WO2022021327A1 - Association du point de réception de transmission à un ensemble de ressources de commande - Google Patents

Association du point de réception de transmission à un ensemble de ressources de commande Download PDF

Info

Publication number
WO2022021327A1
WO2022021327A1 PCT/CN2020/106208 CN2020106208W WO2022021327A1 WO 2022021327 A1 WO2022021327 A1 WO 2022021327A1 CN 2020106208 W CN2020106208 W CN 2020106208W WO 2022021327 A1 WO2022021327 A1 WO 2022021327A1
Authority
WO
WIPO (PCT)
Prior art keywords
index
coreset
trp
pdsch
qcl
Prior art date
Application number
PCT/CN2020/106208
Other languages
English (en)
Inventor
Yan Zhou
Fang Yuan
Mostafa KHOSHNEVISAN
Tao Luo
Original Assignee
Qualcomm Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Incorporated filed Critical Qualcomm Incorporated
Priority to CN202080104840.6A priority Critical patent/CN116235605A/zh
Priority to EP20947586.2A priority patent/EP4190091A4/fr
Priority to PCT/CN2020/106208 priority patent/WO2022021327A1/fr
Priority to US18/007,684 priority patent/US20230239123A1/en
Publication of WO2022021327A1 publication Critical patent/WO2022021327A1/fr

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection

Definitions

  • the present disclosure relates generally to communication systems, and more particularly, to dynamically updating an association between transmission reception point and control resource set using L1/L2 signaling.
  • Wireless communication systems are widely deployed to provide various telecommunication services such as telephony, video, data, messaging, and broadcasts.
  • Typical wireless communication systems may employ multiple-access technologies capable of supporting communication with multiple users by sharing available system resources. Examples of such multiple-access technologies include code division multiple access (CDMA) systems, time division multiple access (TDMA) systems, frequency division multiple access (FDMA) systems, orthogonal frequency division multiple access (OFDMA) systems, single-carrier frequency division multiple access (SC-FDMA) systems, and time division synchronous code division multiple access (TD-SCDMA) systems.
  • CDMA code division multiple access
  • TDMA time division multiple access
  • FDMA frequency division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single-carrier frequency division multiple access
  • TD-SCDMA time division synchronous code division multiple access
  • 5G New Radio is part of a continuous mobile broadband evolution promulgated by Third Generation Partnership Project (3GPP) to meet new requirements associated with latency, reliability, security, scalability (e.g., with Internet of Things (IoT) ) , and other requirements.
  • 3GPP Third Generation Partnership Project
  • 5G NR includes services associated with enhanced mobile broadband (eMBB) , massive machine type communications (mMTC) , and ultra-reliable low latency communications (URLLC) .
  • eMBB enhanced mobile broadband
  • mMTC massive machine type communications
  • URLLC ultra-reliable low latency communications
  • Some aspects of 5G NR may be based on the 4G Long Term Evolution (LTE) standard.
  • LTE Long Term Evolution
  • each control resource set may be associated with a TRP using a radio resource control (RRC) configured parameter (e.g., CORESETPoolindex) , which may cause the RRC reconfiguration latency.
  • RRC radio resource control
  • the CORESET beam may be dynamically switched across serving and non-serving cells. That is, the association between the CORESET and the TRP may be dynamically updated by L1/L2 beam switch signaling.
  • the TRP index per CORESET may be dynamically updated by L1/L2 signaling.
  • a configuration of the CORESET and a configuration of a set of TRPs are received at a user equipment (UE) along with an index indication of an index for the CORESET using L1/L2 signaling
  • the UE determines a TRP in the set of TPRs to be associated with the CORESET based on the index indication.
  • the communication between the UE and the base station may then be based on the index for the CORESET.
  • the one or more aspects comprise the features hereinafter fully described and particularly pointed out in the claims.
  • the following description and the annexed drawings set forth in detail certain illustrative features of the one or more aspects. These features are indicative, however, of but a few of the various ways in which the principles of various aspects may be employed, and this description is intended to include all such aspects and their equivalents.
  • FIG. 1 is a diagram illustrating an example of a wireless communications system and an access network.
  • FIG. 2A is a diagram illustrating an example of a first frame, in accordance with various aspects of the present disclosure.
  • FIG. 2B is a diagram illustrating an example of DL channels within a subframe, in accordance with various aspects of the present disclosure.
  • FIG. 2C is a diagram illustrating an example of a second frame, in accordance with various aspects of the present disclosure.
  • FIG. 2D is a diagram illustrating an example of UL channels within a subframe, in accordance with various aspects of the present disclosure.
  • FIG. 3 is a diagram illustrating an example of a base station and user equipment (UE) in an access network.
  • UE user equipment
  • FIG. 4 is a diagram illustrating an example of a beam switching process.
  • the diagram includes a UE and a plurality of base stations.
  • FIG. 5 is a diagram illustrating an example of the beam switching process.
  • FIG. 6 illustrates a data flow between a UE and a base station that may overcome the RRC reconfiguration latency in accordance with certain aspects of the disclosure.
  • FIG. 7 illustrates a flowchart of a method of wireless communication in accordance with certain aspects of the disclosure.
  • FIG. 8 is a diagram illustrating an example of a hardware implementation for an apparatus.
  • processors include microprocessors, microcontrollers, graphics processing units (GPUs) , central processing units (CPUs) , application processors, digital signal processors (DSPs) , reduced instruction set computing (RISC) processors, systems on a chip (SoC) , baseband processors, field programmable gate arrays (FPGAs) , programmable logic devices (PLDs) , state machines, gated logic, discrete hardware circuits, and other suitable hardware configured to perform the various functionality described throughout this disclosure.
  • processors in the processing system may execute software.
  • Software shall be construed broadly to mean instructions, instruction sets, code, code segments, program code, programs, subprograms, software components, applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, procedures, functions, etc., whether referred to as software, firmware, middleware, microcode, hardware description language, or otherwise.
  • the functions described may be implemented in hardware, software, or any combination thereof. If implemented in software, the functions may be stored on or encoded as one or more instructions or code on a computer-readable medium.
  • Computer-readable media includes computer storage media. Storage media may be any available media that can be accessed by a computer.
  • such computer-readable media can comprise a random-access memory (RAM) , a read-only memory (ROM) , an electrically erasable programmable ROM (EEPROM) , optical disk storage, magnetic disk storage, other magnetic storage devices, combinations of the aforementioned types of computer-readable media, or any other medium that can be used to store computer executable code in the form of instructions or data structures that can be accessed by a computer.
  • RAM random-access memory
  • ROM read-only memory
  • EEPROM electrically erasable programmable ROM
  • optical disk storage magnetic disk storage
  • magnetic disk storage other magnetic storage devices
  • combinations of the aforementioned types of computer-readable media or any other medium that can be used to store computer executable code in the form of instructions or data structures that can be accessed by a computer.
  • FIG. 1 is a diagram illustrating an example of a wireless communications system and an access network 100.
  • the wireless communications system (also referred to as a wireless wide area network (WWAN) ) includes base stations 102, UEs 104, an Evolved Packet Core (EPC) 160, and another core network 190 (e.g., a 5G Core (5GC) ) .
  • the base stations 102 may include macrocells (high power cellular base station) and/or small cells (low power cellular base station) .
  • the macrocells include base stations.
  • the small cells include femtocells, picocells, and microcells.
  • the base stations 102 configured for 4G LTE may interface with the EPC 160 through first backhaul links 132 (e.g., S1 interface) .
  • the base stations 102 configured for 5G NR may interface with core network 190 through second backhaul links 184.
  • the base stations 102 may perform one or more of the following functions: transfer of user data, radio channel ciphering and deciphering, integrity protection, header compression, mobility control functions (e.g., handover, dual connectivity) , inter-cell interference coordination, connection setup and release, load balancing, distribution for non-access stratum (NAS) messages, NAS node selection, synchronization, radio access network (RAN) sharing, multimedia broadcast multicast service (MBMS) , subscriber and equipment trace, RAN information management (RIM) , paging, positioning, and delivery of warning messages.
  • NAS non-access stratum
  • RAN radio access network
  • MBMS multimedia broadcast multicast service
  • RIM RAN information management
  • the base stations 102 may communicate directly or indirectly (e.g., through the EPC 160 or core network 190) with each other over third backhaul links 134 (e.g., X2 interface) .
  • the first backhaul links 132, the second backhaul links 184, and the third backhaul links 134 may be wired or wireless.
  • the base stations 102 may wirelessly communicate with the UEs 104. Each of the base stations 102 may provide communication coverage for a respective geographic coverage area 110. There may be overlapping geographic coverage areas 110. For example, the small cell 102' may have a coverage area 110' that overlaps the coverage area 110 of one or more macro base stations 102.
  • a network that includes both small cell and macrocells may be known as a heterogeneous network.
  • a heterogeneous network may also include Home Evolved Node Bs (eNBs) (HeNBs) , which may provide service to a restricted group known as a closed subscriber group (CSG) .
  • eNBs Home Evolved Node Bs
  • HeNBs Home Evolved Node Bs
  • CSG closed subscriber group
  • the communication links 120 between the base stations 102 and the UEs 104 may include uplink (UL) (also referred to as reverse link) transmissions from a UE 104 to a base station 102 and/or downlink (DL) (also referred to as forward link) transmissions from a base station 102 to a UE 104.
  • the communication links 120 may use multiple-input and multiple-output (MIMO) antenna technology, including spatial multiplexing, beamforming, and/or transmit diversity.
  • the communication links may be through one or more carriers.
  • the base stations 102/UEs 104 may use spectrum up to Y MHz (e.g., 5, 10, 15, 20, 100, 400, etc.
  • the component carriers may include a primary component carrier and one or more secondary component carriers.
  • a primary component carrier may be referred to as a primary cell (PCell) and a secondary component carrier may be referred to as a secondary cell (SCell) .
  • D2D communication link 158 may use the DL/UL WWAN spectrum.
  • the D2D communication link 158 may use one or more sidelink channels, such as a physical sidelink broadcast channel (PSBCH) , a physical sidelink discovery channel (PSDCH) , a physical sidelink shared channel (PSSCH) , and a physical sidelink control channel (PSCCH) .
  • sidelink channels such as a physical sidelink broadcast channel (PSBCH) , a physical sidelink discovery channel (PSDCH) , a physical sidelink shared channel (PSSCH) , and a physical sidelink control channel (PSCCH) .
  • sidelink channels such as a physical sidelink broadcast channel (PSBCH) , a physical sidelink discovery channel (PSDCH) , a physical sidelink shared channel (PSSCH) , and a physical sidelink control channel (PSCCH) .
  • D2D communication may be through a variety of wireless D2D communications systems, such as for example, WiMedia, Bluetooth, ZigBe
  • the wireless communications system may further include a Wi-Fi access point (AP) 150 in communication with Wi-Fi stations (STAs) 152 via communication links 154, e.g., in a 5 GHz unlicensed frequency spectrum or the like.
  • AP Wi-Fi access point
  • STAs Wi-Fi stations
  • communication links 154 e.g., in a 5 GHz unlicensed frequency spectrum or the like.
  • the STAs 152/AP 150 may perform a clear channel assessment (CCA) prior to communicating in order to determine whether the channel is available.
  • CCA clear channel assessment
  • the small cell 102' may operate in a licensed and/or an unlicensed frequency spectrum. When operating in an unlicensed frequency spectrum, the small cell 102' may employ NR and use the same unlicensed frequency spectrum (e.g., 5 GHz, or the like) as used by the Wi-Fi AP 150. The small cell 102', employing NR in an unlicensed frequency spectrum, may boost coverage to and/or increase capacity of the access network.
  • the small cell 102' employing NR in an unlicensed frequency spectrum, may boost coverage to and/or increase capacity of the access network.
  • the electromagnetic spectrum is often subdivided, based on frequency/wavelength, into various classes, bands, channels, etc.
  • two initial operating bands have been identified as frequency range designations FR1 (410 MHz –7.125 GHz) and FR2 (24.25 GHz –52.6 GHz) .
  • the frequencies between FR1 and FR2 are often referred to as mid-band frequencies.
  • FR1 is often referred to (interchangeably) as a “sub-6 GHz” band in various documents and articles.
  • FR2 which is often referred to (interchangeably) as a “millimeter wave” band in documents and articles, despite being different from the extremely high frequency (EHF) band (30 GHz –300 GHz) which is identified by the International Telecommunications Union (ITU) as a “millimeter wave” band.
  • EHF extremely high frequency
  • ITU International Telecommunications Union
  • sub-6 GHz or the like if used herein may broadly represent frequencies that may be less than 6 GHz, may be within FR1, or may include mid-band frequencies.
  • millimeter wave or the like if used herein may broadly represent frequencies that may include mid-band frequencies, may be within FR2, or may be within the EHF band.
  • a base station 102 may include and/or be referred to as an eNB, gNodeB (gNB) , or another type of base station.
  • Some base stations, such as gNB 180 may operate in a traditional sub 6 GHz spectrum, in millimeter wave frequencies, and/or near millimeter wave frequencies in communication with the UE 104.
  • the gNB 180 may be referred to as a millimeter wave base station.
  • the millimeter wave base station 180 may utilize beamforming 182 with the UE 104 to compensate for the path loss and short range.
  • the base station 180 and the UE 104 may each include a plurality of antennas, such as antenna elements, antenna panels, and/or antenna arrays to facilitate the beamforming.
  • the base station 180 may transmit a beamformed signal to the UE 104 in one or more transmit directions 182'.
  • the UE 104 may receive the beamformed signal from the base station 180 in one or more receive directions 182”.
  • the UE 104 may also transmit a beamformed signal to the base station 180 in one or more transmit directions.
  • the base station 180 may receive the beamformed signal from the UE 104 in one or more receive directions.
  • the base station 180/UE 104 may perform beam training to determine the best receive and transmit directions for each of the base station 180/UE 104.
  • the transmit and receive directions for the base station 180 may or may not be the same.
  • the transmit and receive directions for the UE 104 may or may not be the same.
  • the EPC 160 may include a Mobility Management Entity (MME) 162, other MMEs 164, a Serving Gateway 166, a Multimedia Broadcast Multicast Service (MBMS) Gateway 168, a Broadcast Multicast Service Center (BM-SC) 170, and a Packet Data Network (PDN) Gateway 172.
  • MME Mobility Management Entity
  • MBMS Multimedia Broadcast Multicast Service
  • BM-SC Broadcast Multicast Service Center
  • PDN Packet Data Network
  • the MME 162 may be in communication with a Home Subscriber Server (HSS) 174.
  • HSS Home Subscriber Server
  • the MME 162 is the control node that processes the signaling between the UEs 104 and the EPC 160.
  • the MME 162 provides bearer and connection management. All user Internet protocol (IP) packets are transferred through the Serving Gateway 166, which itself is connected to the PDN Gateway 172.
  • IP Internet protocol
  • the PDN Gateway 172 provides UE IP address allocation as well as other functions.
  • the PDN Gateway 172 and the BM-SC 170 are connected to the IP Services 176.
  • the IP Services 176 may include the Internet, an intranet, an IP Multimedia Subsystem (IMS) , a PS Streaming Service, and/or other IP services.
  • the BM-SC 170 may provide functions for MBMS user service provisioning and delivery.
  • the BM-SC 170 may serve as an entry point for content provider MBMS transmission, may be used to authorize and initiate MBMS Bearer Services within a public land mobile network (PLMN) , and may be used to schedule MBMS transmissions.
  • PLMN public land mobile network
  • the MBMS Gateway 168 may be used to distribute MBMS traffic to the base stations 102 belonging to a Multicast Broadcast Single Frequency Network (MBSFN) area broadcasting a particular service, and may be responsible for session management (start/stop) and for collecting eMBMS related charging information.
  • MMSFN Multicast Broadcast Single Frequency Network
  • the core network 190 may include a Access and Mobility Management Function (AMF) 192, other AMFs 193, a Session Management Function (SMF) 194, and a User Plane Function (UPF) 195.
  • the AMF 192 may be in communication with a Unified Data Management (UDM) 196.
  • the AMF 192 is the control node that processes the signaling between the UEs 104 and the core network 190.
  • the AMF 192 provides QoS flow and session management. All user Internet protocol (IP) packets are transferred through the UPF 195.
  • the UPF 195 provides UE IP address allocation as well as other functions.
  • the UPF 195 is connected to the IP Services 197.
  • the IP Services 197 may include the Internet, an intranet, an IP Multimedia Subsystem (IMS) , a Packet Switch (PS) Streaming (PSS) Service, and/or other IP services.
  • IMS IP Multimedia Subsystem
  • PS Packet Switch
  • PSS Packe
  • the base station may include and/or be referred to as a gNB, Node B, eNB, an access point, a base transceiver station, a radio base station, a radio transceiver, a transceiver function, a basic service set (BSS) , an extended service set (ESS) , a transmit reception point (TRP) , or some other suitable terminology.
  • the base station 102 provides an access point to the EPC 160 or core network 190 for a UE 104.
  • Examples of UEs 104 include a cellular phone, a smart phone, a session initiation protocol (SIP) phone, a laptop, a personal digital assistant (PDA) , a satellite radio, a global positioning system, a multimedia device, a video device, a digital audio player (e.g., MP3 player) , a camera, a game console, a tablet, a smart device, a wearable device, a vehicle, an electric meter, a gas pump, a large or small kitchen appliance, a healthcare device, an implant, a sensor/actuator, a display, or any other similar functioning device.
  • SIP session initiation protocol
  • PDA personal digital assistant
  • the UEs 104 may be referred to as IoT devices (e.g., parking meter, gas pump, toaster, vehicles, heart monitor, etc. ) .
  • the UE 104 may also be referred to as a station, a mobile station, a subscriber station, a mobile unit, a subscriber unit, a wireless unit, a remote unit, a mobile device, a wireless device, a wireless communications device, a remote device, a mobile subscriber station, an access terminal, a mobile terminal, a wireless terminal, a remote terminal, a handset, a user agent, a mobile client, a client, or some other suitable terminology.
  • FIG. 2A is a diagram 200 illustrating an example of a first subframe within a 5G NR frame structure.
  • FIG. 2B is a diagram 230 illustrating an example of DL channels within a 5G NR subframe.
  • FIG. 2C is a diagram 250 illustrating an example of a second subframe within a 5G NR frame structure.
  • FIG. 2D is a diagram 280 illustrating an example of UL channels within a 5G NR subframe.
  • the 5G NR frame structure may be frequency division duplexed (FDD) in which for a particular set of subcarriers (carrier system bandwidth) , subframes within the set of subcarriers are dedicated for either DL or UL, or may be time division duplexed (TDD) in which for a particular set of subcarriers (carrier system bandwidth) , subframes within the set of subcarriers are dedicated for both DL and UL.
  • FDD frequency division duplexed
  • TDD time division duplexed
  • the 5G NR frame structure is assumed to be TDD, with subframe 4 being configured with slot format 28 (with mostly DL) , where D is DL, U is UL, and F is flexible for use between DL/UL, and subframe 3 being configured with slot format 1 (with all UL) . While subframes 3, 4 are shown with slot formats 1, 28, respectively, any particular subframe may be configured with any of the various available slot formats 0-61. Slot formats 0, 1 are all DL, UL, respectively. Other slot formats 2-61 include a mix of DL, UL, and flexible symbols.
  • UEs are configured with the slot format (dynamically through DL control information (DCI) , or semi-statically/statically through radio resource control (RRC) signaling) through a received slot format indicator (SFI) .
  • DCI DL control information
  • RRC radio resource control
  • SFI received slot format indicator
  • a frame (10 ms) may be divided into 10 equally sized subframes (1 ms) .
  • Each subframe may include one or more time slots.
  • Subframes may also include mini-slots, which may include 7, 4, or 2 symbols.
  • Each slot may include 7 or 14 symbols, depending on the slot configuration. For slot configuration 0, each slot may include 14 symbols, and for slot configuration 1, each slot may include 7 symbols.
  • the symbols on DL may be cyclic prefix (CP) OFDM (CP-OFDM) symbols.
  • the symbols on UL may be CP-OFDM symbols (for high throughput scenarios) or discrete Fourier transform (DFT) spread OFDM (DFT-s-OFDM) symbols (also referred to as single carrier frequency-division multiple access (SC-FDMA) symbols) (for power limited scenarios; limited to a single stream transmission) .
  • the number of slots within a subframe is based on the slot configuration and the numerology. For slot configuration 0, different numerologies ⁇ 0 to 4 allow for 1, 2, 4, 8, and 16 slots, respectively, per subframe. For slot configuration 1, different numerologies 0 to 2 allow for 2, 4, and 8 slots, respectively, per subframe. Accordingly, for slot configuration 0 and numerology ⁇ , there are 14 symbols/slot and 2 ⁇ slots/subframe.
  • the subcarrier spacing and symbol length/duration are a function of the numerology.
  • the subcarrier spacing may be equal to 2 ⁇ *15 kHz, where ⁇ is the numerology 0 to 4.
  • the symbol length/duration is inversely related to the subcarrier spacing.
  • the slot duration is 0.25 ms
  • the subcarrier spacing is 60 kHz
  • the symbol duration is approximately 16.67 ⁇ s.
  • Each BWP may have a particular numerology.
  • a resource grid may be used to represent the frame structure.
  • Each time slot includes a resource block (RB) (also referred to as physical RBs (PRBs) ) that extends 12 consecutive subcarriers.
  • RB resource block
  • PRBs physical RBs
  • the resource grid is divided into multiple resource elements (REs) . The number of bits carried by each RE depends on the modulation scheme.
  • the RS may include demodulation RS (DM-RS) (indicated as R for one particular configuration, but other DM-RS configurations are possible) and channel state information reference signals (CSI-RS) for channel estimation at the UE.
  • DM-RS demodulation RS
  • CSI-RS channel state information reference signals
  • the RS may also include beam measurement RS (BRS) , beam refinement RS (BRRS) , and phase tracking RS (PT-RS) .
  • BRS beam measurement RS
  • BRRS beam refinement RS
  • PT-RS phase tracking RS
  • FIG. 2B illustrates an example of various DL channels within a subframe of a frame.
  • the physical downlink control channel (PDCCH) carries DCI within one or more control channel elements (CCEs) (e.g., 1, 2, 4, 8, or 16 CCEs) , each CCE including six RE groups (REGs) , each REG including 12 consecutive REs in an OFDM symbol of an RB.
  • CCEs control channel elements
  • REGs RE groups
  • a PDCCH within one BWP may be referred to as a control resource set (CORESET) .
  • CORESET control resource set
  • a UE is configured to monitor PDCCH candidates in a PDCCH search space (e.g., common search space, UE-specific search space) during PDCCH monitoring occasions on the CORESET, where the PDCCH candidates have different DCI formats and different aggregation levels. Additional BWPs may be located at greater and/or lower frequencies across the channel bandwidth.
  • a primary synchronization signal (PSS) may be within symbol 2 of particular subframes of a frame. The PSS is used by a UE 104 to determine subframe/symbol timing and a physical layer identity.
  • a secondary synchronization signal (SSS) may be within symbol 4 of particular subframes of a frame. The SSS is used by a UE to determine a physical layer cell identity group number and radio frame timing.
  • the UE can determine a physical cell identifier (PCI) . Based on the PCI, the UE can determine the locations of the aforementioned DM-RS.
  • the physical broadcast channel (PBCH) which carries a master information block (MIB) , may be logically grouped with the PSS and SSS to form a synchronization signal (SS) /PBCH block (also referred to as SS block (SSB) ) .
  • the MIB provides a number of RBs in the system bandwidth and a system frame number (SFN) .
  • the physical downlink shared channel (PDSCH) carries user data, broadcast system information not transmitted through the PBCH such as system information blocks (SIBs) , and paging messages.
  • SIBs system information blocks
  • some of the REs carry DM-RS (indicated as R for one particular configuration, but other DM-RS configurations are possible) for channel estimation at the base station.
  • the UE may transmit DM-RS for the physical uplink control channel (PUCCH) and DM-RS for the physical uplink shared channel (PUSCH) .
  • the PUSCH DM-RS may be transmitted in the first one or two symbols of the PUSCH.
  • the PUCCH DM-RS may be transmitted in different configurations depending on whether short or long PUCCHs are transmitted and depending on the particular PUCCH format used.
  • the UE may transmit sounding reference signals (SRS) .
  • the SRS may be transmitted in the last symbol of a subframe.
  • the SRS may have a comb structure, and a UE may transmit SRS on one of the combs.
  • the SRS may be used by a base station for channel quality estimation to enable frequency-dependent scheduling on the UL.
  • FIG. 2D illustrates an example of various UL channels within a subframe of a frame.
  • the PUCCH may be located as indicated in one configuration.
  • the PUCCH carries uplink control information (UCI) , such as scheduling requests, a channel quality indicator (CQI) , a precoding matrix indicator (PMI) , a rank indicator (RI) , and hybrid automatic repeat request (HARQ) ACK/NACK feedback.
  • UCI uplink control information
  • the PUSCH carries data, and may additionally be used to carry a buffer status report (BSR) , a power headroom report (PHR) , and/or UCI.
  • BSR buffer status report
  • PHR power headroom report
  • FIG. 3 is a block diagram of a base station 310 in communication with a UE 350 in an access network.
  • IP packets from the EPC 160 may be provided to a controller/processor 375.
  • the controller/processor 375 implements layer 3 and layer 2 functionality.
  • Layer 3 includes a radio resource control (RRC) layer
  • layer 2 includes a service data adaptation protocol (SDAP) layer, a packet data convergence protocol (PDCP) layer, a radio link control (RLC) layer, and a medium access control (MAC) layer.
  • RRC radio resource control
  • SDAP service data adaptation protocol
  • PDCP packet data convergence protocol
  • RLC radio link control
  • MAC medium access control
  • the controller/processor 375 provides RRC layer functionality associated with broadcasting of system information (e.g., MIB, SIBs) , RRC connection control (e.g., RRC connection paging, RRC connection establishment, RRC connection modification, and RRC connection release) , inter radio access technology (RAT) mobility, and measurement configuration for UE measurement reporting; PDCP layer functionality associated with header compression/decompression, security (ciphering, deciphering, integrity protection, integrity verification) , and handover support functions; RLC layer functionality associated with the transfer of upper layer packet data units (PDUs) , error correction through ARQ, concatenation, segmentation, and reassembly of RLC service data units (SDUs) , re-segmentation of RLC data PDUs, and reordering of RLC data PDUs; and MAC layer functionality associated with mapping between logical channels and transport channels, multiplexing of MAC SDUs onto transport blocks (TBs) , demultiplexing of MAC SDUs
  • the transmit (TX) processor 316 and the receive (RX) processor 370 implement layer 1 functionality associated with various signal processing functions.
  • Layer 1 which includes a physical (PHY) layer, may include error detection on the transport channels, forward error correction (FEC) coding/decoding of the transport channels, interleaving, rate matching, mapping onto physical channels, modulation/demodulation of physical channels, and MIMO antenna processing.
  • the TX processor 316 handles mapping to signal constellations based on various modulation schemes (e.g., binary phase-shift keying (BPSK) , quadrature phase-shift keying (QPSK) , M-phase-shift keying (M-PSK) , M-quadrature amplitude modulation (M-QAM) ) .
  • BPSK binary phase-shift keying
  • QPSK quadrature phase-shift keying
  • M-PSK M-phase-shift keying
  • M-QAM M-quadrature amplitude modulation
  • the coded and modulated symbols may then be split into parallel streams.
  • Each stream may then be mapped to an OFDM subcarrier, multiplexed with a reference signal (e.g., pilot) in the time and/or frequency domain, and then combined together using an Inverse Fast Fourier Transform (IFFT) to produce a physical channel carrying a time domain OFDM symbol stream.
  • IFFT Inverse Fast Fourier Transform
  • the OFDM stream is spatially precoded to produce multiple spatial streams.
  • Channel estimates from a channel estimator 374 may be used to determine the coding and modulation scheme, as well as for spatial processing.
  • the channel estimate may be derived from a reference signal and/or channel condition feedback transmitted by the UE 350.
  • Each spatial stream may then be provided to a different antenna 320 via a separate transmitter 318 TX.
  • Each transmitter 318 TX may modulate an RF carrier with a respective spatial stream for transmission.
  • each receiver 354 RX receives a signal through its respective antenna 352.
  • Each receiver 354 RX recovers information modulated onto an RF carrier and provides the information to the receive (RX) processor 356.
  • the TX processor 368 and the RX processor 356 implement layer 1 functionality associated with various signal processing functions.
  • the RX processor 356 may perform spatial processing on the information to recover any spatial streams destined for the UE 350. If multiple spatial streams are destined for the UE 350, they may be combined by the RX processor 356 into a single OFDM symbol stream.
  • the RX processor 356 then converts the OFDM symbol stream from the time-domain to the frequency domain using a Fast Fourier Transform (FFT) .
  • FFT Fast Fourier Transform
  • the frequency domain signal comprises a separate OFDM symbol stream for each subcarrier of the OFDM signal.
  • the symbols on each subcarrier, and the reference signal are recovered and demodulated by determining the most likely signal constellation points transmitted by the base station 310. These soft decisions may be based on channel estimates computed by the channel estimator 358.
  • the soft decisions are then decoded and deinterleaved to recover the data and control signals that were originally transmitted by the base station 310 on the physical channel.
  • the data and control signals are then provided to the controller/processor 359, which implements layer 3 and layer 2 functionality.
  • the controller/processor 359 can be associated with a memory 360 that stores program codes and data.
  • the memory 360 may be referred to as a computer-readable medium.
  • the controller/processor 359 provides demultiplexing between transport and logical channels, packet reassembly, deciphering, header decompression, and control signal processing to recover IP packets from the EPC 160.
  • the controller/processor 359 is also responsible for error detection using an ACK and/or NACK protocol to support HARQ operations.
  • the controller/processor 359 provides RRC layer functionality associated with system information (e.g., MIB, SIBs) acquisition, RRC connections, and measurement reporting; PDCP layer functionality associated with header compression/decompression, and security (ciphering, deciphering, integrity protection, integrity verification) ; RLC layer functionality associated with the transfer of upper layer PDUs, error correction through ARQ, concatenation, segmentation, and reassembly of RLC SDUs, re-segmentation of RLC data PDUs, and reordering of RLC data PDUs; and MAC layer functionality associated with mapping between logical channels and transport channels, multiplexing of MAC SDUs onto TBs, demultiplexing of MAC SDUs from TBs, scheduling information reporting, error correction through HARQ, priority handling, and logical channel prioritization.
  • RRC layer functionality associated with system information (e.g., MIB, SIBs) acquisition, RRC connections, and measurement reporting
  • PDCP layer functionality associated with header
  • Channel estimates derived by a channel estimator 358 from a reference signal or feedback transmitted by the base station 310 may be used by the TX processor 368 to select the appropriate coding and modulation schemes, and to facilitate spatial processing.
  • the spatial streams generated by the TX processor 368 may be provided to different antenna 352 via separate transmitters 354TX. Each transmitter 354TX may modulate an RF carrier with a respective spatial stream for transmission.
  • the UL transmission is processed at the base station 310 in a manner similar to that described in connection with the receiver function at the UE 350.
  • Each receiver 318RX receives a signal through its respective antenna 320.
  • Each receiver 318RX recovers information modulated onto an RF carrier and provides the information to a RX processor 370.
  • the controller/processor 375 can be associated with a memory 376 that stores program codes and data.
  • the memory 376 may be referred to as a computer-readable medium.
  • the controller/processor 375 provides demultiplexing between transport and logical channels, packet reassembly, deciphering, header decompression, control signal processing to recover IP packets from the UE 350. IP packets from the controller/processor 375 may be provided to the EPC 160.
  • the controller/processor 375 is also responsible for error detection using an ACK and/or NACK protocol to support HARQ operations.
  • FIG. 4 is a diagram 400 illustrating an example of a beam switching process.
  • the diagram 400 includes a UE 402 and a plurality of base stations 404.
  • the UE is being served by PCI0 that is associated with a base station 404, while PCI 3 and PCI4 are neighbor cells.
  • L1/L2 inter-cell mobility may occur via beam switching across serving and non-serving cells.
  • each serving or non-serving cell may have a single or multiple TRPs (e.g., base station) sharing the same PCI.
  • the example of FIG. 4 includes a configuration with a single TRP per serving or non-serving cell.
  • a TCI state or spatial relation for the downlink/uplink beam of the serving cell may be quasi co-located (QCL) with SSB from the PCI of the same serving cell or a neighbor non-serving cell.
  • the TCI state may be QCL with the SSB from PCI0.
  • the neighbor non-serving cell may be utilized to provide a beam indication.
  • FIG. 5 is a diagram 500 illustrating an example of the beam switching process.
  • the diagram 500 includes a UE 502 and a plurality of base stations 504 and is configured similarly as the UE and the plurality of base stations of FIG. 4.
  • the UE 502 may enter a connected mode state after initial access (IA) on a serving cell with PCI0 504.
  • the UE 502 may measure and report Layer3 (L3) metrics for the detected neighbor PCIs (e.g., PCI1-PCI6) .
  • the PCIs that may be included in the L3 measurement 506 may comprise PCI1-PCI6, as shown in FIG. 5.
  • the network may configure TCI states associated with a subset of the measured neighbor PCIs.
  • the network may configure TCI states associated with PCI0, PCI3, and PCI4, where PCI0, PCI3, and PCI4 are from neighbor non-serving cells.
  • the UE 502 may be further configured with L1 measurements for the configured TCI states.
  • the PCIs e.g., PCI0, PCI3, PCI4
  • the PCIs may be defined as a set of PCIs for L1 measurement 508.
  • the UE 502 may perform L1 measurements of PCI0, PCI3, and PCI4. Based on the L1 measurement, the network may activate a TCI state associated with a neighbor PCI to serve the UE 502.
  • the network may activate a TCI state associated with PCI4 to serve the UE 502.
  • the UE may perform an updated L3 report.
  • the updated L3 report may include a different set of PCIs, e.g., PCI0, PCI3-PCI5, and PCI7-PCI9.
  • the network may handover the serving cell from PCI0 to PCI4.
  • the network may also configure new TCI states associated with the updated L1 measurement PCI set, e.g., PCI4, PCI7, and PCI8.
  • FIG. 6 illustrates a data flow 600 between a UE 602 and a base station 604 that may overcome the radio resource control (RRC) reconfiguration latency in accordance with certain aspects of the disclosure.
  • the UE 602 may correspond to UE 104 in FIG. 1, UE 350 in FIG. 3, UE 402 in FIG. 4, or UE 502 in FIG. 5.
  • Base station 604 may correspond to base station 102 in FIG. 1, gNB 180 in FIG. 1, base station 310 in FIG. 3, base station 404 in FIG. 4, or base station 504 in FIG. 5.
  • the UE 602 and the base station 604 may be configured to operate in millimeter wave frequencies and/or near millimeter wave frequencies.
  • the base station 604 When the base station 604 operates in millimeter wave or near millimeter wave frequencies, the base station 604 may be referred to as a millimeter wave base station.
  • the millimeter wave base station 604 may utilize beamforming with the UE 602 to compensate for the path loss and short range.
  • the base station 604 and the UE 602 may each include a plurality of antennas, such as antenna elements, antenna panels, and/or antenna arrays to facilitate the beamforming.
  • a control resource set (CORESET) beam can be dynamically switched across serving and non-serving cells. That is, the association between the CORESET and a set of transmission reception points (TRPs) can be dynamically updated by L1/L2 beam switch signaling, which may reduce the RRC reconfiguration latency. To overcome the reconfiguration latency, the TRP index per CORESET may be dynamically updated by L1/L2 signaling.
  • the UE 602 may receive from the base station 604, a configuration of the CORESET and a configuration of the TRPs (i.e., 606) .
  • the UE 602 may also receive from the base station 604, an index indication 608 of an index for the CORESET using L1/L2 signaling.
  • the UE 602 may further determine, at block 610, a TRP in the set of TPRs (or an TRP index in the set of TRP indexes) to be associated with the CORESET based on the index indication.
  • the communication 612 between the UE 602 and the base station 604 may then be based on the index for the CORESET.
  • the UE 602 may receive the index indication 608 through downlink control information (DCI) .
  • the UE 602 may receive the index indication 608 through a media access control (MAC) control element (CE) (MAC-CE) indicating the index.
  • DCI downlink control information
  • MAC-CE media access control control element
  • the base station 604 may send a DCI or MAC-CE to indicate the new TRP index associated with the CORESET.
  • the UE 602 may determine the index implicitly based on an activated transmission configuration indication (TCI) state. For example, once the CORESET beam is switched to a new beam when a TCI state is activated for the CORESET, the index of new TRP to be associated with the CORESET is implicitly indicated by the index of the TRP transmitting the quasi-co location (QCL) source reference signal in the TCI state.
  • TCI transmission configuration indication
  • the UE 602 may determine that the activated TCI state is for the CORESET and indicate a reference signal as QCL of QCL-TypeD source.
  • the index to be associated with the CORESET in this aspect, is determined to be the same as an index associated with the reference signal.
  • the UE 602 may determine that the activated TCI state is for the CORESET and indicate a synchronization signal block (SSB) of a physical cell identifier (PCI) as quasi-co location (QCL) of QCL-TypeD source.
  • SSB synchronization signal block
  • PCI physical cell identifier
  • QCL quasi-co location
  • the index may be one of: a TRP index indicating one of the TRPs; a TRP index associated with a physical cell identifier (PCI) index indicating a PCI; or associated with a cell index indicating the cell.
  • PCI physical cell identifier
  • the new TRP index will overwrite the RRC-configured TRP index. That is, the UE 602 may have received an RRC configuration configuring a second index indicating a second TRP associated with the CORESET prior to the index indication, and the index indication may overwrite the second index with the index.
  • the UE 602 may transmit, in one aspect, communication 612 of an acknowledgment (ACK) or negative ACK (NACK) to the base station 604 based on a received physical downlink shared channel (PDSCH) scheduled by the received PDCCH of the CORESET based on the index indicating the association between the TRP and the CORESET.
  • ACK acknowledgment
  • NACK negative ACK
  • the UE 602 may receive communication 612 from the base station 604 on a physical downlink shared channel (PDSCH) scheduled by the received PDCCH of the CORESET based on the index indicating the association between the TRP and the CORESET.
  • the received communication 612 may include the PDSCH based on a PDSCH scrambling sequence that is based on the index.
  • the UE 602 may receive communication 612 from the base station 604 on a physical downlink shared channel (PDSCH) scheduled by the received PDCCH of the CORESET based on the index indicating the association between the TRP and the CORESET.
  • the received communication 612 may include the PDSCH based on a PDSCH rate matching pattern that is based on the index.
  • FIG. 7 illustrates a flowchart 700 of a method of wireless communication in accordance with certain aspects of the disclosure.
  • the method may be performed by a UE (e.g., UE 104 in FIG. 1, UE 350 in FIG. 3, UE 402 in FIG. 4, or UE 502 in FIG. 5) in communication with a base station (e.g., base station 102 in FIG. 1, gNB 180 in FIG. 1, base station 310 in FIG. 3, base station 404 in FIG. 4, or base station 504 in FIG. 5) .
  • a base station e.g., base station 102 in FIG. 1, gNB 180 in FIG. 1, base station 310 in FIG. 3, base station 404 in FIG. 4, or base station 504 in FIG. 5 .
  • optional operations are indicated with dashed lines.
  • the UE may receive from the base station, at 702, a configuration of the CORESET and a configuration of a set of TRPs.
  • the UE may also receive from the base station, at 704, an index indication of an index for the CORESET using L1/L2 signaling.
  • the communication between the UE and the base station may then be based on the index for the CORESET.
  • the UE may receive the index indication through downlink control information (DCI) .
  • the UE may receive the index indication through a media access control (MAC) control element (CE) (MAC-CE) indicating the index.
  • DCI downlink control information
  • MAC-CE media access control control element
  • the base station may send a DCI or MAC-CE to indicate the new TRP index associated with the CORESET.
  • the UE may determine the index implicitly, at 706, based on an activated TCI state. For example, once the CORESET beam is switched to a beam or a new TRP when a TCI state for the CORESET is activated, the new TRP index associated with the CORESET is implicitly indicated by the index of the TRP which transmits the quasi-co location (QCL) source reference signal in the activated TCI state.
  • QCL quasi-co location
  • the UE may determine that the activated TCI state is for the CORESET and indicate a reference signal as the QCL of QCL-TypeD source.
  • the index to be associated with the CORESET in this aspect, is determined to be the same as an index associated with the reference signal.
  • the UE may determine that the activated TCI state is for the CORESET and indicate an SSB of a physical cell identifier (PCI) as QCL of QCL-TypeD source.
  • the index to be associated with the CORESET is determined based on the reference signal of the SSB of the PCI as a QCL-TypeD source. For example, if a TCI state is activated for a CORESET and has a SSB with PCI4 as a QCL-TypeD RS in the TCI state, an TRP index associated with the CORESET is the index of the TRP which transmits the SSB with PCI4.
  • the index may be one of: a TRP index indicating one of the TRPs; a TRP index associated with a PCI index indicating a PCI; or a TRP index associated with a cell index indicating the cell.
  • the new TRP index will overwrite the RRC-configured TRP index. That is, the UE may have received an RRC configuration configuring a second index indicating a second TRP associated with the CORESET, and the index indication may overwrite the second index with the index.
  • the UE may transmit, at 710, an acknowledgment (ACK) or negative ACK (NACK) to the base station based on a received physical downlink shared channel (PDSCH) scheduled by the received PDCCH of the CORESET based on the index indicating the association between the TRP and the CORESET.
  • ACK acknowledgment
  • NACK negative ACK
  • UE sends ACK/NACK for PDSCH scheduled by CORESET associated with an TRP index 1 back to the TRP 1 by using uplink channels or resources associated with the TRP index 1.
  • the UE may also receive communication from the base station on the PDSCH scheduled by the received PDCCH of the CORESET based on the index indicating the association between the TRP and the CORESET.
  • the received communication from the bases station may include the PDSCH based on a PDSCH scrambling sequence that is based on the index.
  • the UE descrambles the PDSCH scheduled by CORESET associated with a TRP index 1 using the PDSCH scrambling sequence associated with the TRP index 1.
  • the received communication may include the PDSCH based on a PDSCH rate matching pattern that is based on the index. For example, the UE performs a rate matching pattern to the PDSCH receptions scheduled by CORESET associated with a TRP index 1 using the rate matching pattern associated with the TRP index 1.
  • FIG. 8 is a diagram 800 illustrating an example of a hardware implementation for an apparatus 802.
  • the apparatus 802 is a UE and includes a cellular baseband processor 804 (also referred to as a modem) coupled to a cellular RF transceiver 822 and one or more subscriber identity modules (SIM) cards 820, an application processor 806 coupled to a secure digital (SD) card 808 and a screen 810, a Bluetooth module 812, a wireless local area network (WLAN) module 814, a Global Positioning System (GPS) module 816, and a power supply 818.
  • the cellular baseband processor 804 communicates through the cellular RF transceiver 822 with the UE 104 and/or BS 102/180.
  • the cellular baseband processor 804 may include a computer-readable medium/memory.
  • the computer-readable medium/memory may be non-transitory.
  • the cellular baseband processor 804 is responsible for general processing, including the execution of software stored on the computer-readable medium/memory.
  • the software when executed by the cellular baseband processor 804, causes the cellular baseband processor 804 to perform the various functions described supra.
  • the computer-readable medium/memory may also be used for storing data that is manipulated by the cellular baseband processor 804 when executing software.
  • the cellular baseband processor 804 further includes a reception component 830, a communication manager 832, and a transmission component 834.
  • the communication manager 832 includes the one or more illustrated components.
  • the components within the communication manager 832 may be stored in the computer-readable medium/memory and/or configured as hardware within the cellular baseband processor 804.
  • the cellular baseband processor 804 may be a component of the UE 350 and may include the memory 360 and/or at least one of the TX processor 368, the RX processor 356, and the controller/processor 359.
  • the apparatus 802 may be a modem chip and include just the baseband processor 804, and in another configuration, the apparatus 802 may be the entire UE (e.g., see 350 of FIG. 3) and include the aforediscussed additional modules of the apparatus 802.
  • the communication manager 832 includes a determination component 840 that is configured to determine, based on the index indication, a TRP in the set of TRPs to be associated with the CORESET, e.g., as described in connection with FIG. 7.
  • the determination component 840 may also determine the index implicitly based on an activated TCI state.
  • the apparatus may include additional components that perform each of the blocks of the algorithm in the aforementioned flowchart of FIG. 7. As such, each block in the aforementioned flowchart of FIG. 7 may be performed by a component and the apparatus may include one or more of those components.
  • the components may be one or more hardware components specifically configured to carry out the stated processes/algorithm, implemented by a processor configured to perform the stated processes/algorithm, stored within a computer-readable medium for implementation by a processor, or some combination thereof.
  • the apparatus 802 may include the TX Processor 368, the RX Processor 356, and the controller/processor 359.
  • the aforementioned means may be the TX Processor 368, the RX Processor 356, and the controller/processor 359 configured to perform the functions recited by the aforementioned means.
  • the apparatus 802 includes means for receiving, from a cell, a configuration of a control resource set (CORESET) and a configuration of a set of transmission reception points (TRPs) ; means for receiving, from the cell, an index indication of an index for the CORESET; and means for determining, based on the index indication, a TRP in the set of TPRs to be associated with the CORESET.
  • the aforementioned means may be one or more of the aforementioned components of the apparatus 802 configured to perform the functions recited by the aforementioned means.
  • the apparatus 802 may include the TX Processor 368, the RX Processor 356, and the controller/processor 359.
  • the aforementioned means may be the TX Processor 368, the RX Processor 356, and the controller/processor 359 configured to perform the functions recited by the aforementioned means.
  • Combinations such as “at least one of A, B, or C, ” “one or more of A, B, or C, ” “at least one of A, B, and C, ” “one or more of A, B, and C, ” and “A, B, C, or any combination thereof” include any combination of A, B, and/or C, and may include multiples of A, multiples of B, or multiples of C.
  • combinations such as “at least one of A, B, or C, ” “one or more of A, B, or C, ” “at least one of A, B, and C, ” “one or more of A, B, and C, ” and “A, B, C, or any combination thereof” may be A only, B only, C only, A and B, A and C, B and C, or A and B and C, where any such combinations may contain one or more member or members of A, B, or C.
  • Each serving cell has single or multiple TRPs sharing same PCI (physical cell ID)
  • TCI state or spatial relation for the DL/UL beam of the serving cell can be QCLed with SSB from PCI of same serving cell or a neighbor non-serving cell
  • Step 1 UE enters connected mode after IA (initial access) on serving cell with PCI 0
  • Step 2 UE reports L3 metric for neighbor PCIs detected by searcher (from SSBs)
  • Step 3 Based on L3 report, gNB configures TCI states associated with PCI 0, 3, 4, where PCI 3, 4 are from neighbor non-serving cells
  • ⁇ UE is further configured with L1 meas. for those configured TCI
  • PCIs i.e. PCI 0, 3, 4, are defined as the L1 meas. PCI set
  • Step 4 Based on L1 meas., gNB activates one TCI state associated with PCI 4 to serve the UE
  • Step 5 Based on updated L3 report, gNB moves serving cell from PCI 0 to PCI 4, and configures new TCI states associated with the updated L1 meas.
  • PCI set e.g. PCI 4, 7, 8
  • each CORESET is associated with a TRP via an RRC configured parameter:
  • the CORESET beam can be dynamically switched across serving and non-serving cells, i.e. the association between CORESET and TRP/PCI/Cell can be dynamically updated by L1/L2 beam switch signaling (Step 3 and 4 in basic procedure)
  • the TRP index per CORESET should be dynamically updated by L1/L2 signaling as well to avoid RRC reconfiguration latency
  • gNB can update the associated TRP index per CORESET via L1/L2 signaling
  • gNB can explicitly update the associated TRP index per CORESET via L1/L2 signaling, e.g. DCI or MAC-CE
  • gNB will send a DCI or MAC-CE to indicate the new TRP index associated with this CORESET
  • gNB can implicitly update the associated TRP index per CORESET via activated TCI state for this CORESET
  • the new TRP index associated with this CORESET is implicitly indicated by that transmitting the QCL source RS in the TCI state
  • ⁇ TRP index can have its own dedicated index or can be represented by associated PCI or serving cell index
  • the new TRP index will overwrite the RRC configured one
  • TRP index CORESET indicated via L1/L2 signalling can have the following use cases, as examples
  • Use case 1 UE should know the associated TRP index per CORESET in case of separate Ack/Nack codebook feedback to corresponding TRP
  • ⁇ I.e. UE sends A/N for PDSCH scheduled by CORESET associated with TRP 1 back to TRP 1
  • Use case 2 UE should know the associated TRP index per CORESET in case of separate PDSCH scrambling sequences are used for PDSCH scheduled by CORESET associated with different TRPs
  • Use case 3 UE should know the associated TRP index per CORESET in case of separate rate matching patterns are used for PDSCH scheduled by CORESET associated with different TRPs

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

Dans la mobilité entre cellules, L'association entre le CORESET et le TRP peut être mise à jour de manière dynamique par signalisation de commutation de faisceau L1/L2, ce qui peut provoquer une latence de reconfiguration de RRC. Pour résoudre le problème de latence, un UE, dans un aspect de la divulgation : (1) reçoit, en provenance d'une cellule, une configuration d'un CORESET et une configuration d'un ensemble de TRP; (2) reçoit, de la cellule, une indication d'indice d'un indice pour le CORESET; et (3) détermine, sur la base de l'indication d'indice, un TRP dans l'ensemble de TPR à associer au CORESET.
PCT/CN2020/106208 2020-07-31 2020-07-31 Association du point de réception de transmission à un ensemble de ressources de commande WO2022021327A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202080104840.6A CN116235605A (zh) 2020-07-31 2020-07-31 关联传输接收点与控制资源集
EP20947586.2A EP4190091A4 (fr) 2020-07-31 2020-07-31 Association du point de réception de transmission à un ensemble de ressources de commande
PCT/CN2020/106208 WO2022021327A1 (fr) 2020-07-31 2020-07-31 Association du point de réception de transmission à un ensemble de ressources de commande
US18/007,684 US20230239123A1 (en) 2020-07-31 2020-07-31 Associating transmission reception point with control resource set

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/106208 WO2022021327A1 (fr) 2020-07-31 2020-07-31 Association du point de réception de transmission à un ensemble de ressources de commande

Publications (1)

Publication Number Publication Date
WO2022021327A1 true WO2022021327A1 (fr) 2022-02-03

Family

ID=80037305

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/106208 WO2022021327A1 (fr) 2020-07-31 2020-07-31 Association du point de réception de transmission à un ensemble de ressources de commande

Country Status (4)

Country Link
US (1) US20230239123A1 (fr)
EP (1) EP4190091A4 (fr)
CN (1) CN116235605A (fr)
WO (1) WO2022021327A1 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11950154B2 (en) * 2021-04-01 2024-04-02 Apple Inc. Neighbor cell transmission configuration indicator (TCI) state switch
US20220361161A1 (en) * 2021-04-29 2022-11-10 FG Innovation Company Limited Method and device for multicast broadcast service acquisition

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019192715A1 (fr) * 2018-04-06 2019-10-10 Nokia Technologies Oy Livre de codes harq-ack prenant en charge des ue ayant une capacité de réception pdsch parallèle
WO2020102502A1 (fr) * 2018-11-14 2020-05-22 Qualcomm Incorporated Programmation de chronologies destinée à des opérations de points de réception multi-émission

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021159515A1 (fr) * 2020-02-14 2021-08-19 北京小米移动软件有限公司 Procédé de transmission de données et appareil de transmission de données

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019192715A1 (fr) * 2018-04-06 2019-10-10 Nokia Technologies Oy Livre de codes harq-ack prenant en charge des ue ayant une capacité de réception pdsch parallèle
WO2020102502A1 (fr) * 2018-11-14 2020-05-22 Qualcomm Incorporated Programmation de chronologies destinée à des opérations de points de réception multi-émission

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HUAWEI, HISILICON: "Remaining issues on multi-TRP in R16", 3GPP DRAFT; R1-2003531, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. E-meeting; 20200525 - 20200605, 16 May 2020 (2020-05-16), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051885315 *
See also references of EP4190091A4 *

Also Published As

Publication number Publication date
CN116235605A (zh) 2023-06-06
EP4190091A4 (fr) 2024-05-01
EP4190091A1 (fr) 2023-06-07
US20230239123A1 (en) 2023-07-27

Similar Documents

Publication Publication Date Title
US11882469B2 (en) Inter-cell mobility across serving and non-serving cells
US10973044B1 (en) Default spatial relation for SRS/PUCCH
US11323149B2 (en) Receiver feedback of repetition configuration
US11452089B2 (en) Signaling to activate uplink trigger states
WO2022047747A1 (fr) Procédés et appareils de gestion d'interférences de signaux de référence propres à des cellules (crs) en partage de spectres dynamiques (dss)
US11425721B2 (en) Methods and apparatus to facilitate duplex mode per uplink control channel resource
US20230180141A1 (en) Cell identifier for pucch/pusch pathloss reference or beam reference signal
WO2022021303A1 (fr) Procédés et appareil d'activation de faisceau sur la base de pci
US11616558B2 (en) Procedural delays and scheduling restriction based on component carrier groups
US20220256381A1 (en) Capability for l1/l2 non-serving cell reference signal measurement and reporting
US11611870B2 (en) UE capability reporting for configured and activated pathloss reference signals
WO2022021327A1 (fr) Association du point de réception de transmission à un ensemble de ressources de commande
US20220200682A1 (en) Methods and apparatus for group beam reporting for beam squint
US20210112434A1 (en) Preconfigured gaps for measurements based on configured bwps
US11716717B2 (en) Methods and apparatus for downlink receive beam refinement
US20220039006A1 (en) Dynamic cell functionality determination in l1/l2 based mobility
US20240297693A1 (en) Antenna ports determination of ul tx switching
US11626950B2 (en) Differential reporting of epre values for RS tones
US11509350B2 (en) Methods and apparatus to facilitate hopping of measurement occasions for transmissions
US20240032133A1 (en) Unified transmission configuration indication for nondedicated channels
US20240023090A1 (en) Configuring uplink transmission configuration indicator list
US20230239024A1 (en) Channel state feedback consistent with code block mapping assumption

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20947586

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202217067145

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2020947586

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2020947586

Country of ref document: EP

Effective date: 20230228

NENP Non-entry into the national phase

Ref country code: DE