WO2022021245A1 - 通信方法、终端设备和网络设备 - Google Patents

通信方法、终端设备和网络设备 Download PDF

Info

Publication number
WO2022021245A1
WO2022021245A1 PCT/CN2020/105974 CN2020105974W WO2022021245A1 WO 2022021245 A1 WO2022021245 A1 WO 2022021245A1 CN 2020105974 W CN2020105974 W CN 2020105974W WO 2022021245 A1 WO2022021245 A1 WO 2022021245A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal device
network device
uplink signal
requirement
signal
Prior art date
Application number
PCT/CN2020/105974
Other languages
English (en)
French (fr)
Inventor
邢金强
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to CN202080104489.0A priority Critical patent/CN116097568A/zh
Priority to PCT/CN2020/105974 priority patent/WO2022021245A1/zh
Publication of WO2022021245A1 publication Critical patent/WO2022021245A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes

Definitions

  • the present application relates to the field of communication, and more particularly, to a communication method, terminal device and network device.
  • the current mobile communication is mostly centered on the base station. All UEs (User Equipment, user equipment) will directly connect with the base station at the air interface, and find the target UE for communication through the relay of the base station.
  • the advantage of this communication is that the behavior of the UE in the network is controllable, and the base station acts as a control center.
  • D2D Device to Device
  • V2X Vehicle to everything, Internet of Vehicles
  • UEs can communicate directly with other UEs without going through a base station. This direct communication mode between UE and UE is called SL (Sidelink, sideline) communication.
  • the characteristic of sideline communication is that the base station is no longer a control center, and direct communication can be performed without a network. There may be interference between the SL communication of the UE and the NR communication, and the SL communication of the UE may also interfere with the base station, and the interference needs to be reduced.
  • Embodiments of the present application provide a communication method, terminal device, and network device, which can reduce signal interference in a communication process.
  • An embodiment of the present application provides a communication method, including:
  • the terminal equipment reports the spectrum interval requirement between the new wireless NR uplink signal and the sidelink SL received signal; wherein, the spectrum interval requirement is used for the scheduling of the NR uplink signal and the SL received signal.
  • An embodiment of the present application provides a communication method, including:
  • the network device schedules the NR uplink signal and the SL receive signal based on the spectrum interval requirement.
  • An embodiment of the present application provides a communication method, including:
  • the terminal equipment reports the maximum power capability of the new wireless NR uplink signal corresponding to the deterioration value that causes the deterioration of the sidelink SL reception sensitivity.
  • An embodiment of the present application provides a communication method, including:
  • the network device schedules the NR uplink signal and the SL receive signal of the terminal device based on the maximum power capability.
  • An embodiment of the present application provides a communication method, including:
  • the terminal device obtains the transmission power requirement of the network device for the terminal device, and the transmission power requirement is associated with the location information;
  • the terminal device controls the transmit power based on the transmit power requirement.
  • An embodiment of the present application provides a communication method, including:
  • the network device sends a transmit power requirement of the network device to the terminal device, where the transmit power requirement is associated with the location information.
  • An embodiment of the present application provides a terminal device, including:
  • a reporting unit used for reporting the spectrum interval requirement between the new wireless NR uplink signal and the sidelink SL received signal
  • the spectrum interval is required for the scheduling of the NR uplink signal and the SL received signal.
  • An embodiment of the present application provides a network device, including:
  • a receiving unit configured to receive the frequency spectrum interval requirement between the new wireless NR uplink signal reported by the terminal equipment and the sidelink SL received signal
  • a scheduling unit configured to schedule the NR uplink signal and the SL received signal based on the spectrum interval requirement.
  • An embodiment of the present application provides a terminal device, including:
  • a reporting unit configured to report the maximum power capability of the new wireless NR uplink signal corresponding to the deterioration value that causes the deterioration of the sidelink SL reception sensitivity.
  • An embodiment of the present application provides a network device, including:
  • a receiving unit configured to receive the maximum power capability of the new wireless NR uplink signal corresponding to the deterioration value that causes the sidelink SL receiving sensitivity of the terminal equipment to deteriorate;
  • a scheduling unit configured to schedule the NR uplink signal and the SL received signal of the terminal device based on the maximum power capability.
  • An embodiment of the present application provides a terminal device, including:
  • an acquisition unit configured to acquire the transmission power requirement of the network device to the terminal device, where the transmission power requirement is associated with the location information
  • the control unit is configured to control the transmit power based on the transmit power requirement.
  • An embodiment of the present application provides a network device, including:
  • a sending unit configured to send a transmission power requirement of the network device to the terminal device, where the transmission power requirement is associated with the location information.
  • An embodiment of the present application provides a terminal device, including a processor and a memory.
  • the memory is used for storing a computer program
  • the processor is used for calling and running the computer program stored in the memory, so that the terminal device executes the above-mentioned communication method.
  • An embodiment of the present application provides a network device including a processor and a memory.
  • the memory is used for storing a computer program
  • the processor is used for calling and running the computer program stored in the memory, so that the network device executes the above-mentioned communication method.
  • An embodiment of the present application provides a chip for implementing the above communication method.
  • the chip includes: a processor for invoking and running a computer program from the memory, so that the device on which the chip is installed executes the above-mentioned communication method.
  • Embodiments of the present application provide a computer-readable storage medium for storing a computer program, which, when the computer program is executed by a device, causes the device to execute the above-mentioned communication method.
  • An embodiment of the present application provides a computer program product, including computer program instructions, and the computer program instructions cause a computer to execute the above communication method.
  • the embodiments of the present application provide a computer program, which, when running on a computer, causes the computer to execute the above-mentioned communication method.
  • the network device by reporting the spectrum interval requirement by the terminal device, the network device can be urged to use a larger spectrum interval when scheduling the carrier spectrum to avoid interference.
  • the network device can schedule the transmit power of the NR uplink signal and reduce the SL reception without causing excessive performance loss of the SL received signal.
  • the interference between the signal and the NR uplink signal is not limited to the NR uplink signal.
  • the terminal device receives the transmission power requirement of the terminal device allowed by the network device, the transmission power requirement is associated with the location information, and can limit its own transmission power to be less than the transmission power requirement, thereby reducing excessive transmission power of the terminal device. Great interference to network equipment.
  • FIG. 1 is a schematic diagram of an application scenario according to an embodiment of the present application.
  • FIG. 2 is a schematic diagram of SL communication.
  • 3a and 3b are schematic diagrams of SL communication scenarios.
  • FIG. 4 is a schematic diagram of base station and UE timing.
  • Figure 5 is a schematic diagram of interference in a scenario where SL timing and NR UE Rx timing are aligned.
  • FIG. 6 is a schematic diagram of interference in a scenario where SL timing and NR UE Tx timing are aligned.
  • FIG. 7 is a schematic flowchart of a communication method according to an embodiment of the present application.
  • FIG. 8 is a schematic flowchart of a communication method according to another embodiment of the present application.
  • FIG. 9 is a schematic flowchart of a communication method according to another embodiment of the present application.
  • FIG. 10 is a schematic flowchart of a communication method according to another embodiment of the present application.
  • FIG. 11 is a schematic flowchart of a communication method according to another embodiment of the present application.
  • FIG. 12 is a schematic flowchart of a communication method according to another embodiment of the present application.
  • Figure 13a and Figure 13b are schematic diagrams of interference between NR and SL in the UE.
  • Figure 14a is a schematic diagram of a common radio frequency link architecture for NR and SL.
  • Figure 14b is a schematic diagram of an independent radio frequency architecture used for NR and SL.
  • Figure 15 is a schematic diagram of the interference of NR out-of-band leakage to the SL Rx signal.
  • FIG. 16 is a schematic diagram of SL Tx signal interfering with gNB Rx signal.
  • 17a and 17b are schematic diagrams of SL transmission interfering with gNB reception.
  • FIG. 18 is a schematic diagram of the interference of SL Tx in different areas to the base station.
  • FIG. 19 is a schematic diagram of Pmax broadcasting in a meshed area.
  • FIG. 20 is a schematic block diagram of a terminal device according to an embodiment of the present application.
  • FIG. 21 is a schematic block diagram of a terminal device according to another embodiment of the present application.
  • FIG. 22 is a schematic block diagram of a network device according to an embodiment of the present application.
  • FIG. 23 is a schematic block diagram of a network device according to another embodiment of the present application.
  • FIG. 24 is a schematic block diagram of a terminal device according to an embodiment of the present application.
  • FIG. 25 is a schematic block diagram of a terminal device according to another embodiment of the present application.
  • FIG. 26 is a schematic block diagram of a network device according to an embodiment of the present application.
  • FIG. 27 is a schematic block diagram of a network device according to another embodiment of the present application.
  • FIG. 28 is a schematic block diagram of a terminal device according to an embodiment of the present application.
  • FIG. 29 is a schematic block diagram of a network device according to an embodiment of the present application.
  • FIG. 30 is a schematic block diagram of a communication device according to an embodiment of the present application.
  • FIG. 31 is a schematic block diagram of a chip according to an embodiment of the present application.
  • FIG. 32 is a schematic block diagram of a communication system according to an embodiment of the present application.
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • CDMA Wideband Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • LTE-A Advanced Long Term Evolution
  • NR New Radio
  • NTN Non-Terrestrial Networks
  • UMTS Universal Mobile Telecommunication System
  • WLAN Wireless Local Area Networks
  • Wireless Fidelity Wireless Fidelity
  • WiFi fifth-generation communication
  • D2D Device to Device
  • M2M Machine to Machine
  • MTC Machine Type Communication
  • V2V Vehicle to Vehicle
  • V2X Vehicle to everything
  • the communication system in this embodiment of the present application may be applied to a carrier aggregation (Carrier Aggregation, CA) scenario, a dual connectivity (Dual Connectivity, DC) scenario, or a standalone (Standalone, SA) distribution. web scene.
  • Carrier Aggregation, CA Carrier Aggregation, CA
  • DC Dual Connectivity
  • SA standalone
  • the communication system in the embodiment of the present application may be applied to an unlicensed spectrum, where the unlicensed spectrum may also be considered as a shared spectrum; or, the communication system in the embodiment of the present application may also be applied to a licensed spectrum, where, Licensed spectrum can also be considered unshared spectrum.
  • terminal equipment may also be referred to as user equipment (UE), access terminal, subscriber unit, subscriber station, mobile station, mobile station, remote station, remote station Terminal, mobile device, user terminal, terminal, wireless communication device, user agent or user equipment, etc.
  • UE user equipment
  • the terminal device can be a station (STAION, ST) in the WLAN, can be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a Wireless Local Loop (WLL) station, a personal digital processing (Personal Digital Assistant, PDA) devices, handheld devices with wireless communication capabilities, computing devices or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, next-generation communication systems such as end devices in NR networks, or future Terminal equipment in the evolved public land mobile network (Public Land Mobile Network, PLMN) network, etc.
  • STAION, ST in the WLAN
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • the terminal device can be deployed on land, including indoor or outdoor, handheld, wearable, or vehicle-mounted; it can also be deployed on water (such as ships, etc.); it can also be deployed in the air (such as airplanes, balloons, and satellites) superior).
  • the terminal device may be a mobile phone (Mobile Phone), a tablet computer (Pad), a computer with a wireless transceiver function, a virtual reality (Virtual Reality, VR) terminal device, and an augmented reality (Augmented Reality, AR) terminal Equipment, wireless terminal equipment in industrial control, wireless terminal equipment in self driving, wireless terminal equipment in remote medical, wireless terminal equipment in smart grid , wireless terminal equipment in transportation safety, wireless terminal equipment in smart city or wireless terminal equipment in smart home, etc.
  • a mobile phone Mobile Phone
  • a tablet computer Pad
  • a computer with a wireless transceiver function a virtual reality (Virtual Reality, VR) terminal device
  • augmented reality (Augmented Reality, AR) terminal Equipment wireless terminal equipment in industrial control, wireless terminal equipment in self driving, wireless terminal equipment in remote medical, wireless terminal equipment in smart grid , wireless terminal equipment in transportation safety, wireless terminal equipment in smart city or wireless terminal equipment in smart home, etc.
  • the terminal device may also be a wearable device.
  • Wearable devices can also be called wearable smart devices, which are the general term for the intelligent design of daily wear and the development of wearable devices using wearable technology, such as glasses, gloves, watches, clothing and shoes.
  • a wearable device is a portable device that is worn directly on the body or integrated into the user's clothing or accessories. Wearable device is not only a hardware device, but also realizes powerful functions through software support, data interaction, and cloud interaction.
  • wearable smart devices include full-featured, large-scale, complete or partial functions without relying on smart phones, such as smart watches or smart glasses, and only focus on a certain type of application function, which needs to cooperate with other devices such as smart phones.
  • the network device may be a device for communicating with a mobile device, and the network device may be an access point (Access Point, AP) in WLAN, or a base station (Base Transceiver Station, BTS) in GSM or CDMA , it can also be a base station (NodeB, NB) in WCDMA, it can also be an evolved base station (Evolutional Node B, eNB or eNodeB) in LTE, or a relay station or access point, or in-vehicle equipment, wearable devices and NR networks
  • the network device may have a mobile feature, for example, the network device may be a mobile device.
  • the network device may be a satellite or a balloon station.
  • the satellite may be a low earth orbit (LEO) satellite, a medium earth orbit (MEO) satellite, a geostationary earth orbit (GEO) satellite, a High Elliptical Orbit (HEO) ) satellite etc.
  • the network device may also be a base station set in a location such as land or water.
  • a network device may provide services for a cell, and a terminal device communicates with the network device through transmission resources (for example, frequency domain resources, or spectrum resources) used by the cell, and the cell may be a network device (
  • the cell can belong to the macro base station, or it can belong to the base station corresponding to the small cell (Small cell).
  • Pico cell Femto cell (Femto cell), etc.
  • These small cells have the characteristics of small coverage and low transmission power, and are suitable for providing high-speed data transmission services.
  • FIG. 1 exemplarily shows a communication system 100 .
  • the communication system includes one network device 110 and two terminal devices 120 .
  • the communication system 100 may include multiple network devices 110, and the coverage of each network device 110 may include other numbers of terminal devices 120, which are not limited in this embodiment of the present application.
  • the communication system 100 may further include a mobility management entity (Mobility Management Entity, MME), an access and mobility management function (Access and Mobility Management Function, AMF) and other network entities, to which the embodiments of the present application Not limited.
  • MME Mobility Management Entity
  • AMF Access and Mobility Management Function
  • the network equipment may further include access network equipment and core network equipment. That is, the wireless communication system further includes a plurality of core networks for communicating with the access network equipment.
  • the access network equipment may be a long-term evolution (long-term evolution, LTE) system, a next-generation (mobile communication system) (next radio, NR) system, or an authorized auxiliary access long-term evolution (authorized auxiliary access long-term evolution, LAA-
  • the evolved base station (evolutional node B, may be referred to as eNB or e-NodeB for short) in the LTE) system is a macro base station, a micro base station (also called a "small base station"), a pico base station, an access point (AP), Transmission site (transmission point, TP) or new generation base station (new generation Node B, gNodeB), etc.
  • a device having a communication function in the network/system may be referred to as a communication device.
  • the communication device may include a network device and a terminal device with a communication function, and the network device and the terminal device may be specific devices in this embodiment of the application, which will not be repeated here; It may include other devices in the communication system, for example, other network entities such as a network controller and a mobility management entity, which are not limited in this embodiment of the present application.
  • the "instruction" mentioned in the embodiments of the present application may be a direct instruction, an indirect instruction, or an associated relationship.
  • a indicates B it can indicate that A directly indicates B, for example, B can be obtained through A; it can also indicate that A indicates B indirectly, such as A indicates C, and B can be obtained through C; it can also indicate that there is an association between A and B relation.
  • corresponding may indicate that there is a direct or indirect corresponding relationship between the two, or may indicate that there is an associated relationship between the two, or indicate and be instructed, configure and be instructed configuration, etc.
  • FIG. 2 is a schematic diagram of SL communication. As shown in Figure 2, vehicles can communicate with nearby vehicles SL for applications such as collision avoidance warning.
  • Sideline communication may include a variety of different communication scenarios, for example: the terminal is in the coverage of the mobile communication network (take 5G NR as an example) (in coverage scenario), or the terminal is out of the coverage of the mobile communication network (out of coverage scenario).
  • FIG. 3a and 3b are schematic diagrams of SL communication scenarios.
  • the UE when the UE is in a scenario covered by a mobile communication network, the UE usually maintains a connection with the NR base station, and also maintains an SL connection with other UEs.
  • the UE when the UE is in a scene outside the coverage of the mobile communication network, the UE is usually not in the coverage area of the NR base station, and the UE only has an SL connection.
  • FIG. 4 is a schematic diagram of base station and UE timing. As shown in FIG. 4 , the base station gNB timing is the transceiver timing seen from the base station.
  • the signal transmitted by the base station will be received by the UE after a certain propagation delay.
  • the UE receiving time has a delay compared to the gNB timing.
  • the downlink timing (DL) (UE) as a whole is shifted later than the gNB timing.
  • the base station In order to avoid that uplink signals transmitted by multiple UEs in the same cell arrive at the base station at inconsistent times and cause mutual interference, the base station needs to adjust the transmission time of the UEs according to their distances. UEs that are far away need to transmit earlier than UEs that are close, so that the signals arriving at the base station end arrive at about the same time as each other. As shown in Figure 4, the uplink timing (UE) will be ahead of both the gNB timing and the downlink timing (UE) by a certain time.
  • the timing advance between downlink timing (UE) and uplink timing (UE) is usually called TA (Timing advance).
  • the following introduces the timing and interference of SL transmission and reception.
  • SL communication when the UE is within the coverage of an NR cell (or called an NR base station), there are two examples of SL timing:
  • Figure 5 is a schematic diagram of interference in a scenario where SL timing and NR UE Rx timing are aligned.
  • SL and UE Rx (receive) timing are consistent, and SL can only work in uplink transmit time slots.
  • the transmit timing (Tx) of the UE will have a timing deviation TA from the timing of the SL.
  • the NR transmit signal interferes with the SL receive signal (eg, interferes with SL+SL1), and the SL transmit signal (eg, SL+SL1) will also interfere with the base station the received signal.
  • FIG. 6 is a schematic diagram of interference in a scenario where SL timing and NR UE Tx timing are aligned.
  • SL and UE transmit (Tx) timing are consistent, and SL can only work in uplink transmit time slot.
  • the UE's transmit (Tx) timing will be consistent with the SL's timing.
  • the NR transmit signal interferes with the SL receive signal, and the SL transmit signal will also interfere with the base station's receive signal
  • the embodiments of the present application may provide various solutions.
  • FIG. 7 is a schematic flowchart of a communication method 200 according to an embodiment of the present application.
  • the method can optionally be applied to the system shown in Figure 1, but is not limited thereto.
  • the method includes at least some of the following.
  • the terminal device reports a spectrum interval requirement between a new radio (NR) uplink signal and a sidelink (SL) received signal. Wherein, the spectrum interval is required for the scheduling of the NR uplink signal and the SL received signal.
  • the terminal device reports the minimum spectrum interval between the NR uplink signal and the SL received signal. Wherein, the minimum spectrum interval is used for scheduling the NR uplink signal and the SL received signal.
  • a signal sent from the terminal device to the network device may be referred to as an NR uplink signal
  • a signal received by the terminal device from another terminal device may be referred to as an SL received signal.
  • the network device can schedule the NR uplink signal and the SL received signal based on the spectral interval requirement, so that there is a gap between the NR uplink signal and the SL received signal.
  • the actual spectrum spacing should be greater than or equal to the spectrum spacing requirement as much as possible.
  • the spectrum spacing requirement is the minimum spectrum spacing required between the NR uplink signal and the SL received signal when the NR and the SL work in the same frequency band at the same time.
  • the spectrum interval requirement includes at least one of the following:
  • the minimum spectrum interval in which the NR uplink signal is transmitted with the maximum power and the interference received by the SL received signal does not exceed the set value.
  • the method further includes:
  • the terminal device uses Time Division Duplexing (TDD) mode to transmit the NR uplink signal and the reception of the SL received signal.
  • TDD Time Division Duplexing
  • the terminal equipment may not transmit the NR uplink signal and receive the SL received signal at the same time, but use the TDD method. Way.
  • the method further includes:
  • the terminal device In the case where the spectral interval between the NR uplink signal and the SL received signal is smaller than the spectral interval requirement, such as a minimum spectral interval, if the terminal device simultaneously transmits the NR uplink signal and receives the SL received signal, the The SL reception sensitivity of the terminal equipment deteriorates.
  • the spectral interval requirement such as a minimum spectral interval
  • the terminal equipment transmits the NR uplink signal and receives the SL received signal simultaneously, in this case, it can be
  • the SL reception sensitivity of the terminal equipment is allowed to deteriorate.
  • the manner of determining the deterioration value of the SL reception sensitivity deterioration includes at least one of the following manners:
  • This deterioration value is predefined using a standard
  • the terminal device reports the deterioration value.
  • the network device by reporting the spectrum interval requirement, such as the minimum spectrum interval, by the terminal device, the network device can be urged to use a larger spectrum interval when scheduling the carrier spectrum to avoid interference.
  • FIG. 8 is a schematic flowchart of a communication method 300 according to an embodiment of the present application.
  • the method can optionally be applied to the system shown in Figure 1, but is not limited thereto.
  • the descriptions in this embodiment that are the same as those of the method 200 have the same meaning, and are not repeated here.
  • the method includes at least part of the following contents.
  • the network device receives the spectrum interval requirement between the NR uplink signal reported by the terminal device and the SL received signal.
  • the network device receives the minimum spectrum interval between the NR uplink signal reported by the terminal device and the SL received signal.
  • the network device schedules the NR uplink signal and the SL receive signal based on the spectrum interval requirement.
  • the network device schedules the NR uplink signal and the SL receive signal based on the minimum spectrum interval.
  • the frequency spectrum interval requirement is the minimum frequency spectrum interval required between the NR uplink signal and the SL received signal when the NR and the SL work in the same frequency band at the same time.
  • the spectrum interval requirement includes at least one of the following:
  • the minimum spectrum interval in which the NR uplink signal is transmitted with the maximum power and the interference received by the SL received signal does not exceed the set value.
  • the method further includes:
  • the network device sends the alternate working time template of the NR uplink signal and the received SL received signal.
  • the time template may specify a specific manner in which the transmission of the NR uplink signal and the reception of the SL received signal are not performed simultaneously. For example, the transmission of the NR uplink signal and the reception of the SL reception signal are performed alternately according to the time slot.
  • the method further includes:
  • the SL reception sensitivity of the terminal device allowed by the network device deteriorates, and the terminal device reports the spectrum interval required terminal equipment.
  • the manner of determining the deterioration value of the SL reception sensitivity deterioration includes at least one of the following manners:
  • This deterioration value is predefined using a standard
  • the deterioration value reported by the terminal device is received.
  • the network device may use a larger spectrum interval when scheduling the carrier spectrum to avoid interference.
  • FIG. 9 is a schematic flowchart of a communication method 400 according to another embodiment of the present application.
  • the method can optionally be applied to the system shown in Figure 1, but is not limited thereto.
  • the method includes at least some of the following.
  • the terminal device reports the maximum power capability of the new wireless NR uplink signal corresponding to the deterioration value that causes the deterioration of the sidelink SL reception sensitivity.
  • a signal sent from the terminal device to the network device may be referred to as an NR uplink signal
  • a signal received by the terminal device from another terminal device may be referred to as an SL received signal.
  • the terminal device reports to the network device the maximum power capability of the NR uplink signal corresponding to the deterioration value that causes the deterioration of the SL reception sensitivity.
  • the network device can schedule the NR uplink signal and the SL reception signal of the terminal device according to the maximum power capability, so that the The transmit power of the NR uplink signal should be less than or equal to the maximum power capability as much as possible.
  • the network device can schedule the transmit power of the NR uplink signal without causing excessive performance loss of the SL received signal, reducing the difference between the SL received signal and the NR. interference between upstream signals.
  • the method further includes: the terminal device reporting the deterioration value.
  • the terminal device may report the degradation value and the maximum power capability jointly, or report them separately.
  • the network device can schedule the NR uplink signal and the SL received signal of the terminal device according to the maximum power capability, so that the transmit power of the NR uplink signal of the terminal device is as small as possible less than or equal to the maximum power capability corresponding to the actual deterioration value of the terminal device.
  • the network device can schedule the transmit power of the NR uplink signal and reduce the SL received signal without causing excessive performance loss of the SL received signal. interference with the NR uplink signal.
  • the deterioration value is a predefined value.
  • the corresponding relationship between the maximum power capability of the terminal device and the deterioration value is stored in the terminal device and the network device, respectively.
  • the method further includes: the terminal device disconnecting the NR connection and/or disconnecting when the transmission power exceeds the maximum power capability and the deterioration value exceeds the threshold to satisfy at least one of SL connection.
  • the threshold for this degradation value is indirectly related to the maximum power capability.
  • the base station can schedule the transmit power of the UE according to the transmit power capability corresponding to the terminal sensitivity deterioration value that it can accept, but the determination of the threshold is not directly related to the maximum power, but can be determined according to the sensitivity deterioration.
  • the terminal equipment may disconnect the NR connection with the network, or disconnect the NR connection from the network. Open SL connections with other terminal devices, and can also disconnect NR connections and SL connections.
  • FIG. 10 is a schematic flowchart of a communication method 500 according to another embodiment of the present application.
  • the method can optionally be applied to the system shown in Figure 1, but is not limited thereto.
  • the descriptions in this embodiment that are the same as those of the method 400 have the same meaning, and are not repeated here.
  • the method includes at least part of the following contents.
  • the network equipment receives the maximum power capability of the NR uplink signal corresponding to the deterioration value that causes the deterioration of the SL reception sensitivity of the terminal equipment;
  • the network device schedules the NR uplink signal and the SL receive signal of the terminal device based on the maximum power capability.
  • the deterioration value is reported by the terminal device, or a predefined value.
  • the network device scheduling the NR uplink signal and the SL received signal of the terminal device based on the maximum power capability includes: the network device performing scheduling based on the maximum power capability and the degradation value.
  • the network device performs scheduling based on the maximum power capability and the degradation value, including: the network device allows the terminal device when the transmit power exceeds the maximum power capability and the degradation value exceeds the threshold to satisfy
  • the NR connection is disconnected and/or the SL connection is disconnected.
  • the network device and the terminal device may agree to disconnect the NR connection when the SL reception sensitivity deteriorates beyond a threshold.
  • the network device can schedule the terminal device's The transmit power of the NR uplink signal reduces the interference between the SL received signal and the NR uplink signal.
  • FIG. 11 is a schematic flowchart of a communication method 600 according to another embodiment of the present application.
  • the method can optionally be applied to the system shown in Figure 1, but is not limited thereto.
  • the method includes at least some of the following.
  • the terminal device acquires a transmit power requirement of the network device for the terminal device, where the transmit power requirement is associated with the location information.
  • the terminal device acquires the maximum transmit power of the terminal device allowed by the network device, where the maximum transmit power is associated with the location information.
  • the terminal device controls the transmit power based on the transmit power requirement.
  • the terminal device controls the transmit power based on the maximum transmit power of the terminal device allowed by the network device.
  • the terminal device may limit the transmit power of its own SL transmission signal to be less than the above-mentioned transmit power requirement, for example, less than the maximum transmit power.
  • the location information includes grid area information
  • the terminal device obtains the transmit power requirement of the terminal device from the network device, including:
  • the terminal device acquires the transmit power requirement corresponding to the information of the grid area in which it is located, where the transmit power requirement is the maximum transmit power of the terminal device allowed by the network device.
  • the coverage of the network device is pre-divided into multiple grid areas, and each grid area has a corresponding maximum transmit power of the terminal device allowed by the network device.
  • the network device can broadcast the correspondence between its own grid area and the maximum transmit power to the terminal device. Only the grid area where the terminal device is currently located and its corresponding maximum transmit power may be sent; the correspondence between all grid areas of the network device and the maximum transmit power may also be sent. There may be situations where multiple grid areas correspond to the same maximum transmit power.
  • the terminal device After the terminal device moves to a certain grid area, it can obtain the corresponding maximum transmit power according to the identifier of the grid area where it is currently located, and limit the actual transmit power of the terminal device, such as the actual transmit power of the SL signal, to be less than The maximum transmit power.
  • the location information includes reference geographic location information
  • the terminal device obtains a transmit power requirement for the terminal device from the network device, including:
  • the terminal device calculates the distance between the terminal device and the network device according to its own geographic location information and the reference geographic location information;
  • the terminal device acquires the transmit power requirement corresponding to the distance, where the transmit power requirement is the maximum transmit power of the terminal device allowed by the network device.
  • the reference geographic location information may be geographic location information of a network device, or other preset geographic location information.
  • the geographic location information of the network device can be the latitude and longitude information of the base station. Since the location information of the base station is unchanged, the information can be sent by a separate broadcast to save signaling overhead. Of course, it can also be sent together with the maximum transmit power.
  • the terminal device controls the transmit power based on the maximum transmit power of the terminal device allowed by the network device, including: the terminal device limits the transmit power to be less than the terminal device allowed by the network device. maximum transmit power.
  • the method further includes: predefining or receiving the transmit power requirement associated with the location information from the network device.
  • the maximum transmit power associated with the location information is predefined or received from the network device.
  • the correspondence between the distance and the maximum transmit power is predefined or received from the network device.
  • the correspondence between the grid and the maximum transmit power is predefined or received from the network device.
  • the terminal device calculates the distance from the network device, it can search for the correspondence between the distance and the maximum transmit power to determine the maximum transmit power of the terminal device allowed by the network device under the condition of the distance. Then, the terminal device may limit its own transmit power to be less than the maximum transmit power.
  • the terminal device receives the maximum transmit power of the terminal device allowed by the network device, the transmit power requirement is associated with the location information, and its own transmit power can be limited to be less than the maximum transmit power, thereby reducing the transmit power of the terminal device. Excessive interference to network equipment.
  • FIG. 12 is a schematic flowchart of a communication method 700 according to another embodiment of the present application.
  • the method can optionally be applied to the system shown in Figure 1, but is not limited thereto.
  • the descriptions in this embodiment that are the same as those of the method 600 have the same meaning, and are not repeated here.
  • the method includes at least part of the following contents.
  • the network device sends a transmit power requirement of the network device to the terminal device, where the transmit power requirement is associated with the location information.
  • the network device sends the maximum transmit power of the terminal device allowed by the network device, where the maximum transmit power is associated with the location information.
  • the location information includes grid area information.
  • the location information includes reference geographic location information.
  • the reference geographic location information is predefined or received from the network device.
  • the network device sends the maximum transmission power of the terminal device allowed by the network device, and the transmission power requirement is associated with the location information, so that the terminal device can limit its own transmission power to be less than the maximum transmission power, thereby reducing the number of terminals. Excessive transmit power of the device causes interference to network devices.
  • the internal NR UE Tx signal also referred to as the NR uplink signal, also referred to as the NR Tx signal
  • the UE SL Rx signal also referred to as the NR Tx signal
  • It can be called the interference of the SL received signal, or the SL Rx signal for short).
  • Option 1 The terminal reports the minimum spectrum interval that can be supported simultaneously in the same frequency band as NR and SL.
  • Scheme 2 The terminal reports the correspondence between the transmit power of the NR UE Tx signal and the performance degradation of the SLRx signal.
  • the problem of the interference of the SL Tx signal of the UE to the network device such as the gNB Rx signal (which may also be referred to as the network received signal) can also be solved. See Scheme 3.
  • Scheme 3 The base station broadcasts the location-based Pmax mode, where Pmax is the maximum transmit power of the terminal allowed by the base station.
  • the reporting of the terminal capability in Scheme 1 can realize simultaneous operation of SL and NR in the same frequency band, reduce interference, and improve terminal performance.
  • the degraded information can be reported by the base station to maintain the interference within a certain range through the control of the UE transmit power by the base station.
  • Scheme 3 The base station limits the maximum transmit power of the terminal based on the Pmax of the geographic location, which can reduce the interference to the base station and improve the performance of the base station.
  • Example 1 Interference of NR UE Tx signal inside UE to SL Rx signal
  • Figure 13a and Figure 13b are schematic diagrams of interference between NR and SL in the UE. As shown in Figure 13a, it is the interference situation when the SL timing of the terminal is aligned with the NR UE Rx signal, wherein the NR UE Tx signal is within the range of U1, and the SL Rx signal within the range of SL2 will not cause interference, and U1 and SL2 have time lengths equal to TA.
  • NR and SL work at the same time, and the terminal adopts NR and SL independent radio frequency architecture to increase the isolation between NR UE Tx signal and SL Rx signal and reduce interference, as shown in Figure 14b.
  • the magnitude of the interference depends on two factors, the transmit power of the NR UE Tx signal and the isolation between the NR UE Tx signal and the SL Rx signal.
  • the size of the isolation depends on the distance between the working spectrum of the NR UE Tx signal and the SL Rx signal spectrum, the out-of-band leakage strength of the NR UE Tx signal spectrum, and the out-of-band effect of the SL Rx signal on the NR UE Tx signal. Inhibition of leakage. Usually these factors have a lot to do with the implementation of the UE.
  • Scheme 1 The terminal reports that NR and SL work in the same frequency band at the same time, and the required minimum spectrum interval Gap_min between the NR UE Tx signal and the SL Rx signal.
  • This minimum spectrum spacing can correspond to the minimum spectrum spacing when the NR UE Tx signal is transmitted with the maximum power and does not cause interference of the SLRx signal, or the minimum spectrum spacing when the interference received by the SL Rx signal does not exceed XdB when the NR UE Tx signal is transmitted with the maximum power. .
  • the terminal SL Rx will suffer strong interference, and the following processing methods can be further adopted:
  • the terminal NR UE Tx signal and the UE SL Rx signal are not carried out at the same time, that is, the TDD mode is used
  • the terminal NR UE Tx signal and the UE SL Rx signal are carried out simultaneously, but the UE SL Rx signal is allowed to take a certain sensitivity deterioration.
  • the deterioration value of the sensitivity deterioration may be predefined by a standard, or may be a capability indication information reported by the terminal.
  • the base station After receiving the above-mentioned minimum spectrum interval capability Gap_min, the base station refers to the Gap_min value to schedule the use of the spectrum of the NR UE Tx signal and the SL Rx signal.
  • the base station may choose to use the above method 1 for processing.
  • the base station needs to configure the alternate working time pattern (TDD pattern) of the NR UE Tx signal (referred to as NR Tx) and the SL UE Rx signal (referred to as SL Rx) for the UE, for example:
  • the base station may also use the foregoing method 2 to perform processing.
  • the base station does not configure the alternate working time template of the NR UE Tx signal and the UE SL Rx signal, but allows the UE SL Rx signal of the UE to have a certain sensitivity deterioration.
  • Option 2 When the spectral positions of the NR UE Tx signal and the UE SL Rx signal are fixed, the terminal reports the maximum power capability Px that the terminal NR UE Tx signal can transmit when the sensitivity of the UE SL Rx signal is degraded by XdB.
  • the sensitivity deterioration XdB can be a value of 0 or greater than 0. This value can be a predefined value (only Px needs to be reported at this time), or it can be a value jointly reported by the terminal (XdB, Px)
  • the base station After the base station receives the NR UE Tx signal reported by the terminal and can transmit the maximum power capability Px and the sensitivity deterioration XdB, the base station refers to the maximum power capability for scheduling.
  • the terminal transmit power exceeds Px and the sensitivity deterioration X is greater than a predetermined value X_limit, the UE is allowed to disconnect the NR connection or disconnect the SL connection.
  • the terminal can report the minimum spectrum interval Gap to encourage the base station to use a larger spectrum interval when scheduling the carrier spectrum to avoid interference.
  • Scheme 2 can inform the network of the scheduling limit of NR transmit power when the base station is difficult to coordinate the spectrum, that is, the relationship between the transmit power of the NR UE Tx signal and the sensitivity deterioration of the SL Rx signal, so that the network can not cause excessive SL Rx signal.
  • the transmit power of the NR UE Tx signal is scheduled in the case of performance loss.
  • the interference between the NR UE Tx signal and the SL Rx signal in the terminal can be made transparent, and the interference in the terminal can be reduced through the assistance of the base station.
  • the above solution may be an optional feature for the base station.
  • Example 2 UE SL Tx signal interference to NR gNB Rx signal
  • FIG 16 is a schematic diagram of UE SL Tx signal interfering with gNB Rx signal.
  • the transmission of the terminal SL will also interfere with the uplink reception of the base station. Due to the propagation delay between the terminal and the gNB, in the scenario of Figure 17a, the Tx signals of SL and SL1 will interfere with the reception of the U2 and U time slots of the gNB; in the scenario of Figure 17b, the Tx signal of SL will interfere with the U time of the gNB. slot reception.
  • the transmit power of the SL may be limited.
  • the SL transmit power control is open-loop power control, that is, the SL transmit power is calculated based on preconfigured parameters (eg, target power, propagation loss weight).
  • the propagation loss is that the propagation loss between the SL terminals is related to the distance between the SL terminals, but has nothing to do with the distance between the terminal and the base station. This also causes the terminal to transmit relatively large power even when it is very close to the base station, causing interference of the UE SL Tx signal to the gNB Rx signal.
  • the power control mechanism of this example may limit the SL power. To this end, it is necessary to consider limiting the transmit power of SL UEs that are relatively close to the base station to reduce the reception interference to the gNB. As shown in Figure 18, it is a schematic diagram of the interference of UE SL Tx in different areas to the base station.
  • the Pmax configuration based on geographic location (Pmax only works in some locations) can be adopted as follows:
  • Pmax is usually used to limit the maximum transmit power of UEs in a cell, and in a single-cell scenario, the transmit power of all UEs in a cell will be limited after this parameter is configured. This actually cannot meet the above requirements, that is, the goal is that Pmax will only work when the SL UE is at a relatively close distance from the base station. Based on this, the specific implementation is as follows:
  • a cell is divided into a plurality of grid areas according to geographic locations, and the information of the grid areas may be predefined.
  • the terminal and the base station can clearly obtain their own positions, for example, in Figure 19, the base station is located in grid 5.
  • the base station configures different Pmax values according to different grid areas where the terminal is located. For example, in Figure 19, the dark areas (identified as 1 to 9) closer to the base station are configured with a Pmax1 to limit the UE's transmit power to a lower power value. The light-colored areas (identified as 10 to 25) configure another Pmax2 to limit the UE transmit power to another power value. In the white area (marked as 26 to 49) far from the base station, the interference of the terminal SL transmission to the base station is not obvious, so this area does not need to limit the transmission power of the terminal.
  • Pmax can correspond to the identification of the grid area, such as ⁇ Pmax1, grid 1/2/3/4/5/6/7/8/9 ⁇ , ⁇ Pmax2, grid 10- 25 ⁇
  • the base station may carry the following information at the same time when broadcasting Pmax:
  • the distance requirement may be predefined without broadcasting.
  • the distance between the cell and the base station is divided into three regions ⁇ Distance1, Distance1 to Distance2, >Distance2, and three Pmax values ⁇ Pmax1, Pmax2, Pmax3 ⁇ are broadcast.
  • Pmax1 corresponds to the area of ⁇ Distance1
  • Pmax2 corresponds to the area of Distance1 to Distance2
  • Pmax3 corresponds to the area of >Distance2.
  • the distance requirement can also be broadcasted by the base station as required, to limit the use range of different Pmax.
  • the terminal After obtaining the longitude and latitude position information of the base station, the terminal can obtain the actual distance DistanceUE from the base station in combination with its own longitude and latitude information, and limit the transmit power based on the Pmax and distance requirements broadcast by the base station. For example:
  • the above-mentioned location-based Pmax broadcast can effectively solve the problem of interference to the gNB Rx signal when the SL terminal is located in the center of the cell and transmits high power.
  • the interference of the NR Tx in the UE to the UE SL Rx when the NR and SL are in the same frequency band can be solved, and the interference of the UE SL Tx to the gNB Rx can also be solved.
  • FIG. 20 is a schematic block diagram of a terminal device 20 according to an embodiment of the present application.
  • the terminal device 20 may include:
  • the reporting unit 21 is configured to report the frequency spectrum interval requirement between the new wireless NR uplink signal and the sidelink SL received signal; wherein, the frequency spectrum interval requirement is used for the scheduling of the NR uplink signal and the SL received signal.
  • the reporting unit 21 is configured to report the minimum frequency spectrum interval between the new wireless NR uplink signal and the sidelink SL received signal, where the minimum frequency spectrum interval is used for scheduling the NR uplink signal and the SL received signal.
  • the spectrum spacing requirement is the minimum spectrum spacing required between the NR uplink signal and the SL received signal when the NR and the SL work in the same frequency band at the same time.
  • the spectrum interval requirement includes at least one of the following:
  • the minimum spectrum interval in which the NR uplink signal is transmitted with the maximum power and the interference received by the SL received signal does not exceed the set value.
  • the terminal device 20 further includes:
  • the first transmission unit 22 is used for transmitting and receiving the NR uplink signal by using a time division duplex TDD mode when the spectral interval between the NR uplink signal and the SL received signal is smaller than the spectral interval requirement, such as a minimum spectral interval.
  • the SL receives the reception of the signal.
  • the terminal device 20 further includes:
  • the second transmission unit 23 is configured to, when the spectral interval between the NR uplink signal and the SL received signal is smaller than the spectral interval requirement, such as the minimum spectral interval, if the terminal device 20 simultaneously transmits and transmits the NR uplink signal and When the SL reception signal is received, the SL reception sensitivity of the terminal device 20 deteriorates.
  • the manner of determining the deterioration value of the SL reception sensitivity deterioration includes at least one of the following manners:
  • This deterioration value is predefined using a standard
  • the terminal device 20 reports the deterioration value.
  • the terminal device 20 in this embodiment of the present application can implement the corresponding functions of the terminal device in the foregoing method embodiments.
  • the terminal device 20 can implement the corresponding processes, functions, implementations, and beneficial effects of each module (submodule, unit, or component, etc.) in the terminal device 20, reference may be made to the corresponding descriptions in the above method embodiments, which will not be repeated here.
  • FIG. 22 is a schematic block diagram of a network device 30 according to an embodiment of the present application.
  • the network device 30 may include:
  • a receiving unit 31 configured to receive a spectrum interval requirement between the new wireless NR uplink signal reported by the terminal device and the sidelink SL received signal;
  • the scheduling unit 32 is configured to schedule the NR uplink signal and the SL received signal based on the spectrum interval requirement.
  • the receiving unit 31 is configured to receive the minimum spectrum interval between the new wireless NR uplink signal reported by the terminal device and the sidelink SL received signal; the scheduling unit 32 is configured to schedule the NR based on the minimum spectrum interval.
  • Uplink signals and the SL receive signals are configured to schedule the NR based on the minimum spectrum interval.
  • the frequency spectrum interval requirement is the minimum frequency spectrum interval required between the NR uplink signal and the SL received signal when the NR and the SL work in the same frequency band at the same time.
  • the spectrum interval requirement includes at least one of the following:
  • the minimum spectrum interval in which the NR uplink signal is transmitted with the maximum power and the interference received by the SL received signal does not exceed the set value.
  • the network device 30 further includes:
  • the sending unit 33 is used to send the alternate working time template of the NR uplink signal and the received SL received signal when the spectral interval between the NR uplink signal and the SL received signal is less than the spectral interval requirement such as a minimum spectral interval .
  • the network device 30 further includes:
  • the control unit 34 is configured to allow the SL receiving sensitivity of the terminal device to deteriorate when the spectral interval between the NR uplink signal and the SL received signal is smaller than the spectral interval requirement, such as a minimum spectral interval, and the terminal device reports the Terminal equipment for spectrum separation requirements.
  • the manner of determining the deterioration value of the SL reception sensitivity deterioration includes at least one of the following manners:
  • This deterioration value is predefined using a standard
  • the deterioration value reported by the terminal device is received.
  • the network device 30 in this embodiment of the present application can implement the corresponding functions of the network device in the foregoing method embodiments.
  • each module submodule, unit, or component, etc.
  • FIG. 24 is a schematic block diagram of a terminal device 40 according to an embodiment of the present application.
  • the terminal device 40 may include:
  • the reporting unit 41 is configured to report the maximum power capability of the new wireless NR uplink signal corresponding to the deterioration value that causes the deterioration of the sidelink SL reception sensitivity.
  • the reporting unit 41 is further configured to report the deterioration value.
  • the deterioration value is a predefined value.
  • the terminal device 40 further includes:
  • the control unit 42 is used for the terminal device to disconnect the NR connection and/or disconnect the SL connection when the transmit power exceeds the maximum power capability and the deterioration value exceeds the threshold to satisfy at least one.
  • the terminal device 40 in this embodiment of the present application can implement the corresponding functions of the terminal device in the foregoing method embodiments.
  • the terminal device 40 for the corresponding processes, functions, implementations and beneficial effects of each module (sub-module, unit or component, etc.) in the terminal device 40, reference may be made to the corresponding descriptions in the above method embodiments, which will not be repeated here.
  • the functions described by the various modules (submodules, units or components, etc.) in the terminal device 40 of the application embodiments may be implemented by different modules (submodules, units or components, etc.), or may be implemented by the same module Module (submodule, unit or component, etc.) implementation.
  • FIG. 26 is a schematic block diagram of a network device 50 according to an embodiment of the present application.
  • the network device 50 may include:
  • a receiving unit 51 configured to receive the maximum power capability of the new wireless NR uplink signal corresponding to the deterioration value that causes the sidelink SL receiving sensitivity of the terminal equipment to deteriorate;
  • the scheduling unit 52 is configured to schedule the NR uplink signal and the SL received signal of the terminal device based on the maximum power capability.
  • the deterioration value is reported by the terminal device, or a predefined value.
  • the scheduling unit 52 is further configured to perform scheduling based on the maximum power capability and the degradation value.
  • the network device 50 further includes:
  • the control unit 53 is configured to allow the terminal device to disconnect the NR connection and/or disconnect the SL connection when the transmit power exceeds the maximum power capability and the deterioration value exceeds the threshold to satisfy at least one.
  • the network device 50 in this embodiment of the present application can implement the corresponding functions of the network device in the foregoing method embodiments.
  • the corresponding processes, functions, implementations, and beneficial effects of each module (submodule, unit, or component, etc.) in the network device 50 reference may be made to the corresponding descriptions in the above method embodiments, which will not be repeated here.
  • FIG. 28 is a schematic block diagram of a terminal device 60 according to an embodiment of the present application.
  • the terminal device 60 may include:
  • an acquiring unit 61 configured to acquire a transmission power requirement of the network device to the terminal device, where the transmission power requirement is associated with the location information;
  • the control unit 62 is configured to control the transmission power based on the transmission power requirement. For example, the transmit power is controlled based on the maximum transmit power of the terminal device allowed by the network device.
  • the obtaining unit 61 is configured to obtain the maximum transmit power of the terminal device allowed by the network device, where the maximum transmit power is associated with the location information.
  • the control unit 62 is configured to control the transmission power based on the maximum transmission power of the terminal device allowed by the network device.
  • the location information includes grid area information
  • the acquiring unit is further configured to acquire the transmit power requirement corresponding to the information on the grid area where it is located, where the transmit power requirement is the network The maximum transmit power allowed by the device for this terminal device.
  • the location information includes reference geographic location information
  • the obtaining unit is further configured to:
  • the transmit power requirement is the maximum transmit power of the terminal device allowed by the network device.
  • control unit is further configured to limit the transmit power to be less than the maximum transmit power of the terminal device allowed by the network device.
  • the obtaining unit 61 is further configured to predefine or receive the transmit power requirement associated with the location information from the network device.
  • the terminal device 60 in this embodiment of the present application can implement the corresponding functions of the terminal device in the foregoing method embodiments.
  • the terminal device 60 can implement the corresponding processes, functions, implementations, and beneficial effects of each module (submodule, unit, or component, etc.) in the terminal device 60, reference may be made to the corresponding descriptions in the above method embodiments, which will not be repeated here.
  • each module (submodule, unit, or component, etc.) in the terminal device 60 of the application embodiment may be implemented by different modules (submodule, unit, or component, etc.), or may be implemented by the same module Module (submodule, unit or component, etc.) implementation.
  • FIG. 29 is a schematic block diagram of a network device 70 according to an embodiment of the present application.
  • the network device 70 may include:
  • the sending unit 71 is configured to send a transmission power requirement of the network device to the terminal device, where the transmission power requirement is associated with the location information.
  • the sending unit 71 is configured to send the maximum transmission power of the terminal device allowed by the network device, where the maximum transmission power is associated with the location information.
  • the location information includes grid area information.
  • the location information includes reference geographic location information.
  • the reference geographic location information is predefined or received from the network device.
  • the network device 70 in this embodiment of the present application can implement the corresponding functions of the network device in the foregoing method embodiments.
  • the corresponding processes, functions, implementations, and beneficial effects of each module (submodule, unit, or component, etc.) in the network device 70 reference may be made to the corresponding descriptions in the foregoing method embodiments, which are not repeated here.
  • FIG. 30 is a schematic structural diagram of a communication device 800 according to an embodiment of the present application.
  • the communication device 800 includes a processor 810, and the processor 810 can call and run a computer program from a memory, so that the communication device 800 implements the methods in the embodiments of the present application.
  • the communication device 800 may further include a memory 820 .
  • the processor 810 may call and run a computer program from the memory 820, so that the communication device 800 implements the methods in the embodiments of the present application.
  • the memory 820 may be a separate device independent of the processor 810 , or may be integrated in the processor 810 .
  • the communication device 800 may further include a transceiver 830, and the processor 810 may control the transceiver 830 to communicate with other devices, specifically, may send information or data to other devices, or receive other Information or data sent by a device.
  • the transceiver 830 may include a transmitter and a receiver.
  • the transceiver 830 may further include antennas, and the number of the antennas may be one or more.
  • the communication device 800 may be a network device in this embodiment of the present application, and the communication device 800 may implement corresponding processes implemented by the network device in each method in the embodiment of the present application, which is not repeated here for brevity.
  • the communication device 800 may be a terminal device of this embodiment of the present application, and the communication device 800 may implement the corresponding processes implemented by the terminal device in each method of the embodiment of the present application, which is not repeated here for brevity.
  • FIG. 31 is a schematic structural diagram of a chip 900 according to an embodiment of the present application.
  • the chip 900 includes a processor 910, and the processor 910 can call and run a computer program from a memory, so as to implement the methods in the embodiments of the present application.
  • the chip 900 may further include a memory 920 .
  • the processor 910 may call and run a computer program from the memory 920 to implement the method executed by the terminal device or the network device in the embodiment of the present application.
  • the memory 920 may be a separate device independent of the processor 910 , or may be integrated in the processor 910 .
  • the chip 900 may further include an input interface 930 .
  • the processor 910 may control the input interface 930 to communicate with other devices or chips, and specifically, may acquire information or data sent by other devices or chips.
  • the chip 900 may further include an output interface 940 .
  • the processor 910 may control the output interface 940 to communicate with other devices or chips, and specifically, may output information or data to other devices or chips.
  • the chip can be applied to the network device in the embodiment of the present application, and the chip can implement the corresponding processes implemented by the network device in each method of the embodiment of the present application, which is not repeated here for brevity.
  • the chip can be applied to the terminal device in the embodiment of the present application, and the chip can implement the corresponding processes implemented by the terminal device in each method of the embodiment of the present application, which is not repeated here for brevity.
  • Chips applied to network equipment and terminal equipment can be the same chip or different chips.
  • the chip mentioned in the embodiments of the present application may also be referred to as a system-on-chip, a system-on-chip, a system-on-chip, or a system-on-a-chip, or the like.
  • the processor mentioned above may be a general-purpose processor, a digital signal processor (DSP), a field programmable gate array (FPGA), an application specific integrated circuit (ASIC) or Other programmable logic devices, transistor logic devices, discrete hardware components, etc.
  • DSP digital signal processor
  • FPGA field programmable gate array
  • ASIC application specific integrated circuit
  • the general-purpose processor mentioned above may be a microprocessor or any conventional processor or the like.
  • the memory mentioned above may be either volatile memory or non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be read-only memory (ROM), programmable read-only memory (PROM), erasable programmable read-only memory (EPROM), electrically programmable Erase programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • Volatile memory may be random access memory (RAM).
  • the memory in the embodiment of the present application may also be a static random access memory (static RAM, SRAM), a dynamic random access memory (dynamic RAM, DRAM), Synchronous dynamic random access memory (synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (double data rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous connection Dynamic random access memory (synch link DRAM, SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DR RAM) and so on. That is, the memory in the embodiments of the present application is intended to include but not limited to these and any other suitable types of memory.
  • FIG. 32 is a schematic block diagram of a communication system 1000 according to an embodiment of the present application.
  • the communication system 1000 includes a terminal device 1010 and a network device 1020 .
  • the terminal device is used to report the spectrum interval requirement between the NR uplink signal and the SL received signal; wherein, the spectrum interval requirement is used for scheduling the NR uplink signal and the SL received signal.
  • the network device is used to receive the spectrum interval requirement between the NR uplink signal and the SL received signal reported by the terminal device; the network device schedules the NR uplink signal and the SL receive signal based on the spectrum interval requirement.
  • the terminal equipment is used to report the maximum power capability of the NR uplink signal corresponding to the deterioration value that causes the deterioration of the SL reception sensitivity.
  • the network device is used to receive the maximum power capability of the NR uplink signal corresponding to the deterioration value that causes the deterioration of the SL reception sensitivity of the terminal device; the network device schedules the NR uplink signal and the SL reception signal of the terminal device based on the maximum power capability.
  • the terminal device is configured to receive the maximum transmit power of the terminal device allowed by the network device, and location information associated with the maximum transmit power; the terminal device is based on the terminal device allowed by the network device.
  • the maximum transmit power of , and the location information associated with the maximum transmit power control the transmit power.
  • the network device is used to send the maximum transmit power of the terminal device allowed by the network device, and the location information associated with the maximum transmit power.
  • the terminal device 1010 can be used to implement the corresponding functions implemented by the terminal device in the above method
  • the network device 1020 can be used to implement the corresponding functions implemented by the network device in the above method. For brevity, details are not repeated here.
  • the above-mentioned embodiments it may be implemented in whole or in part by software, hardware, firmware or any combination thereof.
  • software it can be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions. When the computer program instructions are loaded and executed on a computer, all or part of the processes or functions described in the embodiments of the present application are generated.
  • the computer may be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions may be stored on or transmitted from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions may be transmitted over a wire from a website site, computer, server or data center (eg coaxial cable, optical fiber, Digital Subscriber Line (DSL)) or wireless (eg infrared, wireless, microwave, etc.) means to another website site, computer, server or data center.
  • the computer-readable storage medium can be any available medium that can be accessed by a computer or a data storage device such as a server, data center, etc. that includes one or more available media integrated.
  • the available medium may be a magnetic medium (eg, a floppy disk, a hard disk, a magnetic tape), an optical medium (eg, a DVD), or a semiconductor medium (eg, a Solid State Disk (SSD)), and the like.
  • a magnetic medium eg, a floppy disk, a hard disk, a magnetic tape
  • an optical medium eg, a DVD
  • a semiconductor medium eg, a Solid State Disk (SSD)
  • the size of the sequence numbers of the above-mentioned processes does not mean the sequence of execution, and the execution sequence of each process should be determined by its functions and internal logic, and should not be dealt with in the embodiments of the present application. implementation constitutes any limitation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请涉及一种通信方法、终端设备和网络设备。其中,该通信方法包括:终端设备上报NR上行信号与SL接收信号之间的频谱间隔要求;其中,该频谱间隔要求用于该NR上行信号和该SL接收信号的调度。本申请实施例中,通过终端设备上报频谱间隔要求,可以促使网络设备在调度载波频谱时尽量采用较大的频谱间隔来规避干扰。

Description

通信方法、终端设备和网络设备 技术领域
本申请涉及通信领域,更具体地,涉及一种通信方法、终端设备和网络设备。
背景技术
当前的移动通信多是以基站为中心的,所有UE(User Equipment,用户设备)在空口都会与基站进行直接连接,并通过基站的中转找到目标UE进行通信。这种通信的好处是UE在网络中的行为是可控的,基站充当了控制中心的角色。在一些新兴的应用如D2D(Device to Device,设备到设备)通信或V2X(Vehicle to everything,车联网)中,UE可以直接与其他UE通信而不经过基站。这种UE与UE间的直接通信模式叫做SL(Sidelink,侧行)通信。侧行通信的特点是基站不再是控制中心,且可以在没有网络的情况下进行直接通信。UE的SL通信与NR通信之间可能存在干扰,UE的SL通信对基站也可能存在干扰,需要减少干扰。
发明内容
本申请实施例提供一种通信方法、终端设备和网络设备,可以减少通信过程的信号干扰。
本申请实施例提供一种通信方法,包括:
终端设备上报新无线NR上行信号与侧行链路SL接收信号之间的频谱间隔要求;其中,该频谱间隔要求用于该NR上行信号和该SL接收信号的调度。
本申请实施例提供一种通信方法,包括:
网络设备接收终端设备上报的新无线NR上行信号与侧行链路SL接收信号之间的频谱间隔要求;
该网络设备基于该频谱间隔要求,调度该NR上行信号和该SL接收信号。
本申请实施例提供一种通信方法,包括:
终端设备上报引起侧行链路SL接收灵敏度恶化的恶化值对应的新无线NR上行信号的最大功率能力。
本申请实施例提供一种通信方法,包括:
网络设备接收引起终端设备的侧行链路SL接收灵敏度恶化的恶化值对应的新无线NR上行信号的最大功率能力;
该网络设备基于该最大功率能力,调度该终端设备的NR上行信号和SL接收信号。
本申请实施例提供一种通信方法,包括:
终端设备获取网络设备对该终端设备的发射功率要求,该发射功率要求与位置信息关联;
该终端设备基于该发射功率要求,控制发射功率。
本申请实施例提供一种通信方法,包括:
网络设备发送该网络设备对终端设备的发射功率要求,该发射功率要求与位置信息关联。
本申请实施例提供一种终端设备,包括:
上报单元,用于上报新无线NR上行信号与侧行链路SL接收信号之间的频谱间隔要求;
其中,该频谱间隔要求用于该NR上行信号和该SL接收信号的调度。
本申请实施例提供一种网络设备,包括:
接收单元,用于接收终端设备上报的新无线NR上行信号与侧行链路SL接收信号之间的频谱间隔要求;
调度单元,用于基于该频谱间隔要求,调度该NR上行信号和该SL接收信号。
本申请实施例提供一种终端设备,包括:
上报单元,用于上报引起侧行链路SL接收灵敏度恶化的恶化值对应的新无线NR上行信号的最大功率能力。
本申请实施例提供一种网络设备,包括:
接收单元,用于接收引起终端设备的侧行链路SL接收灵敏度恶化的恶化值对应的新无线NR上行信号的最大功率能力;
调度单元,用于基于该最大功率能力,调度该终端设备的NR上行信号和SL接收信号。
本申请实施例提供一种终端设备,包括:
获取单元,用于获取网络设备对该终端设备的发射功率要求,该发射功率要求与位置信息关联;
控制单元,用于基于该发射功率要求,控制发射功率。
本申请实施例提供一种网络设备,包括:
发送单元,用于发送该网络设备对终端设备的发射功率要求,该发射功率要求与位置信息关联。
本申请实施例提供一种终端设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,以使该终端设备执行上述的通信方法。
本申请实施例提供一种网络设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,以使该网络设备执行上述的通信方法。
本申请实施例提供一种芯片,用于实现上述的通信方法。具体地,该芯片包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有该芯片的设备执行上述的通信方法。
本申请实施例提供一种计算机可读存储介质,用于存储计算机程序,当该计算机程序被设备运行时使得该设备执行上述的通信方法。
本申请实施例提供一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行上述的通信方法。
本申请实施例提供一种计算机程序,当其在计算机上运行时,使得计算机执行上述的通信方法。
本申请实施例,通过终端设备上报频谱间隔要求,可以促使网络设备在调度载波频谱时尽量采用较大的频谱间隔来规避干扰。
本申请实施例,通过上报该恶化值对应的NR上行信号的最大功率能力,使得网络设备能够在不引起过大SL接收信号的性能损失的情况下,调度NR上行信号的发射功率,减少SL接收信号与NR上行信号之间的干扰。
本申请实施例,终端设备接收网络设备允许的该终端设备的发射功率要求,该发射功率要求与位置信息关联,可以将自身的发射功率限定为小于该发射功率要求,从而减少终端设备发送功率过大对网络设备造成的干扰。
附图说明
图1是根据本申请实施例的应用场景的示意图。
图2为SL通信的示意图。
图3a和图3b为SL通信场景的示意图。
图4为基站及UE定时的示意图。
图5为SL定时与NR UE Rx定时对齐场景下的干扰的示意图。
图6为SL定时与NR UE Tx定时对齐场景下的干扰的示意图。
图7是根据本申请一实施例通信方法的示意性流程图。
图8是根据本申请另一实施例通信方法的示意性流程图。
图9是根据本申请另一实施例通信方法的示意性流程图。
图10是根据本申请另一实施例通信方法的示意性流程图。
图11是根据本申请另一实施例通信方法的示意性流程图。
图12是根据本申请另一实施例通信方法的示意性流程图。
图13a和图13b UE内部NR对SL的干扰示意图。
图14a为NR与SL共射频链路架构的示意图。
图14b为NR与SL采用独立射频架构示意图。
图15为NR带外泄露对SL Rx信号的干扰的示意图。
图16为SL Tx信号干扰gNB Rx信号的示意图。
图17a和图17b为SL发射干扰gNB接收的示意图。
图18为不同区域的SL Tx对基站的干扰示意图。
图19为分网格区域的Pmax广播示意图。
图20是根据本申请一实施例的终端设备的示意性框图。
图21是根据本申请另一实施例的终端设备的示意性框图。
图22是根据本申请一实施例的网络设备的示意性框图。
图23是根据本申请另一实施例的网络设备的示意性框图。
图24是根据本申请一实施例的终端设备的示意性框图。
图25是根据本申请另一实施例的终端设备的示意性框图。
图26是根据本申请一实施例的网络设备的示意性框图。
图27是根据本申请另一实施例的网络设备的示意性框图。
图28是根据本申请一实施例的终端设备的示意性框图。
图29是根据本申请一实施例的网络设备的示意性框图。
图30是根据本申请实施例的通信设备示意性框图。
图31是根据本申请实施例的芯片的示意性框图。
图32是根据本申请实施例的通信系统的示意性框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio  Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、先进的长期演进(Advanced long term evolution,LTE-A)系统、新无线(New Radio,NR)系统、NR系统的演进系统、非授权频谱上的LTE(LTE-based access to unlicensed spectrum,LTE-U)系统、非授权频谱上的NR(NR-based access to unlicensed spectrum,NR-U)系统、非地面通信网络(Non-Terrestrial Networks,NTN)系统、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、无线局域网(Wireless Local Area Networks,WLAN)、无线保真(Wireless Fidelity,WiFi)、第五代通信(5th-Generation,5G)系统或其他通信系统等。
通常来说,传统的通信系统支持的连接数有限,也易于实现,然而,随着通信技术的发展,移动通信系统将不仅支持传统的通信,还将支持例如,设备到设备(Device to Device,D2D)通信,机器到机器(Machine to Machine,M2M)通信,机器类型通信(Machine Type Communication,MTC),车辆间(Vehicle to Vehicle,V2V)通信,或车联网(Vehicle to everything,V2X)通信等,本申请实施例也可以应用于这些通信系统。
可选地,本申请实施例中的通信系统可以应用于载波聚合(Carrier Aggregation,CA)场景,也可以应用于双连接(Dual Connectivity,DC)场景,还可以应用于独立(Standalone,SA)布网场景。
可选地,本申请实施例中的通信系统可以应用于非授权频谱,其中,非授权频谱也可以认为是共享频谱;或者,本申请实施例中的通信系统也可以应用于授权频谱,其中,授权频谱也可以认为是非共享频谱。
本申请实施例结合网络设备和终端设备描述了各个实施例,其中,终端设备也可以称为用户设备(UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置等。
终端设备可以是WLAN中的站点(STAION,ST),可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)设备、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、下一代通信系统例如NR网络中的终端设备,或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)网络中的终端设备等。
在本申请实施例中,终端设备可以部署在陆地上,包括室内或室外、手持、穿戴或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。
在本申请实施例中,终端设备可以是手机(Mobile Phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(Virtual Reality,VR)终端设备、增强现实(Augmented Reality,AR)终端设备、工业控制(industrial control)中的无线终端设备、无人驾驶(self driving)中的无线终端设备、远程医疗(remote medical)中的无线终端设备、智能电网(smart grid)中的无线终端设备、运输安全(transportation safety)中的无线终端设备、智慧城市(smart city)中的无线终端设备或智慧家庭(smart home)中的无线终端设备等。
作为示例而非限定,在本申请实施例中,该终端设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的 功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
在本申请实施例中,网络设备可以是用于与移动设备通信的设备,网络设备可以是WLAN中的接入点(Access Point,AP),GSM或CDMA中的基站(Base Transceiver Station,BTS),也可以是WCDMA中的基站(NodeB,NB),还可以是LTE中的演进型基站(Evolutional Node B,eNB或eNodeB),或者中继站或接入点,或者车载设备、可穿戴设备以及NR网络中的网络设备(gNB)或者未来演进的PLMN网络中的网络设备或者NTN网络中的网络设备等。
作为示例而非限定,在本申请实施例中,网络设备可以具有移动特性,例如网络设备可以为移动的设备。可选地,网络设备可以为卫星、气球站。例如,卫星可以为低地球轨道(low earth orbit,LEO)卫星、中地球轨道(medium earth orbit,MEO)卫星、地球同步轨道(geostationary earth orbit,GEO)卫星、高椭圆轨道(High Elliptical Orbit,HEO)卫星等。可选地,网络设备还可以为设置在陆地、水域等位置的基站。
在本申请实施例中,网络设备可以为小区提供服务,终端设备通过该小区使用的传输资源(例如,频域资源,或者说,频谱资源)与网络设备进行通信,该小区可以是网络设备(例如基站)对应的小区,小区可以属于宏基站,也可以属于小小区(Small cell)对应的基站,这里的小小区可以包括:城市小区(Metro cell)、微小区(Micro cell)、微微小区(Pico cell)、毫微微小区(Femto cell)等,这些小小区具有覆盖范围小、发射功率低的特点,适用于提供高速率的数据传输服务。
图1示例性地示出了一种通信系统100。该通信系统包括一个网络设备110和两个终端设备120。可选地,该通信系统100可以包括多个网络设备110,并且每个网络设备110的覆盖范围内可以包括其它数量的终端设备120,本申请实施例对此不做限定。
可选地,该通信系统100还可以包括移动性管理实体(Mobility Management Entity,MME)、接入与移动性管理功能(Access and Mobility Management Function,AMF)等其他网络实体,本申请实施例对此不作限定。
其中,网络设备又可以包括接入网设备和核心网设备。即无线通信系统还包括用于与接入网设备进行通信的多个核心网。接入网设备可以是长期演进(long-term evolution,LTE)系统、下一代(移动通信系统)(next radio,NR)系统或者授权辅助接入长期演进(authorized auxiliary access long-term evolution,LAA-LTE)系统中的演进型基站(evolutional node B,简称可以为eNB或e-NodeB)宏基站、微基站(也称为“小基站”)、微微基站、接入站点(access point,AP)、传输站点(transmission point,TP)或新一代基站(new generation Node B,gNodeB)等。
应理解,本申请实施例中网络/系统中具有通信功能的设备可称为通信设备。以图1示出的通信系统为例,通信设备可包括具有通信功能的网络设备和终端设备,网络设备和终端设备可以为本申请实施例中的具体设备,此处不再赘述;通信设备还可包括通信系统中的其他设备,例如网络控制器、移动管理实体等其他网络实体,本申请实施例中对此不做限定。
应理解,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或” 的关系。
应理解,在本申请的实施例中提到的“指示”可以是直接指示,也可以是间接指示,还可以是表示具有关联关系。举例说明,A指示B,可以表示A直接指示B,例如B可以通过A获取;也可以表示A间接指示B,例如A指示C,B可以通过C获取;还可以表示A和B之间具有关联关系。
在本申请实施例的描述中,术语“对应”可表示两者之间具有直接对应或间接对应的关系,也可以表示两者之间具有关联关系,也可以是指示与被指示、配置与被配置等关系。
为便于理解本申请实施例的技术方案,以下对本申请实施例的相关技术进行说明,以下相关技术作为可选方案与本申请实施例的技术方案可以进行任意结合,其均属于本申请实施例的保护范围。
车联网是一种侧行通信的示例。图2为SL通信的示意图,如图2所示,车辆间可以与附近的车辆SL通信,进行防撞预警等应用。
侧行通信可以包括多种不同通信场景,例如:终端处于移动通信网络(以5G NR为例)覆盖内(in coverage scenario),或者,终端处于移动通信网络覆盖外(out of coverage scenario)。
图3a和图3b为SL通信场景的示意图。如图3a所示,当UE处于移动通信网络覆盖内场景时,UE通常会与NR基站保持连接,同时也会与其他UE保持SL连接。如图3b所示,当UE处于移动通信网络覆盖外场景时,UE通常不在NR基站的覆盖区域,UE仅存在SL连接。
下面介绍关于收发定时的内容。
在通信系统中,基站端具有严格的定时。图4为基站及UE定时的示意图。如图4所示,基站gNB定时(timing)是从基站端看到的收发定时。
由于终端与基站之间具有一定的距离,导致基站发射的信号会经过一定时间的传播延迟而被UE接收,体现在UE侧就是,UE接收时间相比gNB timing具有一个时延。在图4中,下行定时(downlink timing,DL)(UE)整体比gNB timing往后进行了偏移。
为了避免同一小区内的多个UE发射的上行信号到达基站的时间不一致从而造成相互干扰,基站需要对UE的发射时间视其距离进行调整。距离远的UE相比距离近的UE需要更早的提前发射,从而到达基站端的信号相互之间是差不多同时到达的。如图4所示,上行定时(uplink timing)(UE)会比gNB timing及downlink timing(UE)都提前了一定时间。通常将downlink timing(UE)与uplink timing(UE)间的定时提前称为TA(Timing advance)。
对比没有TA和有TA情况下基站及终端收发信号的定时差异。可以得出,在没有TA情况下,基站收到的不同UE发射的上行信号在时间上处于分散的状态,而采用TA后不同UE发射的上行信号在基站端是几乎同时到达的。
下面介绍关于SL的收发定时及干扰
在SL通信中,当UE处于NR小区(或称为NR基站)覆盖范围内时,包括两种SL定时的示例:
图5为SL定时与NR UE Rx定时对齐场景下的干扰的示意图。如图5所示(灰色表示工作时隙),例如,SL与UE Rx(接收)定时保持一致,且SL只能工作在上行发射时隙。这样导致UE的发射定时(Tx)会与SL的定时存在一个定时偏差TA。在这种定时结构中,当UE的NR与SL工作在同一频段时,NR发射信号干扰SL接收信号(例如,干扰SL+SL1),并且SL的发射信号(例如SL+SL1)也将干扰基站的接收信号。
注:SL2不受NR发射的影响,也不会影响NR基站的接收
图6为SL定时与NR UE Tx定时对齐场景下的干扰的示意图。如图6所示(灰色表示工作时隙),例如,SL与UE发射(Tx)定时保持一致,且SL只能工作在上行发射时隙。这样导致UE的发射(Tx)定时会与SL的定时保持一致。在这种定时结构中,当NR与SL工作在同一频段时,NR发射信号干扰SL接收信号,同时SL的发射信号也将干扰基站的接收信号
针对以上SL定时模式下的涉及NR与SL的干扰,本申请实施例可以提供多种方案。
图7是根据本申请一实施例通信方法200的示意性流程图。该方法可选地可以应用于图1所示的系统,但并不仅限于此。该方法包括以下内容的至少部分内容。
S210、终端设备上报新无线(NR)上行信号与侧行链路(SL)接收信号之间的频谱间隔要求。其中,该频谱间隔要求用于该NR上行信号和该SL接收信号的调度。可选地,终端设备上报NR上行信号与SL接收信号之间的最小频谱间隔。其中,该最小频谱间隔用于进行该NR上行信号和该SL接收信号的调度。
在本申请实施例中,在终端设备内部,从该终端设备向网络设备发送的信号可以称为NR上行信号,该终端设备从另一终端设备接收的信号可以称为SL接收信号。终端设备向网络设备上报NR上行信号与SL接收信号的频谱间隔要求后,网络设备可以基于该频谱间隔要求进行NR上行信号和该SL接收信号的调度,使得NR上行信号和该SL接收信号之间实际的频谱间隔尽可能的大于或等于该频谱间隔要求。
可选地,在本申请实施例中,该频谱间隔要求为该NR与该SL在同一频段同时工作的情况下所要求的NR上行信号与SL接收信号之间的最小频谱间隔。
可选地,在本申请实施例中,该频谱间隔要求包括以下至少之一:
使得该NR上行信号以最大功率发射且不引起该SL接收信号干扰的最小频谱间隔;
使得该NR上行信号以最大功率发射且该SL接收信号收到的干扰不超过设定值的最小频谱间隔。
可选地,在本申请实施例中,该方法还包括:
在该NR上行信号与该SL接收信号之间的频谱间隔小于该频谱间隔要求例如最小频谱间隔的情况下,该终端设备采用时分双工(Time Division Duplexing,TDD)方式进行该NR上行信号的发射和该SL接收信号的接收。
示例性地,如果该NR上行信号与该SL接收信号之间实际的频谱间隔小于该最小频谱间隔,终端设备的NR上行信号的发射和SL接收信号的接收可以不同时进行,而是采用TDD的方式。
可选地,在本申请实施例中,该方法还包括:
在该NR上行信号与该SL接收信号之间的频谱间隔小于该频谱间隔要求例如最小频谱间隔的情况下,如果该终端设备同时进行该NR上行信号的发射和该SL接收信号的接收,则该终端设备的SL接收灵敏度恶化。
示例性地,如果该NR上行信号与该SL接收信号之间实际的频谱间隔小于该最小频谱间隔,并且终端设备的NR上行信号的发射和SL接收信号的接收同时进行,这种情况下,可以允许终端设备的SL接收灵敏度恶化。并且,还可以按照一定的恶化值控制终端设备的SL接收灵敏度恶化。
可选地,在本申请实施例中,该SL接收灵敏度恶化的恶化值的确定方式包括以下方式的至少之一:
采用标准预定义该恶化值;
该终端设备上报该恶化值。
在本实施例中,通过终端设备上报频谱间隔要求例如最小频谱间隔,可以促使网络设备在调度载波频谱时尽量采用较大的频谱间隔来规避干扰。
图8是根据本申请一实施例通信方法300的示意性流程图。该方法可选地可以应用于图1所示的系统,但并不仅限于此。本实施例与方法200相同的描述具有相同的含义,在此不赘述。在本实施例中,该方法包括以下内容的至少部分内容。
S310、网络设备接收终端设备上报的NR上行信号与SL接收信号之间的频谱间隔要求。可选地,网络设备接收终端设备上报的NR上行信号与SL接收信号之间的最小频谱间隔。
S320、该网络设备基于该频谱间隔要求,调度该NR上行信号和该SL接收信号。可选地,该网络设备基于该最小频谱间隔,调度该NR上行信号和该SL接收信号。
可选地,在本申请实施例中,该频谱间隔要求为该NR与该SL在同一频段同时工作的情况下所要求的该NR上行信号与该SL接收信号之间的最小频谱间隔。
可选地,在本申请实施例中,该频谱间隔要求包括以下至少之一:
使得该NR上行信号以最大功率发射且不引起该SL接收信号干扰的最小频谱间隔;
使得该NR上行信号以最大功率发射且该SL接收信号收到的干扰不超过设定值的最小频谱间隔。
可选地,在本申请实施例中,该方法还包括:
在该NR上行信号与该SL接收信号之间的频谱间隔小于该频谱间隔要求例如最小频谱间隔的情况下,该网络设备发送该NR上行信号和该接收SL接收信号的轮流工作时间模板。该时间模板可以规定NR上行信号的发射和SL接收信号的接收不同时进行的具体方式。例如,按照时隙轮流地进行NR上行信号的发射和SL接收信号的接收。
可选地,在本申请实施例中,该方法还包括:
在该NR上行信号与该SL接收信号之间的频谱间隔小于该频谱间隔要求例如最小频谱间隔的情况下,该网络设备允许的该终端设备的SL接收灵敏度恶化,该终端设备为上报该频谱间隔要求的终端设备。
可选地,在本申请实施例中,该SL接收灵敏度恶化的恶化值的确定方式包括以下方式的至少之一:
采用标准预定义该恶化值;
接收该终端设备上报的该恶化值。
本实施例的网络设备执行方法300的具体示例可以参见上述方法200的中关于网络设备例如基站的相关描述,为了简洁,在此不再赘述。
在本实施例中,网络设备收到终端设备上报的频谱间隔要求例如最小频谱间隔后,可以在调度载波频谱时尽量采用较大的频谱间隔来规避干扰。
图9是根据本申请另一实施例通信方法400的示意性流程图。该方法可选地可以应用于图1所示的系统,但并不仅限于此。该方法包括以下内容的至少部分内容。
S410、终端设备上报引起侧行链路SL接收灵敏度恶化的恶化值对应的新无线NR上行信号的最大功率能力。
在本申请实施例中,在终端设备内部,从该终端设备向网络设备发送的信号可以称为NR上行信号,该终端设备从另一终端设备接收的信号可以称为SL接收信号。终端设备向网络设备上报引起SL接收灵敏度恶化的恶化值对应的NR上行信号的最大功率能力,网络设备可以根据该最大功率能力,调度该 终端设备的NR上行信号和SL接收信号,使得终端设备的NR上行信号的发射功率尽可能小于或等于该最大功率能力。这样,通过上报该恶化值对应的NR上行信号的最大功率能力,使得网络设备能够在不引起过大SL接收信号的性能损失的情况下,调度NR上行信号的发射功率,减少SL接收信号与NR上行信号之间的干扰。
可选地,在本申请实施例中,该方法还包括:该终端设备上报该恶化值。具体地,该终端设备可以将恶化值与最大功率能力联合上报,也可以分别上报。网络设备可以根据该最大功率能力,调度该终端设备的NR上行信号和SL接收信号,使得终端设备的NR上行信号的发射功率尽可能小于或等于该终端设备实际的恶化值对应的最大功率能力。这样,通过上报该恶化值及其对应的NR上行信号的最大功率能力,使得网络设备能够在不引起过大SL接收信号的性能损失的情况下,调度NR上行信号的发射功率,减少SL接收信号与NR上行信号之间的干扰。
可选地,在本申请实施例中,该恶化值为预定义的值。例如,在终端设备和网络设备分别保存终端设备的最大功率能力与该恶化值的对应关系。
可选地,在本申请实施例中,该方法还包括:该终端设备在发射功率超出该最大功率能力和该恶化值超出阈值满足至少之一的情况下,断开NR连接和/或断开SL连接。该恶化值的阈值与最大功率能力有间接的关系。基站可以根据自身能接受的终端灵敏度恶化值对应的发射功率能力来调度UE的发射功率,但阈值的确定与最大功率没有直接关系,而可以是根据灵敏度恶化情况来确定。
示例性地,如果终端设备实际的发射功率超出该最大功率能力,并且,终端设备的SL接收灵敏度恶化实际的恶化值超出阈值,则终端设备可以断开与网络之间的NR连接,也可以断开与其他终端设备的SL连接,还可以断开NR连接和SL连接。
图10是根据本申请另一实施例通信方法500的示意性流程图。该方法可选地可以应用于图1所示的系统,但并不仅限于此。本实施例与方法400相同的描述具有相同的含义,在此不赘述。在本实施例中,该方法包括以下内容的至少部分内容。
S510、网络设备接收引起终端设备的SL接收灵敏度恶化的恶化值对应的NR上行信号的最大功率能力;
S520、该网络设备基于该最大功率能力,调度该终端设备的NR上行信号和SL接收信号。
可选地,在本申请实施例中,该恶化值为该终端设备上报的,或预定义的值。
可选地,在本申请实施例中,该网络设备基于该最大功率能力,调度该终端设备的NR上行信号和SL接收信号,包括:该网络设备基于该最大功率能力和该恶化值进行调度。
可选地,在本申请实施例中,该网络设备基于该最大功率能力和该恶化值进行调度,包括:该网络设备允许该终端设备在发射功率超出该最大功率能力和该恶化值超出阈值满足至少之一的情况下,断开NR连接和/或断开SL连接。例如,网络设备与终端设备可以约定当SL接收灵敏度恶化超出阈值,则断开NR连接。
本实施例的网络设备执行方法500的具体示例可以参见上述方法400的中关于网络设备例如基站的相关描述,为了简洁,在此不再赘述。
在本实施例中,网络设备基于终端设备上报的SL接收灵敏度恶化的恶化值对应的NR上行信号的最大功率能力,能够在不引起过大SL接收信号的性能损失的情况下,调度终端设备的NR上行信号的发射功率,减少SL接收信号与NR上行信号之间的干扰。
图11是根据本申请另一实施例通信方法600的示意性流程图。该方法可选地可以应用于图1所示的系统,但并不仅限于此。该方法包括以下内容的至少部分内容。
S610、终端设备获取网络设备对该终端设备的发射功率要求,该发射功率要求与位置信息关联。可选地,终端设备获取网络设备允许的该终端设备的最大发射功率,该最大发射功率与位置信息关联。
S620、该终端设备基于该发射功率要求,控制发射功率。可选地,该终端设备基于该网络设备允许的该终端设备的最大发射功率,控制发射功率。
示例性地,终端设备可以将自身的SL发送信号的发射功率限制为小于上述的发射功率要求,例如小于最大发射功率。
可选地,在本申请实施例中,该位置信息包括网格区域的信息,终端设备获取网络设备对该终端设备的发射功率要求,包括:
该终端设备获取自身所处的网格区域的信息对应的该发射功率要求,该发射功率要求为网络设备允许的该终端设备的最大发射功率。
例如,将网络设备的覆盖范围预先划分为多个网格区域,每个网格区域具有对应的网络设备允许的终端设备的最大发射功率。终端设备移动到某个网络设备的覆盖范围内,该网络设备可以将自己的网格区域与最大发射功率的对应关系广播发送给终端设备。可以只发送终端设备当前所在的网格区域及其对应的最大发射功率;也可以发送该网络设备的所有网格区域与最大发射功率的对应关系。可能存在多个网格区域对应相同的最大发射功率的情况。终端设备移动到某个网格区域后,可以根据自己当前所处的网格区域的标识获取对应的最大发射功率,并将该终端设备实际的发射功率例如SL发送信号实际的发射功率限制为小于该最大发射功率。
可选地,在本申请实施例中,该位置信息包括参考地理位置信息,终端设备获取网络设备对该终端设备的发射功率要求,包括:
该终端设备根据自身的地理位置信息和该参考地理位置信息,计算该终端设备与该网络设备的距离;
该终端设备获取该距离对应的该发射功率要求,该发射功率要求为网络设备允许的该终端设备的最大发射功率。
示例性地,该参考地理位置信息可以为网络设备的地理位置信息,或者其他预先设定的地理位置信息。网络设备的地理位置信息可以为基站的经纬度信息,由于基站的位置信息是不变的,该信息可以采用单独的广播来发送,节省信令开销,当然,也可以与该最大发射功率一起发送。
可选地,在本申请实施例中,终端设备基于该网络设备允许的该终端设备的最大发射功率,控制发射功率,包括:该终端设备将发射功率限制为小于该网络设备允许的该终端设备的最大发射功率。
可选地,在本申请实施例中,该方法还包括:预定义或从该网络设备接收与该位置信息关联的该发射功率要求。可选地,预定义或从该网络设备接收与该位置信息关联的该最大发射功率。例如,预定义或从该网络设备接收距离与最大发射功率的对应关系。再如,预定义或从该网络设备接收网格与最大发射功率的对应关系。
具体地,终端设备计算出与网络设备的距离之后,可以查找距离与最大发射功率的对应关系,以确定在该距离的情况下网络设备允许的该终端设备的最大发射功率。然后,终端设备可以将自身的发射功率限定为小于该最大发射功率。
在本实施例中,终端设备接收网络设备允许的该终端设备的最大发射功率,该发射功率要求与位置信息关联,可以将自身的发射功率限定为小于该最大发射功率,从而减少终端设备发送功率过大对网络设备造成的干扰。
图12是根据本申请另一实施例通信方法700的示意性流程图。该方法可选地可以应用于图1所示的系统,但并不仅限于此。本实施例与方法600相同的描述具有相同的含义,在此不赘述。在本实施例中,该方法包括以下内容的至少部分内容。
S710、网络设备发送该网络设备对终端设备的发射功率要求,该发射功率要求与位置信息关联。可选地,网络设备发送该网络设备允许的终端设备的最大发射功率,该最大发射功率与位置信息关联。
可选地,在本申请实施例中,该位置信息包括网格区域的信息。
可选地,在本申请实施例中,该位置信息包括参考地理位置信息。
可选地,在本申请实施例中,参考地理位置信息是预定义或从该网络设备接收的。
本实施例的网络设备执行方法700的具体示例可以参见上述方法600的中关于网络设备例如基站的相关描述,为了简洁,在此不再赘述。
在本实施例中,网络设备发送该网络设备允许的终端设备的最大发射功率,该发射功率要求与位置信息关联,可以使得终端设备将自身的发射功率限定为小于该最大发射功率,从而减少终端设备发送功率过大对网络设备造成的干扰。
在本申请实施例的应用示例中,可以解决在NR和SL同频段工作时,终端内部NR UE Tx信号(也可以称为NR上行信号,也可以简称NR Tx信号)对UE SL Rx信号(也可以称为SL接收信号,也可以简称SL Rx信号)的干扰的问题。参见以下方案1和/或方案2:
方案1:终端上报可支持的NR与SL同频段下同时工作的最小频谱间隔。
方案2:终端上报NR UE Tx信号的发射功率与SL Rx信号性能恶化的对应关系。
在本申请实施例的应用示例中,还可以解决UE的SL Tx信号对网络设备例如gNB Rx信号(也可以称为网络接收信号)的干扰的问题。参见方案3。
方案3:基站基于位置的Pmax广播方式,Pmax为该基站允许的终端的最大发射功率。
在SL和NR处于同一频段的情况下,为规避干扰如果采用时分方式无法同时工作,带来的是整体性能的下降。本申请实施例中,方案1上报终端能力可以实现SL与NR在同一频段下的同时工作,减少干扰,提升终端性能。方案2上报恶化的信息可以通过基站对UE发射功率的控制来将干扰维持在一定范围内。方案3基站基于地理位置的Pmax限制终端的最大发射功率,可以降低的对基站端的干扰,提升基站的性能。
下面分别介绍各个方案的具体示例。
示例1:UE内部NR UE Tx信号对SL Rx信号的干扰
图13a和图13b UE内部NR对SL的干扰示意图。如图13a所示,为当终端的SL定时与NR UE Rx信号对齐时的干扰情况,其中,NR UE Tx信号在U1范围内,以及SL Rx信号在SL2范围内不会带来干扰,且U1和SL2的时间长度均等于TA。如图13b所示,为当终端SL Rx信号定时(可以简称SL定时)与NR UE Tx信号对齐时的干扰情况,其中的两个U时隙与两个SL时隙重叠(即UE NR Tx与UR SL Rx同时工作),并存在NR UE Tx信号对SL Rx信号的干扰。
如图14a和图14b所示,当NR与SL工作于同一个频段时,在终端实现架构上,可以采用共射频 链路或采用独立射频链路两种情况。
对于采用共射频链路架构,NR与SL之间没有链路间的隔离,因此在同时工作的情况下会带来严重的干扰。对于这种情况,多采用时分模式(轮流工作)来规避干扰,但性能会受影响。
因此,更多时候,NR与SL同时工作,同时终端采用NR与SL独立射频架构以增加NR UE Tx信号与SL Rx信号间的隔离度,降低干扰,如图14b所示。
干扰的大小取决于两个因素,NR UE Tx信号的发射功率强度、NR UE Tx信号与SL Rx信号间的隔离度。其中隔离度的大小(如图15所示)又取决于NR UE Tx信号工作频谱与SL Rx信号频谱的间距、NR UE Tx信号频谱的带外泄露强度、SL Rx信号对NR UE Tx信号带外泄露的抑制度。通常这些因素与UE的实现有很大关系。在同样的频谱间距下,NR带外泄露越小、SL Rx信号对NR UE Tx信号带外泄露抑制度越大,则干扰越小。而对于同一个UE来说,NR UE Tx信号频谱与SL Rx信号频谱间距越大则干扰越小。
基于以上分析,为解决当NR与SL工作于同一频段时NR UE Tx信号对SL Rx信号的干扰,可通过以下方式进行:
方案一:终端上报NR与SL在同一频段同时工作,所要求的NR UE Tx信号与SL Rx信号间的最小频谱间隔Gap_min。
这个最小频谱间隔可以对应NR UE Tx信号最大功率发射且不引起SL Rx信号干扰的最小频谱间隔,或者对应NR UE Tx信号最大功率发射时SL Rx信号收到的干扰不超过XdB时的最小频谱间隔。
当NR UE Tx信号与UE SL Rx信号间的频谱间隔小于最小频谱间隔能力Gap_min时,终端SL Rx将受到较强的干扰,可进一步采取以下处理方式:
方式1、终端NR UE Tx信号和UE SL Rx信号不同时进行,即采用TDD模式
方式2、终端NR UE Tx信号和UE SL Rx信号同时进行,但允许UE SL Rx信号采取一定的灵敏度恶化。该灵敏度恶化的恶化值可以是标准预定义的,也可以是终端上报的一个能力指示信息。
基站收到上述最小频谱间隔能力Gap_min后,参考该Gap_min值进行NR UE Tx信号和SL Rx信号频谱的使用调度。
当实际调度的频谱间隔小于Gap_min时:
基站可选择采用上述方式1进行处理。这种情况下,基站需要给UE配置NR UE Tx信号(简称NR Tx)和SL UE Rx信号(简称SL Rx)的轮流工作时间模板(TDD pattern),举例如下:
NR Tx SL Rx NR Tx SL Rx NR Tx SL Rx NR Tx SL Rx NR Tx SL Rx
基站也可以采用上述方式2进行处理。这种情况下,基站不配置NR UE Tx信号和UE SL Rx信号的轮流工作时间模板,但允许UE的UE SL Rx信号有一定的灵敏度恶化。
方案二:在NR UE Tx信号和UE SL Rx信号频谱位置一定的情况下,终端上报引起UE SL Rx信号灵敏度恶化XdB时,终端NR UE Tx信号可发射的最大功率能力Px。其中灵敏度恶化XdB可以为0或大于0的数值,该数值可以为预定义的值(此时只需要上报Px),也可以是终端联合上报的值即(XdB,Px)
基站收到终端上报的NR UE Tx信号可发射最大功率能力Px及灵敏度恶化XdB后,基站参考该最大功率能力进行调度。当终端发射功率超过Px且灵敏度恶化X大于一预定值X_limit后,允许UE断掉NR连接或断掉SL连接。
在本示例中,为规避终端内NR UE Tx信号对SL Rx信号的干扰,给出了两种方案。方案一可以通过终端上报最小频谱间隔Gap来促使基站在调度载波频谱时尽量采用较大的频谱间隔来规避干扰。方案二可以在基站难以协调频谱的情况下,终端告知网络NR发射功率的调度限制,也即NR UE Tx信号发射功率与SL Rx信号灵敏度恶化的关系,这样网络能够在不引起过大SL Rx信号性能损失的情况下来调度NR UE Tx信号的发射功率。
通过以上方案,可以将终端内部NR UE Tx信号与SL Rx信号之间的干扰透明化,并通过基站辅助降低终端内干扰。
上述方案对于基站来说可以属于可选特性。
示例2:UE SL Tx信号对NR gNB Rx信号的干扰
图16为UE SL Tx信号干扰gNB Rx信号的示意图。如图16所示,终端SL发射也将干扰基站的上行接收。由于终端与gNB的传播时延,导致:在图17a场景中SL和SL1的Tx信号,将干扰gNB的U2和U时隙的接收;在图17b场景中SL的Tx信号将干扰gNB的U时隙的接收。
在上述场景下,为解决干扰可以对SL的发射功率进行限定。相关技术中SL发射功率控制为开环功率控制,也即SL发射功率是基于预配置的参数(例如目标功率、传播损耗加权)进行计算。其中传播损耗是SL终端间的传播损耗与SL终端间距离有关,而与终端与基站间的距离无关。这也导致了终端在离基站很近的情况下依然会发射比较大的功率,造成UE SL Tx信号对gNB Rx信号的干扰。
本示例的功率控制机制可以对SL功率进行限制。为此,需要考虑对距离基站比较近的SL UE的发射功率进行限制,来降低对gNB的接收干扰,如图18所示,为不同区域的UE SL Tx对基站的干扰示意图。
具体可以采用基于地理位置的Pmax配置(Pmax仅在部分位置下才起作用)方案如下:
Pmax通常被用来限定小区内的UE的最大发射功率,且对于单小区场景下配置该参数后小区内的所有UE的发射功率都会受限。这实际无法满足上述需求,也即目标是只有当SL UE处于距离基站比较近的距离时Pmax才会起作用。基于此,具体实现方式如下:
方式1、基于网格区域的Pmax广播
如图19所示,将小区按照地理位置划分为多个网格区域,该网格区域的信息可以是预定义的。终端和基站可以清晰获取自身的位置,例如,在图19中,基站位于网格5。
基站按照终端所处的不同网格区域配置不同的Pmax值。例如,在图19中,与基站较近的深色区域(标识为1至9)配置一个Pmax1来将UE的发射功率限制到一个较低的功率值。浅色区域(标识为10至25)配置另外一个Pmax2将UE发射功率限制到另外一个功率值。与基站较远的白色区域(标识为26至49),终端SL发射对基站的干扰并不明显,则此区域并不需要对终端的发射功率进行限定。
在具体信令设计上,Pmax可以与网格区域的标识进行对应,例如{Pmax1,网格1/2/3/4/5/6/7/8/9},{Pmax2,网格10-25}
因此,当终端进入白色区域时,可以按照常规功率进行SL发射。当终端进入浅色区域后,SL需要按照Pmax1控制发射功率。当终端进入深色区域,SL需要按照Pmax2控制发射功率。
方式2、基于地理位置的Pmax广播
在这种方式中,可以采用与方式1类似的方式,但不划分网格区域,而是基于距离限制发射功率。具体方式可以包括:基站在进行Pmax广播的时候可以同时携带以下信息:
(1)基站经纬度位置信息,因为基站位置信息是不变的,所以该信息可以是单独广播的来节省信令开销,也可以是和Pmax一起广播的。
(2)距离要求。
(2-1)该距离要求可以是预定义的而不需要广播。
例如将小区内与基站的距离划分为<Distance1,Distance1到Distance2,>Distance2三个区域,并广播三个Pmax值{Pmax1,Pmax2,Pmax3}。其中Pmax1对应<Distance1的区域,Pmax2对应Distance1到Distance2的区域,Pmax3对应>Distance2的区域。
(2-2)该距离要求也可以是基站根据需要而广播的,用来限定不同Pmax的使用范围。
例如{Pmax1,Distance1}、{Pmax2,Distance2}…(假设Distance1<Distance2<…)。
终端在获取到基站的经纬度位置信息后,结合自身的经纬度信息,可以得到与基站的实际距离DistanceUE,并基于基站广播的Pmax和距离要求来限制发射功率。例如:
当DistanceUE≤Distance1时,UE SL信号的最大发射功率不应超过Pmax1;
当Distance1<DistanceUE≤Distance2时,UE SL信号的最大发射功率不应超过Pmax2。
在本示例中,通过上述基于位置的Pmax广播,可以有效解决SL终端处于小区中心位置且发射大功率情况下带来的对gNB Rx信号的干扰问题。
通过以上技术方案,可解决NR和SL同频段时UE内NR Tx对UE SL Rx的干扰,还可以解决UE SL Tx对gNB Rx的干扰。
图20是根据本申请一实施例的终端设备20的示意性框图。该终端设备20可以包括:
上报单元21,用于上报新无线NR上行信号与侧行链路SL接收信号之间的频谱间隔要求;其中,该频谱间隔要求用于该NR上行信号和该SL接收信号的调度。可选地,上报单元21,用于上报新无线NR上行信号与侧行链路SL接收信号之间的最小频谱间隔,该最小频谱间隔用于进行该NR上行信号和该SL接收信号的调度。
可选地,在本申请实施例中,该频谱间隔要求为该NR与该SL在同一频段同时工作的情况下所要求的NR上行信号与SL接收信号之间的最小频谱间隔。
可选地,在本申请实施例中,该频谱间隔要求包括以下至少之一:
使得该NR上行信号以最大功率发射且不引起该SL接收信号干扰的最小频谱间隔;
使得该NR上行信号以最大功率发射且该SL接收信号收到的干扰不超过设定值的最小频谱间隔。
如图21所示,可选地,在本申请实施例中,该终端设备20还包括:
第一传输单元22,用于在该NR上行信号与该SL接收信号之间的频谱间隔小于该频谱间隔要求例如最小频谱间隔的情况下,采用时分双工TDD方式进行该NR上行信号的发射和该SL接收信号的接收。
可选地,在本申请实施例中,该终端设备20还包括:
第二传输单元23,用于在该NR上行信号与该SL接收信号之间的频谱间隔小于该频谱间隔要求例如最小频谱间隔的情况下,如果该终端设备20同时进行该NR上行信号的发射和该SL接收信号的接收,则该终端设备20的SL接收灵敏度恶化。
可选地,在本申请实施例中,该SL接收灵敏度恶化的恶化值的确定方式包括以下方式的至少之一:
采用标准预定义该恶化值;
该终端设备20上报该恶化值。
本申请实施例的终端设备20能够实现前述的方法实施例中的终端设备的对应功能。该终端设备20中的各个模块(子模块、单元或组件等)对应的流程、功能、实现方式以及有益效果,可参见上述方法实施例中的对应描述,在此不再赘述。
需要说明,关于申请实施例的终端设备20中的各个模块(子模块、单元或组件等)所描述的功能,可以由不同的模块(子模块、单元或组件等)实现,也可以由同一个模块(子模块、单元或组件等)实现。
图22是根据本申请一实施例的网络设备30的示意性框图。该网络设备30可以包括:
接收单元31,用于接收终端设备上报的新无线NR上行信号与侧行链路SL接收信号之间的频谱间隔要求;
调度单元32,用于基于该频谱间隔要求,调度该NR上行信号和该SL接收信号。
可选地,接收单元31,用于接收终端设备上报的新无线NR上行信号与侧行链路SL接收信号之间的最小频谱间隔;调度单元32,用于基于该最小频谱间隔,调度该NR上行信号和该SL接收信号。
可选地,在本申请实施例中,该频谱间隔要求为该NR与该SL在同一频段同时工作的情况下所要求的该NR上行信号与该SL接收信号之间的最小频谱间隔。
可选地,在本申请实施例中,该频谱间隔要求包括以下至少之一:
使得该NR上行信号以最大功率发射且不引起该SL接收信号干扰的最小频谱间隔;
使得该NR上行信号以最大功率发射且该SL接收信号收到的干扰不超过设定值的最小频谱间隔。
如图23所示,可选地,在本申请实施例中,该网络设备30还包括:
发送单元33,用于在该NR上行信号与该SL接收信号之间的频谱间隔小于该频谱间隔要求例如最小频谱间隔的情况下,发送该NR上行信号和该接收SL接收信号的轮流工作时间模板。
可选地,在本申请实施例中,该网络设备30还包括:
控制单元34,用于在该NR上行信号与该SL接收信号之间的频谱间隔小于该频谱间隔要求例如最小频谱间隔的情况下,允许该终端设备的SL接收灵敏度恶化,该终端设备为上报该频谱间隔要求的终端设备。
可选地,在本申请实施例中,该SL接收灵敏度恶化的恶化值的确定方式包括以下方式的至少之一:
采用标准预定义该恶化值;
接收该终端设备上报的该恶化值。
本申请实施例的网络设备30能够实现前述的方法实施例中的网络设备的对应功能。该网络设备30中的各个模块(子模块、单元或组件等)对应的流程、功能、实现方式以及有益效果,可参见上述方法实施例中的对应描述,在此不再赘述。
图24是根据本申请一实施例的终端设备40的示意性框图。该终端设备40可以包括:
上报单元41,用于上报引起侧行链路SL接收灵敏度恶化的恶化值对应的新无线NR上行信号的最大功率能力。
可选地,在本申请实施例中,该上报单元41还用于上报该恶化值。
可选地,在本申请实施例中,该恶化值为预定义的值。
如图25所示,可选地,在本申请实施例中,该终端设备40还包括:
控制单元42,用于该终端设备在发射功率超出该最大功率能力和该恶化值超出阈值满足至少之一的情况下,断开NR连接和/或断开SL连接。
本申请实施例的终端设备40能够实现前述的方法实施例中的终端设备的对应功能。该终端设备40中的各个模块(子模块、单元或组件等)对应的流程、功能、实现方式以及有益效果,可参见上述方法实施例中的对应描述,在此不再赘述。
需要说明,关于申请实施例的终端设备40中的各个模块(子模块、单元或组件等)所描述的功能,可以由不同的模块(子模块、单元或组件等)实现,也可以由同一个模块(子模块、单元或组件等)实现。
图26是根据本申请一实施例的网络设备50的示意性框图。该网络设备50可以包括:
接收单元51,用于接收引起终端设备的侧行链路SL接收灵敏度恶化的恶化值对应的新无线NR上行信号的最大功率能力;
调度单元52,用于基于该最大功率能力,调度该终端设备的NR上行信号和SL接收信号。
可选地,在本申请实施例中,该恶化值为该终端设备上报的,或预定义的值。
可选地,在本申请实施例中,该调度单元52还用于基于该最大功率能力和该恶化值进行调度。
如图27所示,可选地,在本申请实施例中,该网络设备50还包括:
控制单元53,用于允许该终端设备在发射功率超出该最大功率能力和该恶化值超出阈值满足至少之一的情况下,断开NR连接和/或断开SL连接。
本申请实施例的网络设备50能够实现前述的方法实施例中的网络设备的对应功能。该网络设备50中的各个模块(子模块、单元或组件等)对应的流程、功能、实现方式以及有益效果,可参见上述方法实施例中的对应描述,在此不再赘述。
图28是根据本申请一实施例的终端设备60的示意性框图。该终端设备60可以包括:
获取单元61,用于获取网络设备对该终端设备的发射功率要求,该发射功率要求与位置信息关联;
控制单元62,用于基于该发射功率要求,控制发射功率。例如,基于该网络设备允许的该终端设备的最大发射功率,控制发射功率。
可选地,获取单元61,用于获取网络设备允许的该终端设备的最大发射功率,该最大发射功率与位置信息关联。控制单元62,用于基于该网络设备允许的该终端设备的最大发射功率,控制发射功率。
可选地,在本申请实施例中,该位置信息包括网格区域的信息,该获取单元还用于获取自身所处的网格区域的信息对应的该发射功率要求,该发射功率要求为网络设备允许的该终端设备的最大发射功率。
可选地,在本申请实施例中,该位置信息包括参考地理位置信息,该获取单元还用于:
根据自身的地理位置信息和该参考地理位置信息,计算该终端设备60与该网络设备的距离;
获取该距离对应的该发射功率要求,该发射功率要求为网络设备允许的该终端设备的最大发射功率。
可选地,在本申请实施例中,该控制单元还用于将发射功率限制为小于该网络设备允许的该终端设备的最大发射功率。
可选地,在本申请实施例中,获取单元61还用于预定义或从该网络设备接收与该位置信息关联的该发射功率要求。
本申请实施例的终端设备60能够实现前述的方法实施例中的终端设备的对应功能。该终端设备60中的各个模块(子模块、单元或组件等)对应的流程、功能、实现方式以及有益效果,可参见上述方法实施例中的对应描述,在此不再赘述。
需要说明,关于申请实施例的终端设备60中的各个模块(子模块、单元或组件等)所描述的功能,可以由不同的模块(子模块、单元或组件等)实现,也可以由同一个模块(子模块、单元或组件等)实现。
图29是根据本申请一实施例的网络设备70的示意性框图。该网络设备70可以包括:
发送单元71,用于发送该网络设备对终端设备的发射功率要求,该发射功率要求与位置信息关联。可选地,发送单元71,用于发送该网络设备允许的终端设备的最大发射功率,该最大发射功率与位置信息关联。
可选地,在本申请实施例中,该位置信息包括网格区域的信息。
可选地,在本申请实施例中,该位置信息包括参考地理位置信息。
可选地,在本申请实施例中,该参考地理位置信息是预定义或从该网络设备接收的。
本申请实施例的网络设备70能够实现前述的方法实施例中的网络设备的对应功能。该网络设备70中的各个模块(子模块、单元或组件等)对应的流程、功能、实现方式以及有益效果,可参见上述方法实施例中的对应描述,在此不再赘述。
需要说明,关于申请实施例的网络设备70中的各个模块(子模块、单元或组件等)所描述的功能,可以由不同的模块(子模块、单元或组件等)实现,也可以由同一个模块(子模块、单元或组件等)实现。
图30是根据本申请实施例的通信设备800示意性结构图。该通信设备800包括处理器810,处理器810可以从存储器中调用并运行计算机程序,以使通信设备800实现本申请实施例中的方法。
可选地,如图30所示,通信设备800还可以包括存储器820。其中,处理器810可以从存储器820中调用并运行计算机程序,以使通信设备800实现本申请实施例中的方法。
其中,存储器820可以是独立于处理器810的一个单独的器件,也可以集成在处理器810中。
可选地,如图30所示,通信设备800还可以包括收发器830,处理器810可以控制该收发器830与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。
其中,收发器830可以包括发射机和接收机。收发器830还可以进一步包括天线,天线的数量可以为一个或多个。
可选地,该通信设备800可为本申请实施例的网络设备,并且该通信设备800可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该通信设备800可为本申请实施例的终端设备,并且该通信设备800可以实现本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
图31是根据本申请实施例的芯片900的示意性结构图。该芯片900包括处理器910,处理器910可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图31所示,芯片900还可以包括存储器920。其中,处理器910可以从存储器920中调用并运行计算机程序,以实现本申请实施例中由终端设备或者网络设备执行的方法。
其中,存储器920可以是独立于处理器910的一个单独的器件,也可以集成在处理器910中。
可选地,该芯片900还可以包括输入接口930。其中,处理器910可以控制该输入接口930与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
可选地,该芯片900还可以包括输出接口940。其中,处理器910可以控制该输出接口940与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
可选地,该芯片可应用于本申请实施例中的网络设备,并且该芯片可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该芯片可应用于本申请实施例中的终端设备,并且该芯片可以实现本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
应用于网络设备和终端设备的芯片可以是相同的芯片或不同的芯片。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
上述提及的处理器可以是通用处理器、数字信号处理器(digital signal processor,DSP)、现成可编程门阵列(field programmable gate array,FPGA)、专用集成电路(application specific integrated circuit,ASIC)或者其他可编程逻辑器件、晶体管逻辑器件、分立硬件组件等。其中,上述提到的通用处理器可以是微处理器或者也可以是任何常规的处理器等。
上述提及的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM)。
应理解,上述存储器为示例性但不是限制性说明,例如,本申请实施例中的存储器还可以是静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)以及直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)等等。也就是说,本申请实施例中的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
图32是根据本申请实施例的通信系统1000的示意性框图。该通信系统1000包括终端设备1010和网络设备1020。
在一种可能的实施方式中,终端设备用于上报NR上行信号与SL接收信号之间的频谱间隔要求;其中,该频谱间隔要求用于该NR上行信号和该SL接收信号的调度。网络设备用于接收终端设备上报的NR上行信号与SL接收信号之间的频谱间隔要求;该网络设备基于该频谱间隔要求,调度该NR上行信号和该SL接收信号。
在另一种可能的实施方式中,终端设备用于上报引起SL接收灵敏度恶化的恶化值对应的NR上行信号的最大功率能力。网络设备用于接收引起终端设备的SL接收灵敏度恶化的恶化值对应的NR上行信号的最大功率能力;该网络设备基于该最大功率能力,调度该终端设备的NR上行信号和SL接收信号。
在另一种可能的实施方式中,终端设备用于接收网络设备允许的该终端设备的最大发射功率,以及 与该最大发射功率关联的位置信息;该终端设备基于该网络设备允许的该终端设备的最大发射功率以及与该最大发射功率关联的位置信息,控制发射功率。网络设备用于发送该网络设备允许的终端设备的最大发射功率,以及与该最大发射功率关联的位置信息。
其中,该终端设备1010可以用于实现上述方法中由终端设备实现的相应的功能,以及该网络设备1020可以用于实现上述方法中由网络设备实现的相应的功能。为了简洁,在此不再赘述。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。该计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行该计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。该计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。该计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,该计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(Digital Subscriber Line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。该计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。该可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘(Solid State Disk,SSD))等。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
以上所述仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以该权利要求的保护范围为准。

Claims (64)

  1. 一种通信方法,包括:
    终端设备上报新无线NR上行信号与侧行链路SL接收信号之间的频谱间隔要求;
    其中,所述频谱间隔要求用于所述NR上行信号和所述SL接收信号的调度。
  2. 根据权利要求1所述的方法,其中,所述频谱间隔要求为所述NR与所述SL在同一频段同时工作的情况下所要求的NR上行信号与SL接收信号之间的最小频谱间隔。
  3. 根据权利要求1或2所述的方法,其中,所述频谱间隔要求包括以下至少之一:
    使得所述NR上行信号以最大功率发射且不引起所述SL接收信号干扰的最小频谱间隔;
    使得所述NR上行信号以最大功率发射且所述SL接收信号收到的干扰不超过设定值的最小频谱间隔。
  4. 根据权利要求1至3中任一项所述的方法,其中,所述方法还包括:
    在所述NR上行信号与所述SL接收信号之间的频谱间隔小于所述频谱间隔要求的情况下,所述终端设备采用时分双工TDD方式进行所述NR上行信号的发射和所述SL接收信号的接收。
  5. 根据权利要求1至3中任一项所述的方法,其中,所述方法还包括:
    在所述NR上行信号与所述SL接收信号之间的频谱间隔小于所述频谱间隔要求的情况下,如果所述终端设备同时进行所述NR上行信号的发射和所述SL接收信号的接收,则所述终端设备的SL接收灵敏度恶化。
  6. 根据权利要求5所述的方法,其中,所述SL接收灵敏度恶化的恶化值的确定方式包括以下方式的至少之一:
    采用标准预定义所述恶化值;
    所述终端设备上报所述恶化值。
  7. 一种通信方法,包括:
    网络设备接收终端设备上报的新无线NR上行信号与侧行链路SL接收信号之间的频谱间隔要求;
    所述网络设备基于所述频谱间隔要求,调度所述NR上行信号和所述SL接收信号。
  8. 根据权利要求7所述的方法,其中,所述频谱间隔要求为所述NR与所述SL在同一频段同时工作的情况下所要求的所述NR上行信号与所述SL接收信号之间的最小频谱间隔。
  9. 根据权利要求7或8所述的方法,其中,所述频谱间隔要求包括以下至少之一:
    使得所述NR上行信号以最大功率发射且不引起所述SL接收信号干扰的最小频谱间隔;
    使得所述NR上行信号以最大功率发射且所述SL接收信号收到的干扰不超过设定值的最小频谱间隔。
  10. 根据权利要求7至9中任一项所述的方法,其中,所述方法还包括:
    在所述NR上行信号与所述SL接收信号之间的频谱间隔小于所述频谱间隔要求的情况下,所述网络设备发送所述NR上行信号和所述接收SL接收信号的轮流工作时间模板。
  11. 根据权利要求7至9中任一项所述的方法,其中,所述方法还包括:
    在所述NR上行信号与所述SL接收信号之间的频谱间隔小于所述频谱间隔要求的情况下,所述网络设备允许的所述终端设备的SL接收灵敏度恶化,所述终端设备为上报所述频谱间隔要求的终端设备。
  12. 根据权利要求11所述的方法,其中,所述SL接收灵敏度恶化的恶化值的确定方式包括以下方式的至少之一:
    采用标准预定义所述恶化值;
    接收所述终端设备上报的所述恶化值。
  13. 一种通信方法,包括:
    终端设备上报引起侧行链路SL接收灵敏度恶化的恶化值对应的新无线NR上行信号的最大功率能力。
  14. 根据权利要求13所述的方法,其中,所述方法还包括:
    所述终端设备上报所述恶化值。
  15. 根据权利要求13所述的方法,其中,所述恶化值为预定义的值。
  16. 根据权利要求13至15中任一项所述的方法,其中,所述方法还包括:
    所述终端设备在发射功率超出所述最大功率能力和所述恶化值超出阈值满足至少之一的情况下,断开NR连接和/或断开SL连接。
  17. 一种通信方法,包括:
    网络设备接收引起终端设备的侧行链路SL接收灵敏度恶化的恶化值对应的新无线NR上行信号的最大功率能力;
    所述网络设备基于所述最大功率能力,调度所述终端设备的NR上行信号和SL接收信号。
  18. 根据权利要求17所述的方法,其中,所述恶化值为所述终端设备上报的,或预定义的值。
  19. 根据权利要求17至18中任一项所述的方法,其中,所述网络设备基于所述最大功率能力,调度所述终端设备的NR上行信号和SL接收信号,包括:所述网络设备基于所述最大功率能力和所述恶化值进行调度。
  20. 根据权利要求17至19中任一项所述的方法,其中,所述方法包括:
    所述网络设备允许所述终端设备在发射功率超出所述最大功率能力和所述恶化值超出阈值满足至少之一的情况下,断开NR连接和/或断开SL连接。
  21. 一种通信方法,包括:
    终端设备获取网络设备对所述终端设备的发射功率要求,所述发射功率要求与位置信息关联;
    所述终端设备基于所述发射功率要求,控制发射功率。
  22. 根据权利要求21所述的方法,其中,所述位置信息包括网格区域的信息,终端设备获取网络设备对所述终端设备的发射功率要求,包括:
    所述终端设备获取自身所处的网格区域的信息对应的所述发射功率要求,所述发射功率要求为网络设备允许的所述终端设备的最大发射功率。
  23. 根据权利要求21所述的方法,其中,所述位置信息包括参考地理位置信息,所述参考地理位置信息是预定义或从所述网络设备接收的,终端设备获取网络设备对所述终端设备的发射功率要求,包括:
    所述终端设备根据自身的地理位置信息和所述参考地理位置信息,计算所述终端设备与所述网络设备的距离;
    所述终端设备获取所述距离对应的所述发射功率要求,所述发射功率要求为网络设备允许的所述终端设备的最大发射功率。
  24. 根据权利要求22或23所述的方法,其中,所述终端设备基于所述发射功率要求,控制发射功率,包括:
    所述终端设备将发射功率限制为小于所述网络设备允许的所述终端设备的最大发射功率。
  25. 根据权利要求21至24中任一项所述的方法,其中,所述方法还包括:
    预定义或从所述网络设备接收与所述位置信息关联的所述发射功率要求。
  26. 一种通信方法,包括:
    网络设备发送所述网络设备对终端设备的发射功率要求,所述发射功率要求与位置信息关联。
  27. 根据权利要求26所述的方法,其中,所述位置信息包括网格区域的信息和/或参考地理位置信息,所述参考地理位置信息是预定义或从所述网络设备接收的。
  28. 一种终端设备,包括:
    上报单元,用于上报新无线NR上行信号与侧行链路SL接收信号之间的频谱间隔要求;
    其中,所述频谱间隔要求用于所述NR上行信号和所述SL接收信号的调度。
  29. 根据权利要求28所述的终端设备,其中,所述频谱间隔要求为所述NR与所述SL在同一频段同时工作的情况下所要求的NR上行信号与SL接收信号之间的最小频谱间隔。
  30. 根据权利要求28或29所述的终端设备,其中,所述频谱间隔要求包括以下至少之一:
    使得所述NR上行信号以最大功率发射且不引起所述SL接收信号干扰的最小频谱间隔;
    使得所述NR上行信号以最大功率发射且所述SL接收信号收到的干扰不超过设定值的最小频谱间隔。
  31. 根据权利要求28至30中任一项所述的终端设备,其中,所述终端设备还包括:
    第一传输单元,用于在所述NR上行信号与所述SL接收信号之间的频谱间隔小于所述频谱间隔要求的情况下,采用时分双工TDD方式进行所述NR上行信号的发射和所述SL接收信号的接收。
  32. 根据权利要求28至30中任一项所述的终端设备,其中,所述终端设备还包括:
    第二传输单元,用于在所述NR上行信号与所述SL接收信号之间的频谱间隔小于所述频谱间隔要求的情况下,如果所述终端设备同时进行所述NR上行信号的发射和所述SL接收信号的接收,则所述终端设备的SL接收灵敏度恶化。
  33. 根据权利要求32所述的终端设备,其中,所述SL接收灵敏度恶化的恶化值的确定方式包括以下方式的至少之一:
    采用标准预定义所述恶化值;
    所述终端设备上报所述恶化值。
  34. 一种网络设备,包括:
    接收单元,用于接收终端设备上报的新无线NR上行信号与侧行链路SL接收信号之间的频谱间隔要求;
    调度单元,用于基于所述频谱间隔要求,调度所述NR上行信号和所述SL接收信号。
  35. 根据权利要求34所述的网络设备,其中,所述频谱间隔要求为所述NR与所述SL在同一频段同时工作的情况下所要求的所述NR上行信号与所述SL接收信号之间的最小频谱间隔。
  36. 根据权利要求34或35所述的网络设备,其中,所述频谱间隔要求包括以下至少之一:
    使得所述NR上行信号以最大功率发射且不引起所述SL接收信号干扰的最小频谱间隔;
    使得所述NR上行信号以最大功率发射且所述SL接收信号收到的干扰不超过设定值的最小频谱间隔。
  37. 根据权利要求34至36中任一项所述的网络设备,其中,所述网络设备还包括:
    发送单元,用于在所述NR上行信号与所述SL接收信号之间的频谱间隔小于所述频谱间隔要求的情况下,发送所述NR上行信号和所述接收SL接收信号的轮流工作时间模板。
  38. 根据权利要求34至36中任一项所述的网络设备,其中,所述网络设备还包括:
    控制单元,用于在所述NR上行信号与所述SL接收信号之间的频谱间隔小于所述频谱间隔要求的情况下,允许所述终端设备的SL接收灵敏度恶化,所述终端设备为上报所述频谱间隔要求的终端设备。
  39. 根据权利要求38所述的网络设备,其中,所述SL接收灵敏度恶化的恶化值的确定方式包括以下方式的至少之一:
    采用标准预定义所述恶化值;
    接收所述终端设备上报的所述恶化值。
  40. 一种终端设备,包括:
    上报单元,用于上报引起侧行链路SL接收灵敏度恶化的恶化值对应的新无线NR上行信号的最大功率能力。
  41. 根据权利要求40所述的终端设备,其中,所述上报单元还用于上报所述恶化值。
  42. 根据权利要求40所述的终端设备,其中,所述恶化值为预定义的值。
  43. 根据权利要求40至42中任一项所述的终端设备,其中,所述终端设备还包括:
    控制单元,用于所述终端设备在发射功率超出所述最大功率能力和所述恶化值超出阈值满足至少之一的情况下,断开NR连接和/或断开SL连接。
  44. 一种网络设备,包括:
    接收单元,用于接收引起终端设备的侧行链路SL接收灵敏度恶化的恶化值对应的新无线NR上行信号的最大功率能力;
    调度单元,用于基于所述最大功率能力,调度所述终端设备的NR上行信号和SL接收信号。
  45. 根据权利要求44所述的网络设备,其中,所述恶化值为所述终端设备上报的,或预定义的值。
  46. 根据权利要求44至45中任一项所述的网络设备,其中,所述调度单元还用于基于所述最大功率能力和所述恶化值进行调度。
  47. 根据权利要求44至46中任一项所述的网络设备,其中,所述网络设备还包括:
    控制单元,用于允许所述终端设备在发射功率超出所述最大功率能力和所述恶化值超出阈值满足至少之一的情况下,断开NR连接和/或断开SL连接。
  48. 一种终端设备,包括:
    获取单元,用于获取网络设备对所述终端设备的发射功率要求,所述发射功率要求与位置信息关联;
    控制单元,用于基于所述发射功率要求,控制发射功率。
  49. 根据权利要求48所述的终端设备,其中,所述位置信息包括网格区域的信息,所述获取单元还用于获取自身所处的网格区域的信息对应的所述发射功率要求,所述发射功率要求为网络设备允许的所述终端设备的最大发射功率。
  50. 根据权利要求48所述的终端设备,其中,所述位置信息包括参考地理位置信息,所述获取单元 还用于:
    根据自身的地理位置信息和所述参考地理位置信息,计算所述终端设备与所述网络设备的距离;
    获取所述距离对应的所述发射功率要求,所述发射功率要求为网络设备允许的所述终端设备的最大发射功率。
  51. 根据权利要求49或50所述的终端设备,其中,所述控制单元还用于将发射功率限制为小于所述网络设备允许的所述终端设备的最大发射功率。
  52. 根据权利要求48至50中任一项所述的终端设备,其中,所述获取单元还用于预定义或从所述网络设备接收与所述位置信息关联的所述发射功率要求。
  53. 一种网络设备,包括:
    发送单元,用于发送所述网络设备对终端设备的发射功率要求,所述发射功率要求与位置信息关联。
  54. 根据权利要求53所述的网络设备,其中,所述位置信息包括网格区域的信息和/或参考地理位置信息,所述参考地理位置信息是预定义或从所述网络设备接收的。
  55. 一种终端设备,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,以使所述终端设备执行如权利要求1至6、13至16、21至25中任一项所述的方法。
  56. 一种网络设备,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,以使所述网络设备执行如权利要求7至12、17至20、26至27中任一项所述的方法。
  57. 一种芯片,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求1至6、13至16、21至25中任一项所述的方法。
  58. 一种芯片,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求7至12、17至20、26至27中任一项所述的方法。
  59. 一种计算机可读存储介质,用于存储计算机程序,当所述计算机程序被设备运行时使得所述设备执行如权利要求1至6、13至16、21至25中任一项所述的方法。
  60. 一种计算机可读存储介质,用于存储计算机程序,当所述计算机程序被设备运行时使得所述设备执行如权利要求7至12、17至20、26至27中任一项所述的方法。
  61. 一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求1至6、13至16、21至25中任一项所述的方法。
  62. 一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求7至12、17至20、26至27中任一项所述的方法。
  63. 一种计算机程序,所述计算机程序使得计算机执行如权利要求1至6、13至16、21至25中任一项所述的方法。
  64. 一种计算机程序,所述计算机程序使得计算机执行如权利要求7至12、17至20、26至27中任一项所述的方法。
PCT/CN2020/105974 2020-07-30 2020-07-30 通信方法、终端设备和网络设备 WO2022021245A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080104489.0A CN116097568A (zh) 2020-07-30 2020-07-30 通信方法、终端设备和网络设备
PCT/CN2020/105974 WO2022021245A1 (zh) 2020-07-30 2020-07-30 通信方法、终端设备和网络设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/105974 WO2022021245A1 (zh) 2020-07-30 2020-07-30 通信方法、终端设备和网络设备

Publications (1)

Publication Number Publication Date
WO2022021245A1 true WO2022021245A1 (zh) 2022-02-03

Family

ID=80037434

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/105974 WO2022021245A1 (zh) 2020-07-30 2020-07-30 通信方法、终端设备和网络设备

Country Status (2)

Country Link
CN (1) CN116097568A (zh)
WO (1) WO2022021245A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024146319A1 (zh) * 2023-01-04 2024-07-11 华为技术有限公司 侧行功率控制的方法和装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030153344A1 (en) * 2002-02-13 2003-08-14 Accton Technology Corporation Transmission power control method and system for CDMA communication system
US6904265B1 (en) * 2001-04-11 2005-06-07 Hughes Electronics Corporation Capacity management in a broadband satellite communications system
US8825061B1 (en) * 2005-03-22 2014-09-02 Nextel Communications, Inc. System and method for wireless network planning
CN107852188A (zh) * 2015-07-17 2018-03-27 株式会社村田制作所 前端模块
CN110831138A (zh) * 2018-08-10 2020-02-21 华为技术有限公司 功率确定方法和装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101494480B (zh) * 2008-01-22 2013-03-20 中兴通讯股份有限公司 一种无线通信网络的小区间干扰协调方法
JP6105715B2 (ja) * 2012-04-06 2017-03-29 アップル インコーポレイテッド ロケーションベースのパラメータ制御のための方法及び装置
WO2014132688A1 (ja) * 2013-02-27 2014-09-04 株式会社日立国際電気 無線通信システムおよび無線通信方法
KR102491936B1 (ko) * 2016-04-01 2023-01-27 한국전자통신연구원 상향링크 송신 전력을 제어하는 방법 및 장치
CN108632965B (zh) * 2017-03-24 2023-08-22 华为技术有限公司 一种上行发射功率控制的方法和设备
CN111148205B (zh) * 2018-11-02 2022-03-25 华为技术有限公司 发送功率的确定方法和装置
CN109168194B (zh) * 2018-11-08 2021-06-11 南京邮电大学 基于动态用户的上行noma系统中发射功率确定方法
CN110381576A (zh) * 2019-06-10 2019-10-25 华为技术有限公司 功率配置方法及装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6904265B1 (en) * 2001-04-11 2005-06-07 Hughes Electronics Corporation Capacity management in a broadband satellite communications system
US20030153344A1 (en) * 2002-02-13 2003-08-14 Accton Technology Corporation Transmission power control method and system for CDMA communication system
US8825061B1 (en) * 2005-03-22 2014-09-02 Nextel Communications, Inc. System and method for wireless network planning
CN107852188A (zh) * 2015-07-17 2018-03-27 株式会社村田制作所 前端模块
CN110831138A (zh) * 2018-08-10 2020-02-21 华为技术有限公司 功率确定方法和装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HUAWEI ET AL.: ""Impact analysis of sidelink gap",", 3GPP TSG-RAN WG2 MEETING #91 R2-153236,, 28 August 2015 (2015-08-28), XP050994292 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024146319A1 (zh) * 2023-01-04 2024-07-11 华为技术有限公司 侧行功率控制的方法和装置

Also Published As

Publication number Publication date
CN116097568A (zh) 2023-05-09

Similar Documents

Publication Publication Date Title
US20230179374A1 (en) Channel transmission method, terminal device, and network device
US20230090640A1 (en) Wireless communication method and terminal device
CN115413045B (zh) 信息传输方法、终端设备和网络设备
WO2021217668A1 (zh) 多载波通信方法、终端设备和网络设备
WO2022011555A1 (zh) 用于确定上行传输参数的方法和终端设备
WO2022021130A1 (zh) 选择初始带宽部分bwp的方法、终端设备和网络设备
WO2022021245A1 (zh) 通信方法、终端设备和网络设备
US20220394503A1 (en) Wireless communication method and device
WO2022151275A1 (zh) 无线通信的方法、终端设备和网络设备
WO2022155975A1 (zh) 无线通信的方法、终端设备和网络设备
WO2022151085A1 (zh) 波束管理方法、终端设备和网络设备
WO2022027684A1 (zh) 信息上报方法、信息处理方法、终端设备和网络设备
WO2022133692A1 (zh) 状态切换的方法、终端设备和网络设备
WO2022021312A1 (zh) 无线通信方法、终端设备和网络设备
CN115699873A (zh) 中继节点切换方法、终端设备和网络设备
US20230224754A1 (en) Quality of service (qos) control method, terminal device, and network device
WO2022021448A1 (zh) 检测控制信息的方法、传输控制信息的方法、终端设备和网络设备
WO2022178844A1 (zh) 无线通信的方法、终端设备和网络设备
US20230099072A1 (en) Information processing method, terminal device and network device
WO2024026839A1 (zh) 无线通信的方法和终端设备
WO2022126640A1 (zh) 干扰规避方法和基站
EP4319372A1 (en) Frequency band configuration method, terminal device, network device, chip and storage medium
WO2023197260A1 (zh) 无线通信的方法、终端设备和网络设备
WO2023077439A1 (zh) 无线通信的方法、终端设备和网络设备
WO2022082434A1 (zh) 用于终端间通信的方法、终端设备和网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20947220

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20947220

Country of ref document: EP

Kind code of ref document: A1