WO2022023012A1 - Module de refroidissement pour véhicule automobile électrique ou hybride - Google Patents

Module de refroidissement pour véhicule automobile électrique ou hybride Download PDF

Info

Publication number
WO2022023012A1
WO2022023012A1 PCT/EP2021/069358 EP2021069358W WO2022023012A1 WO 2022023012 A1 WO2022023012 A1 WO 2022023012A1 EP 2021069358 W EP2021069358 W EP 2021069358W WO 2022023012 A1 WO2022023012 A1 WO 2022023012A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
heat
cooling module
fluid
circulation
Prior art date
Application number
PCT/EP2021/069358
Other languages
English (en)
Inventor
Gael Durbecq
Amrid MAMMERI
Erwan ETIENNE
Kamel Azzouz
Original Assignee
Valeo Systemes Thermiques
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Valeo Systemes Thermiques filed Critical Valeo Systemes Thermiques
Priority to CN202180050846.4A priority Critical patent/CN115956031A/zh
Priority to US18/006,699 priority patent/US20230264541A1/en
Priority to EP21740556.2A priority patent/EP4188729A1/fr
Publication of WO2022023012A1 publication Critical patent/WO2022023012A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H1/3204Cooling devices using compression
    • B60H1/3228Cooling devices using compression characterised by refrigerant circuit configurations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00357Air-conditioning arrangements specially adapted for particular vehicles
    • B60H1/00385Air-conditioning arrangements specially adapted for particular vehicles for vehicles having an electrical drive, e.g. hybrid or fuel cell
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00271HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit
    • B60H1/00278HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit for the battery
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00357Air-conditioning arrangements specially adapted for particular vehicles
    • B60H1/00385Air-conditioning arrangements specially adapted for particular vehicles for vehicles having an electrical drive, e.g. hybrid or fuel cell
    • B60H1/00392Air-conditioning arrangements specially adapted for particular vehicles for vehicles having an electrical drive, e.g. hybrid or fuel cell for electric vehicles having only electric drive means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H1/3204Cooling devices using compression
    • B60H1/3228Cooling devices using compression characterised by refrigerant circuit configurations
    • B60H1/32281Cooling devices using compression characterised by refrigerant circuit configurations comprising a single secondary circuit, e.g. at evaporator or condenser side
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H1/3204Cooling devices using compression
    • B60H1/3228Cooling devices using compression characterised by refrigerant circuit configurations
    • B60H1/32284Cooling devices using compression characterised by refrigerant circuit configurations comprising two or more secondary circuits, e.g. at evaporator and condenser side
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K11/00Arrangement in connection with cooling of propulsion units
    • B60K11/02Arrangement in connection with cooling of propulsion units with liquid cooling
    • B60K11/04Arrangement or mounting of radiators, radiator shutters, or radiator blinds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P5/00Pumping cooling-air or liquid coolants
    • F01P5/02Pumping cooling-air; Arrangements of cooling-air pumps, e.g. fans or blowers
    • F01P5/04Pump-driving arrangements
    • F01P5/043Pump reversing arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P5/00Pumping cooling-air or liquid coolants
    • F01P5/02Pumping cooling-air; Arrangements of cooling-air pumps, e.g. fans or blowers
    • F01P5/06Guiding or ducting air to, or from, ducted fans
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6561Gases
    • H01M10/6563Gases with forced flow, e.g. by blowers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6567Liquids
    • H01M10/6568Liquids characterised by flow circuits, e.g. loops, located externally to the cells or cell casings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K11/00Arrangement in connection with cooling of propulsion units
    • B60K11/08Air inlets for cooling; Shutters or blinds therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P5/00Pumping cooling-air or liquid coolants
    • F01P5/02Pumping cooling-air; Arrangements of cooling-air pumps, e.g. fans or blowers
    • F01P5/04Pump-driving arrangements
    • F01P2005/046Pump-driving arrangements with electrical pump drive
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2050/00Applications
    • F01P2050/24Hybrid vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • Cooling module for an electric or hybrid motor vehicle
  • the invention relates to a cooling module for an electric or hybrid motor vehicle.
  • the invention also relates to an electric motor vehicle provided with such a cooling module.
  • a cooling module (or heat exchange module) of a motor vehicle conventionally comprises a set of heat exchangers and a ventilation device adapted to generate a flow of air passing through the set of heat exchangers.
  • the ventilation device thus makes it possible, for example, to generate a flow of air passing through the heat exchangers of the set of heat exchangers, when the vehicle is stationary.
  • the heat exchangers within the cooling module are generally stacked so that the same air flow passes successively through all the heat exchangers.
  • each heat exchanger placed upstream of another in the direction of circulation of the air flow impacts the performance of the latter, for example by increasing the temperature of the air flow. air passing through it or by increasing the pressure drops of the air flow.
  • the heat exchangers of the set of heat exchangers are each connected to a refrigerant fluid circulation loop which is configured to allow the thermal management of various elements of the electric or hybrid vehicle.
  • a heat exchangers of the cooling module can be connected to a loop allowing the thermal management of various components such as the motor and/or the power electronics and/or the on-board charger, called "on board charger". in English.
  • One or more other heat exchangers of the cooling module can be connected to another loop allowing the thermal management of other elements such as the batteries.
  • these loops may also include various other heat exchangers and components which may take up considerable space within the cooling module.
  • One of the aims of the invention is to remedy at least partially the drawbacks of the prior art and to propose an improved cooling module for an electric motor vehicle.
  • the subject of the invention is a cooling module for an electric or hybrid motor vehicle, said cooling module comprising a housing comprising an air inlet and an air outlet and inside which are arranged a set of heat exchangers heat exchanger and a tangential turbomachine configured so as to generate an air flow passing through said casing from its air inlet to its air outlet and passing through the set of heat exchangers, the casing comprising, on one of its external lateral faces , a two-fluid heat exchanger configured to allow heat energy exchanges between a first heat transfer fluid circulating in a first circulation loop and a second heat transfer fluid circulating in a second circulation loop.
  • the invention may further comprise one or more of the following aspects taken alone or in combination:
  • the first circulation loop comprises a main loop comprising a first pump, a first heat exchanger of the set of heat exchangers and a thermal management interface arranged at the level of elements to be cooled such as an electric motor and /or power electronics and/or an on-board charger;
  • the first circulation loop comprises a branch line bypassing the thermal management interface, said branch line includes the two-fluid heat exchanger arranged downstream of a second heat exchanger of the set of heat exchangers;
  • the first heat exchanger is arranged within the housing downstream of the second heat exchanger in the direction of circulation of the air flow;
  • the first and the second heat exchanger are arranged within the housing so that the inlet of the first heat transfer fluid of the first heat exchanger and the outlet of the first heat transfer fluid of the second heat exchanger are arranged on the same side face of the housing as the two-fluid heat exchanger;
  • the bypass line of the first circulation loop has a third heat exchanger of the set of heat exchangers
  • the third heat exchanger is arranged downstream of the second heat exchanger in the direction of circulation of the first heat transfer fluid
  • the third heat exchanger is arranged upstream of the second heat exchanger within the casing in the direction of circulation of the air flow;
  • the first and the third heat exchangers are arranged within the casing so that the inlet of the first heat transfer fluid of the first heat exchanger and the outlet of the first heat transfer fluid of the third heat exchanger are arranged on the same side face of the casing as the two-fluid heat exchanger;
  • the second circulation loop is a cooling loop in which the second heat transfer fluid is a refrigerant fluid
  • the second circulation loop comprising, in the direction of circulation of the refrigerant fluid, a compressor, the two-fluid heat exchanger, a first expansion device and a fourth heat exchanger intended to exchange calorific energy with the batteries of the vehicle electric or hybrid;
  • the fourth heat exchanger is in direct contact with the batteries
  • the fourth heat exchanger is a two-fluid heat exchanger arranged jointly on the second circulation loop and on an additional circulation loop within which a third heat transfer fluid circulates;
  • the additional circulation loop includes a second pump and a second exchange interface with the batteries
  • the additional circulation loop includes a bypass branch of the fourth heat exchanger
  • the second circulation loop comprises a bypass branch connected in parallel with the first expansion device and the fourth heat exchanger; - Said bypass branch comprising a second expansion device arranged upstream of an evaporator;
  • the dimensions of the two-fluid heat exchanger arranged on the outer side face of the cooling module are smaller than that of a heat exchanger of the set of heat exchangers;
  • the dual-fluid heat exchanger arranged on the outer side face of the cooling module is arranged directly above a motor intended to drive the tangential turbomachine in motion;
  • the casing comprises a casing inside which the two-fluid heat exchanger is arranged;
  • the casing comprises fixing means such as fixing lugs intended to secure the two-fluid heat exchanger to one of its external side faces.
  • Figure 1 schematically shows the front part of a motor vehicle with an electric motor, seen from the side;
  • FIG.2 shows a schematic perspective view of a cooling module that can be implemented in the motor vehicle of Figure 1, part of the fairing of the cooling module having been removed;
  • Figure 3 shows a schematic view of a first embodiment of a thermal management circuit
  • FIG. 4 shows a schematic view of a second embodiment of a thermal management circuit
  • Figure 5 shows a schematic view of a third embodiment of a thermal management circuit.
  • certain elements can be indexed, as first element or second element. In this case, it is a simple indexing to differentiate and name elements that are close but not identical. This indexing does not imply a priority of one element over another and it is easy to interchange such denominations without departing from the scope of the present description. Nor does this indexing imply an order in time.
  • placed upstream means that one element is placed before another with respect to the direction of circulation of an air flow.
  • placed downstream means that one element is placed after another in relation to the direction of circulation of the air flow.
  • FIG. 1 is represented an XYZ trihedron in order to define the orientation of the various elements from each other.
  • a first direction denoted X
  • a second direction denoted Y
  • a third direction denoted Z
  • the directions, X, Y, Z are orthogonal two by two.
  • “low” or “low” means the position of one element relative to another in the direction Z determined above.
  • FIG. 1 schematically illustrates the front part of a motor vehicle 10 with an electric motor 12.
  • the vehicle 10 notably comprises a body 14 and a bumper 16 carried by a frame (not shown) of the motor vehicle 10.
  • the body 14 defines a cooling bay 18, that is to say an opening through the bodywork 14.
  • the cooling bay 18 is unique here.
  • This cooling bay 18 is located in the lower part of the front face 14a of the bodywork 14. In the example illustrated, the cooling bay 18 is located under the bumper 16.
  • a grid 20 can be placed in the cooling bay. cooling 18 to prevent projectiles from passing through the cooling bay 18.
  • a module cooling module 22 is arranged opposite the cooling bay 18.
  • the grid 20 makes it possible in particular to protect this cooling module 22.
  • the cooling module 22 is more clearly visible in Figure 2.
  • the cooling module 22 essentially comprises a shroud 24 forming an internal channel between an air inlet 24a and an air outlet 24b.
  • the air inlet 24a is intended to be arranged facing the cooling bay 18 while the air outlet 24b is located on the opposite side of the cooling module 22.
  • the section of the duct formed in the housing 24 is significantly higher at the level of the air inlet 24a than at its opposite air outlet 24b.
  • the housing 24 makes it possible to house a set 23 of heat exchangers 25a, 25b, 25c and the at least one tangential turbomachine 28 which is able to create a first flow of air F passing through the set 23 of heat exchangers 25a, 25b, 25c.
  • the cooling module 22 is intended to be crossed by an air flow F parallel to the direction X and going from the front to the rear of the vehicle 10.
  • Fe air flow F can undergo an increase in its temperature each time it passes through a heat exchanger 25a, 25b, 25c.
  • the temperature of the air sucked in at a grille 20 at the front of the vehicle is in particular lower than that expelled at an outlet 45 of the air flow F disposed downstream of the assembly 23 of the exchangers heat 25a, 25b, 25c in the direction of circulation of the air flow.
  • Fes heat exchangers 25a, 25b, 25c of this assembly 23 are for example aligned along a stacking axis A25 which is in particular perpendicular to axis A30 of turbine 30 of tangential turbomachine 28.
  • Fes heat exchangers 25a, 25b, 25c are arranged one behind the other in the internal channel formed by the housing 24.
  • the set 23 of heat exchangers 25a, 25b, 25c comprises a first 25a, a second 25b and a third 25c heat exchangers. It is of course entirely possible to imagine a cooling module 22 comprising only two heat exchangers 25a, 25b or even more than three heat exchangers 25a, 25b, 25c.
  • the dimensions of the heat exchangers 25a, 25b, 25c can be such that their total height according to Tax Z and their extent according to Tax Y and their thickness according to Tax X are identical or at least similar from one heat exchanger to another, as shown on the Figure 2.
  • the heat exchangers 25a, 25b, 25c of the assembly 23 for example all have the same size, which facilitates their stacking within the cooling module 22.
  • the heat exchanger furthest downstream in the direction of circulation of the first air flow F here the heat exchanger 25a
  • the heat exchanger furthest downstream in the direction of circulation of the first air flow F is crossed by a hotter fluid and is arranged farther from the end 24a of the housing 24 than the most upstream heat exchanger, here the heat exchanger 25c, which is crossed by a colder fluid.
  • the arrangement of the heat exchangers 25a, 25b, 25c one behind the other in the axial direction X of the cooling module 22 also makes it possible to limit the size of the cooling module 22 according to its two other lateral and vertical dimensions.
  • the tangential turbomachine 28 comprises a turbine 30 which can also be described as a tangential propeller and which is driven in rotation by a motor 36.
  • the turbine 30 has a substantially cylindrical shape and has an axis of rotation A30.
  • this axis of rotation A30 is oriented substantially parallel to the lateral direction Y of the radiators 25a, 25b, 25c, as illustrated more particularly in Figure 2.
  • the motor 36 has for example a substantially cylindrical shape.
  • the engine 36 is located for example on a side face of the cooling module 22, the side face extending perpendicularly to the axis A30 of the tangential turbomachine 28.
  • the cooling module 22 more particularly comprises two side faces arranged on either side other side of the housing 24, these side faces are parallel to the plane generated by the X and Z axes.
  • the housing 24 also comprises on one of its outer side faces, a two-fluid heat exchanger 27 configured to allow the exchange of heat energy between a first heat transfer fluid circulating in a first circulation loop C 1 and a second heat transfer fluid circulating in a second circulation loop C2.
  • the two-fluid heat exchanger 27 arranged on the outer side face of the cooling module 22 is for example arranged directly above the engine 36 intended to drive the tangential turbomachine 28 in motion, as illustrated in FIG. 2.
  • This location of the bifluid heat exchanger 27 is particularly advantageous, because the bifluid heat exchanger 27 occupies in this case a dead volume located on the same plane as the engine 36.
  • the location of the bifluid heat exchanger 27 n don't bring additional constraint as regards the compactness of the cooling module 22, nor of the various circulation loops C1 and C2.
  • the dimensions of the bifluid heat exchanger 27 may be smaller than that of a heat exchanger 25a, 25b, 25c of the assembly 23.
  • the bifluid heat exchanger 27 can easily be integrated on the outer side face of the cooling module 22, in particular directly above the motor 36.
  • the housing 24 may also include a casing (not shown) inside which the two-fluid heat exchanger 27 is arranged. bifluid 27 on one of its outer side faces of the housing 24 of the cooling module 22.
  • the two-fluid heat exchanger 27 is configured to allow heat energy exchanges between a first heat transfer fluid circulating in a first circulation loop C1 and a second heat transfer fluid circulating in a second circulation loop C2.
  • the second circulation loop C2 can more particularly be a cooling loop within which the second heat transfer fluid is a coolant.
  • the first circulation loop C1 may in particular comprise a main loop C1' (illustrated in bold) comprising a first pump 31, a first heat exchanger 25a of the assembly 23 and a thermal management interface 33 arranged at the level of elements to be cooled such as the power electronics and/or an on-board charger and/or an electric motor.
  • thermal management interface is meant more specifically a heat exchanger 33 juxtaposed to the element that is to be cooled.
  • the operating temperature at the level of the electric motor is for example between 55° C. and 70° C.
  • the first circulation loop Cl also includes a branch line DI bypassing the thermal management interface 33.
  • the branch line DI connects more precisely a first connection point 41 arranged on the main loop Cl′ upstream of the thermal management interface 33 in the direction of circulation of the first heat transfer fluid, to a second connection point 42 arranged on the main loop C1′ downstream of the thermal management interface 33.
  • the first connection point 41 is in particular here arranged between the first pump 31 and the thermal management interface 33.
  • the second connection point 42 is in turn arranged between the thermal management interface 33 and the first heat exchanger 25a .
  • the first connection point 41 is a point of divergence between the first circulation loop Cl and the branch line DI while the second connection point 42 is a point of convergence.
  • the branch line DI also includes the dual-fluid heat exchanger 27 disposed downstream of a second heat exchanger 25b.
  • This second heat exchanger 25b is also a heat exchanger of the set 23 of heat exchangers 25a, 25b, 25c.
  • the first heat exchanger 25a as well as the second heat exchanger 25b are both radiators and participate in the evacuation of the heat generated at the level of the on-board charger and/or the electronics and/or the electric motor as well as that provided by the two-fluid heat exchanger 27.
  • the second heat exchanger 25b is in particular dedicated to cooling the first heat transfer fluid upstream of the two-fluid heat exchanger 27 in order to allow the first heat transfer fluid to absorb as much heat as possible calorific energy of the second circulation loop C2.
  • the first heat exchanger 25a is preferably arranged within the housing 24 downstream of the second heat exchanger 25b in the direction of circulation of the air flow F.
  • these comprise several first fluid passes.
  • first 25a and the second 25b heat exchangers are arranged within the housing 24 so that the inlet of the first heat transfer fluid of the first heat exchanger 25a and the outlet of the first heat transfer fluid of the second heat exchanger 25b are arranged on the same side face of the housing 24 as the two-fluid heat exchanger 27.
  • This arrangement makes it possible in particular to facilitate fluid connections between the two-fluid heat exchanger 27 and the heat exchangers 25a and 25b.
  • the second circulation loop C2 can be is a cooling loop in which the second heat transfer fluid is a coolant.
  • the second circulation loop C2 thus comprises, in the direction of circulation of the refrigerant fluid, a compressor 34, the two-fluid heat exchanger 27, a first expansion device 53 and a fourth heat exchanger 51 intended to exchange heat energy with the batteries of the electric or hybrid vehicle.
  • the operating temperature at the bifluid heat exchanger 27 is for example between 40°C and 55°C.
  • the latter is in direct contact with the batteries.
  • the fourth heat exchanger 51 can be a two-fluid heat exchanger arranged jointly on the second circulation loop C2 and on an auxiliary circulation loop C3 at the within which circulates a third heat transfer fluid.
  • the annex circulation loop C3 more particularly comprises a second pump 32 and a second exchange interface 55 with the batteries.
  • the additional circulation loop C3 may also include a bypass branch B of the fourth heat exchanger 51.
  • This bypass branch B makes it possible more particularly to ensure homogenization of the temperature at the level of the batteries of the electric or hybrid vehicle.
  • the latter may comprise a bypass branch D2 connected in parallel with the first expansion device 53 and the fourth heat exchanger 51.
  • the bypass branch D2 comprises a second expansion device 54 disposed upstream of an evaporator 52.
  • the bypass branch D2 is connected to the second circulation loop C2 via a third connection point 43 disposed downstream of the exchanger bifluid heat 27 and a fourth connection point 44 arranged upstream of the compressor 33.
  • This evaporator 52 makes it possible in particular to cool the air in the passenger compartment of the motor vehicle, the evaporator 52 is thus an element of an air conditioning circuit arranged within the motor vehicle.
  • This particular embodiment requires greater cooling power than the first embodiment of the second circulation loop C2 described previously.
  • the branch line DI may comprise, in addition to the second heat exchanger 25b, a third heat exchanger 25c of the assembly 23 of heat exchangers 25a, 25b, 25c.
  • This third heat exchanger 25c is in particular arranged downstream of the second heat exchanger 25b in the direction of circulation of the first heat transfer fluid. More specifically, the third heat exchanger 25c is arranged within the branch pipe DI between the second heat exchanger 25b and the two-fluid heat exchanger 27.
  • This third heat exchanger 25c is preferably arranged upstream of the second heat exchanger 25b within the housing 24 in the direction of circulation of the air flow F, as illustrated in Figure 2.
  • the presence of a third heat exchanger heat 25c makes it possible in particular to enlarge the heat exchange surface making it possible to dissipate the calorific energy of the first heat transfer fluid circulating in the branch line D1.
  • the third heat exchanger 25c makes it possible to increase the cooling power.
  • the second and third heat exchangers 25b and 25c are more particularly intended to cool the first heat transfer fluid upstream of the two-fluid heat exchanger 27. It is nevertheless entirely possible to imagine an embodiment, not shown, in which the branch line D1 includes a third heat exchanger 25c without this being linked to the presence of a branch branch D2 on the second circulation loop D2.
  • the first 25a and the third 25c heat exchangers are for example arranged within the housing 24 so that the first heat transfer fluid inlet of the first heat exchanger 25a and the first heat transfer fluid outlet of the third heat exchanger 25c are arranged on the same side face of the housing 24 as the two-fluid heat exchanger 27, as illustrated in particular in FIG. 2
  • the invention is not limited to the embodiments described with reference to the figures and other embodiments will appear clearly to those skilled in the art. In particular, the different examples can be combined, as long as they are not contradictory.

Abstract

L'invention concerne un module de refroidissement pour véhicule électrique ou hybride, ledit module de refroidissement (22) comportant un boîtier (24) comprenant une entrée (24a) et une sortie (24b) d'air et à l'intérieur duquel sont disposés un ensemble (23) d'échangeurs de chaleur (25a, 25b, 25c) et une turbomachine tangentielle (28) configurée de sorte à générer un flux d'air (F) traversant ledit boîtier (24) de son entrée (24a) vers sa sortie (24b) d'air et traversant l'ensemble (23) d'échangeurs de chaleur (25a, 25b, 25c), caractérisé en ce que le boîtier (24) comporte, sur une de ses faces latérales externes, un échangeur de chaleur bifluide (27) configuré pour permettre les échanges d'énergie calorifique entre un premier fluide caloporteur circulant dans une première boucle de circulation (C1) et un deuxième fluide caloporteur circulant dans une deuxième boucle de circulation (C2).

Description

Module de refroidissement pour véhicule automobile électrique ou hybride
L’invention se rapporte à un module de refroidissement pour véhicule automobile électrique ou hybride. L’invention vise également un véhicule automobile électrique muni d’un tel module de refroidissement.
Un module de refroidissement (ou module d’échange de chaleur) d’un véhicule automobile comporte classiquement un ensemble d’échangeurs de chaleur et un dispositif de ventilation adapté à générer un flux d’air traversant l’ensemble d’échangeurs de chaleur. Le dispositif de ventilation permet ainsi, par exemple, de générer un flux d’air traversant les échangeurs de chaleur de l’ensemble d’échangeurs de chaleur, à l’arrêt du véhicule.
Les échangeurs de chaleurs au sein du module de refroidissement sont généralement empilés de sorte qu’un même flux d’air traverse successivement l’ensemble des échangeurs de chaleur. Cependant, dans un tel empilement d’échangeurs de chaleur, chaque échangeur de chaleur placé en amont d’un autre dans le sens de circulation du flux d’air impacte les performances de ce dernier, en augmentant par exemple la température du flux d’air qui le traverse ou encore en augmentant les pertes de charges du flux d’air.
Les échangeurs de chaleur de l’ensemble d’échangeurs de chaleur sont connectés chacun à une boucle de circulation de fluide réfrigérant qui est configurée pour permettre la gestion thermique de différents éléments du véhicule électrique ou hybride. Ainsi, un ou plusieurs échangeurs de chaleur du module de refroidissement peuvent être connectés à une boucle permettant la gestion thermique de divers composants tels que le moteur et/ou l’électronique de puissance et/ou le chargeur embarqué, appelé « on board charger » en anglais. Un ou plusieurs autres échangeurs de chaleur du module de refroidissement peuvent être quant à eux connectés à une autre boucle permettant la gestion thermique d’autres éléments tels que les batteries. Cependant, ces boucles peuvent également comporter divers autres échangeurs de chaleurs et composants qui peuvent occuper un volume conséquent au sein du module de refroidissement.
Un nombre d’échangeurs thermiques important peut par ailleurs s’avérer assez conséquent en termes de poids. Ainsi, l’architecture de ces boucles de circulation de fluide caloporteur est importante afin de permettre une bonne gestion thermique des différents éléments tout en limitant le poids et le volume occupé par leurs composants. Un des buts de l’invention est de remédier au moins partiellement aux inconvénients de l’art antérieur et de proposer un module de refroidissement pour véhicule automobile électrique amélioré.
À cet effet, l’invention a pour objet un module de refroidissement pour véhicule automobile électrique ou hybride, ledit module de refroidissement comportant un boîtier comprenant une entrée et une sortie d’air et à l’intérieur duquel sont disposés un ensemble d’échangeurs de chaleur et une turbomachine tangentielle configurée de sorte à générer un flux d’air traversant ledit boîtier de son entrée vers sa sortie d’air et traversant l’ensemble d’échangeurs de chaleur, le boîtier comportant, sur une de ses faces latérales externes, un échangeur de chaleur bifluide configuré pour permettre les échanges d’énergie calorifique entre un premier fluide caloporteur circulant dans une première boucle de circulation et un deuxième fluide caloporteur circulant dans une deuxième boucle de circulation.
Grâce à l’emplacement de l’échangeur de chaleur bifluide sur la face latérale du module de refroidissement, les connexions fluidiques entre cet échangeur de chaleur bifluide, les échangeurs de chaleur au sein du boîtier et les première et deuxième boucles de circulation sont simplifiées. Cet agencement permet de réduire l’encombrement du module d’échange thermique tout en l’allégeant.
L’invention peut en outre comprendre un ou plusieurs des aspects suivants pris seuls ou en combinaison :
- la première boucle de circulation comporte une boucle principale comportant une première pompe, un premier échangeur de chaleur de l’ensemble d’échangeurs de chaleur et une interface de gestion thermique disposée au niveau d’éléments à refroidir tels qu’un moteur électrique et/ou de l’électronique de puissance et/ou un chargeur embarqué ;
- la première boucle de circulation comporte une conduite de dérivation contournant l’interface de gestion thermique, ladite conduite de dérivation comporte l’échangeur de chaleur bifluide disposé en aval d’un deuxième échangeur de chaleur de l’ensemble d’échangeurs de chaleur ;
- le premier échangeur de chaleur est disposé au sein du boîtier en aval du deuxième échangeur de chaleur dans le sens de circulation du flux d’air ;
- le premier et le deuxième échangeur de chaleur sont disposés au sein du boîtier de sorte que l’entrée du premier fluide caloporteur du premier échangeur de chaleur et la sortie du premier fluide caloporteur du deuxième échangeur de chaleur sont disposées sur la même face latérale du boîtier que l’échangeur de chaleur bifluide ;
- la conduite de dérivation de la première boucle de circulation comporte un troisième échangeur de chaleur de l’ensemble d’échangeurs de chaleur
- le troisième échangeur de chaleur est disposé en aval du deuxième échangeur de chaleur dans le sens de circulation du premier fluide caloporteur ;
- le troisième échangeur de chaleur est disposé en amont du deuxième échangeur de chaleur au sein du boîtier dans le sens de circulation du flux d’air ;
- le premier et le troisième échangeurs de chaleur sont disposés au sein du boîtier de sorte que l’entrée de premier fluide caloporteur du premier échangeur de chaleur et la sortie de premier fluide caloporteur du troisième échangeur de chaleur sont disposées sur la même face latérale du boîtier que l’échangeur de chaleur bifluide ;
- la deuxième boucle de circulation est une boucle de refroidissement au sein de laquelle le deuxième fluide caloporteur est un fluide réfrigérant ;
- la deuxième boucle de circulation comportant dans le sens de circulation du fluide réfrigérant, un compresseur, l’échangeur de chaleur bifluide, un premier dispositif de détente et un quatrième échangeur de chaleur destinée à échanger de l’énergie calorifique avec les batteries du véhicule électrique ou hybride ;
- le quatrième échangeur de chaleur est en contact direct avec les batteries ;
- le quatrième échangeur de chaleur est un échangeur de chaleur bifluide agencé conjointement sur la deuxième boucle de circulation et sur une boucle de circulation annexe au sein de laquelle circule un troisième fluide caloporteur ;
- la boucle de circulation annexe comporte une deuxième pompe et une deuxième interface d’échange avec les batteries ;
- la boucle de circulation annexe comporte une branche de contournement du quatrième échangeur de chaleur ;
- la deuxième boucle de circulation comporte une branche de dérivation connectée en parallèle du premier dispositif de détente et du quatrième échangeur de chaleur ; - ladite branche de dérivation comportant un deuxième dispositif de détente disposé en amont d’un évaporateur ;
- les dimensions de l’échangeur de chaleur bifluide disposé sur la face latérale externe du module de refroidissement sont inférieures à celle d’un échangeur de chaleur de l’ensemble d’échangeurs de chaleur ;
- l’échangeur de chaleur bifluide disposé sur la face latérale externe du module de refroidissement est agencé à l’aplomb d’un moteur destiné à entraîner la turbomachine tangentielle en mouvement ;
- le boîtier comporte un carter à l’intérieur duquel est disposé l’échangeur de chaleur bifluide; et
- le carter comporte des moyens de fixations tels que des pattes de fixations destinées à solidariser l’échangeur de chaleur bifluide sur l’une de ses faces latérales externes.
D’autres avantages et caractéristiques de l’invention apparaîtront plus clairement à la lecture de la description suivante donnée à titre d’exemple illustratif et non limitatif, et des dessins annexés parmi lesquels :
[Fig.l] La figure 1 représente schématiquement la partie avant d’un véhicule automobile à moteur électrique, vu de côté ;
[Fig.2] La figure 2 représente une vue schématique en perspective d’un module de refroidissement pouvant être mis en œuvre dans le véhicule automobile de la figure 1, une partie du carénage du module de refroidissement ayant été retirée ;
[Fig. 3] La figure 3 représente une vue schématique d’un premier mode de réalisation d’un circuit de gestion thermique ;
[Fig. 4] La figure 4 représente une vue schématique d’un deuxième mode de réalisation d’un circuit de gestion thermique ; et [Fig. 5] La figure 5 représente une vue schématique d’un troisième mode de réalisation d’un circuit de gestion thermique.
Sur ces figures, les éléments identiques portent les mêmes numéros de référence. Les réalisations suivantes sont des exemples. Bien que la description se réfère à un ou plusieurs modes de réalisation, ceci ne signifie pas nécessairement que chaque référence concerne le même mode de réalisation, ou que les caractéristiques s’appliquent seulement à un seul mode de réalisation. De simples caractéristiques de différents modes de réalisation peuvent également être combinées ou interchangées pour fournir d’autres réalisations.
Dans la description, on peut indexer certains éléments, comme premier élément ou deuxième élément. Dans ce cas, il s’agit d’un simple indexage pour différencier et dénommer des éléments proches mais non identiques. Cette indexation n’implique pas une priorité d’un élément par rapport à un autre et on peut aisément interchanger de telles dénominations sans sortir du cadre de la présente description. Cette indexation n’implique pas non plus un ordre dans le temps.
Dans la présente description, on entend par « placé en amont » qu’un élément est placé avant un autre par rapport au sens de circulation d’un flux d’air. A contrario, on entend par « placé en aval » qu’un élément est placé après un autre par rapport au sens de circulation du flux d’air.
Sur les figures 1 et 2 est représenté un trièdre XYZ afin de définir l’orientation des différents éléments les uns des autres. Une première direction, notée X, correspond à une direction longitudinale du véhicule. Elle correspond également à la direction d’avancement du véhicule. Une deuxième direction, notée Y, est une direction latérale ou transversale. Enfin, une troisième direction, notée Z, est verticale. Les directions, X, Y, Z sont orthogonales deux à deux.
Dans la présente description, on entend par « bas » ou « basse » la position d’un élément par rapport à un autre selon la direction Z déterminée ci-dessus.
La figure 1 illustre de manière schématique la partie avant d’un véhicule automobile 10 à moteur électrique 12. Le véhicule 10 comporte notamment une carrosserie 14 et un pare-chocs 16 portés par un châssis (non représenté) du véhicule automobile 10. La carrosserie 14 définit une baie de refroidissement 18, c’est-à-dire une ouverture à travers la carrosserie 14. La baie de refroidissement 18 est ici unique. Cette baie de refroidissement 18 se trouve en partie basse de la face avant 14a de la carrosserie 14. Dans l’exemple illustré, la baie de refroidissement 18 est située sous le pare-chocs 16. Une grille 20 peut être disposée dans la baie de refroidissement 18 pour éviter que des projectiles puissent traverser la baie de refroidissement 18. Un module de refroidissement 22 est disposé en vis-à-vis de la baie de refroidissement 18. La grille 20 permet notamment de protéger ce module de refroidissement 22.
Le module de refroidissement 22 est plus nettement visible sur la figure 2. Tel qu’illustré sur cette figure 2, le module de refroidissement 22 comporte essentiellement un carénage 24 formant un canal interne entre une entrée d’air 24a et une sortie d’air 24b. L’entrée d’air 24a est destinée à être disposée en regard de la baie de refroidissement 18 tandis que la sortie d’air 24b est située du côté opposé du module de refroidissement 22. En outre, la section du conduit formé dans le boîtier 24 est nettement supérieure au niveau de l’entrée d’air 24a qu’à sa sortie d’air 24b opposée.
Le boîtier 24 permet de loger un ensemble 23 d’échangeurs de chaleur 25a, 25b, 25c et la au moins une turbomachine tangentielle 28 qui est apte à créer un premier flux d’air F traversant l’ensemble 23 des échangeurs de chaleur 25a, 25b, 25c. Le module de refroidissement 22 est destiné à être traversé par un flux d’air F parallèle à la direction X et allant de l’avant vers l’arrière du véhicule 10.
Fe flux d’air F peut subir une augmentation de sa température à chaque fois qu’il traverse un échangeur de chaleur 25a, 25b, 25c. Ainsi la température de l’air aspiré au niveau d’une grille 20 à l’avant du véhicule est notamment inférieure à celle expulsé au niveau d’une sortie 45 du flux d’air F disposée en aval de l’ensemble 23 des échangeurs de chaleur 25a, 25b, 25c dans le sens de circulation du flux d’air.
Fes échangeurs de chaleur 25a, 25b, 25c de cet ensemble 23 sont par exemple alignés suivant un axe d’empilement A25 qui est notamment perpendiculaire à Taxe A30 de la turbine 30 de la turbomachine tangentielle 28. Fes échangeurs de chaleur 25a, 25b, 25c sont disposés les uns derrière les autres dans le canal interne formé par le boîtier 24.
Dans l’exemple du module de refroidissement 22 illustré à la Figure 2, l’ensemble 23 des échangeurs de chaleur 25a, 25b, 25c comprend un premier 25a, un deuxième 25b et un troisième 25c échangeurs de chaleur. Il est bien entendu tout à fait possible d’imaginer un module de refroidissement 22 comportant uniquement deux échangeurs de chaleur 25a, 25b ou bien plus de trois échangeurs de chaleur 25a, 25b, 25c.
Fes dimensions des échangeurs de chaleur 25a, 25b, 25c peuvent être telles que leur hauteur totale suivant Taxe Z et leur étendue suivant Taxe Y et leur épaisseur suivant Taxe X sont identiques ou du moins similaires d’un échangeur de chaleur à l’autre, comme illustré sur la Figure 2. Autrement dit, les échangeurs de chaleur 25a, 25b, 25c de l’ensemble 23 ont par exemple tous la même taille, ce qui facilite leur empilement au sein du module de refroidissement 22.
L’échangeur de chaleur le plus en aval dans le sens de circulation du premier flux d’air F, ici l’échangeur de chaleur 25a, est traversé par un fluide plus chaud et est disposé plus loin de l’extrémité 24a du boîtier 24 que l’échangeur de chaleur le plus en amont, ici l’échangeur de chaleur 25c, qui est traversé par un fluide plus froid. La disposition des échangeurs de chaleur 25a, 25b, 25c les uns derrière les autres dans la direction axiale X du module de refroidissement 22 permet également de limiter l’encombrement du module de refroidissement 22 selon ses deux autres dimensions latérale et verticale.
La turbomachine tangentielle 28 comprend une turbine 30 qui peut également être qualifiée d’hélice tangentielle et qui est entraîné en rotation par un moteur 36. La turbine 30 a une forme sensiblement cylindrique et présente un axe de rotation A30. Avantageusement, cet axe de rotation A30 est orienté sensiblement parallèle à la direction latérale Y des radiateurs 25a, 25b, 25c, comme illustré plus particulièrement sur la Figure 2.
Le moteur 36 a par exemple une forme sensiblement cylindrique. Le moteur 36 se situe par exemple sur une face latérale du module de refroidissement 22, la face latérale s’étendant perpendiculairement à l’axe A30 de la turbomachine tangentielle 28. Le module de refroidissement 22 comprend plus particulièrement deux faces latérales disposée de part et d’autre du boîtier 24, ces faces latérales sont parallèles au plan généré par les axes X et Z.
Le boîtier 24 comporte également sur une de ses faces latérales externes, un échangeur de chaleur bifluide 27 configuré pour permettre les échanges d’énergie calorifique entre un premier fluide caloporteur circulant dans une première boucle de circulation C 1 et un deuxième fluide caloporteur circulant dans une deuxième boucle de circulation C2.
L’échangeur de chaleur bifluide 27 disposé sur la face latérale externe du module de refroidissement 22 est par exemple agencé à l’aplomb du moteur 36 destiné à entraîner la turbomachine tangentielle 28 en mouvement, comme illustré sur la Figure 2. Cet emplacement de l’échangeur de chaleur bifluide 27 est particulièrement avantageux, car l’échangeur de chaleur bifluide 27 occupe dans ce cas un volume mort situé sur un même plan que le moteur 36. Autrement dit, l’emplacement de l’échangeur de chaleur bifluide 27 n’apporte pas de contrainte supplémentaire en ce qui concerne la compacité du module de refroidissement 22, ni des différentes boucles de circulation Cl et C2.
Par ailleurs, du fait de sa fonction particulière, les dimensions de l’échangeur de chaleur bifluide 27 peuvent être inférieures à celle d’un échangeur de chaleur 25a, 25b, 25c de l’ensemble 23. Ainsi, l’échangeur de chaleur bifluide 27 peut facilement être intégré sur la face latérale externe du module de refroidissement 22, notamment à l’aplomb du moteur 36.
Le boîtier 24 peut également comporter un carter (non représenté) à l’intérieur duquel est disposé l’échangeur de chaleur bifluide 27. Ce carter comporte par exemple des moyens de fixations tels que des pattes de fixations destinées à solidariser l’échangeur de chaleur bifluide 27 sur l’une de ses faces latérales externes du boîtier 24 du module de refroidissement 22.
L’échangeur de chaleur bifluide 27 est configuré pour permettre les échanges d’énergie calorifique entre un premier fluide caloporteur circulant dans une première boucle de circulation Cl et un deuxième fluide caloporteur circulant dans une deuxième boucle de circulation C2. La deuxième boucle de circulation C2 peut plus particulièrement être est une boucle de refroidissement au sein de laquelle le deuxième fluide caloporteur est un fluide réfrigérant.
Comme le montre la figure 3, la première boucle de circulation Cl peut notamment comporter une boucle principale Cl’ (illustrée en gras) comportant une première pompe 31, un premier échangeur de chaleur 25a de l’ensemble 23 et une interface de gestion thermique 33 disposée au niveau d’éléments à refroidir tels que l’électronique de puissance et/ou un chargeur embarqué et/ou un moteur électrique. Par « interface de gestion thermique », l’on entend plus précisément un échangeur de chaleur 33 juxtaposé à l’élément que l’on cherche à refroidir. La température de fonctionnement au niveau du moteur électrique est par exemple comprise entre 55°C et 70°C.
La première boucle de circulation Cl comporte également une conduite de dérivation DI contournant l’interface de gestion thermique 33. Pour cela, la conduite de dérivation DI relie plus précisément un premier point de raccordement 41 disposé sur boucle principale Cl’ en amont de l’interface de gestion thermique 33 dans le sens de circulation du premier fluide caloporteur, à un deuxième point de raccordement 42 disposé sur boucle principale Cl’ en aval de l’interface de gestion thermique 33. Le premier point de raccordement 41 est notamment ici disposé entre la première pompe 31 et l’interface de gestion thermique 33. Le deuxième point de raccordement 42 est quant à lui disposé entre l’interface de gestion thermique 33 et le premier échangeur de chaleur 25a. Le premier point de raccordement 41 est un point de divergence entre la première boucle de circulation Cl et la conduite de dérivation DI tandis que le deuxième point de raccordement 42 est un point de convergence.
La conduite de dérivation DI comporte également l’échangeur de chaleur bifluide 27 disposé en aval d’un deuxième échangeur de chaleur 25b. Ce deuxième échangeur de chaleur 25b est également un échangeur de chaleur de l’ensemble 23 d’échangeurs de chaleur 25a, 25b, 25c.
Le premier échangeur de chaleur 25a ainsi que le deuxième échangeur de chaleur 25b sont tout deux des radiateurs et participent à l’évacuation de la chaleur générée au niveau du chargeur embarqué et/ou de l’électronique et/ou du moteur électrique ainsi que de celle apportée par l’échangeur de chaleur bifluide 27. Le deuxième échangeur de chaleur 25b est notamment dédié à refroidir le premier fluide caloporteur en amont de l’échangeur de chaleur bifluide 27 afin de permettre au premier fluide caloporteur d’absorber le plus possible d’énergie calorifique de la deuxième boucle de circulation C2.
Comme illustré à la Figure 2, le premier échangeur de chaleur 25a est de préférence disposé au sein du boîtier 24 en aval du deuxième échangeur de chaleur 25b dans le sens de circulation du flux d’air F.
Selon un mode de réalisation particulier des échangeurs de chaleur 25a et 25b, ceux-ci comportent plusieurs passes de premier fluide. L’on peut tout particulièrement imaginer que le premier 25a et le deuxième 25b échangeur de chaleur sont disposés au sein du boîtier 24 de sorte que l’entrée du premier fluide caloporteur du premier échangeur de chaleur 25a et la sortie du premier fluide caloporteur du deuxième échangeur de chaleur 25b sont disposées sur la même face latérale du boîtier 24 que l’échangeur de chaleur bifluide 27. Cette disposition permet notamment de faciliter les connexions fluidiques entre l’échangeur de chaleur bifluide 27 et les échangeurs de chaleur 25a et 25b.
Comme dit plus haut et comme illustré à al figure 3, la deuxième boucle de circulation C2 peut être est une boucle de refroidissement au sein de laquelle le deuxième fluide caloporteur est un fluide réfrigérant. La deuxième boucle de circulation C2 comporte ainsi, dans le sens de circulation du fluide réfrigérant, un compresseur 34, l’échangeur de chaleur bifluide 27, un premier dispositif de détente 53 et un quatrième échangeur de chaleur 51 destinée à échanger de l’énergie calorifique avec les batteries du véhicule électrique ou hybride. La température de fonctionnement au niveau de l’échangeur de chaleur bifluide 27 est par exemple comprise entre 40°C et 55°C.
Selon un premier mode de réalisation du quatrième échangeur de chaleur 51, illustré à la figure 3, celui-ci est en contact direct avec les batteries.
Selon un deuxième mode de réalisation du quatrième échangeur de chaleur 51, illustré sur la Figure 4, le quatrième échangeur de chaleur 51 peut être un échangeur de chaleur bifluide agencé conjointement sur la deuxième boucle de circulation C2 et sur une boucle de circulation annexe C3 au sein de laquelle circule un troisième fluide caloporteur. Dans ce cas, la boucle de circulation annexe C3 comporte plus particulièrement une deuxième pompe 32 et une deuxième interface d’échange 55 avec les batteries.
La boucle de circulation annexe C3 peut par ailleurs comporter une branche de contournement B du quatrième échangeur de chaleur 51. Cette branche de contournement B permet plus particulièrement d’assurer une homogénéisation de la température au niveau des batteries du véhicule électrique ou hybride.
Selon un mode de réalisation particulier de la deuxième boucle de circulation C2 illustré sur la Figure 5, celle-ci peut comporter une branche de dérivation D2 connectée en parallèle du premier dispositif de détente 53 et du quatrième échangeur de chaleur 51. La branche de dérivation D2 comporte un deuxième dispositif de détente 54 disposé en amont d’un évaporateur 52. La branche de dérivation D2 est reliée à la deuxième boucle de circulation C2 par l’intermédiaire d’un troisième point de raccordement 43 disposé en aval de l’échangeur de chaleur bifluide 27 et un quatrième point de raccordement 44 disposé en amont du compresseur 33.
Cet évaporateur 52 permet notamment de refroidir l’air dans l’habitacle du véhicule automobile, l’évaporateur 52 est ainsi un élément d’un circuit de climatisation agencé au sein du véhicule automobile. Ce mode de réalisation particulier requiert une puissance de refroidissement plus importante que le premier mode de réalisation de la deuxième boucle de circulation C2 décrit précédemment.
A cet effet, la conduite de dérivation DI peut comporter, en plus du deuxième échangeur de chaleur 25b, un troisième échangeur de chaleur 25c de l’ensemble 23 d’échangeurs de chaleur 25a, 25b, 25c. Ce troisième échangeur de chaleur 25c est notamment disposé en aval du deuxième échangeur de chaleur 25b dans le sens de circulation du premier fluide caloporteur. Plus précisément, le troisième échangeur de chaleur 25c est disposé au sein de la conduite de dérivation DI entre le deuxième échangeur de chaleur 25b et l’échangeur de chaleur bifluide 27.
Ce troisième échangeur de chaleur 25c est de préférence disposé en amont du deuxième échangeur de chaleur 25b au sein du boîtier 24 dans le sens de circulation du flux d’air F, comme illustré sur la Figure 2. La présence d’un troisième échangeur de chaleur 25c permet notamment d’agrandir la surface d’échange thermique permettant de dissiper l’énergie calorifique du premier fluide caloporteur circulant dans la conduite de dérivation Dl. Autrement dit, le troisième échangeur de chaleur 25c permet d’augmenter la puissance de refroidissement. Les deuxième et troisième échangeurs de chaleur 25b et 25c sont plus particulièrement destinés à refroidir le premier fluide caloporteur en amont de l’échangeur de chaleur bifluide 27. II est néanmoins tout à fait possible d’imaginer un mode de réalisation non représenté dans lequel la conduite de dérivation Dl comporte un troisième échangeur de chaleur 25c sans pour autant que cela soit lié à la présence d’une branche de dérivation D2 sur la deuxième boucle de circulation D2.
Dans le cas où l’ensemble 23 comporte trois échangeurs de chaleur 25a, 25b et 25c, le premier 25a et le troisième 25c échangeurs de chaleur sont par exemple disposés au sein du boîtier 24 de sorte que l’entrée de premier fluide caloporteur du premier échangeur de chaleur 25a et la sortie de premier fluide caloporteur du troisième échangeur de chaleur 25c sont disposées sur la même face latérale du boîtier 24 que l’échangeur de chaleur bifluide 27, comme illustré notamment sur la figure 2 L’invention n’est pas limitée aux exemples de réalisation décrits en regard des figures et d’autres modes de réalisation apparaîtront clairement à l’homme du métier. Notamment, les différents exemples peuvent être combinés, tant qu’ils ne sont pas contradictoires.

Claims

Revendications
[Revendication 1] Module de refroidissement (22) pour véhicule automobile électrique ou hybride, ledit module de refroidissement (22) comportant un boîtier (24) comprenant une entrée (24a) et une sortie (24b) d’air et à l’intérieur duquel sont disposés un ensemble (23) d’échangeurs de chaleur (25a, 25b, 25c) et une turbomachine tangentielle (28) configurée de sorte à générer un flux d’air (F) traversant ledit boîtier (24) de son entrée (24a) vers sa sortie (24b) d’air et traversant l’ensemble (23) d’échangeurs de chaleur (25a, 25b, 25c), caractérisé en ce que le boîtier (24) comporte, sur une de ses faces latérales externes, un échangeur de chaleur bifluide (27) configuré pour permettre les échanges d’énergie calorifique entre un premier fluide caloporteur circulant dans une première boucle de circulation (Cl) et un deuxième fluide caloporteur circulant dans une deuxième boucle de circulation (C2).
[Revendication 2] Module de refroidissement selon la revendication précédente, caractérisé en ce que la première boucle de circulation (Cl) comporte :
• une boucle principale (Cl’) comportant une première pompe (31), un premier échangeur de chaleur (25a) de l’ensemble (23) d’échangeurs de chaleur (25a, 25b, 25c) et une interface de gestion thermique (33) disposée au niveau d’éléments à refroidir tels qu’un moteur électrique et/ou de l’électronique de puissance et/ou un chargeur embarqué,
• une conduite de dérivation (Dl) contournant l’interface de gestion thermique (33), ladite conduite de dérivation (Dl) comportant l’échangeur de chaleur bifluide (27) disposé en aval d’un deuxième échangeur de chaleur (25b) de l’ensemble (23) d’échangeurs de chaleur (25a, 25b, 25c).
[Revendication 3] Module de refroidissement selon la revendication 2, caractérisé en ce que le premier échangeur de chaleur (25a) est disposé au sein du boîtier (24) en aval du deuxième échangeur de chaleur (25b) dans le sens de circulation du flux d’air (F).
[Revendication 4] Module de refroidissement selon l’une quelconque des revendications 2 à 3, caractérisé en ce que le premier (25a) et le deuxième (25b) échangeur de chaleur sont disposés au sein du boîtier (24) de sorte que l’entrée du premier fluide caloporteur du premier échangeur de chaleur (25a) et la sortie du premier fluide caloporteur du deuxième échangeur de chaleur (25b) sont disposées sur la même face latérale du boîtier (24) que l’échangeur de chaleur bifluide (27).
[Revendication 5] Module de refroidissement selon l’une quelconque des revendications 2 à 4, caractérisé en ce que la conduite de dérivation (Dl) de la première boucle de circulation (Cl) comporte un troisième échangeur de chaleur (25c) de l’ensemble (23) d’échangeurs de chaleur (25a, 25b, 25c), ce troisième échangeur de chaleur (25c) étant disposé en aval du deuxième échangeur de chaleur (25b) dans le sens de circulation du premier fluide caloporteur.
[Revendication 6] Module de refroidissement selon la revendication précédente, caractérisé en ce que le troisième échangeur de chaleur (25c) est disposé en amont du deuxième échangeur de chaleur (25b) au sein du boîtier (24) dans le sens de circulation du flux d’air (F).
[Revendication 7] Module de refroidissement selon l’une quelconque des revendications précédentes, caractérisé en ce que la deuxième boucle de circulation (C2) est une boucle de refroidissement au sein de laquelle le deuxième fluide caloporteur est un fluide réfrigérant, ladite deuxième boucle de circulation (C2) comportant dans le sens de circulation du fluide réfrigérant, un compresseur (33), l’échangeur de chaleur bifluide (27), un premier dispositif de détente (53) et un quatrième échangeur de chaleur (51) destinée à échanger de l’énergie calorifique avec les batteries du véhicule électrique ou hybride.
[Revendication 8] Module de refroidissement selon la revendication 7, caractérisé en ce que le quatrième échangeur de chaleur (51) est en contact direct avec les batteries.
[Revendication 9] Module de refroidissement selon l’une quelconque des revendications 7 ou 8, caractérisé en ce que la deuxième boucle de circulation (C2) comporte une branche de dérivation (D2) connectée en parallèle du premier dispositif de détente (53) et du quatrième échangeur de chaleur (51), ladite branche de dérivation (D2) comportant un deuxième dispositif de détente (54) disposé en amont d’un évaporateur (52).
[Revendication 10] Module de refroidissement selon l’une quelconque des revendications précédentes, caractérisé en ce que le boîtier (24) comporte un carter à l’intérieur duquel est disposé l’échangeur de chaleur bifluide (27) et en ce que le carter comporte des moyens de fixations tels que des pattes de fixations destinées à solidariser l’échangeur de chaleur bifluide (27) sur l’une de ses faces latérales externes.
PCT/EP2021/069358 2020-07-27 2021-07-12 Module de refroidissement pour véhicule automobile électrique ou hybride WO2022023012A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202180050846.4A CN115956031A (zh) 2020-07-27 2021-07-12 用于电动或混合动力机动车辆的冷却模块
US18/006,699 US20230264541A1 (en) 2020-07-27 2021-07-12 Cooling module for an electric or hybrid motor vehicle
EP21740556.2A EP4188729A1 (fr) 2020-07-27 2021-07-12 Module de refroidissement pour véhicule automobile électrique ou hybride

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2007903A FR3112720B1 (fr) 2020-07-27 2020-07-27 Module de refroidissement pour véhicule automobile électrique ou hybride
FRFR2007903 2020-07-27

Publications (1)

Publication Number Publication Date
WO2022023012A1 true WO2022023012A1 (fr) 2022-02-03

Family

ID=72885784

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2021/069358 WO2022023012A1 (fr) 2020-07-27 2021-07-12 Module de refroidissement pour véhicule automobile électrique ou hybride

Country Status (5)

Country Link
US (1) US20230264541A1 (fr)
EP (1) EP4188729A1 (fr)
CN (1) CN115956031A (fr)
FR (1) FR3112720B1 (fr)
WO (1) WO2022023012A1 (fr)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3052109A1 (fr) * 2016-06-03 2017-12-08 Valeo Systemes Thermiques Module d’echange thermique, face avant et vehicule automobile correspondants
US20180272830A1 (en) * 2017-03-21 2018-09-27 Hyundai Motor Company Heat pump system for a vehicle
US20190001807A1 (en) * 2017-05-31 2019-01-03 Hanon Systems Cooling module for vehicle
WO2019039990A1 (fr) * 2017-08-25 2019-02-28 Scania Cv Ab Agencement de refroidissement pour véhicule hybride comprenant une unité d'entraînement électrique, un moteur à combustion et un système whr
FR3074272A1 (fr) * 2017-11-28 2019-05-31 Valeo Systemes Thermiques Circuit de gestion thermique d'un vehicule hybride ou electrique

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3052109A1 (fr) * 2016-06-03 2017-12-08 Valeo Systemes Thermiques Module d’echange thermique, face avant et vehicule automobile correspondants
US20180272830A1 (en) * 2017-03-21 2018-09-27 Hyundai Motor Company Heat pump system for a vehicle
US20190001807A1 (en) * 2017-05-31 2019-01-03 Hanon Systems Cooling module for vehicle
WO2019039990A1 (fr) * 2017-08-25 2019-02-28 Scania Cv Ab Agencement de refroidissement pour véhicule hybride comprenant une unité d'entraînement électrique, un moteur à combustion et un système whr
FR3074272A1 (fr) * 2017-11-28 2019-05-31 Valeo Systemes Thermiques Circuit de gestion thermique d'un vehicule hybride ou electrique

Also Published As

Publication number Publication date
US20230264541A1 (en) 2023-08-24
FR3112720B1 (fr) 2022-09-02
CN115956031A (zh) 2023-04-11
FR3112720A1 (fr) 2022-01-28
EP4188729A1 (fr) 2023-06-07

Similar Documents

Publication Publication Date Title
EP3648999A1 (fr) Unite de refroidissement pour un compartiment d'un vehicule automobile
WO2022096204A1 (fr) Module de refroidissement pour vehicule automobile electrique ou hybride a turbomachine tangentielle avec echangeur thermique supplementaire
FR3121175A1 (fr) Module de refroidissement pour véhicule automobile électrique ou hybride
WO2022023012A1 (fr) Module de refroidissement pour véhicule automobile électrique ou hybride
WO2022106147A1 (fr) Module de refroidissement pour véhicule automobile électrique ou hybride à turbomachine tangentielle avec échangeur de chaleur supplémentaire
WO2022096203A1 (fr) Module de refroidissement pour vehicule automobile electrique ou hybride a turbomachine tangentielle
WO2022053501A1 (fr) Module d'échange thermique et véhicule automobile correspondant
WO2023148385A1 (fr) Dispositif de gestion thermique pour vehicule automobile electrique ou hybride
WO2022023014A1 (fr) Module de refroidissement pour véhicule automobile électrique ou hybride à turbomachine tangentielle
FR3114051A1 (fr) Dispositif de gestion thermique de batteries d’un véhicule électrique ou hybride
WO2024083565A1 (fr) Module de refroidissement pour véhicule automobile électrique ou hybride
EP4204669A1 (fr) Module de refroidissement pour véhicule automobile électrique à turbomachine tangentielle
EP4214077A1 (fr) Ensemble de modules de refroidissement à turbomachine tangentielle pour face avant de véhicule automobile électrique ou hybride
EP4164904A1 (fr) Module de refroidissement pour véhicule automobile électrique ou hybride à turbomachine tangentielle
FR3123685A1 (fr) Module d’échange thermique et véhicule automobile correspondant
FR3121076A1 (fr) Module de refroidissement pour véhicule automobile électrique ou hybride à turbomachine tangentielle avec refroidissement de l’électronique de puissance
FR3126684A1 (fr) Plateforme modulaire d’un châssis de véhicule automobile électrique avec module de refroidissement à turbomachine tangentielle
EP4314511A1 (fr) Module de refroidissement pour vehicule automobile electrique ou hybride
EP4314563A1 (fr) Module de refroidissement pour vehicule automobile electrique ou hybride a turbomachine tangentielle
WO2022148631A1 (fr) Module de refroidissement pour véhicule automobile électrique ou hybride à turbomachine tangentielle
WO2023030793A1 (fr) Dispositif de gestion thermique pour plateforme modulaire d'un châssis de véhicule automobile électrique
FR3126761A1 (fr) Echangeur de chaleur à tubes pour module de refroidissement à turbomachine tangentielle d’une plateforme modulaire
FR3052299A1 (fr) Systeme de generation d'energie pour vehicule comprenant une pile a combustible a refroidissement liquide et les echangeurs thermiques associes, vehicule correspondant.
FR3112718A1 (fr) Dispositif de gestion thermique pour véhicule automobile électrique ou hybride.
FR3123022A1 (fr) Module de refroidissement pour véhicule automobile électrique ou hybride à turbomachine tangentielle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21740556

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2021740556

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021740556

Country of ref document: EP

Effective date: 20230227