WO2022019034A1 - Cationic electrodeposition coating composition - Google Patents

Cationic electrodeposition coating composition Download PDF

Info

Publication number
WO2022019034A1
WO2022019034A1 PCT/JP2021/023644 JP2021023644W WO2022019034A1 WO 2022019034 A1 WO2022019034 A1 WO 2022019034A1 JP 2021023644 W JP2021023644 W JP 2021023644W WO 2022019034 A1 WO2022019034 A1 WO 2022019034A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrodeposition coating
resin
coating composition
solid content
coating film
Prior art date
Application number
PCT/JP2021/023644
Other languages
French (fr)
Japanese (ja)
Inventor
マアハ シャラフ
沙紀 赤城
岳史 原
祐斗 岩橋
Original Assignee
日本ペイント・オートモーティブコーティングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ペイント・オートモーティブコーティングス株式会社 filed Critical 日本ペイント・オートモーティブコーティングス株式会社
Publication of WO2022019034A1 publication Critical patent/WO2022019034A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D163/00Coating compositions based on epoxy resins; Coating compositions based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D201/00Coating compositions based on unspecified macromolecular compounds
    • C09D201/02Coating compositions based on unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/44Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes for electrophoretic applications

Definitions

  • the present invention relates to a cationic electrodeposition coating composition, particularly a cationic electrodeposition coating composition that enables low temperature curability while maintaining coating film performance.
  • Cationic electrodeposition paint is often used as an undercoat paint to impart anticorrosion properties to industrial products such as automobiles, and contains an aminized resin and a blocked polyisocyanate curing agent. Cationic electrodeposition paints are required to have low temperature curability as well as improved coating film performance.
  • Low temperature curability can be achieved by dissociating the blocking agent of the blocked polyisocyanate curing agent at a low temperature.
  • Patent Document 1 exemplifies active methylene compounds and pyrazole compounds as excellent ones, which can be dissociated at low temperature, but are not common as industrial products and are difficult to obtain. , Not often used in terms of cost.
  • An object of the present invention is to provide a cationic electrodeposition coating composition that can achieve low temperature curability and maintain coating film performance in a cationic electrodeposition coating composition.
  • the blocked polyisocyanate curing agent is contained in the paint resin solid content in an amount of 50 to 80% by mass.
  • the blocking agent that forms the blocked polyisocyanate curing agent is (A) Monool compound and (B) With either or both of a polyol compound or an amine having a hydroxyl group, Consists of combinations
  • the amount of residual OH functional groups in the formed electrodeposition coating film is 0.4 to 1.6 (meq / solid content g). Cationic electrodeposition coating composition.
  • the crosslink density of the electrodeposition coating film after coating the cationic electrodeposition coating composition on a steel sheet so as to have a dry film thickness of 15 ⁇ m and baking at 170 ° C. for 20 minutes is 0.5 to 5.0 mmol / cc.
  • a cationic electrodeposition coating composition that enables low temperature curability while ensuring the performance of an electrodeposited coating film.
  • a blocking agent for a blocked polyisocyanate curing agent was investigated. Optimizing the amount of OH groups, which are reactive functional groups, by combining not only the commonly used monool compounds (ie, monohydric alcohols) but also either or both of polyol compounds or amines with hydroxyl groups. do.
  • the present invention is a cationic electrodeposition coating composition containing an aminated resin and a blocked polyisocyanate curing agent, in which the blocked polyisocyanate curing agent is contained in an amount of 50 to 80% by mass in the solid content of the coating resin.
  • the blocking agent contained and forming the blocked polyisocyanate curing agent was formed by a combination of (a) a monool compound and (b) either a polyol compound or an amine having a hydroxyl group, or both.
  • the amount of residual OH functional group in the electrodeposition coating film is 0.4 to 1.6 (meq / solid content g). Each requirement will be explained.
  • the aminized resin is a coating film forming resin constituting an electrodeposition coating film.
  • an amine-modified epoxy resin obtained by modifying an oxylan ring (also referred to as an "epoxy group") in an epoxy resin skeleton with an amine compound is preferable.
  • an amine-modified epoxy resin is prepared by opening an oxylan ring in a starting material resin molecule by reaction with an amine compound such as a primary amine, a secondary amine or a tertiary amine and / or an acid salt thereof.
  • a typical example of a starting material resin is a polyphenol polyglycidyl ether type epoxy resin which is a reaction product of a polycyclic phenol compound such as bisphenol A, bisphenol F, bisphenol S, phenol novolak, and cresol novolak with epichlorohydrin.
  • a polycyclic phenol compound such as bisphenol A, bisphenol F, bisphenol S, phenol novolak, and cresol novolak with epichlorohydrin.
  • the oxazolidone ring-containing epoxy resin described in JP-A-5-306327 can be mentioned.
  • These epoxy resins can be prepared by reacting a diisocyanate compound or a bisurethane compound obtained by blocking the isocyanate group of the diisocyanate compound with a lower alcohol such as methanol or ethanol with epichlorohydrin.
  • the starting material resin can be used by extending the chain with a bifunctional polyester polyol, a polyether polyol, a bisphenol, a dibasic carboxylic acid, or the like before the ring opening reaction of the oxylan ring with the amine compound.
  • -A monohydroxy compound such as ethylhexyl ether, ethylene glycol monon-butyl ether, propylene glycol mono-2-ethylhexyl ether or a monocarboxylic acid compound such as octyl acid may be added.
  • An amine-modified epoxy resin can be obtained by reacting the oxylan ring of the epoxy resin with the amine compound.
  • the amine compound that reacts with the oxylan ring include primary amines and secondary amines.
  • an amine-modified epoxy resin having a tertiary amino group is obtained.
  • an amine-modified epoxy resin having a secondary amino group can be obtained.
  • an amine-modified epoxy resin having a primary amino group can be prepared.
  • an amine-modified epoxy resin having a primary amino group and a secondary amino group the primary amino group is blocked with a ketone to make ketimine before reacting with the epoxy resin, and this is used as an epoxy resin. It can be prepared by deblocking after introduction. If necessary, a tertiary amine may be used in combination as the amine to be reacted with the oxylan ring.
  • amino compound examples include butylamine, octylamine, diethylamine, dibutylamine, methylbutylamine, monoethanolamine, diethanolamine, N-methylethanolamine, N-ethylethanolamine, triethylamine, N, N-dimethylbenzylamine and N.
  • Primary amines such as N-dimethylethanolamine, secondary amines or tertiary amines and / or acid salts thereof.
  • Specific examples of the secondary amine having a blocked primary amine include ketimine of aminoethylethanolamine and diketimine of diethylenetriamine.
  • tertiary amine examples include triethylamine, N, N-dimethylbenzylamine, N, N-dimethylethanolamine and the like. Only one of these amines may be used alone, or two or more of these amines may be used in combination.
  • the amine compound to be reacted with the oxylan ring of the epoxy resin is 50 to 95% by mass of the secondary amine, 0 to 30% by mass of the secondary amine having the blocked primary amine, and 0 to 20% by mass of the primary amine. It is preferable to include it in the range of.
  • the number average molecular weight of the aminated resin is preferably in the range of 1,000 to 5,000.
  • the number average molecular weight is 1,000 or more, the obtained cured electrodeposition coating film has good physical properties such as solvent resistance and corrosion resistance.
  • the number average molecular weight is 5,000 or less, the viscosity of the aminated resin can be easily adjusted to enable smooth synthesis, and the emulsified dispersion of the obtained aminated resin can be easily handled.
  • the number average molecular weight of the aminated resin is more preferably in the range of 2,000 to 3,500.
  • the amine value of the aminated resin of the present invention is preferably in the range of 100 to 200 (meq / solid content 100 g).
  • the amine value of the aminized resin is preferably in the range of 130 to 190 (meq / solid content 100 g), more preferably 150 to 180.
  • the hydroxyl value of the aminated resin is preferably in the range of 150 to 650 mgKOH / g.
  • the hydroxyl value is 150 or more, the cured electrodeposition coating film is cured well and the appearance of the coating film is also improved.
  • the hydroxyl group value is 650 or less, the amount of hydroxyl groups remaining in the cured electrodeposition coating film becomes appropriate, and the deterioration of the water resistance of the coating film is likely to be suppressed.
  • the hydroxyl value of the aminated resin is more preferably in the range of 150 to 400 mgKOH / g.
  • the blocked polyisocyanate curing agent (hereinafter, may be simply referred to as “hardening agent”) is a coating film forming resin constituting an electrodeposition coating film.
  • the blocked polyisocyanate curing agent can be prepared by blocking the polyisocyanate compound with a blocking agent.
  • polyisocyanate compounds include aliphatic diisocyanates such as hexamethylene diisocyanate (including trimer), tetramethylene diisocyanate and trimethylhexamethylene diisocyanate, isophorone diisocyanate, and alicyclic such as 4,4'-methylenebis (cyclohexylisocyanate).
  • aromatic diisocyanates such as the formula polyisocyanate, 4,4'-diphenylmethane diisocyanate, tolylene diisocyanate, and xylylene diisocyanate.
  • any polyisocyanate compound may be used, but considering the low-temperature curability and availability, aromatic diisocyanates, particularly 4,4'-diphenylmethane diisocyanate (MDI). Alternatively, hexamethylene diisocyanate (HDI) is preferable.
  • MDI 4,4'-diphenylmethane diisocyanate
  • HDI hexamethylene diisocyanate
  • the blocking agent for the blocked polyisocyanate curing agent not only the monool compound (monohydric alcohol) conventionally used conventionally, but also a polyol compound or an amine having a hydroxyl group, or both of them are combined. It is characterized by using. Therefore, the blocking agent that can be used in the present invention will be described separately as (a) a monool compound and (b) a polyol compound or an amine having a hydroxyl group.
  • Monool compounds are monohydric alkyl (or aromatic) alcohols such as n-butanol, n-hexyl alcohol, 2-ethylhexanol, lauryl alcohol, phenolcarbinol, methylphenylcarbinol; ethylene glycol monohexyl ether, Cellosolves such as ethylene glycol mono2-ethylhexyl ether and ethylene glycol monobutyl ether (butyl cellosolve); phenols such as para-t-butylphenol and cresol; Examples include oximes such as oximes. Among these, those that can be preferably used are alkyl alcohols or cellosolves, and particularly preferably cellosolves.
  • the polyol compounds that can be used as the blocking agent of the present invention are alkylene glycols such as ethylene glycol, butylene glycol, pentaneyl and neopentyl glycol; and polyether type both ends such as polyethylene glycol, polypropylene glycol and polytetramethylene ether glycol phenol.
  • Polyester-type double-ended polyols obtained from diols such as ethylene glycol, propylene glycol and 1,4-butanediol and dicarboxylic acids such as oxalic acid, succinic acid, adipic acid, suberic acid and sebacic acid; Triols such as methylolpropane and glycerin; alcohols having a valence of 4 or more such as pentaerythritol and sorbitol; and lactams typified by ⁇ -caprolactam and ⁇ -butyrolactam are preferably used.
  • these polyhydric alcohols low molecular weight glycols (eg, butylene glycol and 1,6-hexanediol) or triol (eg, trimethylolpropane) can be preferably used.
  • Examples of amines having a hydroxyl group include monomethanolamine, dimethanolamine, monoethanolamine, diethanolamine, monopropanolamine, and dipropanolamine.
  • the amine having a hydroxyl group acts as a blocking agent for the amine group to block the isocyanate group, and the hydroxyl group can supplement the decrease in the residual OH functional group concentration. Therefore, an amine having a hydroxyl group is preferable in that the coating film performance (blocking property and repelling resistance) can be easily maintained.
  • the amount of residual OH functional groups (meq / solid content) in the electrodeposition coating film described later will be described later. It is possible to satisfy the quantitative range of g) and prevent deterioration of the coating film performance.
  • the quantitative ratio of the monools to the polyols and / or the amine having a hydroxyl group is not particularly limited, but the mass ratio of the polyol and / or the amine having a hydroxyl group to the monool is (polyol and / or the polyol and / or).
  • an amine having a hydroxyl group) / (monool) 40/60 to 90/10, preferably 50/50 to 80/20, and more preferably 60/40 to 80/20.
  • the ratio of monool is in this range, the amount of residual OH functional groups in the electrodeposition coating film, which will be described later, is unlikely to be insufficient, and the coating film performance is likely to be improved.
  • the ratio of the polyol and / or the amine having a hydroxyl group is in this range, an isocyanate capable of dissociating and reacting with the blocking agent is sufficiently obtained, and the curability is easily improved.
  • the blocked polyisocyanate curing agent is contained in the paint resin solid content in an amount of 50 to 80% by mass. If the amount of the blocked polyisocyanate curing agent is less than 50% by mass in the paint resin solid content, the curing is insufficient and the coating film characteristics cannot be exhibited. On the contrary, if it exceeds 80% by mass, the cationic component in the cationic electrodeposition coating component is insufficient and electrophoresis does not occur.
  • the blending amount of the blocked polyisocyanate curing agent in the solid content of the paint resin is preferably 50 to 70% by mass, more preferably 50 to 60% by mass.
  • the resin emulsion is prepared by dissolving each of the aminated resin and the blocked polyisocyanate curing agent in an organic solvent to prepare a solution, mixing these solutions, neutralizing with a neutralizing acid, and deionizing water. It can be prepared by diluting with.
  • the neutralizing acid include organic acids such as methanesulfonic acid, sulfamic acid, lactic acid, dimethylolpropionic acid, formic acid and acetic acid.
  • the solid content of the resin emulsion is usually preferably 25 to 50% by mass, particularly preferably 35 to 45% by mass, based on the total amount of the resin emulsion.
  • the "solid content of the resin emulsion” means the mass of all the components contained in the resin emulsion that remain solid even after the removal of the solvent. Specifically, it means the total mass of the aminated resin, the curing agent and other solid components added as needed, which are contained in the resin emulsion.
  • the neutralizing acid is more preferably used in an amount of 10 to 100%, and further preferably in an amount of 20 to 70%, as the equivalent ratio of the neutralizing acid to the equivalent of the amino group of the amineated resin. ..
  • the ratio of the equivalent of the neutralizing acid to the equivalent of the amino group of the aminated resin is referred to as the neutralization rate.
  • the neutralization rate is 10% or more, the affinity for water is ensured and the water dispersibility is good.
  • the cationic electrodeposition coating composition of the present invention may contain a pigment-dispersed paste, if necessary.
  • the pigment dispersion paste is a component arbitrarily contained in the electrodeposition coating composition, and generally includes a pigment dispersion resin and a pigment.
  • the pigment dispersion resin is a resin for dispersing a pigment, and is used after being dispersed in an aqueous medium.
  • a pigment dispersion resin having a cationic group such as a modified epoxy resin having at least one selected from a quaternary ammonium group, a tertiary sulfonium group and a primary amino group can be used.
  • Specific examples of the pigment dispersion resin include a quaternary ammonium group-containing epoxy resin and a tertiary sulfonium group-containing epoxy resin.
  • As the aqueous solvent ion-exchanged water or water containing a small amount of alcohol is used.
  • the pigment is a pigment generally used in an electrodeposition coating composition.
  • Pigments such as commonly used inorganic and organic pigments such as titanium white (titanium dioxide), carbon black and red iron oxide; such as kaolin, talc, aluminum silicate, calcium carbonate, mica and clay.
  • Constituent pigments; iron phosphate, aluminum phosphate, calcium phosphate, aluminum tripolyphosphate, and rust-preventive pigments such as aluminum phosphomolybate, aluminum zinc phosphomolybate, and the like.
  • the pigment dispersion paste is prepared by mixing a pigment dispersion resin and a pigment.
  • the content of the pigment-dispersed resin in the pigment-dispersed paste is not particularly limited, but is, for example, an amount of 20 to 100 parts by mass in terms of the resin solid content ratio with respect to 100 parts by mass of the pigment.
  • the solid content of the pigment-dispersed paste is usually 40 to 70% by mass, particularly preferably 50 to 60% by mass, based on the total amount of the pigment-dispersed paste.
  • the "solid content of the pigment-dispersed paste” means the mass of all the components contained in the pigment-dispersed paste, which remain solid even after the removal of the solvent. Specifically, it means the total mass of the pigment-dispersed resin and the pigment and other solid components added as needed, which are contained in the pigment-dispersed paste.
  • the cationic electrodeposition coating composition of the present invention can be prepared by mixing a resin emulsion containing an aminized resin and a blocked polyisocyanate curing agent, a pigment dispersion paste, an additive and the like by a commonly used method. can.
  • the "solid content of the electrodeposition coating composition” means the mass of all the components contained in the electrodeposition coating composition and which remain solid even after the removal of the solvent. .. Specifically, the total amount of solid content mass of the aminated resin, the blocked polyisocyanate curing agent, and the pigment dispersion resin, the pigment, and other solid components contained in the electrodeposition coating composition as needed. means.
  • the solid content of the cationic electrodeposition coating composition of the present invention is preferably 1 to 30% by mass with respect to the total amount of the electrodeposition coating composition.
  • the solid content of the cationic electrodeposition coating composition is in the above range, a sufficient electrodeposition coating film precipitation amount can be obtained, and the corrosion resistance can be easily improved.
  • the wrapping property and the painted appearance tend to be good.
  • the cationic electrodeposition coating composition of the present invention preferably has a pH of 4.5 to 7.
  • the pH of the cationic electrodeposition coating composition can be set in the above range by adjusting the amount of neutralizing acid used, the amount of free acid added, and the like.
  • the pH is more preferably 5 to 7.
  • the pH of the cationic electrodeposition coating composition can be measured using a commercially available pH meter having a temperature compensation function.
  • the milligram equivalent (MEQ (A)) of the acid with respect to 100 g of the solid content of the cationic electrodeposition coating composition is preferably 40 to 120.
  • the milligram equivalent of acid (MEQ (A)) with respect to 100 g of the resin solid content of the cationic electrodeposition coating composition can be adjusted by the amount of neutralizing acid and the amount of free acid.
  • MEQ (A) is an abbreviation for mg equivalent (acid), and is the total of mg equivalents of all acids per 100 g of solid content of the paint.
  • MEQ (A) about 10 g of the solid content of the electrodeposition coating composition is dissolved in about 50 ml of a solvent (THF: tetrahydrofuran), and then potentiometric titration is performed using a 1 / 10N NaOH solution to carry out potentiometric titration. It is obtained by quantifying the amount of acid contained in the composition.
  • THF tetrahydrofuran
  • the cationic electrodeposition coating composition of the present invention is an additive generally used in the coating field, for example, ethylene glycol monobutyl ether, ethylene glycol monohexyl ether, ethylene glycol monoethylhexyl ether, propylene glycol monobutyl ether, dipropylene.
  • Organic solvents such as glycol monobutyl ether and propylene glycol monophenyl ether, surfactants such as anti-drying agents and antifoaming agents, viscosity modifiers such as acrylic resin fine particles, anti-repellent agents, vanadium salts, copper, iron, manganese, magnesium. , Inorganic rust preventive such as calcium salt, etc. may be contained as needed.
  • auxiliary complexing agents may be blended depending on the purpose.
  • these additives may be added during the production of the resin emulsion, may be added during the production of the pigment-dispersed paste, or may be added during or after the mixing of the resin emulsion and the pigment-dispersed paste. good.
  • the cationic electrodeposition coating composition of the present invention may contain other coating film-forming resin components in addition to the above-mentioned aminated resin.
  • other coating film-forming resin components include acrylic resin, polyester resin, urethane resin, butadiene resin, phenol resin, and xylene resin.
  • Phenol resin and xylene resin are preferable as other coating film-forming resin components that may be contained in the electrodeposition coating composition.
  • the phenol resin and xylene resin include xylene resins having 2 or more and 10 or less aromatic rings.
  • the precipitation electrodeposition coating film obtained by the cationic electrodeposition coating composition of the present invention preferably has a coating film viscosity at 110 ° C. in the range of 5,000 to 1,000,000 mPa ⁇ s.
  • the "precipitated electrodeposition coating film” is an electrodeposition coating film that precipitates on an object to be coated when a cationic electrodeposition coating composition is electrodeposited, and is a coating film in an uncured state.
  • the temperature of 110 ° C. can be said to be the temperature immediately before the curing reaction of the coating film resin component contained in the electrodeposition coating film starts.
  • the coating film viscosity under such temperature conditions is 1,000,000 mPa ⁇ s or less, the flow of the electrodeposited coating film by heating can be ensured, and the film thickness of the cured electrodeposition coating film becomes non-uniform. Can be avoided.
  • the coating film viscosity is 5,000 mPa ⁇ s or more, it is possible to avoid problems such as the electrodeposition coating film excessively flowing and flowing down due to heating.
  • the coating film viscosity at 110 ° C. is preferably in the range of 5,000 to 500,000 mPa ⁇ s, more preferably in the range of 5,000 to 100,000 mPa ⁇ s, and is 6,000 to 6,000. It is particularly preferably in the range of 20,000 mPa ⁇ s.
  • the viscosity of the deposited electrodeposition coating film at 110 ° C. can be measured as follows. First, electrodeposition coating is applied to the object to be coated for 180 seconds so that the film thickness is about 15 ⁇ m, an electrodeposition coating film is formed, and the electrodeposition coating film is washed with water to remove excess electrodeposition coating composition. Then, after removing excess water adhering to the surface of the electrodeposition coating film, the coating film is immediately taken out without drying. This is used as a sample. By measuring the viscosity of the sample thus obtained using a dynamic viscoelasticity measuring device, the viscosity of the coating film at 110 ° C. can be measured.
  • the cationic electrodeposition coating composition of the present invention is coated on a steel sheet so as to have a dry film thickness of 15 ⁇ m, and baked at 170 ° C. for 20 minutes, and the residual OH functional group amount is 0.4 to 1.6 (meq /). Solid content g) is preferable.
  • the amount of residual OH functional group defines the performance of the coating film after obtaining the coating composition.
  • the amount of residual OH functional group is a theoretical value of the amount of residual hydroxyl groups derived from the aminated resin in the electrodeposition coating film cured by heating.
  • the residual hydroxyl group is a hydroxyl group remaining in the coating film after the aminating resin and the blocked polyisocyanate curing agent have reacted.
  • the theoretical residual OH functional group amount is the isocyanate group amount (meq / solid content g) of the curing agent from the total of the hydroxyl group amount (meq / solid content g) and the primary amine amount (meq / solid content g) of the aminating resin. It is obtained by reducing g).
  • the amount of residual OH functional group is preferably 0.6 to 1.4 meq / solid content g, and more preferably 0.8 to 1.2 meq / solid content g.
  • the above cationic electrodeposition coating composition is applied to a steel sheet so as to have a dry film thickness of 15 ⁇ m, and baked at 170 ° C. for 20 minutes, and then the crosslink density of the electrodeposition coating film is 0.5 to 5.0 mmol / cc. Is preferable.
  • the internal stress of the electrodeposition coating film at the time of forming the electrodeposition coating film is preferably 7.5 MPa or less.
  • the crosslink density can be measured using a dynamic viscoelasticity measuring device, for example, Rheogel manufactured by UBM. Specifically, it is obtained based on the following equation using the dynamic Young's modulus (E') obtained by applying a vibration having a frequency of 11 Hz to the coating film at a heating rate of 2 ° C. per minute.
  • the crosslink density is preferably 0.8 to 3.0 mmol / cc, more preferably 1.0 to 3.0 mmol / cc.
  • the internal stress of the electrodeposition coating film is measured by the strip type electrodeposition stress test method. If the internal stress exceeds the appropriate range, poor adhesion and deterioration of corrosion resistance are likely to occur. When the internal stress of the electrodeposition coating film is 7.5 MPa or less, the adhesion to the substrate is more likely to be improved.
  • the internal stress is preferably 6.0 MPa or less, more preferably 5.0 MPa or less.
  • An electrodeposition coating film can be formed by electrodeposition coating on an object to be coated using the cationic electrodeposition coating composition of the present invention.
  • a voltage is applied between the object to be coated and the anode with the object to be coated as a cathode. As a result, the electrodeposition coating film is deposited on the object to be coated.
  • various energized objects to be coated can be used.
  • objects to be coated that can be used include cold-rolled steel sheets, hot-rolled steel sheets, stainless steel, electrogalvanized steel sheets, hot-dip galvanized steel sheets, zinc-aluminum alloy-based plated steel sheets, zinc-iron alloy-based plated steel sheets, and zinc-magnesium alloy-based plating.
  • electrodeposition coating is performed by immersing the object to be coated in the electrodeposition coating composition and then applying a voltage of 50 to 450V. When the applied voltage is in the above range, sufficient electrodeposition is performed and the appearance of the coating film tends to be good.
  • the bath solution temperature of the coating composition is usually adjusted to 10 to 45 ° C.
  • the time for applying the voltage varies depending on the electrodeposition conditions, but can generally be 2 to 5 minutes.
  • the film thickness of the electrodeposition coating film finally obtained by heat curing is preferably 5 to 60 ⁇ m, more preferably 10 to 25 ⁇ m.
  • the film thickness of the electrodeposition coating film is 5 ⁇ m or more, the rust prevention property is likely to be improved.
  • the electrodeposited coating film precipitated as described above can be cured by washing with water as necessary and then heating at, for example, 140 to 200 ° C., preferably 140 to 170 ° C. for 10 to 30 minutes. .. As a result, a cured electrodeposition coating film is formed. Curing at 140 ° C to 200 ° C is lower than the normal curing temperature, and it can be said that it has low-temperature curability. Curing at low temperatures greatly reduces the amount of energy used during curing.
  • Production Example 1-1 Production of amineized resin (resin 1) 92 parts of methylisobutyl ketone (MIBK), 940 parts of bisphenol A type epoxy resin (trade name: DER-331J, manufactured by Dow Chemical Co., Ltd.), 370 parts of bisphenol A in a reaction vessel. , 15 parts of octylic acid and 2 parts of dimethylbenzylamine were added. The temperature in the reaction vessel was maintained at 120 ° C., and the reaction was carried out until the epoxy equivalent reached 900 g / eq. Then, the reaction vessel was cooled until the temperature in the reaction vessel reached 110 ° C.
  • resin 1 Production of amineized resin (resin 1) 92 parts of methylisobutyl ketone (MIBK), 940 parts of bisphenol A type epoxy resin (trade name: DER-331J, manufactured by Dow Chemical Co., Ltd.), 370 parts of bisphenol A in a reaction vessel. , 15 parts of octylic acid and 2 parts of di
  • the number average molecular weight of the resin 1 was 2,800, and the amine value was 180 (meq / solid content 100 g).
  • Production Example 1-2 Production of amineized resin (resin 2)
  • a reaction vessel 92 parts of methylisobutyl ketone, 940 parts of bisphenol A type epoxy resin (trade name DER-331J, manufactured by Dow Chemical Co., Ltd.), 370 parts of bisphenol A, octylic acid. 118 parts and 2 parts of dimethylbenzylamine were added.
  • the temperature in the reaction vessel was maintained at 120 ° C., and the reaction was carried out until the epoxy equivalent reached 900 g / eq. Then, the reaction vessel was cooled until the temperature in the reaction vessel reached 110 ° C.
  • the number average molecular weight of the resin 2 was 2,800, and the amine value was 100 (meq / solid content 100 g).
  • Production Example 1-3 Production of amineized resin (resin 3)
  • a reaction vessel 92 parts of methylisobutyl ketone, 940 parts of bisphenol A type epoxy resin (trade name DER-331J, manufactured by Dow Chemical Co., Ltd.), 370 parts of bisphenol A, octylic acid. 130 parts and 2 parts of dimethylbenzylamine were added.
  • the temperature in the reaction vessel was maintained at 120 ° C., and the reaction was carried out until the epoxy equivalent reached 900 g / eq. Then, the reaction vessel was cooled until the temperature in the reaction vessel reached 110 ° C.
  • the number average molecular weight of the resin 3 was 2,800, and the amine value was 90 (meq / solid content 100 g).
  • Production Example 2-1 Production of Blocked Polyisocyanate Hardener (1) 362 parts of diphenylmethane diisocyanate (MDI) and 80 parts of MIBK are charged in a reaction vessel, heated to 80 ° C., and then 192 parts of butyl cellosolve is applied over 1 hour. And dropped. After further adding 128 parts of 1,6 hexanediol and further heating at 100 ° C. for 4 hours, it was confirmed by measurement of the IR spectrum that the absorption based on the isocyanate group had disappeared, and the mixture was allowed to cool. Then, 40 parts of MIBK was added to obtain a blocked polyisocyanate curing agent (1) (solid content 85%).
  • MDI diphenylmethane diisocyanate
  • MIBK 192 parts of butyl cellosolve
  • Production Example 2-2 Production of Blocked Polyisocyanate Hardener (2 ) 362 parts of diphenylmethane diisocyanate (MDI) and 80 parts of MIBK were placed in a reaction vessel and heated to 80 ° C. Then, 253 parts of butyl cellosolve was added dropwise over 1 hour. Further, 72 parts of trimethylolpropane was added dropwise, and the mixture was further heated at 100 ° C. for 4 hours. In the measurement of the IR spectrum, it was confirmed that the absorption based on the isocyanate group had disappeared, and the mixture was allowed to cool. Then, 40 parts of MIBK was added to obtain a blocked polyisocyanate curing agent (2) (solid content 85%).
  • MDI diphenylmethane diisocyanate
  • MIBK MIBK
  • Production Example 2-3 Production of Blocked Polyisocyanate Hardener (3 ) 362 parts of diphenylmethane diisocyanate (MDI) and 80 parts of MIBK were placed in a reaction vessel and heated to 80 ° C. Then, 192 parts of butyl cellosolve was added dropwise over 1 hour. Further, 145 parts of trimethylolpropane was added dropwise, and the mixture was further heated at 100 ° C. for 4 hours. In the measurement of the IR spectrum, it was confirmed that the absorption based on the isocyanate group had disappeared, and the mixture was allowed to cool. Then, 43 parts of MIBK was added to obtain a blocked polyisocyanate curing agent (3) (solid content 85%).
  • MDI diphenylmethane diisocyanate
  • MIBK MIBK
  • Production Example 2-4 Production of Blocked Polyisocyanate Hardener (4 ) 168 parts of hexamethylene diisocyanate (HDI) and 42 parts of MIBK were placed in a reaction vessel and heated to 60 ° C. Here, 36 parts of trimethylolpropane dissolved in 104 parts of methyl ethyl ketooxime (MEK oxime) was added dropwise at 60 ° C. over 2 hours. After further heating at 75 ° C. for 4 hours, it was confirmed in the measurement of the IR spectrum that the absorption based on the isocyanate group disappeared. As a result, a blocked polyisocyanate curing agent (4) was obtained (solid content 85%).
  • HDI hexamethylene diisocyanate
  • MIBK oxime methyl ethyl ketooxime
  • Production Example 2-5 Production of Blocked Polyisocyanate Hardener (5 ) 362 parts of diphenylmethane diisocyanate (MDI) and 80 parts of MIBK were placed in a reaction vessel and heated to 80 ° C. Then, 319 parts of butyl cellosolve was added dropwise over 1 hour, and the mixture was further heated at 100 ° C. for 4 hours. Then, in the measurement of the IR spectrum, it was confirmed that the absorption based on the isocyanate group had disappeared, and the mixture was allowed to cool. Then, 43 parts of MIBK was added to obtain a blocked polyisocyanate curing agent (5) (solid content 85%).
  • MDI diphenylmethane diisocyanate
  • MIBK MIBK
  • Production Example 4-1 Production of Electrodeposition Paint Resin Emulsion (Em1) 400 g (solid content) of the resin (resin 1) obtained in Production Example 1-1 and the blocked polyisocyanate curing agent obtained in Production Example 2-1 ( 1) 600 g (solid content) was mixed, and ethylene glycol mono-2-ethylhexyl ether was added so as to be 3% (15 g) with respect to the solid content. Next, formic acid was added so as to have a neutralization rate of 40% to neutralize the mixture, and ion-exchanged water was added to slowly dilute the mixture. Then, methyl isobutyl ketone was removed under reduced pressure so that the solid content became 36% to obtain an electrodeposition coating resin emulsion (Em1).
  • Production Example 4-2 Production of Electrodeposition Paint Resin Emulsion (Em2) 400 g (solid content) of the resin (resin 1) obtained in Production Example 1-1 and the blocked polyisocyanate curing agent obtained in Production Example 2-2 ( 2) 600 g (solid content) was mixed, and ethylene glycol mono-2-ethylhexyl ether was added so as to be 3% (15 g) with respect to the solid content. Next, formic acid was added so as to have a neutralization rate of 40% to neutralize the mixture, and ion-exchanged water was added to slowly dilute the mixture. Then, methyl isobutyl ketone was removed under reduced pressure so that the solid content became 36% to obtain an electrodeposition coating resin emulsion (Em2).
  • Em2 Electrodeposition Paint Resin Emulsion
  • Production Example 4-3 Production of Electroplated Paint Resin Emulsion (Em3) 400 g (solid content) of the resin (resin 1) obtained in Production Example 1-1 and the blocked polyisocyanate curing agent obtained in Production Example 2-3 ( 3) 600 g (solid content) was mixed, and ethylene glycol mono-2-ethylhexyl ether was added so as to be 3% (15 g) with respect to the solid content. Next, formic acid was added so as to have a neutralization rate of 40% to neutralize the mixture, and ion-exchanged water was added to slowly dilute the mixture. Then, methyl isobutyl ketone was removed under reduced pressure so that the solid content became 36% to obtain an electrodeposition coating resin emulsion (Em3).
  • Em3 Electroplated Paint Resin Emulsion
  • Production Example 4-4 Production of Electrodeposition Paint Resin Emulsion (Em4) 500 g (solid content) of the resin (resin 1) obtained in Production Example 1-1 and the blocked polyisocyanate curing agent obtained in Production Example 2-1 ( 1) 500 g (solid content) was mixed, and ethylene glycol mono-2-ethylhexyl ether was added so as to be 3% (15 g) with respect to the solid content. Next, formic acid was added so as to have a neutralization rate of 40% to neutralize the mixture, and ion-exchanged water was added to slowly dilute the mixture. Then, methyl isobutyl ketone was removed under reduced pressure so that the solid content became 36% to obtain an electrodeposition coating resin emulsion (Em4).
  • Em4 Electrodeposition Paint Resin Emulsion
  • Production Example 4-5 Production of Electroplated Paint Resin Emulsion (Em5) 200 g (solid content) of the resin (resin 1) obtained in Production Example 1-1 and the blocked polyisocyanate curing agent obtained in Production Example 2-3 ( 3) 800 g (solid content) was mixed, and ethylene glycol mono-2-ethylhexyl ether was added so as to be 3% (15 g) with respect to the solid content. Next, formic acid was added so as to have a neutralization rate of 40% to neutralize the mixture, and ion-exchanged water was added to slowly dilute the mixture. Then, methyl isobutyl ketone was removed under reduced pressure so that the solid content became 36% to obtain an electrodeposition coating resin emulsion (Em5).
  • Production Example 4-6 Production of Electroplated Paint Resin Emulsion (Em6) 400 g (solid content) of the resin (resin 2) obtained in Production Example 1-2 and the blocked isocyanate curing agent (3) obtained in Production Example 2-3. 600 g (solid content) was mixed, and ethylene glycol mono-2-ethylhexyl ether was added so as to be 3% (15 g) with respect to the solid content. Next, formic acid was added so as to have a neutralization rate of 40% to neutralize the mixture, and ion-exchanged water was added to slowly dilute the mixture. Then, methyl isobutyl ketone was removed under reduced pressure so that the solid content became 36% to obtain an electrodeposition coating resin emulsion (Em6).
  • Em6 Electroplated Paint Resin Emulsion
  • Production Example 4-7 Production of Electroplated Paint Resin Emulsion (Em7) 400 g (solid content) of the resin (resin 2) obtained in Production Example 1-2 and the blocked isocyanate curing agent (4) obtained in Production Example 2-4. 600 g (solid content) was mixed, and ethylene glycol mono-2-ethylhexyl ether was added so as to be 3% (15 g) with respect to the solid content. Next, formic acid was added so as to have a neutralization rate of 40% to neutralize the mixture, and ion-exchanged water was added to slowly dilute the mixture. Then, methyl isobutyl ketone was removed under reduced pressure so that the solid content became 36% to obtain an electrodeposition coating resin emulsion (Em7).
  • Production Example 4-8 Production of Electrodeposition Paint Resin Emulsion (Em8) 650 g (solid content) of the resin (resin 3) obtained in Production Example 1-3 and the blocked polyisocyanate curing agent obtained in Production Example 2-5 ( 5) 350 g (solid content) was mixed, and ethylene glycol mono-2-ethylhexyl ether was added so as to be 3% (15 g) with respect to the solid content. Next, formic acid was added so as to have a neutralization rate of 40% to neutralize the mixture, and ion-exchanged water was added to slowly dilute the mixture. Then, methyl isobutyl ketone was removed under reduced pressure so that the solid content became 36% to obtain an electrodeposition coating resin emulsion (Em8).
  • Production Example 4-9 Production of Electrodeposition Paint Resin Emulsion (Em9) 500 g (solid content) of the resin (resin 3) obtained in Production Example 1-3 and the blocked polyisocyanate curing agent obtained in Production Example 2-5 ( 5) 500 g (solid content) was mixed, and ethylene glycol mono-2-ethylhexyl ether was added so as to be 3% (15 g) with respect to the solid content. Next, formic acid was added so as to have a neutralization rate of 40% to neutralize the mixture, and ion-exchanged water was added to slowly dilute the mixture. Then, methyl isobutyl ketone was removed under reduced pressure so that the solid content became 36% to obtain an electrodeposition coating resin emulsion (Em9).
  • Production Example 4-10 Production of Electrodeposition Paint Resin Emulsion (Em10) 400 g (solid content) of the resin (resin 3) obtained in Production Example 1-3 and the blocked polyisocyanate curing agent obtained in Production Example 2-5 ( 5) 600 g (solid content) was mixed, and ethylene glycol mono-2-ethylhexyl ether was added so as to be 3% (15 g) with respect to the solid content. Next, formic acid was added so as to have a neutralization rate of 40% to neutralize the mixture, and ion-exchanged water was added to slowly dilute the mixture. Then, methyl isobutyl ketone was removed under reduced pressure so that the solid content became 36% to obtain an electrodeposition coating resin emulsion (Em10).
  • Em10 Electrodeposition Paint Resin Emulsion
  • Production Example 4-11 Production of Electrodeposition Paint Resin Emulsion (Em11) 200 g (solid content) of the resin (resin 3) obtained in Production Example 1-3 and the blocked polyisocyanate curing agent obtained in Production Example 2-5 ( 5) 800 g (solid content) was mixed, and ethylene glycol mono-2-ethylhexyl ether was added so as to be 3% (15 g) with respect to the solid content. Next, formic acid was added so as to have a neutralization rate of 40% to neutralize the mixture, and ion-exchanged water was added to slowly dilute the mixture. Then, methyl isobutyl ketone was removed under reduced pressure so that the solid content became 36% to obtain an electrodeposition coating resin emulsion (Em11).
  • Production Example 4-12 Production of Electroplated Paint Resin Emulsion (Em12) 100 g (solid content) of the resin (resin 3) obtained in Production Example 1-1 and the blocked polyisocyanate curing agent obtained in Production Example 2-1 ( 5) 900 g (solid content) was mixed, and ethylene glycol mono-2-ethylhexyl ether was added so as to be 3% (15 g) with respect to the solid content. Next, formic acid was added so as to have a neutralization rate of 40% to neutralize the mixture, and ion-exchanged water was added to slowly dilute the mixture. Then, methyl isobutyl ketone was removed under reduced pressure so that the solid content became 36% to obtain an electrodeposition coating resin emulsion (Em12).
  • Production Example 5 Production of Pigment Dispersion Paste for Electrodeposition Paint 120 parts of the pigment dispersion resin obtained in Production Example 3, carbon black 2.0 parts, kaolin 100.0 parts, titanium dioxide 72.0 parts, dibutyltin oxide 8. 0 part, 18.0 part of aluminum phosphomolybate and 184 parts of ion-exchanged water were mixed and dispersed until the particle size became 10 ⁇ m or less to obtain a pigment-dispersed paste (solid content 48%).
  • Example 1 To the stainless steel container, 1394 g of ion-exchanged water, 560 g of the resin emulsion (Em1) and 41 g of the pigment-dispersed paste obtained in Production Example 5 were added. Then, it was aged at 40 ° C. for 16 hours to prepare an electrodeposition coating composition.
  • Example 2 To the stainless steel container, 1394 g of ion-exchanged water, 560 g of the resin emulsion (Em2) and 41 g of the pigment-dispersed paste obtained in Production Example 5 were added. Then, it was aged at 40 ° C. for 16 hours to prepare an electrodeposition coating composition.
  • Example 3 To the stainless steel container, 1394 g of ion-exchanged water, 560 g of the resin emulsion (Em3) and 41 g of the pigment-dispersed paste obtained in Production Example 5 were added. Then, it was aged at 40 ° C. for 16 hours to prepare an electrodeposition coating composition.
  • Example 4 To the stainless steel container, 1394 g of ion-exchanged water, 560 g of the resin emulsion (Em4) and 41 g of the pigment-dispersed paste obtained in Production Example 5 were added. Then, it was aged at 40 ° C. for 16 hours to prepare an electrodeposition coating composition.
  • Example 5 To the stainless steel container, 1394 g of ion-exchanged water, 560 g of the resin emulsion (Em5) and 41 g of the pigment-dispersed paste obtained in Production Example 5 were added. Then, it was aged at 40 ° C. for 16 hours to prepare an electrodeposition coating composition.
  • Example 6 To the stainless steel container, 1394 g of ion-exchanged water, 560 g of the resin emulsion (Em6) and 41 g of the pigment-dispersed paste obtained in Production Example 5 were added. Then, it was aged at 40 ° C. for 16 hours to prepare an electrodeposition coating composition.
  • Example 7 To the stainless steel container, 1394 g of ion-exchanged water, 560 g of the resin emulsion (Em7) and 41 g of the pigment-dispersed paste obtained in Production Example 5 were added. Then, it was aged at 40 ° C. for 16 hours to prepare an electrodeposition coating composition.
  • Electrodeposition coating the formation of cold-rolled steel sheet (JISG3141, SPCC-SD), was immersed for 2 minutes at 50 °C in the Surf Cleaner EC90 (manufactured by Nippon Paint Surf Chemicals, Inc.), it was degreased.
  • the above cold-rolled steel sheet was immersed in a zirconium chemical conversion treatment solution containing 0.005% of ZrF and adjusted to pH 4 with NaOH at 40 ° C. for 90 seconds to perform a zirconium chemical conversion treatment.
  • a required amount of 2-ethylhexyl glycol was added to the electrodeposition coating compositions obtained in Examples and Comparative Examples so that the film thickness of the electrodeposition coating film after curing was 15 ⁇ m.
  • the steel sheet was immersed in the electrodeposition coating composition, the pressure was increased for 30 seconds, the voltage reached 180 V, and then the voltage was applied under the condition that the steel sheet was held for 150 seconds. As a result, an uncured electrodeposition coating film was deposited on the object to be coated.
  • the uncured electrodeposition coating film thus obtained was baked and cured at 140 ° C. for 25 minutes to obtain an electrodeposition coating plate having a cured electrodeposition coating film.
  • the electrodeposited coating film obtained with low temperature curability was placed in a Soxhlet extractor and extracted under reflux conditions of acetone for 6 hours, and the gel fraction of the coating film was calculated according to the following formula. ⁇ ; 90% or more ⁇ ; 80% to 89% ⁇ ; 79% or less
  • Stability of electrodeposition coating composition (stability over time) The state of the coating composition was visually determined in a state where the electrodeposition coating composition was allowed to stand or agitated, and the stability was evaluated. The evaluation criteria are as follows. The term “stable” as used herein means that the pigment does not settle within 15 minutes after the stirring is stopped. Evaluation Criteria ⁇ : Stable in the state where the electrodeposition coating composition is allowed to stand ⁇ ⁇ : Although it is not stable in the state where the electrodeposition coating composition is allowed to stand still, it stabilizes immediately by stirring again ⁇ : Electroelectricity It is stable when the coating composition is continuously stirred. ⁇ : It is not stabilized even when the electrodeposition coating composition is continuously stirred.
  • Adhesion (electrolytic peeling test) A cut scratch was made on the cured coating film with a knife so as to reach the substrate, and electrolysis was performed at a current value of 0.01 mA for 12 hours. Then, the tape was peeled off, and the peeling widths on both sides thereof were evaluated.
  • the evaluation criteria are as follows. Evaluation criteria ⁇ : Peeling width less than 3 mm ⁇ ⁇ : Peeling width 3 mm or more and less than 5 mm ⁇ : Peeling width 5 mm or more and less than 10 mm ⁇ : Peeling width 10 mm or more
  • a repellent-resistant naturally dried coating plate was placed horizontally on a net, and an aluminum cup was fixed with double-sided tape in the center. Drop a drop of water on the aluminum cup with a dropper, then drop another drop of oil on top of the water drop. The coated plate on which water and oil were dropped was baked and cured at 140 ° C. for 25 minutes while keeping it horizontal. The craters formed on the obtained cured coating film were evaluated. Craters are created by the oil in the aluminum cup popping and splashing out.
  • the evaluation criteria are as follows. Evaluation criteria ⁇ : Crater diameter is 1 mm or less ⁇ : Crater diameter is 1 mm to less than 3 mm ⁇ : Crater diameter is 3 mm or more
  • Table 1 below shows the coating composition (amined resin compounding amount%, blocked polyisocyanate type and compounding amount%), and blocking polyisocyanate blocking agent in Examples 1 to 7 and Comparative Examples 1 to 5.
  • Composition composition% of each blocking agent and monool / polyol mass ratio
  • amineation of paint meq / solid content 100 g
  • residual OH functional group amount in coating film meq / solid content g
  • coating film The crosslink density, the internal stress (MPa) of the coating film, and each of the above performance evaluations (low temperature curing (curing at 140 ° C.), stability over time, adhesion, corrosion resistance (SDT) and cissing resistance) are also described.
  • the amount of residual OH functional group is a theoretical value of the amount of residual hydroxyl group.
  • the theoretical residual hydroxyl group amount is the isocyanate group amount (meq / solid content g) of the curing agent from the total of the hydroxyl group amount (meq / solid content g) and the primary amine amount (meq / solid content g) of the aminating resin. I asked for it by reducing it.
  • the evaluation of the coating film is in the range where all the evaluations are satisfied.
  • the amount of the blocked polyisocyanate curing agent is small, the low temperature curing property is insufficient, and the corrosion resistance and the repelling resistance are insufficient.
  • the amount of the blocked polyisocyanate curing agent is within the range of the present invention, but the blocking agent is only a monool compound, and the stability over time and the adhesion of the coating film are insufficient.
  • Comparative Example 3 the amount of the blocked polyisocyanate curing agent is increased in the same manner as in Comparative Example 2, but the amine value and the amount of residual OH functional group are insufficient at 0, and the stability with time is adhered. There is a big shortage of sex. In Comparative Examples 4 and 5, the amount of the blocked polyisocyanate curing agent is too large, and the low-temperature curing property is excellent, but the coating film performance is not practically durable.
  • a cationic electrodeposition coating composition that enables low temperature curability while maintaining coating film performance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Paints Or Removers (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

The present invention provides a cationic electrodeposition coating composition capable of having low-temperature curability and maintaining coating film performance. The present invention provides a cationic electrodeposition coating composition containing an aminated resin and a blocked polyisocyanate curing agent. The blocked polyisocyanate curing agent is contained in the amount of 50-80 mass% in a coating resin solid content. A blocking agent forming the blocked polyisocyanate curing agent includes a combination of (a) a monool compound and (b) a polyol compound and/or an amine having a hydroxy group. The amount of an OH functional group remaining in a formed electrodeposition coating film is 0.4-1.6 (meq/gram of solid content). The present invention also provides a coating film obtained from the cationic electrodeposition coating composition.

Description

カチオン電着塗料組成物Cationic electrodeposition coating composition
 本発明は、カチオン電着塗料組成物、特に塗膜性能を維持しつつ低温硬化性を可能にするカチオン電着塗料組成物に関する。 The present invention relates to a cationic electrodeposition coating composition, particularly a cationic electrodeposition coating composition that enables low temperature curability while maintaining coating film performance.
 カチオン電着塗料は、自動車などの工業製品に防食性を付与するために下塗り塗料として多用されており、アミン化樹脂およびブロック化ポリイソシアネート硬化剤を含む。カチオン電着塗料には、塗膜性能の向上と共に低温硬化性も必要とされる。 Cationic electrodeposition paint is often used as an undercoat paint to impart anticorrosion properties to industrial products such as automobiles, and contains an aminized resin and a blocked polyisocyanate curing agent. Cationic electrodeposition paints are required to have low temperature curability as well as improved coating film performance.
 低温硬化性は、ブロック化ポリイソシアネート硬化剤のブロック剤を低温で解離するものにすることにより達成することが可能である。例えば、WO2017138445A1(特許文献1)には、活性メチレン系化合物やピラゾール系化合物が優れたものとして例示されていて、これらは低温解離が可能であるが、工業製品として一般的でなく、入手が難しく、コスト面であまり使用されていない。 Low temperature curability can be achieved by dissociating the blocking agent of the blocked polyisocyanate curing agent at a low temperature. For example, WO2017138445A1 (Patent Document 1) exemplifies active methylene compounds and pyrazole compounds as excellent ones, which can be dissociated at low temperature, but are not common as industrial products and are difficult to obtain. , Not often used in terms of cost.
WO2017138445A1WO2017138445A1
 本発明では、カチオン電着塗料組成物において、低温硬化性を達成すると共に塗膜性能も維持できるカチオン電着塗料組成物を提供することを目的とする。 An object of the present invention is to provide a cationic electrodeposition coating composition that can achieve low temperature curability and maintain coating film performance in a cationic electrodeposition coating composition.
 即ち、本発明は以下の態様を提供する:
 [1]アミン化樹脂およびブロック化ポリイソシアネート硬化剤を含有するカチオン電着塗料組成物であって、
 前記ブロック化ポリイソシアネート硬化剤が塗料樹脂固形分中に50~80質量%の量で含有し、
 前記ブロック化ポリイソシアネート硬化剤を形成するブロック剤が、
 (a)モノオール化合物と、
 (b)ポリオール化合物または水酸基を有するアミンのいずれか一方または両方との、
組合せからなり、
 形成された電着塗膜中の残存OH官能基量が0.4~1.6(meq/固形分g)である、
カチオン電着塗料組成物。
 [2]前記アミン化樹脂のアミン価が100~200(meq/固形分100g)である、上記[1]のカチオン電着塗料組成物。
 [3]前記ブロック化ポリイソシアネート硬化剤を形成するブロック剤の、モノオール化合物に対するポリオール化合物および水酸基を有するアミンの質量比率が、(モノオール化合物)/(ポリオール化合物および水酸基を有するアミン)=60/40~10/90である、上記[1]または[2]のカチオン電着塗料組成物。
 [4]140℃~200℃の温度で硬化可能である、上記[1]~[3]のいずれかに記載のカチオン電着塗料組成物。
 [5]前記カチオン電着塗料組成物を鋼板に乾燥膜厚で15μmになるように塗装し170℃で20分焼き付けた後の電着塗膜の架橋密度が0.5~5.0mmol/ccであり、電着塗膜形成時の内部応力が7.5MPa以下である、上記[1]~[4]のいずれかに記載のカチオン電着塗料組成物。
 [6]上記[1]~[5]いずれかに記載のカチオン電着塗料組成物を用いて塗装したカチオン電着塗膜。
That is, the present invention provides the following aspects:
[1] A cationic electrodeposition coating composition containing an aminated resin and a blocked polyisocyanate curing agent.
The blocked polyisocyanate curing agent is contained in the paint resin solid content in an amount of 50 to 80% by mass.
The blocking agent that forms the blocked polyisocyanate curing agent is
(A) Monool compound and
(B) With either or both of a polyol compound or an amine having a hydroxyl group,
Consists of combinations
The amount of residual OH functional groups in the formed electrodeposition coating film is 0.4 to 1.6 (meq / solid content g).
Cationic electrodeposition coating composition.
[2] The cationic electrodeposition coating composition according to the above [1], wherein the amine-based resin has an amine value of 100 to 200 (meq / solid content 100 g).
[3] The mass ratio of the polyol compound and the amine having a hydroxyl group to the monool compound of the blocking agent forming the blocked polyisocyanate curing agent is (monool compound) / (polyol compound and amine having a hydroxyl group) = 60. The cationic electrodeposition coating composition of the above [1] or [2], which is / 40 to 10/90.
[4] The cationic electrodeposition coating composition according to any one of the above [1] to [3], which can be cured at a temperature of 140 ° C to 200 ° C.
[5] The crosslink density of the electrodeposition coating film after coating the cationic electrodeposition coating composition on a steel sheet so as to have a dry film thickness of 15 μm and baking at 170 ° C. for 20 minutes is 0.5 to 5.0 mmol / cc. The cationic electrodeposition coating composition according to any one of the above [1] to [4], wherein the internal stress at the time of forming the electrodeposition coating film is 7.5 MPa or less.
[6] A cationic electrodeposition coating film coated with the cationic electrodeposition coating composition according to any one of the above [1] to [5].
 本発明によれば、電着された塗膜の性能を確保しつつ、低温硬化性を可能にするカチオン電着塗料組成物が提供される。 According to the present invention, there is provided a cationic electrodeposition coating composition that enables low temperature curability while ensuring the performance of an electrodeposited coating film.
 本発明では、ブロック化ポリイソシアネート硬化剤のブロック剤を検討した。通常使用されているモノオール化合物(即ち、一価のアルコール)だけではなく、ポリオール化合物または水酸基を有するアミンのいずれか一方または両方を組み合わせることにより、反応官能基であるOH基の量を適正化する。 In the present invention, a blocking agent for a blocked polyisocyanate curing agent was investigated. Optimizing the amount of OH groups, which are reactive functional groups, by combining not only the commonly used monool compounds (ie, monohydric alcohols) but also either or both of polyol compounds or amines with hydroxyl groups. do.
 すなわち、本発明は、アミン化樹脂およびブロック化ポリイソシアネート硬化剤を含有するカチオン電着塗料組成物であって、ブロック化ポリイソシアネート硬化剤が塗料樹脂固形分中に50~80質量%の量で含有し、ブロック化ポリイソシアネート硬化剤を形成するブロック剤が、(a)モノオール化合物と、(b)ポリオール化合物または水酸基を有するアミンのいずれか一方または両方との、組合せからなり、形成された電着塗膜中の残存OH官能基量が0.4~1.6(meq/固形分g)である。それぞれの要件について説明する。 That is, the present invention is a cationic electrodeposition coating composition containing an aminated resin and a blocked polyisocyanate curing agent, in which the blocked polyisocyanate curing agent is contained in an amount of 50 to 80% by mass in the solid content of the coating resin. The blocking agent contained and forming the blocked polyisocyanate curing agent was formed by a combination of (a) a monool compound and (b) either a polyol compound or an amine having a hydroxyl group, or both. The amount of residual OH functional group in the electrodeposition coating film is 0.4 to 1.6 (meq / solid content g). Each requirement will be explained.
<アミン化樹脂>
 アミン化樹脂は、電着塗膜を構成する塗膜形成樹脂である。アミン化樹脂として、エポキシ樹脂骨格中のオキシラン環(「エポキシ基」とも言う。)を、アミン化合物で変性して得られるアミン変性エポキシ樹脂が好ましい。一般にアミン変性エポキシ樹脂は、出発原料樹脂分子内のオキシラン環を、1級アミン、2級アミンあるいは3級アミンおよび/またはその酸塩などのアミン化合物との反応によって開環して調製される。出発原料樹脂の典型例は、ビスフェノールA、ビスフェノールF、ビスフェノールS、フェノールノボラック、クレゾールノボラックなどの多環式フェノール化合物とエピクロルヒドリンとの反応生成物であるポリフェノールポリグリシジルエーテル型エポキシ樹脂である。他の出発原料樹脂の例として、特開平5-306327号公報に記載のオキサゾリドン環含有エポキシ樹脂を挙げることができる。これらのエポキシ樹脂は、ジイソシアネート化合物、またはジイソシアネート化合物のイソシアネート基をメタノール、エタノールなどの低級アルコールでブロックして得られたビスウレタン化合物と、エピクロルヒドリンとの反応によって調製することができる。
<Aminated resin>
The aminized resin is a coating film forming resin constituting an electrodeposition coating film. As the aminized resin, an amine-modified epoxy resin obtained by modifying an oxylan ring (also referred to as an "epoxy group") in an epoxy resin skeleton with an amine compound is preferable. Generally, an amine-modified epoxy resin is prepared by opening an oxylan ring in a starting material resin molecule by reaction with an amine compound such as a primary amine, a secondary amine or a tertiary amine and / or an acid salt thereof. A typical example of a starting material resin is a polyphenol polyglycidyl ether type epoxy resin which is a reaction product of a polycyclic phenol compound such as bisphenol A, bisphenol F, bisphenol S, phenol novolak, and cresol novolak with epichlorohydrin. As an example of another starting material resin, the oxazolidone ring-containing epoxy resin described in JP-A-5-306327 can be mentioned. These epoxy resins can be prepared by reacting a diisocyanate compound or a bisurethane compound obtained by blocking the isocyanate group of the diisocyanate compound with a lower alcohol such as methanol or ethanol with epichlorohydrin.
 上記出発原料樹脂は、アミン化合物によるオキシラン環の開環反応の前に、2官能性のポリエステルポリオール、ポリエーテルポリオール、ビスフェノール類、2塩基性カルボン酸などにより鎖延長して用いることができる。 The starting material resin can be used by extending the chain with a bifunctional polyester polyol, a polyether polyol, a bisphenol, a dibasic carboxylic acid, or the like before the ring opening reaction of the oxylan ring with the amine compound.
 アミン化合物によるオキシラン環の開環反応の前に、分子量またはアミン当量の調節、熱フロー性の改良などを目的として、一部のオキシラン環に対して2-エチルヘキサノール、ノニルフェノール、エチレングリコールモノ-2-エチルヘキシルエーテル、エチレングリコールモノn-ブチルエーテル、プロピレングリコールモノ-2-エチルヘキシルエーテルなどのモノヒドロキシ化合物またはオクチル酸などのモノカルボン酸化合物を付加してもよい。 2-Ethylhexanol, nonylphenol, ethylene glycol mono-2 for some oxylan rings for the purpose of adjusting the molecular weight or amine equivalent, improving the heat flow property, etc. before the ring opening reaction of the oxylan ring with the amine compound. -A monohydroxy compound such as ethylhexyl ether, ethylene glycol monon-butyl ether, propylene glycol mono-2-ethylhexyl ether or a monocarboxylic acid compound such as octyl acid may be added.
 上記エポキシ樹脂のオキシラン環とアミン化合物とを反応させることによって、アミン変性エポキシ樹脂が得られる。オキシラン環と反応させるアミン化合物として、1級アミンおよび2級アミンが挙げられる。エポキシ樹脂と2級アミンとを反応させると、3級アミノ基を有するアミン変性エポキシ樹脂が得られる。また、エポキシ樹脂と1級アミンとを反応させると、2級アミノ基を有するアミン変性エポキシ樹脂が得られる。さらに、ブロックされた1級アミンを有する2級アミンを用いることにより、1級アミノ基を有するアミン変性エポキシ樹脂を調製することができる。例えば、1級アミノ基および2級アミノ基を有するアミン変性エポキシ樹脂の調製は、エポキシ樹脂と反応させる前に、1級アミノ基をケトンでブロック化してケチミンにしておいて、これをエポキシ樹脂に導入した後に脱ブロック化することによって調製することができる。なお、オキシラン環と反応させるアミンとして、必要に応じて、3級アミンを併用してもよい。 An amine-modified epoxy resin can be obtained by reacting the oxylan ring of the epoxy resin with the amine compound. Examples of the amine compound that reacts with the oxylan ring include primary amines and secondary amines. When the epoxy resin is reacted with a secondary amine, an amine-modified epoxy resin having a tertiary amino group is obtained. Further, by reacting the epoxy resin with the primary amine, an amine-modified epoxy resin having a secondary amino group can be obtained. Further, by using a secondary amine having a blocked primary amine, an amine-modified epoxy resin having a primary amino group can be prepared. For example, in the preparation of an amine-modified epoxy resin having a primary amino group and a secondary amino group, the primary amino group is blocked with a ketone to make ketimine before reacting with the epoxy resin, and this is used as an epoxy resin. It can be prepared by deblocking after introduction. If necessary, a tertiary amine may be used in combination as the amine to be reacted with the oxylan ring.
 上記アミノ化合物としては、例えば、ブチルアミン、オクチルアミン、ジエチルアミン、ジブチルアミン、メチルブチルアミン、モノエタノールアミン、ジエタノールアミン、N-メチルエタノールアミン、N-エチルエタノールアミン、トリエチルアミン、N,N-ジメチルベンジルアミン、N,N-ジメチルエタノールアミンなどの1級アミン、2級アミンまたは3級アミンおよび/もしくはその酸塩が挙げられる。ブロックされた1級アミンを有する2級アミンの具体例として、例えば、アミノエチルエタノールアミンのケチミン、ジエチレントリアミンのジケチミンなどが挙げられる。必要に応じて用いてもよい3級アミンの具体例として、例えば、トリエチルアミン、N,N-ジメチルベンジルアミン、N,N-ジメチルエタノールアミンなどが挙げられる。これらのアミン類は1種のみを単独で用いてもよく、2種以上を併用してもよい。 Examples of the amino compound include butylamine, octylamine, diethylamine, dibutylamine, methylbutylamine, monoethanolamine, diethanolamine, N-methylethanolamine, N-ethylethanolamine, triethylamine, N, N-dimethylbenzylamine and N. , Primary amines such as N-dimethylethanolamine, secondary amines or tertiary amines and / or acid salts thereof. Specific examples of the secondary amine having a blocked primary amine include ketimine of aminoethylethanolamine and diketimine of diethylenetriamine. Specific examples of the tertiary amine that may be used as needed include triethylamine, N, N-dimethylbenzylamine, N, N-dimethylethanolamine and the like. Only one of these amines may be used alone, or two or more of these amines may be used in combination.
 上記エポキシ樹脂のオキシラン環と反応させるアミン化合物は、2級アミンが50~95質量%、ブロックされた1級アミンを有する2級アミンが0~30質量%、1級アミンが0~20質量%の範囲で含むことが好ましい。 The amine compound to be reacted with the oxylan ring of the epoxy resin is 50 to 95% by mass of the secondary amine, 0 to 30% by mass of the secondary amine having the blocked primary amine, and 0 to 20% by mass of the primary amine. It is preferable to include it in the range of.
 アミン化樹脂の数平均分子量は、1,000~5,000の範囲であるのが好ましい。数平均分子量が1,000以上であることにより、得られる硬化電着塗膜の耐溶剤性および耐食性などの物性が良好となる。一方で、数平均分子量が5,000以下であることにより、アミン化樹脂の粘度調整が容易となって円滑な合成が可能となり、また、得られたアミン化樹脂の乳化分散の取扱いが容易になる。アミン化樹脂の数平均分子量は2,000~3,500の範囲であるのがより好ましい。 The number average molecular weight of the aminated resin is preferably in the range of 1,000 to 5,000. When the number average molecular weight is 1,000 or more, the obtained cured electrodeposition coating film has good physical properties such as solvent resistance and corrosion resistance. On the other hand, when the number average molecular weight is 5,000 or less, the viscosity of the aminated resin can be easily adjusted to enable smooth synthesis, and the emulsified dispersion of the obtained aminated resin can be easily handled. Become. The number average molecular weight of the aminated resin is more preferably in the range of 2,000 to 3,500.
 本発明のアミン化樹脂のアミン価は、100~200(meq/固形分100g)の範囲内であるのが好ましい。アミン化樹脂のアミン価が上記範囲であると、十分な中和点を有するため経時安定性が向上するとともに、親水性が低いため遮断性が向上し易い。アミン化樹脂のアミン価は、好ましくは130~190(meq/固形分100g)、より好ましくは150~180の範囲内である。 The amine value of the aminated resin of the present invention is preferably in the range of 100 to 200 (meq / solid content 100 g). When the amine value of the aminized resin is in the above range, it has a sufficient neutralization point, so that the stability over time is improved, and the hydrophilicity is low, so that the blocking property is easily improved. The amine value of the aminized resin is preferably in the range of 130 to 190 (meq / solid content 100 g), more preferably 150 to 180.
 アミン化樹脂の水酸基価は、150~650mgKOH/gの範囲内であるのが好ましい。水酸基価が150以上であることにより、硬化電着塗膜において硬化が良好となり、塗膜外観も向上する。一方で、水酸基価が650以下であることにより、硬化電着塗膜中に残存する水酸基の量が適正となり、塗膜の耐水性の低下が抑制され易い。アミン化樹脂の水酸基価は、150~400mgKOH/gの範囲内であるのがより好ましい。 The hydroxyl value of the aminated resin is preferably in the range of 150 to 650 mgKOH / g. When the hydroxyl value is 150 or more, the cured electrodeposition coating film is cured well and the appearance of the coating film is also improved. On the other hand, when the hydroxyl group value is 650 or less, the amount of hydroxyl groups remaining in the cured electrodeposition coating film becomes appropriate, and the deterioration of the water resistance of the coating film is likely to be suppressed. The hydroxyl value of the aminated resin is more preferably in the range of 150 to 400 mgKOH / g.
<ブロック化ポリイソシアネート硬化剤>
 ブロック化ポリイソシアネート硬化剤(以下、単に「硬化剤」ということがある。)は、電着塗膜を構成する塗膜形成樹脂である。ブロック化ポリイソシアネート硬化剤は、ポリイソシアネート化合物を、ブロック剤でブロック化することによって調製することができる。
<Blocked polyisocyanate curing agent>
The blocked polyisocyanate curing agent (hereinafter, may be simply referred to as “hardening agent”) is a coating film forming resin constituting an electrodeposition coating film. The blocked polyisocyanate curing agent can be prepared by blocking the polyisocyanate compound with a blocking agent.
 ポリイソシアネート化合物の例としては、ヘキサメチレンジイソシアネート(3量体を含む)、テトラメチレンジイソシアネート、トリメチルヘキサメチレンジイソシアネートなどの脂肪族ジイソシアネート、イソホロンジイソシアネート、4,4’-メチレンビス(シクロヘキシルイソシアネート)などの脂環式ポリイソシアネート、4,4’-ジフェニルメタンジイソシアネート、トリレンジイソシアネート、キシリレンジイソシアネートなどの芳香族ジイソシアネートが挙げられる。本発明では、上記ポリイソシアネート化合物として、どのようなものを使用してもよいが、低温硬化性および入手のし易さから考えると、芳香族ジイソシアネート、特に4,4’-ジフェニルメタンジイソシアネート(MDI)またはヘキサメチレンジイソシアネート(HDI)が好ましい。 Examples of polyisocyanate compounds include aliphatic diisocyanates such as hexamethylene diisocyanate (including trimer), tetramethylene diisocyanate and trimethylhexamethylene diisocyanate, isophorone diisocyanate, and alicyclic such as 4,4'-methylenebis (cyclohexylisocyanate). Examples thereof include aromatic diisocyanates such as the formula polyisocyanate, 4,4'-diphenylmethane diisocyanate, tolylene diisocyanate, and xylylene diisocyanate. In the present invention, any polyisocyanate compound may be used, but considering the low-temperature curability and availability, aromatic diisocyanates, particularly 4,4'-diphenylmethane diisocyanate (MDI). Alternatively, hexamethylene diisocyanate (HDI) is preferable.
 本発明では、ブロック化ポリイソシアネート硬化剤のブロック剤として、従来通常用いられているモノオール化合物(一価のアルコール)単独ではなく、ポリオール化合物または水酸基を有するアミンのいずれか一方または両方を組み合わせて用いることを特徴としている。従って、本発明で使用し得るブロック剤は、(a)モノオール化合物と(b)ポリオール化合物または水酸基を有するアミンと、に分けて説明する。モノオール化合物は、n-ブタノール、n-ヘキシルアルコール、2-エチルヘキサノール、ラウリルアルコール、フェノールカルビノール、メチルフェニルカルビノールなどの一価のアルキル(または芳香族)アルコール類;エチレングリコールモノヘキシルエーテル、エチレングリコールモノ2-エチルヘキシルエーテル、エチレングリコールモノブチルエーテル(ブチルセロソルブ)などのセロソルブ類;パラ-t-ブチルフェノール、クレゾールなどのフェノール類;ジメチルケトオキシム、メチルエチルケトオキシム、メチルイソブチルケトオキシム、メチルアミルケトオキシム、シクロヘキサノンオキシムなどのオキシム類などが挙げられる。これらの中で、好ましく使用できるものは、アルキルアルコール類またはセロソルブ類であり、特に好ましくはセロソルブ類である。 In the present invention, as the blocking agent for the blocked polyisocyanate curing agent, not only the monool compound (monohydric alcohol) conventionally used conventionally, but also a polyol compound or an amine having a hydroxyl group, or both of them are combined. It is characterized by using. Therefore, the blocking agent that can be used in the present invention will be described separately as (a) a monool compound and (b) a polyol compound or an amine having a hydroxyl group. Monool compounds are monohydric alkyl (or aromatic) alcohols such as n-butanol, n-hexyl alcohol, 2-ethylhexanol, lauryl alcohol, phenolcarbinol, methylphenylcarbinol; ethylene glycol monohexyl ether, Cellosolves such as ethylene glycol mono2-ethylhexyl ether and ethylene glycol monobutyl ether (butyl cellosolve); phenols such as para-t-butylphenol and cresol; Examples include oximes such as oximes. Among these, those that can be preferably used are alkyl alcohols or cellosolves, and particularly preferably cellosolves.
 本発明のブロック剤として使用し得るポリオール化合物は、エチレングリコール、ブチレングリコール、ペンタンジール、ネオペンチルグリコールなどのアルキレングリコール類;ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレンエーテルグリコールフェノールなどのポリエーテル型両末端ジオール類;エチレングリコール、プロピレングリコール、1,4-ブタンジオールなどのジオール類と、シュウ酸、コハク酸、アジピン酸、スベリン酸、セバシン酸などのジカルボン酸類から得られるポリエステル型両末端ポリオール類;トリメチロールプロパン、グリセリンなどのトリオール類;ペンタエリスリトール、ソルビトールなどの4価以上のアルコール類;およびε-カプロラクタム、γ-ブチロラクタムに代表されるラクタム類が好ましく用いられる。これらの多価アルコールの中で、低分子量のグリコール類(例えば、ブチレングリコールや1,6-ヘキサンジオール)またはトリオール(例えば、トリメチロールプロパン)が好ましく使用できる。 The polyol compounds that can be used as the blocking agent of the present invention are alkylene glycols such as ethylene glycol, butylene glycol, pentaneyl and neopentyl glycol; and polyether type both ends such as polyethylene glycol, polypropylene glycol and polytetramethylene ether glycol phenol. Dires; Polyester-type double-ended polyols obtained from diols such as ethylene glycol, propylene glycol and 1,4-butanediol and dicarboxylic acids such as oxalic acid, succinic acid, adipic acid, suberic acid and sebacic acid; Triols such as methylolpropane and glycerin; alcohols having a valence of 4 or more such as pentaerythritol and sorbitol; and lactams typified by ε-caprolactam and γ-butyrolactam are preferably used. Among these polyhydric alcohols, low molecular weight glycols (eg, butylene glycol and 1,6-hexanediol) or triol (eg, trimethylolpropane) can be preferably used.
 水酸基を有するアミンは、モノメタノールアミン、ジメタノールアミン、モノエタノールアミン、ジエタノールアミン、モノプロパノールアミン、ジプロパノールアミン等が上げられる。本発明では、水酸基を有するアミンは、アミン基がイソシアネート基をブロックするブロック剤として作用し、ヒドロキシル基は残存OH官能基濃度が減少するのを補充することができる。そのため、水酸基を有するアミンは、塗膜性能(遮断性や耐ハジキ性)が維持され易くなる点で、好ましい。 Examples of amines having a hydroxyl group include monomethanolamine, dimethanolamine, monoethanolamine, diethanolamine, monopropanolamine, and dipropanolamine. In the present invention, the amine having a hydroxyl group acts as a blocking agent for the amine group to block the isocyanate group, and the hydroxyl group can supplement the decrease in the residual OH functional group concentration. Therefore, an amine having a hydroxyl group is preferable in that the coating film performance (blocking property and repelling resistance) can be easily maintained.
 ブロック化ポリイソシアネート硬化剤のブロック剤として、モノオール化合物に加えてポリオール化合物および/または水酸基を有するアミンを使用することにより、後述する電着塗膜中の残存OH官能基量(meq/固形分g)の量的範囲を満足し、塗膜性能の低下を防止することができる。モノオール類とポリオール類および/または水酸基を有するアミンとの量的な比率は、特に限定されることはないが、モノオールに対するポリオールおよび/または水酸基を有するアミンの質量比率が、(ポリオールおよび/または水酸基を有するアミン)/(モノオール)=40/60~90/10、好ましくは50/50~80/20、より好ましくは60/40~80/20である。モノオールの比率がこの範囲であると、後述する電着塗膜中の残存OH官能基量の不足が生じ難く、塗膜性能が向上し易い。ポリオールおよび/または水酸基を有するアミンの比率がこの範囲であると、ブロック剤が解離して反応できるイソシアネートが十分に得られて、硬化性が向上し易い。 By using a polyol compound and / or an amine having a hydroxyl group in addition to the monool compound as the blocking agent for the blocked polyisocyanate curing agent, the amount of residual OH functional groups (meq / solid content) in the electrodeposition coating film described later will be described later. It is possible to satisfy the quantitative range of g) and prevent deterioration of the coating film performance. The quantitative ratio of the monools to the polyols and / or the amine having a hydroxyl group is not particularly limited, but the mass ratio of the polyol and / or the amine having a hydroxyl group to the monool is (polyol and / or the polyol and / or). Alternatively, an amine having a hydroxyl group) / (monool) = 40/60 to 90/10, preferably 50/50 to 80/20, and more preferably 60/40 to 80/20. When the ratio of monool is in this range, the amount of residual OH functional groups in the electrodeposition coating film, which will be described later, is unlikely to be insufficient, and the coating film performance is likely to be improved. When the ratio of the polyol and / or the amine having a hydroxyl group is in this range, an isocyanate capable of dissociating and reacting with the blocking agent is sufficiently obtained, and the curability is easily improved.
 本発明では、上記ブロック化ポリイソシアネート硬化剤が塗料樹脂固形分中に50~80質量%の量で含まれる。ブロック化ポリイソシアネート硬化剤の量が塗料樹脂固形分中に50質量%より少ないと、硬化が不十分で塗膜特性が発揮できない。逆に、80質量%を超えると、カチオン電着塗料成分中のカチオン成分が不足して電気泳動が生じない。ブロック化ポリイソシアネート硬化剤の塗料樹脂固形分中の配合量は、好ましくは50~70質量%、より好ましくは50~60質量%である。 In the present invention, the blocked polyisocyanate curing agent is contained in the paint resin solid content in an amount of 50 to 80% by mass. If the amount of the blocked polyisocyanate curing agent is less than 50% by mass in the paint resin solid content, the curing is insufficient and the coating film characteristics cannot be exhibited. On the contrary, if it exceeds 80% by mass, the cationic component in the cationic electrodeposition coating component is insufficient and electrophoresis does not occur. The blending amount of the blocked polyisocyanate curing agent in the solid content of the paint resin is preferably 50 to 70% by mass, more preferably 50 to 60% by mass.
<樹脂エマルションの調製>
 樹脂エマルションは、アミン化樹脂およびブロック化ポリイソシアネート硬化剤それぞれを有機溶媒中に溶解させて、溶液を調製し、これらの溶液を混合した後、中和酸を用いて中和し、脱イオン水で希釈することにより、調製することができる。中和酸として、例えば、メタンスルホン酸、スルファミン酸、乳酸、ジメチロールプロピオン酸、ギ酸、酢酸などの有機酸が挙げられる。本発明においては、アミン化樹脂および硬化剤を含む樹脂エマルションを、ギ酸、酢酸および乳酸からなる群から選択される1種またはそれ以上の酸によって中和するのがより好ましい。
<Preparation of resin emulsion>
The resin emulsion is prepared by dissolving each of the aminated resin and the blocked polyisocyanate curing agent in an organic solvent to prepare a solution, mixing these solutions, neutralizing with a neutralizing acid, and deionizing water. It can be prepared by diluting with. Examples of the neutralizing acid include organic acids such as methanesulfonic acid, sulfamic acid, lactic acid, dimethylolpropionic acid, formic acid and acetic acid. In the present invention, it is more preferable to neutralize the resin emulsion containing the aminated resin and the curing agent with one or more acids selected from the group consisting of formic acid, acetic acid and lactic acid.
 樹脂エマルションの固形分量は、通常、樹脂エマルション全量に対して25~50質量%、特に35~45質量%であるのが好ましい。ここで「樹脂エマルションの固形分」とは、樹脂エマルション中に含まれる成分であって、溶媒の除去によっても固形となって残存する成分全ての質量を意味する。具体的には、樹脂エマルション中に含まれる、アミン化樹脂、硬化剤および必要に応じて添加される他の固形成分の質量の総量を意味する。 The solid content of the resin emulsion is usually preferably 25 to 50% by mass, particularly preferably 35 to 45% by mass, based on the total amount of the resin emulsion. Here, the "solid content of the resin emulsion" means the mass of all the components contained in the resin emulsion that remain solid even after the removal of the solvent. Specifically, it means the total mass of the aminated resin, the curing agent and other solid components added as needed, which are contained in the resin emulsion.
 中和酸は、アミン化樹脂が有するアミノ基の当量に対する中和酸の当量比率として、10~100%となる量で用いるのがより好ましく、20~70%となる量で用いるのがさらに好ましい。本明細書において、アミン化樹脂が有するアミノ基の当量に対する中和酸の当量比率を、中和率とする。中和率が10%以上であることにより、水への親和性が確保され、水分散性が良好となる。 The neutralizing acid is more preferably used in an amount of 10 to 100%, and further preferably in an amount of 20 to 70%, as the equivalent ratio of the neutralizing acid to the equivalent of the amino group of the amineated resin. .. In the present specification, the ratio of the equivalent of the neutralizing acid to the equivalent of the amino group of the aminated resin is referred to as the neutralization rate. When the neutralization rate is 10% or more, the affinity for water is ensured and the water dispersibility is good.
<顔料分散ペースト>
 本発明のカチオン電着塗料組成物は、必要に応じて顔料分散ペーストを含んでもよい。顔料分散ペーストは、電着塗料組成物中に任意に含まれる成分であり、一般に顔料分散樹脂および顔料を含む。
<Pigment dispersion paste>
The cationic electrodeposition coating composition of the present invention may contain a pigment-dispersed paste, if necessary. The pigment dispersion paste is a component arbitrarily contained in the electrodeposition coating composition, and generally includes a pigment dispersion resin and a pigment.
(顔料分散樹脂)
 顔料分散樹脂は、顔料を分散させるための樹脂であり、水性媒体中に分散されて使用される。顔料分散樹脂として、4級アンモニウム基、3級スルホニウム基および1級アミノ基から選択される少なくとも1種またはそれ以上を有する変性エポキシ樹脂などの、カチオン基を有する顔料分散樹脂を用いることができる。顔料分散樹脂の具体例として、例えば4級アンモニウム基含有エポキシ樹脂、3級スルホニウム基含有エポキシ樹脂などが挙げられる。水性溶媒としてはイオン交換水または少量のアルコール類を含む水などを用いる。
(Pigment dispersion resin)
The pigment dispersion resin is a resin for dispersing a pigment, and is used after being dispersed in an aqueous medium. As the pigment dispersion resin, a pigment dispersion resin having a cationic group such as a modified epoxy resin having at least one selected from a quaternary ammonium group, a tertiary sulfonium group and a primary amino group can be used. Specific examples of the pigment dispersion resin include a quaternary ammonium group-containing epoxy resin and a tertiary sulfonium group-containing epoxy resin. As the aqueous solvent, ion-exchanged water or water containing a small amount of alcohol is used.
(顔料)
 顔料は、電着塗料組成物において一般的に用いられる顔料である。顔料として、例えば、通常使用される無機顔料および有機顔料、例えば、チタンホワイト(二酸化チタン)、カーボンブラックおよびベンガラのような着色顔料;カオリン、タルク、ケイ酸アルミニウム、炭酸カルシウム、マイカおよびクレーのような体質顔料;リン酸鉄、リン酸アルミニウム、リン酸カルシウム、トリポリリン酸アルミニウム、およびリンモリブデン酸アルミニウム、リンモリブデン酸アルミニウム亜鉛のような防錆顔料など、が挙げられる。
(Pigment)
The pigment is a pigment generally used in an electrodeposition coating composition. Pigments such as commonly used inorganic and organic pigments such as titanium white (titanium dioxide), carbon black and red iron oxide; such as kaolin, talc, aluminum silicate, calcium carbonate, mica and clay. Constituent pigments; iron phosphate, aluminum phosphate, calcium phosphate, aluminum tripolyphosphate, and rust-preventive pigments such as aluminum phosphomolybate, aluminum zinc phosphomolybate, and the like.
(顔料分散ペーストの製造)
 顔料分散ペーストは、顔料分散樹脂および顔料を混合して調製される。顔料分散ペースト中の顔料分散樹脂の含有量は特に限定されないが、例えば、顔料100質量部に対して樹脂固形分比で20~100質量部となる量である。
(Manufacturing of pigment dispersion paste)
The pigment dispersion paste is prepared by mixing a pigment dispersion resin and a pigment. The content of the pigment-dispersed resin in the pigment-dispersed paste is not particularly limited, but is, for example, an amount of 20 to 100 parts by mass in terms of the resin solid content ratio with respect to 100 parts by mass of the pigment.
 顔料分散ペーストの固形分量は通常、顔料分散ペースト全量に対して40~70質量%であり、特に50~60質量%であるのが好ましい。 The solid content of the pigment-dispersed paste is usually 40 to 70% by mass, particularly preferably 50 to 60% by mass, based on the total amount of the pigment-dispersed paste.
 本明細書中において「顔料分散ペーストの固形分」とは、顔料分散ペースト中に含まれる成分であって、溶媒の除去によっても固形となって残存する成分全ての質量を意味する。具体的には、顔料分散ペースト中に含まれる、顔料分散樹脂および顔料および必要に応じて添加される他の固形成分の質量の総量を意味する。 In the present specification, the "solid content of the pigment-dispersed paste" means the mass of all the components contained in the pigment-dispersed paste, which remain solid even after the removal of the solvent. Specifically, it means the total mass of the pigment-dispersed resin and the pigment and other solid components added as needed, which are contained in the pigment-dispersed paste.
<カチオン電着塗料組成物の製造>
 本発明のカチオン電着塗料組成物は、アミン化樹脂およびブロック化ポリイソシアネート硬化剤を含む樹脂エマルション、そして顔料分散ペーストおよび添加剤などを、通常用いられる方法により混合することによって、調製することができる。
<Manufacturing of cationic electrodeposition coating composition>
The cationic electrodeposition coating composition of the present invention can be prepared by mixing a resin emulsion containing an aminized resin and a blocked polyisocyanate curing agent, a pigment dispersion paste, an additive and the like by a commonly used method. can.
 本明細書中において「電着塗料組成物の固形分」とは、電着塗料組成物中に含まれる成分であって、溶媒の除去によっても固形となって残存する成分全ての質量を意味する。具体的には、電着塗料組成物中に含まれる、アミン化樹脂、ブロック化ポリイソシアネート硬化剤、そして必要に応じて含まれる顔料分散樹脂、顔料、他の固形成分の固形分質量の総量を意味する。 In the present specification, the "solid content of the electrodeposition coating composition" means the mass of all the components contained in the electrodeposition coating composition and which remain solid even after the removal of the solvent. .. Specifically, the total amount of solid content mass of the aminated resin, the blocked polyisocyanate curing agent, and the pigment dispersion resin, the pigment, and other solid components contained in the electrodeposition coating composition as needed. means.
 本発明のカチオン電着塗料組成物の固形分量は、電着塗料組成物全量に対し、1~30質量%であるのが好ましい。カチオン電着塗料組成物の固形分量が上記範囲であると、十分な電着塗膜析出量が得られて、耐食性が向上し易い。さらに、つきまわり性および塗装外観が良好になり易い。 The solid content of the cationic electrodeposition coating composition of the present invention is preferably 1 to 30% by mass with respect to the total amount of the electrodeposition coating composition. When the solid content of the cationic electrodeposition coating composition is in the above range, a sufficient electrodeposition coating film precipitation amount can be obtained, and the corrosion resistance can be easily improved. In addition, the wrapping property and the painted appearance tend to be good.
 本発明のカチオン電着塗料組成物は、pHが4.5~7であることが好ましい。カチオン電着塗料組成物のpHが上記範囲であると、カチオン電着塗料組成物中に適正な量の酸が存在し、塗膜外観および塗装作業性が良好になる。さらに、カチオン電着塗料組成物のろ過性が向上して、硬化電着塗膜の水平外観が良好になる。カチオン電着塗料組成物のpHは、用いる中和酸の量、遊離酸の添加量などの調整によって、上記範囲に設定することができる。上記pHは、5~7であるのがより好ましい。 The cationic electrodeposition coating composition of the present invention preferably has a pH of 4.5 to 7. When the pH of the cationic electrodeposition coating composition is in the above range, an appropriate amount of acid is present in the cationic electrodeposition coating composition, and the appearance of the coating film and the coating workability are improved. Further, the filterability of the cationic electrodeposition coating composition is improved, and the horizontal appearance of the cured electrodeposition coating film is improved. The pH of the cationic electrodeposition coating composition can be set in the above range by adjusting the amount of neutralizing acid used, the amount of free acid added, and the like. The pH is more preferably 5 to 7.
 カチオン電着塗料組成物のpHは、温度補償機能を有する市販のpHメーターを用いて測定することができる。 The pH of the cationic electrodeposition coating composition can be measured using a commercially available pH meter having a temperature compensation function.
 カチオン電着塗料組成物の固形分100gに対する酸のミリグラム当量(MEQ(A))は40~120であるのが好ましい。なお、カチオン電着塗料組成物の樹脂固形分100gに対する酸のミリグラム当量(MEQ(A))は、中和酸量および遊離酸の量によって調整することができる。 The milligram equivalent (MEQ (A)) of the acid with respect to 100 g of the solid content of the cationic electrodeposition coating composition is preferably 40 to 120. The milligram equivalent of acid (MEQ (A)) with respect to 100 g of the resin solid content of the cationic electrodeposition coating composition can be adjusted by the amount of neutralizing acid and the amount of free acid.
 ここでMEQ(A)とは、mg equivalent(acid)の略であり、塗料の固形分100g当たりのすべての酸のmg当量の合計である。このMEQ(A)は、電着塗料組成物の固形分約10gを約50mlの溶剤(THF:テトラヒドロフラン)に溶解した後、1/10NのNaOH溶液を用いて電位差滴定を行い、カチオン電着塗料組成物中の含有酸量を定量することにより、求められる。 Here, MEQ (A) is an abbreviation for mg equivalent (acid), and is the total of mg equivalents of all acids per 100 g of solid content of the paint. In this MEQ (A), about 10 g of the solid content of the electrodeposition coating composition is dissolved in about 50 ml of a solvent (THF: tetrahydrofuran), and then potentiometric titration is performed using a 1 / 10N NaOH solution to carry out potentiometric titration. It is obtained by quantifying the amount of acid contained in the composition.
 本発明のカチオン電着塗料組成物は、塗料分野において一般的に用いられている添加剤、例えば、エチレングリコールモノブチルエーテル、エチレングリコールモノヘキシルエーテル、エチレングリコールモノエチルヘキシルエーテル、プロピレングリコールモノブチルエーテル、ジプロピレングリコールモノブチルエーテル、プロピレングリコールモノフェニルエーテルなどの有機溶媒、乾き防止剤、消泡剤などの界面活性剤、アクリル樹脂微粒子などの粘度調整剤、はじき防止剤、バナジウム塩、銅、鉄、マンガン、マグネシウム、カルシウム塩などの無機防錆剤など、を必要に応じて含んでもよい。これら以外に、目的に応じて公知の補助錯化剤、緩衝剤、平滑剤、応力緩和剤、光沢剤、半光沢剤、酸化防止剤、および紫外線吸収剤などを配合してもよい。これらの添加剤は、樹脂エマルション製造の際に添加されてもよいし、顔料分散ペーストの製造時に添加されてもよいし、または樹脂エマルションと顔料分散ペーストとの混合時または混合後に添加されてもよい。 The cationic electrodeposition coating composition of the present invention is an additive generally used in the coating field, for example, ethylene glycol monobutyl ether, ethylene glycol monohexyl ether, ethylene glycol monoethylhexyl ether, propylene glycol monobutyl ether, dipropylene. Organic solvents such as glycol monobutyl ether and propylene glycol monophenyl ether, surfactants such as anti-drying agents and antifoaming agents, viscosity modifiers such as acrylic resin fine particles, anti-repellent agents, vanadium salts, copper, iron, manganese, magnesium. , Inorganic rust preventive such as calcium salt, etc. may be contained as needed. In addition to these, known auxiliary complexing agents, buffers, smoothing agents, stress relaxation agents, brighteners, semi-brighteners, antioxidants, ultraviolet absorbers and the like may be blended depending on the purpose. These additives may be added during the production of the resin emulsion, may be added during the production of the pigment-dispersed paste, or may be added during or after the mixing of the resin emulsion and the pigment-dispersed paste. good.
 本発明のカチオン電着塗料組成物は、上記アミン化樹脂以外にも、他の塗膜形成樹脂成分を含んでもよい。他の塗膜形成樹脂成分として、例えば、アクリル樹脂、ポリエステル樹脂、ウレタン樹脂、ブタジエン系樹脂、フェノール樹脂、キシレン樹脂などが挙げられる。電着塗料組成物に含まれうる他の塗膜形成樹脂成分として、フェノール樹脂、キシレン樹脂が好ましい。フェノール樹脂、キシレン樹脂として、例えば、2以上10以下の芳香族環を有するキシレン樹脂が挙げられる。 The cationic electrodeposition coating composition of the present invention may contain other coating film-forming resin components in addition to the above-mentioned aminated resin. Examples of other coating film-forming resin components include acrylic resin, polyester resin, urethane resin, butadiene resin, phenol resin, and xylene resin. Phenol resin and xylene resin are preferable as other coating film-forming resin components that may be contained in the electrodeposition coating composition. Examples of the phenol resin and xylene resin include xylene resins having 2 or more and 10 or less aromatic rings.
 本発明のカチオン電着塗料組成物により得られる析出電着塗膜の、110℃における塗膜粘度が5,000~1,000,000mPa・sの範囲内であることが好ましい。本明細書において「析出電着塗膜」とは、カチオン電着塗料組成物を電着塗装した際に被塗物上に析出する電着塗膜であって、未硬化の状態の塗膜をいう。析出電着塗膜にとって、110℃という温度は、電着塗膜に含まれる塗膜樹脂成分の硬化反応が開始する直前の温度ということができる。このような温度条件下における塗膜粘度が1,000,000mPa・s以下であることによって、加熱による電着塗膜のフローを確保することができ、硬化電着塗膜の膜厚不均一化を回避することができる。塗膜粘度が5,000mPa・s以上であることによって、加熱によって電着塗膜が過度にフローして流れ落ちるなどの不具合を回避することができる。上記110℃における塗膜粘度は、5,000~500,000mPa・sの範囲内であるのが好ましく、5,000~100,000mPa・sの範囲内であるのがより好ましく、6,000~20,000mPa・sの範囲内であるのが特に好ましい。 The precipitation electrodeposition coating film obtained by the cationic electrodeposition coating composition of the present invention preferably has a coating film viscosity at 110 ° C. in the range of 5,000 to 1,000,000 mPa · s. As used herein, the "precipitated electrodeposition coating film" is an electrodeposition coating film that precipitates on an object to be coated when a cationic electrodeposition coating composition is electrodeposited, and is a coating film in an uncured state. Say. For the precipitation electrodeposition coating film, the temperature of 110 ° C. can be said to be the temperature immediately before the curing reaction of the coating film resin component contained in the electrodeposition coating film starts. When the coating film viscosity under such temperature conditions is 1,000,000 mPa · s or less, the flow of the electrodeposited coating film by heating can be ensured, and the film thickness of the cured electrodeposition coating film becomes non-uniform. Can be avoided. When the coating film viscosity is 5,000 mPa · s or more, it is possible to avoid problems such as the electrodeposition coating film excessively flowing and flowing down due to heating. The coating film viscosity at 110 ° C. is preferably in the range of 5,000 to 500,000 mPa · s, more preferably in the range of 5,000 to 100,000 mPa · s, and is 6,000 to 6,000. It is particularly preferably in the range of 20,000 mPa · s.
 析出電着塗膜の110℃における塗膜粘度は、次のようにして測定することができる。まず被塗物に膜厚約15μmとなるように180秒間電着塗装を行い、電着塗膜を形成し、これを水洗して余分に付着した電着塗料組成物を取り除く。次いで、電着塗膜表面に付着した余分な水分を取り除いた後、乾燥させることなくすぐに塗膜を取り出す。これを試料とする。こうして得られた試料に対して、動的粘弾性測定装置を用いて粘度測定することによって、110℃における塗膜粘度を測定することができる。 The viscosity of the deposited electrodeposition coating film at 110 ° C. can be measured as follows. First, electrodeposition coating is applied to the object to be coated for 180 seconds so that the film thickness is about 15 μm, an electrodeposition coating film is formed, and the electrodeposition coating film is washed with water to remove excess electrodeposition coating composition. Then, after removing excess water adhering to the surface of the electrodeposition coating film, the coating film is immediately taken out without drying. This is used as a sample. By measuring the viscosity of the sample thus obtained using a dynamic viscoelasticity measuring device, the viscosity of the coating film at 110 ° C. can be measured.
 本発明のカチオン電着塗料組成物を鋼板に乾燥膜厚で15μmになるように塗装し、170℃で20分焼き付けた後の残存OH官能基量が、0.4~1.6(meq/固形分g)であることが好ましい。残存OH官能基量は、塗料組成物を得た後の塗膜の性能を規定するものである。残存OH官能基量は、加熱硬化された電着塗膜において、アミン化樹脂に由来する残存水酸基量の理論値である。残存水酸基は、アミン化樹脂と、ブロック化ポリイソシアネート硬化剤とが反応した後に、塗膜中に残存している水酸基である。この理論残存OH官能基量は、アミン化樹脂の水酸基量(meq/固形分g)と1級アミン量(meq/固形分g)との合計から、硬化剤のイソシアネート基量(meq/固形分g)を減ずることで求められる。残存OH官能基量は、好ましくは0.6~1.4meq/固形分gで、より好ましくは0.8~1.2meq/固形分gである。上記条件で塗装した塗膜の残存OH官能基量が上記範囲であると、塗膜の密着性能および遮断性が向上し易い。 The cationic electrodeposition coating composition of the present invention is coated on a steel sheet so as to have a dry film thickness of 15 μm, and baked at 170 ° C. for 20 minutes, and the residual OH functional group amount is 0.4 to 1.6 (meq /). Solid content g) is preferable. The amount of residual OH functional group defines the performance of the coating film after obtaining the coating composition. The amount of residual OH functional group is a theoretical value of the amount of residual hydroxyl groups derived from the aminated resin in the electrodeposition coating film cured by heating. The residual hydroxyl group is a hydroxyl group remaining in the coating film after the aminating resin and the blocked polyisocyanate curing agent have reacted. The theoretical residual OH functional group amount is the isocyanate group amount (meq / solid content g) of the curing agent from the total of the hydroxyl group amount (meq / solid content g) and the primary amine amount (meq / solid content g) of the aminating resin. It is obtained by reducing g). The amount of residual OH functional group is preferably 0.6 to 1.4 meq / solid content g, and more preferably 0.8 to 1.2 meq / solid content g. When the residual OH functional group amount of the coating film coated under the above conditions is within the above range, the adhesion performance and the barrier property of the coating film are likely to be improved.
 上記のカチオン電着塗料組成物を鋼板に乾燥膜厚で15μmになるように塗装し、170℃で20分焼き付けた後の電着塗膜の、架橋密度が0.5~5.0mmol/ccであることが好ましい。上記電着塗膜の電着塗膜形成時の内部応力は7.5MPa以下であることが好ましい。 The above cationic electrodeposition coating composition is applied to a steel sheet so as to have a dry film thickness of 15 μm, and baked at 170 ° C. for 20 minutes, and then the crosslink density of the electrodeposition coating film is 0.5 to 5.0 mmol / cc. Is preferable. The internal stress of the electrodeposition coating film at the time of forming the electrodeposition coating film is preferably 7.5 MPa or less.
 架橋密度は、動的粘弾性測定装置、例えばユービーエム社製Rheogelを使用して測定することができる。具体的には、毎分2℃の昇温速度で周波数11Hzの振動を塗膜に与えることによって求めた動的ヤング率(E’)を用いて次式に基づいて求められる。架橋密度は、架橋反応の度合いの指標の一つである。
(式)E’=3nRT
(E’=動的ヤング率;n=架橋密度;R=気体定数;T=絶対温度)
 架橋密度が上記範囲であると、塗膜性能が良好となり易く、さらに内部応力が小さくなり易くなって、密着性が向上し易い。架橋密度は、好ましくは0.8~3.0mmol/ccであり、より好ましくは1.0~3.0mmol/ccである。
The crosslink density can be measured using a dynamic viscoelasticity measuring device, for example, Rheogel manufactured by UBM. Specifically, it is obtained based on the following equation using the dynamic Young's modulus (E') obtained by applying a vibration having a frequency of 11 Hz to the coating film at a heating rate of 2 ° C. per minute. Crosslink density is one of the indicators of the degree of crosslink reaction.
(Equation) E'= 3nRT
(E'= dynamic Young's modulus; n = crosslink density; R = gas constant; T = absolute temperature)
When the cross-linking density is in the above range, the coating film performance is likely to be good, the internal stress is likely to be small, and the adhesion is likely to be improved. The crosslink density is preferably 0.8 to 3.0 mmol / cc, more preferably 1.0 to 3.0 mmol / cc.
 電着塗膜の内部応力は、ストリップ式電着応力試験方法で測定される。内部応力が適正範囲を超えると、密着不良や、耐食性の低下が起こり易くなる。電着塗膜の内部応力が7.5MPa以下であると、基材密着性がより向上し易い。内部応力は、好ましくは6.0MPa以下であり、より好ましくは5.0MPa以下である。 The internal stress of the electrodeposition coating film is measured by the strip type electrodeposition stress test method. If the internal stress exceeds the appropriate range, poor adhesion and deterioration of corrosion resistance are likely to occur. When the internal stress of the electrodeposition coating film is 7.5 MPa or less, the adhesion to the substrate is more likely to be improved. The internal stress is preferably 6.0 MPa or less, more preferably 5.0 MPa or less.
<電着塗装および電着塗膜形成>
 本発明のカチオン電着塗料組成物を用いて、被塗物に対し電着塗装することによって、電着塗膜を形成することができる。本発明のカチオン電着塗料組成物を用いる電着塗装においては、被塗物を陰極とし、陽極との間に、電圧を印加する。これにより、電着塗膜が被塗物上に析出する。
<Electrodeposition coating and electrodeposition coating film formation>
An electrodeposition coating film can be formed by electrodeposition coating on an object to be coated using the cationic electrodeposition coating composition of the present invention. In electrodeposition coating using the cationic electrodeposition coating composition of the present invention, a voltage is applied between the object to be coated and the anode with the object to be coated as a cathode. As a result, the electrodeposition coating film is deposited on the object to be coated.
 本発明のカチオン電着塗料組成物を塗装する被塗物としては、通電可能な種々の被塗物を用いることができる。使用できる被塗物として例えば、冷延鋼板、熱延鋼板、ステンレス、電気亜鉛めっき鋼板、溶融亜鉛めっき鋼板、亜鉛-アルミニウム合金系めっき鋼板、亜鉛-鉄合金系めっき鋼板、亜鉛-マグネシウム合金系めっき鋼板、亜鉛-アルミニウム-マグネシウム合金系めっき鋼板、アルミニウム系めっき鋼板、アルミニウム-シリコン合金系めっき鋼板、錫系めっき鋼板などが挙げられる。 As the object to be coated on which the cationic electrodeposition coating composition of the present invention is applied, various energized objects to be coated can be used. Examples of objects to be coated that can be used include cold-rolled steel sheets, hot-rolled steel sheets, stainless steel, electrogalvanized steel sheets, hot-dip galvanized steel sheets, zinc-aluminum alloy-based plated steel sheets, zinc-iron alloy-based plated steel sheets, and zinc-magnesium alloy-based plating. Examples thereof include steel sheets, zinc-aluminum-magnesium alloy-based plated steel sheets, aluminum-based plated steel sheets, aluminum-silicon alloy-based plated steel sheets, and tin-based plated steel sheets.
 電着塗装工程において、電着塗料組成物中に被塗物を浸漬した後、50~450Vの電圧を印加することによって、電着塗装が行われる。印加電圧が上記範囲であると、十分な電着が行われるとともに、塗膜外観が良好になり易い。電着塗装時、塗料組成物の浴液温度は、通常10~45℃に調節される。 In the electrodeposition coating process, electrodeposition coating is performed by immersing the object to be coated in the electrodeposition coating composition and then applying a voltage of 50 to 450V. When the applied voltage is in the above range, sufficient electrodeposition is performed and the appearance of the coating film tends to be good. During electrodeposition coating, the bath solution temperature of the coating composition is usually adjusted to 10 to 45 ° C.
 電圧を印加する時間は、電着条件によって異なるが、一般には、2~5分とすることができる。 The time for applying the voltage varies depending on the electrodeposition conditions, but can generally be 2 to 5 minutes.
 加熱硬化により最終的に得られる電着塗膜の膜厚は、好ましくは5~60μm、より好ましくは10~25μmである。電着塗膜の膜厚が5μm以上であると、防錆性が向上し易い。 The film thickness of the electrodeposition coating film finally obtained by heat curing is preferably 5 to 60 μm, more preferably 10 to 25 μm. When the film thickness of the electrodeposition coating film is 5 μm or more, the rust prevention property is likely to be improved.
 上述のようにして析出させた電着塗膜は、必要に応じて水洗した後、例えば140~200℃、好ましくは140~170℃で、10~30分間加熱することによって、硬化させることができる。これにより、硬化電着塗膜が形成される。140℃~200℃での硬化は、通常の硬化温度より低く、低温硬化性を有していると言える。低温で硬化することは、硬化時に使用するエネルギー量を大きく減少させる。 The electrodeposited coating film precipitated as described above can be cured by washing with water as necessary and then heating at, for example, 140 to 200 ° C., preferably 140 to 170 ° C. for 10 to 30 minutes. .. As a result, a cured electrodeposition coating film is formed. Curing at 140 ° C to 200 ° C is lower than the normal curing temperature, and it can be said that it has low-temperature curability. Curing at low temperatures greatly reduces the amount of energy used during curing.
 以下の実施例により本発明をさらに具体的に説明するが、本発明はこれらに限定されない。実施例中、「部」および「%」は、ことわりのない限り、質量基準による。 The present invention will be described in more detail with reference to the following examples, but the present invention is not limited thereto. In the examples, "parts" and "%" are based on mass unless otherwise specified.
製造例1-1 アミン化樹脂(樹脂1)の製造
 反応容器に、メチルイソブチルケトン(MIBK)92部、ビスフェノールA型エポキシ樹脂(商品名DER-331J、ダウケミカル社製)940部、ビスフェノールA370部、オクチル酸15部、ジメチルベンジルアミン2部を加えた。反応容器内の温度を120℃に保持し、エポキシ当量が900g/eqになるまで反応させた。その後、反応容器内の温度が110℃になるまで冷却した。ついでジエチレントリアミンジケチミン(固形分73%のメチルイソブチルケトン溶液)178部とジエタノールアミン89部との混合物を添加し、110℃で1時間反応させた。これにより、アミン化樹脂(カチオン変性エポキシ樹脂:樹脂1)を得た。
Production Example 1-1 Production of amineized resin (resin 1) 92 parts of methylisobutyl ketone (MIBK), 940 parts of bisphenol A type epoxy resin (trade name: DER-331J, manufactured by Dow Chemical Co., Ltd.), 370 parts of bisphenol A in a reaction vessel. , 15 parts of octylic acid and 2 parts of dimethylbenzylamine were added. The temperature in the reaction vessel was maintained at 120 ° C., and the reaction was carried out until the epoxy equivalent reached 900 g / eq. Then, the reaction vessel was cooled until the temperature in the reaction vessel reached 110 ° C. Then, a mixture of 178 parts of diethylenetriamine diketimine (methyl isobutyl ketone solution having a solid content of 73%) and 89 parts of diethanolamine was added, and the mixture was reacted at 110 ° C. for 1 hour. As a result, an aminized resin (cation-modified epoxy resin: resin 1) was obtained.
 樹脂1の数平均分子量は2,800、アミン価は180(meq/固形分100g)であった。 The number average molecular weight of the resin 1 was 2,800, and the amine value was 180 (meq / solid content 100 g).
製造例1-2 アミン化樹脂(樹脂2)の製造
 反応容器に、メチルイソブチルケトン92部、ビスフェノールA型エポキシ樹脂(商品名DER-331J、ダウケミカル社製)940部、ビスフェノールA370部、オクチル酸118部、ジメチルベンジルアミン2部を加えた。反応容器内の温度を120℃に保持し、エポキシ当量が900g/eqになるまで反応させた。その後、反応容器内の温度が110℃になるまで冷却した。ついでジエチレントリアミンジケチミン(固形分73%のメチルイソブチルケトン溶液)92部とジエタノールアミン56部との混合物を添加し、110℃で1時間反応させた。これにより、アミン化樹脂(カチオン変性エポキシ樹脂:樹脂2)を得た。
Production Example 1-2 Production of amineized resin (resin 2) In a reaction vessel, 92 parts of methylisobutyl ketone, 940 parts of bisphenol A type epoxy resin (trade name DER-331J, manufactured by Dow Chemical Co., Ltd.), 370 parts of bisphenol A, octylic acid. 118 parts and 2 parts of dimethylbenzylamine were added. The temperature in the reaction vessel was maintained at 120 ° C., and the reaction was carried out until the epoxy equivalent reached 900 g / eq. Then, the reaction vessel was cooled until the temperature in the reaction vessel reached 110 ° C. Then, a mixture of 92 parts of diethylenetriamine diketimine (methyl isobutyl ketone solution having a solid content of 73%) and 56 parts of diethanolamine was added, and the mixture was reacted at 110 ° C. for 1 hour. As a result, an aminized resin (cation-modified epoxy resin: resin 2) was obtained.
 樹脂2の数平均分子量は2,800、アミン価は100(meq/固形分100g)であった。 The number average molecular weight of the resin 2 was 2,800, and the amine value was 100 (meq / solid content 100 g).
製造例1-3 アミン化樹脂(樹脂3)の製造
 反応容器に、メチルイソブチルケトン92部、ビスフェノールA型エポキシ樹脂(商品名DER-331J、ダウケミカル社製)940部、ビスフェノールA370部、オクチル酸130部、ジメチルベンジルアミン2部を加えた。反応容器内の温度を120℃に保持し、エポキシ当量が900g/eqになるまで反応させた。その後、反応容器内の温度が110℃になるまで冷却した。ついでジエチレントリアミンジケチミン(固形分73%のメチルイソブチルケトン溶液)79部とジエタノールアミン54部との混合物を添加し、110℃で1時間反応させた。これにより、アミン化樹脂(カチオン変性エポキシ樹脂:樹脂3)を得た。
Production Example 1-3 Production of amineized resin (resin 3) In a reaction vessel, 92 parts of methylisobutyl ketone, 940 parts of bisphenol A type epoxy resin (trade name DER-331J, manufactured by Dow Chemical Co., Ltd.), 370 parts of bisphenol A, octylic acid. 130 parts and 2 parts of dimethylbenzylamine were added. The temperature in the reaction vessel was maintained at 120 ° C., and the reaction was carried out until the epoxy equivalent reached 900 g / eq. Then, the reaction vessel was cooled until the temperature in the reaction vessel reached 110 ° C. Then, a mixture of 79 parts of diethylenetriamine diketimine (methyl isobutyl ketone solution having a solid content of 73%) and 54 parts of diethanolamine was added, and the mixture was reacted at 110 ° C. for 1 hour. As a result, an aminized resin (cation-modified epoxy resin: resin 3) was obtained.
 樹脂3の数平均分子量は2,800、アミン価は90(meq/固形分100g)であった。 The number average molecular weight of the resin 3 was 2,800, and the amine value was 90 (meq / solid content 100 g).
製造例2-1 ブロック化ポリイソシアネート硬化剤(1)の製造
 ジフェニルメタンジイソシアナート(MDI)362部およびMIBK80部を反応容器に仕込み、これを80℃まで加熱した後、ブチルセロソルブ192部を1時間かけて滴下した。さらに1,6ヘキサンジオールを128部滴下し、さらに100℃で4時間加熱した後、IRスペクトルの測定において、イソシアネート基に基づく吸収が消失したことを確認し、放冷した。その後、MIBK40部を加えることにより、ブロック化ポリイソシアネート硬化剤(1)を得た(固形分85%)。
Production Example 2-1 Production of Blocked Polyisocyanate Hardener (1) 362 parts of diphenylmethane diisocyanate (MDI) and 80 parts of MIBK are charged in a reaction vessel, heated to 80 ° C., and then 192 parts of butyl cellosolve is applied over 1 hour. And dropped. After further adding 128 parts of 1,6 hexanediol and further heating at 100 ° C. for 4 hours, it was confirmed by measurement of the IR spectrum that the absorption based on the isocyanate group had disappeared, and the mixture was allowed to cool. Then, 40 parts of MIBK was added to obtain a blocked polyisocyanate curing agent (1) (solid content 85%).
製造例2-2 ブロック化ポリイソシアネート硬化剤(2)の製造
 ジフェニルメタンジイソシアナート(MDI)362部およびMIBK80部を反応容器に仕込み、これを80℃まで加熱した。その後、ブチルセロソルブ253部を1時間かけて滴下した。さらにトリメチロールプロパンを72部滴下し、さらに100℃で4時間加熱した。IRスペクトルの測定において、イソシアネート基に基づく吸収が消失したことを確認し、放冷した。その後、MIBK40部を加えてブロック化ポリイソシアネート硬化剤(2)を得た(固形分85%)。
Production Example 2-2 Production of Blocked Polyisocyanate Hardener (2 ) 362 parts of diphenylmethane diisocyanate (MDI) and 80 parts of MIBK were placed in a reaction vessel and heated to 80 ° C. Then, 253 parts of butyl cellosolve was added dropwise over 1 hour. Further, 72 parts of trimethylolpropane was added dropwise, and the mixture was further heated at 100 ° C. for 4 hours. In the measurement of the IR spectrum, it was confirmed that the absorption based on the isocyanate group had disappeared, and the mixture was allowed to cool. Then, 40 parts of MIBK was added to obtain a blocked polyisocyanate curing agent (2) (solid content 85%).
製造例2-3 ブロック化ポリイソシアネート硬化剤(3)の製造
 ジフェニルメタンジイソシアナート(MDI)362部およびMIBK80部を反応容器に仕込み、これを80℃まで加熱した。その後、ブチルセロソルブ192部を1時間かけて滴下した。さらにトリメチロールプロパンを145部滴下し、さらに100℃で4時間加熱した。IRスペクトルの測定において、イソシアネート基に基づく吸収が消失したことを確認し、放冷した。その後、MIBK43部を加えて、ブロック化ポリイソシアネート硬化剤(3)を得た(固形分85%)。
Production Example 2-3 Production of Blocked Polyisocyanate Hardener (3 ) 362 parts of diphenylmethane diisocyanate (MDI) and 80 parts of MIBK were placed in a reaction vessel and heated to 80 ° C. Then, 192 parts of butyl cellosolve was added dropwise over 1 hour. Further, 145 parts of trimethylolpropane was added dropwise, and the mixture was further heated at 100 ° C. for 4 hours. In the measurement of the IR spectrum, it was confirmed that the absorption based on the isocyanate group had disappeared, and the mixture was allowed to cool. Then, 43 parts of MIBK was added to obtain a blocked polyisocyanate curing agent (3) (solid content 85%).
製造例2-4 ブロック化ポリイソシアネート硬化剤(4)の製造
 ヘキサメチレンジイソシアネート(HDI)168部およびMIBK42部を反応容器に仕込み、これを60℃まで加熱した。ここに、トリメチロールプロパン36部をメチルエチルケトオキシム(MEKオキシム)104部に溶解させたものを60℃で2時間かけて滴下した。さらに75℃で4時間加熱した後、IRスペクトルの測定において、イソシアネート基に基づく吸収が消失したことを確認した。これにより、ブロック化ポリイソシアネート硬化剤(4)を得た(固形分85%)。
Production Example 2-4 Production of Blocked Polyisocyanate Hardener (4 ) 168 parts of hexamethylene diisocyanate (HDI) and 42 parts of MIBK were placed in a reaction vessel and heated to 60 ° C. Here, 36 parts of trimethylolpropane dissolved in 104 parts of methyl ethyl ketooxime (MEK oxime) was added dropwise at 60 ° C. over 2 hours. After further heating at 75 ° C. for 4 hours, it was confirmed in the measurement of the IR spectrum that the absorption based on the isocyanate group disappeared. As a result, a blocked polyisocyanate curing agent (4) was obtained (solid content 85%).
製造例2-5ブロック化ポリイソシアネート硬化剤(5)の製造
 ジフェニルメタンジイソシアナート(MDI)362部およびMIBK80部を反応容器に仕込み、これを80℃まで加熱した。その後、ブチルセロソルブ319部を1時間かけて滴下し、さらに100℃で4時間加熱した。その後、IRスペクトルの測定において、イソシアネート基に基づく吸収が消失したことを確認し、放冷した。その後、MIBK43部を加えて、ブロック化ポリイソシアネート硬化剤(5)を得た(固形分85%)。
Production Example 2-5 Production of Blocked Polyisocyanate Hardener (5 ) 362 parts of diphenylmethane diisocyanate (MDI) and 80 parts of MIBK were placed in a reaction vessel and heated to 80 ° C. Then, 319 parts of butyl cellosolve was added dropwise over 1 hour, and the mixture was further heated at 100 ° C. for 4 hours. Then, in the measurement of the IR spectrum, it was confirmed that the absorption based on the isocyanate group had disappeared, and the mixture was allowed to cool. Then, 43 parts of MIBK was added to obtain a blocked polyisocyanate curing agent (5) (solid content 85%).
製造例3 顔料分散樹脂の製造
 撹拌機、冷却管、窒素導入管、温度計を備えた反応容器に、ビスフェノールA型エポキシ樹脂385部、ビスフェノールA120部、オクチル酸95部、2-エチル-4-メチルイミダゾール1%溶液1部を仕込んで、窒素雰囲気下160~170℃で1時間反応させた。ついで120℃まで冷却後、2-エチルヘキサノール化ハーフブロック化トリレンジイソシアネートのメチルイソブチルケトン溶液(固形分95%)198部を加えた。反応混合物を120~130℃で1時間保持した後、エチレングリコールモノn-ブチルエーテル157部を加えた。次いで、85~95℃に冷却して均一化させた。つぎにジエチレントリアミンジケチミン(固形分73%のメチルイソブチルケトン溶液)277部を加え、120℃で1時間撹拌した。続いて、エチレングリコールモノn-ブチルエーテル13部を加え、アミン化樹脂を製造した。ついで、イオン交換水18部およびギ酸8部と、上記アミン化樹脂とを混合して15分撹拌した。さらに、イオン交換水200部を混合して、顔料分散樹脂(平均分子量2,200)の樹脂溶液(樹脂固形分25%)を得た。
Production Example 3 Production of pigment-dispersed resin In a reaction vessel equipped with a stirrer, a cooling tube, a nitrogen introduction tube, and a thermometer, 385 parts of bisphenol A type epoxy resin, 120 parts of bisphenol A, 95 parts of octylate, 2-ethyl-4- One part of a 1% solution of methylimidazole was charged and reacted at 160 to 170 ° C. for 1 hour under a nitrogen atmosphere. Then, after cooling to 120 ° C., 198 parts of a methyl isobutyl ketone solution (solid content 95%) of 2-ethylhexanolified half-blocked tolylene diisocyanate was added. After holding the reaction mixture at 120-130 ° C. for 1 hour, 157 parts of ethylene glycol mono-n-butyl ether was added. Then, it was cooled to 85 to 95 ° C. and homogenized. Next, 277 parts of diethylenetriamine diketimine (methyl isobutyl ketone solution having a solid content of 73%) was added, and the mixture was stirred at 120 ° C. for 1 hour. Subsequently, 13 parts of ethylene glycol mono-n-butyl ether was added to produce an aminated resin. Then, 18 parts of ion-exchanged water and 8 parts of formic acid were mixed with the above-mentioned aminated resin and stirred for 15 minutes. Further, 200 parts of ion-exchanged water was mixed to obtain a resin solution (resin solid content 25%) of a pigment-dispersed resin (average molecular weight 2,200).
製造例4-1 電着塗料樹脂エマルション(Em1)の製造
 製造例1-1で得た樹脂(樹脂1)400g(固形分)と、製造例2-1で得たブロック化ポリイソシアネート硬化剤(1)600g(固形分)とを混合し、エチレングリコールモノ-2-エチルヘキシルエーテルを固形分に対して3%(15g)になるように添加した。次にギ酸を中和率40%になるように加えて中和し、イオン交換水を加えてゆっくり希釈した。次いで固形分が36%になるように、減圧下でメチルイソブチルケトンを除去して、電着塗料樹脂エマルション(Em1)を得た。
Production Example 4-1 Production of Electrodeposition Paint Resin Emulsion (Em1) 400 g (solid content) of the resin (resin 1) obtained in Production Example 1-1 and the blocked polyisocyanate curing agent obtained in Production Example 2-1 ( 1) 600 g (solid content) was mixed, and ethylene glycol mono-2-ethylhexyl ether was added so as to be 3% (15 g) with respect to the solid content. Next, formic acid was added so as to have a neutralization rate of 40% to neutralize the mixture, and ion-exchanged water was added to slowly dilute the mixture. Then, methyl isobutyl ketone was removed under reduced pressure so that the solid content became 36% to obtain an electrodeposition coating resin emulsion (Em1).
製造例4-2 電着塗料樹脂エマルション(Em2)の製造
 製造例1-1で得た樹脂(樹脂1)400g(固形分)と、製造例2-2で得たブロック化ポリイソシアネート硬化剤(2)600g(固形分)とを混合し、エチレングリコールモノ-2-エチルヘキシルエーテルを固形分に対して3%(15g)になるように添加した。次にギ酸を中和率40%になるように加えて中和し、イオン交換水を加えてゆっくり希釈した。次いで固形分が36%になるように、減圧下でメチルイソブチルケトンを除去して、電着塗料樹脂エマルション(Em2)を得た。
Production Example 4-2 Production of Electrodeposition Paint Resin Emulsion (Em2) 400 g (solid content) of the resin (resin 1) obtained in Production Example 1-1 and the blocked polyisocyanate curing agent obtained in Production Example 2-2 ( 2) 600 g (solid content) was mixed, and ethylene glycol mono-2-ethylhexyl ether was added so as to be 3% (15 g) with respect to the solid content. Next, formic acid was added so as to have a neutralization rate of 40% to neutralize the mixture, and ion-exchanged water was added to slowly dilute the mixture. Then, methyl isobutyl ketone was removed under reduced pressure so that the solid content became 36% to obtain an electrodeposition coating resin emulsion (Em2).
製造例4-3 電着塗料樹脂エマルション(Em3)の製造
 製造例1-1で得た樹脂(樹脂1)400g(固形分)と、製造例2-3で得たブロック化ポリイソシアネート硬化剤(3)600g(固形分)とを混合し、エチレングリコールモノ-2-エチルヘキシルエーテルを固形分に対して3%(15g)になるように添加した。次にギ酸を中和率40%になるように加えて中和し、イオン交換水を加えてゆっくり希釈した。次いで固形分が36%になるように減圧下でメチルイソブチルケトンを除去して、電着塗料樹脂エマルション(Em3)を得た。
Production Example 4-3 Production of Electroplated Paint Resin Emulsion (Em3) 400 g (solid content) of the resin (resin 1) obtained in Production Example 1-1 and the blocked polyisocyanate curing agent obtained in Production Example 2-3 ( 3) 600 g (solid content) was mixed, and ethylene glycol mono-2-ethylhexyl ether was added so as to be 3% (15 g) with respect to the solid content. Next, formic acid was added so as to have a neutralization rate of 40% to neutralize the mixture, and ion-exchanged water was added to slowly dilute the mixture. Then, methyl isobutyl ketone was removed under reduced pressure so that the solid content became 36% to obtain an electrodeposition coating resin emulsion (Em3).
製造例4-4 電着塗料樹脂エマルション(Em4)の製造
 製造例1-1で得た樹脂(樹脂1)500g(固形分)と、製造例2-1で得たブロック化ポリイソシアネート硬化剤(1)500g(固形分)とを混合し、エチレングリコールモノ-2-エチルヘキシルエーテルを固形分に対して3%(15g)になるように添加した。次にギ酸を中和率40%になるように加えて中和し、イオン交換水を加えてゆっくり希釈した。次いで固形分が36%になるように減圧下でメチルイソブチルケトンを除去して、電着塗料樹脂エマルション(Em4)を得た。
Production Example 4-4 Production of Electrodeposition Paint Resin Emulsion (Em4) 500 g (solid content) of the resin (resin 1) obtained in Production Example 1-1 and the blocked polyisocyanate curing agent obtained in Production Example 2-1 ( 1) 500 g (solid content) was mixed, and ethylene glycol mono-2-ethylhexyl ether was added so as to be 3% (15 g) with respect to the solid content. Next, formic acid was added so as to have a neutralization rate of 40% to neutralize the mixture, and ion-exchanged water was added to slowly dilute the mixture. Then, methyl isobutyl ketone was removed under reduced pressure so that the solid content became 36% to obtain an electrodeposition coating resin emulsion (Em4).
製造例4-5 電着塗料樹脂エマルション(Em5)の製造
 製造例1-1で得た樹脂(樹脂1)200g(固形分)と、製造例2-3で得たブロック化ポリイソシアネート硬化剤(3)800g(固形分)とを混合し、エチレングリコールモノ-2-エチルヘキシルエーテルを固形分に対して3%(15g)になるように添加した。次にギ酸を中和率40%になるように加えて中和し、イオン交換水を加えてゆっくり希釈した。次いで固形分が36%になるように減圧下でメチルイソブチルケトンを除去して、電着塗料樹脂エマルション(Em5)を得た。
Production Example 4-5 Production of Electroplated Paint Resin Emulsion (Em5) 200 g (solid content) of the resin (resin 1) obtained in Production Example 1-1 and the blocked polyisocyanate curing agent obtained in Production Example 2-3 ( 3) 800 g (solid content) was mixed, and ethylene glycol mono-2-ethylhexyl ether was added so as to be 3% (15 g) with respect to the solid content. Next, formic acid was added so as to have a neutralization rate of 40% to neutralize the mixture, and ion-exchanged water was added to slowly dilute the mixture. Then, methyl isobutyl ketone was removed under reduced pressure so that the solid content became 36% to obtain an electrodeposition coating resin emulsion (Em5).
製造例4-6 電着塗料樹脂エマルション(Em6)の製造
 製造例1-2で得た樹脂(樹脂2)400g(固形分)と、製造例2-3で得たブロックイソシアネート硬化剤(3)600g(固形分)とを混合し、エチレングリコールモノ-2-エチルヘキシルエーテルを固形分に対して3%(15g)になるように添加した。次にギ酸を中和率40%になるように加えて中和し、イオン交換水を加えてゆっくり希釈した。次いで固形分が36%になるように減圧下でメチルイソブチルケトンを除去して、電着塗料樹脂エマルション(Em6)を得た。
Production Example 4-6 Production of Electroplated Paint Resin Emulsion (Em6) 400 g (solid content) of the resin (resin 2) obtained in Production Example 1-2 and the blocked isocyanate curing agent (3) obtained in Production Example 2-3. 600 g (solid content) was mixed, and ethylene glycol mono-2-ethylhexyl ether was added so as to be 3% (15 g) with respect to the solid content. Next, formic acid was added so as to have a neutralization rate of 40% to neutralize the mixture, and ion-exchanged water was added to slowly dilute the mixture. Then, methyl isobutyl ketone was removed under reduced pressure so that the solid content became 36% to obtain an electrodeposition coating resin emulsion (Em6).
製造例4-7 電着塗料樹脂エマルション(Em7)の製造
 製造例1-2で得た樹脂(樹脂2)400g(固形分)と、製造例2-4で得たブロックイソシアネート硬化剤(4)600g(固形分)とを混合し、エチレングリコールモノ-2-エチルヘキシルエーテルを固形分に対して3%(15g)になるように添加した。次にギ酸を中和率40%になるように加えて中和し、イオン交換水を加えてゆっくり希釈した。次いで固形分が36%になるように減圧下でメチルイソブチルケトンを除去して、電着塗料樹脂エマルション(Em7)を得た。
Production Example 4-7 Production of Electroplated Paint Resin Emulsion (Em7) 400 g (solid content) of the resin (resin 2) obtained in Production Example 1-2 and the blocked isocyanate curing agent (4) obtained in Production Example 2-4. 600 g (solid content) was mixed, and ethylene glycol mono-2-ethylhexyl ether was added so as to be 3% (15 g) with respect to the solid content. Next, formic acid was added so as to have a neutralization rate of 40% to neutralize the mixture, and ion-exchanged water was added to slowly dilute the mixture. Then, methyl isobutyl ketone was removed under reduced pressure so that the solid content became 36% to obtain an electrodeposition coating resin emulsion (Em7).
製造例4-8 電着塗料樹脂エマルション(Em8)の製造
 製造例1-3で得た樹脂(樹脂3)650g(固形分)と、製造例2-5で得たブロック化ポリイソシアネート硬化剤(5)350g(固形分)とを混合し、エチレングリコールモノ-2-エチルヘキシルエーテルを固形分に対して3%(15g)になるように添加した。次にギ酸を中和率40%になるように加えて中和し、イオン交換水を加えてゆっくり希釈した。次いで固形分が36%になるように減圧下でメチルイソブチルケトンを除去して、電着塗料樹脂エマルション(Em8)を得た。
Production Example 4-8 Production of Electrodeposition Paint Resin Emulsion (Em8) 650 g (solid content) of the resin (resin 3) obtained in Production Example 1-3 and the blocked polyisocyanate curing agent obtained in Production Example 2-5 ( 5) 350 g (solid content) was mixed, and ethylene glycol mono-2-ethylhexyl ether was added so as to be 3% (15 g) with respect to the solid content. Next, formic acid was added so as to have a neutralization rate of 40% to neutralize the mixture, and ion-exchanged water was added to slowly dilute the mixture. Then, methyl isobutyl ketone was removed under reduced pressure so that the solid content became 36% to obtain an electrodeposition coating resin emulsion (Em8).
製造例4-9 電着塗料樹脂エマルション(Em9)の製造
 製造例1-3で得た樹脂(樹脂3)500g(固形分)と、製造例2-5で得たブロック化ポリイソシアネート硬化剤(5)500g(固形分)とを混合し、エチレングリコールモノ-2-エチルヘキシルエーテルを固形分に対して3%(15g)になるように添加した。次にギ酸を中和率40%になるように加えて中和し、イオン交換水を加えてゆっくり希釈した。次いで固形分が36%になるように減圧下でメチルイソブチルケトンを除去して、電着塗料樹脂エマルション(Em9)を得た。
Production Example 4-9 Production of Electrodeposition Paint Resin Emulsion (Em9) 500 g (solid content) of the resin (resin 3) obtained in Production Example 1-3 and the blocked polyisocyanate curing agent obtained in Production Example 2-5 ( 5) 500 g (solid content) was mixed, and ethylene glycol mono-2-ethylhexyl ether was added so as to be 3% (15 g) with respect to the solid content. Next, formic acid was added so as to have a neutralization rate of 40% to neutralize the mixture, and ion-exchanged water was added to slowly dilute the mixture. Then, methyl isobutyl ketone was removed under reduced pressure so that the solid content became 36% to obtain an electrodeposition coating resin emulsion (Em9).
製造例4-10 電着塗料樹脂エマルション(Em10)の製造
 製造例1-3で得た樹脂(樹脂3)400g(固形分)と、製造例2-5で得たブロック化ポリイソシアネート硬化剤(5)600g(固形分)とを混合し、エチレングリコールモノ-2-エチルヘキシルエーテルを固形分に対して3%(15g)になるように添加した。次にギ酸を中和率40%になるように加えて中和し、イオン交換水を加えてゆっくり希釈した。次いで固形分が36%になるように減圧下でメチルイソブチルケトンを除去して、電着塗料樹脂エマルション(Em10)を得た。
Production Example 4-10 Production of Electrodeposition Paint Resin Emulsion (Em10) 400 g (solid content) of the resin (resin 3) obtained in Production Example 1-3 and the blocked polyisocyanate curing agent obtained in Production Example 2-5 ( 5) 600 g (solid content) was mixed, and ethylene glycol mono-2-ethylhexyl ether was added so as to be 3% (15 g) with respect to the solid content. Next, formic acid was added so as to have a neutralization rate of 40% to neutralize the mixture, and ion-exchanged water was added to slowly dilute the mixture. Then, methyl isobutyl ketone was removed under reduced pressure so that the solid content became 36% to obtain an electrodeposition coating resin emulsion (Em10).
製造例4-11 電着塗料樹脂エマルション(Em11)の製造
 製造例1-3で得た樹脂(樹脂3)200g(固形分)と、製造例2-5で得たブロック化ポリイソシアネート硬化剤(5)800g(固形分)とを混合し、エチレングリコールモノ-2-エチルヘキシルエーテルを固形分に対して3%(15g)になるように添加した。次にギ酸を中和率40%になるように加えて中和し、イオン交換水を加えてゆっくり希釈した。次いで固形分が36%になるように減圧下でメチルイソブチルケトンを除去して、電着塗料樹脂エマルション(Em11)を得た。
Production Example 4-11 Production of Electrodeposition Paint Resin Emulsion (Em11) 200 g (solid content) of the resin (resin 3) obtained in Production Example 1-3 and the blocked polyisocyanate curing agent obtained in Production Example 2-5 ( 5) 800 g (solid content) was mixed, and ethylene glycol mono-2-ethylhexyl ether was added so as to be 3% (15 g) with respect to the solid content. Next, formic acid was added so as to have a neutralization rate of 40% to neutralize the mixture, and ion-exchanged water was added to slowly dilute the mixture. Then, methyl isobutyl ketone was removed under reduced pressure so that the solid content became 36% to obtain an electrodeposition coating resin emulsion (Em11).
製造例4-12 電着塗料樹脂エマルション(Em12)の製造
 製造例1-1で得た樹脂(樹脂3)100g(固形分)と、製造例2-1で得たブロック化ポリイソシアネート硬化剤(5)900g(固形分)とを混合し、エチレングリコールモノ-2-エチルヘキシルエーテルを固形分に対して3%(15g)になるように添加した。次にギ酸を中和率40%になるように加えて中和し、イオン交換水を加えてゆっくり希釈した。次いで固形分が36%になるように減圧下でメチルイソブチルケトンを除去して、電着塗料樹脂エマルション(Em12)を得た。
Production Example 4-12 Production of Electroplated Paint Resin Emulsion (Em12) 100 g (solid content) of the resin (resin 3) obtained in Production Example 1-1 and the blocked polyisocyanate curing agent obtained in Production Example 2-1 ( 5) 900 g (solid content) was mixed, and ethylene glycol mono-2-ethylhexyl ether was added so as to be 3% (15 g) with respect to the solid content. Next, formic acid was added so as to have a neutralization rate of 40% to neutralize the mixture, and ion-exchanged water was added to slowly dilute the mixture. Then, methyl isobutyl ketone was removed under reduced pressure so that the solid content became 36% to obtain an electrodeposition coating resin emulsion (Em12).
製造例5 電着塗料用顔料分散ペーストの製造
 製造例3で得られた顔料分散樹脂を120部、カーボンブラック2.0部、カオリン100.0部、二酸化チタン72.0部、ジブチルスズオキシド8.0部、リンモリブデン酸アルミニウム18.0部およびイオン交換水184部を混合し、粒度10μm以下になるまで分散して、顔料分散ペーストを得た(固形分48%)。
Production Example 5 Production of Pigment Dispersion Paste for Electrodeposition Paint 120 parts of the pigment dispersion resin obtained in Production Example 3, carbon black 2.0 parts, kaolin 100.0 parts, titanium dioxide 72.0 parts, dibutyltin oxide 8. 0 part, 18.0 part of aluminum phosphomolybate and 184 parts of ion-exchanged water were mixed and dispersed until the particle size became 10 μm or less to obtain a pigment-dispersed paste (solid content 48%).
実施例1
 ステンレス容器に、イオン交換水1394g、樹脂エマルション(Em1)560gおよび製造例5で得られた顔料分散ペースト41gを添加した。その後40℃で16時間エージングして、電着塗料組成物を調製した。
Example 1
To the stainless steel container, 1394 g of ion-exchanged water, 560 g of the resin emulsion (Em1) and 41 g of the pigment-dispersed paste obtained in Production Example 5 were added. Then, it was aged at 40 ° C. for 16 hours to prepare an electrodeposition coating composition.
実施例2
 ステンレス容器に、イオン交換水1394g、樹脂エマルション(Em2)560gおよび製造例5で得られた顔料分散ペースト41gを添加した。その後40℃で16時間エージングして、電着塗料組成物を調製した。
Example 2
To the stainless steel container, 1394 g of ion-exchanged water, 560 g of the resin emulsion (Em2) and 41 g of the pigment-dispersed paste obtained in Production Example 5 were added. Then, it was aged at 40 ° C. for 16 hours to prepare an electrodeposition coating composition.
実施例3
 ステンレス容器に、イオン交換水1394g、樹脂エマルション(Em3)560gおよび製造例5で得られた顔料分散ペースト41gを添加した。その後40℃で16時間エージングして、電着塗料組成物を調製した。
Example 3
To the stainless steel container, 1394 g of ion-exchanged water, 560 g of the resin emulsion (Em3) and 41 g of the pigment-dispersed paste obtained in Production Example 5 were added. Then, it was aged at 40 ° C. for 16 hours to prepare an electrodeposition coating composition.
実施例4
 ステンレス容器に、イオン交換水1394g、樹脂エマルション(Em4)560gおよび製造例5で得られた顔料分散ペースト41gを添加した。その後40℃で16時間エージングして、電着塗料組成物を調製した。
Example 4
To the stainless steel container, 1394 g of ion-exchanged water, 560 g of the resin emulsion (Em4) and 41 g of the pigment-dispersed paste obtained in Production Example 5 were added. Then, it was aged at 40 ° C. for 16 hours to prepare an electrodeposition coating composition.
実施例5
 ステンレス容器に、イオン交換水1394g、樹脂エマルション(Em5)560gおよび製造例5で得られた顔料分散ペースト41gを添加した。その後40℃で16時間エージングして、電着塗料組成物を調製した。
Example 5
To the stainless steel container, 1394 g of ion-exchanged water, 560 g of the resin emulsion (Em5) and 41 g of the pigment-dispersed paste obtained in Production Example 5 were added. Then, it was aged at 40 ° C. for 16 hours to prepare an electrodeposition coating composition.
実施例6
 ステンレス容器に、イオン交換水1394g、樹脂エマルション(Em6)560gおよび製造例5で得られた顔料分散ペースト41gを添加した。その後40℃で16時間エージングして、電着塗料組成物を調製した。
Example 6
To the stainless steel container, 1394 g of ion-exchanged water, 560 g of the resin emulsion (Em6) and 41 g of the pigment-dispersed paste obtained in Production Example 5 were added. Then, it was aged at 40 ° C. for 16 hours to prepare an electrodeposition coating composition.
実施例7
 ステンレス容器に、イオン交換水1394g、樹脂エマルション(Em7)560gおよび製造例5で得られた顔料分散ペースト41gを添加した。その後40℃で16時間エージングして、電着塗料組成物を調製した。
Example 7
To the stainless steel container, 1394 g of ion-exchanged water, 560 g of the resin emulsion (Em7) and 41 g of the pigment-dispersed paste obtained in Production Example 5 were added. Then, it was aged at 40 ° C. for 16 hours to prepare an electrodeposition coating composition.
比較例1
 ステンレス容器に、イオン交換水1394g、樹脂エマルション(Em8)560gおよび製造例5で得られた顔料分散ペースト41gを添加した。その後40℃で16時間エージングして、電着塗料組成物を調製した。
Comparative Example 1
To the stainless steel container, 1394 g of ion-exchanged water, 560 g of the resin emulsion (Em8) and 41 g of the pigment-dispersed paste obtained in Production Example 5 were added. Then, it was aged at 40 ° C. for 16 hours to prepare an electrodeposition coating composition.
比較例2
 ステンレス容器に、イオン交換水1394g、樹脂エマルション(Em9)560gおよび製造例5で得られた顔料分散ペースト41gを添加した。その後40℃で16時間エージングして、電着塗料組成物を調製した。
Comparative Example 2
To the stainless steel container, 1394 g of ion-exchanged water, 560 g of the resin emulsion (Em9) and 41 g of the pigment-dispersed paste obtained in Production Example 5 were added. Then, it was aged at 40 ° C. for 16 hours to prepare an electrodeposition coating composition.
比較例3
 ステンレス容器に、イオン交換水1394g、樹脂エマルション(Em10)560gおよび製造例5で得られた顔料分散ペースト41gを添加した。その後40℃で16時間エージングして、電着塗料組成物を調製した。
Comparative Example 3
To the stainless steel container, 1394 g of ion-exchanged water, 560 g of the resin emulsion (Em10) and 41 g of the pigment-dispersed paste obtained in Production Example 5 were added. Then, it was aged at 40 ° C. for 16 hours to prepare an electrodeposition coating composition.
比較例4
 ステンレス容器に、イオン交換水1394g、樹脂エマルション(Em11)560gおよび製造例5で得られた顔料分散ペースト41gを添加した。その後40℃で16時間エージングして、電着塗料組成物を調製した。
Comparative Example 4
To the stainless steel container, 1394 g of ion-exchanged water, 560 g of the resin emulsion (Em11) and 41 g of the pigment-dispersed paste obtained in Production Example 5 were added. Then, it was aged at 40 ° C. for 16 hours to prepare an electrodeposition coating composition.
比較例5
 ステンレス容器に、イオン交換水1394g、樹脂エマルション(Em12)560gおよび製造例5で得られた顔料分散ペースト41gを添加した。その後40℃で16時間エージングして、電着塗料組成物を調製した。
Comparative Example 5
To the stainless steel container, 1394 g of ion-exchanged water, 560 g of the resin emulsion (Em12) and 41 g of the pigment-dispersed paste obtained in Production Example 5 were added. Then, it was aged at 40 ° C. for 16 hours to prepare an electrodeposition coating composition.
電着塗膜の形成
 冷延鋼板(JISG3141、SPCC-SD)を、サーフクリーナーEC90(日本ペイント・サーフケミカルズ社製)中に50℃で2分間浸漬して、脱脂処理した。次いで、ZrFを0.005%含み、NaOHを用いてpH4に調整したジルコニウム化成処理液中に、上記の冷延鋼板を40℃で90秒間浸漬して、ジルコニウム化成処理を行った。次いで、実施例および比較例で得られた電着塗料組成物に、硬化後の電着塗膜の膜厚が15μmとなるように、2-エチルヘキシルグリコールを必要量添加した。その後、電着塗料組成物に鋼板を浸漬して、30秒間昇圧して、180Vに達してから150秒間保持するという条件で電圧を印加した。これにより、被塗物上に未硬化の電着塗膜を析出させた。
Electrodeposition coating the formation of cold-rolled steel sheet (JISG3141, SPCC-SD), was immersed for 2 minutes at 50 ℃ in the Surf Cleaner EC90 (manufactured by Nippon Paint Surf Chemicals, Inc.), it was degreased. Next, the above cold-rolled steel sheet was immersed in a zirconium chemical conversion treatment solution containing 0.005% of ZrF and adjusted to pH 4 with NaOH at 40 ° C. for 90 seconds to perform a zirconium chemical conversion treatment. Next, a required amount of 2-ethylhexyl glycol was added to the electrodeposition coating compositions obtained in Examples and Comparative Examples so that the film thickness of the electrodeposition coating film after curing was 15 μm. Then, the steel sheet was immersed in the electrodeposition coating composition, the pressure was increased for 30 seconds, the voltage reached 180 V, and then the voltage was applied under the condition that the steel sheet was held for 150 seconds. As a result, an uncured electrodeposition coating film was deposited on the object to be coated.
 こうして得られた未硬化の電着塗膜を、140℃で25分間焼き付け硬化させて、硬化電着塗膜を有する電着塗装板を得た。 The uncured electrodeposition coating film thus obtained was baked and cured at 140 ° C. for 25 minutes to obtain an electrodeposition coating plate having a cured electrodeposition coating film.
 上記実施例および比較例により得られた電着塗料組成物および塗装板を用いて、下記評価試験を行った。結果を表1に示す。 The following evaluation test was conducted using the electrodeposition coating composition and the coating plate obtained in the above Examples and Comparative Examples. The results are shown in Table 1.
低温硬化性
 得られた電着塗膜をソックスレー抽出器に入れ、アセトン還流条件下で6時間抽出し、塗膜のゲル分率を次式に従い算出した。
◎;90%以上
○;80%~89%
×;79%以下
The electrodeposited coating film obtained with low temperature curability was placed in a Soxhlet extractor and extracted under reflux conditions of acetone for 6 hours, and the gel fraction of the coating film was calculated according to the following formula.
◎; 90% or more ○; 80% to 89%
×; 79% or less
 ゲル分率(%)=[抽出後質量(g)/抽出前質量(g)]×100 Gel fraction (%) = [mass after extraction (g) / mass before extraction (g)] x 100
電着塗料組成物の安定性(経時安定性)
 電着塗料組成物を静置した状態または撹拌した状態において、塗料組成物の状態を目視にて判定し、安定性を評価した。評価基準は以下の通りとした。ここでいう安定であるとは、攪拌停止後、15分以内に顔料が沈降しないことをいう。
評価基準
○:電着塗料組成物を静置した状態で安定である
○△:電着塗料組成物を静置した状態では安定ではないものの、再度撹拌することによってすぐに安定化する
△:電着塗料組成物を連続的に撹拌し続けた状態では安定である
×:電着塗料組成物を連続的に撹拌し続けた状態でも安定化しない
Stability of electrodeposition coating composition (stability over time)
The state of the coating composition was visually determined in a state where the electrodeposition coating composition was allowed to stand or agitated, and the stability was evaluated. The evaluation criteria are as follows. The term "stable" as used herein means that the pigment does not settle within 15 minutes after the stirring is stopped.
Evaluation Criteria ○: Stable in the state where the electrodeposition coating composition is allowed to stand ○ △: Although it is not stable in the state where the electrodeposition coating composition is allowed to stand still, it stabilizes immediately by stirring again △: Electroelectricity It is stable when the coating composition is continuously stirred. ×: It is not stabilized even when the electrodeposition coating composition is continuously stirred.
密着性(電解剥離試験)
 硬化後の塗膜に基材に達するようにナイフでカット傷を入れて、0.01mAの電流値にて12時間電解した。その後、テープ剥離を行い、その両側の剥離幅を評価した。評価基準は以下の通りである。
評価基準
○:剥離幅3mm未満
○△:剥離幅3mm以上5mm未満
△:剥離幅5mm以上10mm未満
×:剥離幅10mm以上
Adhesion (electrolytic peeling test)
A cut scratch was made on the cured coating film with a knife so as to reach the substrate, and electrolysis was performed at a current value of 0.01 mA for 12 hours. Then, the tape was peeled off, and the peeling widths on both sides thereof were evaluated. The evaluation criteria are as follows.
Evaluation criteria ○: Peeling width less than 3 mm ○ △: Peeling width 3 mm or more and less than 5 mm △: Peeling width 5 mm or more and less than 10 mm ×: Peeling width 10 mm or more
耐食性試験(Salt-solution Dipping Test(SDT))
 硬化後の塗膜に、基材に達するようにナイフでカット傷を入れ、この塗装板を、5%食塩水中に55℃で240時間浸漬した。その後、テープ剥離を行い、その両側の剥離幅を評価した。
評価基準
○:剥離幅5mm未満
○△:剥離幅5mm以上10mm未満
△:剥離幅10mm以上15mm未満
×:剥離幅15mm以上
Corrosion resistance test (Salt-solution Dipping Test (SDT))
The cured coating film was cut with a knife so as to reach the substrate, and the coated plate was immersed in 5% saline solution at 55 ° C. for 240 hours. Then, the tape was peeled off, and the peeling widths on both sides thereof were evaluated.
Evaluation criteria ○: Peeling width less than 5 mm ○ △: Peeling width 5 mm or more and less than 10 mm Δ: Peeling width 10 mm or more and less than 15 mm ×: Peeling width 15 mm or more
耐ハジキ
 自然乾燥した塗板を網の上に水平に置き、中央にアルミカップを両面テープで固定した。アルミカップにスポイドを用いて水を1滴落とし、続いてさらに水滴の上に油を1滴落とす。水および油を滴下した塗板を水平にしたまま、140℃で25分間焼き付け硬化させた。得られた硬化塗膜に形成されたクレーターを評価した。クレーターは、アルミカップ内の油がはじけて外に飛び散ることにより生じる。評価基準は以下の通りである。
評価基準
○:クレーターの直径が1mm以下
△:クレーターの直径が1mm~3mm未満
×:クレーターの直径が3mm以上
A repellent-resistant naturally dried coating plate was placed horizontally on a net, and an aluminum cup was fixed with double-sided tape in the center. Drop a drop of water on the aluminum cup with a dropper, then drop another drop of oil on top of the water drop. The coated plate on which water and oil were dropped was baked and cured at 140 ° C. for 25 minutes while keeping it horizontal. The craters formed on the obtained cured coating film were evaluated. Craters are created by the oil in the aluminum cup popping and splashing out. The evaluation criteria are as follows.
Evaluation criteria ○: Crater diameter is 1 mm or less Δ: Crater diameter is 1 mm to less than 3 mm ×: Crater diameter is 3 mm or more
 下記表1には、上記実施例1~7および比較例1~5における、塗料組成(アミン化樹脂の配合量%、ブロック化ポリイソシアネートの種類と配合量%)、ブロック化ポリイソシアネートのブロック剤の組成(各ブロック剤の組成%とモノオール/ポリオール質量比)、塗料のアミン化(meq/固形分100g)、塗膜中の残存OH官能基量(meq/固形分 g)、塗膜の架橋密度、塗膜の内部応力(MPa)および上記各性能評価(低温硬化(140℃硬化)性、経時安定性、密着性、耐食性(SDT)および耐ハジキ)も記載した。 Table 1 below shows the coating composition (amined resin compounding amount%, blocked polyisocyanate type and compounding amount%), and blocking polyisocyanate blocking agent in Examples 1 to 7 and Comparative Examples 1 to 5. Composition (composition% of each blocking agent and monool / polyol mass ratio), amineation of paint (meq / solid content 100 g), residual OH functional group amount in coating film (meq / solid content g), coating film The crosslink density, the internal stress (MPa) of the coating film, and each of the above performance evaluations (low temperature curing (curing at 140 ° C.), stability over time, adhesion, corrosion resistance (SDT) and cissing resistance) are also described.
 残存OH官能基量は、残存水酸基量の理論値である。この理論残存水酸基量は、アミン化樹脂の水酸基量(meq/固形分g)と1級アミン量(meq/固形分g)の合計から、硬化剤のイソシアネート基量(meq/固形分g)を減ずることで求めた。 The amount of residual OH functional group is a theoretical value of the amount of residual hydroxyl group. The theoretical residual hydroxyl group amount is the isocyanate group amount (meq / solid content g) of the curing agent from the total of the hydroxyl group amount (meq / solid content g) and the primary amine amount (meq / solid content g) of the aminating resin. I asked for it by reducing it.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 上記表1から明らかなように、本発明の実施例では塗膜の評価が全て満足する範囲にある。一方、比較例1はブロック化ポリイソシアネート硬化剤の量が少なくて、低温硬化性が不足すると共に耐食性や耐ハジキ性が不足気味である。比較例2はブロック化ポリイソシアネート硬化剤の量が本発明の範囲にあるが、ブロック剤がモノオール化合物のみであり、経時安定性や塗膜の密着性が不足する。比較例3では、比較例2と同様であって、ブロック化ポリイソシアネート硬化剤の量を増加しているが、アミン価や残存OH官能基量が0と不足していて、経時安定性は密着性が大きく不足する。比較例4や5はブロック化ポリイソシアネート硬化剤が多すぎて、低温硬化性が優れているものの、塗膜性能が実用に耐えるものではない。 As is clear from Table 1 above, in the examples of the present invention, the evaluation of the coating film is in the range where all the evaluations are satisfied. On the other hand, in Comparative Example 1, the amount of the blocked polyisocyanate curing agent is small, the low temperature curing property is insufficient, and the corrosion resistance and the repelling resistance are insufficient. In Comparative Example 2, the amount of the blocked polyisocyanate curing agent is within the range of the present invention, but the blocking agent is only a monool compound, and the stability over time and the adhesion of the coating film are insufficient. In Comparative Example 3, the amount of the blocked polyisocyanate curing agent is increased in the same manner as in Comparative Example 2, but the amine value and the amount of residual OH functional group are insufficient at 0, and the stability with time is adhered. There is a big shortage of sex. In Comparative Examples 4 and 5, the amount of the blocked polyisocyanate curing agent is too large, and the low-temperature curing property is excellent, but the coating film performance is not practically durable.
 本発明によれば、塗膜性能を維持しつつ低温硬化性を可能にするカチオン電着塗料組成物が提供される。 According to the present invention, there is provided a cationic electrodeposition coating composition that enables low temperature curability while maintaining coating film performance.
 本願は、2020年7月21日付けで日本国にて出願された特願2020-124322に基づく優先権を主張し、その記載内容の全てが、参照することにより本明細書に援用される。 This application claims priority based on Japanese Patent Application No. 2020-124322 filed in Japan on July 21, 2020, and all of the contents thereof are incorporated herein by reference.

Claims (6)

  1.  アミン化樹脂およびブロック化ポリイソシアネート硬化剤を含有するカチオン電着塗料組成物であって、
     前記ブロック化ポリイソシアネート硬化剤を塗料樹脂固形分中に50~80質量%の量で含有し、
     前記ブロック化ポリイソシアネート硬化剤を形成するブロック剤が、
     (a)モノオール化合物と、
     (b)ポリオール化合物または水酸基を有するアミンのいずれか一方または両方との、
    組合せからなり、
     形成された電着塗膜中の残存OH官能基量が0.4~1.6(meq/固形分g)である、
    カチオン電着塗料組成物。
    A cationic electrodeposition coating composition containing an aminized resin and a blocked polyisocyanate curing agent.
    The blocked polyisocyanate curing agent is contained in the paint resin solid content in an amount of 50 to 80% by mass.
    The blocking agent that forms the blocked polyisocyanate curing agent is
    (A) Monool compound and
    (B) With either or both of a polyol compound or an amine having a hydroxyl group,
    Consists of combinations
    The amount of residual OH functional groups in the formed electrodeposition coating film is 0.4 to 1.6 (meq / solid content g).
    Cationic electrodeposition coating composition.
  2.  前記アミン化樹脂のアミン価が100~200(meq/固形分100g)である、請求項1記載のカチオン電着塗料組成物。 The cationic electrodeposition coating composition according to claim 1, wherein the amine-based resin has an amine value of 100 to 200 (meq / solid content 100 g).
  3.  前記ブロック化ポリイソシアネート硬化剤を形成するブロック剤の、モノオール化合物に対するポリオール化合物および水酸基を有するアミンの質量比率が、(モノオール化合物)/(ポリオール化合物および水酸基を有するアミン)=60/40~10/90である、請求項1または2記載のカチオン電着塗料組成物。 The mass ratio of the polyol compound and the amine having a hydroxyl group to the monool compound of the blocking agent forming the blocked polyisocyanate curing agent is (monool compound) / (polyol compound and amine having a hydroxyl group) = 60/40 to The cationic electrodeposition coating composition according to claim 1 or 2, which is 10/90.
  4.  140℃~200℃の温度で硬化可能である、請求項1~3のいずれか一項に記載のカチオン電着塗料組成物。 The cationic electrodeposition coating composition according to any one of claims 1 to 3, which can be cured at a temperature of 140 ° C to 200 ° C.
  5.  前記カチオン電着塗料組成物を鋼板に乾燥膜厚で15μmになるように塗装し170℃で20分焼き付けた後の電着塗膜の架橋密度が、0.5~5.0mmol/ccであり、電着塗膜形成時の内部応力が7.5MPa以下である、請求項1~4のいずれか一項に記載のカチオン電着塗料組成物。 The crosslink density of the electrodeposition coating film after coating the cationic electrodeposition coating composition on a steel sheet so as to have a dry film thickness of 15 μm and baking at 170 ° C. for 20 minutes is 0.5 to 5.0 mmol / cc. The cationic electrodeposition coating composition according to any one of claims 1 to 4, wherein the internal stress at the time of forming the electrodeposition coating film is 7.5 MPa or less.
  6.  請求項1~5いずれか一項に記載のカチオン電着塗料組成物を用いて塗装したカチオン電着塗膜。 A cationic electrodeposition coating film coated with the cationic electrodeposition coating composition according to any one of claims 1 to 5.
PCT/JP2021/023644 2020-07-21 2021-06-22 Cationic electrodeposition coating composition WO2022019034A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020124322A JP2022020996A (en) 2020-07-21 2020-07-21 Cationic electro-deposition coating composition
JP2020-124322 2020-07-21

Publications (1)

Publication Number Publication Date
WO2022019034A1 true WO2022019034A1 (en) 2022-01-27

Family

ID=79729406

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/023644 WO2022019034A1 (en) 2020-07-21 2021-06-22 Cationic electrodeposition coating composition

Country Status (2)

Country Link
JP (1) JP2022020996A (en)
WO (1) WO2022019034A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62295972A (en) * 1986-06-16 1987-12-23 Kansai Paint Co Ltd Cationic electrodeposition coating resin composition
JP2007246806A (en) * 2006-03-17 2007-09-27 Kansai Paint Co Ltd Cationic electrodeposition paint
WO2013035765A1 (en) * 2011-09-07 2013-03-14 日本ペイント株式会社 Electrodeposition coating composition

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62295972A (en) * 1986-06-16 1987-12-23 Kansai Paint Co Ltd Cationic electrodeposition coating resin composition
JP2007246806A (en) * 2006-03-17 2007-09-27 Kansai Paint Co Ltd Cationic electrodeposition paint
WO2013035765A1 (en) * 2011-09-07 2013-03-14 日本ペイント株式会社 Electrodeposition coating composition

Also Published As

Publication number Publication date
JP2022020996A (en) 2022-02-02

Similar Documents

Publication Publication Date Title
JP6441126B2 (en) Method for preparing cationic electrodeposition coating composition
WO2016143707A1 (en) Cationic electrodeposition coating composition
EP3604465B1 (en) Cationic electrodeposition coating material composition
WO2021006220A1 (en) Cationic electrodeposition coating composition
JP2015187199A (en) electrodeposition coating composition
WO2017051901A1 (en) Method for preparing cationic electrodeposition coating composition
WO2021256193A1 (en) Method for producing epoxy viscous agent for cationic electrodeposition coating material
JP7538777B2 (en) Cationic electrodeposition coating composition, electrodeposition coated article, and method for producing electrodeposition coated article
WO2022014277A1 (en) Cationic electrodeposition coating composition
EP3747552B1 (en) Cationic electrodeposition material composition and method for forming cured electrodeposition coating
JP2022129794A (en) Cationic electro-deposition coating composition
JP6406848B2 (en) Electrodeposition coating composition
WO2022019034A1 (en) Cationic electrodeposition coating composition
JP5996338B2 (en) Electrodeposition coating composition
JP2024149621A (en) Cationic electrodeposition coating composition
WO2017051900A1 (en) Cationic electrodeposition coating composition
EP3354700B1 (en) Method for preparing cationic electrodeposition coating material composition
WO2020241590A1 (en) Method for preparing cationic electrodeposition coating composition
JP2022088769A (en) Cationic electrodeposition coating composition, electrodeposition coating process, and cationic electrodeposition coating film
JP2022073653A (en) Cationic electrodeposition coating composition
JP2003055606A (en) Skin-adjusting agent for electrodeposition coating film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21845762

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21845762

Country of ref document: EP

Kind code of ref document: A1