面に対する剥離せん断応力が0.015N/mmを超える固形乳。 (4) A solid milk obtained by compression molding powdered milk, the breaking stress of the solid milk is 0.067 N / mm 2 or more, and the peel shear stress for a flat surface exceeds 0.015 N / mm 2 . Solid milk.
(5)前記固形乳は、α乳糖結晶及びβ乳糖結晶を含み、前記固形乳の表面における全重量に対する前記α乳糖結晶の比率の、前記固形乳の内部の前記α乳糖結晶の比率に対する差分である結晶化率の増加α(重量%)及び前記固形乳の表面における全重量に対する前記β乳糖結晶の比率の、前記固形乳の内部の前記β乳糖結晶の比率に対する差分である結晶化率の増加β(重量%)の和(α+β)と、前記結晶化率の増加β(重量%)との結晶化率の増加比β/(α+β)をXb、前記固形乳の平坦な面に対する剥離せん断応力をYb(N)としたときに、Xb及びYbが下記式(1)を満たす、前記(4)に記載の固形乳。
 0.1326Xb-0.0013<Yb<0.1326Xb+0.0087  ・・・(1)
(5) The solid milk contains α-lactose crystals and β-lactose crystals, and is the difference between the ratio of the α-lactose crystals to the total weight on the surface of the solid milk and the ratio of the α-lactose crystals inside the solid milk. An increase in a certain crystallization rate α (% by weight) and an increase in the crystallization rate, which is the difference between the ratio of the β lactose crystals to the total weight on the surface of the solid milk and the ratio of the β lactose crystals inside the solid milk. The increase ratio β / (α + β) of the sum of β (% by weight) and the increase β (% by weight) of the crystallization rate is Xb, and the peel shear stress on the flat surface of the solid milk. The solid milk according to the above (4), wherein Xb and Yb satisfy the following formula (1) when Yb (N) is used.
0.1326Xb-0.0013 <Yb <0.1326Xb + 0.0087 ... (1)
(6)前記結晶化率の増加比β/(α+β)が、0.3以下である、前記(5)に記載の固形乳。 (6) The solid milk according to (5) above, wherein the increase ratio β / (α + β) of the crystallization rate is 0.3 or less.
(7)食品粉体を圧縮成型した固形状の固形食品であって、前記固形食品の破断応力は0.067N/mm以上であり、平坦な面に対する剥離せん断応力が0.015N/mmを超える構成となるように、食品粉体を圧縮成型し、得られた食品粉体圧縮成形物に硬化処理を行うことによって形成された固形食品。 (7) A solid solid food obtained by compression-molding food powder, the breaking stress of the solid food is 0.067 N / mm 2 or more, and the peel shear stress on a flat surface is 0.015 N / mm 2 . A solid food formed by compression-molding a food powder and curing the obtained food powder compression-molded product so as to have a composition exceeding the above.
(8)粉乳を圧縮成型した固形状の固形乳であって、前記固形乳の破断応力は0.067N/mm以上であり、平坦な面に対する剥離せん断応力が0.015N/mmを超える構成となるように、粉乳を圧縮成型し、得られた粉乳圧縮成形物に硬化処理を行うことによって形成された固形乳。 (8) Solid milk obtained by compression molding powdered milk, the breaking stress of the solid milk is 0.067 N / mm 2 or more, and the peel shear stress for a flat surface exceeds 0.015 N / mm 2 . Solid milk formed by compression-molding powdered milk so as to have a constitution and subjecting the obtained powdered milk compression-molded product to a hardening treatment.
(9)食品粉体を圧縮成型した固形状の固形溶解食品であって、前記固形溶解食品の破断応力は0.067N/mm以上であり、平坦な面に対する剥離せん断応力が0.015N/mmを超える固形溶解食品。 (9) A solid solid-dissolved food obtained by compression-molding food powder, the solid-dissolved food has a breaking stress of 0.067 N / mm 2 or more, and a peel shear stress on a flat surface is 0.015 N / mm. Solid-dissolved foods over mm 2 .
(10)食品粉体を圧縮成型した固形状の固形食品であって、前記固形食品の破断応力は0.067N/mm以上であり、平坦な面に対する剥離せん断応力が0.015N/mmを超える、硬化処理によってタックが生じ得る固形食品。 (10) A solid solid food obtained by compression-molding food powder, the breaking stress of the solid food is 0.067 N / mm 2 or more, and the peel shear stress on a flat surface is 0.015 N / mm 2 . Solid foods that can be tacked by the hardening process.
 10 本体
 10A 第1面
 10B 第2面
 10C 側面
 10S 固形乳

 
10 Main body 10A 1st surface 10B 2nd surface 10C Side surface 10S Solid milk

Claims (6)

  1.  食品粉体を圧縮成型した固形状の固形食品であって、
     前記固形食品の破断応力は0.067N/mm以上であり、
     平坦な面に対する剥離せん断応力が0.015N/mmを超える
     固形食品。
    It is a solid food made by compression molding food powder.
    The breaking stress of the solid food is 0.067 N / mm 2 or more, and the breaking stress is 0.067 N / mm 2.
    A solid food having a peel shear stress of more than 0.015 N / mm 2 on a flat surface.
  2.  前記固形食品は、一水和物結晶及び無水物結晶を含み、
     前記固形食品の表面における全重量に対する前記一水和物結晶の比率の、前記固形食品の内部の前記一水和物結晶の比率に対する差分である結晶化率の増加α(重量%)及び前記固形食品の表面における全重量に対する前記無水物結晶の比率の、前記固形食品の内部の前記無水物結晶の比率に対する差分である結晶化率の増加β(重量%)の和(α+β)と、前記結晶化率の増加β(重量%)との結晶化率の増加比β/(α+β)をXa、前記固形食品の平坦な面に対する剥離せん断応力をYa(N)としたときに、Xa及びYaが下記式(1A)を満たす
     請求項1に記載の固形食品。
     0.1326Xa-0.0013<Ya<0.1326Xa+0.0087  ・・・(1A)
    The solid food contains monohydrate crystals and anhydrous crystals.
    The increase α (% by weight) of the crystallization rate, which is the difference between the ratio of the monohydrate crystals to the total weight on the surface of the solid food and the ratio of the monohydrate crystals inside the solid food, and the solid. The sum (α + β) of the increase β (% by weight) in the crystallization rate, which is the difference between the ratio of the anhydrous crystals to the total weight on the surface of the food and the ratio of the anhydrous crystals inside the solid food, and the crystals. When the increase ratio β / (α + β) of the crystallization rate with the increase β (% by weight) of the crystallization rate is Xa, and the peel shear stress on the flat surface of the solid food is Ya (N), Xa and Ya are The solid food according to claim 1, which satisfies the following formula (1A).
    0.1326Xa-0.0013 <Ya <0.1326Xa + 0.0087 ... (1A)
  3.  前記結晶化率の増加比β/(α+β)が、0.3以下である
     請求項2に記載の固形食品。
    The solid food according to claim 2, wherein the increase ratio β / (α + β) of the crystallization rate is 0.3 or less.
  4.  粉乳を圧縮成型した固形状の固形乳であって、
     前記固形乳の破断応力は0.067N/mm以上であり、
     平坦な面に対する剥離せん断応力が0.015N/mmを超える
     固形乳。
    It is a solid milk that is compressed and molded from powdered milk.
    The breaking stress of the solid milk is 0.067 N / mm 2 or more, and the breaking stress is 0.067 N / mm 2.
    Solid milk with peel shear stress over 0.015 N / mm 2 on a flat surface.
  5.  前記固形乳は、α乳糖結晶及びβ乳糖結晶を含み、
     前記固形乳の表面における全重量に対する前記α乳糖結晶の比率の、前記固形乳の内部の前記α乳糖結晶の比率に対する差分である結晶化率の増加α(重量%)及び前記固形乳の表面における全重量に対する前記β乳糖結晶の比率の、前記固形乳の内部の前記β乳糖結晶の比率に対する差分である結晶化率の増加β(重量%)の和(α+β)と、前記結晶化率の増加β(重量%)との結晶化率の増加比β/(α+β)をXb、前記固形乳の平坦な面に対する剥離せん断応力をYb(N)としたときに、Xb及びYbが下記式(1)を満たす
     請求項4に記載の固形乳。
     0.1326Xb-0.0013<Yb<0.1326Xb+0.0087  ・・・(1)
    The solid milk contains α-lactose crystals and β-lactose crystals.
    The increase α (% by weight) of the crystallization rate, which is the difference between the ratio of the α-lactose crystals to the total weight on the surface of the solid milk and the ratio of the α-lactose crystals inside the solid milk, and the surface of the solid milk. The sum (α + β) of the increase β (% by weight) of the crystallization rate, which is the difference between the ratio of the β lactose crystals to the total weight and the ratio of the β lactose crystals inside the solid milk, and the increase in the crystallization rate. When the increase ratio β / (α + β) of the crystallization rate with β (% by weight) is Xb and the peel shear stress on the flat surface of the solid milk is Yb (N), Xb and Yb are given by the following equation (1). ). The solid milk according to claim 4.
    0.1326Xb-0.0013 <Yb <0.1326Xb + 0.0087 ... (1)
  6.  前記結晶化率の増加比β/(α+β)が、0.3以下である
     請求項5に記載の固形乳。

     
    The solid milk according to claim 5, wherein the increase ratio β / (α + β) of the crystallization rate is 0.3 or less.

PCT/JP2021/009958 2020-07-31 2021-03-12 Solid food and solid milk WO2022024446A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022540010A JPWO2022024446A1 (en) 2020-07-31 2021-03-12
CN202180058346.5A CN116056583A (en) 2020-07-31 2021-03-12 Solid food and solid milk

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-131183 2020-07-31
JP2020131183 2020-07-31

Publications (2)

Publication Number Publication Date
WO2022024446A1 WO2022024446A1 (en) 2022-02-03
WO2022024446A9 true WO2022024446A9 (en) 2022-04-14

Family

ID=80037869

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/009958 WO2022024446A1 (en) 2020-07-31 2021-03-12 Solid food and solid milk

Country Status (3)

Country Link
JP (1) JPWO2022024446A1 (en)
CN (1) CN116056583A (en)
WO (1) WO2022024446A1 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2005260485B2 (en) * 2004-07-02 2010-12-02 Meiji Dairies Corporation Solid milk and method of producing the same
TWI429401B (en) * 2010-06-13 2014-03-11 Meiji Co Ltd Solid milk, and the method of manufacturing thereof

Also Published As

Publication number Publication date
JPWO2022024446A1 (en) 2022-02-03
WO2022024446A1 (en) 2022-02-03
CN116056583A (en) 2023-05-02

Similar Documents

Publication Publication Date Title
JP7114818B2 (en) solid milk
JP2022063293A (en) Solid food product, food powder compression molded article, solid milk, and powdered milk compression molded article
JP7047189B2 (en) Solid milk
WO2022024446A9 (en) Solid food and solid milk
WO2022024443A9 (en) Solid food and solid milk
WO2022024442A1 (en) Solid food and solid milk
WO2022024441A1 (en) Solid food and solid milk
JP7047187B2 (en) Solid milk and milk powder compression moldings
WO2022024447A1 (en) Solid food and solid milk
JP7047188B1 (en) Solid food
JP7023424B2 (en) Solid milk

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21850231

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022540010

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21850231

Country of ref document: EP

Kind code of ref document: A1