WO2022024302A1 - Machine learning data generation device, machine learning device, machine learning model generation method, and program - Google Patents

Machine learning data generation device, machine learning device, machine learning model generation method, and program Download PDF

Info

Publication number
WO2022024302A1
WO2022024302A1 PCT/JP2020/029255 JP2020029255W WO2022024302A1 WO 2022024302 A1 WO2022024302 A1 WO 2022024302A1 JP 2020029255 W JP2020029255 W JP 2020029255W WO 2022024302 A1 WO2022024302 A1 WO 2022024302A1
Authority
WO
WIPO (PCT)
Prior art keywords
parameter
series information
machine learning
new
label
Prior art date
Application number
PCT/JP2020/029255
Other languages
French (fr)
Japanese (ja)
Inventor
良平 鈴木
剛 横矢
諒 増村
浩貴 太刀掛
Original Assignee
株式会社安川電機
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社安川電機 filed Critical 株式会社安川電機
Priority to JP2022539902A priority Critical patent/JP7408815B2/en
Priority to PCT/JP2020/029255 priority patent/WO2022024302A1/en
Publication of WO2022024302A1 publication Critical patent/WO2022024302A1/en
Priority to US18/088,766 priority patent/US20230134186A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • G06N3/094Adversarial learning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/045Combinations of networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/0475Generative networks

Definitions

  • the present invention relates to a machine learning data generation device, a machine learning device, a machine learning model generation method, and a program.
  • the problem to be solved by the present invention is machine learning data appropriately labeled by specifying parameters representing the internal state of the target device by using physical simulation without actually operating the target device. It is an object of the present invention to provide a machine learning data generation device, a machine learning device, a machine learning model generation method, and a program for acquiring the above.
  • the machine learning data generation device includes a real-time series information acquisition unit that acquires real-time series information indicating an operating state of a target device, which is a machine or an electric circuit, in association with a predetermined label.
  • a physical simulation execution unit that executes a physical simulation that generates multiple virtual time-series information by sequentially calculating virtual states after a unit time based on each of multiple parameters that represent the internal state of the target device.
  • One or more of the plurality of parameters are specified based on the plurality of virtual time series information and the real time series information, and are specified by the parameter specifying unit and the parameter specifying unit associated with the label.
  • Machine learning data that generates new machine learning data by associating the virtual time series information generator that generates series information with the new parameters and the labels that correspond to the virtual time series information that corresponds to the new internal state. It has a generator and a generator.
  • the machine learning data generation device further has a parameter storage unit in which the parameters that can be taken for each type of the label are stored in association with the label, and the parameter generation unit. Generates the new parameter based on the parameter stored in the parameter storage unit.
  • the parameter generation unit is based on the relationship between the new parameter and the parameter group corresponding to each label stored in the parameter storage unit. , The label corresponding to the new parameter is determined.
  • the label indicates whether the operating state of the target device is normal or abnormal, and the parameter generation unit is abnormal. Selectively generate the new parameter corresponding to the label indicating that.
  • the new parameter is represented by a position on a parameter distribution diagram showing the distribution of the parameter to which the label is associated, and the parameter generation unit. Generates a parameter represented by a position where a predetermined number of the parameters exist within a predetermined range on the parameter distribution map as the new parameter.
  • the virtual time series information generation unit has the new state based on the result of the physical simulation executed by using the new parameter. It has GAN (Generative Adversarial Networks) that generates the above-mentioned virtual time series information.
  • GAN Geneative Adversarial Networks
  • the machine learning device inputs the virtual time series information based on the machine learning data generation device according to any one of the above and the machine learning data, and displays the label. It has a learning unit for learning a neural network model, which is a neural network as an output.
  • real-time series information indicating the operating state of a target device which is a machine or an electric circuit is acquired in association with a predetermined label.
  • a physical simulation that generates a plurality of virtual time-series information is executed by sequentially calculating the virtual state after a unit time based on each of the acquisition step and a plurality of parameters representing the internal state of the target device. Based on the physical simulation execution step, the plurality of virtual time series information, and the real time series information, one or more of the plurality of parameters are specified, and the parameter specifying step associated with the label and the parameter.
  • the new parameter and the parameter generation step that generates the label corresponding to the new parameter, and the physical simulation using the new parameter are executed to perform a new internal state.
  • the virtual time series information generation step for generating the virtual time series information corresponding to the new internal state and the virtual time series information corresponding to the new internal state are associated with the new parameter and the corresponding label to generate new machine learning data. It has a machine learning data generation step to be generated, and a learning step to train a neural network model, which is a neural network that inputs the virtual time series information and outputs the label based on the machine learning data.
  • the program according to another aspect of the present invention includes a real-time series information acquisition step of acquiring real-time series information indicating an operating state of a target device which is a machine or an electric circuit in association with a predetermined label, and the above-mentioned.
  • a physical simulation execution step that executes a physical simulation that generates multiple virtual time-series information by sequentially calculating virtual states after a unit time based on each of multiple parameters that represent the internal state of the target device.
  • One or more of the plurality of parameters are specified based on the plurality of virtual time series information and the real time series information, and are specified by the parameter specifying step and the parameter specifying step to be associated with the label.
  • a virtual time corresponding to a new internal state by executing the physical simulation using the new parameter and the parameter generation step of generating the label corresponding to the new parameter and the new parameter.
  • Machine learning data that generates new machine learning data by associating the virtual time series information generation step that generates series information with the virtual time series information corresponding to the new internal state and the label corresponding to the new parameter.
  • a computer is made to execute a generation step and a learning step of learning a neural network model, which is a neural network that inputs the virtual time series information and outputs the label based on the machine learning data.
  • appropriate machine learning data can be easily obtained by specifying a parameter representing the internal state of the target device and using the interpolated value.
  • FIG. 1 is a functional block diagram showing the entire configuration of the machine learning device 100 including the machine learning data generation device 102 according to the first embodiment of the present invention.
  • the "machine learning data generator” refers to a device that generates machine learning data, which is teacher data used for learning in a machine learning model in which supervised learning is performed, and the “machine learning device” is used. Represents a device that performs machine learning model learning using machine learning data.
  • the machine learning device 100 and the machine learning data generation device 102 may be physically prepared as independent devices, but the present invention is not limited to this.
  • the machine learning device 100 and the machine learning data generation device 102 may be incorporated as a part of another machine or device, and may be appropriately configured by using the physical configuration of the other machine or device as needed. It may be one. More specifically, the machine learning device 100 and the machine learning data generation device 102 may be implemented by software using a general computer.
  • the programs for operating the computer as the machine learning device 100 and the machine learning data generation device 102 may be integrated or may be executed independently. Further, the program may be incorporated into other software as a module. Further, the machine learning device 100 and the machine learning data generation device 102 may be constructed on a so-called server computer, and only the functions thereof may be provided to a remote location via a public telecommunications line such as the Internet.
  • FIG. 2 is a diagram showing an example of the hardware configuration of the machine learning device 100 and the machine learning data generation device 102.
  • FIG. 2 describes a general computer, which includes a CPU 202 (Central Processing Unit) as a processor, a RAM 204 (Random Access Memory) as a memory, an external storage device 206, a display device 208, an input device 210, and an I / O 212. (Inpur / Output) is connected by the data bus 214 so that electric signals can be exchanged with each other.
  • the computer hardware configuration shown here is an example, and other configurations may be used.
  • the external storage device 206 is a device such as an HDD (Hard Disk Drive) or SSD (Solid State Drive) that can statically record information.
  • the display device 208 is a CRT (Cathode Ray Tube), a so-called flat panel display, or the like, and displays an image.
  • the input device 210 is one or a plurality of devices for inputting information by the user, such as a keyboard, a mouse, and a touch panel.
  • the I / O 212 is one or more interfaces for a computer to exchange information with an external device.
  • the I / O 212 may include various ports for wired connection and a controller for wireless connection.
  • the program for making the computer function as the machine learning device 100 and the machine learning data generation device 102 is stored in the external storage device 206, read out in the RAM 204 as needed, and executed by the CPU 202. That is, the RAM 204 stores a code for realizing various functions shown as a functional block in FIG. 1 by being executed by the CPU 202. Even if the program is recorded and provided on an information recording medium such as an optical disk, a magneto-optical disk, or a flash memory that can be read by a computer, the program is provided via an external information communication line such as the Internet via the I / O 212. May be done.
  • the machine learning data generation device 102 has, as its functional configuration, a real time series information acquisition unit 106, a virtual time series information generation unit 110 including a physical simulation execution unit 108, a parameter identification unit 112, and a parameter storage unit 114.
  • the parameter generation unit 116 including the parameter generation unit 116 and the machine learning data generation unit 118 are included.
  • the machine learning device 100 includes a machine learning data generation device 102 and a learning unit 120.
  • the machine learning data generation device 102 is prepared in line with the target device 104, which will be described later. Further, the machine learning device 100 trains the machine learning model used by the target device 104.
  • the real-time series information acquisition unit 106 acquires real-time series information indicating the operating state of the target device 104, which is a machine or an electric circuit, in association with a predetermined label.
  • the target device 104 referred to in the present specification is a device that performs work that exerts some physical action on the target object 316.
  • the target device 104 is a ball screw mechanism 300 that linearly moves the target object 316 will be described with reference to FIG. Since the ball screw mechanism 300 itself is known, the explanation is kept to a minimum.
  • the ball screw mechanism 300 includes a sensor 302, a control unit 304, a servo amplifier 306, a servo motor 308, a ball screw shaft 310, a ball screw nut 312, a table 314, and the like.
  • the sensor 302 acquires real-time series information indicating the operating state of each part of the ball screw mechanism 300.
  • the sensor 302 is a torque sensor that detects the torque of the servomotor 308.
  • the sensor 302 is an angle sensor that acquires the rotation angle of the ball screw shaft 310 or the servomotor 308 as real-time series information
  • the position sensor that acquires the position of the table 314 as real-time series information
  • the control unit 304 is the servomotor 308. It may be a voltage sensor or a current sensor that acquires the voltage and current output to the sensor as real-time series information.
  • the sensor 302 provides real-time series information on changes in the rotational torque of the servomotor 308 shown in FIGS. 4 (a), 5 (a), 6 (a), and 7 (a). Get as.
  • Each figure is a diagram showing the rotational torque of the servomotor 308 when the operation of moving the table 314 twice in one direction and then moving twice in the opposite direction is repeatedly executed at 1-second intervals.
  • FIG. 4A is real time series information (hereinafter referred to as normal data) when the ball screw mechanism 300, which is the target device 104, is in a normal state.
  • FIGS. 5 (a), 6 (a), and 7 (a) show real-time series information when the ball screw mechanism 300, which is the target device 104, is in an abnormal state (hereinafter, abnormality data 1, respectively). 2 and 3).
  • the control unit 304 is a computer that controls the servo amplifier 306 that outputs current, voltage, etc. to the servo motor 308.
  • the control unit 304 may acquire the output of the sensor 302 and perform feedback control with respect to the control to the servo amplifier 306.
  • the servomotor 308 rotates the ball screw shaft 310 based on the current and voltage acquired from the servo amplifier 306 under the control of the control unit 304.
  • the ball screw nut 312 is fitted to the ball screw shaft 310, and the ball screw shaft 310 rotates to move in the axial direction of the ball screw shaft 310.
  • the object to be moved 316 is arranged and fixed to the ball screw nut 312 to move the object 316 in the axial direction of the ball screw shaft 310.
  • the real time series information acquisition unit 106 acquires real time series information representing the operating state of the ball screw mechanism 300 from the sensor 302 included in the ball screw mechanism 300. For example, the real-time series information acquisition unit 106 acquires the rotation angle of the ball screw shaft 310 or the servomotor 308 as real-time series information. Further, the real time series information acquisition unit 106 acquires a label in association with the real time series information.
  • the label is, for example, a label indicating that the operating state represented by the associated real-time series information is normal or abnormal when the operating state represents the normal or abnormal operation of the target device 104.
  • the real-time series information acquisition unit 106 obtains the real-time series information shown in FIGS. 4 (a), 5 (a), 6 (a), and 7 (a) from the target device 104. get. Further, the real-time series information acquisition unit 106 acquires a label indicating the state of the ball screw mechanism 300 when the real-time series information is acquired in association with the real-time series information. In the above example, the real-time series information acquisition unit 106 acquires a label indicating that it is normal in association with the real-time series information shown in FIG. 4 (a). Further, the real-time series information acquisition unit 106 acquires a label indicating that the information is abnormal in association with the real-time series information shown in FIGS. 5 (a), 6 (a), and 7 (a).
  • the label associated with the acquired real-time series information may be determined by the judgment of the user who has seen the real-time series information, or by the judgment of the user according to the inspection result of a given inspection device. It may be decided without. Further, the label may be a label indicating excellent, good, acceptable or unacceptable when the operating state represented by the associated real time series information is evaluated stepwise.
  • the target device 104 is not limited to the ball screw mechanism 300 as long as it is a device that acquires real-time series information indicating the operating state of the target device 104.
  • the target device 104 includes parts and parts pickup, parts mounting (for example, fitting a bearing into a housing, screw fastening, etc.), packing (boxing of foods such as confectionery, etc.), and various processing (deburring, etc.). It may be an automatic machine that repeatedly and continuously performs various operations such as metal processing such as polishing, molding and cutting of soft materials such as food, resin molding and laser processing), painting and cleaning.
  • the virtual time series information generation unit 110 includes the physics simulation execution unit 108.
  • the physics simulation execution unit 108 generates a plurality of virtual time-series information by sequentially calculating virtual states after a unit time based on each of a plurality of parameters representing the internal states of the target device 104. To execute.
  • the virtual time-series information generation unit 110 executes a physics simulation by the physics simulation execution unit 108, and generates virtual time-series information corresponding to the internal state.
  • the physics simulation execution unit 108 is constructed as specifically conforming to the target device 104 that performs a specific physical operation.
  • the content of the physical operation and the use of the target device 104 are not particularly limited.
  • the physics simulation execution unit 108 according to the present embodiment executes the physics simulation based on the model of the ball screw mechanism 300.
  • the virtual model of the ball screw mechanism 300 includes the motor rotation angle ( ⁇ m ), the position of the ball screw nut 312 in the ball screw axis 310 direction at time t (x t ), the rotation torque (T m ) of the servo motor 308, and the rotation.
  • Parameters such as D r ), viscous friction coefficient (C t ) of linear motion guide, diameter (R) of ball screw shaft 310, and axial rigidity (K t ) of drive mechanism are included.
  • the physics simulation execution unit 108 simulates the physical operation performed by the target device 104 in the virtual space by operating the virtual model including the above parameters according to the virtual operation command.
  • the behavior of each part of the ball screw mechanism 300 in the virtual space naturally reproduces the situation when the actual ball screw mechanism 300 is operated.
  • the physics simulation execution unit 108 is constructed to output each parameter after a unit time using the above parameters at a certain point in time.
  • the parameters representing the internal state include parameters that change with time. For example, when the servomotor 308 applies torque to the ball screw shaft 310, the ball screw shaft 310 rotates and the position of the ball screw nut 312 in the direction of the ball screw shaft 310 changes.
  • the physics simulation execution unit 108 outputs each parameter after a unit time using the above parameters at a certain point in time. Then, the physics simulation execution unit 108 uses each parameter after the unit time and further outputs each parameter after the unit time. In this way, the physics simulation execution unit 108 performs the calculation using each parameter after the unit time, and then using the parameter that changes sequentially by using the parameter in the calculation. Then, the virtual time-series information generation unit 110 generates virtual time-series information corresponding to the internal state of the target device 104 by integrating each parameter for each unit time output by the physics simulation execution unit 108 on the time axis. do.
  • FIG. 4B shows virtual time-series information of the torque of the servomotor 308 generated when the viscous friction coefficient D r of the rotary system is 0.003 and the viscous friction coefficient C t of the linear motion guide is 50.
  • FIG. 5B is virtual time-series information of the torque of the servomotor 308 generated when the viscous friction coefficient D r of the rotary system is 0.0035 and the viscous friction coefficient C t of the linear motion guide is 1000000.
  • FIG. 6B is virtual time-series information of the torque of the servomotor 308 generated when the viscous friction coefficient D r of the rotary system is 0.3 and the viscous friction coefficient C t of the linear motion guide is 50.
  • FIG. 7B is virtual time-series information of the torque of the servomotor 308 generated when the viscous friction coefficient D r of the rotary system is 0.1 and the viscous friction coefficient C t of the linear motion guide is 1000. be.
  • the physics engine used for the physics simulation may be one that corresponds to the assumed physical work.
  • a physics engine capable of performing collision determination and dynamic simulation may be selected or constructed. Different physics will, of course, select or build a physics engine that simulates fluid simulations, fracture simulations, and all other physics.
  • the physics simulation execution unit 108 outputs an electric signal represented by a voltage or current that is sequentially changed from the electronic circuit based on a command input to the electronic circuit. , May be generated as virtual time series information.
  • the parameter specifying unit 112 identifies one or more parameters from a plurality of parameters based on a plurality of virtual time series information and real time series information indicating an operating state, and associates them with a label. Specifically, for example, first, the virtual time-series information generation unit 110 randomly creates a value within the range of values that each parameter can physically take, and generates virtual time-series information based on the created parameters. The parameter specifying unit 112 has the smallest error with the real time series information acquired from the target device 104 by the real time series information acquisition unit 106 from among the plurality of virtual time series information generated by the virtual time series information generation unit 110. Identify virtual time series information.
  • the parameter specifying unit 112 specifies the parameter corresponding to the specified virtual time series information. Further, the parameter specifying unit 112 associates the specified virtual time series information with the same label as the label associated with the real time series information acquired from the target device 104.
  • the parameter specifying unit 112 has the real time series information of the torque of the servo motor 308 shown in FIG. 4 (a) and the virtual time series information of the smallest error of the torque of the servo motor 308 shown in FIG. 4 (b). Identify virtual time series information. Then, the parameter specifying unit 112 is associated with the real time series information of the torque of the servo motor 308 shown in FIG. 4 (a) and the virtual time series information of the torque of the servo motor 308 shown in FIG. 4 (b). Associate the label "normal".
  • the parameter specifying unit 112 the real time series information shown in FIGS. 5 (a), 6 (a), and 7 (a) and the virtual time series information having the smallest error are sequentially shown in FIG. 5 (b). ), The virtual time series information shown in FIGS. 6 (b) and 7 (b) is specified. Further, the parameter specifying unit 112 refers to the virtual time series information shown in FIGS. 5 (b), 6 (b), and 7 (b) with respect to FIGS. 5 (a), 6 (a), and 7 (b). Associate the label "abnormal" associated with (a).
  • the parameter specifying unit 112 may specify two or more parameters.
  • the plurality of virtual time-series information generated by the virtual time-series information generation unit 110 may include a plurality of virtual time-series information having an error as small as that of the real time-series information.
  • the parameter specifying unit 112 specifies each parameter corresponding to the plurality of virtual time series information. Further, the parameter specifying unit 112 associates the plurality of virtual time series information with the same label as the label associated with the real time series information acquired from the target device 104.
  • the parameter storage unit 114 stores the specified parameter in association with the label associated with the parameter. Specifically, the parameter storage unit 114 associates the real time series information acquired by the real time series information acquisition unit 106 with the parameters specified as the parameters corresponding to each real time series information and each real time series information. The attached label and the associated label are stored.
  • the parameter storage unit 114 has the real time series information shown in FIGS. 4 (a), 5 (a), 6 (a), and 7 (a), and the real time series information.
  • the values 1 to 4 in the real-time series information field in FIG. 8 correspond to the real-time series information shown in FIGS. 4 (a), 5 (a), 6 (a), and 7 (a), respectively. do.
  • FIG. 9 is a diagram showing the relationship between the viscous friction coefficient D r of the rotary system stored in the parameter storage unit 114, the viscous friction coefficient C t of the linear motion guide, and the label.
  • each real time-series information shown in FIG. 9 is all real-time-series information acquired by the real-time-series information acquisition unit 106, and includes virtual time-series information generated by the virtual time-series information generation unit 110. No. As shown in FIG.
  • the real-time series information in which different labels are associated is , Is distributed unevenly in a predetermined area.
  • a diagram showing the distribution of parameters associated with each label as shown in FIG. 9 is referred to as a parameter distribution map.
  • the real-time series information (normal data) associated with the "normal” label is distributed inside the elliptical region of FIG. 9, and the real-time series information (abnormal data 1, abnormal data 1) associated with the "abnormal” label is distributed. 2 and 3) are distributed outside the elliptical region of FIG.
  • the distribution is such that the viscous friction coefficient D r of the rotary system of the ball screw mechanism 300 and the viscous friction of the linear motion guide are determined according to whether the ball screw mechanism 300 is operating normally or in an abnormal state. This is due to the difference in the relationship with the coefficient C t .
  • the parameters that can be associated with the normal label are the parameters that are distributed inside the elliptical region of FIG. 9, and the parameters that can be associated with the abnormal label are the parameters that are distributed outside the elliptical region of FIG. Is.
  • the parameter storage unit 114 stores the parameters that can be taken for each type of label in association with the label.
  • the boundaries of the real time series information associated with different labels are shown by ellipses, but the boundaries may be set by any method. For example, the position where the sum of the square of the distance to the closest normal data and the square of the distance to the closest abnormal data is the smallest may be set as the boundary. Further, the position of the boundary may be set according to the number of normal data or abnormal data existing within a predetermined distance. Also, the boundaries do not have to be clearly determined.
  • the parameter generation unit 116 generates a new parameter and a label corresponding to the new parameter based on the parameter specified by the parameter specifying unit 112. For example, the parameter generation unit 116 generates new parameters based on the parameters stored in the parameter storage unit 114 as shown in FIGS. 8 and 9.
  • the parameter generation unit 116 generates the viscous friction coefficient D r of the rotational system corresponding to the position where the data does not exist and the viscous friction coefficient C t of the linear motion guide as new parameters in the parameter distribution map. ..
  • the parameter is a parameter representing a new internal state that is not reproduced in the actual ball screw mechanism 300.
  • the parameter generation unit 116 determines the label corresponding to the new parameter according to the relationship between the new parameter and the parameter group corresponding to each label stored in the parameter storage unit 114. Specifically, for example, the parameter group existing inside the ellipse of FIG. 9 corresponds to the "normal" label, and the parameter group existing outside the ellipse of FIG. 9 corresponds to the "abnormal” label. Therefore, the parameter generation unit 116 determines that the label corresponding to the new parameter is "normal” when the generated new parameter is inside the ellipse of FIG. Further, the parameter generation unit 116 determines that the label corresponding to the new parameter is "abnormal” when the generated new parameter exists outside the ellipse of FIG.
  • the parameter generation unit 116 evaluates the relationship between the new parameter and each label stored in the parameter storage unit 114 and the corresponding parameter group, and based on the evaluation result, the new parameter and the corresponding label are generated. You may decide. For example, the parameter generation unit 116 may calculate a probability distribution function with a position in the parameter distribution map as a variable for each label.
  • the parameter generation unit 116 may determine the label having the highest probability of being associated with the newly generated parameter as the label corresponding to the new parameter, based on the probability distribution function. As a result, even when the boundary line shown in FIG. 9 cannot be clearly determined, an appropriate label can be determined as a label corresponding to the new parameter.
  • the parameter generation unit 116 may evaluate the number of parameters existing within a predetermined distance centered on the new parameter for each label.
  • the parameter generation unit 116 evaluates the number of parameters associated with the normal label and the abnormal label existing within a predetermined distance centered on the new parameter. Then, the label associated with the large number of parameters may be determined as the label corresponding to the new parameter.
  • the parameter generation unit 116 may selectively generate a new parameter corresponding to the label indicating that it is abnormal. Specifically, for example, the parameter generation unit 116 may selectively generate new parameters so that the positions of the new parameters on the parameter distribution map shown in FIG. 9 are located outside the ellipse. In the parameter distribution map, the parameters located outside the ellipse are associated with the label representing "abnormality". Therefore, the new parameters generated are associated with a label indicating anomalies. Normally, it is often more difficult to collect abnormal data than normal data because the state in which the target device operates abnormally is not reproducible. Abnormality data can be efficiently collected by selectively generating a new parameter corresponding to the label indicating that the parameter generation unit 116 is abnormal.
  • the parameter generation unit 116 may generate a parameter represented by a position where a predetermined number of parameters exist within a predetermined range on the parameter distribution map as a new parameter.
  • the new parameter is represented by a position on the parameter distribution map that represents the distribution of the parameter to which the label is associated.
  • the parameter generation unit 116 determines the position where a predetermined number of parameters exist in the surroundings as the position of the newly generated parameter.
  • the viscous friction coefficient (D r ) of the rotating system is in the range of ⁇ 0.1
  • the viscous friction coefficient (C t ) of the linear motion guide is in the range of ⁇ 1000 around the position of the new parameter.
  • the parameter generation unit determines the position of the newly generated parameter so that there are 10 or more parameters. This makes it possible to prevent new parameters from being generated at positions extremely distant from the positions of the parameters specified based on the real time series information. Therefore, new parameters that are more realistic are generated.
  • the above range and number are examples. New parameters may be generated such that a predetermined number of parameters exist within a predetermined distance centered on the position of the new parameter.
  • the machine learning data generation unit 118 generates new machine learning data by associating the virtual time series information corresponding to the new internal state with the new parameter and the corresponding label. Specifically, the machine learning data generation unit 118 is determined by the virtual time series information generated in the virtual time series information generation unit 110 based on the new parameters generated by the parameter generation unit 116 and the parameter generation unit 116. New machine learning data is generated by associating the relevant parameter with the corresponding label.
  • the machine learning data generation unit 118 may include the GAN1000.
  • GAN1000 Geneative Adversarial Networks
  • the GAN1000 will be briefly described with reference to FIG. Since the GAN1000 is known, the explanation is kept to a minimum.
  • the GAN1000 has the configuration shown in FIG. 10 and includes two neural networks called a generator 1002 and a discriminator 1004.
  • the generator 1002 receives the input of the virtual time series information and the predetermined noise, and outputs the virtual time series information including the noise.
  • both the virtual time-series information including noise generated by the generator 1002 and the real-time-series information acquired from the target device 104 are input to the discriminator 1004.
  • the discriminator 1004 is not informed whether the input data is virtual time series information or real time series information.
  • the output of the discriminator 1004 determines whether the input data is virtual time-series information or real-time-series information. Then, the GAN1000 correctly discriminates between some virtual time-series information and real-time-series information prepared in advance by the discriminator 1004, and in the generator 1002, both of them are used in the discriminator 1004. Reinforcement learning is repeated so that it cannot be discriminated.
  • the discriminator 1004 will not be able to distinguish between the two (for example, if the same number of virtual time series information and real time series information are prepared, the correct answer rate will be 50%).
  • the generator 1002 outputs the virtual time-series information as if it were the actual real-time-series information, which is indistinguishable from the real-time-series information, based on the virtual time-series information. Therefore, the machine learning data generation unit 118 generates machine learning data based on the virtual time series information including noise generated by using the generator 1002 and the discriminator 1004 for which the above learning has been executed. You may.
  • the virtual time series information shown in FIGS. 11 (a), 12 (a), 13 (a), and 14 (a) is input to the GAN 1000 included in the machine learning data generation unit 118.
  • the virtual time series information including the noise shown in FIGS. 11 (b), 12 (b), 13 (b), and 14 (b) is output.
  • FIGS. 11 (a), 12 (a), 13 (a), and 14 (a) are shown in FIGS. 4 (b), 5 (b), 6 (b), and 7 (a), respectively.
  • This is the virtual time series information shown in b). Since the virtual time-series information generated by the virtual time-series information generation unit 110 does not include noise, it has a shape that is difficult to acquire from the actual target device 104. However, it is difficult at first glance to distinguish the virtual time-series information including noise generated by the GAN1000 from the real-time-series information. That is, according to GAN1000, it is possible to generate more realistic virtual time series information.
  • the machine learning data generator 102 makes it easy to obtain a large number of different machine learning data within a practical time and cost range. Even if the failure that occurs in the target device is infrequent, when the internal state of the target device in which the failure of the mode has occurred is represented by executing the physical simulation using the parameters that reflect the mode of the failure. Series information can be used as training data.
  • the machine learning device 100 includes the above-mentioned machine learning data generation device 102 and a learning unit 120.
  • the learning unit 120 trains a neural network model, which is a neural network that inputs virtual time series information and outputs labels based on machine learning data.
  • n machine learning data generated by the machine learning data generation unit 118 are input to the neural network.
  • n is a sufficient number for machine learning and is appropriately set.
  • i is an integer from 1 to n
  • the machine learning data i includes virtual time series information i and a label i.
  • virtual time series information i is input and a score is calculated.
  • the score is a value indicating the degree of agreement with a predetermined label (“normal” or “abnormal” label in the above example), and is, for example, an output value of CNN.
  • the comparison result (hereinafter, error) between the label i input to the learning unit 120 in association with the virtual time series information i and the score is specified.
  • the error may be data having a value of 0 or more and 1 or less.
  • the error may be, for example, data that takes 1 as a value when the calculated score and the label i match, and 0 as a value when they do not match.
  • the weighting factor between each node of the CNN is updated by, for example, the error back propagation method.
  • the neural network changes i from 1 to n and repeatedly updates the weighting coefficient each time machine learning data is input. As a result, the learning of the learning unit 120 is executed.
  • FIG. 15 is a flow chart of a machine learning data generation method and a machine learning method by the machine learning device 100 and the machine learning data generation device 102 according to the present embodiment.
  • S1502 to S1514 correspond to the machine learning data generation method
  • S1502 to S1516 correspond to the machine learning method.
  • the real-time series information acquisition unit 106 acquires real-time series information indicating the operating state of the target device 104, which is a machine or an electric circuit, in association with a predetermined label (S1502).
  • the physics simulation execution unit 108 generates a plurality of virtual time-series information by sequentially calculating the virtual state after a unit time based on each of the plurality of parameters representing the internal state of the target device 104. Perform a physics simulation.
  • the virtual time-series information generation unit 110 generates virtual time-series information corresponding to the internal state (S1504).
  • the parameter specifying unit 112 identifies one or more parameters from the plurality of parameters based on the plurality of virtual time series information generated in S1504 and the real time series information indicating the operating state, and associates them with the label. (S1506).
  • the identified parameter and the label associated with the parameter are stored in the parameter storage unit 114. Further, at this time, by calculating the boundary of each label on the parameter distribution map and the probability distribution function, the parameters that can be taken for each type of label may be stored in the parameter storage unit 114 in association with the label. ..
  • the parameter generation unit 116 generates a new parameter and a label corresponding to the new parameter based on the parameter specified by the parameter specifying unit 112 (S1508).
  • the virtual time-series information generation unit 110 executes a physics simulation using the new parameters generated in S1508, and generates virtual time-series information corresponding to the new internal state (S1510).
  • the machine learning data generation unit 118 associates a label with the virtual time series information corresponding to the new internal state generated in S1510, and generates new machine learning data (S1512). The generated machine learning data is sequentially accumulated.
  • S1514 it is determined whether or not the number of accumulated machine learning data is sufficient. If the number of machine learning data is not sufficient (S1514: N), the process returns to S1508 and the machine learning data is repeatedly generated. If the number of records is sufficient (S1514: Y), the process proceeds to S1518.
  • the target number of required machine learning data may be set in advance. Alternatively, the result of machine learning in S1516 may be evaluated, and if the learning is not sufficient, S1508 to S1514 may be executed again to additionally generate machine learning data. The evaluation of the machine learning result may be performed by evaluating the convergence of the internal state of the neural network model in the learning unit 120, or by inputting test data into the neural network model and using the correct answer rate of the obtained output. You may.
  • the learning unit 120 executes learning of the neural network model according to the achievement status based on the generated machine learning data. In this way, in this embodiment, a trained neural network model is obtained.
  • the ball screw mechanism 300 is configured by combining a plurality of parts, and when the parts causing the failure are different, or when the parts causing the failure are the same but the cause of the failure is different, various different failure modes are used. Is to appear. In order to acquire machine learning data from the ball screw mechanism 300 operating in the various different failure modes, it is necessary to realize the various different failure modes by using the actual ball screw mechanism 300, but it is too large. It is not realistic because it takes time and cost.
  • the machine learning data generation device 102 virtually executes the physical operation by the target device 104 to generate a sufficient number of machine learning data for the neural network model in a realistic time and cost. Can be generated. Further, the machine learning device 100 according to the present embodiment can train the neural network model from the generated machine learning data.
  • VAE there is a technology called VAE that captures the characteristics of machine learning data, encodes it into latent variables, and generates data similar to machine learning data again from the latent variables.
  • the target device 104 can generate machine learning data without actually performing physical operation.
  • the VAE converts machine learning data such as the output of the sensor 302 provided in the machine into a feature vector, and generates new teacher data by interpolating these.
  • VAE only interpolates data that represents the superficial state of the machine, so if the internal state of the machine is only slightly different but the data output from the machine is significantly different, a suitable label. Cannot generate machine learning data with.
  • the physics simulation execution unit 108 executes the physics simulation based on a plurality of parameters representing the internal states of the target device 104, machine learning that reflects the operation performed by the target device 104 is performed. Can be done. Further, since the parameter represents the internal state of the target device 104, the range of values that the parameter can take is physically determined. Therefore, it is possible to prevent learning from being executed based on virtual time-series information generated from parameters that are not realistically possible.
  • machine learning device 102 machine learning data generation device, 104 target device, 106 real time series information acquisition unit, 108 physical simulation execution unit, 110 virtual time series information generation unit, 112 parameter identification unit, 114 parameter storage unit, 116 parameters Generation unit, 118 machine learning data generation unit, 120 learning unit, 202 CPU, 204 RAM, 206 external storage device, 208 display device, 210 input device, 212 I / O, 214 data bus, 300 ball screw mechanism, 302 sensor, 304 control unit, 306 servo amplifier, 308 servo motor, 310 ball screw shaft, 312 ball screw nut, 314 table, 316 object, 1000 GAN, 1002 generator, 1004 discriminator.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Computing Systems (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Computational Linguistics (AREA)
  • Data Mining & Analysis (AREA)
  • Evolutionary Computation (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Molecular Biology (AREA)
  • Artificial Intelligence (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Health & Medical Sciences (AREA)
  • Testing And Monitoring For Control Systems (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

The present invention identifies parameters representing the internal state of target equipment and uses interpolated values of these parameters to easily obtain appropriate machine learning data. A machine learning data generation device comprising: a real time series information acquisition unit which acquires and associates real time series information indicating the operating state of target equipment with prescribed labels; a physical simulation execution unit which generates a plurality of sets of virtual time series information on the basis of a plurality of parameters representing the internal state of the target equipment; a parameter identification unit which identifies parameters on the basis of the plurality of sets of virtual time series information and the real time series information, and associates the parameters with labels; a parameter generation unit which generates new parameters and labels on the basis of the identified parameters; a virtual time series information generation unit which performs a physical simulation using the new parameters, and generates virtual time series information corresponding to a new internal state; and a machine learning data generation unit which associates the new parameters and associated labels with the virtual time series information corresponding to the new internal state to generate new machine learning data.

Description

機械学習データ生成装置、機械学習装置、機械学習モデルの生成方法及びプログラムMachine learning data generator, machine learning device, machine learning model generation method and program
 本発明は機械学習データ生成装置、機械学習装置、機械学習モデルの生成方法及びプログラムに関する。 The present invention relates to a machine learning data generation device, a machine learning device, a machine learning model generation method, and a program.
 物理的な動作を行う機械において、機械学習を用いて動作をさせるためには、種々の現実に起こり得る態様に即した機械学習データ(振動波形など)により機械学習を行う必要がある。しかしながら、十分な学習データを得るためには種々の条件で実機を実際に動作させて機械学習をさせなければならず、多大な労力と時間を要する場合がある。 In a machine that performs physical movements, in order to operate using machine learning, it is necessary to perform machine learning using machine learning data (vibration waveforms, etc.) that are in line with various realistic modes. However, in order to obtain sufficient learning data, it is necessary to actually operate the actual machine under various conditions to perform machine learning, which may require a great deal of labor and time.
 本発明が解決しようとする課題は、現実に対象機器を動作させることなく、物理シミュレーションを用いて、対象機器の内部状態を表すパラメータを特定することにより、適切なラベルの付された機械学習データを取得する機械学習データ生成装置、機械学習装置、機械学習モデルの生成方法及びプログラムを提供することにある。 The problem to be solved by the present invention is machine learning data appropriately labeled by specifying parameters representing the internal state of the target device by using physical simulation without actually operating the target device. It is an object of the present invention to provide a machine learning data generation device, a machine learning device, a machine learning model generation method, and a program for acquiring the above.
 本発明の一側面に係る機械学習データ生成装置は、機械または電気回路である対象機器の動作状態を示す実時系列情報を、所定のラベルと関連付けて取得する実時系列情報取得部と、前記対象機器の内部状態を表す複数のパラメータのそれぞれに基づいて、単位時間後の仮想的な状態を順次算出することにより、複数の仮想時系列情報を生成する物理シミュレーションを実行する物理シミュレーション実行部と、前記複数の仮想時系列情報と、前記実時系列情報とに基づいて、前記複数のパラメータのうち1以上のパラメータを特定し、前記ラベルと関連付けるパラメータ特定部と、前記パラメータ特定部によって特定されるパラメータに基づいて、新たなパラメータ及び該新たなパラメータと対応する前記ラベルを生成するパラメータ生成部と、前記新たなパラメータを用いて前記物理シミュレーションを実行し、新たな内部状態に対応する仮想時系列情報を生成する仮想時系列情報生成部と、前記新たな内部状態に対応する仮想時系列情報に前記新たなパラメータと対応する前記ラベルを関連付けて、新たな機械学習データを生成する機械学習データ生成部と、を有する。 The machine learning data generation device according to one aspect of the present invention includes a real-time series information acquisition unit that acquires real-time series information indicating an operating state of a target device, which is a machine or an electric circuit, in association with a predetermined label. A physical simulation execution unit that executes a physical simulation that generates multiple virtual time-series information by sequentially calculating virtual states after a unit time based on each of multiple parameters that represent the internal state of the target device. , One or more of the plurality of parameters are specified based on the plurality of virtual time series information and the real time series information, and are specified by the parameter specifying unit and the parameter specifying unit associated with the label. A virtual time corresponding to a new internal state by executing the physical simulation using the new parameter and the parameter generator that generates the label corresponding to the new parameter, and the new parameter. Machine learning data that generates new machine learning data by associating the virtual time series information generator that generates series information with the new parameters and the labels that correspond to the virtual time series information that corresponds to the new internal state. It has a generator and a generator.
 また、本発明の別の一側面に係る機械学習データ生成装置は、さらに、前記ラベルの種類ごとに取りうる前記パラメータが該ラベルと関連付けて記憶されたパラメータ記憶部を有し、前記パラメータ生成部は、前記パラメータ記憶部に記憶された前記パラメータに基づいて、前記新たなパラメータを生成する。 Further, the machine learning data generation device according to another aspect of the present invention further has a parameter storage unit in which the parameters that can be taken for each type of the label are stored in association with the label, and the parameter generation unit. Generates the new parameter based on the parameter stored in the parameter storage unit.
 また、本発明の別の一側面に係る機械学習データ生成装置は、前記パラメータ生成部は、前記新たなパラメータと、前記パラメータ記憶部に記憶された各ラベルと対応するパラメータ群と、の関係によって、当該新たなパラメータと対応する前記ラベルを決定する。 Further, in the machine learning data generation device according to another aspect of the present invention, the parameter generation unit is based on the relationship between the new parameter and the parameter group corresponding to each label stored in the parameter storage unit. , The label corresponding to the new parameter is determined.
 また、本発明の別の一側面に係る機械学習データ生成装置は、前記ラベルは、前記対象機器の前記動作状態が正常であるか異常であるかを表し、前記パラメータ生成部は、異常であることを表す前記ラベルと対応する前記新たなパラメータを選択的に生成する。 Further, in the machine learning data generation device according to another aspect of the present invention, the label indicates whether the operating state of the target device is normal or abnormal, and the parameter generation unit is abnormal. Selectively generate the new parameter corresponding to the label indicating that.
 また、本発明の別の一側面に係る機械学習データ生成装置は、前記新たなパラメータは、前記ラベルが関連付けられた前記パラメータの分布を表すパラメータ分布図上の位置で表され、前記パラメータ生成部は、前記パラメータ分布図上で、所定の範囲内に所定の数の前記パラメータが存在する位置によって表されるパラメータを前記新たなパラメータとして生成する。 Further, in the machine learning data generation device according to another aspect of the present invention, the new parameter is represented by a position on a parameter distribution diagram showing the distribution of the parameter to which the label is associated, and the parameter generation unit. Generates a parameter represented by a position where a predetermined number of the parameters exist within a predetermined range on the parameter distribution map as the new parameter.
 また、本発明の別の一側面に係る機械学習データ生成装置は、前記仮想時系列情報生成部は、前記新たなパラメータを用いて実行された前記物理シミュレーションの結果に基づいて、前記新たな状態の前記仮想時系列情報を生成するGAN(Generative Adversarial Networks)を有する。 Further, in the machine learning data generation device according to another aspect of the present invention, the virtual time series information generation unit has the new state based on the result of the physical simulation executed by using the new parameter. It has GAN (Generative Adversarial Networks) that generates the above-mentioned virtual time series information.
 また、本発明の別の一側面に係る機械学習装置は、上記のいずれかに記載の機械学習データ生成装置と、前記機械学習データに基づいて、前記仮想時系列情報を入力とし、前記ラベルを出力とするニューラルネットワークである、ニューラルネットワークモデルを学習させる学習部と、を有する。 Further, the machine learning device according to another aspect of the present invention inputs the virtual time series information based on the machine learning data generation device according to any one of the above and the machine learning data, and displays the label. It has a learning unit for learning a neural network model, which is a neural network as an output.
 また、本発明の別の一側面に係る機械学習モデルの生成方法は、機械または電気回路である対象機器の動作状態を示す実時系列情報を、所定のラベルと関連付けて取得する実時系列情報取得ステップと、前記対象機器の内部状態を表す複数のパラメータのそれぞれに基づいて、単位時間後の仮想的な状態を順次算出することにより、複数の仮想時系列情報を生成する物理シミュレーションを実行する物理シミュレーション実行ステップと、前記複数の仮想時系列情報と、前記実時系列情報とに基づいて、前記複数のパラメータのうち1以上のパラメータを特定し、前記ラベルと関連付けるパラメータ特定ステップと、前記パラメータ特定ステップによって特定されるパラメータに基づいて、新たなパラメータ及び該新たなパラメータと対応する前記ラベルを生成するパラメータ生成ステップと、前記新たなパラメータを用いて前記物理シミュレーションを実行し、新たな内部状態に対応する仮想時系列情報を生成する仮想時系列情報生成ステップと、前記新たな内部状態に対応する仮想時系列情報に前記新たなパラメータと対応する前記ラベルを関連付けて、新たな機械学習データを生成する機械学習データ生成ステップと、前記機械学習データに基づいて、前記仮想時系列情報を入力とし、前記ラベルを出力とするニューラルネットワークである、ニューラルネットワークモデルを学習させる学習ステップと、を有する。 Further, in the method for generating a machine learning model according to another aspect of the present invention, real-time series information indicating the operating state of a target device which is a machine or an electric circuit is acquired in association with a predetermined label. A physical simulation that generates a plurality of virtual time-series information is executed by sequentially calculating the virtual state after a unit time based on each of the acquisition step and a plurality of parameters representing the internal state of the target device. Based on the physical simulation execution step, the plurality of virtual time series information, and the real time series information, one or more of the plurality of parameters are specified, and the parameter specifying step associated with the label and the parameter. Based on the parameters specified by the specific step, the new parameter and the parameter generation step that generates the label corresponding to the new parameter, and the physical simulation using the new parameter are executed to perform a new internal state. The virtual time series information generation step for generating the virtual time series information corresponding to the new internal state and the virtual time series information corresponding to the new internal state are associated with the new parameter and the corresponding label to generate new machine learning data. It has a machine learning data generation step to be generated, and a learning step to train a neural network model, which is a neural network that inputs the virtual time series information and outputs the label based on the machine learning data.
 また、本発明の別の一側面に係るプログラムは、機械または電気回路である対象機器の動作状態を示す実時系列情報を、所定のラベルと関連付けて取得する実時系列情報取得ステップと、前記対象機器の内部状態を表す複数のパラメータのそれぞれに基づいて、単位時間後の仮想的な状態を順次算出することにより、複数の仮想時系列情報を生成する物理シミュレーションを実行する物理シミュレーション実行ステップと、前記複数の仮想時系列情報と、前記実時系列情報とに基づいて、前記複数のパラメータのうち1以上のパラメータを特定し、前記ラベルと関連付けるパラメータ特定ステップと、前記パラメータ特定ステップによって特定されるパラメータに基づいて、新たなパラメータ及び該新たなパラメータと対応する前記ラベルを生成するパラメータ生成ステップと、前記新たなパラメータを用いて前記物理シミュレーションを実行し、新たな内部状態に対応する仮想時系列情報を生成する仮想時系列情報生成ステップと、前記新たな内部状態に対応する仮想時系列情報に前記新たなパラメータと対応する前記ラベルを関連付けて、新たな機械学習データを生成する機械学習データ生成ステップと、前記機械学習データに基づいて、前記仮想時系列情報を入力とし、前記ラベルを出力とするニューラルネットワークである、ニューラルネットワークモデルを学習させる学習ステップと、をコンピュータに実行させる。 Further, the program according to another aspect of the present invention includes a real-time series information acquisition step of acquiring real-time series information indicating an operating state of a target device which is a machine or an electric circuit in association with a predetermined label, and the above-mentioned. A physical simulation execution step that executes a physical simulation that generates multiple virtual time-series information by sequentially calculating virtual states after a unit time based on each of multiple parameters that represent the internal state of the target device. , One or more of the plurality of parameters are specified based on the plurality of virtual time series information and the real time series information, and are specified by the parameter specifying step and the parameter specifying step to be associated with the label. A virtual time corresponding to a new internal state by executing the physical simulation using the new parameter and the parameter generation step of generating the label corresponding to the new parameter and the new parameter. Machine learning data that generates new machine learning data by associating the virtual time series information generation step that generates series information with the virtual time series information corresponding to the new internal state and the label corresponding to the new parameter. A computer is made to execute a generation step and a learning step of learning a neural network model, which is a neural network that inputs the virtual time series information and outputs the label based on the machine learning data.
 本発明によれば、対象機器の内部状態を表すパラメータを特定し、その補間値を使うことで、適切な機械学習データを容易に取得できる。 According to the present invention, appropriate machine learning data can be easily obtained by specifying a parameter representing the internal state of the target device and using the interpolated value.
本発明の実施形態に係る機械学習データ生成装置を含む機械学習装置の全体の構成を示す機能ブロック図である。It is a functional block diagram which shows the whole structure of the machine learning apparatus including the machine learning data generation apparatus which concerns on embodiment of this invention. 機械学習データ生成装置及び機械学習装置のハードウェア構成の一例を示す図である。It is a figure which shows an example of the hardware composition of the machine learning data generation apparatus and the machine learning apparatus. 対象機器の一例であるボールねじ機構を示す図である。It is a figure which shows the ball screw mechanism which is an example of a target device. 実時系列情報及び仮想時系列情報の一例を示す図である。It is a figure which shows an example of real time series information and virtual time series information. 実時系列情報及び仮想時系列情報の他の一例を示す図である。It is a figure which shows another example of the real time series information and the virtual time series information. 実時系列情報及び仮想時系列情報の他の一例を示す図である。It is a figure which shows another example of the real time series information and the virtual time series information. 実時系列情報及び仮想時系列情報の他の一例を示す図である。It is a figure which shows another example of the real time series information and the virtual time series information. パラメータ記憶部に記憶されたパラメータ及びラベルの一例を示す図である。It is a figure which shows an example of a parameter and a label stored in a parameter storage part. パラメータ分布図の一例を示す図である。It is a figure which shows an example of a parameter distribution diagram. GANを説明する図である。It is a figure explaining GAN. ノイズを含む仮想時系列情報の一例を示す図である。It is a figure which shows an example of the virtual time series information including noise. ノイズを含む仮想時系列情報の他の一例を示す図である。It is a figure which shows another example of the virtual time series information including noise. ノイズを含む仮想時系列情報の他の一例を示す図である。It is a figure which shows another example of the virtual time series information including noise. ノイズを含む仮想時系列情報の他の一例を示す図である。It is a figure which shows another example of the virtual time series information including noise. 本発明の実施形態に係る機械学習データ生成装置及び機械学習装置による、機械学習データ生成方法及び機械学習方法のフロー図である。It is a flow chart of the machine learning data generation method and the machine learning method by the machine learning data generation apparatus and the machine learning apparatus which concerns on embodiment of this invention.
 以下、本発明を実施するための好適な実施の形態(以下、実施形態という)を各図を参照しながら説明する。 Hereinafter, a preferred embodiment (hereinafter referred to as an embodiment) for carrying out the present invention will be described with reference to each figure.
 図1は、本発明の第1の実施形態に係る機械学習データ生成装置102を含む機械学習装置100の全体の構成を示す機能ブロック図である。ここで、「機械学習データ生成装置」とは、教師あり学習がなされる機械学習モデルにおける学習に用いられる教師データである、機械学習データを生成する装置を指し、「機械学習装置」とは、機械学習データを用いて、機械学習モデルの学習を実行する装置を表す。 FIG. 1 is a functional block diagram showing the entire configuration of the machine learning device 100 including the machine learning data generation device 102 according to the first embodiment of the present invention. Here, the "machine learning data generator" refers to a device that generates machine learning data, which is teacher data used for learning in a machine learning model in which supervised learning is performed, and the "machine learning device" is used. Represents a device that performs machine learning model learning using machine learning data.
 機械学習装置100及び機械学習データ生成装置102は、物理的には、それぞれ単独の装置として用意されてもよいが、これに限られない。機械学習装置100及び機械学習データ生成装置102は、他の機械や装置の一部として組み込まれていてもよく、また、必要に応じて他の機械や装置の物理的構成を用いて適宜構成されるものであってもよい。より具体的には、機械学習装置100及び機械学習データ生成装置102は、一般的なコンピュータを用いて、ソフトウェアにより実装されてよい。 The machine learning device 100 and the machine learning data generation device 102 may be physically prepared as independent devices, but the present invention is not limited to this. The machine learning device 100 and the machine learning data generation device 102 may be incorporated as a part of another machine or device, and may be appropriately configured by using the physical configuration of the other machine or device as needed. It may be one. More specifically, the machine learning device 100 and the machine learning data generation device 102 may be implemented by software using a general computer.
 また、コンピュータを機械学習装置100及び機械学習データ生成装置102として動作させるプログラムは、一体のものであってもよいし、それぞれ単独で実行されるものであってもよい。さらに、プログラムは、モジュールとして他のソフトウェアに組み込まれるものであってもよい。また、機械学習装置100及び機械学習データ生成装置102を、いわゆるサーバコンピュータ上に構築し、インターネットなどの公衆電気通信回線を経由してその機能のみを遠隔地に提供するようにしてもよい。 Further, the programs for operating the computer as the machine learning device 100 and the machine learning data generation device 102 may be integrated or may be executed independently. Further, the program may be incorporated into other software as a module. Further, the machine learning device 100 and the machine learning data generation device 102 may be constructed on a so-called server computer, and only the functions thereof may be provided to a remote location via a public telecommunications line such as the Internet.
 図2は、機械学習装置100及び機械学習データ生成装置102のハードウェア構成の一例を示す図である。図2は、一般的なコンピュータが記載されており、プロセッサであるCPU202(Central Processing Unit)、メモリであるRAM204(Random Access Memory)、外部記憶装置206、表示デバイス208、入力デバイス210及びI/O212(Inpur/Output)がデータバス214により相互に電気信号のやり取りができるよう接続されている。なお、ここで示したコンピュータのハードウェア構成は一例であり、これ以外の構成のものであってもよい。 FIG. 2 is a diagram showing an example of the hardware configuration of the machine learning device 100 and the machine learning data generation device 102. FIG. 2 describes a general computer, which includes a CPU 202 (Central Processing Unit) as a processor, a RAM 204 (Random Access Memory) as a memory, an external storage device 206, a display device 208, an input device 210, and an I / O 212. (Inpur / Output) is connected by the data bus 214 so that electric signals can be exchanged with each other. The computer hardware configuration shown here is an example, and other configurations may be used.
 外部記憶装置206は、HDD(Hard Disk Drive)やSSD(Solid State Drive)等の静的に情報を記録できる装置である。表示デバイス208は、CRT(Cathode Ray Tube)やいわゆるフラットパネルディスプレイ等であって、画像を表示する。入力デバイス210は、キーボードやマウス、タッチパネル等の、ユーザが情報を入力するための一又は複数の機器である。I/O212は、コンピュータが外部の機器と情報をやり取りするための一又は複数のインタフェースである。I/O212には、有線接続するための各種ポート及び、無線接続のためのコントローラが含まれていてよい。 The external storage device 206 is a device such as an HDD (Hard Disk Drive) or SSD (Solid State Drive) that can statically record information. The display device 208 is a CRT (Cathode Ray Tube), a so-called flat panel display, or the like, and displays an image. The input device 210 is one or a plurality of devices for inputting information by the user, such as a keyboard, a mouse, and a touch panel. The I / O 212 is one or more interfaces for a computer to exchange information with an external device. The I / O 212 may include various ports for wired connection and a controller for wireless connection.
 コンピュータを機械学習装置100及び機械学習データ生成装置102として機能させるためのプログラムは、外部記憶装置206に記憶され、必要に応じてRAM204に読みだされてCPU202により実行される。すなわち、RAM204には、CPU202により実行されることにより、図1に機能ブロックとして示した各種機能を実現させるためのコードが記憶される。当該プログラムは、光ディスク、光磁気ディスク、フラッシュメモリ等のコンピュータが読み込むことができる情報記録媒体に記録されて提供されても、I/O212を介して外部のインターネット等の情報通信回線を介して提供されてもよい。 The program for making the computer function as the machine learning device 100 and the machine learning data generation device 102 is stored in the external storage device 206, read out in the RAM 204 as needed, and executed by the CPU 202. That is, the RAM 204 stores a code for realizing various functions shown as a functional block in FIG. 1 by being executed by the CPU 202. Even if the program is recorded and provided on an information recording medium such as an optical disk, a magneto-optical disk, or a flash memory that can be read by a computer, the program is provided via an external information communication line such as the Internet via the I / O 212. May be done.
 機械学習データ生成装置102は、その機能的構成として、実時系列情報取得部106と、物理シミュレーション実行部108を含む仮想時系列情報生成部110と、パラメータ特定部112と、パラメータ記憶部114を含むパラメータ生成部116と、機械学習データ生成部118と、を含む。さらに、機械学習装置100は、機械学習データ生成装置102及び学習部120を含む。機械学習データ生成装置102は、後述する対象機器104に即して用意されるものである。また、機械学習装置100は、当該対象機器104が使用する機械学習モデルへの学習を行うものである。 The machine learning data generation device 102 has, as its functional configuration, a real time series information acquisition unit 106, a virtual time series information generation unit 110 including a physical simulation execution unit 108, a parameter identification unit 112, and a parameter storage unit 114. The parameter generation unit 116 including the parameter generation unit 116 and the machine learning data generation unit 118 are included. Further, the machine learning device 100 includes a machine learning data generation device 102 and a learning unit 120. The machine learning data generation device 102 is prepared in line with the target device 104, which will be described later. Further, the machine learning device 100 trains the machine learning model used by the target device 104.
 実時系列情報取得部106は、機械または電気回路である対象機器104の動作状態を示す実時系列情報を、所定のラベルと関連付けて取得する。ここで、本明細書に言う対象機器104は、対象物316に対し、何らかの物理的な作用を及ぼす作業を行う機器である。具体例として、対象機器104が対象物316を直線的に移動させるボールねじ機構300である場合について、図3を参照しながら説明する。ボールねじ機構300自体は既知のものであるため、説明は最小限のものにとどめる。 The real-time series information acquisition unit 106 acquires real-time series information indicating the operating state of the target device 104, which is a machine or an electric circuit, in association with a predetermined label. Here, the target device 104 referred to in the present specification is a device that performs work that exerts some physical action on the target object 316. As a specific example, a case where the target device 104 is a ball screw mechanism 300 that linearly moves the target object 316 will be described with reference to FIG. Since the ball screw mechanism 300 itself is known, the explanation is kept to a minimum.
 図3に示すように、ボールねじ機構300は、センサ302、制御部304、サーボアンプ306、サーボモータ308、ボールねじ軸310、ボールねじナット312、テーブル314、等を有する。 As shown in FIG. 3, the ball screw mechanism 300 includes a sensor 302, a control unit 304, a servo amplifier 306, a servo motor 308, a ball screw shaft 310, a ball screw nut 312, a table 314, and the like.
 センサ302は、ボールねじ機構300の各部の動作状態を示す実時系列情報を取得する。具体的には、例えば、センサ302は、サーボモータ308のトルクを検出するトルクセンサである。また、センサ302は、ボールねじ軸310またはサーボモータ308の回転角を実時系列情報として取得する角度センサ、テーブル314の位置を実時系列情報として取得する位置センサ、制御部304がサーボモータ308に出力する電圧や電流を実時系列情報として取得する電圧センサまたは電流センサであってもよい。 The sensor 302 acquires real-time series information indicating the operating state of each part of the ball screw mechanism 300. Specifically, for example, the sensor 302 is a torque sensor that detects the torque of the servomotor 308. Further, the sensor 302 is an angle sensor that acquires the rotation angle of the ball screw shaft 310 or the servomotor 308 as real-time series information, the position sensor that acquires the position of the table 314 as real-time series information, and the control unit 304 is the servomotor 308. It may be a voltage sensor or a current sensor that acquires the voltage and current output to the sensor as real-time series information.
 具体的には、例えば、センサ302は、図4(a)、図5(a)、図6(a)及び図7(a)に示すサーボモータ308の回転トルクの経時変化を実時系列情報として取得する。各図は、いずれも1秒間隔でテーブル314が一方の方向に2回移動した後、反対方向に2回移動する動作を繰り返し実行した場合における、サーボモータ308の回転トルクを表す図である。 Specifically, for example, the sensor 302 provides real-time series information on changes in the rotational torque of the servomotor 308 shown in FIGS. 4 (a), 5 (a), 6 (a), and 7 (a). Get as. Each figure is a diagram showing the rotational torque of the servomotor 308 when the operation of moving the table 314 twice in one direction and then moving twice in the opposite direction is repeatedly executed at 1-second intervals.
 本例では、回転トルクが各ピークの後におよそ平坦に収束する場合、ボールねじ機構300は正常な状態である。すなわち、図4(a)は、対象機器104であるボールねじ機構300が正常な状態である場合における実時系列情報(以下、正常データとする)である。一方、回転トルクが各ピークの後に平坦に収束しない場合、ボールねじ機構300は異常な状態である。すなわち、図5(a)、図6(a)及び図7(a)は、対象機器104であるボールねじ機構300が異常な状態である場合における実時系列情報(以下、それぞれ異常データ1、2及び3とする)である。 In this example, the ball screw mechanism 300 is in a normal state when the rotational torque converges substantially flat after each peak. That is, FIG. 4A is real time series information (hereinafter referred to as normal data) when the ball screw mechanism 300, which is the target device 104, is in a normal state. On the other hand, when the rotational torque does not converge flatly after each peak, the ball screw mechanism 300 is in an abnormal state. That is, FIGS. 5 (a), 6 (a), and 7 (a) show real-time series information when the ball screw mechanism 300, which is the target device 104, is in an abnormal state (hereinafter, abnormality data 1, respectively). 2 and 3).
 制御部304は、サーボモータ308へ電流や電圧等を出力するサーボアンプ306を制御するコンピュータである。制御部304は、センサ302の出力を取得し、サーボアンプ306への制御に対してフィードバック制御を行ってもよい。サーボモータ308は、制御部304の制御のもと、サーボアンプ306から取得した電流や電圧に基づいて、ボールねじ軸310を回転させる。ボールねじナット312は、ボールねじ軸310に勘合され、ボールねじ軸310が回転することによってボールねじ軸310の軸方向に移動する。テーブル314は、移動させる対象物316が配置され、ボールねじナット312に固定されることによって、当該対象物316をボールねじ軸310の軸方向に移動させる。 The control unit 304 is a computer that controls the servo amplifier 306 that outputs current, voltage, etc. to the servo motor 308. The control unit 304 may acquire the output of the sensor 302 and perform feedback control with respect to the control to the servo amplifier 306. The servomotor 308 rotates the ball screw shaft 310 based on the current and voltage acquired from the servo amplifier 306 under the control of the control unit 304. The ball screw nut 312 is fitted to the ball screw shaft 310, and the ball screw shaft 310 rotates to move in the axial direction of the ball screw shaft 310. On the table 314, the object to be moved 316 is arranged and fixed to the ball screw nut 312 to move the object 316 in the axial direction of the ball screw shaft 310.
 実時系列情報取得部106は、ボールねじ機構300に含まれるセンサ302から、ボールねじ機構300の動作状態を表す実時系列情報を取得する。例えば、実時系列情報取得部106は、ボールねじ軸310またはサーボモータ308の回転角を実時系列情報として取得する。また、実時系列情報取得部106は、当該実時系列情報と関連付けて、ラベルを取得する。ラベルは、例えば、関連付けられた実時系列情報の表す動作状態が対象機器104の正常または異常な動作を表す場合に、正常または異常であることを表すラベルである。 The real time series information acquisition unit 106 acquires real time series information representing the operating state of the ball screw mechanism 300 from the sensor 302 included in the ball screw mechanism 300. For example, the real-time series information acquisition unit 106 acquires the rotation angle of the ball screw shaft 310 or the servomotor 308 as real-time series information. Further, the real time series information acquisition unit 106 acquires a label in association with the real time series information. The label is, for example, a label indicating that the operating state represented by the associated real-time series information is normal or abnormal when the operating state represents the normal or abnormal operation of the target device 104.
 具体的には、例えば、実時系列情報取得部106は、図4(a)、図5(a)、図6(a)及び図7(a)に示す実時系列情報を対象機器104から取得する。また、実時系列情報取得部106は、実時系列情報と関連付けて、当該実時系列情報が取得されたときのボールねじ機構300の状態を表すラベルを取得する。上記例では、実時系列情報取得部106は、図4(a)に示す実時系列情報と関連付けて正常であることを表すラベルを取得する。また、実時系列情報取得部106は、図5(a)、図6(a)及び図7(a)に示す実時系列情報と関連付けて異常であることを表すラベルを取得する。 Specifically, for example, the real-time series information acquisition unit 106 obtains the real-time series information shown in FIGS. 4 (a), 5 (a), 6 (a), and 7 (a) from the target device 104. get. Further, the real-time series information acquisition unit 106 acquires a label indicating the state of the ball screw mechanism 300 when the real-time series information is acquired in association with the real-time series information. In the above example, the real-time series information acquisition unit 106 acquires a label indicating that it is normal in association with the real-time series information shown in FIG. 4 (a). Further, the real-time series information acquisition unit 106 acquires a label indicating that the information is abnormal in association with the real-time series information shown in FIGS. 5 (a), 6 (a), and 7 (a).
 なお、取得される実時系列情報と関連付けられるラベルは、当該実時系列情報を見たユーザの判断によって決定されてもよいし、所与の検査装置の検査結果に応じてユーザの判断によらずに決定されてもよい。また、ラベルは、関連付けられた実時系列情報の表す動作状態が段階的に評価される場合には、優、良、可または不可を表すラベルであってもよい。 The label associated with the acquired real-time series information may be determined by the judgment of the user who has seen the real-time series information, or by the judgment of the user according to the inspection result of a given inspection device. It may be decided without. Further, the label may be a label indicating excellent, good, acceptable or unacceptable when the operating state represented by the associated real time series information is evaluated stepwise.
 対象機器104は、対象機器104の動作状態を示す実時系列情報を取得する機器であれば、ボールねじ機構300に限られない。例えば、対象機器104は、部品やパーツのピックアップ、部品の取りつけ(例えば、ベアリングのハウジングへの嵌め込みや、ねじの締結など)、梱包(菓子などの食品の箱詰めなど)、各種加工(バリ取りや研磨などの金属加工、食品などの柔軟物の成型や切断、樹脂成型やレーザー加工など)、塗装及び洗浄といった様々な作業を反復・継続的に行う自動機械であってもよい。 The target device 104 is not limited to the ball screw mechanism 300 as long as it is a device that acquires real-time series information indicating the operating state of the target device 104. For example, the target device 104 includes parts and parts pickup, parts mounting (for example, fitting a bearing into a housing, screw fastening, etc.), packing (boxing of foods such as confectionery, etc.), and various processing (deburring, etc.). It may be an automatic machine that repeatedly and continuously performs various operations such as metal processing such as polishing, molding and cutting of soft materials such as food, resin molding and laser processing), painting and cleaning.
 仮想時系列情報生成部110は、物理シミュレーション実行部108を含む。物理シミュレーション実行部108は、対象機器104の内部状態を表す複数のパラメータのそれぞれに基づいて、単位時間後の仮想的な状態を順次算出することにより、複数の仮想時系列情報を生成する物理シミュレーションを実行する。仮想時系列情報生成部110は、物理シミュレーション実行部108により物理シミュレーションを実行し、内部状態に対応する仮想時系列情報を生成する。 The virtual time series information generation unit 110 includes the physics simulation execution unit 108. The physics simulation execution unit 108 generates a plurality of virtual time-series information by sequentially calculating virtual states after a unit time based on each of a plurality of parameters representing the internal states of the target device 104. To execute. The virtual time-series information generation unit 110 executes a physics simulation by the physics simulation execution unit 108, and generates virtual time-series information corresponding to the internal state.
 本実施形態に係る物理シミュレーション実行部108は、ある特定の物理的動作を行う対象機器104に具体的に即したものとして構築される。物理的動作の内容及び対象機器104の用途は、特段限定されるものではない。例えば、本実施形態に係る物理シミュレーション実行部108は、ボールねじ機構300のモデルに基づいて、物理シミュレーションを実行する。 The physics simulation execution unit 108 according to the present embodiment is constructed as specifically conforming to the target device 104 that performs a specific physical operation. The content of the physical operation and the use of the target device 104 are not particularly limited. For example, the physics simulation execution unit 108 according to the present embodiment executes the physics simulation based on the model of the ball screw mechanism 300.
 具体的には、物理シミュレーション実行部108の仮想空間上に、現実のボールねじ機構300の仮想モデルとして、センサ302、制御部304、サーボアンプ306、サーボモータ308、ボールねじ軸310、ボールねじナット312、テーブル314の各部で構築されるボールねじ機構300の仮想モデルが予め用意されている。ボールねじ機構300の仮想モデルには、モータ回転角度(θm)、時間tにおけるボールねじ軸310方向のボールねじナット312の位置(xt)、サーボモータ308の回転トルク(Tm)、回転系の慣性モーメント(Jr)、被駆動体、すなわち、ボールねじナット312、テーブル314及びテーブル314の上に配置された対象物316の質量の総和(Mt)、回転系の粘性摩擦係数(Dr)、直動案内の粘性摩擦係数(Ct)、ボールねじ軸310の直径(R)、駆動機構の軸方向剛性(Kt)などのパラメータが含まれる。 Specifically, as a virtual model of the actual ball screw mechanism 300 in the virtual space of the physical simulation execution unit 108, the sensor 302, the control unit 304, the servo amplifier 306, the servo motor 308, the ball screw shaft 310, and the ball screw nut A virtual model of the ball screw mechanism 300 constructed in each part of 312 and the table 314 is prepared in advance. The virtual model of the ball screw mechanism 300 includes the motor rotation angle (θ m ), the position of the ball screw nut 312 in the ball screw axis 310 direction at time t (x t ), the rotation torque (T m ) of the servo motor 308, and the rotation. The inertial moment (J r ) of the system, the total mass (M t ) of the weights of the driven body, that is, the ball screw nut 312, the table 314 and the object 316 placed on the table 314, and the viscous friction coefficient of the rotating system (M t). Parameters such as D r ), viscous friction coefficient (C t ) of linear motion guide, diameter (R) of ball screw shaft 310, and axial rigidity (K t ) of drive mechanism are included.
 物理シミュレーション実行部108は、上記パラメータを含む仮想モデルを仮想動作指令に従って動作させることにより、対象機器104が行う物理的動作を仮想空間上でシミュレートする。ボールねじ機構300の各部の仮想モデルの仮想空間上における挙動は、当然に、実際のボールねじ機構300を動作させた際の状況を再現したものとする。 The physics simulation execution unit 108 simulates the physical operation performed by the target device 104 in the virtual space by operating the virtual model including the above parameters according to the virtual operation command. The behavior of each part of the ball screw mechanism 300 in the virtual space naturally reproduces the situation when the actual ball screw mechanism 300 is operated.
 物理シミュレーション実行部108は、ある時点における上記パラメータを用いて、単位時間後の各パラメータを出力するよう構築されたものである。具体的には、上記内部状態を表すパラメータには時間に応じて変化するパラメータが含まれる。例えば、サーボモータ308がボールねじ軸310にトルクを与えることにより、ボールねじ軸310は回転し、ボールねじ軸310方向のボールねじナット312の位置は変化する。 The physics simulation execution unit 108 is constructed to output each parameter after a unit time using the above parameters at a certain point in time. Specifically, the parameters representing the internal state include parameters that change with time. For example, when the servomotor 308 applies torque to the ball screw shaft 310, the ball screw shaft 310 rotates and the position of the ball screw nut 312 in the direction of the ball screw shaft 310 changes.
 物理シミュレーション実行部108は、ある時点における上記パラメータを用いて、単位時間後の各パラメータを出力する。そして、物理シミュレーション実行部108は、単位時間後の各パラメータを用いて、さらに単位時間後の各パラメータを出力する。このように、物理シミュレーション実行部108は、単位時間後の各パラメータを、次に演算に用いることで順次変化するパラメータを用いて演算を行う。そして、仮想時系列情報生成部110は、物理シミュレーション実行部108が出力した単位時間ごとの各パラメータを、時間軸で統合することにより、対象機器104の内部状態に対応する仮想時系列情報を生成する。 The physics simulation execution unit 108 outputs each parameter after a unit time using the above parameters at a certain point in time. Then, the physics simulation execution unit 108 uses each parameter after the unit time and further outputs each parameter after the unit time. In this way, the physics simulation execution unit 108 performs the calculation using each parameter after the unit time, and then using the parameter that changes sequentially by using the parameter in the calculation. Then, the virtual time-series information generation unit 110 generates virtual time-series information corresponding to the internal state of the target device 104 by integrating each parameter for each unit time output by the physics simulation execution unit 108 on the time axis. do.
 仮想時系列情報生成部110が生成した仮想時系列情報の一例について説明する。ここでは、上記パラメータとして所定の初期値が設定されており、ボールねじ機構300の仮想モデルがいずれも1秒間隔でテーブル314が一方の方向に2回移動させた後、反対方向に2回移動させる仮想動作指令に従って動作した場合について説明する。 An example of virtual time-series information generated by the virtual time-series information generation unit 110 will be described. Here, a predetermined initial value is set as the above parameter, and the virtual model of the ball screw mechanism 300 moves the table 314 twice in one direction and then moves twice in the opposite direction at 1-second intervals. The case where the operation is performed according to the virtual operation command to be performed will be described.
 図4(b)、図5(b)、図6(b)及び図7(b)は、初期パラメータとして与えられた回転系の粘性摩擦係数Drと直動案内の粘性摩擦係数Ctが異なる条件のもと、生成されたサーボモータ308のトルクの経時変化を表す仮想時系列情報である。 4 (b), 5 (b), 6 (b) and 7 (b) show the viscous friction coefficient D r of the rotary system and the viscous friction coefficient C t of the linear motion guide given as initial parameters. It is virtual time series information which represents the time-dependent change of the torque of the generated servomotor 308 under different conditions.
 図4(b)は、回転系の粘性摩擦係数Drが0.003であって、直動案内の粘性摩擦係数Ctが50である場合に生成されたサーボモータ308のトルクの仮想時系列情報である。図5(b)は、回転系の粘性摩擦係数Drが0.0035であって、直動案内の粘性摩擦係数Ctが1000000である場合に生成されたサーボモータ308のトルクの仮想時系列情報である。図6(b)は、回転系の粘性摩擦係数Drが0.3であって、直動案内の粘性摩擦係数Ctが50である場合に生成されたサーボモータ308のトルクの仮想時系列情報である。図7(b)は、回転系の粘性摩擦係数Drが0.1であって、直動案内の粘性摩擦係数Ctが1000である場合に生成されたサーボモータ308のトルクの仮想時系列情報である。 FIG. 4B shows virtual time-series information of the torque of the servomotor 308 generated when the viscous friction coefficient D r of the rotary system is 0.003 and the viscous friction coefficient C t of the linear motion guide is 50. be. FIG. 5B is virtual time-series information of the torque of the servomotor 308 generated when the viscous friction coefficient D r of the rotary system is 0.0035 and the viscous friction coefficient C t of the linear motion guide is 1000000. be. FIG. 6B is virtual time-series information of the torque of the servomotor 308 generated when the viscous friction coefficient D r of the rotary system is 0.3 and the viscous friction coefficient C t of the linear motion guide is 50. be. FIG. 7B is virtual time-series information of the torque of the servomotor 308 generated when the viscous friction coefficient D r of the rotary system is 0.1 and the viscous friction coefficient C t of the linear motion guide is 1000. be.
 なお、物理シミュレーションに使用される物理演算エンジンは、想定している物理的作業に応じたものを用いればよい。本例のように、ボールねじ機構300の動作を想定している場合には、衝突判定及びダイナミックシミュレーションを実行可能な物理演算エンジンを選択もしくは構築すればよい。物理的作業が異なれば、当然に、流体シミュレーションや破壊シミュレーション、その他あらゆる物理現象をシミュレートする物理演算エンジンを適宜選択するか構築することになる。例えば、対象機器104が電子回路である場合、物理シミュレーション実行部108は、電子回路に入力された指令に基づいて、電子回路から逐次変化しながら出力される電圧または電流で表される電気信号を、仮想時系列情報として生成してもよい。 The physics engine used for the physics simulation may be one that corresponds to the assumed physical work. When the operation of the ball screw mechanism 300 is assumed as in this example, a physics engine capable of performing collision determination and dynamic simulation may be selected or constructed. Different physics will, of course, select or build a physics engine that simulates fluid simulations, fracture simulations, and all other physics. For example, when the target device 104 is an electronic circuit, the physics simulation execution unit 108 outputs an electric signal represented by a voltage or current that is sequentially changed from the electronic circuit based on a command input to the electronic circuit. , May be generated as virtual time series information.
 パラメータ特定部112は、複数の仮想時系列情報と、動作状態を示す実時系列情報とに基づいて、複数のパラメータから1以上のパラメータを特定し、ラベルと関連付ける。具体的には、例えば、まず仮想時系列情報生成部110は、各パラメータが物理的にとりうる値の範囲内で不作為に作成し、作成されたパラメータに基づいて仮想時系列情報を生成する。パラメータ特定部112は、仮想時系列情報生成部110が生成した複数の仮想時系列情報の中から、実時系列情報取得部106が対象機器104から取得した実時系列情報と、最も誤差の小さい仮想時系列情報を特定する。これにより、パラメータ特定部112は、特定された仮想時系列情報と対応するパラメータを特定する。また、パラメータ特定部112は、特定された仮想時系列情報に対して、対象機器104から取得した実時系列情報と関連付けられたラベルと同一のラベルを関連付ける。 The parameter specifying unit 112 identifies one or more parameters from a plurality of parameters based on a plurality of virtual time series information and real time series information indicating an operating state, and associates them with a label. Specifically, for example, first, the virtual time-series information generation unit 110 randomly creates a value within the range of values that each parameter can physically take, and generates virtual time-series information based on the created parameters. The parameter specifying unit 112 has the smallest error with the real time series information acquired from the target device 104 by the real time series information acquisition unit 106 from among the plurality of virtual time series information generated by the virtual time series information generation unit 110. Identify virtual time series information. As a result, the parameter specifying unit 112 specifies the parameter corresponding to the specified virtual time series information. Further, the parameter specifying unit 112 associates the specified virtual time series information with the same label as the label associated with the real time series information acquired from the target device 104.
 例えば、パラメータ特定部112は、図4(a)に示すサーボモータ308のトルクの実時系列情報と、最も誤差の小さい仮想時系列情報として、図4(b)に示すサーボモータ308のトルクの仮想時系列情報を特定する。そして、パラメータ特定部112は、図4(a)に示すサーボモータ308のトルクの実時系列情報に対して、図4(b)に示すサーボモータ308のトルクの仮想時系列情報と関連付けられた「正常」というラベルを関連付ける。 For example, the parameter specifying unit 112 has the real time series information of the torque of the servo motor 308 shown in FIG. 4 (a) and the virtual time series information of the smallest error of the torque of the servo motor 308 shown in FIG. 4 (b). Identify virtual time series information. Then, the parameter specifying unit 112 is associated with the real time series information of the torque of the servo motor 308 shown in FIG. 4 (a) and the virtual time series information of the torque of the servo motor 308 shown in FIG. 4 (b). Associate the label "normal".
 同様に、パラメータ特定部112は、図5(a)、図6(a)及び図7(a)に示す各実時系列情報と、最も誤差の小さい仮想時系列情報として、順に図5(b)、図6(b)及び図7(b)に示す仮想時系列情報を特定する。また、パラメータ特定部112は、図5(b)、図6(b)及び図7(b)に示す各仮想時系列情報に対して、図5(a)、図6(a)及び図7(a)と関連付けられた「異常」というラベルを関連付ける。 Similarly, in the parameter specifying unit 112, the real time series information shown in FIGS. 5 (a), 6 (a), and 7 (a) and the virtual time series information having the smallest error are sequentially shown in FIG. 5 (b). ), The virtual time series information shown in FIGS. 6 (b) and 7 (b) is specified. Further, the parameter specifying unit 112 refers to the virtual time series information shown in FIGS. 5 (b), 6 (b), and 7 (b) with respect to FIGS. 5 (a), 6 (a), and 7 (b). Associate the label "abnormal" associated with (a).
 なお、複数のパラメータから1個のパラメータが特定できない場合には、パラメータ特定部112は、2個以上のパラメータを特定してもよい。例えば、仮想時系列情報生成部110が生成した複数の仮想時系列情報の中に、実時系列情報との誤差が同程度に小さい仮想時系列情報が複数含まれる場合がある。この場合、パラメータ特定部112は、当該複数の仮想時系列情報と対応する各パラメータを特定する。また、パラメータ特定部112は、当該複数の仮想時系列情報に対して、対象機器104から取得した実時系列情報と関連付けられたラベルと同一のラベルを関連付ける。 If one parameter cannot be specified from a plurality of parameters, the parameter specifying unit 112 may specify two or more parameters. For example, the plurality of virtual time-series information generated by the virtual time-series information generation unit 110 may include a plurality of virtual time-series information having an error as small as that of the real time-series information. In this case, the parameter specifying unit 112 specifies each parameter corresponding to the plurality of virtual time series information. Further, the parameter specifying unit 112 associates the plurality of virtual time series information with the same label as the label associated with the real time series information acquired from the target device 104.
 パラメータ記憶部114は、特定されたパラメータと、該パラメータと関連付けられたラベルと、を関連付けて記憶する。具体的には、パラメータ記憶部114は、実時系列情報取得部106が取得した実時系列情報と、各実時系列情報と対応するパラメータとして特定されたパラメータと、各実時系列情報と関連付けられたラベルと、を関連付けて記憶する。 The parameter storage unit 114 stores the specified parameter in association with the label associated with the parameter. Specifically, the parameter storage unit 114 associates the real time series information acquired by the real time series information acquisition unit 106 with the parameters specified as the parameters corresponding to each real time series information and each real time series information. The attached label and the associated label are stored.
 例えば、パラメータ記憶部114は、図8に示すように、図4(a)、図5(a)、図6(a)及び図7(a)に示す実時系列情報と、実時系列情報と最も誤差の小さい仮想時系列情報として特定された各仮想時系列情報を生成する際に用いられた回転系の粘性摩擦係数Dr及び直動案内の粘性摩擦係数Ctと、各実時系列情報と関連付けられた「正常」または「異常」というラベルと、を記憶する。なお、図8の実時系列情報フィールドの1から4という値は、順に図4(a)、図5(a)、図6(a)及び図7(a)に示す実時系列情報と対応する。 For example, as shown in FIG. 8, the parameter storage unit 114 has the real time series information shown in FIGS. 4 (a), 5 (a), 6 (a), and 7 (a), and the real time series information. The viscous friction coefficient D r of the rotary system and the viscous friction coefficient C t of the linear motion guide used when generating each virtual time series information specified as the virtual time series information with the smallest error, and each real time series. Remember the "normal" or "abnormal" label associated with the information. The values 1 to 4 in the real-time series information field in FIG. 8 correspond to the real-time series information shown in FIGS. 4 (a), 5 (a), 6 (a), and 7 (a), respectively. do.
 また、パラメータ記憶部114は、ラベルの種類ごとに取りうるパラメータが該ラベルと関連付けて記憶される。具体的には、図9は、パラメータ記憶部114に記憶された回転系の粘性摩擦係数Drと、直動案内の粘性摩擦係数Ctと、ラベルと、の関係を示す図である。なお、図9に示す各実時系列情報は、全て実時系列情報取得部106が取得した実時系列情報であって、仮想時系列情報生成部110が生成した仮想時系列情報は含まれていない。図9に示すように、縦軸を回転系の粘性摩擦係数Drとし、横軸を直動案内の粘性摩擦係数Ctとする2次元平面において、異なるラベルが関連付けられた実時系列情報は、所定の領域に偏って分布している。以下、図9に示すような、各ラベルが関連付けられたパラメータの分布を表す図をパラメータ分布図とする。 Further, the parameter storage unit 114 stores parameters that can be taken for each type of label in association with the label. Specifically, FIG. 9 is a diagram showing the relationship between the viscous friction coefficient D r of the rotary system stored in the parameter storage unit 114, the viscous friction coefficient C t of the linear motion guide, and the label. Note that each real time-series information shown in FIG. 9 is all real-time-series information acquired by the real-time-series information acquisition unit 106, and includes virtual time-series information generated by the virtual time-series information generation unit 110. No. As shown in FIG. 9, in a two-dimensional plane in which the vertical axis is the viscous friction coefficient D r of the rotary system and the horizontal axis is the viscous friction coefficient C t of linear motion guidance, the real-time series information in which different labels are associated is , Is distributed unevenly in a predetermined area. Hereinafter, a diagram showing the distribution of parameters associated with each label as shown in FIG. 9 is referred to as a parameter distribution map.
 すなわち、「正常」ラベルと関連付けられた実時系列情報(正常データ)は、図9の楕円状の領域の内側に分布し、「異常」ラベルと関連付けられた実時系列情報(異常データ1、2及び3)は、図9の楕円状の領域の外側に分布している。当該分布は、ボールねじ機構300が正常に動作している状態であるか、異常な状態であるかに応じて、ボールねじ機構300の回転系の粘性摩擦係数Drと直動案内の粘性摩擦係数Ctとの関係が異なっていることに起因する。 That is, the real-time series information (normal data) associated with the "normal" label is distributed inside the elliptical region of FIG. 9, and the real-time series information (abnormal data 1, abnormal data 1) associated with the "abnormal" label is distributed. 2 and 3) are distributed outside the elliptical region of FIG. The distribution is such that the viscous friction coefficient D r of the rotary system of the ball screw mechanism 300 and the viscous friction of the linear motion guide are determined according to whether the ball screw mechanism 300 is operating normally or in an abnormal state. This is due to the difference in the relationship with the coefficient C t .
 従って、正常ラベルと関連付けられ得るパラメータは、図9の楕円状の領域の内側に分布するパラメータであって、異常ラベルと関連付けられ得るパラメータは、図9の楕円状の領域の外側に分布するパラメータである。このようにして、パラメータ記憶部114は、ラベルの種類ごとに取りうるパラメータが該ラベルと関連付けて記憶される。 Therefore, the parameters that can be associated with the normal label are the parameters that are distributed inside the elliptical region of FIG. 9, and the parameters that can be associated with the abnormal label are the parameters that are distributed outside the elliptical region of FIG. Is. In this way, the parameter storage unit 114 stores the parameters that can be taken for each type of label in association with the label.
 なお、図9において、異なるラベルと関連付けられた実時系列情報の境界は楕円で示されているが、当該境界は任意の方法によって設定されてよい。例えば、最も近接する正常データとの距離の2乗と、最も近接する異常データとの距離の2乗と、の和が最も小さくなる位置が境界となるように設定されてもよい。また、所定距離の範囲内に存在する正常データまたは異常データの数の多寡に応じて、境界の位置が設定されてもよい。また、境界は、明確に決定されなくてもよい。 Note that, in FIG. 9, the boundaries of the real time series information associated with different labels are shown by ellipses, but the boundaries may be set by any method. For example, the position where the sum of the square of the distance to the closest normal data and the square of the distance to the closest abnormal data is the smallest may be set as the boundary. Further, the position of the boundary may be set according to the number of normal data or abnormal data existing within a predetermined distance. Also, the boundaries do not have to be clearly determined.
 パラメータ生成部116は、パラメータ特定部112によって特定されるパラメータに基づいて、新たなパラメータ及び該新たなパラメータと対応するラベルを生成する。例えば、パラメータ生成部116は、図8及び図9に示すような、パラメータ記憶部114に記憶されたパラメータに基づいて、新たなパラメータを生成する。 The parameter generation unit 116 generates a new parameter and a label corresponding to the new parameter based on the parameter specified by the parameter specifying unit 112. For example, the parameter generation unit 116 generates new parameters based on the parameters stored in the parameter storage unit 114 as shown in FIGS. 8 and 9.
 具体的には、パラメータ生成部116は、パラメータ分布図において、データが存在しない位置に対応する回転系の粘性摩擦係数Drと直動案内の粘性摩擦係数Ctとを新たなパラメータとして生成する。当該パラメータは、現実のボールねじ機構300では再現されていない新たな内部状態を表すパラメータである。 Specifically, the parameter generation unit 116 generates the viscous friction coefficient D r of the rotational system corresponding to the position where the data does not exist and the viscous friction coefficient C t of the linear motion guide as new parameters in the parameter distribution map. .. The parameter is a parameter representing a new internal state that is not reproduced in the actual ball screw mechanism 300.
 また、パラメータ生成部116は、新たなパラメータと、パラメータ記憶部114に記憶された各ラベルと対応するパラメータ群と、の関係によって、当該新たなパラメータと対応するラベルを決定する。具体的には、例えば、図9の楕円の内側に存在するパラメータ群は、「正常」ラベルと対応し、図9の楕円の外側に存在するパラメータ群は、「異常」ラベルと対応する。従って、パラメータ生成部116は、生成された新たなパラメータが図9の楕円の内側に存在する場合、新たなパラメータと対応するラベルは「正常」であると決定する。また、パラメータ生成部116は、生成された新たなパラメータが図9の楕円の外側に存在する場合、新たなパラメータと対応するラベルは「異常」であると決定する。 Further, the parameter generation unit 116 determines the label corresponding to the new parameter according to the relationship between the new parameter and the parameter group corresponding to each label stored in the parameter storage unit 114. Specifically, for example, the parameter group existing inside the ellipse of FIG. 9 corresponds to the "normal" label, and the parameter group existing outside the ellipse of FIG. 9 corresponds to the "abnormal" label. Therefore, the parameter generation unit 116 determines that the label corresponding to the new parameter is "normal" when the generated new parameter is inside the ellipse of FIG. Further, the parameter generation unit 116 determines that the label corresponding to the new parameter is "abnormal" when the generated new parameter exists outside the ellipse of FIG.
 なお、取得される実時系列情報によっては、パラメータ記憶部114に記憶された各ラベルと対応する各パラメータ群の分布する領域が相互に重複する場合もある。すなわち、図9に示す境界線が明確に決定できない場合がある。この場合、パラメータ生成部116は、新たなパラメータと、パラメータ記憶部114に記憶された各ラベルと対応するパラメータ群と、の関係を評価し、評価結果に基づいて新たなパラメータと対応するラベルを決定してもよい。例えば、パラメータ生成部116は、ラベルごとに、パラメータ分布図における位置を変数とする確率分布関数を算出してもよい。そして、パラメータ生成部116は、確率分布関数に基づいて、新たに生成されたパラメータと関連付けられる確率が最も高いラベルを、新たなパラメータと対応するラベルとして決定してもよい。これにより、図9に示す境界線が明確に決定できない場合であっても、新たなパラメータと対応するラベルとして適切なラベルを決定できる。 Note that, depending on the acquired real time-series information, the areas in which each label stored in the parameter storage unit 114 and the corresponding parameter group are distributed may overlap with each other. That is, the boundary line shown in FIG. 9 may not be clearly determined. In this case, the parameter generation unit 116 evaluates the relationship between the new parameter and each label stored in the parameter storage unit 114 and the corresponding parameter group, and based on the evaluation result, the new parameter and the corresponding label are generated. You may decide. For example, the parameter generation unit 116 may calculate a probability distribution function with a position in the parameter distribution map as a variable for each label. Then, the parameter generation unit 116 may determine the label having the highest probability of being associated with the newly generated parameter as the label corresponding to the new parameter, based on the probability distribution function. As a result, even when the boundary line shown in FIG. 9 cannot be clearly determined, an appropriate label can be determined as a label corresponding to the new parameter.
 また、パラメータ生成部116は、新たなパラメータを中心とする所定の距離内に存在するパラメータの数を、ラベルごとに評価してもよい。図9に示すパラメータ分布図の例では、パラメータ生成部116は、新たなパラメータを中心とする所定距離内に存在する正常ラベル及び異常ラベルと関連付けられたパラメータの個数を評価する。そして、当該個数の多いパラメータと関連付けられたラベルを、新たなパラメータと対応するラベルとして決定してもよい。 Further, the parameter generation unit 116 may evaluate the number of parameters existing within a predetermined distance centered on the new parameter for each label. In the example of the parameter distribution diagram shown in FIG. 9, the parameter generation unit 116 evaluates the number of parameters associated with the normal label and the abnormal label existing within a predetermined distance centered on the new parameter. Then, the label associated with the large number of parameters may be determined as the label corresponding to the new parameter.
 また、パラメータ生成部116は、異常であることを表すラベルと対応する新たなパラメータを選択的に生成してもよい。具体的には、例えば、パラメータ生成部116は、新たなパラメータの図9に示すパラメータ分布図上の位置が楕円の外側に位置するように、新たなパラメータを選択的に生成してもよい。パラメータ分布図において、楕円の外側に位置するパラメータは、「異常」を表すラベルと関連付けられる。そのため、生成された新たなパラメータは、異常であることを表すラベルと関連付けられる。通常、対象機器が異常な動作を行う状態は再現性がないため、正常データよりも異常データを収集する方が困難である場合が多い。パラメータ生成部116が異常であることを表すラベルと対応する新たなパラメータを選択的に生成することにより、効率的に異常データを収集することができる。 Further, the parameter generation unit 116 may selectively generate a new parameter corresponding to the label indicating that it is abnormal. Specifically, for example, the parameter generation unit 116 may selectively generate new parameters so that the positions of the new parameters on the parameter distribution map shown in FIG. 9 are located outside the ellipse. In the parameter distribution map, the parameters located outside the ellipse are associated with the label representing "abnormality". Therefore, the new parameters generated are associated with a label indicating anomalies. Normally, it is often more difficult to collect abnormal data than normal data because the state in which the target device operates abnormally is not reproducible. Abnormality data can be efficiently collected by selectively generating a new parameter corresponding to the label indicating that the parameter generation unit 116 is abnormal.
 また、パラメータ生成部116は、パラメータ分布図上で、所定の範囲内に所定の数のパラメータが存在する位置によって表されるパラメータを新たなパラメータとして生成してもよい。具体的には、図9に示すように、新たなパラメータは、ラベルが関連付けられたパラメータの分布を表すパラメータ分布図上の位置で表される。パラメータ生成部116は、新たに生成するパラメータの位置として、周囲に所定の個数のパラメータが存在する位置を決定する。例えば、新たなパラメータの位置を中心として、回転系の粘性摩擦係数(Dr)が±0.1の範囲であって、直動案内の粘性摩擦係数(Ct)が±1000の範囲に、パラメータが10個以上存在するように、パラメータ生成部は、新たに生成するパラメータの位置を決定する。これにより、実時系列情報に基づいて特定されたパラメータの位置から極端に離れた位置に新たなパラメータが生成されることを防止できる。従って、より現実に即した新たなパラメータが生成される。なお、上記範囲及び個数は一例である。新たなパラメータの位置を中心として所定の距離の範囲内に所定の個数のパラメータが存在するように、新たなパラメータが生成されてもよい。 Further, the parameter generation unit 116 may generate a parameter represented by a position where a predetermined number of parameters exist within a predetermined range on the parameter distribution map as a new parameter. Specifically, as shown in FIG. 9, the new parameter is represented by a position on the parameter distribution map that represents the distribution of the parameter to which the label is associated. The parameter generation unit 116 determines the position where a predetermined number of parameters exist in the surroundings as the position of the newly generated parameter. For example, the viscous friction coefficient (D r ) of the rotating system is in the range of ± 0.1 and the viscous friction coefficient (C t ) of the linear motion guide is in the range of ± 1000 around the position of the new parameter. The parameter generation unit determines the position of the newly generated parameter so that there are 10 or more parameters. This makes it possible to prevent new parameters from being generated at positions extremely distant from the positions of the parameters specified based on the real time series information. Therefore, new parameters that are more realistic are generated. The above range and number are examples. New parameters may be generated such that a predetermined number of parameters exist within a predetermined distance centered on the position of the new parameter.
 機械学習データ生成部118は、新たな内部状態に対応する仮想時系列情報に新たなパラメータと対応するラベルを関連付けて、新たな機械学習データを生成する。具体的には、機械学習データ生成部118は、パラメータ生成部116が生成した新たなパラメータに基づいて仮想時系列情報生成部110に生成された仮想時系列情報と、パラメータ生成部116によって決定された当該パラメータと対応するラベルと、を関連付けて、新たな機械学習データを生成する。 The machine learning data generation unit 118 generates new machine learning data by associating the virtual time series information corresponding to the new internal state with the new parameter and the corresponding label. Specifically, the machine learning data generation unit 118 is determined by the virtual time series information generated in the virtual time series information generation unit 110 based on the new parameters generated by the parameter generation unit 116 and the parameter generation unit 116. New machine learning data is generated by associating the relevant parameter with the corresponding label.
 なお、機械学習データ生成部118は、GAN1000を含んでいてもよい。GAN1000(Generative Adversarial Networks)は、実時系列情報と区別のつきがたい仮想時系列情報を生成する。ここで、図10を参照して、GAN1000について簡単に説明する。GAN1000は、既知のものであるため、説明は最小限のものにとどめる。 The machine learning data generation unit 118 may include the GAN1000. GAN1000 (Generative Adversarial Networks) generates virtual time series information that is indistinguishable from real time series information. Here, the GAN1000 will be briefly described with reference to FIG. Since the GAN1000 is known, the explanation is kept to a minimum.
 GAN1000は、図10に示した構成を有し、ジェネレータ1002及びディスクリミネータ1004と称される2つのニューラルネットワークを含む。ジェネレータ1002は、仮想時系列情報と所定のノイズの入力を受け付け、ノイズを含む仮想時系列情報を出力する。一方、ディスクリミネータ1004には、ジェネレータ1002により生成されたノイズを含む仮想時系列情報と、対象機器104から取得された実時系列情報の両方が入力される。この時、ディスクリミネータ1004には、入力されたデータが仮想時系列情報と実時系列情報のいずれであるかは知らされない。 The GAN1000 has the configuration shown in FIG. 10 and includes two neural networks called a generator 1002 and a discriminator 1004. The generator 1002 receives the input of the virtual time series information and the predetermined noise, and outputs the virtual time series information including the noise. On the other hand, both the virtual time-series information including noise generated by the generator 1002 and the real-time-series information acquired from the target device 104 are input to the discriminator 1004. At this time, the discriminator 1004 is not informed whether the input data is virtual time series information or real time series information.
 ディスクリミネータ1004の出力は、入力データが仮想時系列情報と実時系列情報のいずれであるかを判別するものである。そして、GAN1000は、あらかじめ用意したいくつかの仮想時系列情報と実時系列情報について、ディスクリミネータ1004ではこの両者を正しく判別するように、また、ジェネレータ1002では、ディスクリミネータ1004においてこの両者が判別できないように繰り返し強化学習を行う。 The output of the discriminator 1004 determines whether the input data is virtual time-series information or real-time-series information. Then, the GAN1000 correctly discriminates between some virtual time-series information and real-time-series information prepared in advance by the discriminator 1004, and in the generator 1002, both of them are used in the discriminator 1004. Reinforcement learning is repeated so that it cannot be discriminated.
 この結果、最終的にはディスクリミネータ1004においてこの両者が判別できない(例えば、仮想時系列情報と実時系列情報を同数用意した場合には、正答率が50%となるなど)状態となる。当該状態においては、ジェネレータ1002は、仮想時系列情報に基づいて、実時系列情報と区別のつかない、あたかも現実の実時系列情報であるかのごとき仮想時系列情報を出力する。したがって、機械学習データ生成部118は、上記のような学習が実行済であるジェネレータ1002及びディスクリミネータ1004を用いて生成されたノイズを含む仮想時系列情報に基づいて、機械学習データを生成してもよい。 As a result, the discriminator 1004 will not be able to distinguish between the two (for example, if the same number of virtual time series information and real time series information are prepared, the correct answer rate will be 50%). In this state, the generator 1002 outputs the virtual time-series information as if it were the actual real-time-series information, which is indistinguishable from the real-time-series information, based on the virtual time-series information. Therefore, the machine learning data generation unit 118 generates machine learning data based on the virtual time series information including noise generated by using the generator 1002 and the discriminator 1004 for which the above learning has been executed. You may.
 具体的には、例えば、図11(a)、図12(a)、図13(a)及び図14(a)に示す仮想時系列情報が機械学習データ生成部118に含まれるGAN1000に入力された場合、図11(b)、図12(b)、図13(b)及び図14(b)に示すノイズを含む仮想時系列情報が出力される。 Specifically, for example, the virtual time series information shown in FIGS. 11 (a), 12 (a), 13 (a), and 14 (a) is input to the GAN 1000 included in the machine learning data generation unit 118. In this case, the virtual time series information including the noise shown in FIGS. 11 (b), 12 (b), 13 (b), and 14 (b) is output.
 ここで、図11(a)、図12(a)、図13(a)及び図14(a)は、それぞれ図4(b)、図5(b)、図6(b)及び図7(b)に示す仮想時系列情報である。仮想時系列情報生成部110が生成した仮想時系列情報は、ノイズを含まないため、現実の対象機器104からは取得することは困難な形状である。しかしながら、GAN1000が生成したノイズを含む仮想時系列情報は、一見して実時系列情報との判別が困難である。すなわち、GAN1000によれば、より現実に即した仮想時系列情報を生成することができる。 Here, FIGS. 11 (a), 12 (a), 13 (a), and 14 (a) are shown in FIGS. 4 (b), 5 (b), 6 (b), and 7 (a), respectively. This is the virtual time series information shown in b). Since the virtual time-series information generated by the virtual time-series information generation unit 110 does not include noise, it has a shape that is difficult to acquire from the actual target device 104. However, it is difficult at first glance to distinguish the virtual time-series information including noise generated by the GAN1000 from the real-time-series information. That is, according to GAN1000, it is possible to generate more realistic virtual time series information.
 上記のように、機械学習データ生成装置102により、多数の互いに異なる機械学習データが容易に、かつ、実用的な時間及びコストの範囲で得られる。対象装置に生じる故障が発生頻度の少ない態様であっても、当該故障の態様を反映したパラメータを用いて物理シミュレーションを実行することにより、当該態様の故障が生じた対象装置の内部状態を表す時系列情報を学習データとして用いることができる。 As described above, the machine learning data generator 102 makes it easy to obtain a large number of different machine learning data within a practical time and cost range. Even if the failure that occurs in the target device is infrequent, when the internal state of the target device in which the failure of the mode has occurred is represented by executing the physical simulation using the parameters that reflect the mode of the failure. Series information can be used as training data.
 機械学習装置100は、上述の機械学習データ生成装置102及び学習部120を含む。学習部120は、機械学習データに基づいて、仮想時系列情報を入力とし、ラベルを出力とするニューラルネットワークである、ニューラルネットワークモデルを学習させる。具体的には、ニューラルネットワークには、機械学習データ生成部118が生成したn個の機械学習データが入力される。ここで、nは機械学習に十分な数であって適宜設定される。また、iを1からnの整数とし、機械学習データiは、仮想時系列情報i及びラベルiを含むものとする。ニューラルネットワークは、仮想時系列情報iが入力されて、スコアを算出する。 The machine learning device 100 includes the above-mentioned machine learning data generation device 102 and a learning unit 120. The learning unit 120 trains a neural network model, which is a neural network that inputs virtual time series information and outputs labels based on machine learning data. Specifically, n machine learning data generated by the machine learning data generation unit 118 are input to the neural network. Here, n is a sufficient number for machine learning and is appropriately set. Further, it is assumed that i is an integer from 1 to n, and the machine learning data i includes virtual time series information i and a label i. In the neural network, virtual time series information i is input and a score is calculated.
 ここで、スコアは、所定のラベル(上記例では「正常」または「異常」ラベル)と一致する度合いを表す値であって、例えば、CNNの出力値である。そして、仮想時系列情報iと関連付けて学習部120に入力されたラベルiと、スコアとの比較結果(以下、誤差)が特定される。誤差は、0以上1以下の値をとるデータであってもよい。誤差は、例えば、算出されたスコアとラベルiが一致する場合に値として1をとり、一致しない場合に値として0をとるデータであってもよい。 Here, the score is a value indicating the degree of agreement with a predetermined label (“normal” or “abnormal” label in the above example), and is, for example, an output value of CNN. Then, the comparison result (hereinafter, error) between the label i input to the learning unit 120 in association with the virtual time series information i and the score is specified. The error may be data having a value of 0 or more and 1 or less. The error may be, for example, data that takes 1 as a value when the calculated score and the label i match, and 0 as a value when they do not match.
 さらに、当該誤差に基づいて、例えば誤差逆伝搬法により、CNNの各ノード間の重み係数が更新される。ニューラルネットワークは、iを1からnまで変化させて、機械学習データが入力される毎に重み係数の更新を繰り返し実行する。これにより、学習部120の学習が実行される。 Further, based on the error, the weighting factor between each node of the CNN is updated by, for example, the error back propagation method. The neural network changes i from 1 to n and repeatedly updates the weighting coefficient each time machine learning data is input. As a result, the learning of the learning unit 120 is executed.
 図15は、本実施形態に係る機械学習装置100及び機械学習データ生成装置102による、機械学習データ生成方法及び機械学習方法のフロー図である。同図に示したフローのうち、S1502からS1514が機械学習データ生成方法に該当し、S1502からS1516が機械学習方法に該当する。 FIG. 15 is a flow chart of a machine learning data generation method and a machine learning method by the machine learning device 100 and the machine learning data generation device 102 according to the present embodiment. Among the flows shown in the figure, S1502 to S1514 correspond to the machine learning data generation method, and S1502 to S1516 correspond to the machine learning method.
 まず、実時系列情報取得部106は、機械または電気回路である対象機器104の動作状態を示す実時系列情報を、所定のラベルと関連付けて取得する(S1502)。次に、物理シミュレーション実行部108は、対象機器104の内部状態を表す複数のパラメータのそれぞれに基づいて、単位時間後の仮想的な状態を順次算出することにより、複数の仮想時系列情報を生成する物理シミュレーションを実行する。これにより、仮想時系列情報生成部110は、内部状態に対応する仮想時系列情報を生成する(S1504)。 First, the real-time series information acquisition unit 106 acquires real-time series information indicating the operating state of the target device 104, which is a machine or an electric circuit, in association with a predetermined label (S1502). Next, the physics simulation execution unit 108 generates a plurality of virtual time-series information by sequentially calculating the virtual state after a unit time based on each of the plurality of parameters representing the internal state of the target device 104. Perform a physics simulation. As a result, the virtual time-series information generation unit 110 generates virtual time-series information corresponding to the internal state (S1504).
 次に、パラメータ特定部112は、S1504で生成された複数の仮想時系列情報と、動作状態を示す実時系列情報とに基づいて、複数のパラメータから1以上のパラメータを特定し、ラベルと関連付ける(S1506)。特定されたパラメータと該パラメータと関連付けられたラベルとは、パラメータ記憶部114に記憶される。また、この際、パラメータ分布図上の各ラベルの境界や確率分布関数が算出されることにより、ラベルの種類ごとに取りうるパラメータが、該ラベルと関連付けてパラメータ記憶部114に記憶されてもよい。 Next, the parameter specifying unit 112 identifies one or more parameters from the plurality of parameters based on the plurality of virtual time series information generated in S1504 and the real time series information indicating the operating state, and associates them with the label. (S1506). The identified parameter and the label associated with the parameter are stored in the parameter storage unit 114. Further, at this time, by calculating the boundary of each label on the parameter distribution map and the probability distribution function, the parameters that can be taken for each type of label may be stored in the parameter storage unit 114 in association with the label. ..
 次に、パラメータ生成部116は、パラメータ特定部112によって特定されるパラメータに基づいて、新たなパラメータ及び該新たなパラメータと対応するラベルを生成する(S1508)。そして、仮想時系列情報生成部110は、S1508で生成された新たなパラメータを用いて物理シミュレーションを実行し、新たな内部状態に対応する仮想時系列情報を生成する(S1510)。機械学習データ生成部118は、S1510で生成された新たな内部状態に対応する仮想時系列情報にラベルを関連付けて、新たな機械学習データを生成する(S1512)。生成された機械学習データは、逐次蓄積される。 Next, the parameter generation unit 116 generates a new parameter and a label corresponding to the new parameter based on the parameter specified by the parameter specifying unit 112 (S1508). Then, the virtual time-series information generation unit 110 executes a physics simulation using the new parameters generated in S1508, and generates virtual time-series information corresponding to the new internal state (S1510). The machine learning data generation unit 118 associates a label with the virtual time series information corresponding to the new internal state generated in S1510, and generates new machine learning data (S1512). The generated machine learning data is sequentially accumulated.
 S1514において、蓄積された機械学習データの数が十分であるか否かを判断される。機械学習データの数が十分でなければ(S1514:N)、S1508へと戻り、繰り返し機械学習データの生成を行う。レコード数が十分であれば(S1514:Y)、S1518へと進む。必要な機械学習データの数は、あらかじめ目標数を定めておいてよい。または、S1516での機械学習の結果を評価し、学習が十分でない場合には、S1508~S1514を改めて実行し、機械学習データを追加で生成するようにしてもよい。機械学習の結果の評価は、学習部120におけるニューラルネットワークモデルの内部状態の収束を評価することにより行ってもよいし、ニューラルネットワークモデルにテストデータを入力し、得られた出力の正解率により行ってもよい。 In S1514, it is determined whether or not the number of accumulated machine learning data is sufficient. If the number of machine learning data is not sufficient (S1514: N), the process returns to S1508 and the machine learning data is repeatedly generated. If the number of records is sufficient (S1514: Y), the process proceeds to S1518. The target number of required machine learning data may be set in advance. Alternatively, the result of machine learning in S1516 may be evaluated, and if the learning is not sufficient, S1508 to S1514 may be executed again to additionally generate machine learning data. The evaluation of the machine learning result may be performed by evaluating the convergence of the internal state of the neural network model in the learning unit 120, or by inputting test data into the neural network model and using the correct answer rate of the obtained output. You may.
 次に、学習部120は、生成された機械学習データに基づいて、ニューラルネットワークモデルを、達成状況に応じて学習を実行する。このようにして、本実施形態では、学習済みのニューラルネットワークモデルが得られる。 Next, the learning unit 120 executes learning of the neural network model according to the achievement status based on the generated machine learning data. In this way, in this embodiment, a trained neural network model is obtained.
 本例に示すボールねじ機構300の例でも明らかなように、学習部120のニューラルネットワークモデルを十分に学習させるための、十分な数の適切な機械学習データを現実に用意することは容易ではない。ボールねじ機構300は、複数の部品を組み合わせて構成されており、故障を引き起こす部品が異なる場合や、故障を引き起こす部品が同一であっても故障の原因が異なる場合には、種々の異なる故障態様が現れるためである。当該種々の異なる故障態様で動作するボールねじ機構300から機械学習データを取得するためには、当該種々の異なる故障態様を現実のボールねじ機構300を用いて実現する必要があるが、あまりに多大な時間とコストを要するため、現実的ではない。 As is clear from the example of the ball screw mechanism 300 shown in this example, it is not easy to actually prepare a sufficient number of appropriate machine learning data for sufficiently training the neural network model of the learning unit 120. .. The ball screw mechanism 300 is configured by combining a plurality of parts, and when the parts causing the failure are different, or when the parts causing the failure are the same but the cause of the failure is different, various different failure modes are used. Is to appear. In order to acquire machine learning data from the ball screw mechanism 300 operating in the various different failure modes, it is necessary to realize the various different failure modes by using the actual ball screw mechanism 300, but it is too large. It is not realistic because it takes time and cost.
 しかしながら、本実施形態によれば、故障態様の異なる対象機器104を現実に準備を要することなく機械学習がなされる。従って、本実施形態に係る機械学習データ生成装置102は、対象機器104による物理的動作を仮想的に実行することで、ニューラルネットワークモデルに対する十分な数の機械学習データを現実的な時間及びコストで生成できる。また、本実施形態に係る機械学習装置100は、生成された機械学習データによりニューラルネットワークモデルを学習させることができる。 However, according to the present embodiment, machine learning is performed without actually requiring preparation for the target device 104 having a different failure mode. Therefore, the machine learning data generation device 102 according to the present embodiment virtually executes the physical operation by the target device 104 to generate a sufficient number of machine learning data for the neural network model in a realistic time and cost. Can be generated. Further, the machine learning device 100 according to the present embodiment can train the neural network model from the generated machine learning data.
 また、機械学習データの特徴を捉えて潜在変数にエンコードし、潜在変数から再び機械学習データに似たデータを生成するVAEという技術がある。VAEによれば、対象機器104が実際に物理的動作を行わずに機械学習データを生成することができる。例えば、VAEは、機械に備えられたセンサ302の出力等の機械学習データを特徴ベクトル化し、これらを補間した新たな教師データを生成する。しかしながら、VAEは、機械の表面的な状態を表すデータを補間するに過ぎないため、機械の内部状態がわずかに異なるだけであるが機械から出力されるデータが大きく異なる場合には、適切なラベルが付された機械学習データを生成することができない。 In addition, there is a technology called VAE that captures the characteristics of machine learning data, encodes it into latent variables, and generates data similar to machine learning data again from the latent variables. According to VAE, the target device 104 can generate machine learning data without actually performing physical operation. For example, the VAE converts machine learning data such as the output of the sensor 302 provided in the machine into a feature vector, and generates new teacher data by interpolating these. However, VAE only interpolates data that represents the superficial state of the machine, so if the internal state of the machine is only slightly different but the data output from the machine is significantly different, a suitable label. Cannot generate machine learning data with.
 しかしながら、本実施形態によれば、物理シミュレーション実行部108が対象機器104の内部状態を表す複数のパラメータに基づいて物理シミュレーションを実行するため、対象機器104が行う動作を反映した機械学習を行うことができる。また、パラメータは対象機器104の内部状態を表すため、当該パラメータがとり得る値の範囲は物理的に定まる。従って、現実的にあり得ないパラメータから生成された仮想時系列情報に基づいて学習が実行されることを回避できる。 However, according to the present embodiment, since the physics simulation execution unit 108 executes the physics simulation based on a plurality of parameters representing the internal states of the target device 104, machine learning that reflects the operation performed by the target device 104 is performed. Can be done. Further, since the parameter represents the internal state of the target device 104, the range of values that the parameter can take is physically determined. Therefore, it is possible to prevent learning from being executed based on virtual time-series information generated from parameters that are not realistically possible.
 100 機械学習装置、102 機械学習データ生成装置、104 対象機器、106 実時系列情報取得部、108 物理シミュレーション実行部、110 仮想時系列情報生成部、112 パラメータ特定部、114 パラメータ記憶部、116 パラメータ生成部、118 機械学習データ生成部、120 学習部、202 CPU、204 RAM、206 外部記憶装置、208 表示デバイス、210 入力デバイス、212 I/O、214 データバス、300 ボールねじ機構、302 センサ、304 制御部、306 サーボアンプ、308 サーボモータ、310 ボールねじ軸、312 ボールねじナット、314 テーブル、316 対象物、1000 GAN、1002 ジェネレータ、1004 ディスクリミネータ。 100 machine learning device, 102 machine learning data generation device, 104 target device, 106 real time series information acquisition unit, 108 physical simulation execution unit, 110 virtual time series information generation unit, 112 parameter identification unit, 114 parameter storage unit, 116 parameters Generation unit, 118 machine learning data generation unit, 120 learning unit, 202 CPU, 204 RAM, 206 external storage device, 208 display device, 210 input device, 212 I / O, 214 data bus, 300 ball screw mechanism, 302 sensor, 304 control unit, 306 servo amplifier, 308 servo motor, 310 ball screw shaft, 312 ball screw nut, 314 table, 316 object, 1000 GAN, 1002 generator, 1004 discriminator.

Claims (9)

  1.  機械または電気回路である対象機器の動作状態を示す実時系列情報を、所定のラベルと関連付けて取得する実時系列情報取得部と、
     前記対象機器の内部状態を表す複数のパラメータのそれぞれに基づいて、単位時間後の仮想的な状態を順次算出することにより、複数の仮想時系列情報を生成する物理シミュレーションを実行する物理シミュレーション実行部と、
     前記複数の仮想時系列情報と、前記実時系列情報とに基づいて、前記複数のパラメータのうち1以上のパラメータを特定し、前記ラベルと関連付けるパラメータ特定部と、
     前記パラメータ特定部によって特定されるパラメータに基づいて、新たなパラメータ及び該新たなパラメータと対応する前記ラベルを生成するパラメータ生成部と、
     前記新たなパラメータを用いて前記物理シミュレーションを実行し、新たな内部状態に対応する仮想時系列情報を生成する仮想時系列情報生成部と、
     前記新たな内部状態に対応する仮想時系列情報に前記新たなパラメータと対応する前記ラベルを関連付けて、新たな機械学習データを生成する機械学習データ生成部と、
     を有する機械学習データ生成装置。
    A real-time-series information acquisition unit that acquires real-time-series information indicating the operating state of a target device, which is a machine or an electric circuit, in association with a predetermined label.
    A physics simulation execution unit that executes a physics simulation that generates a plurality of virtual time-series information by sequentially calculating virtual states after a unit time based on each of a plurality of parameters representing the internal states of the target device. When,
    Based on the plurality of virtual time-series information and the real-time-series information, a parameter specifying unit that identifies one or more of the plurality of parameters and associates them with the label.
    A parameter generation unit that generates a new parameter and the label corresponding to the new parameter based on the parameter specified by the parameter identification unit.
    A virtual time-series information generator that executes the physics simulation using the new parameters and generates virtual time-series information corresponding to the new internal state.
    A machine learning data generation unit that generates new machine learning data by associating the new parameter with the label corresponding to the virtual time series information corresponding to the new internal state.
    Machine learning data generator with.
  2.  さらに、前記ラベルの種類ごとに取りうる前記パラメータが該ラベルと関連付けて記憶されたパラメータ記憶部を有し、
     前記パラメータ生成部は、前記パラメータ記憶部に記憶された前記パラメータに基づいて、前記新たなパラメータを生成する、
     請求項1に記載の機械学習データ生成装置。
    Further, the parameter that can be taken for each type of the label has a parameter storage unit that is stored in association with the label.
    The parameter generation unit generates the new parameter based on the parameter stored in the parameter storage unit.
    The machine learning data generation device according to claim 1.
  3.  前記パラメータ生成部は、前記新たなパラメータと、前記パラメータ記憶部に記憶された各ラベルと対応するパラメータ群と、の関係によって、当該新たなパラメータと対応する前記ラベルを決定する、請求項2に記載の機械学習データ生成装置。 The parameter generation unit determines the label corresponding to the new parameter by the relationship between the new parameter and the parameter group corresponding to each label stored in the parameter storage unit according to claim 2. The machine learning data generator described.
  4.  前記ラベルは、前記対象機器の前記動作状態が正常であるか異常であるかを表し、
     前記パラメータ生成部は、異常であることを表す前記ラベルと対応する前記新たなパラメータを選択的に生成する、
     請求項2に記載の機械学習データ生成装置。
    The label indicates whether the operating state of the target device is normal or abnormal.
    The parameter generator selectively generates the new parameter corresponding to the label indicating that it is abnormal.
    The machine learning data generation device according to claim 2.
  5.  前記新たなパラメータは、前記ラベルが関連付けられた前記パラメータの分布を表すパラメータ分布図上の位置で表され、
     前記パラメータ生成部は、前記パラメータ分布図上で、所定の範囲内に所定の数の前記パラメータが存在する位置によって表されるパラメータを前記新たなパラメータとして生成する、
     請求項3に記載の機械学習データ生成装置。
    The new parameter is represented by a position on the parameter distribution map that represents the distribution of the parameter with which the label is associated.
    The parameter generation unit generates a parameter represented by a position where a predetermined number of the parameters exist within a predetermined range on the parameter distribution map as the new parameter.
    The machine learning data generation device according to claim 3.
  6.  前記仮想時系列情報生成部は、前記新たなパラメータを用いて実行された前記物理シミュレーションの結果に基づいて、前記新たな状態の前記仮想時系列情報を生成するGAN(Generative Adversarial Networks)を有する、請求項1から5のいずれかに記載の機械学習データ生成装置。 The virtual time-series information generation unit has GAN (Generative Adversarial Networks) that generates the virtual time-series information in the new state based on the result of the physical simulation executed using the new parameters. The machine learning data generation device according to any one of claims 1 to 5.
  7.  請求項1から6のいずれかに記載の機械学習データ生成装置と、
     前記機械学習データに基づいて、前記仮想時系列情報を入力とし、前記ラベルを出力とするニューラルネットワークである、ニューラルネットワークモデルを学習させる学習部と、
     を有する機械学習装置。
    The machine learning data generator according to any one of claims 1 to 6.
    A learning unit that trains a neural network model, which is a neural network that inputs the virtual time series information and outputs the label based on the machine learning data.
    Machine learning device with.
  8.  機械または電気回路である対象機器の動作状態を示す実時系列情報を、所定のラベルと関連付けて取得する実時系列情報取得ステップと、
     前記対象機器の内部状態を表す複数のパラメータのそれぞれに基づいて、単位時間後の仮想的な状態を順次算出することにより、複数の仮想時系列情報を生成する物理シミュレーションを実行する物理シミュレーション実行ステップと、
     前記複数の仮想時系列情報と、前記実時系列情報とに基づいて、前記複数のパラメータのうち1以上のパラメータを特定し、前記ラベルと関連付けるパラメータ特定ステップと、
     前記パラメータ特定ステップによって特定されるパラメータに基づいて、新たなパラメータ及び該新たなパラメータと対応する前記ラベルを生成するパラメータ生成ステップと、
     前記新たなパラメータを用いて前記物理シミュレーションを実行し、新たな内部状態に対応する仮想時系列情報を生成する仮想時系列情報生成ステップと、
     前記新たな内部状態に対応する仮想時系列情報に前記新たなパラメータと対応する前記ラベルを関連付けて、新たな機械学習データを生成する機械学習データ生成ステップと、
     前記機械学習データに基づいて、前記仮想時系列情報を入力とし、前記ラベルを出力とするニューラルネットワークである、ニューラルネットワークモデルを学習させる学習ステップと、
     を有する機械学習モデルの生成方法。
    A real-time-series information acquisition step for acquiring real-time-series information indicating the operating state of a target device, which is a machine or an electric circuit, in association with a predetermined label.
    A physics simulation execution step of executing a physics simulation that generates a plurality of virtual time-series information by sequentially calculating a virtual state after a unit time based on each of a plurality of parameters representing the internal state of the target device. When,
    A parameter specifying step of identifying one or more of the plurality of parameters based on the plurality of virtual time-series information and the real-time series information and associating the label with the label.
    A parameter generation step that generates a new parameter and the label corresponding to the new parameter based on the parameter specified by the parameter specifying step.
    A virtual time-series information generation step that executes the physics simulation using the new parameters and generates virtual time-series information corresponding to the new internal state.
    A machine learning data generation step for generating new machine learning data by associating the new parameter with the label corresponding to the virtual time series information corresponding to the new internal state.
    Based on the machine learning data, a learning step for training a neural network model, which is a neural network in which the virtual time series information is input and the label is output,
    How to generate a machine learning model with.
  9.  機械または電気回路である対象機器の動作状態を示す実時系列情報を、所定のラベルと関連付けて取得する実時系列情報取得ステップと、
     前記対象機器の内部状態を表す複数のパラメータのそれぞれに基づいて、単位時間後の仮想的な状態を順次算出することにより、複数の仮想時系列情報を生成する物理シミュレーションを実行する物理シミュレーション実行ステップと、
     前記複数の仮想時系列情報と、前記実時系列情報とに基づいて、前記複数のパラメータのうち1以上のパラメータを特定し、前記ラベルと関連付けるパラメータ特定ステップと、
     前記パラメータ特定ステップによって特定されるパラメータに基づいて、新たなパラメータ及び該新たなパラメータと対応する前記ラベルを生成するパラメータ生成ステップと、
     前記新たなパラメータを用いて前記物理シミュレーションを実行し、新たな内部状態に対応する仮想時系列情報を生成する仮想時系列情報生成ステップと、
     前記新たな内部状態に対応する仮想時系列情報に前記新たなパラメータと対応する前記ラベルを関連付けて、新たな機械学習データを生成する機械学習データ生成ステップと、
     前記機械学習データに基づいて、前記仮想時系列情報を入力とし、前記ラベルを出力とするニューラルネットワークである、ニューラルネットワークモデルを学習させる学習ステップと、
     をコンピュータに実行させるためのプログラム。

     
    A real-time-series information acquisition step for acquiring real-time-series information indicating the operating state of a target device, which is a machine or an electric circuit, in association with a predetermined label.
    A physics simulation execution step of executing a physics simulation that generates a plurality of virtual time-series information by sequentially calculating a virtual state after a unit time based on each of a plurality of parameters representing the internal state of the target device. When,
    A parameter specifying step of identifying one or more of the plurality of parameters based on the plurality of virtual time-series information and the real-time series information and associating the label with the label.
    A parameter generation step that generates a new parameter and the label corresponding to the new parameter based on the parameter specified by the parameter specifying step.
    A virtual time-series information generation step that executes the physics simulation using the new parameters and generates virtual time-series information corresponding to the new internal state.
    A machine learning data generation step for generating new machine learning data by associating the new parameter with the label corresponding to the virtual time series information corresponding to the new internal state.
    Based on the machine learning data, a learning step for training a neural network model, which is a neural network in which the virtual time series information is input and the label is output,
    A program that lets your computer run.

PCT/JP2020/029255 2020-07-30 2020-07-30 Machine learning data generation device, machine learning device, machine learning model generation method, and program WO2022024302A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2022539902A JP7408815B2 (en) 2020-07-30 2020-07-30 Machine learning data generation device, machine learning device, machine learning model generation method and program
PCT/JP2020/029255 WO2022024302A1 (en) 2020-07-30 2020-07-30 Machine learning data generation device, machine learning device, machine learning model generation method, and program
US18/088,766 US20230134186A1 (en) 2020-07-30 2022-12-26 Machine learning data generation device, machine learning model generation method, and storage medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/029255 WO2022024302A1 (en) 2020-07-30 2020-07-30 Machine learning data generation device, machine learning device, machine learning model generation method, and program

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/088,766 Continuation US20230134186A1 (en) 2020-07-30 2022-12-26 Machine learning data generation device, machine learning model generation method, and storage medium

Publications (1)

Publication Number Publication Date
WO2022024302A1 true WO2022024302A1 (en) 2022-02-03

Family

ID=80037772

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/029255 WO2022024302A1 (en) 2020-07-30 2020-07-30 Machine learning data generation device, machine learning device, machine learning model generation method, and program

Country Status (3)

Country Link
US (1) US20230134186A1 (en)
JP (1) JP7408815B2 (en)
WO (1) WO2022024302A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114721772A (en) * 2022-03-25 2022-07-08 乐元素科技(北京)股份有限公司 Virtual equipment management method and device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020112921A (en) * 2019-01-09 2020-07-27 株式会社明電舎 Plant control adjusting device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11436484B2 (en) 2018-03-27 2022-09-06 Nvidia Corporation Training, testing, and verifying autonomous machines using simulated environments

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020112921A (en) * 2019-01-09 2020-07-27 株式会社明電舎 Plant control adjusting device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114721772A (en) * 2022-03-25 2022-07-08 乐元素科技(北京)股份有限公司 Virtual equipment management method and device

Also Published As

Publication number Publication date
JP7408815B2 (en) 2024-01-05
JPWO2022024302A1 (en) 2022-02-03
US20230134186A1 (en) 2023-05-04

Similar Documents

Publication Publication Date Title
US20040175684A1 (en) System and methods for interactive training of procedures
US20080147209A1 (en) Automated creation and adaption of a machine or system model
CN109388097A (en) Information processing unit, information processing method and record media
CN111164524B (en) Method and device for generating fault diagnosis information base of numerical control machine tool
US11474495B2 (en) Fault diagnosis method and apparatus for numerical control machine tool
CN109605367B (en) Robot programming method, device and equipment and storage medium
EP4052869A1 (en) Machine learning data generation device, machine learning device, work system, computer program, machine learning data generation method, and method for manufacturing work machine
JP2010531743A (en) Method for editing robot motion
JP2018120327A (en) Control apparatus, control program and control system
WO2022024302A1 (en) Machine learning data generation device, machine learning device, machine learning model generation method, and program
CN112155940A (en) Rehabilitation motion control method, system, equipment and medium based on rehabilitation robot
US20220019939A1 (en) Method and system for predicting motion-outcome data of a robot moving between a given pair of robotic locations
CN110377475A (en) A kind of large scale memory read-write verification platform and its method based on UVM
Pavlou et al. XRSISE: An XR training system for interactive simulation and ergonomics assessment
CN110000753A (en) User interaction approach, control equipment and storage medium
Gotow et al. Controlled impedance test apparatus for studying human interpretation of kinesthetic feedback
Chenney et al. Dynamics modeling and culling
CN115034147A (en) Intelligent manufacturing system based on digital twins
CN115867930A (en) Determination of surgical procedure execution level
KR101241830B1 (en) Test system for assembling a driving apparatus for education
JP2012198610A (en) Thermal fluid simulation program, thermal fluid simulation device and thermal fluid simulation method
Hou et al. A prediction method using interpolation for smooth six-DOF haptic rendering in multirate simulation
Kloiber et al. A System for Collaborative Assembly Simulation and User Performance Analysis
CN118051412B (en) Virtual reality display system utilizing AI and AR
Tanoto et al. Teletesting: Path planning experimentation and benchmarking in the Teleworkbench

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20946967

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022539902

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20946967

Country of ref document: EP

Kind code of ref document: A1