WO2022021301A1 - Techniques for avoiding long transmission delays introduction - Google Patents

Techniques for avoiding long transmission delays introduction Download PDF

Info

Publication number
WO2022021301A1
WO2022021301A1 PCT/CN2020/106143 CN2020106143W WO2022021301A1 WO 2022021301 A1 WO2022021301 A1 WO 2022021301A1 CN 2020106143 W CN2020106143 W CN 2020106143W WO 2022021301 A1 WO2022021301 A1 WO 2022021301A1
Authority
WO
WIPO (PCT)
Prior art keywords
status report
data packets
base station
data
processor
Prior art date
Application number
PCT/CN2020/106143
Other languages
French (fr)
Inventor
Yan Wang
Miao Fu
Jie Qiao
Wei He
Aimin SHANG
Pan JIANG
Yongrui PENG
Hao Zhang
Jian Li
Original Assignee
Qualcomm Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Incorporated filed Critical Qualcomm Incorporated
Priority to PCT/CN2020/106143 priority Critical patent/WO2022021301A1/en
Publication of WO2022021301A1 publication Critical patent/WO2022021301A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • H04L1/1664Details of the supervisory signal the supervisory signal being transmitted together with payload signals; piggybacking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1835Buffer management
    • H04L1/1841Resequencing

Definitions

  • aspects of the present disclosure relate to wireless communications, and more particularly, to techniques for avoiding long data transmission delays caused by random access channel (RACH) in a connected state.
  • RACH random access channel
  • Wireless communication systems are widely deployed to provide various telecommunication services such as telephony, video, data, messaging, broadcasts, etc. These wireless communication systems may employ multiple-access technologies capable of supporting communication with multiple users by sharing available system resources (e.g., bandwidth, transmit power, etc. ) .
  • available system resources e.g., bandwidth, transmit power, etc.
  • multiple-access systems examples include 3rd Generation Partnership Project (3GPP) Long Term Evolution (LTE) systems, LTE Advanced (LTE-A) systems, code division multiple access (CDMA) systems, time division multiple access (TDMA) systems, frequency division multiple access (FDMA) systems, orthogonal frequency division multiple access (OFDMA) systems, single-carrier frequency division multiple access (SC-FDMA) systems, and time division synchronous code division multiple access (TD-SCDMA) systems, to name a few.
  • 3GPP 3rd Generation Partnership Project
  • LTE Long Term Evolution
  • LTE-A LTE Advanced
  • CDMA code division multiple access
  • TDMA time division multiple access
  • FDMA frequency division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single-carrier frequency division multiple access
  • TD-SCDMA time division synchronous code division multiple access
  • New radio e.g., 5G NR
  • 5G NR is an example of an emerging telecommunication standard.
  • NR is a set of enhancements to the LTE mobile standard promulgated by 3GPP.
  • NR is designed to better support mobile broadband Internet access by improving spectral efficiency, lowering costs, improving services, making use of new spectrum, and better integrating with other open standards using OFDMA with a cyclic prefix (CP) on the downlink (DL) and on the uplink (UL) .
  • CP cyclic prefix
  • DL downlink
  • UL uplink
  • NR supports beamforming, multiple-input multiple-output (MIMO) antenna technology, and carrier aggregation.
  • MIMO multiple-input multiple-output
  • Certain aspects provide a method for wireless communications by a user equipment (UE) .
  • the method generally includes receiving, from a base station, a plurality of data packets, each data packet associated with a sequence number, detecting, based on the sequence numbers of the received plurality of data packets, one or more missing data packets, and transmitting, to the base station, a status report related to at least one of the received plurality of data packets or the one or more missing data packets, wherein the status report is transmitted to the base station without first receiving a request from the base station for the status report.
  • the apparatus generally includes at least one processor configured to receive, from a base station, a plurality of data packets, each data packet associated with a sequence number, detect, based on the sequence numbers of the received plurality of data packets, one or more missing data packets, and transmit, to the base station, a status report related to at least one of the received plurality of data packets or the one or more missing data packets, wherein the status report is transmitted to the base station without first receiving a request from the base station for the status report.
  • the apparatus may also include a memory coupled with the at least one processor
  • the apparatus generally includes means for receiving, from a base station, a plurality of data packets, each data packet associated with a sequence number, means for detecting, based on the sequence numbers of the received plurality of data packets, one or more missing data packets, and means for transmitting, to the base station, a status report related to at least one of the received plurality of data packets or the one or more missing data packets, wherein the status report is transmitted to the base station without first receiving a request from the base station for the status report.
  • Non-transitory computer-readable medium for wireless communications by a user equipment (UE) .
  • the non-transitory computer-readable medium comprises instructions that, when executed by at least one processor, cause the at least one processor to receive, from a base station, a plurality of data packets, each data packet associated with a sequence number, detect, based on the sequence numbers of the received plurality of data packets, one or more missing data packets, and transmit, to the base station, a status report related to at least one of the received plurality of data packets or the one or more missing data packets, wherein the status report is transmitted to the base station without first receiving a request from the base station for the status report.
  • the one or more aspects comprise the features hereinafter fully described and particularly pointed out in the claims.
  • the following description and the appended drawings set forth in detail certain illustrative features of the one or more aspects. These features are indicative, however, of but a few of the various ways in which the principles of various aspects may be employed.
  • FIG. 1 is a block diagram conceptually illustrating an example telecommunications system, in accordance with certain aspects of the present disclosure.
  • FIG. 2 is a block diagram conceptually illustrating a design of an example a base station (BS) and user equipment (UE) , in accordance with certain aspects of the present disclosure.
  • BS base station
  • UE user equipment
  • FIG. 3 is an example frame format for new radio (NR) , in accordance with certain aspects of the present disclosure.
  • FIG. 4 is a call flow diagram illustrating a problem of long transmission delays when transmitting downlink data to a narrow band UE.
  • FIG. 5 is a flow diagram illustrating example operations for wireless communication by a UE, in accordance with certain aspects of the present disclosure.
  • FIG. 6 is a call flow diagram illustrating example operations for avoiding long data transmission delays caused by a random access channel (RACH) procedure in connected state, in accordance with certain aspects of the present disclosure.
  • RACH random access channel
  • FIG. 7 illustrates a wireless node that may include various components configured to perform operations for the techniques disclosed herein in accordance with aspects of the present disclosure.
  • a user equipment may receive a plurality of data packets from a base station.
  • the UE may detect, based on sequence numbers of the received plurality of data packets, one or more missing data packets.
  • the UE may transmitting, to the base station, a status report related to at least one of the received plurality of data packets or the one or more missing data packets.
  • the UE may proactively transmit the status report to the base station without first receiving a request from the base station for the status report.
  • the UE may transmit the status report to the base station in a next scheduled uplink transport block, replacing data originally intended for transmission in this uplink transport block.
  • the UE may transport the status report to the base station in one or more uplink transport blocks that include uplink data and one or more padding bytes.
  • the UE may replace the one or more padding bytes with the status report.
  • any number of wireless networks may be deployed in a given geographic area.
  • Each wireless network may support a particular radio access technology (RAT) and may operate on one or more frequencies.
  • RAT may also be referred to as a radio technology, an air interface, etc.
  • a frequency may also be referred to as a carrier, a subcarrier, a frequency channel, a tone, a subband, etc.
  • Each frequency may support a single RAT in a given geographic area in order to avoid interference between wireless networks of different RATs.
  • the techniques described herein may be used for various wireless networks and radio technologies. While aspects may be described herein using terminology commonly associated with 3G, 4G, and/or new radio (e.g., 5G NR) wireless technologies, aspects of the present disclosure can be applied in other generation-based communication systems.
  • 3G, 4G, and/or new radio e.g., 5G NR
  • NR access may support various wireless communication services, such as enhanced mobile broadband (eMBB) targeting wide bandwidth (e.g., 80 MHz or beyond) , millimeter wave (mmW) targeting high carrier frequency (e.g., 25 GHz or beyond) , massive machine type communications MTC (mMTC) targeting non-backward compatible MTC techniques, and/or mission critical targeting ultra-reliable low-latency communications (URLLC) .
  • eMBB enhanced mobile broadband
  • mmW millimeter wave
  • mMTC massive machine type communications MTC
  • URLLC ultra-reliable low-latency communications
  • These services may include latency and reliability requirements.
  • These services may also have different transmission time intervals (TTI) to meet respective quality of service (QoS) requirements.
  • TTI transmission time intervals
  • QoS quality of service
  • these services may co-exist in the same subframe.
  • NR supports beamforming and beam direction may be dynamically configured. MIMO transmissions with precoding may also be supported.
  • MIMO configurations in the DL may support up to 8 transmit antennas with multi-layer DL transmissions up to 8 streams and up to 2 streams per UE. Multi-layer transmissions with up to 2 streams per UE may be supported. Aggregation of multiple cells may be supported with up to 8 serving cells.
  • FIG. 1 illustrates an example wireless communication network 100 in which aspects of the present disclosure may be performed.
  • the wireless communication network 100 may be an NR system (e.g., a 5G NR network) .
  • the wireless communication network 100 may be in communication with a core network 132.
  • the core network 132 may in communication with one or more base station (BSs) 110 and/or user equipment (UE) 120 in the wireless communication network 100 via one or more interfaces.
  • BSs base station
  • UE user equipment
  • the wireless communication network 100 may include a number of BSs 110a-z (each also individually referred to herein as BS 110 or collectively as BSs 110) and other network entities.
  • a BS 110 may provide communication coverage for a particular geographic area, sometimes referred to as a “cell” , which may be stationary or may move according to the location of a mobile BS 110.
  • the BSs 110 may be interconnected to one another and/or to one or more other BSs or network nodes (not shown) in wireless communication network 100 through various types of backhaul interfaces (e.g., a direct physical connection, a wireless connection, a virtual network, or the like) using any suitable transport network.
  • backhaul interfaces e.g., a direct physical connection, a wireless connection, a virtual network, or the like
  • the BSs 110a, 110b and 110c may be macro BSs for the macro cells 102a, 102b and 102c, respectively.
  • the BS 110x may be a pico BS for a pico cell 102x.
  • the BSs 110y and 110z may be femto BSs for the femto cells 102y and 102z, respectively.
  • a BS may support one or multiple cells.
  • a network controller 130 may couple to a set of BSs 110 and provide coordination and control for these BSs 110 (e.g., via a backhaul) .
  • the BSs 110 communicate with UEs 120a-y (each also individually referred to herein as UE 120 or collectively as UEs 120) in the wireless communication network 100.
  • the UEs 120 (e.g., 120x, 120y, etc. ) may be dispersed throughout the wireless communication network 100, and each UE 120 may be stationary or mobile.
  • Wireless communication network 100 may also include relay stations (e.g., relay station 110r) , also referred to as relays or the like, that receive a transmission of data and/or other information from an upstream station (e.g., a BS 110a or a UE 120r) and sends a transmission of the data and/or other information to a downstream station (e.g., a UE 120 or a BS 110) , or that relays transmissions between UEs 120, to facilitate communication between devices.
  • relay stations e.g., relay station 110r
  • relays or the like that receive a transmission of data and/or other information from an upstream station (e.g., a BS 110a or a UE 120r) and sends a transmission of the data and/or other information to a downstream station (e.g., a UE 120 or a BS 110) , or that relays transmissions between UEs 120, to facilitate communication between devices.
  • the UEs 120 may be configured for avoiding long data transmission delays caused by random access channel (RACH) in a connected state, as described herein.
  • RACH random access channel
  • the UE 120a includes a status report module 122.
  • the status report module 122 may be configured to perform the operations illustrated in FIGs. 5-6, as well as other operations described herein for avoiding long data transmission delays caused by RACH in a connected state.
  • FIG. 2 illustrates example components of BS 110a and UE 120a (e.g., in the wireless communication network 100 of FIG. 1) , which may be used to implement aspects of the present disclosure.
  • a transmit processor 220 may receive data from a data source 212 and control information from a controller/processor 240.
  • the control information may be for the physical broadcast channel (PBCH) , physical control format indicator channel (PCFICH) , physical hybrid ARQ indicator channel (PHICH) , physical downlink control channel (PDCCH) , group common PDCCH (GC PDCCH) , etc.
  • the data may be for the physical downlink shared channel (PDSCH) , etc.
  • a medium access control (MAC) -control element (MAC-CE) is a MAC layer communication structure that may be used for control command exchange between wireless nodes.
  • the MAC-CE may be carried in a shared channel such as a physical downlink shared channel (PDSCH) , a physical uplink shared channel (PUSCH) , or a physical sidelink shared channel (PSSCH) .
  • PDSCH physical downlink shared channel
  • PUSCH physical uplink shared channel
  • PSSCH physical sidelink shared channel
  • the processor 220 may process (e.g., encode and symbol map) the data and control information to obtain data symbols and control symbols, respectively.
  • the transmit processor 220 may also generate reference symbols, such as for the primary synchronization signal (PSS) , secondary synchronization signal (SSS) , and channel state information reference signal (CSI-RS) .
  • PSS primary synchronization signal
  • SSS secondary synchronization signal
  • CSI-RS channel state information reference signal
  • a transmit (TX) multiple-input multiple-output (MIMO) processor 230 may perform spatial processing (e.g., precoding) on the data symbols, the control symbols, and/or the reference symbols, if applicable, and may provide output symbol streams to the modulators (MODs) in transceivers 232a-232t.
  • MIMO multiple-input multiple-output
  • Each modulator in transceivers 232a-232t may process a respective output symbol stream (e.g., for OFDM, etc. ) to obtain an output sample stream. Each modulator may further process (e.g., convert to analog, amplify, filter, and upconvert) the output sample stream to obtain a downlink signal. Downlink signals from modulators in transceivers 232a-232t may be transmitted via the antennas 234a-234t, respectively.
  • the antennas 252a-252r may receive the downlink signals from the BS 110a and may provide received signals to the demodulators (DEMODs) in transceivers 254a-254r, respectively.
  • Each demodulator in transceivers 254a-254r may condition (e.g., filter, amplify, downconvert, and digitize) a respective received signal to obtain input samples.
  • Each demodulator may further process the input samples (e.g., for OFDM, etc. ) to obtain received symbols.
  • a MIMO detector 256 may obtain received symbols from all the demodulators in transceivers 254a-254r, perform MIMO detection on the received symbols if applicable, and provide detected symbols.
  • a receive processor 258 may process (e.g., demodulate, deinterleave, and decode) the detected symbols, provide decoded data for the UE 120a to a data sink 260, and provide decoded control information to a controller/processor 280.
  • a transmit processor 264 may receive and process data (e.g., for the physical uplink shared channel (PUSCH) ) from a data source 262 and control information (e.g., for the physical uplink control channel (PUCCH) from the controller/processor 280.
  • the transmit processor 264 may also generate reference symbols for a reference signal (e.g., for the sounding reference signal (SRS) ) .
  • the symbols from the transmit processor 264 may be precoded by a TX MIMO processor 266 if applicable, further processed by the modulators (MODs) in transceivers 254a-254r (e.g., for SC-FDM, etc. ) , and transmitted to the BS 110a.
  • MODs modulators
  • the uplink signals from the UE 120a may be received by the antennas 234, processed by the modulators in transceivers 232a-232t, detected by a MIMO detector 236 if applicable, and further processed by a receive processor 238 to obtain decoded data and control information sent by the UE 120a.
  • the receive processor 238 may provide the decoded data to a data sink 239 and the decoded control information to the controller/processor 240.
  • the memories 242 and 282 may store data and program codes for BS 110a and UE 120a, respectively.
  • a scheduler 244 may schedule UEs for data transmission on the downlink and/or uplink.
  • Antennas 252, processors 266, 258, 264, and/or controller/processor 280 of the UE 120a and/or antennas 234, processors 220, 230, 238, and/or controller/processor 240 of the BS 110a may be used to perform the various techniques and methods described herein.
  • the controller/processor 280 of the UE 120a includes a status report module 281 may be configured to perform the operations illustrated in FIGs. 5-6, as well as other operations described herein for avoiding long data transmission delays caused by RACH in a connected state.
  • other components of the UE 120a and BS 110a may be used to perform the operations described herein.
  • NR may utilize orthogonal frequency division multiplexing (OFDM) with a cyclic prefix (CP) on the uplink and downlink.
  • OFDM orthogonal frequency division multiplexing
  • CP cyclic prefix
  • NR may support half-duplex operation using time division duplexing (TDD) .
  • OFDM and single-carrier frequency division multiplexing (SC-FDM) partition the system bandwidth into multiple orthogonal subcarriers, which are also commonly referred to as tones, bins, etc. Each subcarrier may be modulated with data. Modulation symbols may be sent in the frequency domain with OFDM and in the time domain with SC-FDM.
  • the spacing between adjacent subcarriers may be fixed, and the total number of subcarriers may be dependent on the system bandwidth.
  • the minimum resource allocation may be 12 consecutive subcarriers.
  • the system bandwidth may also be partitioned into subbands. For example, a subband may cover multiple RBs.
  • NR may support a base subcarrier spacing (SCS) of 15 KHz and other SCS may be defined with respect to the base SCS (e.g., 30 kHz, 60 kHz, 120 kHz, 240 kHz, etc. ) .
  • SCS base subcarrier spacing
  • FIG. 3 is a diagram showing an example of a frame format 300 for NR.
  • the transmission timeline for each of the downlink and uplink may be partitioned into units of radio frames.
  • Each radio frame may have a predetermined duration (e.g., 10 ms) and may be partitioned into 10 subframes, each of 1 ms, with indices of 0 through 9.
  • Each subframe may include a variable number of slots (e.g., 1, 2, 4, 8, 16, ...slots) depending on the SCS.
  • Each slot may include a variable number of symbol periods (e.g., 7 or 14 symbols) depending on the SCS.
  • the symbol periods in each slot may be assigned indices.
  • a mini-slot which may be referred to as a sub-slot structure, refers to a transmit time interval having a duration less than a slot (e.g., 2, 3, or 4 symbols) .
  • Each symbol in a slot may indicate a link direction (e.g., DL, UL, or flexible) for data transmission and the link direction for each subframe may be dynamically switched.
  • the link directions may be based on the slot format.
  • Each slot may include DL/UL data as well as DL/UL control information.
  • Narrowband Internet-of-Things is a technology being standardized by the IEEE 3GPP standards body. This technology is a narrowband radio technology specially designed for the Internet-of-Things. Some of NB-IoT design focuses on indoor coverage, low cost devices, long battery life, and scenarios involving large numbers of devices. NB-IoT technology may be deployed “in-band” , utilizing resource blocks within an existing spectrum such as the long term evolution (LTE) spectrum or the Global System for Mobile communications (GSM) spectrum.
  • LTE long term evolution
  • GSM Global System for Mobile communications
  • NB-IoT technology may be deployed in the unused resource blocks within a carrier guard-band (e.g., an LTE carrier) , or for “standalone” deployment, NB-IoT technology can be deployed in a dedicated spectrum (e.g., dedicated for NB-IoT operation) rather than one of the existing spectrums.
  • a carrier guard-band e.g., an LTE carrier
  • NB-IoT technology can be deployed in a dedicated spectrum (e.g., dedicated for NB-IoT operation) rather than one of the existing spectrums.
  • NB-IoT modules e.g., a NB-IoT user equipment
  • RL radio link control
  • RLC radio link control
  • PDUs data protocol data units
  • the DL data transmission was delayed for over 30 seconds and, after many unnecessary retransmissions by a base station, an upper layer of the narrow band user equipment (NB UE) was not able to tolerate the delay any longer and aborted the session/connection.
  • NB UE narrow band user equipment
  • the reason why so many DL RLC data PDUs were lost may be due to the NB UE missing relevant DL grants during a connected mode random access channel (RACH) procedure for uplink (UL) scheduling.
  • the NB UE may miss relevant DL grants for the DL data transmission transmitted by the base station because the NB-IoT specification may not require NB UE to simultaneously monitor a narrowband physical downlink control channel (NPDCCH) UE-specific search space (USS) and Type2-NPDCCH common search space (CSS) .
  • NPDCCH narrowband physical downlink control channel
  • USS UE-specific search space
  • SCS Type2-NPDCCH common search space
  • the NB UE may miss relevant DL grants for the DL data transmission because the NB UE may need to disable receiving during transmission of message 1 and message 3 of the RACH procedure due to an inherent half-duplex limitation of the NB-IoT system. Additionally, the NB UE may miss the relevant DL grants for the DL data transmission, in some cases, if the DL data transmission happens on a non-anchor carrier and the UE tunes to an anchor carrier for the RACH procedure in the connected state. In such cases, since the NB UE is tuned to the anchor carrier, the NB UE may miss the DL grants on the non-anchor carrier.
  • the reason why DL RLC retransmission of the lost data PDUs was occurring in a timely manner may be due to a delay associated with the base station requesting an RLC status report related to the DL data transmission.
  • the base station may need to know whether those data PDUs have been received by the UE.
  • the UE may transmit acknowledgement (ACK) information indicating whether certain data PDUs have been received by the UE.
  • ACK acknowledgement
  • the UE may determine which data PDUs have been received (and/or which data PDUs have been missed) based on the SN associated with each data PDU. Accordingly, the ACK information may indicate the data PDUs that have been received based on the SN number of the data PDUs that have been received by the UE.
  • One way of transmitting this ACK information may include transmitting a separate ACK for each received data PDU. However, transmitting a separate ACK for each received data PDU may significantly increase overhead in the network.
  • an RLC status report may be used to carry acknowledgement information (e.g., ACK and/or negative ACK (NACK) information) corresponding to a plurality of data PDUs.
  • the RLC status report may be triggered periodically by the base station by transmitting an acknowledgement mode (AM) data PDU to the UE that includes a polling request.
  • the polling request may be represented by a poll bit (P bit) that is set to one.
  • the UE may transmit the RLC status report carrying the acknowledgement information (e.g., ACK, NACK, etc. ) related to the DL data transmission.
  • a status report (e.g., to indicate which data PDUs have been received and/or which data PDUs have been missed) may be delayed, in some cases, because the standards may not require NB RLC transmission (Tx) side (e.g., the base station in the example above) to set P bit until both a Tx and a reTx buffer are empty or a polling window stalls. Additionally, the standards may make the “detection of reception failure” status report optional and may not describe how to detect the reception failure clearly.
  • Tx NB RLC transmission
  • the network may not configure the UE with the parameter “enableStatusReportSN-Gap” (e.g., a parameter that periodically schedules the UE to transmit a status report) , preventing the UE from triggering the status report upon the detection that certain PDUs have not been received (e.g., missed) .
  • the parameter “enableStatusReportSN-Gap” e.g., a parameter that periodically schedules the UE to transmit a status report
  • the base station/network may not be aware of such uplink activity.
  • the base station continues to transmit DL grants during such unscheduled uplink activity by the NB UE, the NB UE is likely to miss the DL grant due to the inherent limitation of half-duplex. Accordingly, such missed DL grants may, as noted above, possibly result in long transmission delays and unnecessary upper layer retransmission, such as TCP reTx, which may waste radio resources.
  • NB UE because NB UE is not able to finish the data transmission (e.g., receive the data PDUs, reorder the data PDUs, and flush the reordered data PDUs to a higher layer of the NB UE) timely, the NB UE may stay in a connected state for a much longer time, leading to higher power consumption which is a main concern for cellular IoT devices.
  • FIG. 4 is a call flow diagram illustrating the problem of long transmission delays when transmitting DL data to a NB UE.
  • a higher layer 402 in a wireless network may wish to transmit a first downlink (DL) transmission control protocol (TCP) packet to the UE 120a (e.g., which may comprise a NB UE) at 404.
  • the higher layer may send the first DL TCP packet to an RLC layer of a base station (e.g., eNB) 110a.
  • the RLC layer of the base station 110a may segment the TCP packet into a plurality of different PDUs, each PDU being associated with a unique sequence number (SN) .
  • the RLC layer of the BS 110a may send a PDU with SN equal to ‘x’ to an RLC layer of the UE 120a.
  • the RLC layer of the BS 110a may continue to transmit the plurality of PDUs with SNs equal to x+1 through x+n corresponding to the first DL TCP packet.
  • the UE 120a may miss receiving one or more of the PDUs corresponding to SNs equal to x+1 through x+n, as shown at 410.
  • the UE 120a may miss these PDUs due to a lower layer RACH procedure.
  • the UE may miss one or more DL grants associated with these PDUs and therefore not be able to receive these PDUs.
  • the base station 110a may continue to transmit PDUs corresponding to the first DL TCP packet. For example, as illustrated at 412 and 414, the RLC layer of the BS 110a may continue transmitting PDUs with SNs equal to x+ (n+1) and x+ (n+2) .
  • the higher layer 402 of the network may wish to transmit one or more additional DL TCP packet, which may be sent to the RLC layer of the base station 110a for transmission to the RLC layer of the UE 120a.
  • the RLC layer of the base station 110a may again segment the one or more additional DL TCP packet into a plurality of PDUs and begin transmitting the PDUs to the RLC layer of the UE 120a at 418.
  • the RLC layer of base station BS 110a may transmit a PDU with SN equal to ‘y’ .
  • the RLC layer of the BS 110a may include a polling request in the PDU with SN equal to y (e.g., since a buffer at the base station 110a may be empty after transmitting the first DL TCP packet) .
  • the UE may transmit a RLC status report, which may include acknowledgement information related to the PDUs (e.g., identified in the acknowledgement information by their SNs) with SNs up to ‘y’ .
  • acknowledgement information related to the PDUs e.g., identified in the acknowledgement information by their SNs
  • the RLC status report may indicate that the PDUs with SNs equal to x+1 through x+n were missed (e.g., not received) by the UE.
  • the RLC layer of the base station 110a in response to the RLC status report and after already having begun transmitting the PDUs corresponding to the second DL TCP packet, the RLC layer of the base station 110a must then begin retransmission of the PDUs with SNs equal to x+1 through x+n, as illustrated at 422.
  • the RLC layer of the UE 120a reorder the PDUs to form a reordered data unit and send that reordered data unit to the upper layer of the UE 120a, as illustrated at 424.
  • the RLC status report being requested so late, long transmission delays may be experienced by the UE when the UE misses PDUs (e.g., due to missing DL grants) . Further, radio resources may be wasted by unnecessary many unnecessary retransmissions.
  • a RACH-event-based RLC status report mechanism may be introduced to report an RLC status proactively (e.g., rather than having to wait for a status request) and accelerate the RLC data retransmission when detecting DL RLC PDU loss after RACH in the connected state.
  • RLC status report mechanism may allow a UE, in response to detecting one or more missed data packets (e.g., PDUs) , to proactively transmit, to the base station, a status report without first receiving a request from the base station for the status report. Accordingly, by proactively transmitting the status report without first receiving a request from the base station for the status report, the UE may reduce transmission delays and wasted resources due to unnecessary retransmissions, as described above.
  • FIG. 5 is a flow diagram illustrating example operations 500 for wireless communication, for example, for avoiding long data transmission delays caused by a RACH procedure in connected state as well as unnecessary retransmissions, in accordance with certain aspects of the present disclosure.
  • the operations 500 may be performed, for example, by a wireless node (e.g., such as a UE 120a in the wireless communication network 100) .
  • Operations 500 may be implemented as software components that are executed and run on one or more processors (e.g., controller/processor 280 of FIG. 2) .
  • the transmission and reception of signals by the UE in operations 500 may be enabled, for example, by one or more antennas (e.g., antennas 252 of FIG. 2) .
  • the transmission and/or reception of signals by the UE may be implemented via a bus interface of one or more processors (e.g., controller/processor 280) obtaining and/or outputting signals.
  • the operations 500 may begin, at 502, by receiving, from a base station, a plurality of data packets, each data packet associated with a sequence number.
  • the wireless node detects, based on the sequence numbers of the received plurality of data packets, one or more missing data packets.
  • the wireless node transmitting, to the base station, a status report related to at least one of the received plurality of data packets or the one or more missing data packets, wherein the status report is transmitted to the base station without first receiving a request from the base station for the status report.
  • aspects of the present disclosure provide techniques for avoiding long data transmission delays caused by a RACH procedure in connected state as well as unnecessary retransmissions.
  • FIG. 6 is a call flow diagram illustrating example operations for avoiding long data transmission delays caused by a RACH procedure in connected state, in accordance with certain aspects of the present disclosure.
  • an upper layer 602 of a wireless network may wish to transmit a first DL TCP packet to the UE 120a (e.g., wireless node) .
  • the UE 120a comprises a narrow band UE and may not be configured with the parameter “enableStatusReportSN-Gap” that schedules the UE to transmit the status report.
  • the UE 120a is incapable of simultaneously monitoring a common search space and user search space. Additionally, in some cases, the UE 120a is only capable of half-duplex operation.
  • the upper layer 602 may forward the DL TCP packet to an RLC layer of the base station 110a.
  • the RLC layer of the base station 110a may then segment the DL TCP packet into a plurality of data packets (e.g., PDUs) and may transmit the plurality of data packets to the UE 120a.
  • the UE may then receive, from the base station 110a, the plurality of data packets (e.g., PDUs) .
  • each data packet may be associated with a different sequence number (SN) .
  • the UE may receive a first data packet (corresponding to the first DL TCP packet) with an SN equal to x and a second data packet (corresponding to the first DL TCP packet) with an SN equal to x+ (n+1) .
  • a first data packet corresponding to the first DL TCP packet
  • a second data packet corresponding to the first DL TCP packet
  • x+ (n+1) the first data packet
  • the RLC layer of the base station 110a may transmit data packets with SNs equal to x+1 through x+n, which may be missed (e.g., not received) by the UE 120a.
  • the UE may not receive the data packets with SNs equal to x+1 through x+n, in some cases, due to performing a random access channel (RACH) procedure in a connected state.
  • the UE 120a may perform the RACH procedure for UL scheduling.
  • the UE may detect, based on the sequence numbers of the received plurality of data packets, one or more missing data packets. For example, in some cases, the UE may be able to determine which sequence numbers (and therefore which data packets) have been received and deduce, from the received sequence numbers, which sequence numbers (and therefore which data packets) are missing.
  • the UE may proactively transmit a status report to the base station related to at least one of the received plurality of data packets or the one or more missing data packets, for example, without first receiving a request (e.g., a poll bit indication) from the base station to trigger the status report.
  • the status report may include acknowledgement information for at least one of the received plurality of data packets or the one or more missing data packets.
  • the UE may determine an uplink transmission opportunity (e.g., an uplink media access control (MAC) transport block) for transmitting the status request, as illustrated at 610.
  • the uplink transmission opportunity may be determined by the UE so as to improve radio resource utilization and avoid extra RACH for UL scheduling for the status report (e.g., which in and of itself could lead to further DL grant loss) .
  • the UE instead of requesting additional UL scheduling (e.g., via RACH) to transmit the status report, the UE may use resources (e.g., uplink transmission blocks) allocated to the UE by an existing UL grant.
  • the UE may determine a next scheduled uplink transport block (e.g., already allocated to the UE) and may transmit the status report to the base station in the next scheduled uplink transport block, as illustrated at 612.
  • the UE may at least partially replace uplink data intended for transmission in the next scheduled uplink transport block with the status report.
  • the UE may decide to insert the status report into uplink transport blocks that would normally include padding bytes. For example, in some cases, if the UE is unable to fill an uplink transport block completely with UL data, the UE may need to “pad” this uplink transport block with padding information (e.g., information that is irrelevant to the base station) , which wastes resources. Accordingly, in this case, at 610, the UE may determine one or more uplink transport blocks that include uplink data and one or more padding bytes and may replace the one or more padding bytes with the status report. The UE may then transmit at 612 the uplink transport block, including the uplink data and status report, to the base station.
  • padding information e.g., information that is irrelevant to the base station
  • the number of padding bytes within the uplink transport block may not be large enough to accommodate the entire status report.
  • replacing the one or more padding bytes with the status report may include truncating the status report to fit within the one or more padding bytes of the uplink transport block.
  • the UE may transmit a remaining portion of the truncated status report in one or more additional uplink transport block that includes padding bytes.
  • the UE may determine one or more additional uplink transport blocks that include uplink data and one or more padding bytes and may replace the one or more padding bytes of the one or more additional uplink transport blocks with a remaining portion of the truncated status report. The UE may then transmit the one or more additional uplink transport blocks including the uplink data and the remaining portion of the truncated status report.
  • the UE may receive the one or more missed data packets (e.g., the data packets with SNs equal to x+1 through x+n) retransmitted from the base station based, at least in part, on the status report. For example, in response to receiving the status report, the base station may determine the one or more packets missed by the UE (e.g., the data packets with SNs equal to x+1 through x+n) and may retransmit the one or more missing data packets.
  • the base station may determine the one or more packets missed by the UE (e.g., the data packets with SNs equal to x+1 through x+n) and may retransmit the one or more missing data packets.
  • the UE may reorder the one the received plurality of data packets and received retransmitted one or more missed data packets to form a reordered data unit (e.g., DL TCP packet) , as illustrated at 616.
  • the UE may then forward the reordered data unit to a higher layer of the UE, as illustrated at 618.
  • the UE since the UE is able to proactively transmit the status report (e.g., at a time sooner than when the UE would normally be instructed to transmit the status report) , the UE may be able to receive the one or more missed packets sooner, reducing transmission delays and reducing the number of unnecessary retransmissions. Additionally, since the UE is able to receive the one or more missed packets sooner, the UE may not have to be continually powered on for extended periods of time waiting to receive the one or more data packets, allowing the UE to transition to a power saving (e.g., an off state of a discontinuous reception mode) mode sooner to save power.
  • a power saving e.g., an off state of a discontinuous reception mode
  • FIG. 7 illustrates a wireless node 700 that may include various components (e.g., corresponding to means-plus-function components) configured to perform operations for the techniques disclosed herein, such as the operations illustrated in FIGs. 5-6.
  • the wireless node 700 includes a processing system 702 coupled to a transceiver 708 (e.g., a transmitter and/or a receiver) .
  • the transceiver 708 is configured to transmit and receive signals for the wireless node 700 via an antenna 710, such as the various signals as described herein.
  • the processing system 702 may be configured to perform processing functions for the wireless node 700, including processing signals received and/or to be transmitted by the wireless node 700.
  • the processing system 702 includes a processor 704 coupled to a computer-readable medium/memory 712 via a bus 706.
  • the computer-readable medium/memory 712 is configured to store instructions (e.g., computer-executable code) that when executed by the processor 704, cause the processor 704 to perform the operations illustrated in FIGs. 5-6, or other operations for performing the various techniques discussed herein for avoiding long data transmission delays caused by random access channel (RACH) in a connected state.
  • instructions e.g., computer-executable code
  • computer-readable medium/memory 712 stores code 714 for receiving, code 716 for detecting, code 718 for transmitting, code 720 for determining, code 722 for replacing, code 724 for reordering, code 726 for forwarding, and code 728 for performing.
  • the code 714 for receiving may include code for receiving, from a base station, a plurality of data packets, each data packet associated with a sequence number.
  • the code 716 for detecting may include code for detecting, based on the sequence numbers of the received plurality of data packets, one or more missing data packets.
  • the code 718 for transmitting may include code for transmitting, to the base station, a status report related to at least one of the received plurality of data packets or the one or more missing data packets, wherein the status report is transmitted to the base station without first receiving a request from the base station for the status report.
  • the code 722 for replacing may include code for at least partially replacing uplink data intended for transmission in the next scheduled uplink transport block with the status report.
  • code 720 for determining may include code for determining one or more uplink transport blocks that include uplink data and one or more padding bytes.
  • code 722 for replacing may include code for replacing the one or more padding bytes with the status report.
  • code 718 for transmitting may include code for transmitting the one or more uplink transport blocks including the uplink data and the status report.
  • code 720 for determining may include code for determining one or more additional uplink transport blocks that include uplink data and one or more padding bytes.
  • code 722 for replacing may include code for replacing the one or more padding bytes with a remaining portion of the truncated status report.
  • code 718 for transmitting may include code for transmitting the one or more additional uplink transport blocks including the uplink data and the remaining portion of the truncated status report.
  • code 714 for receiving may include code for receiving the one or more missed data packets retransmitted from the base station based, at least in part, on the status report.
  • code 724 for reordering may include code for reordering the one the received plurality of data packets and received retransmitted one or more missed data packets to form a reordered data unit.
  • code 726 for forwarding may include code for forwarding the reordered data unit to a higher layer of the UE.
  • code 728 for performing may include code for comprising performing a random access channel (RACH) procedure in a connected state.
  • RACH random access channel
  • the processor 704 may include circuitry configured to implement the code stored in the computer-readable medium/memory 712, such as for performing the operations illustrated in FIGs. 5-6, as well as other operations described herein for avoiding long data transmission delays caused by RACH in a connected state.
  • the processor 704 includes circuitry 734 for receiving, circuitry 736 for detecting, circuitry 738 for transmitting, circuitry 740 for determining, circuitry 742 for replacing, circuitry 744 for reordering, circuitry 746 for forwarding, and circuitry 748 for performing.
  • the circuitry 734 for receiving may include circuitry for receiving, from a base station, a plurality of data packets, each data packet associated with a sequence number.
  • the circuitry 736 for detecting may include circuitry for detecting, based on the sequence numbers of the received plurality of data packets, one or more missing data packets.
  • the circuitry 738 for transmitting may include circuitry for transmitting, to the base station, a status report related to at least one of the received plurality of data packets or the one or more missing data packets, wherein the status report is transmitted to the base station without first receiving a request from the base station for the status report.
  • the circuitry 742 for replacing may include circuitry for at least partially replacing uplink data intended for transmission in the next scheduled uplink transport block with the status report.
  • circuitry 740 for determining may include circuitry for determining one or more uplink transport blocks that include uplink data and one or more padding bytes.
  • circuitry 742 for replacing may include circuitry for replacing the one or more padding bytes with the status report.
  • circuitry 738 for transmitting may include circuitry for transmitting the one or more uplink transport blocks including the uplink data and the status report.
  • circuitry 740 for determining may include circuitry for determining one or more additional uplink transport blocks that include uplink data and one or more padding bytes.
  • circuitry 742 for replacing may include circuitry for replacing the one or more padding bytes with a remaining portion of the truncated status report.
  • circuitry 738 for transmitting may include circuitry for transmitting the one or more additional uplink transport blocks including the uplink data and the remaining portion of the truncated status report.
  • circuitry 734 for receiving may include circuitry for receiving the one or more missed data packets retransmitted from the base station based, at least in part, on the status report.
  • circuitry 744 for reordering may include circuitry for reordering the one the received plurality of data packets and received retransmitted one or more missed data packets to form a reordered data unit.
  • circuitry 746 for forwarding may include circuitry for forwarding the reordered data unit to a higher layer of the UE.
  • circuitry 748 for performing may include circuitry for comprising performing a random access channel (RACH) procedure in a connected state.
  • RACH random access channel
  • NR e.g., 5G NR
  • LTE Long Term Evolution
  • LTE-A LTE-Advanced
  • CDMA code division multiple access
  • TDMA time division multiple access
  • FDMA frequency division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single-carrier frequency division multiple access
  • TD-SCDMA time division synchronous code division multiple access
  • a CDMA network may implement a radio technology such as Universal Terrestrial Radio Access (UTRA) , cdma2000, etc.
  • UTRA Universal Terrestrial Radio Access
  • UTRA includes Wideband CDMA (WCDMA) and other variants of CDMA.
  • cdma2000 covers IS-2000, IS-95 and IS-856 standards.
  • a TDMA network may implement a radio technology such as Global System for Mobile Communications (GSM) .
  • GSM Global System for Mobile Communications
  • An OFDMA network may implement a radio technology such as NR (e.g. 5G RA) , Evolved UTRA (E-UTRA) , Ultra Mobile Broadband (UMB) , IEEE 802.11 (Wi-Fi) , IEEE 802.16 (WiMAX) , IEEE 802.20, Flash-OFDMA, etc.
  • NR e.g. 5G RA
  • E-UTRA Evolved UTRA
  • UMB Ultra Mobile Broadband
  • IEEE 802.11 Wi-Fi
  • IEEE 802.16 WiMAX
  • IEEE 802.20 Flash-OFDMA
  • UTRA and E-UTRA are part of Universal Mobile Telecommunication System (UMTS) .
  • UTRA, E-UTRA, UMTS, LTE, LTE-Aand GSM are described in documents from an organization named “3rd Generation Partnership Project” (3GPP) .
  • cdma2000 and UMB are described in documents from an organization named “3rd Generation Partnership Project 2” (3GPP2) .
  • NR is an emerging wireless communications technology under development.
  • the term “cell” can refer to a coverage area of a Node B (NB) and/or a NB subsystem serving this coverage area, depending on the context in which the term is used.
  • NB Node B
  • BS next generation NodeB
  • AP access point
  • DU distributed unit
  • TRP transmission reception point
  • a BS may provide communication coverage for a macro cell, a pico cell, a femto cell, and/or other types of cells.
  • a macro cell may cover a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by UEs with service subscription.
  • a pico cell may cover a relatively small geographic area and may allow unrestricted access by UEs with service subscription.
  • a femto cell may cover a relatively small geographic area (e.g., a home) and may allow restricted access by UEs having an association with the femto cell (e.g., UEs in a Closed Subscriber Group (CSG) , UEs for users in the home, etc. ) .
  • a BS for a macro cell may be referred to as a macro BS.
  • a BS for a pico cell may be referred to as a pico BS.
  • a BS for a femto cell may be referred to as a femto BS or a home BS.
  • a UE may also be referred to as a mobile station, a wireless node, a wireless communications node, a wireless device, a wireless communications device, a terminal, an access terminal, a subscriber unit, a station, a Customer Premises Equipment (CPE) , a cellular phone, a smart phone, a personal digital assistant (PDA) , a wireless modem, a wireless communication device, a handheld device, a laptop computer, a cordless phone, a wireless local loop (WLL) station, a tablet computer, a camera, a gaming device, a netbook, a smartbook, an ultrabook, an appliance, a medical device or medical equipment, a biometric sensor/device, a wearable device such as a smart watch, smart clothing, smart glasses, a smart wrist band, smart jewelry (e.g., a smart ring, a smart bracelet, etc.
  • CPE Customer Premises Equipment
  • PDA personal digital assistant
  • WLL wireless local loop
  • MTC machine-type communication
  • eMTC evolved MTC
  • MTC and eMTC UEs include, for example, robots, drones, remote devices, sensors, meters, monitors, location tags, etc., that may communicate with a BS, another device (e.g., remote device) , or some other entity.
  • a wireless node may provide, for example, connectivity for or to a network (e.g., a wide area network such as Internet or a cellular network) via a wired or wireless communication link.
  • a network e.g., a wide area network such as Internet or a cellular network
  • Some UEs may be considered Internet-of-Things (IoT) devices, which may be narrowband IoT (NB-IoT) devices.
  • IoT Internet-of-Things
  • NB-IoT narrowband IoT
  • a scheduling entity (e.g., a BS) allocates resources for communication among some or all devices and equipment within its service area or cell.
  • the scheduling entity may be responsible for scheduling, assigning, reconfiguring, and releasing resources for one or more subordinate entities. That is, for scheduled communication, subordinate entities utilize resources allocated by the scheduling entity.
  • Base stations are not the only entities that may function as a scheduling entity.
  • a UE may function as a scheduling entity and may schedule resources for one or more subordinate entities (e.g., one or more other UEs) , and the other UEs may utilize the resources scheduled by the UE for wireless communication.
  • a UE may function as a scheduling entity in a peer-to-peer (P2P) network, and/or in a mesh network.
  • P2P peer-to-peer
  • UEs may communicate directly with one another in addition to communicating with a scheduling entity.
  • the methods disclosed herein comprise one or more steps or actions for achieving the methods.
  • the method steps and/or actions may be interchanged with one another without departing from the scope of the claims.
  • the order and/or use of specific steps and/or actions may be modified without departing from the scope of the claims.
  • a phrase referring to “at least one of” a list of items refers to any combination of those items, including single members.
  • “at least one of: a, b, or c” is intended to cover a, b, c, a-b, a-c, b-c, and a-b-c, as well as any combination with multiples of the same element (e.g., a-a, a-a-a, a-a-b, a-a-c, a-b-b, a-c-c, b-b, b-b-b, b-b-c, c-c, and c-c-c or any other ordering of a, b, and c) .
  • determining encompasses a wide variety of actions. For example, “determining” may include calculating, computing, processing, deriving, investigating, looking up (e.g., looking up in a table, a database or another data structure) , ascertaining and the like. Also, “determining” may include receiving (e.g., receiving information) , accessing (e.g., accessing data in a memory) and the like. Also, “determining” may include resolving, selecting, choosing, establishing and the like.
  • the various operations of methods described above may be performed by any suitable means capable of performing the corresponding functions.
  • the means may include various hardware and/or software component (s) and/or module (s) , including, but not limited to a circuit, an application specific integrated circuit (ASIC) , or processor.
  • ASIC application specific integrated circuit
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • PLD programmable logic device
  • a general-purpose processor may be a microprocessor, but in the alternative, the processor may be any commercially available processor, controller, microcontroller, or state machine.
  • a processor may also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration.
  • an example hardware configuration may comprise a processing system in a wireless node.
  • the processing system may be implemented with a bus architecture.
  • the bus may include any number of interconnecting buses and bridges depending on the specific application of the processing system and the overall design constraints.
  • the bus may link together various circuits including a processor, machine-readable media, and a bus interface.
  • the bus interface may be used to connect a network adapter, among other things, to the processing system via the bus.
  • the network adapter may be used to implement the signal processing functions of the PHY layer.
  • a user interface e.g., keypad, display, mouse, joystick, etc.
  • a user interface e.g., keypad, display, mouse, joystick, etc.
  • the bus may also link various other circuits such as timing sources, peripherals, voltage regulators, power management circuits, and the like, which are well known in the art, and therefore, will not be described any further.
  • the processor may be implemented with one or more general-purpose and/or special-purpose processors. Examples include microprocessors, microcontrollers, DSP processors, and other circuitry that can execute software. Those skilled in the art will recognize how best to implement the described functionality for the processing system depending on the particular application and the overall design constraints imposed on the overall system.
  • the functions may be stored or transmitted over as one or more instructions or code on a computer readable medium.
  • Software shall be construed broadly to mean instructions, data, or any combination thereof, whether referred to as software, firmware, middleware, microcode, hardware description language, or otherwise.
  • Computer-readable media include both computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another.
  • the processor may be responsible for managing the bus and general processing, including the execution of software modules stored on the machine-readable storage media.
  • a computer-readable storage medium may be coupled to a processor such that the processor can read information from, and write information to, the storage medium. In the alternative, the storage medium may be integral to the processor.
  • the machine-readable media may include a transmission line, a carrier wave modulated by data, and/or a computer readable storage medium with instructions stored thereon separate from the wireless node, all of which may be accessed by the processor through the bus interface.
  • the machine-readable media, or any portion thereof may be integrated into the processor, such as the case may be with cache and/or general register files.
  • machine-readable storage media may include, by way of example, RAM (Random Access Memory) , flash memory, ROM (Read Only Memory) , PROM (Programmable Read-Only Memory) , EPROM (Erasable Programmable Read-Only Memory) , EEPROM (Electrically Erasable Programmable Read-Only Memory) , registers, magnetic disks, optical disks, hard drives, or any other suitable storage medium, or any combination thereof.
  • RAM Random Access Memory
  • ROM Read Only Memory
  • PROM Programmable Read-Only Memory
  • EPROM Erasable Programmable Read-Only Memory
  • EEPROM Electrical Erasable Programmable Read-Only Memory
  • registers magnetic disks, optical disks, hard drives, or any other suitable storage medium, or any combination thereof.
  • the machine-readable media may be embodied in a computer-program product.
  • a software module may comprise a single instruction, or many instructions, and may be distributed over several different code segments, among different programs, and across multiple storage media.
  • the computer-readable media may comprise a number of software modules.
  • the software modules include instructions that, when executed by an apparatus such as a processor, cause the processing system to perform various functions.
  • the software modules may include a transmission module and a receiving module. Each software module may reside in a single storage device or be distributed across multiple storage devices.
  • a software module may be loaded into RAM from a hard drive when a triggering event occurs.
  • the processor may load some of the instructions into cache to increase access speed.
  • One or more cache lines may then be loaded into a general register file for execution by the processor.
  • any connection is properly termed a computer-readable medium.
  • the software is transmitted from a website, server, or other remote source using a coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL) , or wireless technologies such as infrared (IR) , radio, and microwave
  • the coaxial cable, fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, radio, and microwave are included in the definition of medium.
  • Disk and disc include compact disc (CD) , laser disc, optical disc, digital versatile disc (DVD) , floppy disk, and disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers.
  • computer-readable media may comprise non-transitory computer-readable media (e.g., tangible media) .
  • computer-readable media may comprise transitory computer-readable media (e.g., a signal) . Combinations of the above should also be included within the scope of computer-readable media.
  • certain aspects may comprise a computer program product for performing the operations presented herein.
  • a computer program product may comprise a computer-readable medium having instructions stored (and/or encoded) thereon, the instructions being executable by one or more processors to perform the operations described herein, for example, instructions for performing the operations described herein and illustrated in FIGs. 5-6, as well as other operations described herein for avoiding long data transmission delays caused by RACH in a connected state.
  • modules and/or other appropriate means for performing the methods and techniques described herein can be downloaded and/or otherwise obtained by a user terminal and/or base station as applicable.
  • a user terminal and/or base station can be coupled to a server to facilitate the transfer of means for performing the methods described herein.
  • various methods described herein can be provided via storage means (e.g., RAM, ROM, a physical storage medium such as a compact disc (CD) or floppy disk, etc. ) , such that a user terminal and/or base station can obtain the various methods upon coupling or providing the storage means to the device.
  • storage means e.g., RAM, ROM, a physical storage medium such as a compact disc (CD) or floppy disk, etc.
  • CD compact disc
  • floppy disk etc.
  • any other suitable technique for providing the methods and techniques described herein to a device can be utilized.

Abstract

Certain aspects of the present disclosure provide techniques for avoiding long data transmission delays caused by random access channel (RACH) in a connected state. A method that may be performed by a user equipment (UE) includes receiving, from a base station, a plurality of data packets, each data packet associated with a sequence number, detect, based on the sequence numbers of the received plurality of data packets, one or more missing data packets, and transmitting, to the base station, a status report related to at least one of the received plurality of data packets or the one or more missing data packets, wherein the status report is transmitted to the base station without first receiving a request from the base station for the status report.

Description

TECHNIQUES FOR AVOIDING LONG TRANSMISSION DELAYS INTRODUCTION
Field of the Disclosure
Aspects of the present disclosure relate to wireless communications, and more particularly, to techniques for avoiding long data transmission delays caused by random access channel (RACH) in a connected state.
Description of Related Art
Wireless communication systems are widely deployed to provide various telecommunication services such as telephony, video, data, messaging, broadcasts, etc. These wireless communication systems may employ multiple-access technologies capable of supporting communication with multiple users by sharing available system resources (e.g., bandwidth, transmit power, etc. ) . Examples of such multiple-access systems include 3rd Generation Partnership Project (3GPP) Long Term Evolution (LTE) systems, LTE Advanced (LTE-A) systems, code division multiple access (CDMA) systems, time division multiple access (TDMA) systems, frequency division multiple access (FDMA) systems, orthogonal frequency division multiple access (OFDMA) systems, single-carrier frequency division multiple access (SC-FDMA) systems, and time division synchronous code division multiple access (TD-SCDMA) systems, to name a few.
These multiple access technologies have been adopted in various telecommunication standards to provide a common protocol that enables different wireless nodes (e.g., BSs and/or UEs) to communicate on a municipal, national, regional, and even global level. New radio (e.g., 5G NR) is an example of an emerging telecommunication standard. NR is a set of enhancements to the LTE mobile standard promulgated by 3GPP. NR is designed to better support mobile broadband Internet access by improving spectral efficiency, lowering costs, improving services, making use of new spectrum, and better integrating with other open standards using OFDMA with a cyclic prefix (CP) on the downlink (DL) and on the uplink (UL) . To these ends, NR supports beamforming, multiple-input multiple-output (MIMO) antenna technology, and carrier aggregation.
However, as the demand for mobile broadband access continues to increase, there exists a need for further improvements in NR and LTE technology. Preferably, these improvements should be applicable to other multi-access technologies and the telecommunication standards that employ these technologies.
SUMMARY
The systems, methods, and devices of the disclosure each have several aspects, no single one of which is solely responsible for its desirable attributes. Without limiting the scope of this disclosure as expressed by the claims which follow, some features will now be discussed briefly. After considering this discussion, and particularly after reading the section entitled “Detailed Description” one will understand how the features of this disclosure provide advantages that include avoiding long data transmission delays caused by random access channel (RACH) in a connected state.
Certain aspects provide a method for wireless communications by a user equipment (UE) . The method generally includes receiving, from a base station, a plurality of data packets, each data packet associated with a sequence number, detecting, based on the sequence numbers of the received plurality of data packets, one or more missing data packets, and transmitting, to the base station, a status report related to at least one of the received plurality of data packets or the one or more missing data packets, wherein the status report is transmitted to the base station without first receiving a request from the base station for the status report.
Certain aspects provide an apparatus for wireless communications by a user equipment (UE) . The apparatus generally includes at least one processor configured to receive, from a base station, a plurality of data packets, each data packet associated with a sequence number, detect, based on the sequence numbers of the received plurality of data packets, one or more missing data packets, and transmit, to the base station, a status report related to at least one of the received plurality of data packets or the one or more missing data packets, wherein the status report is transmitted to the base station without first receiving a request from the base station for the status report. The apparatus may also include a memory coupled with the at least one processor
Certain aspects provide an apparatus for wireless communications by a user equipment (UE) . The apparatus generally includes means for receiving, from a base station, a plurality of data packets, each data packet associated with a sequence number,  means for detecting, based on the sequence numbers of the received plurality of data packets, one or more missing data packets, and means for transmitting, to the base station, a status report related to at least one of the received plurality of data packets or the one or more missing data packets, wherein the status report is transmitted to the base station without first receiving a request from the base station for the status report.
Certain aspects provide a non-transitory computer-readable medium for wireless communications by a user equipment (UE) . The non-transitory computer-readable medium comprises instructions that, when executed by at least one processor, cause the at least one processor to receive, from a base station, a plurality of data packets, each data packet associated with a sequence number, detect, based on the sequence numbers of the received plurality of data packets, one or more missing data packets, and transmit, to the base station, a status report related to at least one of the received plurality of data packets or the one or more missing data packets, wherein the status report is transmitted to the base station without first receiving a request from the base station for the status report.
To the accomplishment of the foregoing and related ends, the one or more aspects comprise the features hereinafter fully described and particularly pointed out in the claims. The following description and the appended drawings set forth in detail certain illustrative features of the one or more aspects. These features are indicative, however, of but a few of the various ways in which the principles of various aspects may be employed.
BRIEF DESCRIPTION OF THE DRAWINGS
So that the manner in which the above-recited features of the present disclosure can be understood in detail, a more particular description, briefly summarized above, may be had by reference to aspects, some of which are illustrated in the drawings. It is to be noted, however, that the appended drawings illustrate only certain typical aspects of this disclosure and are therefore not to be considered limiting of its scope, for the description may admit to other equally effective aspects.
FIG. 1 is a block diagram conceptually illustrating an example telecommunications system, in accordance with certain aspects of the present disclosure.
FIG. 2 is a block diagram conceptually illustrating a design of an example a base station (BS) and user equipment (UE) , in accordance with certain aspects of the present disclosure.
FIG. 3 is an example frame format for new radio (NR) , in accordance with certain aspects of the present disclosure.
FIG. 4 is a call flow diagram illustrating a problem of long transmission delays when transmitting downlink data to a narrow band UE.
FIG. 5 is a flow diagram illustrating example operations for wireless communication by a UE, in accordance with certain aspects of the present disclosure.
FIG. 6 is a call flow diagram illustrating example operations for avoiding long data transmission delays caused by a random access channel (RACH) procedure in connected state, in accordance with certain aspects of the present disclosure.
FIG. 7 illustrates a wireless node that may include various components configured to perform operations for the techniques disclosed herein in accordance with aspects of the present disclosure.
To facilitate understanding, identical reference numerals have been used, where possible, to designate identical elements that are common to the figures. It is contemplated that elements disclosed in one aspect may be beneficially utilized on other aspects without specific recitation.
DETAILED DESCRIPTION
Aspects of the present disclosure provide apparatus, methods, processing systems, and computer readable mediums for avoiding long data transmission delays caused by a random access channel (RACH) procedure in a connected state. For example, in some cases, a user equipment (UE) may receive a plurality of data packets from a base station. The UE may detect, based on sequence numbers of the received plurality of data packets, one or more missing data packets. In response to detecting the one or more missing data packets, the UE may transmitting, to the base station, a status report related to at least one of the received plurality of data packets or the one or more missing data packets. In some cases, the UE may proactively transmit the status report to the base station without first receiving a request from the base station for the status report.
In some cases, the UE may transmit the status report to the base station in a next scheduled uplink transport block, replacing data originally intended for transmission in this uplink transport block. In other cases, the UE may transport the status report to the base station in one or more uplink transport blocks that include uplink data and one or  more padding bytes. For example, in some cases, the UE may replace the one or more padding bytes with the status report. By proactively transmitting the status report without first receiving a request for the status report, the UE may avoid long transmission delays associated with the plurality of data packets as well as unnecessary retransmissions, as described below.
The following description provides examples of avoiding long data transmission delays caused by RACH in a connected state in communication systems, and is not limiting of the scope, applicability, or examples set forth in the claims. Changes may be made in the function and arrangement of elements discussed without departing from the scope of the disclosure. Various examples may omit, substitute, or add various procedures or components as appropriate. For instance, the methods described may be performed in an order different from that described, and various steps may be added, omitted, or combined. Also, features described with respect to some examples may be combined in some other examples. For example, an apparatus may be implemented or a method may be practiced using any number of the aspects set forth herein. In addition, the scope of the disclosure is intended to cover such an apparatus or method which is practiced using other structure, functionality, or structure and functionality in addition to, or other than, the various aspects of the disclosure set forth herein. It should be understood that any aspect of the disclosure disclosed herein may be embodied by one or more elements of a claim. The word “exemplary” is used herein to mean “serving as an example, instance, or illustration. ” Any aspect described herein as “exemplary” is not necessarily to be construed as preferred or advantageous over other aspects.
In general, any number of wireless networks may be deployed in a given geographic area. Each wireless network may support a particular radio access technology (RAT) and may operate on one or more frequencies. A RAT may also be referred to as a radio technology, an air interface, etc. A frequency may also be referred to as a carrier, a subcarrier, a frequency channel, a tone, a subband, etc. Each frequency may support a single RAT in a given geographic area in order to avoid interference between wireless networks of different RATs.
The techniques described herein may be used for various wireless networks and radio technologies. While aspects may be described herein using terminology commonly associated with 3G, 4G, and/or new radio (e.g., 5G NR) wireless technologies,  aspects of the present disclosure can be applied in other generation-based communication systems.
NR access may support various wireless communication services, such as enhanced mobile broadband (eMBB) targeting wide bandwidth (e.g., 80 MHz or beyond) , millimeter wave (mmW) targeting high carrier frequency (e.g., 25 GHz or beyond) , massive machine type communications MTC (mMTC) targeting non-backward compatible MTC techniques, and/or mission critical targeting ultra-reliable low-latency communications (URLLC) . These services may include latency and reliability requirements. These services may also have different transmission time intervals (TTI) to meet respective quality of service (QoS) requirements. In addition, these services may co-exist in the same subframe. NR supports beamforming and beam direction may be dynamically configured. MIMO transmissions with precoding may also be supported. MIMO configurations in the DL may support up to 8 transmit antennas with multi-layer DL transmissions up to 8 streams and up to 2 streams per UE. Multi-layer transmissions with up to 2 streams per UE may be supported. Aggregation of multiple cells may be supported with up to 8 serving cells.
FIG. 1 illustrates an example wireless communication network 100 in which aspects of the present disclosure may be performed. For example, the wireless communication network 100 may be an NR system (e.g., a 5G NR network) . As shown in FIG. 1, the wireless communication network 100 may be in communication with a core network 132. The core network 132 may in communication with one or more base station (BSs) 110 and/or user equipment (UE) 120 in the wireless communication network 100 via one or more interfaces.
As illustrated in FIG. 1, the wireless communication network 100 may include a number of BSs 110a-z (each also individually referred to herein as BS 110 or collectively as BSs 110) and other network entities. A BS 110 may provide communication coverage for a particular geographic area, sometimes referred to as a “cell” , which may be stationary or may move according to the location of a mobile BS 110. In some examples, the BSs 110 may be interconnected to one another and/or to one or more other BSs or network nodes (not shown) in wireless communication network 100 through various types of backhaul interfaces (e.g., a direct physical connection, a wireless connection, a virtual network, or the like) using any suitable transport network. In the  example shown in FIG. 1, the  BSs  110a, 110b and 110c may be macro BSs for the  macro cells  102a, 102b and 102c, respectively. The BS 110x may be a pico BS for a pico cell 102x. The BSs 110y and 110z may be femto BSs for the  femto cells  102y and 102z, respectively. A BS may support one or multiple cells. A network controller 130 may couple to a set of BSs 110 and provide coordination and control for these BSs 110 (e.g., via a backhaul) .
The BSs 110 communicate with UEs 120a-y (each also individually referred to herein as UE 120 or collectively as UEs 120) in the wireless communication network 100. The UEs 120 (e.g., 120x, 120y, etc. ) may be dispersed throughout the wireless communication network 100, and each UE 120 may be stationary or mobile. Wireless communication network 100 may also include relay stations (e.g., relay station 110r) , also referred to as relays or the like, that receive a transmission of data and/or other information from an upstream station (e.g., a BS 110a or a UE 120r) and sends a transmission of the data and/or other information to a downstream station (e.g., a UE 120 or a BS 110) , or that relays transmissions between UEs 120, to facilitate communication between devices.
According to certain aspects, the UEs 120 may be configured for avoiding long data transmission delays caused by random access channel (RACH) in a connected state, as described herein. For example, as shown in FIG. 1, the UE 120a includes a status report module 122. The status report module 122 may be configured to perform the operations illustrated in FIGs. 5-6, as well as other operations described herein for avoiding long data transmission delays caused by RACH in a connected state.
FIG. 2 illustrates example components of BS 110a and UE 120a (e.g., in the wireless communication network 100 of FIG. 1) , which may be used to implement aspects of the present disclosure.
At the BS 110a, a transmit processor 220 may receive data from a data source 212 and control information from a controller/processor 240. The control information may be for the physical broadcast channel (PBCH) , physical control format indicator channel (PCFICH) , physical hybrid ARQ indicator channel (PHICH) , physical downlink control channel (PDCCH) , group common PDCCH (GC PDCCH) , etc. The data may be for the physical downlink shared channel (PDSCH) , etc. A medium access control (MAC) -control element (MAC-CE) is a MAC layer communication structure that may be  used for control command exchange between wireless nodes. The MAC-CE may be carried in a shared channel such as a physical downlink shared channel (PDSCH) , a physical uplink shared channel (PUSCH) , or a physical sidelink shared channel (PSSCH) .
The processor 220 may process (e.g., encode and symbol map) the data and control information to obtain data symbols and control symbols, respectively. The transmit processor 220 may also generate reference symbols, such as for the primary synchronization signal (PSS) , secondary synchronization signal (SSS) , and channel state information reference signal (CSI-RS) . A transmit (TX) multiple-input multiple-output (MIMO) processor 230 may perform spatial processing (e.g., precoding) on the data symbols, the control symbols, and/or the reference symbols, if applicable, and may provide output symbol streams to the modulators (MODs) in transceivers 232a-232t. Each modulator in transceivers 232a-232t may process a respective output symbol stream (e.g., for OFDM, etc. ) to obtain an output sample stream. Each modulator may further process (e.g., convert to analog, amplify, filter, and upconvert) the output sample stream to obtain a downlink signal. Downlink signals from modulators in transceivers 232a-232t may be transmitted via the antennas 234a-234t, respectively.
At the UE 120a, the antennas 252a-252r may receive the downlink signals from the BS 110a and may provide received signals to the demodulators (DEMODs) in transceivers 254a-254r, respectively. Each demodulator in transceivers 254a-254r may condition (e.g., filter, amplify, downconvert, and digitize) a respective received signal to obtain input samples. Each demodulator may further process the input samples (e.g., for OFDM, etc. ) to obtain received symbols. A MIMO detector 256 may obtain received symbols from all the demodulators in transceivers 254a-254r, perform MIMO detection on the received symbols if applicable, and provide detected symbols. A receive processor 258 may process (e.g., demodulate, deinterleave, and decode) the detected symbols, provide decoded data for the UE 120a to a data sink 260, and provide decoded control information to a controller/processor 280.
On the uplink, at UE 120a, a transmit processor 264 may receive and process data (e.g., for the physical uplink shared channel (PUSCH) ) from a data source 262 and control information (e.g., for the physical uplink control channel (PUCCH) from the controller/processor 280. The transmit processor 264 may also generate reference symbols for a reference signal (e.g., for the sounding reference signal (SRS) ) . The  symbols from the transmit processor 264 may be precoded by a TX MIMO processor 266 if applicable, further processed by the modulators (MODs) in transceivers 254a-254r (e.g., for SC-FDM, etc. ) , and transmitted to the BS 110a. At the BS 110a, the uplink signals from the UE 120a may be received by the antennas 234, processed by the modulators in transceivers 232a-232t, detected by a MIMO detector 236 if applicable, and further processed by a receive processor 238 to obtain decoded data and control information sent by the UE 120a. The receive processor 238 may provide the decoded data to a data sink 239 and the decoded control information to the controller/processor 240.
The  memories  242 and 282 may store data and program codes for BS 110a and UE 120a, respectively. A scheduler 244 may schedule UEs for data transmission on the downlink and/or uplink.
Antennas 252,  processors  266, 258, 264, and/or controller/processor 280 of the UE 120a and/or antennas 234,  processors  220, 230, 238, and/or controller/processor 240 of the BS 110a may be used to perform the various techniques and methods described herein. For example, as shown in FIG. 2, the controller/processor 280 of the UE 120a includes a status report module 281 may be configured to perform the operations illustrated in FIGs. 5-6, as well as other operations described herein for avoiding long data transmission delays caused by RACH in a connected state. Although shown at the controller/processor, other components of the UE 120a and BS 110a may be used to perform the operations described herein.
NR may utilize orthogonal frequency division multiplexing (OFDM) with a cyclic prefix (CP) on the uplink and downlink. NR may support half-duplex operation using time division duplexing (TDD) . OFDM and single-carrier frequency division multiplexing (SC-FDM) partition the system bandwidth into multiple orthogonal subcarriers, which are also commonly referred to as tones, bins, etc. Each subcarrier may be modulated with data. Modulation symbols may be sent in the frequency domain with OFDM and in the time domain with SC-FDM. The spacing between adjacent subcarriers may be fixed, and the total number of subcarriers may be dependent on the system bandwidth. The minimum resource allocation, called a resource block (RB) , may be 12 consecutive subcarriers. The system bandwidth may also be partitioned into subbands. For example, a subband may cover multiple RBs. NR may support a base subcarrier  spacing (SCS) of 15 KHz and other SCS may be defined with respect to the base SCS (e.g., 30 kHz, 60 kHz, 120 kHz, 240 kHz, etc. ) .
FIG. 3 is a diagram showing an example of a frame format 300 for NR. The transmission timeline for each of the downlink and uplink may be partitioned into units of radio frames. Each radio frame may have a predetermined duration (e.g., 10 ms) and may be partitioned into 10 subframes, each of 1 ms, with indices of 0 through 9. Each subframe may include a variable number of slots (e.g., 1, 2, 4, 8, 16, …slots) depending on the SCS. Each slot may include a variable number of symbol periods (e.g., 7 or 14 symbols) depending on the SCS. The symbol periods in each slot may be assigned indices. A mini-slot, which may be referred to as a sub-slot structure, refers to a transmit time interval having a duration less than a slot (e.g., 2, 3, or 4 symbols) . Each symbol in a slot may indicate a link direction (e.g., DL, UL, or flexible) for data transmission and the link direction for each subframe may be dynamically switched. The link directions may be based on the slot format. Each slot may include DL/UL data as well as DL/UL control information.
Example Techniques for Avoiding Long Transmission Delays
Narrowband Internet-of-Things (NB-IoT) is a technology being standardized by the IEEE 3GPP standards body. This technology is a narrowband radio technology specially designed for the Internet-of-Things. Some of NB-IoT design focuses on indoor coverage, low cost devices, long battery life, and scenarios involving large numbers of devices. NB-IoT technology may be deployed “in-band” , utilizing resource blocks within an existing spectrum such as the long term evolution (LTE) spectrum or the Global System for Mobile communications (GSM) spectrum. In addition, NB-IoT technology may be deployed in the unused resource blocks within a carrier guard-band (e.g., an LTE carrier) , or for “standalone” deployment, NB-IoT technology can be deployed in a dedicated spectrum (e.g., dedicated for NB-IoT operation) rather than one of the existing spectrums.
Recently, certain global suppliers of cellular IoT modules have reported a serious problem in their NB-IoT modules (e.g., a NB-IoT user equipment) resulting in downlink (RL) radio link control (RLC) data protocol data units (PDUs) of a DL data transmission being routinely lost and DL RLC retransmission of these lost data PDUs not occurring in a timely manner. Consequently, in some cases, the DL data transmission was  delayed for over 30 seconds and, after many unnecessary retransmissions by a base station, an upper layer of the narrow band user equipment (NB UE) was not able to tolerate the delay any longer and aborted the session/connection.
In some cases, the reason why so many DL RLC data PDUs were lost may be due to the NB UE missing relevant DL grants during a connected mode random access channel (RACH) procedure for uplink (UL) scheduling. In some cases, the NB UE may miss relevant DL grants for the DL data transmission transmitted by the base station because the NB-IoT specification may not require NB UE to simultaneously monitor a narrowband physical downlink control channel (NPDCCH) UE-specific search space (USS) and Type2-NPDCCH common search space (CSS) . Additionally, due to their inherent hardware limitations, it may be difficult for some NB UEs to implement the concurrent USS and CSS monitoring. Additionally, in some cases, the NB UE may miss relevant DL grants for the DL data transmission because the NB UE may need to disable receiving during transmission of message 1 and message 3 of the RACH procedure due to an inherent half-duplex limitation of the NB-IoT system. Additionally, the NB UE may miss the relevant DL grants for the DL data transmission, in some cases, if the DL data transmission happens on a non-anchor carrier and the UE tunes to an anchor carrier for the RACH procedure in the connected state. In such cases, since the NB UE is tuned to the anchor carrier, the NB UE may miss the DL grants on the non-anchor carrier.
Further, the reason why DL RLC retransmission of the lost data PDUs was occurring in a timely manner may be due to a delay associated with the base station requesting an RLC status report related to the DL data transmission. For example, generally, when a DL data transmission is segmented into separate data PDUs (e.g., each with a different sequence number (SN) ) and transmitted by a base station to a UE, the base station may need to know whether those data PDUs have been received by the UE. To indicate whether the data PDUs have been received, the UE may transmit acknowledgement (ACK) information indicating whether certain data PDUs have been received by the UE. The UE may determine which data PDUs have been received (and/or which data PDUs have been missed) based on the SN associated with each data PDU. Accordingly, the ACK information may indicate the data PDUs that have been received based on the SN number of the data PDUs that have been received by the UE. One way of transmitting this ACK information may include transmitting a separate ACK for each  received data PDU. However, transmitting a separate ACK for each received data PDU may significantly increase overhead in the network.
Accordingly, the concept of an RLC status report has been introduced, which may be used to carry acknowledgement information (e.g., ACK and/or negative ACK (NACK) information) corresponding to a plurality of data PDUs. The RLC status report may be triggered periodically by the base station by transmitting an acknowledgement mode (AM) data PDU to the UE that includes a polling request. The polling request may be represented by a poll bit (P bit) that is set to one. Accordingly, in response to receiving an AM data PDU with a polling request, the UE may transmit the RLC status report carrying the acknowledgement information (e.g., ACK, NACK, etc. ) related to the DL data transmission.
However, the request and transmission of a status report (e.g., to indicate which data PDUs have been received and/or which data PDUs have been missed) may be delayed, in some cases, because the standards may not require NB RLC transmission (Tx) side (e.g., the base station in the example above) to set P bit until both a Tx and a reTx buffer are empty or a polling window stalls. Additionally, the standards may make the “detection of reception failure” status report optional and may not describe how to detect the reception failure clearly. Moreover, the network may not configure the UE with the parameter “enableStatusReportSN-Gap” (e.g., a parameter that periodically schedules the UE to transmit a status report) , preventing the UE from triggering the status report upon the detection that certain PDUs have not been received (e.g., missed) .
Accordingly, generally, for any unscheduled uplink activity on NB UE side, like RACH for UL scheduling in the scenario described above, the base station/network may not be aware of such uplink activity. Thus, if the base station continues to transmit DL grants during such unscheduled uplink activity by the NB UE, the NB UE is likely to miss the DL grant due to the inherent limitation of half-duplex. Accordingly, such missed DL grants may, as noted above, possibly result in long transmission delays and unnecessary upper layer retransmission, such as TCP reTx, which may waste radio resources. Additionally, in some cases, because NB UE is not able to finish the data transmission (e.g., receive the data PDUs, reorder the data PDUs, and flush the reordered data PDUs to a higher layer of the NB UE) timely, the NB UE may stay in a connected  state for a much longer time, leading to higher power consumption which is a main concern for cellular IoT devices.
FIG. 4 is a call flow diagram illustrating the problem of long transmission delays when transmitting DL data to a NB UE. As illustrated, in some cases, a higher layer 402 in a wireless network may wish to transmit a first downlink (DL) transmission control protocol (TCP) packet to the UE 120a (e.g., which may comprise a NB UE) at 404. Accordingly, the higher layer may send the first DL TCP packet to an RLC layer of a base station (e.g., eNB) 110a. Here, the RLC layer of the base station 110a may segment the TCP packet into a plurality of different PDUs, each PDU being associated with a unique sequence number (SN) . Thereafter, as illustrated at 406, the RLC layer of the BS 110a may send a PDU with SN equal to ‘x’ to an RLC layer of the UE 120a.
Thereafter, at 408, the RLC layer of the BS 110a may continue to transmit the plurality of PDUs with SNs equal to x+1 through x+n corresponding to the first DL TCP packet. However, in some cases, the UE 120a may miss receiving one or more of the PDUs corresponding to SNs equal to x+1 through x+n, as shown at 410. For example, in some cases, as noted above, the UE 120a may miss these PDUs due to a lower layer RACH procedure. For example, in some cases, as noted above, due to performing a lower layer RACH procedure, the UE may miss one or more DL grants associated with these PDUs and therefore not be able to receive these PDUs.
However, at this point in time, since a RLC status report has not been requested by the base station 110a/network, the base station 110a may continue to transmit PDUs corresponding to the first DL TCP packet. For example, as illustrated at 412 and 414, the RLC layer of the BS 110a may continue transmitting PDUs with SNs equal to x+ (n+1) and x+ (n+2) .
Thereafter, as illustrated at 416, the higher layer 402 of the network may wish to transmit one or more additional DL TCP packet, which may be sent to the RLC layer of the base station 110a for transmission to the RLC layer of the UE 120a. The RLC layer of the base station 110a may again segment the one or more additional DL TCP packet into a plurality of PDUs and begin transmitting the PDUs to the RLC layer of the UE 120a at 418. For example, as illustrated at 418, the RLC layer of base station BS 110a may transmit a PDU with SN equal to ‘y’ . Additionally, as illustrated, the RLC layer of  the BS 110a may include a polling request in the PDU with SN equal to y (e.g., since a buffer at the base station 110a may be empty after transmitting the first DL TCP packet) .
Thereafter, as illustrated at 420, after receiving the polling request, the UE may transmit a RLC status report, which may include acknowledgement information related to the PDUs (e.g., identified in the acknowledgement information by their SNs) with SNs up to ‘y’ . For example, in some cases the RLC status report may indicate that the PDUs with SNs equal to x+1 through x+n were missed (e.g., not received) by the UE. Accordingly, in response to the RLC status report and after already having begun transmitting the PDUs corresponding to the second DL TCP packet, the RLC layer of the base station 110a must then begin retransmission of the PDUs with SNs equal to x+1 through x+n, as illustrated at 422. Only after receiving the retransmitted PDUs with SNs equal to x+1 through x+n may the RLC layer of the UE 120a reorder the PDUs to form a reordered data unit and send that reordered data unit to the upper layer of the UE 120a, as illustrated at 424. As can be seen, due to the RLC status report being requested so late, long transmission delays may be experienced by the UE when the UE misses PDUs (e.g., due to missing DL grants) . Further, radio resources may be wasted by unnecessary many unnecessary retransmissions.
Therefore, aspects of the present disclosure provide techniques for avoiding long data transmission delays caused by a RACH procedure in connected state as well as unnecessary retransmissions. For example, in some cases, a RACH-event-based RLC status report mechanism may be introduced to report an RLC status proactively (e.g., rather than having to wait for a status request) and accelerate the RLC data retransmission when detecting DL RLC PDU loss after RACH in the connected state. For example, such techniques may allow a UE, in response to detecting one or more missed data packets (e.g., PDUs) , to proactively transmit, to the base station, a status report without first receiving a request from the base station for the status report. Accordingly, by proactively transmitting the status report without first receiving a request from the base station for the status report, the UE may reduce transmission delays and wasted resources due to unnecessary retransmissions, as described above.
FIG. 5 is a flow diagram illustrating example operations 500 for wireless communication, for example, for avoiding long data transmission delays caused by a RACH procedure in connected state as well as unnecessary retransmissions, in  accordance with certain aspects of the present disclosure. The operations 500 may be performed, for example, by a wireless node (e.g., such as a UE 120a in the wireless communication network 100) . Operations 500 may be implemented as software components that are executed and run on one or more processors (e.g., controller/processor 280 of FIG. 2) . Further, the transmission and reception of signals by the UE in operations 500 may be enabled, for example, by one or more antennas (e.g., antennas 252 of FIG. 2) . In certain aspects, the transmission and/or reception of signals by the UE may be implemented via a bus interface of one or more processors (e.g., controller/processor 280) obtaining and/or outputting signals.
The operations 500 may begin, at 502, by receiving, from a base station, a plurality of data packets, each data packet associated with a sequence number.
At 504, the wireless node detects, based on the sequence numbers of the received plurality of data packets, one or more missing data packets.
At 506, the wireless node transmitting, to the base station, a status report related to at least one of the received plurality of data packets or the one or more missing data packets, wherein the status report is transmitted to the base station without first receiving a request from the base station for the status report.
As noted above, aspects of the present disclosure provide techniques for avoiding long data transmission delays caused by a RACH procedure in connected state as well as unnecessary retransmissions.
FIG. 6 is a call flow diagram illustrating example operations for avoiding long data transmission delays caused by a RACH procedure in connected state, in accordance with certain aspects of the present disclosure.
For example, as illustrated at 604, at some point in time an upper layer 602 of a wireless network may wish to transmit a first DL TCP packet to the UE 120a (e.g., wireless node) . In some cases, the UE 120a comprises a narrow band UE and may not be configured with the parameter “enableStatusReportSN-Gap” that schedules the UE to transmit the status report. In some cases, the UE 120a is incapable of simultaneously monitoring a common search space and user search space. Additionally, in some cases, the UE 120a is only capable of half-duplex operation.
Thereafter, the upper layer 602 may forward the DL TCP packet to an RLC layer of the base station 110a. The RLC layer of the base station 110a may then segment the DL TCP packet into a plurality of data packets (e.g., PDUs) and may transmit the plurality of data packets to the UE 120a. The UE may then receive, from the base station 110a, the plurality of data packets (e.g., PDUs) . As noted above, each data packet may be associated with a different sequence number (SN) .
For example, as illustrated at 606 and 608, the UE may receive a first data packet (corresponding to the first DL TCP packet) with an SN equal to x and a second data packet (corresponding to the first DL TCP packet) with an SN equal to x+ (n+1) . However, in between receiving the first data packet at 606 and receiving the second data packet at 608, as illustrated at the RLC layer of the base station 110a may transmit data packets with SNs equal to x+1 through x+n, which may be missed (e.g., not received) by the UE 120a. For example, as illustrated at 612 the UE may not receive the data packets with SNs equal to x+1 through x+n, in some cases, due to performing a random access channel (RACH) procedure in a connected state. In some cases, the UE 120a may perform the RACH procedure for UL scheduling.
Thereafter, in some cases, after completing the RACH procedure, the UE may detect, based on the sequence numbers of the received plurality of data packets, one or more missing data packets. For example, in some cases, the UE may be able to determine which sequence numbers (and therefore which data packets) have been received and deduce, from the received sequence numbers, which sequence numbers (and therefore which data packets) are missing.
Accordingly, after RACH succeeds in the connected state and upon detecting the one or more missing data packets, the UE may proactively transmit a status report to the base station related to at least one of the received plurality of data packets or the one or more missing data packets, for example, without first receiving a request (e.g., a poll bit indication) from the base station to trigger the status report. In some cases, the status report may include acknowledgement information for at least one of the received plurality of data packets or the one or more missing data packets.
According to aspects, the UE may determine an uplink transmission opportunity (e.g., an uplink media access control (MAC) transport block) for transmitting the status request, as illustrated at 610. In some cases, the uplink transmission opportunity  may be determined by the UE so as to improve radio resource utilization and avoid extra RACH for UL scheduling for the status report (e.g., which in and of itself could lead to further DL grant loss) . Accordingly, in some cases, instead of requesting additional UL scheduling (e.g., via RACH) to transmit the status report, the UE may use resources (e.g., uplink transmission blocks) allocated to the UE by an existing UL grant.
For example, in some cases, to avoid extra RACH for UL scheduling, at 610, the UE may determine a next scheduled uplink transport block (e.g., already allocated to the UE) and may transmit the status report to the base station in the next scheduled uplink transport block, as illustrated at 612. In some cases, when transmitting the status report in the next scheduled uplink transport block, the UE may at least partially replace uplink data intended for transmission in the next scheduled uplink transport block with the status report.
In other cases, to avoid extra RACH for UL scheduling, instead of replacing data in the next scheduled uplink transport block with the status report, the UE may decide to insert the status report into uplink transport blocks that would normally include padding bytes. For example, in some cases, if the UE is unable to fill an uplink transport block completely with UL data, the UE may need to “pad” this uplink transport block with padding information (e.g., information that is irrelevant to the base station) , which wastes resources. Accordingly, in this case, at 610, the UE may determine one or more uplink transport blocks that include uplink data and one or more padding bytes and may replace the one or more padding bytes with the status report. The UE may then transmit at 612 the uplink transport block, including the uplink data and status report, to the base station.
In some cases, the number of padding bytes within the uplink transport block may not be large enough to accommodate the entire status report. Thus, in such cases, replacing the one or more padding bytes with the status report may include truncating the status report to fit within the one or more padding bytes of the uplink transport block. In some cases, the UE may transmit a remaining portion of the truncated status report in one or more additional uplink transport block that includes padding bytes. For example, in some cases, the UE may determine one or more additional uplink transport blocks that include uplink data and one or more padding bytes and may replace the one or more padding bytes of the one or more additional uplink transport blocks with a remaining portion of the truncated status report. The UE may then transmit the one or more  additional uplink transport blocks including the uplink data and the remaining portion of the truncated status report.
Thereafter, at 614 the UE may receive the one or more missed data packets (e.g., the data packets with SNs equal to x+1 through x+n) retransmitted from the base station based, at least in part, on the status report. For example, in response to receiving the status report, the base station may determine the one or more packets missed by the UE (e.g., the data packets with SNs equal to x+1 through x+n) and may retransmit the one or more missing data packets. Thereafter, once the UE has received, the one or more missing data packets that were retransmitted by the base station the UE may reorder the one the received plurality of data packets and received retransmitted one or more missed data packets to form a reordered data unit (e.g., DL TCP packet) , as illustrated at 616. The UE may then forward the reordered data unit to a higher layer of the UE, as illustrated at 618.
Accordingly, since the UE is able to proactively transmit the status report (e.g., at a time sooner than when the UE would normally be instructed to transmit the status report) , the UE may be able to receive the one or more missed packets sooner, reducing transmission delays and reducing the number of unnecessary retransmissions. Additionally, since the UE is able to receive the one or more missed packets sooner, the UE may not have to be continually powered on for extended periods of time waiting to receive the one or more data packets, allowing the UE to transition to a power saving (e.g., an off state of a discontinuous reception mode) mode sooner to save power.
FIG. 7 illustrates a wireless node 700 that may include various components (e.g., corresponding to means-plus-function components) configured to perform operations for the techniques disclosed herein, such as the operations illustrated in FIGs. 5-6. The wireless node 700 includes a processing system 702 coupled to a transceiver 708 (e.g., a transmitter and/or a receiver) . The transceiver 708 is configured to transmit and receive signals for the wireless node 700 via an antenna 710, such as the various signals as described herein. The processing system 702 may be configured to perform processing functions for the wireless node 700, including processing signals received and/or to be transmitted by the wireless node 700.
The processing system 702 includes a processor 704 coupled to a computer-readable medium/memory 712 via a bus 706. In certain aspects, the computer-readable  medium/memory 712 is configured to store instructions (e.g., computer-executable code) that when executed by the processor 704, cause the processor 704 to perform the operations illustrated in FIGs. 5-6, or other operations for performing the various techniques discussed herein for avoiding long data transmission delays caused by random access channel (RACH) in a connected state. In certain aspects, computer-readable medium/memory 712 stores code 714 for receiving, code 716 for detecting, code 718 for transmitting, code 720 for determining, code 722 for replacing, code 724 for reordering, code 726 for forwarding, and code 728 for performing.
In some cases, the code 714 for receiving may include code for receiving, from a base station, a plurality of data packets, each data packet associated with a sequence number.
In some cases, the code 716 for detecting may include code for detecting, based on the sequence numbers of the received plurality of data packets, one or more missing data packets.
In some cases, the code 718 for transmitting may include code for transmitting, to the base station, a status report related to at least one of the received plurality of data packets or the one or more missing data packets, wherein the status report is transmitted to the base station without first receiving a request from the base station for the status report.
In some cases, the code 722 for replacing may include code for at least partially replacing uplink data intended for transmission in the next scheduled uplink transport block with the status report.
In some cases, code 720 for determining may include code for determining one or more uplink transport blocks that include uplink data and one or more padding bytes.
In some cases, code 722 for replacing may include code for replacing the one or more padding bytes with the status report.
In some cases, code 718 for transmitting may include code for transmitting the one or more uplink transport blocks including the uplink data and the status report.
In some cases, code 720 for determining may include code for determining one or more additional uplink transport blocks that include uplink data and one or more padding bytes.
In some cases, code 722 for replacing may include code for replacing the one or more padding bytes with a remaining portion of the truncated status report.
In some cases, code 718 for transmitting may include code for transmitting the one or more additional uplink transport blocks including the uplink data and the remaining portion of the truncated status report.
In some cases, code 714 for receiving may include code for receiving the one or more missed data packets retransmitted from the base station based, at least in part, on the status report.
In some cases, code 724 for reordering may include code for reordering the one the received plurality of data packets and received retransmitted one or more missed data packets to form a reordered data unit.
In some cases, code 726 for forwarding may include code for forwarding the reordered data unit to a higher layer of the UE.
In some cases, code 728 for performing may include code for comprising performing a random access channel (RACH) procedure in a connected state.
In certain aspects, the processor 704 may include circuitry configured to implement the code stored in the computer-readable medium/memory 712, such as for performing the operations illustrated in FIGs. 5-6, as well as other operations described herein for avoiding long data transmission delays caused by RACH in a connected state. For example, the processor 704 includes circuitry 734 for receiving, circuitry 736 for detecting, circuitry 738 for transmitting, circuitry 740 for determining, circuitry 742 for replacing, circuitry 744 for reordering, circuitry 746 for forwarding, and circuitry 748 for performing.
In some cases, the circuitry 734 for receiving may include circuitry for receiving, from a base station, a plurality of data packets, each data packet associated with a sequence number.
In some cases, the circuitry 736 for detecting may include circuitry for detecting, based on the sequence numbers of the received plurality of data packets, one or more missing data packets.
In some cases, the circuitry 738 for transmitting may include circuitry for transmitting, to the base station, a status report related to at least one of the received plurality of data packets or the one or more missing data packets, wherein the status report is transmitted to the base station without first receiving a request from the base station for the status report.
In some cases, the circuitry 742 for replacing may include circuitry for at least partially replacing uplink data intended for transmission in the next scheduled uplink transport block with the status report.
In some cases, circuitry 740 for determining may include circuitry for determining one or more uplink transport blocks that include uplink data and one or more padding bytes.
In some cases, circuitry 742 for replacing may include circuitry for replacing the one or more padding bytes with the status report.
In some cases, circuitry 738 for transmitting may include circuitry for transmitting the one or more uplink transport blocks including the uplink data and the status report.
In some cases, circuitry 740 for determining may include circuitry for determining one or more additional uplink transport blocks that include uplink data and one or more padding bytes.
In some cases, circuitry 742 for replacing may include circuitry for replacing the one or more padding bytes with a remaining portion of the truncated status report.
In some cases, circuitry 738 for transmitting may include circuitry for transmitting the one or more additional uplink transport blocks including the uplink data and the remaining portion of the truncated status report.
In some cases, circuitry 734 for receiving may include circuitry for receiving the one or more missed data packets retransmitted from the base station based, at least in part, on the status report.
In some cases, circuitry 744 for reordering may include circuitry for reordering the one the received plurality of data packets and received retransmitted one or more missed data packets to form a reordered data unit.
In some cases, circuitry 746 for forwarding may include circuitry for forwarding the reordered data unit to a higher layer of the UE.
In some cases, circuitry 748 for performing may include circuitry for comprising performing a random access channel (RACH) procedure in a connected state.
The techniques described herein may be used for various wireless communication technologies, such as NR (e.g., 5G NR) , 3GPP Long Term Evolution (LTE) , LTE-Advanced (LTE-A) , code division multiple access (CDMA) , time division multiple access (TDMA) , frequency division multiple access (FDMA) , orthogonal frequency division multiple access (OFDMA) , single-carrier frequency division multiple access (SC-FDMA) , time division synchronous code division multiple access (TD-SCDMA) , and other networks. The terms “network” and “system” are often used interchangeably. A CDMA network may implement a radio technology such as Universal Terrestrial Radio Access (UTRA) , cdma2000, etc. UTRA includes Wideband CDMA (WCDMA) and other variants of CDMA. cdma2000 covers IS-2000, IS-95 and IS-856 standards. A TDMA network may implement a radio technology such as Global System for Mobile Communications (GSM) . An OFDMA network may implement a radio technology such as NR (e.g. 5G RA) , Evolved UTRA (E-UTRA) , Ultra Mobile Broadband (UMB) , IEEE 802.11 (Wi-Fi) , IEEE 802.16 (WiMAX) , IEEE 802.20, Flash-OFDMA, etc. UTRA and E-UTRA are part of Universal Mobile Telecommunication System (UMTS) . LTE and LTE-Aare releases of UMTS that use E-UTRA. UTRA, E-UTRA, UMTS, LTE, LTE-Aand GSM are described in documents from an organization named “3rd Generation Partnership Project” (3GPP) . cdma2000 and UMB are described in documents from an organization named “3rd Generation Partnership Project 2” (3GPP2) . NR is an emerging wireless communications technology under development.
In 3GPP, the term “cell” can refer to a coverage area of a Node B (NB) and/or a NB subsystem serving this coverage area, depending on the context in which the term is used. In NR systems, the term “cell” and BS, next generation NodeB (gNB or gNodeB) , access point (AP) , distributed unit (DU) , carrier, or transmission reception point (TRP) may be used interchangeably. A BS may provide communication coverage for a macro  cell, a pico cell, a femto cell, and/or other types of cells. A macro cell may cover a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by UEs with service subscription. A pico cell may cover a relatively small geographic area and may allow unrestricted access by UEs with service subscription. A femto cell may cover a relatively small geographic area (e.g., a home) and may allow restricted access by UEs having an association with the femto cell (e.g., UEs in a Closed Subscriber Group (CSG) , UEs for users in the home, etc. ) . A BS for a macro cell may be referred to as a macro BS. A BS for a pico cell may be referred to as a pico BS.A BS for a femto cell may be referred to as a femto BS or a home BS.
A UE may also be referred to as a mobile station, a wireless node, a wireless communications node, a wireless device, a wireless communications device, a terminal, an access terminal, a subscriber unit, a station, a Customer Premises Equipment (CPE) , a cellular phone, a smart phone, a personal digital assistant (PDA) , a wireless modem, a wireless communication device, a handheld device, a laptop computer, a cordless phone, a wireless local loop (WLL) station, a tablet computer, a camera, a gaming device, a netbook, a smartbook, an ultrabook, an appliance, a medical device or medical equipment, a biometric sensor/device, a wearable device such as a smart watch, smart clothing, smart glasses, a smart wrist band, smart jewelry (e.g., a smart ring, a smart bracelet, etc. ) , an entertainment device (e.g., a music device, a video device, a satellite radio, etc. ) , a vehicular component or sensor, a smart meter/sensor, industrial manufacturing equipment, a global positioning system device, or any other suitable device that is configured to communicate via a wireless or wired medium. Some UEs may be considered machine-type communication (MTC) devices or evolved MTC (eMTC) devices. MTC and eMTC UEs include, for example, robots, drones, remote devices, sensors, meters, monitors, location tags, etc., that may communicate with a BS, another device (e.g., remote device) , or some other entity. A wireless node may provide, for example, connectivity for or to a network (e.g., a wide area network such as Internet or a cellular network) via a wired or wireless communication link. Some UEs may be considered Internet-of-Things (IoT) devices, which may be narrowband IoT (NB-IoT) devices.
In some examples, access to the air interface may be scheduled. A scheduling entity (e.g., a BS) allocates resources for communication among some or all devices and equipment within its service area or cell. The scheduling entity may be responsible for  scheduling, assigning, reconfiguring, and releasing resources for one or more subordinate entities. That is, for scheduled communication, subordinate entities utilize resources allocated by the scheduling entity. Base stations are not the only entities that may function as a scheduling entity. In some examples, a UE may function as a scheduling entity and may schedule resources for one or more subordinate entities (e.g., one or more other UEs) , and the other UEs may utilize the resources scheduled by the UE for wireless communication. In some examples, a UE may function as a scheduling entity in a peer-to-peer (P2P) network, and/or in a mesh network. In a mesh network example, UEs may communicate directly with one another in addition to communicating with a scheduling entity.
The methods disclosed herein comprise one or more steps or actions for achieving the methods. The method steps and/or actions may be interchanged with one another without departing from the scope of the claims. In other words, unless a specific order of steps or actions is specified, the order and/or use of specific steps and/or actions may be modified without departing from the scope of the claims.
As used herein, a phrase referring to “at least one of” a list of items refers to any combination of those items, including single members. As an example, “at least one of: a, b, or c” is intended to cover a, b, c, a-b, a-c, b-c, and a-b-c, as well as any combination with multiples of the same element (e.g., a-a, a-a-a, a-a-b, a-a-c, a-b-b, a-c-c, b-b, b-b-b, b-b-c, c-c, and c-c-c or any other ordering of a, b, and c) .
As used herein, the term “determining” encompasses a wide variety of actions. For example, “determining” may include calculating, computing, processing, deriving, investigating, looking up (e.g., looking up in a table, a database or another data structure) , ascertaining and the like. Also, “determining” may include receiving (e.g., receiving information) , accessing (e.g., accessing data in a memory) and the like. Also, “determining” may include resolving, selecting, choosing, establishing and the like.
The previous description is provided to enable any person skilled in the art to practice the various aspects described herein. Various modifications to these aspects will be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other aspects. Thus, the claims are not intended to be limited to the aspects shown herein, but is to be accorded the full scope consistent with the language of the claims, wherein reference to an element in the singular is not intended to mean “one  and only one” unless specifically so stated, but rather “one or more. ” Unless specifically stated otherwise, the term “some” refers to one or more. All structural and functional equivalents to the elements of the various aspects described throughout this disclosure that are known or later come to be known to those of ordinary skill in the art are expressly incorporated herein by reference and are intended to be encompassed by the claims. Moreover, nothing disclosed herein is intended to be dedicated to the public regardless of whether such disclosure is explicitly recited in the claims. No claim element is to be construed under the provisions of 35 U.S.C. §112 (f) unless the element is expressly recited using the phrase “means for” or, in the case of a method claim, the element is recited using the phrase “step for. ”
The various operations of methods described above may be performed by any suitable means capable of performing the corresponding functions. The means may include various hardware and/or software component (s) and/or module (s) , including, but not limited to a circuit, an application specific integrated circuit (ASIC) , or processor. Generally, where there are operations illustrated in figures, those operations may have corresponding counterpart means-plus-function components with similar numbering.
The various illustrative logical blocks, modules and circuits described in connection with the present disclosure may be implemented or performed with a general purpose processor, a digital signal processor (DSP) , an application specific integrated circuit (ASIC) , a field programmable gate array (FPGA) or other programmable logic device (PLD) , discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described herein. A general-purpose processor may be a microprocessor, but in the alternative, the processor may be any commercially available processor, controller, microcontroller, or state machine. A processor may also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration.
If implemented in hardware, an example hardware configuration may comprise a processing system in a wireless node. The processing system may be implemented with a bus architecture. The bus may include any number of interconnecting buses and bridges depending on the specific application of the processing system and the overall design constraints. The bus may link together various circuits including a  processor, machine-readable media, and a bus interface. The bus interface may be used to connect a network adapter, among other things, to the processing system via the bus. The network adapter may be used to implement the signal processing functions of the PHY layer. In the case of a user terminal (see FIG. 1) , a user interface (e.g., keypad, display, mouse, joystick, etc. ) may also be connected to the bus. The bus may also link various other circuits such as timing sources, peripherals, voltage regulators, power management circuits, and the like, which are well known in the art, and therefore, will not be described any further. The processor may be implemented with one or more general-purpose and/or special-purpose processors. Examples include microprocessors, microcontrollers, DSP processors, and other circuitry that can execute software. Those skilled in the art will recognize how best to implement the described functionality for the processing system depending on the particular application and the overall design constraints imposed on the overall system.
If implemented in software, the functions may be stored or transmitted over as one or more instructions or code on a computer readable medium. Software shall be construed broadly to mean instructions, data, or any combination thereof, whether referred to as software, firmware, middleware, microcode, hardware description language, or otherwise. Computer-readable media include both computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another. The processor may be responsible for managing the bus and general processing, including the execution of software modules stored on the machine-readable storage media. A computer-readable storage medium may be coupled to a processor such that the processor can read information from, and write information to, the storage medium. In the alternative, the storage medium may be integral to the processor. By way of example, the machine-readable media may include a transmission line, a carrier wave modulated by data, and/or a computer readable storage medium with instructions stored thereon separate from the wireless node, all of which may be accessed by the processor through the bus interface. Alternatively, or in addition, the machine-readable media, or any portion thereof, may be integrated into the processor, such as the case may be with cache and/or general register files. Examples of machine-readable storage media may include, by way of example, RAM (Random Access Memory) , flash memory, ROM (Read Only Memory) , PROM (Programmable Read-Only Memory) , EPROM (Erasable Programmable Read-Only Memory) , EEPROM (Electrically Erasable  Programmable Read-Only Memory) , registers, magnetic disks, optical disks, hard drives, or any other suitable storage medium, or any combination thereof. The machine-readable media may be embodied in a computer-program product.
A software module may comprise a single instruction, or many instructions, and may be distributed over several different code segments, among different programs, and across multiple storage media. The computer-readable media may comprise a number of software modules. The software modules include instructions that, when executed by an apparatus such as a processor, cause the processing system to perform various functions. The software modules may include a transmission module and a receiving module. Each software module may reside in a single storage device or be distributed across multiple storage devices. By way of example, a software module may be loaded into RAM from a hard drive when a triggering event occurs. During execution of the software module, the processor may load some of the instructions into cache to increase access speed. One or more cache lines may then be loaded into a general register file for execution by the processor. When referring to the functionality of a software module below, it will be understood that such functionality is implemented by the processor when executing instructions from that software module.
Also, any connection is properly termed a computer-readable medium. For example, if the software is transmitted from a website, server, or other remote source using a coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL) , or wireless technologies such as infrared (IR) , radio, and microwave, then the coaxial cable, fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, radio, and microwave are included in the definition of medium. Disk and disc, as used herein, include compact disc (CD) , laser disc, optical disc, digital versatile disc (DVD) , floppy disk, and
Figure PCTCN2020106143-appb-000001
disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Thus, in some aspects computer-readable media may comprise non-transitory computer-readable media (e.g., tangible media) . In addition, for other aspects computer-readable media may comprise transitory computer-readable media (e.g., a signal) . Combinations of the above should also be included within the scope of computer-readable media.
Thus, certain aspects may comprise a computer program product for performing the operations presented herein. For example, such a computer program  product may comprise a computer-readable medium having instructions stored (and/or encoded) thereon, the instructions being executable by one or more processors to perform the operations described herein, for example, instructions for performing the operations described herein and illustrated in FIGs. 5-6, as well as other operations described herein for avoiding long data transmission delays caused by RACH in a connected state.
Further, it should be appreciated that modules and/or other appropriate means for performing the methods and techniques described herein can be downloaded and/or otherwise obtained by a user terminal and/or base station as applicable. For example, such a device can be coupled to a server to facilitate the transfer of means for performing the methods described herein. Alternatively, various methods described herein can be provided via storage means (e.g., RAM, ROM, a physical storage medium such as a compact disc (CD) or floppy disk, etc. ) , such that a user terminal and/or base station can obtain the various methods upon coupling or providing the storage means to the device. Moreover, any other suitable technique for providing the methods and techniques described herein to a device can be utilized.
It is to be understood that the claims are not limited to the precise configuration and components illustrated above. Various modifications, changes and variations may be made in the arrangement, operation and details of the methods and apparatus described above without departing from the scope of the claims.

Claims (24)

  1. A method for wireless communication by a user equipment, comprising:
    receiving, from a base station, a plurality of data packets, each data packet associated with a sequence number;
    detecting, based on the sequence numbers of the received plurality of data packets, one or more missing data packets; and
    transmitting, to the base station, a status report related to at least one of the received plurality of data packets or the one or more missing data packets, wherein the status report is transmitted to the base station without first receiving a request from the base station for the status report.
  2. The method of claim 1, wherein the status report includes acknowledgement information for at least one of the received plurality of data packets or the one or more missing data packets.
  3. The method of claim 1, wherein transmitting the status report to the base station comprises transmitting the status report in a next scheduled uplink transport block.
  4. The method of claim 3, wherein transmitting the status report in a next scheduled uplink transport block comprises at least partially replacing uplink data intended for transmission in the next scheduled uplink transport block with the status report.
  5. The method of claim 1, wherein transmitting the status report to the base station comprises:
    determining one or more uplink transport blocks that include uplink data and one or more padding bytes;
    replacing the one or more padding bytes with the status report; and
    transmitting the one or more uplink transport blocks including the uplink data and the status report.
  6. The method of claim 5, wherein replacing the one or more padding bytes with the status report comprises truncating the status report to fit within the one or more padding bytes.
  7. The method of claim 6, wherein transmitting the status report to the base station further comprises:
    determining one or more additional uplink transport blocks that include uplink data and one or more padding bytes;
    replacing the one or more padding bytes with a remaining portion of the truncated status report; and
    transmitting the one or more additional uplink transport blocks including the uplink data and the remaining portion of the truncated status report.
  8. The method of claim 1, further comprising receiving the one or more missed data packets retransmitted from the base station based, at least in part, on the status report.
  9. The method of claim 8, further comprising:
    reordering the one the received plurality of data packets and received retransmitted one or more missed data packets to form a reordered data unit; and
    forwarding the reordered data unit to a higher layer of the UE.
  10. The method of claim 1, wherein at least one of:
    the UE comprises a narrow band UE that is not configured with a parameter that schedules the UE to transmit the status report;
    the UE is incapable of simultaneously monitoring a common search space and user search space; or
    the UE is only capable of half-duplex operation.
  11. The method of claim 1, further comprising performing a random access channel (RACH) procedure in a connected state, wherein detecting the one or more missing data packets and transmitting the status report are performed after successfully completing the RACH procedure in the connected state.
  12. An apparatus for wireless communication by a user equipment, comprising:
    at least one processor configured to:
    receive, from a base station, a plurality of data packets, each data packet associated with a sequence number;
    detect, based on the sequence numbers of the received plurality of data packets, one or more missing data packets; and
    transmit, to the base station, a status report related to at least one of the received plurality of data packets or the one or more missing data packets,
    wherein the status report is transmitted to the base station without first receiving a request from the base station for the status report; and
    a memory coupled with the at least one processor.
  13. The apparatus of claim 12, wherein the status report includes acknowledgement information for at least one of the received plurality of data packets or the one or more missing data packets.
  14. The apparatus of claim 12, wherein the at least one processor is configured to transmit the status report in a next scheduled uplink transport block.
  15. The apparatus of claim 14, wherein the at least one processor is configured to transmit the status report in a next scheduled uplink transport block by at least partially replacing uplink data intended for transmission in the next scheduled uplink transport block with the status report.
  16. The apparatus of claim 12, wherein the at least one processor is further configured to:
    determine one or more uplink transport blocks that include uplink data and one or more padding bytes;
    replace the one or more padding bytes with the status report; and
    transmit the one or more uplink transport blocks including the uplink data and the status report.
  17. The apparatus of claim 16, wherein the at least one processor is further configured to replace the one or more padding bytes with the status report by truncating the status report to fit within the one or more padding bytes.
  18. The apparatus of claim 17, wherein the at least one processor is further configured to:
    determine one or more additional uplink transport blocks that include uplink data and one or more padding bytes;
    replace the one or more padding bytes with a remaining portion of the truncated status report; and
    transmit the one or more additional uplink transport blocks including the uplink data and the remaining portion of the truncated status report.
  19. The apparatus of claim 12, wherein the at least one processor is further configured to receive the one or more missed data packets retransmitted from the base station based, at least in part, on the status report.
  20. The apparatus of claim 19, wherein the at least one processor is further configured to:
    reorder the one the received plurality of data packets and received retransmitted one or more missed data packets to form a reordered data unit; and
    forward the reordered data unit to a higher layer of the UE.
  21. The apparatus of claim 12, wherein at least one of:
    the UE comprises a narrow band UE that is not configured with a parameter that schedules the UE to transmit the status report;
    the UE is incapable of simultaneously monitoring a common search space and user search space; or
    the UE is only capable of half-duplex operation.
  22. The apparatus of claim 12, wherein the at least one processor is further configured to perform a random access channel (RACH) procedure in a connected state, wherein detecting the one or more missing data packets and transmitting the status  report are performed after successfully completing the RACH procedure in the connected state.
  23. An apparatus for wireless communication by a user equipment, comprising:
    means for receiving, from a base station, a plurality of data packets, each data packet associated with a sequence number;
    means for detecting, based on the sequence numbers of the received plurality of data packets, one or more missing data packets; and
    means for transmitting, to the base station, a status report related to at least one of the received plurality of data packets or the one or more missing data packets, wherein the status report is transmitted to the base station without first receiving a request from the base station for the status report.
  24. A non-transitory computer-readable medium for wireless communication by a user equipment, comprising:
    instructions that, when executed by at least one processor, cause the at least one processor to:
    receive, from a base station, a plurality of data packets, each data packet associated with a sequence number;
    detect, based on the sequence numbers of the received plurality of data packets, one or more missing data packets; and
    transmit, to the base station, a status report related to at least one of the received plurality of data packets or the one or more missing data packets, wherein the status report is transmitted to the base station without first receiving a request from the base station for the status report.
PCT/CN2020/106143 2020-07-31 2020-07-31 Techniques for avoiding long transmission delays introduction WO2022021301A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/106143 WO2022021301A1 (en) 2020-07-31 2020-07-31 Techniques for avoiding long transmission delays introduction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/106143 WO2022021301A1 (en) 2020-07-31 2020-07-31 Techniques for avoiding long transmission delays introduction

Publications (1)

Publication Number Publication Date
WO2022021301A1 true WO2022021301A1 (en) 2022-02-03

Family

ID=80037316

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/106143 WO2022021301A1 (en) 2020-07-31 2020-07-31 Techniques for avoiding long transmission delays introduction

Country Status (1)

Country Link
WO (1) WO2022021301A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5754754A (en) * 1995-07-26 1998-05-19 International Business Machines Corporation Transmission order based selective repeat data transmission error recovery system and method
EP1398897A2 (en) * 2002-09-13 2004-03-17 Lucent Technologies Inc. Method of data communication using a control message
CN102119511A (en) * 2008-08-11 2011-07-06 皇家飞利浦电子股份有限公司 Method for communicating in a network, a secondary station and a system therefor
CN103533586A (en) * 2012-07-03 2014-01-22 电信科学技术研究院 Method and apparatus for signaling interaction and layer reconstruction in switching process
US20190394675A1 (en) * 2017-02-02 2019-12-26 Samsung Electronics Co., Ltd. Method for processing data in communication system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5754754A (en) * 1995-07-26 1998-05-19 International Business Machines Corporation Transmission order based selective repeat data transmission error recovery system and method
EP1398897A2 (en) * 2002-09-13 2004-03-17 Lucent Technologies Inc. Method of data communication using a control message
CN102119511A (en) * 2008-08-11 2011-07-06 皇家飞利浦电子股份有限公司 Method for communicating in a network, a secondary station and a system therefor
CN103533586A (en) * 2012-07-03 2014-01-22 电信科学技术研究院 Method and apparatus for signaling interaction and layer reconstruction in switching process
US20190394675A1 (en) * 2017-02-02 2019-12-26 Samsung Electronics Co., Ltd. Method for processing data in communication system

Similar Documents

Publication Publication Date Title
US11259297B2 (en) Slot format indicator (SFI) and slot aggregation level indication in group common PDCCH and SFI conflict handling
US20230208598A1 (en) Qcl assumptions for combined single-dci and multi-dci multi-trp
US11483816B2 (en) Selective physical downlink control channel repetition for retransmissions
EP4055732B1 (en) Cqi-based downlink buffer management
US11564125B2 (en) Buffer status report prediction
US20210084673A1 (en) Uplink control information multiplexing with dynamic physical uplink shared channel skipping
US11700627B2 (en) Group semi-persistent scheduling for path diversity
US11743886B2 (en) Downlink (DL) hybrid automatic request (HARQ) timing and uplink shared channel scheduling timing
US11076414B2 (en) Half-duplex handling with system-wide feedback resources
US11844071B2 (en) Rule based hybrid automatic repeat request process identifier sharing for multiple semi persistently scheduled configurations
US11683815B2 (en) Piggyback downlink control information (DCI) scheduling limit
WO2021195801A1 (en) Multiple resources in channels for low latency communication in unlicensed band
US11191068B2 (en) Per transmission configuration channel sensing
WO2022021301A1 (en) Techniques for avoiding long transmission delays introduction
WO2022056703A1 (en) Data retransmission delay reduction
EP3997947A1 (en) Data scheduling in uplink burst
WO2022040973A1 (en) Methods to improve data transmission efficiency
US11695512B2 (en) Downlink assignment index (DAI) updates for piggyback downlink control information (DCI)
WO2022213296A1 (en) Allocating channel state information (csi) processing unit (cpu) for user equipment (ue) -initiated csi feedback
WO2022047611A1 (en) Techniques for avoiding scheduling outages

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20947509

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20947509

Country of ref document: EP

Kind code of ref document: A1