WO2022018850A1 - Laser device - Google Patents

Laser device Download PDF

Info

Publication number
WO2022018850A1
WO2022018850A1 PCT/JP2020/028413 JP2020028413W WO2022018850A1 WO 2022018850 A1 WO2022018850 A1 WO 2022018850A1 JP 2020028413 W JP2020028413 W JP 2020028413W WO 2022018850 A1 WO2022018850 A1 WO 2022018850A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
signal
laser
optical
sub
Prior art date
Application number
PCT/JP2020/028413
Other languages
French (fr)
Japanese (ja)
Inventor
彰裕 藤江
貴敬 鈴木
裕太 竹本
智浩 秋山
俊行 安藤
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2020/028413 priority Critical patent/WO2022018850A1/en
Priority to JP2022538549A priority patent/JP7143553B2/en
Publication of WO2022018850A1 publication Critical patent/WO2022018850A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating

Definitions

  • the present disclosure relates to a laser device that emits signal light into space.
  • a laser device that emits a signal light, which is a high-output laser beam, into space by using a coherent beam combining (CBC) technique (see, for example, Patent Document 1).
  • the CBC technique is a technique in which a single laser beam is divided into a plurality of laser beams, the laser beams are amplified, and then coherently coupled.
  • this telescope optical system examples include a casegren reflection optical system that is resistant to changes in the surrounding environment such as vibration.
  • the casegren catadioptric system has a secondary mirror that expands the beam diameter of the incident laser light and a primary mirror that emits the laser light after enlargement by the secondary mirror into space.
  • the conventional laser device when used in combination with the Kasegren catadioptric system, the central part of the laser beam is removed by using an annular mirror in order to avoid heat generation due to the high output return light from the secondary mirror. It is necessary to make it incident on the secondary mirror. Therefore, when the conventional laser device is used in combination with the casegren reflection optical system, the utilization efficiency of the laser light is lowered by the amount that the central portion of the laser light is removed.
  • the present disclosure has been made to solve the above-mentioned problems, and provides a laser apparatus capable of improving the utilization efficiency of laser light with respect to the conventional configuration even when used in combination with a Cassegrain reflective optical system.
  • the purpose is to do.
  • a sub-array unit that sub-arrays a plurality of signal lights obtained from a single laser beam and local emission obtained from the laser beam are arranged at positions other than the center of the optical axis.
  • Interference signal light is generated by combining the space distribution unit that converts the shape into the shape, the signal light after sub-array formation by the sub-arraying unit, and the station emission after conversion by the space distribution unit, and the interference signal light is used in space. It is characterized by having a combined wave portion that emits light to the light.
  • the configuration is as described above, it is possible to improve the utilization efficiency of the laser beam as compared with the conventional configuration even when used in combination with the Cassegrain reflection optical system.
  • FIG. It is a figure which shows the structural example of the laser apparatus which concerns on Embodiment 1.
  • FIG. It is a figure which shows the structural example of the element circuit in Embodiment 1.
  • FIG. It is a figure which shows the structural example of the collimator array in Embodiment 1.
  • FIG. It is an image diagram which shows the beam arrangement example of the signal light used in the laser apparatus which concerns on Embodiment 1 and the interference signal light by a local emission.
  • It is an image diagram which shows the beam arrangement example of the signal light used in the laser apparatus which concerns on Embodiment 2 and the interference signal light by a local emission.
  • FIG. It is a figure which shows the structural example of the laser apparatus which concerns on Embodiment 3.
  • FIG. It is a figure which shows the driving example of the conical prism in Embodiment 3.
  • FIG. 1 is a diagram showing a configuration example of the laser device according to the first embodiment.
  • the laser apparatus includes a reference light source 1, an optical distributor 2, a collimator lens 3, K circuit arrays 4 k , a signal processing unit 5, a control signal generation unit 6, a space distribution unit 7, and an introduction coupling.
  • the unit 8 and the casegren reflection optical system 9 are provided.
  • k 1 to K
  • K 2.
  • the reference light source 1 outputs a single frequency laser beam.
  • a narrow line width laser light source that oscillates in a single mode can be used.
  • the light distributor 2 distributes the laser light output by the reference light source 1 into a single station emission and K ⁇ N signal lights.
  • N is a natural number of 2 or more.
  • the reference light source 1 and the optical distributor 2 are connected via an optical path such as an optical fiber.
  • the collimator lens 3 is an optical lens that collimates the local light emitted by the light distributor 2.
  • the element circuit 41 kn includes an optical phase modulator (optical phase controller) 411 kn , an optical amplifier 412 kn , an optical circulator 413 kn , a photoelectric converter (photodetector) 414 kn, and a phase-locked loop. It has 415 kn.
  • the phase-locked loop 415 kn includes a reference signal source 416 kn , a variable phase shifter 417 kn , a phase comparator 418 kn , a loop filter 419 kn, and a signal generator 420 kn . ..
  • the optical phase modulator 411 kn is a variable phase controller that modulates the phase of the signal light obtained by the optical distributor 2.
  • the modulation amount in the optical phase modulator 411 kn is a modulation amount according to the optical phase control signal generated by the signal generator 420 kn of the phase-locked loop 415 kn.
  • an LN (LiNbO 3 ) phase modulator or a semiconductor optical modulator can be used as the optical phase modulator 411 kn .
  • the optical amplifier 412 kn amplifies the signal light after phase modulation by the optical phase modulator 411 kn.
  • the optical circulator 413 kn outputs the signal light after amplification by the optical amplifier 412 kn to the introduction coupling unit 8. Further, the optical circulator 413 kn outputs the light reflected by the introduction coupling portion 8 to the photoelectric converter 414 kn.
  • the photoelectric converter 414 kn converts the light output by the optical circulator 413 kn into an electric signal.
  • a photodiode can be used as the photoelectric converter 414 kn .
  • the reference signal source 416 kn outputs an electric signal (reference signal) having a reference frequency in the high frequency band.
  • the variable phase shifter 417 kn shifts the phase of the electric signal output by the reference signal source 416 kn.
  • the phase shift amount in the variable phase shifter 417 kn is a phase shift amount according to the external control signal A41 kn generated by the control signal generation unit 6.
  • the phase comparator 418 kn is a phase error signal having a current or voltage according to the phase error between the electric signal obtained by the photoelectric converter 414 kn and the electric signal after the phase shift by the variable phase shifter 417 kn. Generate.
  • the loop filter 419 kn filters the phase error signal generated by the phase comparator 418 kn to generate a control voltage.
  • the signal generator 420 kn generates an optical phase control signal having an oscillation frequency corresponding to the control voltage generated by the loop filter 419 kn.
  • the configuration of the phase-locked loop 415 kn shown in FIG. 2 is an example, and is not limited thereto.
  • the number of element circuits 41 1n included in the circuit array 4 1 and the number of element circuits 4 12 2n included in the circuit array 4 2 are the same. However, the number of element circuits 41 kn in each circuit array 4 k may be different.
  • the optical distributor 2 and the circuit array 4k are connected via an optical path such as an optical fiber.
  • the control signal generation unit 6 generates an external control signal A41 kn for the variable phase shifter 417 kn of the circuit array 4 k based on the calculation result by the signal processing unit 5.
  • the space distribution unit 7 converts the locally emitted light (colimated light) that has been collimated by the collimator lens 3 into a shape in which the light is arranged at a position other than the center of the optical axis.
  • the space distribution unit 7 shown in FIG. 1 is composed of a conical prism 71 and a conical prism 72.
  • the conical prism 71 is a prism in which one surface in the axial direction is formed in a conical shape and the other surface is formed in a planar shape. In the conical prism 71, the other surface faces the exit surface of the collimator lens 3, and the local emission that has been collimated by the collimator lens 3 is refracted and spatially distributed.
  • the conical prism 72 is a prism in which one surface in the axial direction is formed in a conical shape and the other surface is formed in a planar shape.
  • the conical prism 72 has one surface facing the one surface of the conical prism 71, and converts the local emission after space distribution by the conical prism 71 into an annular local emission.
  • the conical prism 72 may be a lens such as a conical lens, a spherical lens, or an achromat lens.
  • the space distribution unit 7 composed of the conical prism 71 and the conical prism 72 converts the local emission into an annular shape is shown.
  • the space distribution unit 7 may use a prism or a lens to convert the local emission into an annular shape other than the annular shape, for example, an angular ring shape.
  • the introduction coupling unit 8 sub-arrays N signal lights after variable phase modulation by the circuit array 4 k into K sets, and combines the signal light after the sub-array and the station emission obtained by the space distribution unit 7. And exit into space.
  • the introduction coupling portion 8 is composed of a reflector 81 k , a collimator array 82 k , and a beam combiner 83 k .
  • the reflector 81 k reflects the local emission after conversion by the space distribution unit 7.
  • the reflector 81 k may be a right-angle prism.
  • the collimator array 82 k has N partial reflectors 821 kn and N optical collimators 822 kn .
  • the partial reflector 821 kn reflects a part of the signal light after the variable phase modulation by the circuit array 4 k and passes the rest.
  • the above reflection may be realized by utilizing the Fresnel reflection generated at the partial reflection optical system or the fiber end instead of the partial reflector 821 kn. Further, the partial reflector 821 kn passes the local emission that has passed through the beam combiner 83 k. Further, in the above, the case where a part of the signal light after the variable phase modulation is reflected is shown, but the present invention is not limited to this, and a part of the signal light may be refracted.
  • the optical collimator 822 kn collimates the signal light that has passed through the partial reflector 821 kn.
  • the beam combiner 83 k combines the signal light collimated by the collimator array 82 k and the local emission reflected by the reflector 81 k and emits them to the casegren reflection optical system 9 side. Further, the beam combiner 83 k passes a part of the local light emitted by the reflector 81 k and emits light to the partial reflector 821 kn .
  • these reflectors 81 k , collimator array 82 k, and beam combiner 83 k are arranged in an annular shape in accordance with the shape of the axicon optical system 91, avoiding the central portion of the axicon optical system 91. Will be done.
  • reference numeral 401 indicates an interference signal light generated by the combined wave of the signal light and the local emission.
  • the introduction coupling unit 8 is a "sub-arraying unit that sub-arrays a plurality of signal lights obtained from a single laser beam” and a “signal light after sub-arraying by the sub-arraying unit and after conversion by the space distribution unit". It corresponds to a “combined part” that generates interference signal light by combining local light emission and emits the interference signal light into space.
  • the Cassegrain reflective optical system 9 expands or contracts the beam diameter of the light after the combined wave by the introduction coupling portion 8.
  • the casegren reflection optical system 9 is composed of an axicon optical system 91 as a secondary mirror and an axicon optical system 92 as a primary mirror.
  • the axicon optical system 91 is configured in a convex substantially disk shape and has a reflecting surface 911.
  • the reflective surface 911 enlarges the beam diameter (inner diameter and outer diameter) of the incident light.
  • the reflective surface 911 is configured to project in a curved surface so that the apex of the curved surface is located at the center of the axicon optical system 91.
  • the axicon optical system 91 is arranged so that the reflecting surface 911 faces the introduction coupling portion 8.
  • the axicon optical system 92 is configured in a concave substantially disk shape, and has a reflecting surface 921 and holes 922.
  • the reflecting surface 921 emits the light expanded by the Axicon optical system 91 into space.
  • the reflective surface 921 is configured to be recessed in a curved surface shape so that the apex of the curved surface is located at the center of the axicon optical system 92.
  • the diameter of the reflective surface 921 is larger than the diameter of the reflective surface 911.
  • the hole 922 is a through hole formed with the apex of the reflecting surface 921 as the axis.
  • the axis of the hole 922 is arranged so as to be along the optical axis of the light from the introduction coupling portion 8. Further, in the Axicon optical system 92, the reflecting surface 921 faces the reflecting surface 911, and the axis of the reflecting surface 921 coincides with the axis of the reflecting surface 911.
  • FIG. 1 shows a case where the laser device is provided with the Cassegrain reflective optical system 9.
  • the present invention is not limited to this, and the Cassegrain reflection optical system 9 may be provided outside the laser apparatus.
  • FIG. 1 shows a case where the laser apparatus includes a reference light source 1, an optical distributor 2, a collimator lens 3, K circuit arrays 4 k , a signal processing unit 5, and a control signal generation unit 6.
  • the present invention is not limited to this, and the reference light source 1, the optical distributor 2, the collimator lens 3, the K circuit array 4 k , the signal processing unit 5, and the control signal generation unit 6 may be provided outside the laser device. good.
  • the laser apparatus according to the first embodiment has a space distribution unit 7, an introduction coupling unit 8, and a Cassegrain reflection optical system 9 added to the conventional configuration. Then, the laser apparatus according to the first embodiment converts a single local emission into a shape in which the light is arranged at a position other than the center of the optical axis in the space distribution unit 7, and the Cassegrain in the introduction coupling unit 8. A plurality of sub-arrayed signal lights are introduced from the side surface of the reflected optical system 9 and coherently synthesized. As a result, the laser apparatus according to the first embodiment can arrange the beam without being kicked by the Axicon optical system 92, which is the primary mirror of the Cassegrain reflective optical system 9.
  • the laser device according to the first embodiment has the following effects as compared with the conventional configuration.
  • the Cassegrain reflection optical system combines the local emission converted into a shape in which the light is arranged at a position other than the center of the optical axis and the signal light after a plurality of sub-arrays. It is incident on 9.
  • this laser device can generate a beam without removing the central portion of the laser beam, and can improve the utilization efficiency of the laser beam.
  • the beam diameter of the local emission is expanded to maintain uniform amplitude and phase in order to cover the entire beam range of each signal light. It was necessary to generate local emission or to increase the size of the beam splitter. In this case, in the conventional configuration, as the number of subarrays increases, phase noise occurs due to wavefront distortion or optical alignment error.
  • the laser device according to the first embodiment converts the local light emission into a shape in which the light is arranged at a position other than the center of the optical axis. As a result, this laser device can reduce the beam diameter of the local emission coupled with the signal light, so that phase noise can be suppressed and the number of subarrays can be increased.
  • the laser apparatus has a sub-array unit that sub-arrays a plurality of signal lights obtained from a single laser light, and a local emission obtained from the laser light.
  • FIG. 5 is a diagram showing a configuration example of the laser device according to the second embodiment.
  • the configuration example of the laser apparatus according to the second embodiment shown in FIG. 5 is the same as the configuration example of the laser apparatus according to the first embodiment shown in FIG. 1 except that the number of subarrays of the signal light is different.
  • the circuit array 4 k , the reflector 81 k , the collimator array 82 k, and the beam combiner 83 k are arranged for the number of sub-arrays of signal light. Further, as shown in FIG. 6, the reflector 81 k , the collimator array 82 k, and the beam combiner 83 k are arranged in an annular shape in accordance with the shape of the axicon optical system 91, avoiding the central portion of the axicon optical system 91. Ru.
  • reference numeral 601 indicates the interference signal light generated by the combined wave of the signal light and the local emission.
  • the laser apparatus according to the second embodiment has the following effects as compared with the laser apparatus according to the conventional configuration and the first embodiment.
  • the number of signal light subarrays that can be added is limited to 2.
  • the number of sub-arrays of the signal light is 2 or more, and the laser light can be arranged and synthesized without a gap, so that the laser light can be increased in output. Further, since this laser device can generate a beam without removing the central portion of the laser beam, it is possible to realize an optical phased array with high synthesis efficiency.
  • the signal light and the combined light of the station emission can be arbitrarily arranged with two or more sub-arrays.
  • this laser device can apply an arbitrary external control signal A41 kn to the variable phase shifter 417 kn of each element circuit 41 kn. Therefore, this laser device is conventionally configured or implemented by appropriately designing the number of arrangements of the reflector 81 k , the collimator array 82 k and the beam combiner 83 k , or the external control signal A41 kn for the variable phase shifter 417 kn. Compared with the laser apparatus according to the first embodiment, it is possible to generate output light having various phase distributions.
  • FIG. 7 is a diagram showing a configuration example of the laser device according to the third embodiment.
  • a signal processing unit 10 and a drive control unit 11 are added to the laser apparatus according to the second embodiment shown in FIG.
  • Other configurations are the same as those of the laser apparatus according to the second embodiment, and the same reference numerals are given and only different parts will be described.
  • the signal processing unit 10 calculates the driving amount of the conical prism 72 according to the desired beam diameter.
  • the drive control unit 11 drives the conical prism 72 in the optical axis direction with the drive amount calculated by the signal processing unit 10.
  • FIG. 8 is a diagram showing an arrangement example of the conical prism 71 and the conical prism 72.
  • the laser device according to the second embodiment can change the beam diameter of the light emitted from the Cassegrain reflection optical system 9 by driving the conical prism 72 in the optical axis direction.
  • reference numeral 801 indicates the driving direction of the conical prism 72
  • reference numeral 802 indicates the beam diameter of the local emission after conversion by the space distribution unit 7.
  • FIGS. 7 and 8 show a case where the drive control unit 11 drives the conical prism 72.
  • the present invention is not limited to this, and the drive control unit 11 may drive the conical prism 71 instead of the conical prism 72, or may drive both the conical prism 71 and the conical prism 72.
  • FIGS. 7 and 8 show a case where the space distribution unit 7 is composed of a conical prism 71 and a conical prism 72.
  • control by the signal processing unit 10 and the drive control unit 11 can be added as described above.
  • the signal processing unit 10 and the drive control unit 11 correspond to "an adjustment unit that changes the beam diameter of the station emission after conversion by the space distribution unit by driving at least one of the optical elements in the axial direction”. do.
  • the laser apparatus according to the third embodiment has a large axicon optical system 91 and an axicon optical system 92 constituting the casegren reflection optical system 9 as compared with the conventional configuration, the laser apparatus according to the first embodiment and the second embodiment.
  • the beam diameter of the light emitted from the casegren reflection optical system 9 can be changed without driving.
  • the laser device according to the present disclosure is used in combination with the casegren reflection optical system, it is possible to improve the utilization efficiency of the laser light as compared with the conventional configuration, and the laser device is used for a laser device or the like that emits signal light into space. Suitable for.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Optical Communication System (AREA)

Abstract

This laser device is provided with a sub-array creation unit which turns multiple signal lights obtained from a single laser into a sub-array, a spatial distribution unit (7) which converts locally emitted light obtained from the laser beam into a form in which the light is arranged in positions other than the optical axis center, and a wave combining unit which generates an interference signal light by combining signal light that has been turned into sub-arrays by the sub-array creation unit and locally emitted light after conversion by the spatial distribution unit (7), and which emits said interference signal light into space.

Description

レーザ装置Laser device
 本開示は、信号光を空間に出射するレーザ装置に関する。 The present disclosure relates to a laser device that emits signal light into space.
 従来、コヒーレント結合(Coherent Beam Combining:CBC)技術を用い、高出力なレーザ光である信号光を空間に出射するレーザ装置が知られている(例えば特許文献1参照)。CBC技術は、単一のレーザ光を複数のレーザ光に分割し、それらのレーザ光を増幅してからコヒーレントに結合する技術である。 Conventionally, there is known a laser device that emits a signal light, which is a high-output laser beam, into space by using a coherent beam combining (CBC) technique (see, for example, Patent Document 1). The CBC technique is a technique in which a single laser beam is divided into a plurality of laser beams, the laser beams are amplified, and then coherently coupled.
特開2000-323774号公報Japanese Unexamined Patent Publication No. 2000-323774
 一方、従来のレーザ装置において、信号光を遠方の通信局又はターゲットに伝送する場合、信号光を遠方に集光するための望遠鏡光学系が必要である。 On the other hand, in a conventional laser device, when transmitting signal light to a distant communication station or target, a telescope optical system for condensing the signal light to a distant place is required.
 この望遠鏡光学系としては、振動等の周囲環境変動に強いカセグレン反射光学系が挙げられる。カセグレン反射光学系は、入射されたレーザ光のビーム径を拡大する副鏡と、副鏡による拡大後のレーザ光を空間に出射する主鏡とを有する。 Examples of this telescope optical system include a casegren reflection optical system that is resistant to changes in the surrounding environment such as vibration. The casegren catadioptric system has a secondary mirror that expands the beam diameter of the incident laser light and a primary mirror that emits the laser light after enlargement by the secondary mirror into space.
 しかしながら、従来のレーザ装置は、カセグレン反射光学系と組合わせて使用する場合、副鏡からの高出力な戻り光による発熱を回避する目的で、環状鏡を用いてレーザ光の中心部を取除いた上で副鏡に入射させる必要がある。よって、従来のレーザ装置は、カセグレン反射光学系と組合わせて使用すると、レーザ光の中心部を取除いた分、レーザ光の利用効率が低下する。 However, when the conventional laser device is used in combination with the Kasegren catadioptric system, the central part of the laser beam is removed by using an annular mirror in order to avoid heat generation due to the high output return light from the secondary mirror. It is necessary to make it incident on the secondary mirror. Therefore, when the conventional laser device is used in combination with the casegren reflection optical system, the utilization efficiency of the laser light is lowered by the amount that the central portion of the laser light is removed.
 本開示は、上記のような課題を解決するためになされたもので、カセグレン反射光学系と組合せて使用される場合でも、従来構成に対してレーザ光の利用効率を向上可能なレーザ装置を提供することを目的としている。 The present disclosure has been made to solve the above-mentioned problems, and provides a laser apparatus capable of improving the utilization efficiency of laser light with respect to the conventional configuration even when used in combination with a Cassegrain reflective optical system. The purpose is to do.
 本開示に係るレーザ装置は、単一のレーザ光から得られた複数の信号光をサブアレイ化するサブアレイ化部と、レーザ光から得られた局発光を、光軸中心を除く位置に光が配置された形状に変換する空間分配部と、サブアレイ化部によるサブアレイ化後の信号光及び空間分配部による変換後の局発光を合波することで干渉信号光を生成し、当該干渉信号光を空間に出射する合波部とを備えたことを特徴とする。 In the laser apparatus according to the present disclosure, a sub-array unit that sub-arrays a plurality of signal lights obtained from a single laser beam and local emission obtained from the laser beam are arranged at positions other than the center of the optical axis. Interference signal light is generated by combining the space distribution unit that converts the shape into the shape, the signal light after sub-array formation by the sub-arraying unit, and the station emission after conversion by the space distribution unit, and the interference signal light is used in space. It is characterized by having a combined wave portion that emits light to the light.
 本開示によれば、上記のように構成したので、カセグレン反射光学系と組合せて使用される場合でも、従来構成に対してレーザ光の利用効率を向上可能となる。 According to the present disclosure, since the configuration is as described above, it is possible to improve the utilization efficiency of the laser beam as compared with the conventional configuration even when used in combination with the Cassegrain reflection optical system.
実施の形態1に係るレーザ装置の構成例を示す図である。It is a figure which shows the structural example of the laser apparatus which concerns on Embodiment 1. FIG. 実施の形態1における要素回路の構成例を示す図である。It is a figure which shows the structural example of the element circuit in Embodiment 1. FIG. 実施の形態1におけるコリメータアレイの構成例を示す図である。It is a figure which shows the structural example of the collimator array in Embodiment 1. FIG. 実施の形態1に係るレーザ装置で用いられる信号光及び局発光による干渉信号光のビーム配置例を示すイメージ図である。It is an image diagram which shows the beam arrangement example of the signal light used in the laser apparatus which concerns on Embodiment 1 and the interference signal light by a local emission. 実施の形態2に係るレーザ装置の構成例を示す図である。It is a figure which shows the structural example of the laser apparatus which concerns on Embodiment 2. 実施の形態2に係るレーザ装置で用いられる信号光及び局発光による干渉信号光のビーム配置例を示すイメージ図である。It is an image diagram which shows the beam arrangement example of the signal light used in the laser apparatus which concerns on Embodiment 2 and the interference signal light by a local emission. 実施の形態3に係るレーザ装置の構成例を示す図である。It is a figure which shows the structural example of the laser apparatus which concerns on Embodiment 3. FIG. 実施の形態3における円錐プリズムの駆動例を示す図である。It is a figure which shows the driving example of the conical prism in Embodiment 3. FIG.
 以下、実施の形態について図面を参照しながら詳細に説明する。
実施の形態1.
 図1は実施の形態1に係るレーザ装置の構成例を示す図である。
 レーザ装置は、図1に示すように、基準光源1、光分配器2、コリメータレンズ3、K個の回路アレイ4、信号処理部5、制御信号生成部6、空間分配部7、導入結合部8及びカセグレン反射光学系9を備えている。ここで、k=1~Kであり、実施の形態1ではK=2である。
Hereinafter, embodiments will be described in detail with reference to the drawings.
Embodiment 1.
FIG. 1 is a diagram showing a configuration example of the laser device according to the first embodiment.
As shown in FIG. 1, the laser apparatus includes a reference light source 1, an optical distributor 2, a collimator lens 3, K circuit arrays 4 k , a signal processing unit 5, a control signal generation unit 6, a space distribution unit 7, and an introduction coupling. The unit 8 and the casegren reflection optical system 9 are provided. Here, k = 1 to K, and in the first embodiment, K = 2.
 基準光源1は、単一周波数のレーザ光を出力する。基準光源1としては、例えば、シングルモードで発振する狭線幅レーザ光源が使用可能である。 The reference light source 1 outputs a single frequency laser beam. As the reference light source 1, for example, a narrow line width laser light source that oscillates in a single mode can be used.
 光分配器2は、基準光源1により出力されたレーザ光を、単一の局発光及びK×N個の信号光に分配する。Nは2以上の自然数である。 The light distributor 2 distributes the laser light output by the reference light source 1 into a single station emission and K × N signal lights. N is a natural number of 2 or more.
 基準光源1及び光分配器2は、光ファイバ等の光路を介して接続されている。 The reference light source 1 and the optical distributor 2 are connected via an optical path such as an optical fiber.
 コリメータレンズ3は、光分配器2により得られた局発光をコリメート状態にする光学レンズである。 The collimator lens 3 is an optical lens that collimates the local light emitted by the light distributor 2.
 回路アレイ4は、光分配器2により得られた信号光のうちのN個の信号光に対し、それぞれ可変位相変調(可変位相制御)を施す光フェーズドアレイである。回路アレイ4は、図1に示すように、並列に配置されたN個の要素回路41knにより構成されている。ここで、n=1~Nである。 The circuit array 4k is an optical phased array in which N signal lights of the signal lights obtained by the optical distributor 2 are subjected to variable phase modulation (variable phase control). As shown in FIG. 1, the circuit array 4 k is composed of N element circuits 41 kn arranged in parallel. Here, n = 1 to N.
 要素回路41knは、図2に示すように、光位相変調器(光位相制御器)411kn、光増幅器412kn、光サーキュレータ413kn、光電変換器(光検出器)414kn及び位相同期回路415knを有している。また、位相同期回路415knは、図2に示すように、基準信号源416kn、可変移相器417kn、位相比較器418kn、ループフィルタ419kn及び信号生成器420knを有している。 As shown in FIG. 2, the element circuit 41 kn includes an optical phase modulator (optical phase controller) 411 kn , an optical amplifier 412 kn , an optical circulator 413 kn , a photoelectric converter (photodetector) 414 kn, and a phase-locked loop. It has 415 kn. Further, as shown in FIG. 2, the phase-locked loop 415 kn includes a reference signal source 416 kn , a variable phase shifter 417 kn , a phase comparator 418 kn , a loop filter 419 kn, and a signal generator 420 kn . ..
 光位相変調器411knは、光分配器2により得られた信号光の位相を変調する可変位相制御器である。光位相変調器411knにおける変調量は、位相同期回路415knが有する信号生成器420knにより生成された光位相制御信号に従った変調量である。光位相変調器411knとしては、例えばLN(LiNbO)位相変調器又は半導体光変調器が使用可能である。 The optical phase modulator 411 kn is a variable phase controller that modulates the phase of the signal light obtained by the optical distributor 2. The modulation amount in the optical phase modulator 411 kn is a modulation amount according to the optical phase control signal generated by the signal generator 420 kn of the phase-locked loop 415 kn. As the optical phase modulator 411 kn , for example, an LN (LiNbO 3 ) phase modulator or a semiconductor optical modulator can be used.
 光増幅器412knは、光位相変調器411knによる位相変調後の信号光を増幅する。 The optical amplifier 412 kn amplifies the signal light after phase modulation by the optical phase modulator 411 kn.
 光サーキュレータ413knは、光増幅器412knによる増幅後の信号光を、導入結合部8に出力する。また、光サーキュレータ413knは、導入結合部8により反射された光を、光電変換器414knに出力する。 The optical circulator 413 kn outputs the signal light after amplification by the optical amplifier 412 kn to the introduction coupling unit 8. Further, the optical circulator 413 kn outputs the light reflected by the introduction coupling portion 8 to the photoelectric converter 414 kn.
 光電変換器414knは、光サーキュレータ413knにより出力された光を電気信号に変換する。光電変換器414knとしては、例えばフォトダイオードが使用可能である。 The photoelectric converter 414 kn converts the light output by the optical circulator 413 kn into an electric signal. As the photoelectric converter 414 kn , for example, a photodiode can be used.
 基準信号源416knは、高周波帯の基準周波数をもつ電気信号(基準信号)を出力する。 The reference signal source 416 kn outputs an electric signal (reference signal) having a reference frequency in the high frequency band.
 可変移相器417knは、基準信号源416knにより出力された電気信号の位相をシフトさせる。可変移相器417knにおける位相シフト量は、制御信号生成部6により生成された外部制御信号A41knに従った位相シフト量である。 The variable phase shifter 417 kn shifts the phase of the electric signal output by the reference signal source 416 kn. The phase shift amount in the variable phase shifter 417 kn is a phase shift amount according to the external control signal A41 kn generated by the control signal generation unit 6.
 位相比較器418knは、光電変換器414knにより得られた電気信号と可変移相器417knによる位相シフト後の電気信号との間の位相誤差に応じた電流又は電圧をもつ位相誤差信号を生成する。 The phase comparator 418 kn is a phase error signal having a current or voltage according to the phase error between the electric signal obtained by the photoelectric converter 414 kn and the electric signal after the phase shift by the variable phase shifter 417 kn. Generate.
 ループフィルタ419knは、位相比較器418knにより生成された位相誤差信号をフィルタリングして制御電圧を生成する。 The loop filter 419 kn filters the phase error signal generated by the phase comparator 418 kn to generate a control voltage.
 信号生成器420knは、ループフィルタ419knにより生成された制御電圧に応じた発振周波数をもつ光位相制御信号を生成する。 The signal generator 420 kn generates an optical phase control signal having an oscillation frequency corresponding to the control voltage generated by the loop filter 419 kn.
 なお、図2に示した位相同期回路415knの構成は一例であり、これに限定されない。 The configuration of the phase-locked loop 415 kn shown in FIG. 2 is an example, and is not limited thereto.
 なお図1では、回路アレイ4が有する要素回路411nの数及び回路アレイ4が有する要素回路412nの数が、同数とされている。しかしながら、各回路アレイ4が有する要素回路41knの数は、異なっていてもよい。 In FIG. 1, the number of element circuits 41 1n included in the circuit array 4 1 and the number of element circuits 4 12 2n included in the circuit array 4 2 are the same. However, the number of element circuits 41 kn in each circuit array 4 k may be different.
 光分配器2及び回路アレイ4は、光ファイバ等の光路を介して接続されている。 The optical distributor 2 and the circuit array 4k are connected via an optical path such as an optical fiber.
 信号処理部5は、レーザ装置におけるFFP(Far Field Pattern)、又は、所望のカセグレン反射光学系9における出力光の波面形状に基づいて、回路アレイ4における位相シフト量を算出する。 The signal processing unit 5, FFP in the laser device (Far Field Pattern), or based on the wavefront shape of the output light at desired Cassegrain reflective optical system 9, to calculate the phase shift amount in the circuit array 4 k.
 制御信号生成部6は、信号処理部5による算出結果に基づいて、回路アレイ4が有する可変移相器417knに対する外部制御信号A41knを生成する。 The control signal generation unit 6 generates an external control signal A41 kn for the variable phase shifter 417 kn of the circuit array 4 k based on the calculation result by the signal processing unit 5.
 空間分配部7は、コリメータレンズ3によりコリメート状態にされた局発光(コリメート光)を、光軸中心を除く位置に光が配置された形状に変換する。図1に示す空間分配部7は、円錐プリズム71及び円錐プリズム72から構成される。 The space distribution unit 7 converts the locally emitted light (colimated light) that has been collimated by the collimator lens 3 into a shape in which the light is arranged at a position other than the center of the optical axis. The space distribution unit 7 shown in FIG. 1 is composed of a conical prism 71 and a conical prism 72.
 円錐プリズム71は、軸方向における一方の面が円錐状に構成され、他方の面が平面状に構成されたプリズムである。円錐プリズム71は、上記他方の面がコリメータレンズ3の出射面に対向し、コリメータレンズ3によりコリメート状態にされた局発光を屈折させて空間分配する。 The conical prism 71 is a prism in which one surface in the axial direction is formed in a conical shape and the other surface is formed in a planar shape. In the conical prism 71, the other surface faces the exit surface of the collimator lens 3, and the local emission that has been collimated by the collimator lens 3 is refracted and spatially distributed.
 円錐プリズム72は、軸方向における一方の面が円錐状に構成され、他方の面が平面状に構成されたプリズムである。円錐プリズム72は、上記一方の面が円錐プリズム71の上記一方の面に対向し、円錐プリズム71による空間分配後の局発光を円環状の局発光に変換する。なお、円錐プリズム72は、円錐レンズ、球面レンズ又はアクロマートレンズ等のレンズでもよい。 The conical prism 72 is a prism in which one surface in the axial direction is formed in a conical shape and the other surface is formed in a planar shape. The conical prism 72 has one surface facing the one surface of the conical prism 71, and converts the local emission after space distribution by the conical prism 71 into an annular local emission. The conical prism 72 may be a lens such as a conical lens, a spherical lens, or an achromat lens.
 なお上記では、円錐プリズム71及び円錐プリズム72から構成された空間分配部7が、局発光を円環状に変換する場合を示した。しかしながら、これに限らず、空間分配部7は、プリズム又はレンズを用い、局発光を、円環状以外の環状、例えば角環状に変換してもよい。 In the above, the case where the space distribution unit 7 composed of the conical prism 71 and the conical prism 72 converts the local emission into an annular shape is shown. However, not limited to this, the space distribution unit 7 may use a prism or a lens to convert the local emission into an annular shape other than the annular shape, for example, an angular ring shape.
 導入結合部8は、回路アレイ4による可変位相変調後の信号光をN個ずつKセットにサブアレイ化し、当該サブアレイ化後の信号光及び空間分配部7により得られた局発光を合波して空間に出射する。導入結合部8は、図1に示すように、反射鏡81、コリメータアレイ82、ビームコンバイナ83から構成されている。 The introduction coupling unit 8 sub-arrays N signal lights after variable phase modulation by the circuit array 4 k into K sets, and combines the signal light after the sub-array and the station emission obtained by the space distribution unit 7. And exit into space. As shown in FIG. 1, the introduction coupling portion 8 is composed of a reflector 81 k , a collimator array 82 k , and a beam combiner 83 k .
 反射鏡81は、空間分配部7による変換後の局発光を反射する。反射鏡81は、直角プリズムでもよい。 The reflector 81 k reflects the local emission after conversion by the space distribution unit 7. The reflector 81 k may be a right-angle prism.
 コリメータアレイ82は、図3に示すように、N個の部分反射器821kn及びN個の光コリメータ822knを有している。 As shown in FIG. 3, the collimator array 82 k has N partial reflectors 821 kn and N optical collimators 822 kn .
 部分反射器821knは、回路アレイ4による可変位相変調後の信号光のうちの一部を反射し、残りを通過させる。上記反射は、部分反射器821knに代えて、部分反射光学系又はファイバ端で生じるフレネル反射を利用して実現してもよい。また、部分反射器821knは、ビームコンバイナ83を通過した局発光を通過させる。
 また上記では、上記可変位相変調後の信号光のうちの一部を反射する場合を示したが、これに限らず、当該信号光のうちの一部を屈折させてもよい。
The partial reflector 821 kn reflects a part of the signal light after the variable phase modulation by the circuit array 4 k and passes the rest. The above reflection may be realized by utilizing the Fresnel reflection generated at the partial reflection optical system or the fiber end instead of the partial reflector 821 kn. Further, the partial reflector 821 kn passes the local emission that has passed through the beam combiner 83 k.
Further, in the above, the case where a part of the signal light after the variable phase modulation is reflected is shown, but the present invention is not limited to this, and a part of the signal light may be refracted.
 光コリメータ822knは、部分反射器821knを通過した信号光をコリメート状態にする。 The optical collimator 822 kn collimates the signal light that has passed through the partial reflector 821 kn.
 ビームコンバイナ83は、コリメータアレイ82によりコリメート状態にされた信号光と、反射鏡81により反射された局発光とを合波してカセグレン反射光学系9側へと出射する。また、ビームコンバイナ83は、反射鏡81により反射された局発光の一部を通過させ、部分反射器821knへと出射する。 The beam combiner 83 k combines the signal light collimated by the collimator array 82 k and the local emission reflected by the reflector 81 k and emits them to the casegren reflection optical system 9 side. Further, the beam combiner 83 k passes a part of the local light emitted by the reflector 81 k and emits light to the partial reflector 821 kn .
 これらの反射鏡81、コリメータアレイ82及びビームコンバイナ83は、図4に示すように、アキシコン光学系91の形状に合わせて、アキシコン光学系91の中心部を避けて、円環状に配置される。図4において符号401は、信号光と局発光とが合波することで生成された干渉信号光を示している。 As shown in FIG. 4, these reflectors 81 k , collimator array 82 k, and beam combiner 83 k are arranged in an annular shape in accordance with the shape of the axicon optical system 91, avoiding the central portion of the axicon optical system 91. Will be done. In FIG. 4, reference numeral 401 indicates an interference signal light generated by the combined wave of the signal light and the local emission.
 なお、導入結合部8は、「単一のレーザ光から得られた複数の信号光をサブアレイ化するサブアレイ化部」及び「サブアレイ化部によるサブアレイ化後の信号光及び空間分配部による変換後の局発光を合波することで干渉信号光を生成し、当該干渉信号光を空間に出射する合波部」に相当する。 The introduction coupling unit 8 is a "sub-arraying unit that sub-arrays a plurality of signal lights obtained from a single laser beam" and a "signal light after sub-arraying by the sub-arraying unit and after conversion by the space distribution unit". It corresponds to a "combined part" that generates interference signal light by combining local light emission and emits the interference signal light into space.
 カセグレン反射光学系9は、導入結合部8による合波後の光のビーム径を拡大又は縮小する。カセグレン反射光学系9は、図1に示すように、副鏡であるアキシコン光学系91及び主鏡であるアキシコン光学系92から構成される。 The Cassegrain reflective optical system 9 expands or contracts the beam diameter of the light after the combined wave by the introduction coupling portion 8. As shown in FIG. 1, the casegren reflection optical system 9 is composed of an axicon optical system 91 as a secondary mirror and an axicon optical system 92 as a primary mirror.
 アキシコン光学系91は、凸型の略円板形状に構成され、反射面911を有している。反射面911は、入射された光のビーム径(内径及び外径)を拡大する。反射面911は、曲面状に突き出し、曲面の頂点がアキシコン光学系91の中心に位置するように構成されている。アキシコン光学系91は、反射面911が導入結合部8と対向するように配置されている。 The axicon optical system 91 is configured in a convex substantially disk shape and has a reflecting surface 911. The reflective surface 911 enlarges the beam diameter (inner diameter and outer diameter) of the incident light. The reflective surface 911 is configured to project in a curved surface so that the apex of the curved surface is located at the center of the axicon optical system 91. The axicon optical system 91 is arranged so that the reflecting surface 911 faces the introduction coupling portion 8.
 アキシコン光学系92は、凹型の略円板形状に構成され、反射面921及び孔922を有している。反射面921は、アキシコン光学系91による拡大後の光を空間に出射する。反射面921は、曲面状に窪み、曲面の頂点がアキシコン光学系92の中心に位置するように構成されている。反射面921の径は、反射面911の径より大きい。孔922は、反射面921の頂点を軸心に構成された貫通孔である。アキシコン光学系92は、孔922の軸心が、導入結合部8からの光の光軸に沿うように配置されている。また、アキシコン光学系92は、反射面921が反射面911に対向し、且つ、反射面921の軸心が反射面911の軸心に一致するように配置されている。 The axicon optical system 92 is configured in a concave substantially disk shape, and has a reflecting surface 921 and holes 922. The reflecting surface 921 emits the light expanded by the Axicon optical system 91 into space. The reflective surface 921 is configured to be recessed in a curved surface shape so that the apex of the curved surface is located at the center of the axicon optical system 92. The diameter of the reflective surface 921 is larger than the diameter of the reflective surface 911. The hole 922 is a through hole formed with the apex of the reflecting surface 921 as the axis. In the axicon optical system 92, the axis of the hole 922 is arranged so as to be along the optical axis of the light from the introduction coupling portion 8. Further, in the Axicon optical system 92, the reflecting surface 921 faces the reflecting surface 911, and the axis of the reflecting surface 921 coincides with the axis of the reflecting surface 911.
 なお図1では、レーザ装置がカセグレン反射光学系9を備えた場合を示した。しかしながら、これに限らず、カセグレン反射光学系9は、レーザ装置の外部に設けられていてもよい。
 また図1では、レーザ装置が、基準光源1、光分配器2、コリメータレンズ3、K個の回路アレイ4、信号処理部5及び制御信号生成部6を備えた場合を示した。しかしながら、これに限らず、基準光源1、光分配器2、コリメータレンズ3、K個の回路アレイ4、信号処理部5及び制御信号生成部6は、レーザ装置の外部に設けられていてもよい。
Note that FIG. 1 shows a case where the laser device is provided with the Cassegrain reflective optical system 9. However, the present invention is not limited to this, and the Cassegrain reflection optical system 9 may be provided outside the laser apparatus.
Further, FIG. 1 shows a case where the laser apparatus includes a reference light source 1, an optical distributor 2, a collimator lens 3, K circuit arrays 4 k , a signal processing unit 5, and a control signal generation unit 6. However, the present invention is not limited to this, and the reference light source 1, the optical distributor 2, the collimator lens 3, the K circuit array 4 k , the signal processing unit 5, and the control signal generation unit 6 may be provided outside the laser device. good.
 実施の形態1に係るレーザ装置は、従来構成に対し、空間分配部7及び導入結合部8及びカセグレン反射光学系9を付加している。
 そして、実施の形態1に係るレーザ装置は、単一の局発光を空間分配部7にて、光軸中心を除く位置に光が配置された形状に変換し、導入結合部8にて、カセグレン反射光学系9の側面から複数のサブアレイ化した信号光を導入し、コヒーレントに合成する。
 これにより、実施の形態1に係るレーザ装置は、カセグレン反射光学系9の主鏡であるアキシコン光学系92に蹴られなくビームを配置可能となる。
The laser apparatus according to the first embodiment has a space distribution unit 7, an introduction coupling unit 8, and a Cassegrain reflection optical system 9 added to the conventional configuration.
Then, the laser apparatus according to the first embodiment converts a single local emission into a shape in which the light is arranged at a position other than the center of the optical axis in the space distribution unit 7, and the Cassegrain in the introduction coupling unit 8. A plurality of sub-arrayed signal lights are introduced from the side surface of the reflected optical system 9 and coherently synthesized.
As a result, the laser apparatus according to the first embodiment can arrange the beam without being kicked by the Axicon optical system 92, which is the primary mirror of the Cassegrain reflective optical system 9.
 実施の形態1に係るレーザ装置は、従来構成と比較し、以下のような効果を奏する。 The laser device according to the first embodiment has the following effects as compared with the conventional configuration.
 まず、従来構成は、アキシコン光学系を構成する副鏡からの反射戻り光を回避するため、環状鏡によりレーザ光の中心部を取除く必要があり、レーザ光の利用効率が低下する。これに対し、実施の形態1に係るレーザ装置は、光軸中心を除く位置に光が配置された形状に変換した局発光と複数のサブアレイ化後の信号光とを結合させ、カセグレン反射光学系9に入射する。これにより、このレーザ装置は、レーザ光の中心部を取除くことなくビームを生成でき、レーザ光の利用効率を向上可能となる。 First, in the conventional configuration, in order to avoid the reflected return light from the secondary mirror constituting the Axicon optical system, it is necessary to remove the central part of the laser beam by the annular mirror, and the utilization efficiency of the laser beam is lowered. On the other hand, in the laser apparatus according to the first embodiment, the Cassegrain reflection optical system combines the local emission converted into a shape in which the light is arranged at a position other than the center of the optical axis and the signal light after a plurality of sub-arrays. It is incident on 9. As a result, this laser device can generate a beam without removing the central portion of the laser beam, and can improve the utilization efficiency of the laser beam.
 また、従来構成は、複数のサブアレイ化された信号光をコヒーレント結合する場合、各信号光のビーム範囲の全てをカバーするため、局発光のビーム径を拡大して均一な振幅及び位相を維持した局発光を生成する必要又はビームスプリッタを大型化する必要があった。この場合、従来構成では、サブアレイ数の増加と共に、波面歪み又は光学アライメント誤差に起因して位相雑音が生じる。これに対し、実施の形態1に係るレーザ装置は、局発光を、光軸中心を除く位置に光が配置された形状に変換する。これにより、このレーザ装置は、信号光と結合される局発光のビーム径を小さくできるため、位相雑音を抑制でき、サブアレイ数を増加可能となる。 Further, in the conventional configuration, when a plurality of sub-arrays of signal light are coherently coupled, the beam diameter of the local emission is expanded to maintain uniform amplitude and phase in order to cover the entire beam range of each signal light. It was necessary to generate local emission or to increase the size of the beam splitter. In this case, in the conventional configuration, as the number of subarrays increases, phase noise occurs due to wavefront distortion or optical alignment error. On the other hand, the laser device according to the first embodiment converts the local light emission into a shape in which the light is arranged at a position other than the center of the optical axis. As a result, this laser device can reduce the beam diameter of the local emission coupled with the signal light, so that phase noise can be suppressed and the number of subarrays can be increased.
 以上のように、この実施の形態1によれば、レーザ装置は、単一のレーザ光から得られた複数の信号光をサブアレイ化するサブアレイ化部と、レーザ光から得られた局発光を、光軸中心を除く位置に光が配置された形状に変換する空間分配部7と、サブアレイ化部によるサブアレイ化後の信号光及び空間分配部7による変換後の局発光を合波することで干渉信号光を生成し、当該干渉信号光を空間に出射する合波部とを備えた。これにより、実施の形態1に係るレーザ装置は、カセグレン反射光学系9と組合せて使用される場合でも、従来構成に対し、出力スケーラビリティを確保でき且つ出力光の利用効率の向上が可能となる。 As described above, according to the first embodiment, the laser apparatus has a sub-array unit that sub-arrays a plurality of signal lights obtained from a single laser light, and a local emission obtained from the laser light. Interference by combining the space distribution unit 7 that converts the light into a shape in which the light is arranged at a position other than the center of the optical axis, the signal light after the sub-array formation by the sub-arraying unit, and the station emission after the conversion by the space distribution unit 7. It is provided with a wave junction that generates signal light and emits the interference signal light into space. As a result, even when the laser device according to the first embodiment is used in combination with the Cassegrain reflective optical system 9, the output scalability can be ensured and the utilization efficiency of the output light can be improved as compared with the conventional configuration.
実施の形態2.
 実施の形態1に係るレーザ装置では、信号光のサブアレイ数が2(K=2)である場合を示したが、これに限らない。実施の形態2に係るレーザ装置では、信号光のサブアレイ数(K)を2以上の自然数に拡張し、出力光の出射強度向上を図った構成を示す。
Embodiment 2.
In the laser apparatus according to the first embodiment, the case where the number of sub-arrays of the signal light is 2 (K = 2) is shown, but the present invention is not limited to this. In the laser apparatus according to the second embodiment, the configuration in which the number of sub-arrays (K) of the signal light is expanded to a natural number of 2 or more to improve the emission intensity of the output light is shown.
 図5は実施の形態2に係るレーザ装置の構成例を示す図である。この図5に示す実施の形態2に係るレーザ装置の構成例は、図1に示す実施の形態1に係るレーザ装置の構成例に対し、信号光のサブアレイ数が異なる点以外は同じである。 FIG. 5 is a diagram showing a configuration example of the laser device according to the second embodiment. The configuration example of the laser apparatus according to the second embodiment shown in FIG. 5 is the same as the configuration example of the laser apparatus according to the first embodiment shown in FIG. 1 except that the number of subarrays of the signal light is different.
 なお、実施の形態2に係るレーザ装置では、回路アレイ4、反射鏡81、コリメータアレイ82及びビームコンバイナ83が、信号光のサブアレイ数分配置される。また、反射鏡81、コリメータアレイ82及びビームコンバイナ83は、図6に示すように、アキシコン光学系91の形状に合わせて、アキシコン光学系91の中心部を避けて、環状に配置される。図6において符号601は、信号光と局発光とが合波することで生成された干渉信号光を示している。 In the laser apparatus according to the second embodiment, the circuit array 4 k , the reflector 81 k , the collimator array 82 k, and the beam combiner 83 k are arranged for the number of sub-arrays of signal light. Further, as shown in FIG. 6, the reflector 81 k , the collimator array 82 k, and the beam combiner 83 k are arranged in an annular shape in accordance with the shape of the axicon optical system 91, avoiding the central portion of the axicon optical system 91. Ru. In FIG. 6, reference numeral 601 indicates the interference signal light generated by the combined wave of the signal light and the local emission.
 実施の形態2に係るレーザ装置は、従来構成及び実施の形態1に係るレーザ装置と比較し、以下のような効果を奏する。 The laser apparatus according to the second embodiment has the following effects as compared with the laser apparatus according to the conventional configuration and the first embodiment.
 まず、従来構成では、ビームスプリッタを用いて信号光と局発光を合波しているため、加算できる信号光サブアレイ数は2に制限されていた。これに対し、実施の形態2に係るレーザ装置は、信号光のサブアレイ数を2以上で、隙間なく配置して合成させることができるため、レーザ光を高出力化することができる。更に、このレーザ装置は、レーザ光の中心部を取除くことなくビームを生成できるため、高い合成効率の光フェーズドアレイを実現できる。 First, in the conventional configuration, since the signal light and the local emission are combined using a beam splitter, the number of signal light subarrays that can be added is limited to 2. On the other hand, in the laser apparatus according to the second embodiment, the number of sub-arrays of the signal light is 2 or more, and the laser light can be arranged and synthesized without a gap, so that the laser light can be increased in output. Further, since this laser device can generate a beam without removing the central portion of the laser beam, it is possible to realize an optical phased array with high synthesis efficiency.
 また、実施の形態2に係るレーザ装置は、信号光と局発光の合波光を2以上のサブアレイ数で任意に配置することができる。更に、このレーザ装置は、各要素回路41knが有する可変移相器417knに対して、任意の外部制御信号A41knを印加することができる。よって、このレーザ装置は、反射鏡81、コリメータアレイ82及びビームコンバイナ83の配置数又は可変移相器417knに対する外部制御信号A41knが適切に設計されることで、従来構成又は実施の形態1に係るレーザ装置と比較し、多様な位相分布をもつ出力光を生成することができる。 Further, in the laser apparatus according to the second embodiment, the signal light and the combined light of the station emission can be arbitrarily arranged with two or more sub-arrays. Further, this laser device can apply an arbitrary external control signal A41 kn to the variable phase shifter 417 kn of each element circuit 41 kn. Therefore, this laser device is conventionally configured or implemented by appropriately designing the number of arrangements of the reflector 81 k , the collimator array 82 k and the beam combiner 83 k , or the external control signal A41 kn for the variable phase shifter 417 kn. Compared with the laser apparatus according to the first embodiment, it is possible to generate output light having various phase distributions.
実施の形態3.
 実施の形態3では、空間分配部7が有する円錐プリズム72に対し、外部制御による駆動機構を付加し、カセグレン反射光学系9から出射される光のビーム径の可変機能を付加した構成を示す。
 図7は実施の形態3に係るレーザ装置の構成例を示す図である。この図7に示す実施の形態3に係るレーザ装置は、図5に示す実施の形態2に係るレーザ装置に対し、信号処理部10及び駆動制御部11が追加されている。その他の構成は、実施の形態2に係るレーザ装置と同様であり、同一の符号を付して異なる部分についてのみ説明を行う。
Embodiment 3.
In the third embodiment, a drive mechanism by external control is added to the conical prism 72 included in the space distribution unit 7, and a variable function of the beam diameter of the light emitted from the Cassegrain reflection optical system 9 is added.
FIG. 7 is a diagram showing a configuration example of the laser device according to the third embodiment. In the laser apparatus according to the third embodiment shown in FIG. 7, a signal processing unit 10 and a drive control unit 11 are added to the laser apparatus according to the second embodiment shown in FIG. Other configurations are the same as those of the laser apparatus according to the second embodiment, and the same reference numerals are given and only different parts will be described.
 信号処理部10は、所望のビーム径に応じて、円錐プリズム72の駆動量を算出する。 The signal processing unit 10 calculates the driving amount of the conical prism 72 according to the desired beam diameter.
 駆動制御部11は、信号処理部10により算出された駆動量で、円錐プリズム72を光軸方向に駆動する。 The drive control unit 11 drives the conical prism 72 in the optical axis direction with the drive amount calculated by the signal processing unit 10.
 図8は、円錐プリズム71と円錐プリズム72との配置例を示す図である。
 円錐プリズム71と円錐プリズム72との間の距離が変わると、局発光のビーム径が変化する。よって、実施の形態2に係るレーザ装置は、円錐プリズム72を光軸方向に駆動することで、カセグレン反射光学系9から出射される光のビーム径を変えることができる。図8において、符号801は円錐プリズム72の駆動方向を示し、符号802は空間分配部7による変換後の局発光のビーム径を示している。
FIG. 8 is a diagram showing an arrangement example of the conical prism 71 and the conical prism 72.
When the distance between the conical prism 71 and the conical prism 72 changes, the beam diameter of the local emission changes. Therefore, the laser device according to the second embodiment can change the beam diameter of the light emitted from the Cassegrain reflection optical system 9 by driving the conical prism 72 in the optical axis direction. In FIG. 8, reference numeral 801 indicates the driving direction of the conical prism 72, and reference numeral 802 indicates the beam diameter of the local emission after conversion by the space distribution unit 7.
 なお図7,8では、駆動制御部11が円錐プリズム72を駆動する場合を示した。しかしながら、これに限らず、駆動制御部11は、円錐プリズム72ではなく、円錐プリズム71を駆動してもよいし、円錐プリズム71及び円錐プリズム72の両方を駆動してもよい。 Note that FIGS. 7 and 8 show a case where the drive control unit 11 drives the conical prism 72. However, the present invention is not limited to this, and the drive control unit 11 may drive the conical prism 71 instead of the conical prism 72, or may drive both the conical prism 71 and the conical prism 72.
 また図7,8では、空間分配部7が円錐プリズム71及び円錐プリズム72により構成された場合を示した。しかしながら、空間分配部7がその他のプリズム又はレンズにより構成された場合についても、上記と同様に、信号処理部10及び駆動制御部11による制御を付加可能である。 Further, FIGS. 7 and 8 show a case where the space distribution unit 7 is composed of a conical prism 71 and a conical prism 72. However, even when the space distribution unit 7 is composed of other prisms or lenses, control by the signal processing unit 10 and the drive control unit 11 can be added as described above.
 また、信号処理部10及び駆動制御部11は、「光学素子のうちの少なくとも1つを軸方向に駆動することで、空間分配部による変換後の局発光のビーム径を変える調整部」に相当する。 Further, the signal processing unit 10 and the drive control unit 11 correspond to "an adjustment unit that changes the beam diameter of the station emission after conversion by the space distribution unit by driving at least one of the optical elements in the axial direction". do.
 実施の形態3に係るレーザ装置は、従来構成、実施の形態1及び実施の形態2に係るレーザ装置と比較し、カセグレン反射光学系9を構成する大型なアキシコン光学系91及びアキシコン光学系92を駆動することなく、カセグレン反射光学系9から出射される光のビーム径を変えることができる。 The laser apparatus according to the third embodiment has a large axicon optical system 91 and an axicon optical system 92 constituting the casegren reflection optical system 9 as compared with the conventional configuration, the laser apparatus according to the first embodiment and the second embodiment. The beam diameter of the light emitted from the casegren reflection optical system 9 can be changed without driving.
 なお、各実施の形態の自由な組合わせ、或いは各実施の形態の任意の構成要素の変形、若しくは各実施の形態において任意の構成要素の省略が可能である。 It should be noted that it is possible to freely combine each embodiment, modify any component of each embodiment, or omit any component in each embodiment.
 本開示に係るレーザ装置は、カセグレン反射光学系と組合せて使用される場合でも、従来構成に対してレーザ光の利用効率の向上が可能となり、信号光を空間に出射するレーザ装置等に用いるのに適している。 Even when the laser device according to the present disclosure is used in combination with the casegren reflection optical system, it is possible to improve the utilization efficiency of the laser light as compared with the conventional configuration, and the laser device is used for a laser device or the like that emits signal light into space. Suitable for.
 1 基準光源、2 光分配器、3 コリメータレンズ、4 回路アレイ、5 信号処理部、6 制御信号生成部、7 空間分配部、8 導入結合部、9 カセグレン反射光学系、10 信号処理部、11 駆動制御部、41kn 要素回路、71 円錐プリズム、72 円錐プリズム、81 反射鏡、82 コリメータアレイ、83 ビームコンバイナ、91 アキシコン光学系、92 アキシコン光学系、411kn 光位相変調器、412kn 光増幅器、413kn 光サーキュレータ、414kn 光電変換器、415kn 位相同期回路、416kn 基準信号源、417kn 可変移相器、418kn 位相比較器、419kn ループフィルタ、420kn 信号生成器、821kn 部分反射器、822kn 光コリメータ。 1 reference light source, 2 optical distributor, 3 collimeter lens, 4 k circuit array, 5 signal processing unit, 6 control signal generation unit, 7 spatial distribution unit, 8 introduction coupling unit, 9 casegren reflection optics, 10 signal processing unit, 11 drive control unit, 41 kn element circuit, 71 conical prism, 72 conical prism, 81 k reflector, 82 k collimeter array, 83 k beam combiner, 91 axicon optics, 92 axicon optics, 411 kn optical phase modulator, 412 kn optical amplifier, 413 kn optical circulator, 414 kn photoelectric converter, 415 kn phase synchronization circuit, 416 kn reference signal source, 417 kn variable phase shifter, 418 kn phase comparator, 419 kn loop filter, 420 kn signal generation. Instrument, 821 kn partial reflector, 822 kn optical collimeter.

Claims (6)

  1.  単一のレーザ光から得られた複数の信号光をサブアレイ化するサブアレイ化部と、
     前記レーザ光から得られた局発光を、光軸中心を除く位置に光が配置された形状に変換する空間分配部と、
     前記サブアレイ化部によるサブアレイ化後の信号光及び前記空間分配部による変換後の局発光を合波することで干渉信号光を生成し、当該干渉信号光を空間に出射する合波部と
     を備えたレーザ装置。
    A sub-array unit that sub-arrays multiple signal lights obtained from a single laser beam,
    A spatial distribution unit that converts the local light emitted from the laser beam into a shape in which the light is arranged at a position other than the center of the optical axis.
    It is provided with a wave-setting unit that generates interference signal light by combining the signal light after sub-arraying by the sub-arraying unit and the station emission after conversion by the space distribution unit, and emits the interference signal light to space. Laser device.
  2.  光位相制御信号に従い、前記レーザ光から得られた複数の信号光に対して可変位相制御を施す光位相制御器と、
     前記光位相制御器による可変位相制御後の信号光を部分的に反射又は屈折させ、当該部分的に反射又は屈折させた信号光及び前記レーザ光から得られた局発光の合波により生成された干渉信号光を電気信号に変換する光検出器と、
     前記光検出器により得られた電気信号と基準信号との間の位相誤差に基づいて、前記光位相制御信号を生成する位相同期回路とを備え、
     前記サブアレイ化部は、前記光位相制御器による可変位相制御後の信号光をコリメートし、当該コリメート後の信号光をサブアレイ化する
     ことを特徴とする請求項1記載のレーザ装置。
    An optical phase controller that performs variable phase control on a plurality of signal lights obtained from the laser beam according to the optical phase control signal.
    The signal light after variable phase control by the optical phase controller is partially reflected or refracted, and is generated by the combined wave of the signal light partially reflected or refracted and the local emission obtained from the laser light. Interference signal An optical detector that converts light into an electrical signal,
    A phase-locked loop that generates the optical phase control signal based on the phase error between the electrical signal and the reference signal obtained by the photodetector is provided.
    The laser device according to claim 1, wherein the sub-array unit collimates the signal light after variable phase control by the optical phase controller and sub-arrays the signal light after the collimation.
  3.  前記空間分配部は、プリズム又はレンズを含む複数の光学素子を用いて構成された
     ことを特徴とする請求項1記載のレーザ装置。
    The laser device according to claim 1, wherein the space distribution unit is configured by using a plurality of optical elements including a prism or a lens.
  4.  前記空間分配部は、円錐プリズム又は円錐レンズを含む複数の光学素子を用い、前記レーザ光から得られた局発光を円環状に変換する
     ことを特徴とする請求項1記載のレーザ装置。
    The laser device according to claim 1, wherein the space distribution unit uses a plurality of optical elements including a conical prism or a conical lens to convert local emission obtained from the laser light into an annular shape.
  5.  前記光学素子のうちの少なくとも1つを軸方向に駆動することで、前記空間分配部による変換後の局発光のビーム径を変える調整部を備えた
     ことを特徴とする請求項4記載のレーザ装置。
    The laser apparatus according to claim 4, further comprising an adjusting unit for changing the beam diameter of the station emission after conversion by the space distribution unit by driving at least one of the optical elements in the axial direction. ..
  6.  前記合波部により出射された干渉信号光のビーム径を拡大又は縮小させるカセグレン反射光学系を備えた
     ことを特徴とする請求項1から請求項5のうちの何れか1項記載のレーザ装置。
    The laser apparatus according to any one of claims 1 to 5, further comprising a Cassegrain reflective optical system for expanding or reducing the beam diameter of the interference signal light emitted by the combiner.
PCT/JP2020/028413 2020-07-22 2020-07-22 Laser device WO2022018850A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2020/028413 WO2022018850A1 (en) 2020-07-22 2020-07-22 Laser device
JP2022538549A JP7143553B2 (en) 2020-07-22 2020-07-22 laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/028413 WO2022018850A1 (en) 2020-07-22 2020-07-22 Laser device

Publications (1)

Publication Number Publication Date
WO2022018850A1 true WO2022018850A1 (en) 2022-01-27

Family

ID=79729138

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/028413 WO2022018850A1 (en) 2020-07-22 2020-07-22 Laser device

Country Status (2)

Country Link
JP (1) JP7143553B2 (en)
WO (1) WO2022018850A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012103487A (en) * 2010-11-10 2012-05-31 Kawasaki Heavy Ind Ltd Laser irradiation device
WO2015064017A1 (en) * 2013-10-29 2015-05-07 川崎重工業株式会社 Laser-beam synthesis device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012103487A (en) * 2010-11-10 2012-05-31 Kawasaki Heavy Ind Ltd Laser irradiation device
WO2015064017A1 (en) * 2013-10-29 2015-05-07 川崎重工業株式会社 Laser-beam synthesis device

Also Published As

Publication number Publication date
JPWO2022018850A1 (en) 2022-01-27
JP7143553B2 (en) 2022-09-28

Similar Documents

Publication Publication Date Title
JP5701618B2 (en) Extreme ultraviolet light generator
US8228599B1 (en) Coherent beam combining using real time holography
CN113394653B (en) Laser coherent array and control method
US6999482B2 (en) Wavelength tunable laser with diffractive optical element
US7672550B2 (en) Illumination light source and image display apparatus
JP4260851B2 (en) Illumination light source device and image display device
WO2022018850A1 (en) Laser device
TW202204970A (en) Methods and devices for optimizing contrast for use with obscured imaging systems
US8736932B1 (en) Incoherent beam combining of parallel beams with optical path compensation using real time holography
CN112180613B (en) System and method for generating orbital angular momentum beams with switchable radial and angular orders
WO2011118380A1 (en) Laser device
JP2003347826A (en) Optically controlled phased array antenna
JP3009631B2 (en) Optically controlled phased array antenna
US11735885B2 (en) Laser device
CN100397139C (en) Apparatus and method for self-phase control in amplifier with stimulated brillouin scattering phase conjugate mirror
US8339694B1 (en) Incoherent spectral beam combining with optical path compensation using real time holography
CN112117632B (en) Vortex light generation system and method based on liquid crystal array
JP4483777B2 (en) Optical phase delay control device and optical control beam forming circuit
US7539232B1 (en) Compact phase locked laser array and related techniques
JP6119761B2 (en) Optical path control device
JP2015225222A (en) Beam scanning device, optical wireless communication system, and beam scanning method
CN117348262A (en) Supercontinuum hollow beam emission system based on space shaping
JP4974871B2 (en) Antenna device
JP3564004B2 (en) Multi-wavelength laser optics
JP4297043B2 (en) Optically controlled array antenna device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20946160

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022538549

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20946160

Country of ref document: EP

Kind code of ref document: A1