WO2022018854A1 - 3-d modeling machine and 3-d modeling system - Google Patents

3-d modeling machine and 3-d modeling system Download PDF

Info

Publication number
WO2022018854A1
WO2022018854A1 PCT/JP2020/028428 JP2020028428W WO2022018854A1 WO 2022018854 A1 WO2022018854 A1 WO 2022018854A1 JP 2020028428 W JP2020028428 W JP 2020028428W WO 2022018854 A1 WO2022018854 A1 WO 2022018854A1
Authority
WO
WIPO (PCT)
Prior art keywords
modeling
nozzle
unit
dimensional
homogenization
Prior art date
Application number
PCT/JP2020/028428
Other languages
French (fr)
Japanese (ja)
Inventor
弘規 近藤
恭輔 山崎
Original Assignee
株式会社Fuji
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Fuji filed Critical 株式会社Fuji
Priority to JP2022538552A priority Critical patent/JP7375202B2/en
Priority to PCT/JP2020/028428 priority patent/WO2022018854A1/en
Publication of WO2022018854A1 publication Critical patent/WO2022018854A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/205Means for applying layers
    • B29C64/209Heads; Nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/386Data acquisition or data processing for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/386Data acquisition or data processing for additive manufacturing
    • B29C64/393Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes

Definitions

  • This specification relates to a three-dimensional modeling machine that manufactures a three-dimensional model using a plurality of modeling nozzles, and a three-dimensional modeling system.
  • Patent Document 1 discloses a technical example of this type of three-dimensional modeling machine.
  • the three-dimensional object modeling apparatus of Patent Document 1 includes a first ejection unit and a second ejection unit having one or more modeling nozzles, and when a portion on which a plurality of voxels are superimposed is formed with the same modeling ink, the first ejection unit is used.
  • the first voxel is formed by using the portion, and the second voxel superimposed on the first voxel is formed by using the second ejection portion. According to this, it is said that the frequency of use of a specific modeling nozzle is prevented from increasing, and the life of the ejection portion is suppressed from being shortened.
  • the frequency of use of a specific modeling nozzle is avoided.
  • the frequency of use of the modeling nozzles tends to be biased depending on the arrangement position of a large number of modeling nozzles and the like.
  • the technique of Patent Document 1 cannot be said to be sufficient for equalizing the frequency of use of a plurality of modeling nozzles. If the frequency of use of a plurality of modeling nozzles is uneven, it is necessary to replace only the modeling nozzles that are frequently used and not to replace the modeling nozzles that are rarely used, which makes the replacement work inefficient and takes a lot of time and effort.
  • This specification is a three-dimensional modeling machine that manufactures a three-dimensional model by stacking unit layers, and a stage on which the three-dimensional model being manufactured is placed and a modeling ink is ejected to form the unit layer.
  • a modeling head holding a plurality of modeling nozzles to be drawn, a drive unit for driving the modeling head to move relative to the upper part of the stage, and each of the plurality of modeling nozzles were used for ejecting the modeling ink. Used for ejecting the modeling ink so that at least one of the usage rate and the cumulative usage amount is made uniform between the calculation unit that calculates at least one of the usage rate and the cumulative usage amount and the plurality of the modeling nozzles.
  • a three-dimensional modeling machine including a homogenization selection unit for selecting the modeling nozzle.
  • the present specification describes a stage on which a three-dimensional model manufactured by stacking unit layers is placed, a modeling head holding a plurality of modeling nozzles for ejecting modeling ink to draw the unit layer, and a control program.
  • a three-dimensional modeling machine having a drive unit that drives the modeling head to move relative to the upper part of the stage based on the above, and the usage rate and accumulation in which each of the plurality of modeling nozzles is used for ejecting the modeling ink.
  • a three-dimensional modeling system including a program generation unit for generating the control program including the above-mentioned control program is disclosed.
  • each of the plurality of modeling nozzles calculates at least one of the usage rate and the cumulative usage rate used for ejecting the modeling ink, and the usage rate is calculated. And select the modeling nozzle to be used so as to equalize at least one of the cumulative usage. Therefore, it is possible to contribute to the uniform usage rate and cumulative usage amount of a plurality of modeling nozzles. In addition, since the bias of the deterioration rate among the plurality of modeling nozzles is reduced, the opportunity to replace the plurality of modeling nozzles at the same time is increased, and the labor of the replacement work is reduced.
  • FIG. 5A it is a figure which showed the modeling nozzle which uses 4th to 6th unit layer as a 2nd homogenization element. It is a figure of the list which shows the usage rate of each modeling nozzle calculated at the time of completion of modeling of the 6th unit layer.
  • FIG. 6A it is a figure which showed the modeling nozzle which uses the 7th-9th unit layer as a 3rd homogenization element.
  • FIG. 10A it is a figure which showed the modeling nozzle which uses the 3rd three-dimensional model as a homogenizing element. It is a figure of the list which shows the usage rate of each modeling nozzle calculated at the time of the end of manufacturing of the third three-dimensional modeling object. It is a figure which shows the case where the modeling nozzle to be used is different from FIG. 7A according to the instruction of an operator. It is a figure which shows the state which adjusted the place
  • the configuration of the three-dimensional Modeling Machine 1 of the first embodiment will be described with reference to FIGS. 1 and 2. As shown by the arrow on the upper left of FIG. 1, the front, back, left, and right of the three-dimensional modeling machine 1 are conveniently determined.
  • the three-dimensional modeling machine 1 manufactures a three-dimensional model by a layered manufacturing method in which unit layers are stacked.
  • the shape of the three-dimensional model is defined by the model data representing the shape of each of the plurality of unit layers.
  • the three-dimensional modeling machine 1 includes a drive unit 2, a stage 3, a modeling head 4, a plurality of modeling nozzles 5, an adjusting mechanism 6, a solidifying unit 7, a control device 8 (see FIG. 2), and the like.
  • the drive unit 2 is configured by using a conveyor device extending in the front-rear direction.
  • the conveyor belt of the conveyor device is capable of switching the rotation direction.
  • the drive unit 2 is divided into a carry-in / out area 21, a solidification area 22, and a drawing area 23 in order from the front side.
  • the stage 3 is carried into the carry-in / out area 21 from outside the machine.
  • the drive unit 2 conveys the stage 3 between the areas according to a command from the control device 8.
  • the drive unit 2 may be configured by using an arm robot device capable of gripping and transporting the stage 3.
  • the stage 3 is formed of a rectangular plate whose width dimension in the left-right direction is smaller than the width dimension of the drive unit 2.
  • the stage 3 is first carried into the carry-in / out area 21. Subsequently, the stage 3 is reciprocated many times between the solidification area 22 and the drawing area 23, and a three-dimensional model in the process of being manufactured is placed on the stage 3.
  • the stage 3 is carried out of the machine from the loading / unloading area 21 together with the three-dimensional model.
  • the modeling head 4 is arranged above the drawing area 23.
  • the modeling head 4 relatively moves above the stage 3 conveyed to the drawing area 23.
  • “Relative movement” means that the modeling head 4 may move or the stage 3 may move.
  • the drive unit 2 moves the stage 3 in the front-rear direction in the drawing area 23. That is, the stage 3 moves in the front-rear direction below the modeling head 4 that does not move.
  • the front-rear direction of the drive unit 2 is the movement direction of the relative movement
  • the left-right direction of the drive unit 2 is the orthogonal direction orthogonal to the movement direction.
  • the modeling head 4 holds a plurality of modeling nozzles 5 in a row in the orthogonal direction. In FIG. 1, eight modeling nozzles 5 are shown, and in reality, a larger number of modeling nozzles 5 are held by the modeling head 4.
  • the modeling nozzle 5 ejects modeling ink downward to draw a unit layer on the stage 3 or on the upper side of the three-dimensional model in the process of manufacturing.
  • the eight modeling nozzles 5 use the same modeling ink.
  • the work of replenishing the modeling ink from the ink container to the modeling nozzle 5 is performed fully or semi-automatically using the maintenance mechanism shown in the figure. Since the modeling ink has different physical properties such as components and viscosity as compared with general printing ink, it tends to accelerate the deterioration of the modeling nozzle 5. Therefore, the cycle for replacing the modeling nozzle 5 is shorter than that for a general printing nozzle.
  • a flattening portion of the drawing may be provided in the drawing area 23.
  • the flattening portion flattens the surface of the liquid unit layer immediately after being drawn. As a result, the unevenness of the surface of the unit layer is adjusted, the height is made uniform, and the molding accuracy is improved.
  • the adjustment mechanism 6 adjusts the relative positional relationship between the stage 3 and the modeling head 4 in the orthogonal direction.
  • the stage 3 does not move in the orthogonal direction.
  • the adjusting mechanism 6 moves the modeling head 4 in the orthogonal direction as shown by the arrow A in FIG.
  • the adjusting mechanism 6 is used for changing the position of the modeling nozzle 5 in the orthogonal direction with respect to the stage 3 and for moving the modeling head 4 to the maintenance position.
  • the position where all the modeling nozzles 5 move above the stage 3 is referred to as a standard position of the modeling head 4.
  • a ball screw feeding mechanism or a linear motor mechanism can be used, and the adjustment mechanism 6 is not limited thereto.
  • the solidification unit 7 is arranged above the solidification area 22.
  • the solidifying unit 7 solidifies the drawn unit layer. More specifically, first, the three-dimensional model in the process of being manufactured with the unit layer drawn on the upper part is conveyed to the solidification area 22 together with the stage 3. Next, the solidifying section 7 descends until it approaches the upper liquid unit layer, and then solidifies the unit layer.
  • an ultraviolet irradiation method can be exemplified, and a modeling ink suitable for this can be used.
  • the control device 8 is configured by using a computer device. As shown in FIG. 2, the control device 8 controls the drive unit 2, the plurality of modeling nozzles 5, the adjusting mechanism 6, and the solidifying unit 7. Further, the control device 8 has three functional units realized by using software, that is, a calculation unit 81, a homogenization selection unit 82, and a control unit 83.
  • the calculation unit 81 calculates at least one of the usage rate and the cumulative usage amount of each of the plurality of modeling nozzles 5 used for ejecting the modeling ink.
  • the homogenization selection unit 82 selects the modeling nozzle 5 to be used for ejecting the modeling ink so as to equalize at least one of the usage rate and the cumulative usage amount among the plurality of modeling nozzles 5.
  • the homogenization selection unit 82 sets the modeling nozzle 5 used for ejecting the modeling ink for the first homogenizing element composed of one or a plurality of unit layers, and sets the modeling nozzle 5 for the second homogenizing element. A modeling nozzle 5 different from the first homogenizing element is set. Further, the homogenization selection unit 82 automatically selects the modeling nozzle 5 to be used for ejecting the modeling ink based on at least one of the usage rate and the cumulative usage amount of each of the plurality of modeling nozzles 5.
  • the homogenization selection unit 82 selects the modeling nozzle 5 to be used for ejecting the modeling ink by adjusting the relative positional relationship between the three-dimensional modeled object and the plurality of modeling nozzles 5 in the orthogonal direction. Specifically, the homogenization selection unit 82 controls the adjustment mechanism 6 to select the modeling nozzle 5 to be used. Further, the homogenization selection unit 82 selects the modeling nozzle 5 to be used for ejecting the modeling ink, provided that the number of movements of the modeling head 4 relative to the upper stage 3 is not increased.
  • the function of the homogenization selection unit 82 can be applied and modified in various ways, and will be described in detail later.
  • the control unit 83 switches the function of the homogenization selection unit 82 on and off based on a command from the operator.
  • the function of the homogenization selection unit 82 as described later, it is possible to solve the problem of contributing to the homogenization of the usage rate and the cumulative usage amount of the plurality of modeling nozzles.
  • the homogenization selection unit 82 slows down the production speed of the three-dimensional model, albeit slightly. Therefore, the operator is instructed to turn on the function of the homogenization selection unit 82 in the normal case and turn off the function of the homogenization selection unit 82 when the manufacturing speed is prioritized.
  • the illustrated three-dimensional model M is represented by modeling data of 12 layers from the first to the twelfth unit layers. Further, the shape of each unit layer shall be represented by using a total of 64 voxels of 8 ⁇ 8.
  • the voxels in the left front corner of stage 3 are represented by B (1,1) and the voxels in the right front corner are represented by B (1,8).
  • the voxels in the left rear corner are represented by B (8, 1)
  • the voxels in the right rear corner are represented by B (8, 8).
  • the actual 3D model is represented by modeling data using a larger number of unit layers and a larger number of voxels, and the shape accuracy is improved.
  • the shape M1 of the first to sixth unit layers at the lower part of the three-dimensional model M is substantially circular.
  • This shape M1 is formed in the center of the stage 3.
  • This shape M1 is represented by 12 voxels arranged in rows 3 to 6 and columns 3 to 6, as shown in the small circle of FIG. 3A.
  • the shape M3 of the upper tenth to twelfth unit layers of the three-dimensional model M is the same as the shape M1 of the lower part.
  • the shape M2 of the 7th to 9th unit layers in the middle part of the three-dimensional model M is larger than the shape M1 in the lower part.
  • the shape M2 is line-symmetrical in the front-rear direction of the drive unit 2 (vertically symmetrical in FIG. 3B), and the left side is larger than the right side.
  • This shape M2 is represented by 24 voxels arranged in rows 1-8 and columns 2-6, as shown in the small circle of FIG. 3B.
  • the large shape M2 of the 7th unit layer is formed immediately above the shape M1 of the 6th unit layer, but it is actually difficult to form.
  • a method of gradually increasing the shape of the unit layer from the lower side to the upper side, or a method of forming a temporary support column together and cutting the temporary support column after the modeling is completed is used.
  • step S1 of FIG. 4 the stage 3 is carried from outside the machine to the drawing area 23 by the drive unit 2.
  • the homogenization selection unit 82 of the control device 8 sets the first homogenization element.
  • the first to third unit layers are set as the first homogenization element.
  • the 4th to 6th unit layers are set as the second homogenization element
  • the 7th to 9th unit layers are set as the third homogenization element
  • the 10th to 12th unit layers are set as the fourth homogenization element.
  • the unit layer is set.
  • the homogenization selection unit 82 automatically selects the modeling nozzle 5 to be used for ejecting the modeling ink so that at least one of the usage rate and the cumulative usage amount is uniform among the plurality of modeling nozzles 5. do.
  • the first nozzle 51 to the eighth nozzle 58 are all unused products, and there is no difference in the usage rate and the cumulative usage amount. Therefore, the homogenization selection unit 82 automatically selects the standard position of the modeling head 4 shown in FIG. 5A, in other words, automatically selects the third nozzle 53 to the sixth nozzle 56. Therefore, the first nozzle 51, the second nozzle 52, the seventh nozzle 57, and the eighth nozzle 58 are not used for modeling the first homogenizing element.
  • the stage 3 is driven by the drive unit 2 and moves in the front-rear direction, and the third nozzle 53 to the sixth nozzle 56 draw on the stage 3. More specifically, the third nozzle 53 draws two voxels, B (3,4) and B (3,5). The fourth nozzle 54 draws four voxels B (4,3) to B (4,6). The fifth nozzle 55 draws four voxels B (5, 3) to B (5, 6). The sixth nozzle 56 draws two voxels, B (6, 4) and B (6, 5). This completes the drawing of the liquid first unit layer.
  • the stage 3 is driven by the drive unit 2 and conveyed to the solidification area 22.
  • the liquid first unit layer on the stage 3 is solidified by the solidifying unit 7, and the modeling of the first unit layer is completed. Further, drawing and solidification are performed on the upper side of the first unit layer to form the second unit layer. Further, drawing and solidification are performed on the upper side of the second unit layer to form the third unit layer, and the modeling from the first unit layer to the third unit layer is completed.
  • the homogenization selection unit 82 selects the same modeling nozzle 5 for the shape M1 without moving the modeling head 4 in the homogenization element.
  • the calculation unit 81 calculates the usage rate of each of the plurality of modeling nozzles 5 used for ejecting the modeling ink.
  • the cumulative usage amount expressed by the number of uses is first obtained.
  • the calculation method will be described in detail by taking the third nozzle 53 as an example.
  • the cumulative usage amount parameters other than the number of times of use, for example, the time during which the modeling ink is ejected, the amount of the ejected modeling ink, and the like may be used.
  • the result of the calculation is shown in FIG. 5B.
  • the usage rate of the first nozzle 51, the second nozzle 52, the seventh nozzle 57, and the eighth nozzle 58 is 0%.
  • the usage rate of the third nozzle 53 and the sixth nozzle 56 is 25%.
  • the usage rate of the 4th nozzle 54 and the 5th nozzle 55 is 50%.
  • the number of times of use used for drawing the temporary support is naturally taken into consideration.
  • step S6 the control device 8 determines whether or not the modeling is completed, that is, whether or not the modeling of the 12th unit layer is completed, and determines the branch destination of the operation flow. At this point, since the modeling up to the third unit layer is completed, the operation flow proceeds to step S7.
  • step S7 the homogenization selection unit 82 sets the second homogenization element (shape M1 of the fourth to sixth unit layers), and returns the operation flow to step S3.
  • the homogenization selection unit 82 refers to the usage rate shown in FIG. 5B and automatically selects the modeling nozzle 5 so as to make the usage rate uniform.
  • the first nozzle 51, the second nozzle 52, the seventh nozzle 57, and the eighth nozzle 58 have a lower usage rate than the others and are preferentially selected.
  • the homogenization selection unit 82 selects the modeling nozzle 5 used for drawing the shape M1 of the 4th to 6th unit layers from two options. That is, the homogenization selection unit 82 sets the first nozzle 51 to the fourth nozzle 54 or the fifth nozzle 55 to the eighth nozzle 58.
  • FIG. 6A shows the case where the first nozzle 51 to the fourth nozzle 54 are selected.
  • the adjusting mechanism 6 adjusts the position of the modeling head 4 from the standard position to the right by two of the modeling nozzles 5 according to the control from the homogenization selection unit 82. Therefore, in the second step S4, drawing and solidification using the first nozzle 51 to the fourth nozzle 54 are repeated three times. The detailed operation of drawing and solidification is the same as the first time.
  • the homogenization selection unit 82 can move the modeling head 4 when the homogenization element is switched, and can select different modeling nozzles 5 for the same shape M1. It should be noted that making the usage rate uniform means reducing the bias of the usage rate.
  • the homogenization selection unit 82 gives priority to the use of the modeling nozzle 5 having a low usage rate and refrains from using the modeling nozzle 5 having a high usage rate within the range permitted by the restrictions of the modeling data.
  • the calculation unit 81 recalculates the usage rate of each of the plurality of modeling nozzles 5.
  • the cumulative usage amount of the modeling nozzle 5 is obtained by adding the number of times of use in the first homogenization element and the number of times of use in the second homogenization element. Further, the opportunity for each of the modeling nozzles 5 to eject the modeling ink increases to 48 times.
  • step S6 the homogenization selection unit 82 sets a third homogenization element (shape M2 of the seventh to ninth unit layers), and returns the operation flow to step S3.
  • the homogenization selection unit 82 refers to the usage rate shown in FIG. 6B and automatically selects the modeling nozzle 5 so as to make the usage rate uniform.
  • the 7th nozzle 57 and the 8th nozzle 58 have a usage rate of 0%, which is lower than the others, and are preferentially selected.
  • the homogenization selection unit 82 sets the modeling nozzle 5 used for drawing the shape M2 of the 7th to 9th unit layers to the 4th nozzle 54 to the 8th nozzle 58.
  • FIG. 7A shows a case where the fourth nozzle 54 to the eighth nozzle 58 are selected as the modeling nozzle 5 to be used.
  • the adjusting mechanism 6 adjusts the position of the modeling head 4 from the standard position to the left by two of the modeling nozzles 5 according to the control from the homogenization selection unit 82. Therefore, in the third step S4, drawing and solidification using the fourth nozzle 54 to the eighth nozzle 58 are repeated three times. The detailed operation of drawing and solidification is the same as the first and second times.
  • the calculation unit 81 recalculates the usage rate of each of the plurality of modeling nozzles 5.
  • the result of the calculation is shown in FIG. 7B.
  • the usage rate of the first nozzle 51 is 8.3%.
  • the usage rate of the second nozzle 52 and the eighth nozzle 58 is 16.7%.
  • the usage rate of the third nozzle 53 is 25%.
  • the usage rate of the 4th nozzle 54 to the 7th nozzle 57 is 33.3%.
  • the operation flow proceeds from step S6 to step S7.
  • the homogenization selection unit 82 refers to the usage rate shown in FIG. 7B and automatically selects the modeling nozzle 5 so as to make the usage rate uniform.
  • the first nozzle 51 has a usage rate of 8.3%, which is lower than the others, and is preferentially selected.
  • step S5 the calculation unit 81 recalculates the usage rate of each of the plurality of modeling nozzles 5. The result of the calculation is shown in FIG.
  • step S6 the modeling of the twelfth unit layer is completed, the production of the three-dimensional model M is completed, and the operation flow is branched to the step S8.
  • step S8 the stage 3 and the manufactured three-dimensional model M are carried out of the machine by the drive unit 2. After this, the operation flow is returned to step S1.
  • the homogenization selection unit 82 refers to the usage rate shown in FIG. 8 and selects the modeling nozzle 5 so as to make the usage rate uniform.
  • the first nozzle 51 and the eighth nozzle 58 have a lower utilization rate than the others and are preferentially selected.
  • the homogenization selection unit 82 sets the modeling nozzle 5 used for drawing the shape M1 of the first to third unit layers in the new stage 3 to the fifth nozzle 55 to the eighth nozzle 58.
  • each of the plurality of modeling nozzles 5 calculates at least one of the usage rate and the cumulative usage amount used for ejecting the modeling ink, and the usage rate and the cumulative usage amount are calculated.
  • the bias of the deterioration rate among the plurality of modeling nozzles 5 is reduced, the chances of replacing the plurality of modeling nozzles 5 at the same time are increased, and the labor of the replacement work is reduced.
  • the modeling head 4 is fixed and used in the standard position. Therefore, the first nozzle 51, the seventh nozzle 57, and the eighth nozzle 58 are not used at all while the production of the three-dimensional model M is continued.
  • the fifth nozzle 55 has a higher usage rate than the others, so that deterioration progresses and the fifth nozzle 55 is frequently replaced. According to the three-dimensional modeling machine 1, by selecting the first nozzle 51 to the eighth nozzle 58 to be used, the usage rate thereof can be made uniform and the deviation of the deterioration rate can be reduced.
  • the modeling data of the three-dimensional model M is known. Therefore, the homogenization selection unit 82 can simulate the modeling progress from FIG. 5A to FIG. 8 before actually performing the modeling. That is, the homogenization selection unit 82 previously uses the modeling nozzle 5 used for ejecting the modeling ink in each of the plurality of unit layers based on the modeling data representing the shapes of the plurality of unit layers constituting the three-dimensional modeled object M. You can choose. According to this, a series of arithmetic processing can be executed in advance, and it is not necessary to perform arithmetic processing every time the modeling of the homogenization element is completed.
  • the homogenization selection unit 82 uses three unit layers as the homogenization element, but uses one three-dimensional model M as the homogenization element. You may.
  • the uniformization selection unit 82 selects the standard position of the modeling head 4 shown in FIG. 9A because the first nozzle 51 to the eighth nozzle 58 are all unused products. do.
  • the homogenization selection unit 82 does not change the standard position of the modeling head 4 until the modeling of the homogenization element (manufacturing of the three-dimensional model M) is completed. That is, the homogenization selection unit 82 automatically selects the second nozzle 52 to the sixth nozzle 56. Therefore, the first nozzle 51, the seventh nozzle 57, and the eighth nozzle 58 are not used.
  • step S4 drawing and solidification for modeling each of the first to twelfth unit layers is repeated 12 times.
  • the calculation unit 81 calculates the usage rate of each of the plurality of modeling nozzles 5 used for ejecting the modeling ink. The result of the calculation is shown in FIG. 9B. As shown, the usage rate of the first nozzle 51, the seventh nozzle 57, and the eighth nozzle 58 is 0%.
  • step S6 since the modeling of the twelfth unit layer is completed and the three-dimensional model M is manufactured, the operation flow is branched to step S8.
  • step S8 the stage 3 and the manufactured three-dimensional model M are carried out of the machine by the drive unit 2. After this, the operation flow is returned to step S1.
  • the second stage 3 is carried into the drawing area 23 by the drive unit 2.
  • the homogenization selection unit 82 refers to the usage rate shown in FIG. 9B, and the fourth nozzle 54 to the fourth nozzle 54 to include the seventh nozzle 57 and the eighth nozzle 58 having low usage rates. 8 Nozzles 58 are selected.
  • the second three-dimensional model M is manufactured.
  • the calculation unit 81 calculates the usage rate shown in FIG. 10B. As shown, the utilization of the first nozzle 51 remains at 0%.
  • the homogenization selection unit 82 refers to the usage rate shown in FIG. 10B, and includes the first nozzle 51 having a usage rate of 0%, so that the first nozzle 51 to the fifth nozzle 55 are included. Select.
  • the calculation unit 81 calculates the usage rate shown in FIG. 11B. As shown, the usage rate of the first nozzle 51 has increased to 6%, but it is still low compared to the others. Therefore, for the fourth stage 3, the homogenization selection unit 82 selects the first nozzle 51 to the fifth nozzle 55, as in FIG. 11B.
  • the homogenization selection unit 82 automatically selects the modeling nozzle 5 to be used based on the usage rate of each of the plurality of modeling nozzles 5. You may follow the operator's instructions. In this case, in the second step S3, the homogenization selection unit 82 presents the usage rate shown in FIG. 5B to the operator, and selects the modeling nozzle 5 to be used according to the operator's instruction.
  • the homogenization selection unit 82 inevitably selects the former of the two options in the first embodiment, that is, the first nozzle 51 to the fourth nozzle 54, or the fifth nozzle 55 to the eighth nozzle 58. select. Further, in the third step S3, the homogenization selection unit 82 selects the third nozzle 53 to the seventh nozzle 57, excluding the eighth nozzle 58, as shown in FIG. As can be seen by comparing FIGS. 12 and 7A, the modeling nozzle 5 to be used is shifted by one according to the operator's instruction.
  • the three-dimensional modeling machine of the second embodiment Next, the differences between the three-dimensional modeling machine of the second embodiment and the first embodiment will be mainly described with reference to FIGS. 13A and 13B.
  • the presence / absence of the adjusting mechanism 6 and the function of the homogenization selection unit 82 are different from those of the first embodiment, and other parts are the same as those of the first embodiment.
  • the adjusting mechanism 6 is omitted, and the modeling head 4 is fixedly provided on the head mounting seat 61 and is always located at the standard position.
  • the homogenization selection unit 82 adjusts the placement position of the three-dimensional model M in the orthogonal direction of the stage 3. Specifically, the homogenization selection unit 82 moves the mounting position of the three-dimensional model M to be manufactured in the odd-numbered position to the right side of the stage 3. According to this, the homogenization selection unit 82 has selected the fourth nozzle 54 to the eighth nozzle 58 as shown in FIG. 13A. Further, the homogenization selection unit 82 moves the placement position of the even-numbered three-dimensional model M to the left side of the stage 3. According to this, the homogenization selection unit 82 has selected the first nozzle 51 to the fifth nozzle 55 as shown in FIG. 13B. In this way, by adjusting the placement position of the three-dimensional model M on the stage 3 in the orthogonal direction without fixing it, the effect of using all eight modeling nozzles 5 to equalize the usage rate can be obtained. Occurs.
  • the three-dimensional modeling system 1S is composed of a three-dimensional modeling machine 1A and a program generation unit 9.
  • the three-dimensional modeling machine 1A includes a drive unit 2, a stage 3, a modeling head 4, a plurality of modeling nozzles 5, an adjusting mechanism 6, and a solidifying unit 7 similar to those in the first embodiment, and the function of the control device 8A is first. Different from the embodiment.
  • the control device 8A controls the drive unit 2 and the like according to the control program 91 generated by the program generation unit 9.
  • the drive unit 2 drives the modeling head 4 so as to move relatively above the stage 3 based on the control program 91.
  • the program generation unit 9 is configured by using a computer device separate from the three-dimensional modeling machine 1A.
  • the program generation unit 9 generates a control program 91 having at least the functions of the calculation unit 81 and the homogenization selection unit 82 described in the first embodiment.
  • the control program 91 is transferred to the three-dimensional modeling machine 1A and executed.
  • the three-dimensional modeling machine 1A accesses and executes the control program 91 in the program generation unit 9.
  • the three-dimensional modeling machine 1A can perform the same operations as those of the first embodiment, the first application form, and the second application form.
  • the homogenization element other than three unit layers and one three-dimensional model M can be used.
  • the modeling nozzle 5 for drawing the first unit layer and the modeling nozzle 5 for drawing the second unit layer can be different.
  • the modeling nozzle 5 for modeling the two three-dimensional model M is standardized, and the modeling nozzle 5 for modeling the third three-dimensional model M is used. Will be different.
  • the homogenization selection unit 82 is conditioned on the condition that the number of movements of the modeling head 4 relative to the upper side of the stage 3 is not increased, but this condition may be removed.
  • the drawing of the first unit layer is divided into two times, half of the first unit layer is drawn using the first nozzle 51 and the second nozzle 52 in the first time, and the seventh nozzle 57 and the second time.
  • the other half of the first unit layer is drawn using the eighth nozzle 58.
  • the degree of uniformity of the usage rate of the plurality of modeling nozzles 5 can be remarkably improved, while the time required for manufacturing increases.
  • the first to third embodiments can be applied and modified in various ways.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Optics & Photonics (AREA)

Abstract

This 3-D modeling machine for manufacturing a 3-D object by stacking unit layers comprises: a stage whereon the 3D object being manufactured is placed; a modeling head holding a plurality of modeling nozzles that eject modeling ink to draw the unit layers; a drive unit that drives the modeling head to perform relative movement above the stage; a calculation unit that calculates the usage rate and/or the accumulated usage amount for each of the plurality of modeling nozzles used to eject the modeling ink; and a homogenizing selection unit that selects the modeling nozzle to be used to eject the modeling ink so as to equalize, among the plurality of modeling nozzles, the usage rate and/or the accumulated usage amount thereof.

Description

三次元造形機および三次元造形システム3D modeling machine and 3D modeling system
 本明細書は、複数の造形ノズルを用いて三次元造形物を製造する三次元造形機、および三次元造形システムに関する。 This specification relates to a three-dimensional modeling machine that manufactures a three-dimensional model using a plurality of modeling nozzles, and a three-dimensional modeling system.
 三次元造形物を製造する三次元造形機の技術分野では、単位層を積み重ねる積層造形法が主流となっている。多くの三次元造形機は、造形インクを吐出して単位層を描画する複数の造形ノズルと、描画された単位層を固化する固化部と、を備える。三次元造形機は、3Dプリンタと呼称される場合がある。三次元造形機の普及により、各種の物品の製造方法が発展し、とりわけ試作品などの製造が格段に効率化される。この種の三次元造形機に関する一技術例が特許文献1に開示されている。 In the technical field of 3D modeling machines that manufacture 3D models, the additive manufacturing method of stacking unit layers is the mainstream. Many three-dimensional modeling machines include a plurality of modeling nozzles for ejecting modeling ink to draw a unit layer, and a solidifying unit for solidifying the drawn unit layer. The three-dimensional modeling machine may be referred to as a 3D printer. With the widespread use of 3D modeling machines, manufacturing methods for various articles will develop, and in particular, the manufacturing of prototypes will become much more efficient. Patent Document 1 discloses a technical example of this type of three-dimensional modeling machine.
 特許文献1の立体物造形装置は、一つ以上の造形ノズルを有する第1吐出部および第2吐出部を備え、複数のボクセルが重畳する部分を同じ造形インクで形成する際に、第1吐出部を用いて第1のボクセルを形成するとともに、第2吐出部を用いて第1のボクセルに重畳される第2のボクセルを形成する。これによれば、特定の造形ノズルの使用頻度が高くなることが回避され、吐出部の寿命が短くなることが抑制される、とされている。 The three-dimensional object modeling apparatus of Patent Document 1 includes a first ejection unit and a second ejection unit having one or more modeling nozzles, and when a portion on which a plurality of voxels are superimposed is formed with the same modeling ink, the first ejection unit is used. The first voxel is formed by using the portion, and the second voxel superimposed on the first voxel is formed by using the second ejection portion. According to this, it is said that the frequency of use of a specific modeling nozzle is prevented from increasing, and the life of the ejection portion is suppressed from being shortened.
特開2016-132229号公報Japanese Unexamined Patent Publication No. 2016-132229
 ところで、特許文献1の立体物造形装置において、特定の造形ノズルの使用頻度が高くなることが回避される点は好ましい。しかしながら、一般的な三次元造形機では、多数の造形ノズルの配列位置等などに依存して、造形ノズルの使用頻度が偏りやすい。そして、特許文献1の技術は、複数の造形ノズルの使用頻度を均一化するために十分とは言えない。複数の造形ノズルの使用頻度に偏りがある場合、使用機会が多い造形ノズルばかり交換して使用機会が少ない造形ノズルを交換しないことになり、交換作業が非効率になって大きな手間がかかる。 By the way, in the three-dimensional object modeling apparatus of Patent Document 1, it is preferable that the frequency of use of a specific modeling nozzle is avoided. However, in a general three-dimensional modeling machine, the frequency of use of the modeling nozzles tends to be biased depending on the arrangement position of a large number of modeling nozzles and the like. Further, the technique of Patent Document 1 cannot be said to be sufficient for equalizing the frequency of use of a plurality of modeling nozzles. If the frequency of use of a plurality of modeling nozzles is uneven, it is necessary to replace only the modeling nozzles that are frequently used and not to replace the modeling nozzles that are rarely used, which makes the replacement work inefficient and takes a lot of time and effort.
 それゆえ、本明細書では、複数の造形ノズルの使用率や累積使用量の均一化に寄与することができる三次元造形機、および三次元造形システムを提供することを解決すべき課題とする。 Therefore, in the present specification, it is an issue to be solved to provide a three-dimensional modeling machine and a three-dimensional modeling system that can contribute to the uniform usage rate and cumulative usage amount of a plurality of modeling nozzles.
 本明細書は、単位層を積み重ねて三次元造形物を製造する三次元造形機であって、製造途中の前記三次元造形物を載置するステージと、造形インクを吐出して前記単位層を描画する複数の造形ノズルを保持した造形ヘッドと、前記造形ヘッドが前記ステージの上方を相対移動するように駆動する駆動部と、複数の前記造形ノズルの各々が前記造形インクの吐出に使用された使用率および累積使用量の少なくとも一方を演算する演算部と、複数の前記造形ノズルの間で前記使用率および前記累積使用量の少なくとも一方を均一化するように、前記造形インクの吐出に使用する前記造形ノズルを選択する均一化選択部と、を備える三次元造形機を開示する。 This specification is a three-dimensional modeling machine that manufactures a three-dimensional model by stacking unit layers, and a stage on which the three-dimensional model being manufactured is placed and a modeling ink is ejected to form the unit layer. A modeling head holding a plurality of modeling nozzles to be drawn, a drive unit for driving the modeling head to move relative to the upper part of the stage, and each of the plurality of modeling nozzles were used for ejecting the modeling ink. Used for ejecting the modeling ink so that at least one of the usage rate and the cumulative usage amount is made uniform between the calculation unit that calculates at least one of the usage rate and the cumulative usage amount and the plurality of the modeling nozzles. Disclosed is a three-dimensional modeling machine including a homogenization selection unit for selecting the modeling nozzle.
 また、本明細書は、単位層を積み重ねて製造する三次元造形物を載置するステージ、造形インクを吐出して前記単位層を描画する複数の造形ノズルを保持した造形ヘッド、および、制御プログラムに基づいて前記造形ヘッドが前記ステージの上方を相対移動するように駆動する駆動部を有する三次元造形機と、複数の前記造形ノズルの各々が前記造形インクの吐出に使用される使用率および累積使用量の少なくとも一方を演算し、複数の前記造形ノズルの間で前記使用率および前記累積使用量の少なくとも一方を均一化するように、前記造形インクの吐出に使用する前記造形ノズルを選択する指令を含む前記制御プログラムを生成するプログラム生成部と、を備える三次元造形システムを開示する。 Further, the present specification describes a stage on which a three-dimensional model manufactured by stacking unit layers is placed, a modeling head holding a plurality of modeling nozzles for ejecting modeling ink to draw the unit layer, and a control program. A three-dimensional modeling machine having a drive unit that drives the modeling head to move relative to the upper part of the stage based on the above, and the usage rate and accumulation in which each of the plurality of modeling nozzles is used for ejecting the modeling ink. A command to calculate at least one of the usage amounts and select the modeling nozzle to be used for ejecting the modeling ink so as to equalize at least one of the usage rate and the cumulative usage amount among the plurality of modeling nozzles. A three-dimensional modeling system including a program generation unit for generating the control program including the above-mentioned control program is disclosed.
 本明細書で開示する三次元造形機や三次元造形システムによれば、複数の造形ノズルの各々が造形インクの吐出に使用された使用率および累積使用量の少なくとも一方を演算して、使用率および累積使用量の少なくとも一方を均一化するように、使用する造形ノズルを選択する。したがって、複数の造形ノズルの使用率や累積使用量の均一化に寄与することができる。加えて、複数の造形ノズルの間で劣化速度の偏りが減少するので、複数の造形ノズルを同時に交換する機会が増えて、交換作業の手間が削減される。 According to the 3D modeling machine and the 3D modeling system disclosed in the present specification, each of the plurality of modeling nozzles calculates at least one of the usage rate and the cumulative usage rate used for ejecting the modeling ink, and the usage rate is calculated. And select the modeling nozzle to be used so as to equalize at least one of the cumulative usage. Therefore, it is possible to contribute to the uniform usage rate and cumulative usage amount of a plurality of modeling nozzles. In addition, since the bias of the deterioration rate among the plurality of modeling nozzles is reduced, the opportunity to replace the plurality of modeling nozzles at the same time is increased, and the labor of the replacement work is reduced.
第1実施形態の三次元造形機の構成を模式的に示す平面図である。It is a top view which shows typically the structure of the 3D modeling machine of 1st Embodiment. 三次元造形機の制御の構成を示すブロック図である。It is a block diagram which shows the structure of the control of a 3D modeling machine. 例示する三次元造形物の第1~第6単位層、および第10~第12単位層の形状を表す造形データを模式的に示した図である。It is a figure which schematically showed the modeling data which shows the shape of the 1st to 6th unit layers, and the 10th to 12th unit layers of a three-dimensional model which is exemplified. 三次元造形物の第7~第9単位層の形状を表す造形データを模式的に示した図である。It is a figure which showed the modeling data which shows the shape of the 7th to 9th unit layers of a three-dimensional model typically. 三次元造形機の動作を説明する動作フローの図である。It is a figure of the operation flow explaining the operation of a 3D modeling machine. 三次元造形物の第1~第3単位層を第一の均一化要素とした場合に、使用する造形ノズルを示した図である。It is a figure which showed the modeling nozzle to be used when the 1st to 3rd unit layers of a 3D model are used as the 1st homogenizing element. 第3単位層の造形終了時点で演算した各造形ノズルの使用率を示す一覧表の図である。It is a figure of the list which shows the usage rate of each modeling nozzle calculated at the time of completion of modeling of the 3rd unit layer. 図5Aに続き、第4~第6単位層を第二の均一化要素として、使用する造形ノズルを示した図である。Following FIG. 5A, it is a figure which showed the modeling nozzle which uses 4th to 6th unit layer as a 2nd homogenization element. 第6単位層の造形終了時点に演算した各造形ノズルの使用率を示す一覧表の図である。It is a figure of the list which shows the usage rate of each modeling nozzle calculated at the time of completion of modeling of the 6th unit layer. 図6Aに続き、第7~第9単位層を第三の均一化要素として、使用する造形ノズルを示した図である。Following FIG. 6A, it is a figure which showed the modeling nozzle which uses the 7th-9th unit layer as a 3rd homogenization element. 第9単位層の造形終了時点に演算した各造形ノズルの使用率を示す一覧表の図である。It is a figure of the list which shows the usage rate of each modeling nozzle calculated at the time of completion of modeling of the 9th unit layer. 第12単位層の造形終了時点に演算した各造形ノズルの使用率を示す一覧表の図である。It is a figure of the list which shows the usage rate of each modeling nozzle calculated at the time of completion of modeling of the twelfth unit layer. 一番目の三次元造形物を均一化要素とした場合に、使用する造形ノズルを示した図である。It is a figure which showed the modeling nozzle to be used when the first 3D model is a homogenizing element. 一番目の三次元造形物の製造終了時点に演算した各造形ノズルの使用率を示す一覧表の図である。It is a figure of the list which shows the usage rate of each modeling nozzle calculated at the time of the end of manufacturing of the first 3D modeling object. 図9Aに続き、二番目の三次元造形物を均一化要素として、使用する造形ノズルを示した図である。Following FIG. 9A, it is a figure which showed the modeling nozzle which uses the 2nd three-dimensional model as a homogenizing element. 二番目の三次元造形物の製造終了時点に演算した各造形ノズルの使用率を示す一覧表の図である。It is a figure of the list which shows the usage rate of each modeling nozzle calculated at the time of the end of manufacturing of the second 3D modeling object. 図10Aに続き、三番目の三次元造形物を均一化要素として、使用する造形ノズルを示した図である。Following FIG. 10A, it is a figure which showed the modeling nozzle which uses the 3rd three-dimensional model as a homogenizing element. 三番目の三次元造形物の製造終了時点に演算した各造形ノズルの使用率を示す一覧表の図である。It is a figure of the list which shows the usage rate of each modeling nozzle calculated at the time of the end of manufacturing of the third three-dimensional modeling object. オペレータの指示にしたがい、使用する造形ノズルを図7Aと異なるものとした場合を示す図である。It is a figure which shows the case where the modeling nozzle to be used is different from FIG. 7A according to the instruction of an operator. 第2実施形態の三次元造形機において、三次元造形物の載置位置をステージの右側に調整した状態を示す図である。It is a figure which shows the state which adjusted the place | placing position of the 3D modeling object to the right side of a stage in the 3D modeling machine of 2nd Embodiment. 三次元造形物の載置位置をステージの左側に調整した状態を示す図であるIt is a figure which shows the state which adjusted the placement position of a 3D object to the left side of a stage. 第3実施形態の三次元造形システムの機能構成を示すブロック図である。It is a block diagram which shows the functional structure of the 3D modeling system of 3rd Embodiment.
 1.第1実施形態の三次元造形機1の構成
 第1実施形態の三次元造形機1の構成について、図1および図2を参考にして説明する。図1の左上の矢印に示されるように、三次元造形機1の前後左右を便宜的に定める。三次元造形機1は、単位層を積み重ねる積層造形法により三次元造形物を製造する。三次元造形物の形状は、複数の単位層の各々の形状を表す造形データによって規定される。三次元造形機1は、駆動部2、ステージ3、造形ヘッド4、複数の造形ノズル5、調整機構6、固化部7、および制御装置8(図2参照)などで構成されている。
1. 1. Configuration of the Three-dimensional Modeling Machine 1 of the First Embodiment The configuration of the three-dimensional modeling machine 1 of the first embodiment will be described with reference to FIGS. 1 and 2. As shown by the arrow on the upper left of FIG. 1, the front, back, left, and right of the three-dimensional modeling machine 1 are conveniently determined. The three-dimensional modeling machine 1 manufactures a three-dimensional model by a layered manufacturing method in which unit layers are stacked. The shape of the three-dimensional model is defined by the model data representing the shape of each of the plurality of unit layers. The three-dimensional modeling machine 1 includes a drive unit 2, a stage 3, a modeling head 4, a plurality of modeling nozzles 5, an adjusting mechanism 6, a solidifying unit 7, a control device 8 (see FIG. 2), and the like.
 駆動部2は、前後方向に延在するコンベア装置を用いて構成される。コンベア装置のコンベアベルトは、輪転方向の切り替えが可能とされている。駆動部2は、前側から順番に搬入出エリア21、固化エリア22、および描画エリア23に区分される。搬入出エリア21には、機外からステージ3が搬入される。駆動部2は、制御装置8からの指令にしたがい、ステージ3をエリア間で搬送する。なお、駆動部2は、ステージ3を把持して搬送可能なアームロボット装置を用いて構成されてもよい。 The drive unit 2 is configured by using a conveyor device extending in the front-rear direction. The conveyor belt of the conveyor device is capable of switching the rotation direction. The drive unit 2 is divided into a carry-in / out area 21, a solidification area 22, and a drawing area 23 in order from the front side. The stage 3 is carried into the carry-in / out area 21 from outside the machine. The drive unit 2 conveys the stage 3 between the areas according to a command from the control device 8. The drive unit 2 may be configured by using an arm robot device capable of gripping and transporting the stage 3.
 ステージ3は、左右方向の幅寸法が駆動部2の幅寸法よりも小さめの矩形の板材で形成される。ステージ3は、始めに搬入出エリア21に搬入される。続いて、ステージ3は、固化エリア22と描画エリア23の間で多数回にわたって往復搬送され、製造途中の三次元造形物が載置される。三次元造形物の製造が終了すると、ステージ3は、三次元造形物と共に搬入出エリア21から機外に搬出される。 The stage 3 is formed of a rectangular plate whose width dimension in the left-right direction is smaller than the width dimension of the drive unit 2. The stage 3 is first carried into the carry-in / out area 21. Subsequently, the stage 3 is reciprocated many times between the solidification area 22 and the drawing area 23, and a three-dimensional model in the process of being manufactured is placed on the stage 3. When the production of the three-dimensional model is completed, the stage 3 is carried out of the machine from the loading / unloading area 21 together with the three-dimensional model.
 造形ヘッド4は、描画エリア23の上方に配置される。造形ヘッド4は、描画エリア23に搬送されたステージ3の上方を相対移動する。「相対移動する」とは、造形ヘッド4が移動してもよく、ステージ3が移動してもよいことを表す。本第1実施形態において、駆動部2は、描画エリア23の中でステージ3を前後方向に移動させる。つまり、移動しない造形ヘッド4の下方を、ステージ3が前後方向に移動する。 The modeling head 4 is arranged above the drawing area 23. The modeling head 4 relatively moves above the stage 3 conveyed to the drawing area 23. “Relative movement” means that the modeling head 4 may move or the stage 3 may move. In the first embodiment, the drive unit 2 moves the stage 3 in the front-rear direction in the drawing area 23. That is, the stage 3 moves in the front-rear direction below the modeling head 4 that does not move.
 したがって、駆動部2の前後方向は、相対移動の移動方向となり、駆動部2の左右方向は、移動方向と直交する直交方向となる。造形ヘッド4は、直交方向に一列に複数の造形ノズル5を保持している。図1において、八個の造形ノズル5が示されており、実際には、さらに多数の造形ノズル5が造形ヘッド4に保持される。 Therefore, the front-rear direction of the drive unit 2 is the movement direction of the relative movement, and the left-right direction of the drive unit 2 is the orthogonal direction orthogonal to the movement direction. The modeling head 4 holds a plurality of modeling nozzles 5 in a row in the orthogonal direction. In FIG. 1, eight modeling nozzles 5 are shown, and in reality, a larger number of modeling nozzles 5 are held by the modeling head 4.
 造形ノズル5は、造形インクを下方に吐出して、ステージ3上または製造途中の三次元造形物の上側に単位層を描画する。八個の造形ノズル5は、同じ造形インクを使用する。造形インクをインク容器から造形ノズル5に補給する作業は、図略のメンテナンス機構を用いて、全自動または半自動で行われる。造形インクは、一般的な印刷用インクと比較して成分や粘度などの物性が相違するため、造形ノズル5の劣化を促進しがちである。このため、造形ノズル5を交換するサイクルは、一般的な印刷用ノズルよりも短くなる。 The modeling nozzle 5 ejects modeling ink downward to draw a unit layer on the stage 3 or on the upper side of the three-dimensional model in the process of manufacturing. The eight modeling nozzles 5 use the same modeling ink. The work of replenishing the modeling ink from the ink container to the modeling nozzle 5 is performed fully or semi-automatically using the maintenance mechanism shown in the figure. Since the modeling ink has different physical properties such as components and viscosity as compared with general printing ink, it tends to accelerate the deterioration of the modeling nozzle 5. Therefore, the cycle for replacing the modeling nozzle 5 is shorter than that for a general printing nozzle.
 なお、描画エリア23内に、図略の平坦化部が設けられてもよい。平坦化部は、描画された直後の液状の単位層の表面を平坦化する。これにより、単位層の表面の凹凸が整えられて高さが均一化され、造形精度が向上する。 Note that a flattening portion of the drawing may be provided in the drawing area 23. The flattening portion flattens the surface of the liquid unit layer immediately after being drawn. As a result, the unevenness of the surface of the unit layer is adjusted, the height is made uniform, and the molding accuracy is improved.
 調整機構6は、直交方向におけるステージ3と造形ヘッド4との相対位置関係を調整する。本第1実施形態において、ステージ3は直交方向に移動しない。調整機構6は、図1の矢印Aに示されるように、造形ヘッド4を直交方向に移動させる。調整機構6は、ステージ3に対する造形ノズル5の直交方向の位置を変更する用途や、造形ヘッド4をメンテナンス位置に移動させる用途に用いられる。図1に示されるように、全ての造形ノズル5がステージ3の上方を移動する位置を、造形ヘッド4の標準位置と呼称する。調整機構6として、ボールねじ送り機構やリニアモータ機構を用いることができ、これらに限定されない。 The adjustment mechanism 6 adjusts the relative positional relationship between the stage 3 and the modeling head 4 in the orthogonal direction. In the first embodiment, the stage 3 does not move in the orthogonal direction. The adjusting mechanism 6 moves the modeling head 4 in the orthogonal direction as shown by the arrow A in FIG. The adjusting mechanism 6 is used for changing the position of the modeling nozzle 5 in the orthogonal direction with respect to the stage 3 and for moving the modeling head 4 to the maintenance position. As shown in FIG. 1, the position where all the modeling nozzles 5 move above the stage 3 is referred to as a standard position of the modeling head 4. As the adjusting mechanism 6, a ball screw feeding mechanism or a linear motor mechanism can be used, and the adjustment mechanism 6 is not limited thereto.
 固化部7は、固化エリア22の上方に配置されている。固化部7は、描画された単位層を固化する。詳述すると、まず、単位層が上部に描画された製造途中の三次元造形物が、ステージ3と共に固化エリア22まで搬送される。次に、固化部7は、上部の液状の単位層に接近するまで下降し、その後に、単位層を固化する。固化する方法として、紫外線照射法を例示でき、これに適合する造形インクが用いられる。 The solidification unit 7 is arranged above the solidification area 22. The solidifying unit 7 solidifies the drawn unit layer. More specifically, first, the three-dimensional model in the process of being manufactured with the unit layer drawn on the upper part is conveyed to the solidification area 22 together with the stage 3. Next, the solidifying section 7 descends until it approaches the upper liquid unit layer, and then solidifies the unit layer. As a method of solidification, an ultraviolet irradiation method can be exemplified, and a modeling ink suitable for this can be used.
 制御装置8は、コンピュータ装置を用いて構成される。制御装置8は、図2に示されるように、駆動部2、複数の造形ノズル5、調整機構6、および固化部7を制御する。さらに、制御装置8は、ソフトウェアを用いて実現された三つの機能部、すなわち演算部81、均一化選択部82、および制御部83を有する。 The control device 8 is configured by using a computer device. As shown in FIG. 2, the control device 8 controls the drive unit 2, the plurality of modeling nozzles 5, the adjusting mechanism 6, and the solidifying unit 7. Further, the control device 8 has three functional units realized by using software, that is, a calculation unit 81, a homogenization selection unit 82, and a control unit 83.
 演算部81は、複数の造形ノズル5の各々が造形インクの吐出に使用された使用率および累積使用量の少なくとも一方を演算する。均一化選択部82は、複数の造形ノズル5の間で使用率および前記累積使用量の少なくとも一方を均一化するように、造形インクの吐出に使用する造形ノズル5を選択する。 The calculation unit 81 calculates at least one of the usage rate and the cumulative usage amount of each of the plurality of modeling nozzles 5 used for ejecting the modeling ink. The homogenization selection unit 82 selects the modeling nozzle 5 to be used for ejecting the modeling ink so as to equalize at least one of the usage rate and the cumulative usage amount among the plurality of modeling nozzles 5.
 さらに、均一化選択部82は、一つまたは複数の単位層からなる第一の均一化要素に対して造形インクの吐出に使用する造形ノズル5を設定するとともに、第二の均一化要素に対して第一の均一化要素とは異なる造形ノズル5を設定する。また、均一化選択部82は、複数の造形ノズル5の各々の使用率および累積使用量の少なくとも一方に基づいて、造形インクの吐出に使用する造形ノズル5を自動選択する。 Further, the homogenization selection unit 82 sets the modeling nozzle 5 used for ejecting the modeling ink for the first homogenizing element composed of one or a plurality of unit layers, and sets the modeling nozzle 5 for the second homogenizing element. A modeling nozzle 5 different from the first homogenizing element is set. Further, the homogenization selection unit 82 automatically selects the modeling nozzle 5 to be used for ejecting the modeling ink based on at least one of the usage rate and the cumulative usage amount of each of the plurality of modeling nozzles 5.
 さらに、均一化選択部82は、直交方向における三次元造形物と複数の造形ノズル5との相対位置関係を調整することにより、造形インクの吐出に使用する造形ノズル5を選択する。具体的には、均一化選択部82は、調整機構6を制御して、使用する造形ノズル5を選択する。また、均一化選択部82は、造形ヘッド4がステージ3の上方を相対移動する移動回数を増加させないことを条件として、造形インクの吐出に使用する造形ノズル5を選択する。均一化選択部82の機能については、様々な応用および変形が可能であるので、後で詳述する。 Further, the homogenization selection unit 82 selects the modeling nozzle 5 to be used for ejecting the modeling ink by adjusting the relative positional relationship between the three-dimensional modeled object and the plurality of modeling nozzles 5 in the orthogonal direction. Specifically, the homogenization selection unit 82 controls the adjustment mechanism 6 to select the modeling nozzle 5 to be used. Further, the homogenization selection unit 82 selects the modeling nozzle 5 to be used for ejecting the modeling ink, provided that the number of movements of the modeling head 4 relative to the upper stage 3 is not increased. The function of the homogenization selection unit 82 can be applied and modified in various ways, and will be described in detail later.
 制御部83は、オペレータからの指令に基づいて、均一化選択部82の機能のオン、オフを切り替える。後述するように均一化選択部82の機能を用いることで、複数の造形ノズルの使用率や累積使用量の均一化に寄与するという課題を解決することができる。しかしながら、均一化選択部82は、わずかとは言え三次元造形物の製造速度を低下させる。したがって、オペレータは、通常の場合に均一化選択部82の機能をオンし、製造速度を優先する場合に均一化選択部82の機能をオフするように指令する。 The control unit 83 switches the function of the homogenization selection unit 82 on and off based on a command from the operator. By using the function of the homogenization selection unit 82 as described later, it is possible to solve the problem of contributing to the homogenization of the usage rate and the cumulative usage amount of the plurality of modeling nozzles. However, the homogenization selection unit 82 slows down the production speed of the three-dimensional model, albeit slightly. Therefore, the operator is instructed to turn on the function of the homogenization selection unit 82 in the normal case and turn off the function of the homogenization selection unit 82 when the manufacturing speed is prioritized.
 2.三次元造形物Mの例示
 三次元造形機1の動作の説明に先立ち、図3Aおよび図3Bを参考にして、概念的な三次元造形物Mの一例を説明する。例示する三次元造形物Mは、第1~第12単位層までの12層の造形データで表される。また、各単位層の形状は、8×8の合計64個のボクセルを用いて表されるものとする。図3Aおよび図3Bにおいて、ステージ3の左前隅のボクセルは、B(1,1)で表され、右前隅のボクセルは、B(1,8)で表される。さらに、左後隅のボクセルは、B(8,1)で表され、右後隅のボクセルは、B(8,8)で表される。実際の三次元造形物は、さらに多数の単位層およびさらに多数のボクセルを用いた造形データで表されて、形状精度が高められる。
2. 2. Example of 3D Model M Prior to the explanation of the operation of the 3D model 1, an example of the conceptual 3D model M will be described with reference to FIGS. 3A and 3B. The illustrated three-dimensional model M is represented by modeling data of 12 layers from the first to the twelfth unit layers. Further, the shape of each unit layer shall be represented by using a total of 64 voxels of 8 × 8. In FIGS. 3A and 3B, the voxels in the left front corner of stage 3 are represented by B (1,1) and the voxels in the right front corner are represented by B (1,8). Further, the voxels in the left rear corner are represented by B (8, 1), and the voxels in the right rear corner are represented by B (8, 8). The actual 3D model is represented by modeling data using a larger number of unit layers and a larger number of voxels, and the shape accuracy is improved.
 図3Aに示されるように、三次元造形物Mの下部の第1~第6単位層の形状M1は、概ね円形である。この形状M1は、ステージ3の中央に造形される。この形状M1は、図3Aの小円に示されるように、第3~第6行および第3~第6列にかけて配列された12個のボクセルで表される。また、三次元造形物Mの上部の第10~第12単位層の形状M3は、下部の形状M1と同一である。形状M1および形状M3を造形するために、連続的に並ぶ四個の造形ノズル5を使用するという制約がある。 As shown in FIG. 3A, the shape M1 of the first to sixth unit layers at the lower part of the three-dimensional model M is substantially circular. This shape M1 is formed in the center of the stage 3. This shape M1 is represented by 12 voxels arranged in rows 3 to 6 and columns 3 to 6, as shown in the small circle of FIG. 3A. Further, the shape M3 of the upper tenth to twelfth unit layers of the three-dimensional model M is the same as the shape M1 of the lower part. There is a restriction that four continuously arranged modeling nozzles 5 are used to model the shape M1 and the shape M3.
 図3Bに示されるように、三次元造形物Mの中間部の第7~第9単位層の形状M2は、下部の形状M1よりも大きい。かつ、形状M2は、駆動部2の前後方向に線対称(図3Bでは上下に対称)であって、左側の方が右側よりも大きい。この形状M2は、図3Bの小円に示されるように、第1~第8行および第2~第6列にかけて配列された24個のボクセルで表される。形状M2を造形するために、連続的に並ぶ五個の造形ノズル5を使用するという制約がある。 As shown in FIG. 3B, the shape M2 of the 7th to 9th unit layers in the middle part of the three-dimensional model M is larger than the shape M1 in the lower part. Moreover, the shape M2 is line-symmetrical in the front-rear direction of the drive unit 2 (vertically symmetrical in FIG. 3B), and the left side is larger than the right side. This shape M2 is represented by 24 voxels arranged in rows 1-8 and columns 2-6, as shown in the small circle of FIG. 3B. There is a restriction that five continuously arranged modeling nozzles 5 are used to model the shape M2.
 なお、上述した概念例では、第6単位層の形状M1のすぐ上に、第7単位層の大きな形状M2を造形することとしているが、実際には造形することが難しい。実際の製造においては、下側から上側へと単位層の形状を徐々に大きくする方法や、仮支柱を併せて造形し、造形終了後に仮支柱を切断する方法が用いられる。 In the above-mentioned conceptual example, the large shape M2 of the 7th unit layer is formed immediately above the shape M1 of the 6th unit layer, but it is actually difficult to form. In actual manufacturing, a method of gradually increasing the shape of the unit layer from the lower side to the upper side, or a method of forming a temporary support column together and cutting the temporary support column after the modeling is completed is used.
 3.第1実施形態の三次元造形機1の動作
 次に、例示した三次元造形物Mを三次元造形機1が製造する動作について、図4の動作フローおよび図5Aから図8に至る造形進捗状況を参考にして説明する。動作フローの開始時に、八個の造形ノズル5は、交換された直後の未使用品であるとする。また、以降の説明では、八個の造形ノズル5を左から右へと順番に、第1ノズル51~第8ノズル58と呼称する。図4のステップS1で、駆動部2によりステージ3が機外から描画エリア23まで搬入される。
3. 3. Operation of the three-dimensional modeling machine 1 of the first embodiment Next, regarding the operation of the three-dimensional modeling machine 1 for manufacturing the illustrated three-dimensional modeling object M, the operation flow of FIG. 4 and the modeling progress status from FIGS. 5A to 8 Will be explained with reference to. At the start of the operation flow, it is assumed that the eight modeling nozzles 5 are unused products immediately after being replaced. Further, in the following description, the eight modeling nozzles 5 will be referred to as the first nozzle 51 to the eighth nozzle 58 in order from left to right. In step S1 of FIG. 4, the stage 3 is carried from outside the machine to the drawing area 23 by the drive unit 2.
 次のステップS2で、制御装置8の均一化選択部82は、第一の均一化要素を設定する。ここでは、均一化要素として三つの単位層を用いる場合について説明する。この場合、第一の均一化要素として、第1~第3単位層が設定される。以下、第二の均一化要素として第4~第6単位層が設定され、第三の均一化要素として第7~第9単位層が設定され、第四の均一化要素として第10~第12単位層が設定される。 In the next step S2, the homogenization selection unit 82 of the control device 8 sets the first homogenization element. Here, a case where three unit layers are used as the homogenization element will be described. In this case, the first to third unit layers are set as the first homogenization element. Hereinafter, the 4th to 6th unit layers are set as the second homogenization element, the 7th to 9th unit layers are set as the third homogenization element, and the 10th to 12th unit layers are set as the fourth homogenization element. The unit layer is set.
 次のステップS3で、均一化選択部82は、複数の造形ノズル5の間で使用率および累積使用量の少なくとも一方を均一化するように、造形インクの吐出に使用する造形ノズル5を自動選択する。ここで、第1ノズル51~第8ノズル58は、すべて未使用品であり、使用率および累積使用量に差が無い。そこで、均一化選択部82は、図5Aに示された造形ヘッド4の標準位置を自動選択し、換言すると、第3ノズル53~第6ノズル56を自動選択する。したがって、第一の均一化要素の造形に関して、第1ノズル51、第2ノズル52、第7ノズル57、および第8ノズル58は使用されない。 In the next step S3, the homogenization selection unit 82 automatically selects the modeling nozzle 5 to be used for ejecting the modeling ink so that at least one of the usage rate and the cumulative usage amount is uniform among the plurality of modeling nozzles 5. do. Here, the first nozzle 51 to the eighth nozzle 58 are all unused products, and there is no difference in the usage rate and the cumulative usage amount. Therefore, the homogenization selection unit 82 automatically selects the standard position of the modeling head 4 shown in FIG. 5A, in other words, automatically selects the third nozzle 53 to the sixth nozzle 56. Therefore, the first nozzle 51, the second nozzle 52, the seventh nozzle 57, and the eighth nozzle 58 are not used for modeling the first homogenizing element.
 次のステップS4で、ステージ3は、駆動部2に駆動されて前後方向に移動し、第3ノズル53~第6ノズル56は、ステージ3上に描画を行う。詳述すると、第3ノズル53は、B(3,4)およびB(3,5)の2個のボクセルを描画する。第4ノズル54は、B(4,3)~B(4,6)の4個のボクセルを描画する。第5ノズル55は、B(5,3)~B(5,6)の4個のボクセルを描画する。第6ノズル56は、B(6,4)およびB(6,5)の2個のボクセルを描画する。これにより、液状の第1単位層の描画が終了する。 In the next step S4, the stage 3 is driven by the drive unit 2 and moves in the front-rear direction, and the third nozzle 53 to the sixth nozzle 56 draw on the stage 3. More specifically, the third nozzle 53 draws two voxels, B (3,4) and B (3,5). The fourth nozzle 54 draws four voxels B (4,3) to B (4,6). The fifth nozzle 55 draws four voxels B (5, 3) to B (5, 6). The sixth nozzle 56 draws two voxels, B (6, 4) and B (6, 5). This completes the drawing of the liquid first unit layer.
 この後、ステージ3は、駆動部2に駆動されて固化エリア22まで搬送される。そして、ステージ3上の液状の第1単位層は、固化部7により固化され、第1単位層の造形が終了する。さらに、第1単位層の上側に描画および固化が行われて第2単位層が造形される。さらに、第2単位層の上側に描画および固化が行われて第3単位層が造形され、第1単位層から第3単位層までの造形が終了する。均一化選択部82は、均一化要素の中では造形ヘッド4を移動させずに、形状M1に対して同じ造形ノズル5を選択する。 After that, the stage 3 is driven by the drive unit 2 and conveyed to the solidification area 22. Then, the liquid first unit layer on the stage 3 is solidified by the solidifying unit 7, and the modeling of the first unit layer is completed. Further, drawing and solidification are performed on the upper side of the first unit layer to form the second unit layer. Further, drawing and solidification are performed on the upper side of the second unit layer to form the third unit layer, and the modeling from the first unit layer to the third unit layer is completed. The homogenization selection unit 82 selects the same modeling nozzle 5 for the shape M1 without moving the modeling head 4 in the homogenization element.
 次のステップS5で、演算部81は、複数の造形ノズル5の各々が造形インクの吐出に使用された使用率を演算する。演算に際して、使用回数で表される累積使用量が先に求められる。演算方法について、第3ノズル53を例にして詳細に説明する。第一の均一化要素の中で、第3ノズル53は、造形インクを吐出する機会が24回(=8ボクセル×3単位層)あり、実際に造形インクを吐出した累積使用量は6回(=2ボクセル×3単位層)である。したがって、第3ノズル53の使用率は、25%(=6回÷24回×100%)となる。なお、累積使用量として、使用回数以外のパラメータ、例えば、造形インクを吐出している時間や、吐出した造形インクの量などを用いてもよい。 In the next step S5, the calculation unit 81 calculates the usage rate of each of the plurality of modeling nozzles 5 used for ejecting the modeling ink. At the time of calculation, the cumulative usage amount expressed by the number of uses is first obtained. The calculation method will be described in detail by taking the third nozzle 53 as an example. Among the first homogenizing elements, the third nozzle 53 has 24 opportunities to eject the modeling ink (= 8 voxels × 3 unit layers), and the cumulative usage amount of actually ejecting the modeling ink is 6 times (= 8 voxels × 3 unit layers). = 2 voxels x 3 unit layers). Therefore, the usage rate of the third nozzle 53 is 25% (= 6 times ÷ 24 times × 100%). As the cumulative usage amount, parameters other than the number of times of use, for example, the time during which the modeling ink is ejected, the amount of the ejected modeling ink, and the like may be used.
 演算の結果は、図5Bに示される。図示されるように、第1ノズル51、第2ノズル52、第7ノズル57、および第8ノズル58の使用率は0%である。第3ノズル53および第6ノズル56の使用率は25%である。第4ノズル54および第5ノズル55の使用率は50%である。なお、前述した仮支柱を造形する場合、仮支柱の描画に使用された使用回数も当然考慮される。 The result of the calculation is shown in FIG. 5B. As shown, the usage rate of the first nozzle 51, the second nozzle 52, the seventh nozzle 57, and the eighth nozzle 58 is 0%. The usage rate of the third nozzle 53 and the sixth nozzle 56 is 25%. The usage rate of the 4th nozzle 54 and the 5th nozzle 55 is 50%. In addition, when modeling the temporary support mentioned above, the number of times of use used for drawing the temporary support is naturally taken into consideration.
 次のステップS6で、制御装置8は、造形が終了したか否か、すなわち第12単位層の造形が終了したか否かを判定して、動作フローの分岐先を決定する。この時点で、第3単位層までの造形が終了しているので、動作フローはステップS7に進められる。ステップS7で、均一化選択部82は、第二の均一化要素(第4~第6単位層の形状M1)を設定して、動作フローをステップS3に戻す。 In the next step S6, the control device 8 determines whether or not the modeling is completed, that is, whether or not the modeling of the 12th unit layer is completed, and determines the branch destination of the operation flow. At this point, since the modeling up to the third unit layer is completed, the operation flow proceeds to step S7. In step S7, the homogenization selection unit 82 sets the second homogenization element (shape M1 of the fourth to sixth unit layers), and returns the operation flow to step S3.
 2回目のステップS3で、均一化選択部82は、図5Bに示された使用率を参照し、使用率を均一化するように造形ノズル5を自動選択する。ここで、第1ノズル51、第2ノズル52、第7ノズル57、および第8ノズル58は、使用率が他よりも低く、優先的に選択される。均一化選択部82は、第4~第6単位層の形状M1の描画に使用する造形ノズル5を、二つの選択肢から選ぶ。すなわち、均一化選択部82は、第1ノズル51~第4ノズル54、または、第5ノズル55~第8ノズル58を設定する。 In the second step S3, the homogenization selection unit 82 refers to the usage rate shown in FIG. 5B and automatically selects the modeling nozzle 5 so as to make the usage rate uniform. Here, the first nozzle 51, the second nozzle 52, the seventh nozzle 57, and the eighth nozzle 58 have a lower usage rate than the others and are preferentially selected. The homogenization selection unit 82 selects the modeling nozzle 5 used for drawing the shape M1 of the 4th to 6th unit layers from two options. That is, the homogenization selection unit 82 sets the first nozzle 51 to the fourth nozzle 54 or the fifth nozzle 55 to the eighth nozzle 58.
 図6Aは、第1ノズル51~第4ノズル54が選択された場合を示している。図示されるように、調整機構6は、均一化選択部82からの制御にしたがい、造形ヘッド4の位置を造形ノズル5の二個分だけ標準位置から右方に調整する。したがって、2回目のステップS4で、第1ノズル51~第4ノズル54を使用した描画、および固化が3回繰り返される。描画および固化の詳細な動作は、1回目と同様である。 FIG. 6A shows the case where the first nozzle 51 to the fourth nozzle 54 are selected. As shown in the figure, the adjusting mechanism 6 adjusts the position of the modeling head 4 from the standard position to the right by two of the modeling nozzles 5 according to the control from the homogenization selection unit 82. Therefore, in the second step S4, drawing and solidification using the first nozzle 51 to the fourth nozzle 54 are repeated three times. The detailed operation of drawing and solidification is the same as the first time.
 上述したように、均一化選択部82は、均一化要素が切り替わったときに造形ヘッド4を移動させ、同じ形状M1に対して異なる造形ノズル5を選択することができる。なお、使用率を均一化することは、使用率の偏りを低減することを意味する。均一化選択部82は、造形データの制約が許す範囲内で、使用率が低い造形ノズル5の使用を優先し、使用率が高い造形ノズル5の使用を控える。 As described above, the homogenization selection unit 82 can move the modeling head 4 when the homogenization element is switched, and can select different modeling nozzles 5 for the same shape M1. It should be noted that making the usage rate uniform means reducing the bias of the usage rate. The homogenization selection unit 82 gives priority to the use of the modeling nozzle 5 having a low usage rate and refrains from using the modeling nozzle 5 having a high usage rate within the range permitted by the restrictions of the modeling data.
 さらに、2回目のステップS5で、演算部81は、複数の造形ノズル5の各々の使用率を再び演算する。ここで、造形ノズル5の累積使用量は、第一の均一化要素における使用回数、および第二の均一化要素における使用回数が加算されて求められる。また、造形ノズル5の各々が造形インクを吐出する機会は、48回に増加する。 Further, in the second step S5, the calculation unit 81 recalculates the usage rate of each of the plurality of modeling nozzles 5. Here, the cumulative usage amount of the modeling nozzle 5 is obtained by adding the number of times of use in the first homogenization element and the number of times of use in the second homogenization element. Further, the opportunity for each of the modeling nozzles 5 to eject the modeling ink increases to 48 times.
 演算の結果は、図6Bに示される。図示されるように、第7ノズル57および第8ノズル58の使用率は0%のままである。第1ノズル51および第6ノズル56の使用率は12.5%である。第2ノズル52および第5ノズル55の使用率は25%である。第3ノズル53および第4ノズル54の使用率は37.5%である。この後、動作フローは、ステップS6からステップS7に進められる。ステップS7で、均一化選択部82は、第三の均一化要素(第7~第9単位層の形状M2)を設定して、動作フローをステップS3に戻す。 The result of the calculation is shown in FIG. 6B. As shown, the utilization of the 7th nozzle 57 and the 8th nozzle 58 remains 0%. The usage rate of the first nozzle 51 and the sixth nozzle 56 is 12.5%. The usage rate of the second nozzle 52 and the fifth nozzle 55 is 25%. The usage rate of the third nozzle 53 and the fourth nozzle 54 is 37.5%. After that, the operation flow proceeds from step S6 to step S7. In step S7, the homogenization selection unit 82 sets a third homogenization element (shape M2 of the seventh to ninth unit layers), and returns the operation flow to step S3.
 3回目のステップS3で、均一化選択部82は、図6Bに示された使用率を参照し、使用率を均一化するように造形ノズル5を自動選択する。ここで、第7ノズル57および第8ノズル58は、使用率が0%で他よりも低く、優先的に選択される。均一化選択部82は、第7~第9単位層の形状M2の描画に使用する造形ノズル5を、第4ノズル54~第8ノズル58に設定する。 In the third step S3, the homogenization selection unit 82 refers to the usage rate shown in FIG. 6B and automatically selects the modeling nozzle 5 so as to make the usage rate uniform. Here, the 7th nozzle 57 and the 8th nozzle 58 have a usage rate of 0%, which is lower than the others, and are preferentially selected. The homogenization selection unit 82 sets the modeling nozzle 5 used for drawing the shape M2 of the 7th to 9th unit layers to the 4th nozzle 54 to the 8th nozzle 58.
 図7Aは、使用する造形ノズル5として、第4ノズル54~第8ノズル58が選択された場合を示している。図示されるように、調整機構6は、均一化選択部82からの制御にしたがい、造形ヘッド4の位置を造形ノズル5の二個分だけ標準位置から左方に調整する。したがって、3回目のステップS4で、第4ノズル54~第8ノズル58を使用した描画、および固化が3回繰り返される。描画および固化の詳細な動作は、1回目および2回目と同様である。 FIG. 7A shows a case where the fourth nozzle 54 to the eighth nozzle 58 are selected as the modeling nozzle 5 to be used. As shown in the figure, the adjusting mechanism 6 adjusts the position of the modeling head 4 from the standard position to the left by two of the modeling nozzles 5 according to the control from the homogenization selection unit 82. Therefore, in the third step S4, drawing and solidification using the fourth nozzle 54 to the eighth nozzle 58 are repeated three times. The detailed operation of drawing and solidification is the same as the first and second times.
 さらに、3回目のステップS5で、演算部81は、複数の造形ノズル5の各々の使用率を再び演算する。演算の結果は、図7Bに示される。図示されるように、第1ノズル51の使用率は8.3%である。第2ノズル52および第8ノズル58の使用率は16.7%である。第3ノズル53の使用率は25%である。第4ノズル54~第7ノズル57の使用率は33.3%である。この後、動作フローは、ステップS6からステップS7に進められる。ステップS7で、均一化選択部82は、第四の均一化要素(第9~第12単位層の形状M3=M1)を設定して、動作フローをステップS3に戻す。 Further, in the third step S5, the calculation unit 81 recalculates the usage rate of each of the plurality of modeling nozzles 5. The result of the calculation is shown in FIG. 7B. As shown, the usage rate of the first nozzle 51 is 8.3%. The usage rate of the second nozzle 52 and the eighth nozzle 58 is 16.7%. The usage rate of the third nozzle 53 is 25%. The usage rate of the 4th nozzle 54 to the 7th nozzle 57 is 33.3%. After that, the operation flow proceeds from step S6 to step S7. In step S7, the homogenization selection unit 82 sets the fourth homogenization element (shape M3 = M1 of the ninth to twelfth unit layers), and returns the operation flow to step S3.
 4回目のステップS3で、均一化選択部82は、図7Bに示された使用率を参照し、使用率を均一化するように造形ノズル5を自動選択する。ここで、第1ノズル51は、使用率が8.3%と他よりも低く、優先的に選択される。均一化選択部82は、第10~第12単位層の形状M3(=M1)の描画に使用する造形ノズル5を、第1ノズル51~第4ノズル54に設定する。調整機構6は、図6Aと同様に、造形ヘッド4の位置を造形ノズル5の二個分だけ標準位置から右方に調整する。したがって、4回目のステップS4で、第1ノズル51~第4ノズル54を使用した描画、および固化が3回繰り返される。 In the fourth step S3, the homogenization selection unit 82 refers to the usage rate shown in FIG. 7B and automatically selects the modeling nozzle 5 so as to make the usage rate uniform. Here, the first nozzle 51 has a usage rate of 8.3%, which is lower than the others, and is preferentially selected. The homogenization selection unit 82 sets the modeling nozzle 5 used for drawing the shape M3 (= M1) of the 10th to 12th unit layers to the 1st nozzle 51 to the 4th nozzle 54. Similar to FIG. 6A, the adjusting mechanism 6 adjusts the position of the modeling head 4 from the standard position to the right by two of the modeling nozzles 5. Therefore, in the fourth step S4, drawing and solidification using the first nozzle 51 to the fourth nozzle 54 are repeated three times.
 さらに、4回目のステップS5で、演算部81は、複数の造形ノズル5の各々の使用率を再び演算する。演算の結果は、図8に示される。4回目のステップS6で、第12単位層の造形が終了して、三次元造形物Mの製造が終了しており、動作フローはステップS8に分岐される。ステップS8で、駆動部2によりステージ3および製造された三次元造形物Mが機外に搬出される。この後、動作フローは、ステップS1に戻される。 Further, in the fourth step S5, the calculation unit 81 recalculates the usage rate of each of the plurality of modeling nozzles 5. The result of the calculation is shown in FIG. In the fourth step S6, the modeling of the twelfth unit layer is completed, the production of the three-dimensional model M is completed, and the operation flow is branched to the step S8. In step S8, the stage 3 and the manufactured three-dimensional model M are carried out of the machine by the drive unit 2. After this, the operation flow is returned to step S1.
 2回目のステップS1で、駆動部2により新しいステージ3が描画エリア23まで搬入される。新しいステージ3に対するステップS3で、均一化選択部82は、図8に示された使用率を参照し、使用率を均一化するように造形ノズル5を選択する。図8において、第1ノズル51および第8ノズル58は、使用率が他よりも低く、優先的に選択される。かつ、第5ノズル55および第6ノズル56は、第3ノズル53および第4ノズル54と比較して使用率が低いので、優先的に選択される。したがって、均一化選択部82は、新しいステージ3において第1~第3単位層の形状M1の描画に使用する造形ノズル5を、第5ノズル55~第8ノズル58に設定する。 In the second step S1, the new stage 3 is carried into the drawing area 23 by the drive unit 2. In step S3 for the new stage 3, the homogenization selection unit 82 refers to the usage rate shown in FIG. 8 and selects the modeling nozzle 5 so as to make the usage rate uniform. In FIG. 8, the first nozzle 51 and the eighth nozzle 58 have a lower utilization rate than the others and are preferentially selected. Moreover, since the fifth nozzle 55 and the sixth nozzle 56 have a lower usage rate than the third nozzle 53 and the fourth nozzle 54, they are preferentially selected. Therefore, the homogenization selection unit 82 sets the modeling nozzle 5 used for drawing the shape M1 of the first to third unit layers in the new stage 3 to the fifth nozzle 55 to the eighth nozzle 58.
 第1実施形態の三次元造形機1によれば、複数の造形ノズル5の各々が造形インクの吐出に使用された使用率および累積使用量の少なくとも一方を演算して、使用率および累積使用量の少なくとも一方を均一化するように、使用する造形ノズル5を選択する。したがって、複数の造形ノズル5の使用率や累積使用量の均一化に寄与することができる。加えて、複数の造形ノズル5の間で劣化速度の偏りが減少するので、複数の造形ノズル5を同時に交換する機会が増えて、交換作業の手間が削減される。 According to the three-dimensional modeling machine 1 of the first embodiment, each of the plurality of modeling nozzles 5 calculates at least one of the usage rate and the cumulative usage amount used for ejecting the modeling ink, and the usage rate and the cumulative usage amount are calculated. Select the modeling nozzle 5 to be used so as to homogenize at least one of the above. Therefore, it is possible to contribute to the uniformity of the usage rate and the cumulative usage amount of the plurality of modeling nozzles 5. In addition, since the bias of the deterioration rate among the plurality of modeling nozzles 5 is reduced, the chances of replacing the plurality of modeling nozzles 5 at the same time are increased, and the labor of the replacement work is reduced.
 これに対して、従来技術では、造形ヘッド4を標準位置に固定して使用する。このため、三次元造形物Mの製造を継続している間、第1ノズル51、第7ノズル57、および第8ノズル58は、全く使用されない。一方、第5ノズル55は、他と比較して使用率が高いので劣化が進行し、頻繁に交換することになる。三次元造形機1によれば、使用する第1ノズル51~第8ノズル58を選択することにより、それらの使用率を均一化して、劣化速度の偏りを削減することができる。 On the other hand, in the conventional technology, the modeling head 4 is fixed and used in the standard position. Therefore, the first nozzle 51, the seventh nozzle 57, and the eighth nozzle 58 are not used at all while the production of the three-dimensional model M is continued. On the other hand, the fifth nozzle 55 has a higher usage rate than the others, so that deterioration progresses and the fifth nozzle 55 is frequently replaced. According to the three-dimensional modeling machine 1, by selecting the first nozzle 51 to the eighth nozzle 58 to be used, the usage rate thereof can be made uniform and the deviation of the deterioration rate can be reduced.
 なお、三次元造形物Mの造形データは既知である。したがって、均一化選択部82は、図5Aから図8に至る造形進捗状況を、実際に行う以前にシミュレーションすることができる。つまり、均一化選択部82は、三次元造形物Mを構成する複数の単位層の形状を表す造形データに基づいて、複数の単位層の各々で造形インクの吐出に使用する造形ノズル5を予め選択することができる。これによれば、前もって一連の演算処理を実行でき、均一化要素の造形が終了するたびに演算処理を行う必要がなくなる。 The modeling data of the three-dimensional model M is known. Therefore, the homogenization selection unit 82 can simulate the modeling progress from FIG. 5A to FIG. 8 before actually performing the modeling. That is, the homogenization selection unit 82 previously uses the modeling nozzle 5 used for ejecting the modeling ink in each of the plurality of unit layers based on the modeling data representing the shapes of the plurality of unit layers constituting the three-dimensional modeled object M. You can choose. According to this, a series of arithmetic processing can be executed in advance, and it is not necessary to perform arithmetic processing every time the modeling of the homogenization element is completed.
 4.均一化要素が異なる第1応用形態
 第1実施形態のステップS2において、均一化選択部82は、均一化要素として三つの単位層を用いるが、均一化要素として一つの三次元造形物Mを用いてもよい。この場合、1回目のステップS3で、均一化選択部82は、第1ノズル51~第8ノズル58がすべて未使用品であることから、図9Aに示された造形ヘッド4の標準位置を選択する。そして、均一化選択部82は、均一化要素の造形(三次元造形物Mの製造)が終了するまで、造形ヘッド4の標準位置を変更しない。つまり、均一化選択部82は、第2ノズル52~第6ノズル56を自動選択したことになる。したがって、第1ノズル51、第7ノズル57、および第8ノズル58は、使用されない。
4. First Application Form with Different Uniformization Elements In step S2 of the first embodiment, the homogenization selection unit 82 uses three unit layers as the homogenization element, but uses one three-dimensional model M as the homogenization element. You may. In this case, in the first step S3, the uniformization selection unit 82 selects the standard position of the modeling head 4 shown in FIG. 9A because the first nozzle 51 to the eighth nozzle 58 are all unused products. do. Then, the homogenization selection unit 82 does not change the standard position of the modeling head 4 until the modeling of the homogenization element (manufacturing of the three-dimensional model M) is completed. That is, the homogenization selection unit 82 automatically selects the second nozzle 52 to the sixth nozzle 56. Therefore, the first nozzle 51, the seventh nozzle 57, and the eighth nozzle 58 are not used.
 次のステップS4で、第1~第12単位層の各々を造形するための描画および固化が12回繰り返される。次のステップS5で、演算部81は、複数の造形ノズル5の各々が造形インクの吐出に使用された使用率を演算する。演算の結果は、図9Bに示される。図示されるように、第1ノズル51、第7ノズル57、および第8ノズル58の使用率は0%である。次のステップS6で、第12単位層の造形が終了して三次元造形物Mが製造されているので、動作フローはステップS8に分岐される。ステップS8で、駆動部2によりステージ3および製造された三次元造形物Mが機外に搬出される。この後、動作フローは、ステップS1に戻される。 In the next step S4, drawing and solidification for modeling each of the first to twelfth unit layers is repeated 12 times. In the next step S5, the calculation unit 81 calculates the usage rate of each of the plurality of modeling nozzles 5 used for ejecting the modeling ink. The result of the calculation is shown in FIG. 9B. As shown, the usage rate of the first nozzle 51, the seventh nozzle 57, and the eighth nozzle 58 is 0%. In the next step S6, since the modeling of the twelfth unit layer is completed and the three-dimensional model M is manufactured, the operation flow is branched to step S8. In step S8, the stage 3 and the manufactured three-dimensional model M are carried out of the machine by the drive unit 2. After this, the operation flow is returned to step S1.
 2回目のステップS1で、駆動部2により二つ目のステージ3が描画エリア23まで搬入される。2回目のステップS3で、均一化選択部82は、図9Bに示された使用率を参照し、使用率が低い第7ノズル57および第8ノズル58を含むように、第4ノズル54~第8ノズル58を選択する。この後、2回目のステップS4で、二個目の三次元造形物Mが製造される。さらに、2回目のステップS5で、演算部81は、図10Bに示された使用率を演算する。図示されるように、第1ノズル51の使用率は、0%のままである。 In the second step S1, the second stage 3 is carried into the drawing area 23 by the drive unit 2. In the second step S3, the homogenization selection unit 82 refers to the usage rate shown in FIG. 9B, and the fourth nozzle 54 to the fourth nozzle 54 to include the seventh nozzle 57 and the eighth nozzle 58 having low usage rates. 8 Nozzles 58 are selected. After that, in the second step S4, the second three-dimensional model M is manufactured. Further, in the second step S5, the calculation unit 81 calculates the usage rate shown in FIG. 10B. As shown, the utilization of the first nozzle 51 remains at 0%.
 この後、動作フローは、ステップS8を経由してステップS1に戻され、三つ目のステージ3が描画エリア23まで搬入される。3回目のステップS3で、均一化選択部82は、図10Bに示された使用率を参照し、使用率が0%の第1ノズル51を含むように、第1ノズル51~第5ノズル55を選択する。この後の3回目のステップS5で、演算部81は、図11Bに示された使用率を演算する。図示されるように、第1ノズル51の使用率は、6%まで増加したが、他と比較して未だ低い。したがって、四つ目のステージ3に対して、均一化選択部82は、図11Bと同様に、第1ノズル51~第5ノズル55を選択する。 After that, the operation flow is returned to step S1 via step S8, and the third stage 3 is carried into the drawing area 23. In the third step S3, the homogenization selection unit 82 refers to the usage rate shown in FIG. 10B, and includes the first nozzle 51 having a usage rate of 0%, so that the first nozzle 51 to the fifth nozzle 55 are included. Select. In the third step S5 after this, the calculation unit 81 calculates the usage rate shown in FIG. 11B. As shown, the usage rate of the first nozzle 51 has increased to 6%, but it is still low compared to the others. Therefore, for the fourth stage 3, the homogenization selection unit 82 selects the first nozzle 51 to the fifth nozzle 55, as in FIG. 11B.
 5.オペレータの指示にしたがう第2応用形態
 第1実施形態のステップS3において、均一化選択部82は、複数の造形ノズル5の各々の使用率に基づいて、使用する造形ノズル5を自動選択するが、オペレータの指示にしたがうようにしてもよい。この場合、2回目のステップS3で、均一化選択部82は、図5Bに示された使用率をオペレータに提示し、オペレータの指示にしたがって使用する造形ノズル5を選択する。
5. According to the operator's instruction, in step S3 of the second application embodiment, the homogenization selection unit 82 automatically selects the modeling nozzle 5 to be used based on the usage rate of each of the plurality of modeling nozzles 5. You may follow the operator's instructions. In this case, in the second step S3, the homogenization selection unit 82 presents the usage rate shown in FIG. 5B to the operator, and selects the modeling nozzle 5 to be used according to the operator's instruction.
 例えば、調子の悪い第8ノズル58の使用を禁止する指示をオペレータが行った場合を想定する。この場合、均一化選択部82は、第1実施形態における二つの選択肢、すなわち、第1ノズル51~第4ノズル54、または、第5ノズル55~第8ノズル58のうち、必然的に前者を選択する。さらに、3回目のステップS3で、均一化選択部82は、図12に示されるように、第8ノズル58を除外して、第3ノズル53~第7ノズル57を選択する。図12と図7Aを比較すればわかるように、オペレータの指示により、使用する造形ノズル5が一個分だけずらされる。 For example, assume that the operator gives an instruction to prohibit the use of the eighth nozzle 58 which is not in good condition. In this case, the homogenization selection unit 82 inevitably selects the former of the two options in the first embodiment, that is, the first nozzle 51 to the fourth nozzle 54, or the fifth nozzle 55 to the eighth nozzle 58. select. Further, in the third step S3, the homogenization selection unit 82 selects the third nozzle 53 to the seventh nozzle 57, excluding the eighth nozzle 58, as shown in FIG. As can be seen by comparing FIGS. 12 and 7A, the modeling nozzle 5 to be used is shifted by one according to the operator's instruction.
 6.第2実施形態の三次元造形機
 次に、第2実施形態の三次元造形機について、図13Aおよび図13Bを参考にして、第1実施形態と異なる点を主に説明する。第2実施形態の三次元造形機は、調整機構6の有無および均一化選択部82の機能が第1実施形態と相違し、その他の部位が第1実施形態と同じである。第2実施形態において、調整機構6は省略され、造形ヘッド4は、ヘッド取り付け座61に固定的に設けられ、常に標準位置に位置する。
6. The three-dimensional modeling machine of the second embodiment Next, the differences between the three-dimensional modeling machine of the second embodiment and the first embodiment will be mainly described with reference to FIGS. 13A and 13B. In the three-dimensional modeling machine of the second embodiment, the presence / absence of the adjusting mechanism 6 and the function of the homogenization selection unit 82 are different from those of the first embodiment, and other parts are the same as those of the first embodiment. In the second embodiment, the adjusting mechanism 6 is omitted, and the modeling head 4 is fixedly provided on the head mounting seat 61 and is always located at the standard position.
 また、均一化選択部82は、ステージ3の直交方向における三次元造形物Mの載置位置を調整する。具体的に、均一化選択部82は、奇数番目に製造する三次元造形物Mの載置位置をステージ3の右側に寄せる。これによれば、均一化選択部82は、図13Aに示されるように、第4ノズル54~第8ノズル58を選択したことになる。また、均一化選択部82は、偶数番目に製造する三次元造形物Mの載置位置をステージ3の左側に寄せる。これによれば、均一化選択部82は、図13Bに示されるように、第1ノズル51~第5ノズル55を選択したことになる。このように、ステージ3における三次元造形物Mの載置位置を固定せず、直交方向に調整することで、八個の造形ノズル5の全てを使用して、使用率を均一化する効果が生じる。 Further, the homogenization selection unit 82 adjusts the placement position of the three-dimensional model M in the orthogonal direction of the stage 3. Specifically, the homogenization selection unit 82 moves the mounting position of the three-dimensional model M to be manufactured in the odd-numbered position to the right side of the stage 3. According to this, the homogenization selection unit 82 has selected the fourth nozzle 54 to the eighth nozzle 58 as shown in FIG. 13A. Further, the homogenization selection unit 82 moves the placement position of the even-numbered three-dimensional model M to the left side of the stage 3. According to this, the homogenization selection unit 82 has selected the first nozzle 51 to the fifth nozzle 55 as shown in FIG. 13B. In this way, by adjusting the placement position of the three-dimensional model M on the stage 3 in the orthogonal direction without fixing it, the effect of using all eight modeling nozzles 5 to equalize the usage rate can be obtained. Occurs.
 7.第3実施形態の三次元造形システム1S
 次に、第3実施形態の三次元造形システム1Sについて、図14を参考にして説明する。三次元造形システム1Sは、三次元造形機1Aおよびプログラム生成部9で構成される。三次元造形機1Aは、第1実施形態と同様の駆動部2、ステージ3、造形ヘッド4、複数の造形ノズル5、調整機構6、および固化部7を備え、制御装置8Aの機能が第1実施形態と相違する。制御装置8Aは、プログラム生成部9が生成した制御プログラム91にしたがって駆動部2などを制御する。駆動部2は、制御プログラム91に基づいて造形ヘッド4がステージ3の上方を相対移動するように駆動する。
7. 3D modeling system 1S of the third embodiment
Next, the three-dimensional modeling system 1S of the third embodiment will be described with reference to FIG. The three-dimensional modeling system 1S is composed of a three-dimensional modeling machine 1A and a program generation unit 9. The three-dimensional modeling machine 1A includes a drive unit 2, a stage 3, a modeling head 4, a plurality of modeling nozzles 5, an adjusting mechanism 6, and a solidifying unit 7 similar to those in the first embodiment, and the function of the control device 8A is first. Different from the embodiment. The control device 8A controls the drive unit 2 and the like according to the control program 91 generated by the program generation unit 9. The drive unit 2 drives the modeling head 4 so as to move relatively above the stage 3 based on the control program 91.
 プログラム生成部9は、三次元造形機1Aと別体のコンピュータ装置を用いて構成される。プログラム生成部9は、少なくとも第1実施形態で説明した演算部81および均一化選択部82の機能を有する制御プログラム91を生成する。制御プログラム91は、三次元造形機1Aに転送されて実行される。あるいは、三次元造形機1Aは、プログラム生成部9内の制御プログラム91にアクセスして実行する。第3実施形態の三次元造形システム1Sにおいて、三次元造形機1Aは、第1実施形態、第1応用形態、および第2応用形態と同じ動作を行うことができる。 The program generation unit 9 is configured by using a computer device separate from the three-dimensional modeling machine 1A. The program generation unit 9 generates a control program 91 having at least the functions of the calculation unit 81 and the homogenization selection unit 82 described in the first embodiment. The control program 91 is transferred to the three-dimensional modeling machine 1A and executed. Alternatively, the three-dimensional modeling machine 1A accesses and executes the control program 91 in the program generation unit 9. In the three-dimensional modeling system 1S of the third embodiment, the three-dimensional modeling machine 1A can perform the same operations as those of the first embodiment, the first application form, and the second application form.
 8.実施形態の応用および変形
 なお、均一化要素として、三つの単位層や一つの三次元造形物M以外を用いることができる。例えば、均一化要素として一つの単位層を用いる場合、第1単位層を描画する造形ノズル5と、第2単位層を描画する造形ノズル5とを異なるものにすることができる。また、均一化要素として二つの三次元造形物Mを用いる場合、二つの三次元造形物Mを造形する造形ノズル5は共通化され、三つ目の三次元造形物Mを造形する造形ノズル5は異なるものとされる。
8. Application and Modification of the Embodiment As the homogenization element, other than three unit layers and one three-dimensional model M can be used. For example, when one unit layer is used as the homogenization element, the modeling nozzle 5 for drawing the first unit layer and the modeling nozzle 5 for drawing the second unit layer can be different. Further, when two three-dimensional model M are used as the homogenization element, the modeling nozzle 5 for modeling the two three-dimensional model M is standardized, and the modeling nozzle 5 for modeling the third three-dimensional model M is used. Will be different.
 また、均一化選択部82は、造形ヘッド4がステージ3の上方を相対移動する移動回数を増加させないことを条件とするが、この条件を取り払ってもよい。この場合、例えば、第1単位層の描画を2回に分け、1回目に第1ノズル51および第2ノズル52を用いて第1単位層の半分を描画し、2回目に第7ノズル57および第8ノズル58を用いて第1単位層の残り半分を描画する。これによれば、複数の造形ノズル5の使用率の均一化の程度を格段に向上でき、一方で製造に掛かる所要時間が増加する。その他にも、第1~第3実施形態は、様々な応用や変形が可能である。 Further, the homogenization selection unit 82 is conditioned on the condition that the number of movements of the modeling head 4 relative to the upper side of the stage 3 is not increased, but this condition may be removed. In this case, for example, the drawing of the first unit layer is divided into two times, half of the first unit layer is drawn using the first nozzle 51 and the second nozzle 52 in the first time, and the seventh nozzle 57 and the second time. The other half of the first unit layer is drawn using the eighth nozzle 58. According to this, the degree of uniformity of the usage rate of the plurality of modeling nozzles 5 can be remarkably improved, while the time required for manufacturing increases. In addition, the first to third embodiments can be applied and modified in various ways.
 1、1A:三次元造形機  1S:三次元造形システム  2:駆動部  21:搬入出エリア  22:固化エリア  23:描画エリア  3:ステージ  4:造形ヘッド  5:造形ノズル  51~58:第1ノズル~第8ノズル  6:調整機構  61:ヘッド取り付け座  7:固化部  8、8A:制御装置  81:演算部  82:均一化選択部  83:制御部  9:プログラム生成部  91:制御プログラム 1, 1A: 3D modeling machine 1S: 3D modeling system 2: Drive unit 21: Carry-in / out area 22: Solidification area 23: Drawing area 3: Stage 4: Modeling head 5: Modeling nozzle 51-58: 1st nozzle- 8th nozzle 6: Adjustment mechanism 61: Head mounting seat 7: Solidification unit 8, 8A: Control device 81: Calculation unit 82: Uniformization selection unit 83: Control unit 9: Program generation unit 91: Control program

Claims (12)

  1.  単位層を積み重ねて三次元造形物を製造する三次元造形機であって、
     製造途中の前記三次元造形物を載置するステージと、
     造形インクを吐出して前記単位層を描画する複数の造形ノズルを保持した造形ヘッドと、
     前記造形ヘッドが前記ステージの上方を相対移動するように駆動する駆動部と、
     複数の前記造形ノズルの各々が前記造形インクの吐出に使用された使用率および累積使用量の少なくとも一方を演算する演算部と、
     複数の前記造形ノズルの間で前記使用率および前記累積使用量の少なくとも一方を均一化するように、前記造形インクの吐出に使用する前記造形ノズルを選択する均一化選択部と、
     を備える三次元造形機。
    It is a 3D modeling machine that manufactures 3D models by stacking unit layers.
    A stage on which the three-dimensional model in the process of manufacturing is placed, and
    A modeling head that holds a plurality of modeling nozzles that eject modeling ink to draw the unit layer, and
    A drive unit that drives the modeling head to move relative to the upper part of the stage,
    A calculation unit that calculates at least one of the usage rate and the cumulative usage amount used for ejecting the modeling ink by each of the plurality of modeling nozzles.
    A homogenization selection unit that selects the modeling nozzle to be used for ejecting the modeling ink so as to homogenize at least one of the usage rate and the cumulative usage amount among the plurality of modeling nozzles.
    A three-dimensional modeling machine equipped with.
  2.  前記均一化選択部は、一つまたは複数の前記単位層からなる第一の均一化要素に対して前記造形インクの吐出に使用する前記造形ノズルを設定するとともに、第二の前記均一化要素に対して第一の前記均一化要素とは異なる前記造形ノズルを設定する、請求項1に記載の三次元造形機。 The homogenization selection unit sets the modeling nozzle used for ejecting the modeling ink on the first homogenizing element composed of one or a plurality of the unit layers, and sets the modeling nozzle on the second homogenizing element. The three-dimensional modeling machine according to claim 1, wherein the modeling nozzle different from the first homogenizing element is set.
  3.  前記均一化選択部は、一つまたは複数の前記三次元造形物からなる第一の均一化要素に対して前記造形インクの吐出に使用する前記造形ノズルを設定するとともに、第二の前記均一化要素に対して第一の前記均一化要素とは異なる前記造形ノズルを設定する、請求項1に記載の三次元造形機。 The homogenization selection unit sets the modeling nozzle used for ejecting the modeling ink for the first homogenizing element composed of one or more of the three-dimensional models, and sets the second homogenization. The three-dimensional modeling machine according to claim 1, wherein the modeling nozzle different from the first homogenizing element is set for the element.
  4.  前記均一化選択部は、複数の前記造形ノズルの各々の前記使用率および前記累積使用量の少なくとも一方に基づいて、前記造形インクの吐出に使用する前記造形ノズルを自動選択する、請求項1~3のいずれか一項に記載の三次元造形機。 The uniforming selection unit automatically selects the modeling nozzle to be used for ejecting the modeling ink based on at least one of the usage rate and the cumulative usage amount of each of the plurality of modeling nozzles. The three-dimensional modeling machine according to any one of 3.
  5.  前記均一化選択部は、複数の前記造形ノズルの各々の前記使用率および前記累積使用量の少なくとも一方をオペレータに提示し、前記オペレータの指示にしたがって前記造形インクの吐出に使用する前記造形ノズルを選択する、請求項1~3のいずれか一項に記載の三次元造形機。 The homogenization selection unit presents at least one of the usage rate and the cumulative usage amount of each of the plurality of modeling nozzles to the operator, and uses the modeling nozzle for ejecting the modeling ink according to the operator's instructions. The three-dimensional modeling machine according to any one of claims 1 to 3 to be selected.
  6.  前記均一化選択部は、前記三次元造形物を構成する複数の前記単位層の形状を表す造形データに基づいて、複数の前記単位層の各々で前記造形インクの吐出に使用する前記造形ノズルを予め選択する、請求項1に記載の三次元造形機。 The homogenization selection unit uses the modeling nozzle used for ejecting the modeling ink in each of the plurality of unit layers based on the modeling data representing the shapes of the plurality of unit layers constituting the three-dimensional model. The three-dimensional modeling machine according to claim 1, which is selected in advance.
  7.  前記造形ヘッドは、前記ステージの上方を相対移動する移動方向と直交する直交方向に一列に複数の前記造形ノズルを保持しており、
     前記均一化選択部は、前記直交方向における前記三次元造形物と複数の前記造形ヘッドとの相対位置関係を調整することにより、前記造形インクの吐出に使用する前記造形ノズルを選択する、
     請求項1~6のいずれか一項に記載の三次元造形機。
    The modeling head holds a plurality of the modeling nozzles in a row in an orthogonal direction orthogonal to a moving direction that moves relative to the upper part of the stage.
    The homogenization selection unit selects the modeling nozzle to be used for ejecting the modeling ink by adjusting the relative positional relationship between the three-dimensional modeled object and the plurality of modeling heads in the orthogonal direction.
    The three-dimensional modeling machine according to any one of claims 1 to 6.
  8.  前記三次元造形機は、前記直交方向における前記ステージと前記造形ヘッドとの相対位置関係を調整する調整機構をさらに備え、
     前記均一化選択部は、前記調整機構を制御する、
     請求項7に記載の三次元造形機。
    The three-dimensional modeling machine further includes an adjusting mechanism for adjusting the relative positional relationship between the stage and the modeling head in the orthogonal direction.
    The homogenization selection unit controls the adjustment mechanism.
    The three-dimensional modeling machine according to claim 7.
  9.  前記均一化選択部は、前記ステージの前記直交方向における前記三次元造形物の載置位置を調整する、請求項7に記載の三次元造形機。 The three-dimensional modeling machine according to claim 7, wherein the homogenization selection unit adjusts the placement position of the three-dimensional modeling object in the orthogonal direction of the stage.
  10.  前記均一化選択部は、前記造形ヘッドが前記ステージの上方を相対移動する移動回数を増加させないことを条件として、前記造形インクの吐出に使用する前記造形ノズルを選択する、請求項1~9のいずれか一項に記載の三次元造形機。 The uniforming selection unit selects the modeling nozzle to be used for ejecting the modeling ink, provided that the number of movements of the modeling head relative to the upper part of the stage is not increased, according to claims 1 to 9. The three-dimensional modeling machine described in any one of the items.
  11.  オペレータからの指令に基づいて、前記均一化選択部の機能のオン、オフを切り替える制御部をさらに備える、請求項1~10のいずれか一項に記載の三次元造形機。 The three-dimensional modeling machine according to any one of claims 1 to 10, further comprising a control unit for switching the function of the homogenization selection unit on and off based on a command from the operator.
  12.  単位層を積み重ねて製造する三次元造形物を載置するステージ、造形インクを吐出して前記単位層を描画する複数の造形ノズルを保持した造形ヘッド、および、制御プログラムに基づいて前記造形ヘッドが前記ステージの上方を相対移動するように駆動する駆動部を有する三次元造形機と、
     複数の前記造形ノズルの各々が前記造形インクの吐出に使用される使用率および累積使用量の少なくとも一方を演算し、複数の前記造形ノズルの間で前記使用率および前記累積使用量の少なくとも一方を均一化するように、前記造形インクの吐出に使用する前記造形ノズルを選択する指令を含む前記制御プログラムを生成するプログラム生成部と、
     を備える三次元造形システム。
    A stage on which a three-dimensional model manufactured by stacking unit layers is placed, a modeling head holding a plurality of modeling nozzles for drawing the unit layer by ejecting modeling ink, and the modeling head based on a control program. A three-dimensional modeling machine having a drive unit that drives the stage so as to move relative to each other.
    Each of the plurality of modeling nozzles calculates at least one of the usage rate and the cumulative usage amount used for ejecting the modeling ink, and among the plurality of the modeling nozzles, at least one of the usage rate and the cumulative usage amount is calculated. A program generation unit that generates the control program including a command for selecting the modeling nozzle to be used for ejecting the modeling ink so as to be uniform.
    A three-dimensional modeling system equipped with.
PCT/JP2020/028428 2020-07-22 2020-07-22 3-d modeling machine and 3-d modeling system WO2022018854A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022538552A JP7375202B2 (en) 2020-07-22 2020-07-22 3D printing machine and 3D printing system
PCT/JP2020/028428 WO2022018854A1 (en) 2020-07-22 2020-07-22 3-d modeling machine and 3-d modeling system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/028428 WO2022018854A1 (en) 2020-07-22 2020-07-22 3-d modeling machine and 3-d modeling system

Publications (1)

Publication Number Publication Date
WO2022018854A1 true WO2022018854A1 (en) 2022-01-27

Family

ID=79729144

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/028428 WO2022018854A1 (en) 2020-07-22 2020-07-22 3-d modeling machine and 3-d modeling system

Country Status (2)

Country Link
JP (1) JP7375202B2 (en)
WO (1) WO2022018854A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012121175A (en) * 2010-12-06 2012-06-28 Ricoh Co Ltd Image forming apparatus
JP2014097658A (en) * 1999-03-01 2014-05-29 Objet Geometries Ltd Three dimensional printing method
JP2016146467A (en) * 2015-02-03 2016-08-12 キヤノン株式会社 Imprint device, and method of manufacturing article
JP2016198896A (en) * 2015-04-07 2016-12-01 株式会社ミマキエンジニアリング Method for manufacturing and apparatus for manufacturing three-dimensional molded object

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014097658A (en) * 1999-03-01 2014-05-29 Objet Geometries Ltd Three dimensional printing method
JP2012121175A (en) * 2010-12-06 2012-06-28 Ricoh Co Ltd Image forming apparatus
JP2016146467A (en) * 2015-02-03 2016-08-12 キヤノン株式会社 Imprint device, and method of manufacturing article
JP2016198896A (en) * 2015-04-07 2016-12-01 株式会社ミマキエンジニアリング Method for manufacturing and apparatus for manufacturing three-dimensional molded object

Also Published As

Publication number Publication date
JP7375202B2 (en) 2023-11-07
JPWO2022018854A1 (en) 2022-01-27

Similar Documents

Publication Publication Date Title
US20170052516A1 (en) System and method to control a three-dimensional (3d) printing device
JP6647569B2 (en) 3D modeling equipment
JP5615667B2 (en) Setting data creation device for 3D modeling apparatus, setting data creation method for 3D modeling apparatus, setting data creation program for 3D modeling apparatus, and computer-readable recording medium
JP5759851B2 (en) 3D modeling apparatus and 3D modeling method
JP5615668B2 (en) Setting data creation device for 3D modeling apparatus, setting data creation method for 3D modeling apparatus, setting data creation program for 3D modeling apparatus, and computer-readable recording medium
KR20140061432A (en) Device for constructing models in layers
KR20180031005A (en) Leveling device for 3D printers
JP7254169B2 (en) Methods and systems for additive manufacturing with sacrificial structures for easy removal
US20230041952A1 (en) Structure supporting an object during additive manufacturing and method for forming
EP4023369B1 (en) Metal drop ejecting three-dimensional (3d) object printer having an increased material deposition rate
TWI581946B (en) Method and apparatus for printing three - dimensional building blocks by rapid prototyping technology
KR101692141B1 (en) Forming device for three-dimensional structure and forming method thereof
JP2023522892A (en) Service station for 3D printing system
WO2022018854A1 (en) 3-d modeling machine and 3-d modeling system
CN110978496A (en) Multi-printing-head automatic head-changing rapid-forming 3d printer and printing method thereof
CN114789253A (en) System and method for operating a material droplet jetting three-dimensional object printer to prevent quantization errors from occurring around a three-dimensional printed object
JP2013208757A (en) Synthetic modeling data generation device and synthetic modeling data generation program
JP2014166733A (en) Stereoscopic molding apparatus, molding liquid and stereoscopic molding powder
JP2022115077A (en) Method and device for forming overhung structure by metal-drip discharging three-dimensional (3d) object printer
KR101561111B1 (en) 3D Printer and Method for grinding of 3D Printer
CN106003707A (en) Three-dimensional modeling apparatus
KR20150049736A (en) Three dimensional printer improving printing velocity
KR101628161B1 (en) 3d printing system using block type structure automatic supplied by guide tube and the method for 3d printing
KR20240020255A (en) 3D Printer and Method for grinding of 3D Printer
WO2024053536A1 (en) Food item fabrication system and method for fabricating food item

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20946366

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022538552

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20946366

Country of ref document: EP

Kind code of ref document: A1