WO2022018810A1 - Data extraction device for storage battery and data extraction method for storage battery - Google Patents

Data extraction device for storage battery and data extraction method for storage battery Download PDF

Info

Publication number
WO2022018810A1
WO2022018810A1 PCT/JP2020/028161 JP2020028161W WO2022018810A1 WO 2022018810 A1 WO2022018810 A1 WO 2022018810A1 JP 2020028161 W JP2020028161 W JP 2020028161W WO 2022018810 A1 WO2022018810 A1 WO 2022018810A1
Authority
WO
WIPO (PCT)
Prior art keywords
value
storage battery
data extraction
section
time
Prior art date
Application number
PCT/JP2020/028161
Other languages
French (fr)
Japanese (ja)
Inventor
翔治 吉田
裕二 西川
涼 大嶋
優斗 沖田
直人 長岡
Original Assignee
日新電機株式会社
学校法人同志社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日新電機株式会社, 学校法人同志社 filed Critical 日新電機株式会社
Priority to JP2022538516A priority Critical patent/JPWO2022018810A1/ja
Priority to PCT/JP2020/028161 priority patent/WO2022018810A1/en
Publication of WO2022018810A1 publication Critical patent/WO2022018810A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/385Arrangements for measuring battery or accumulator variables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/389Measuring internal impedance, internal conductance or related variables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/392Determining battery ageing or deterioration, e.g. state of health

Definitions

  • the present invention relates to a storage battery data extraction device and a storage battery data extraction method for performing deterioration diagnosis by transient response analysis of the storage battery.
  • Patent Document 1 As a deterioration diagnosis technique for a storage battery, for example, there is a technique disclosed in Patent Document 1 that uses the transient response characteristics of a storage battery in operation.
  • the technique disclosed in Patent Document 1 is to extract current value data at the time of transient response of the storage battery and perform deterioration diagnosis of the storage battery based on the analysis of the extracted current value data at the time of transient response.
  • the present inventor considers that it is one of the effective means to extract more useful data such as the current value at the time of transient response from the storage battery in order to improve the accuracy of the deterioration diagnosis of the storage battery by the above method.
  • the accuracy of the deterioration diagnosis of the storage battery is to properly grasp the target transient response characteristics in order to carefully select the transient response characteristics that enhance the accuracy of the deterioration diagnosis of the storage battery, and to extract more useful data such as the current value at the time of the transient response. I think it will lead to improvement.
  • An object of the present invention is to provide a storage battery data extraction device and a storage battery data extraction method that can improve the accuracy of storage battery deterioration diagnosis.
  • the storage battery data extraction device that solves the above problems has a storage unit that stores detected value data capable of diagnosing deterioration of the storage battery at predetermined sampling intervals, and a storage unit that stores the detected value data stored in the storage unit during a transient response of the storage battery.
  • a storage battery data extraction device including a data extraction unit for extracting such data, wherein the data extraction unit is a variable section in which a C rate value or a current value or a power value suddenly changes based on a detection value of the storage battery. It is divided into at least three sections, the front section of the fluctuation section and the rear section of the fluctuation section.
  • the C rate value, the current value, or the power value fluctuates by the second threshold value or more within the second hour, and the sudden change transition in the fluctuation section is determined. Judgment of the stable transition of the rear section in which the fluctuation of the rate value or the current value or the power value continues for the third time or more at the third threshold value or less is performed, and when the data extraction condition based on each judgment is satisfied, the storage unit. It is configured to extract the relevant data at the time of the corresponding transient response from.
  • the data extraction unit is based on the C rate value, the current value, or the power value of the storage battery, and in the previous section before the sudden change, the fluctuation of the first threshold value or less is continued for the first hour or more.
  • the stable transition is judged, and in the fluctuation section, the sudden change transition of the fluctuation section due to the fluctuation of the second threshold or more within the second hour is judged, and in the latter section, the fluctuation of the fluctuation of the third threshold or less continues for the third hour or more.
  • the data extraction unit further determines whether the magnitude of the C rate value, the current value, or the power value is equal to or less than the fourth threshold value in the previous section, or further in the previous section. It is preferable that it is configured to determine whether or not the fluctuation of the voltage value based on the detected value of the storage battery is equal to or less than the fifth threshold value, or both.
  • the data extraction unit determines whether the magnitude of the C rate value, the current value, or the power value in the previous section is equal to or less than the fourth threshold value, or the fluctuation of the voltage value of the storage battery in the previous section is the fifth threshold value. It is determined whether it is the following, or both. That is, since the data extraction unit more preferably defines the stable transition in the previous section, it is possible to extract data showing more desirable transient response characteristics, and further improvement in the accuracy of the deterioration diagnosis of the storage battery can be expected.
  • the data extraction unit is further configured to determine whether the sudden change in the C rate value, the current value, or the power value has converged within the fourth hour in the fluctuation section. Is preferable.
  • the data extraction unit further determines whether the sudden change in the C rate value, the current value, or the power value in the fluctuation section has converged within the fourth hour. That is, since the data extraction unit more preferably defines the sudden change transition of the fluctuation section, it is possible to extract data showing more desirable transient response characteristics, and further improvement in the accuracy of the deterioration diagnosis of the storage battery can be expected.
  • the data extraction unit erroneously determines that the local approximate transition that may occur near the change point of the C rate value or the current value or the power value in the fluctuation section is a stable transition in the subsequent section. It is preferable that it is configured not to.
  • the data extraction unit since a local approximate transition may occur near the change point of the C rate value or the current value or the power value in the fluctuation section, it is easy to erroneously determine that the transition is stable in the subsequent section. Then, in this case, even if there is data showing desirable transient response characteristics, there is a possibility that data extraction will not be performed if it is erroneously determined that the transition is stable in the subsequent section.
  • the data extraction unit exhibits desirable transient response characteristics because it does not erroneously determine the local approximate transition that may occur near the change point such as the C rate value in the fluctuation section as the stable transition in the subsequent section. It is possible to extract as much data as possible.
  • the data extraction unit further determines whether the fluctuation of the C rate value, the current value, or the power value is within the fifth hour in the previous section, and when the fluctuation exceeds the fifth hour. , It is preferable that the data stored in the storage unit is configured to delete the portion exceeding the first time.
  • the data extraction unit further determines whether the fluctuation of the C rate value, the current value, or the power value in the previous section is within the fifth hour. Then, when the fifth time is exceeded, the data extraction unit deletes the data stored in the storage unit that exceeds the first hour. That is, the number of data to be stored in the storage unit is suppressed, and it is possible to use an inexpensive storage device having a small storage capacity.
  • the data extraction unit is configured to perform each of the determinations based on the C rate value.
  • the data extraction unit makes each determination based on the C rate value. That is, since the C rate value is an index indicating the charge / discharge speed of the storage battery, it can be commonly used for storage batteries having various battery capacities, and it is expected that the versatility of the data extraction device will be improved.
  • a storage battery data extraction method that solves the above problems stores detection value data capable of diagnosing deterioration of the storage battery in a storage unit at predetermined sampling intervals, and from the detection value data stored in the storage unit during a transient response of the storage battery. It is a data extraction method of a storage battery for extracting such data, and is a fluctuation section in which a C rate value or a current value or a power value suddenly changes based on a detection value of the storage battery, a section before the fluctuation section and a section after the fluctuation section.
  • the stable transition of the previous section in which the fluctuation of the C rate value or the current value or the power value continues for the first hour or more at the first threshold value or less is determined.
  • the sudden change transition of the fluctuation section in which the C rate value or the current value or the power value fluctuates by the second threshold value or more within the second hour is determined, and in the latter section, the fluctuation of the C rate value or the current value or the power value is the third.
  • the stable transition of the post-section that continues for the third hour or more below the threshold value is determined, and when the data extraction conditions based on the determinations are satisfied, the data related to the corresponding transient response is extracted from the storage unit.
  • the detection value of the storage battery is further determined. It is preferable to determine whether or not the fluctuation of the voltage value based on the fifth threshold value is equal to or less than the fifth threshold value, or both.
  • the storage battery data extraction device and the storage battery data extraction method of the present invention it is possible to improve the accuracy of the deterioration diagnosis of the storage battery.
  • the flow chart of the data extraction processing of the storage battery of 1st Embodiment. Explanatory drawing which concerns on the data extraction processing of the storage battery of 1st Embodiment.
  • the flow chart which shows the example of the partial change of the data extraction process of a storage battery.
  • Explanatory drawing which concerns on the example of partial modification of the data extraction process of a storage battery.
  • the waveform diagram which shows the actual measurement pattern 1 of the storage battery of 1st Embodiment.
  • the waveform diagram which shows the actual measurement pattern 5 of the storage battery of the comparative example. A circuit diagram showing an equivalent circuit of a storage battery used in transient response analysis.
  • the result figure of the transient response analysis of 2nd Embodiment. The result figure of the transient response analysis of 2nd Embodiment.
  • the result figure of the transient response analysis of 2nd Embodiment. The result figure of the transient response analysis of 2nd Embodiment.
  • the photovoltaic power generation system 11 as a distributed power source using renewable energy includes a solar panel 12 and a photovoltaic power conditioner 13.
  • the photovoltaic power generation system 11 converts the DC power generated by the solar panel 12 into commercial AC power by the power conditioner 13 for photovoltaic power generation, and converts the converted AC power into a power system via the grid interconnection facility 10. It is configured to be able to supply to.
  • the storage battery system 14 includes a storage battery 15 made of a stationary lithium ion battery or the like and a power conditioner 16 for the storage battery, and is attached to the photovoltaic power generation system 11.
  • the storage battery system 14 charges and discharges the storage battery 15 for output smoothing so that the rate of change of the output power of the photovoltaic power generation system 11 in which the generated power can fluctuate greatly becomes a predetermined value or less, and the power conditioner 16 for the storage battery. It suppresses output fluctuations to the power system through power conversion.
  • a measuring instrument 17 is installed in the storage battery system 14.
  • the measuring instrument 17 is an ammeter 18, a voltmeter 19, a thermometer 20, and the like.
  • the ammeter 18 detects the charge / discharge current of the storage battery 15 and outputs the detection signal to the data extraction device 21.
  • the voltmeter 19 detects the input / output voltage of the storage battery 15 and outputs the detection signal to the data extraction device 21.
  • the thermometer 20 detects the temperature of the storage battery 15, the ambient temperature, and the like, and outputs the detection signal to the data extraction device 21.
  • the data extraction device 21 includes a storage unit 22 and a data extraction unit 23.
  • the storage unit 22 stores current value data based on the detection signal from the ammeter 18, voltage value data based on the detection signal from the voltmeter 19, and temperature data based on the detection signal from the voltmeter 20 at predetermined sampling intervals. It is possible.
  • the data extraction unit 23 stores that the change mode of the C rate value of the storage battery 15 that can be calculated based on the current value data shows a predetermined charge / discharge characteristic (transient response characteristic) as a data extraction condition.
  • the current value data, the voltage value data, and the temperature data are output from the unit 22 to the battery deterioration diagnosis device 24 together with the time data.
  • the C rate value of the storage battery 15 is an index indicating the charge / discharge speed of the storage battery 15, and is a useful parameter that can be commonly used for storage batteries 15 having various battery capacities.
  • the details of the data extraction condition (data extraction process) of the data extraction unit 23 will be described later.
  • the battery deterioration diagnosis device 24 performs transient response analysis using the equivalent circuit 25 of the storage battery 15 shown in FIG. 11 based on the extracted data of the storage battery 15 extracted from the data extraction unit 23. That is, the battery deterioration diagnosis device 24 compares the transient response analysis value based on the current value, voltage value, and temperature of the storage battery 15 associated with the time with the predetermined reference value for the transient response analysis stored in advance, and the storage battery. Perform 15 deterioration diagnoses.
  • the current value, the voltage value, and the temperature of the storage battery 15 are changed only when the desired change is made in any of the front section, the fluctuation section, and the rear section at the time of the transient response of the C rate value. Data extraction is performed.
  • step S1 of the data extraction process the C rate value of the storage battery 15 at the time t 0 set immediately after the start of the extraction process or the previous process is set as the reference C 0 value, and every time t n of the subsequent sampling cycle is set.
  • This time t 0 is the reference time of the previous section before the transient response.
  • step S2 it is determined whether or not the time at which the difference
  • the threshold value ⁇ is, for example, 0.005 to 0.1 [C].
  • the time T 1 is, for example, 10 to 5000 [s], and in the present embodiment, the time length is about 0.1 to 10 times the time T 4 when the time T 4 described later in the variable interval is used as a reference. Set.
  • the reference time T 4 is, for example, 1 to 500 [s]. That is, in the step S2, determines the transient response before the previous section, or remained time above T 1 stably at a C-rate value is a threshold value ⁇ following small variations.
  • step S3 the time t n is updated to the time t 0 again, and the process is returned to the step S1. ..
  • step S2 determines whether the difference
  • step S4 the difference
  • the time T 2 is, for example, 200 to 50,000 [s], and in the present embodiment, the time T 2 is set to a time length of about 2 to 100 times the time T 1. If it is determined that the time equal to or less than the threshold ⁇ of the difference
  • step S4 determines whether the time equal to or less than the threshold value ⁇ of the difference
  • step S6 determines whether the time at which the difference
  • step S6 the difference within the time T 3 from the predetermined time t a
  • the threshold value ⁇ is, for example, 0.1 to 10 [C], and is set to a value of about 5 to 1000 times the threshold value ⁇ in the present embodiment.
  • the time T 3 is, for example, 1 to 200 [s], and in the present embodiment, the time T 3 is set to a time length of about 0.1 to 0.8 times the time T 4. That is, it is determined whether In step S6, C rate value is large variations over the threshold ⁇ in a short time within the time T 3 has occurred.
  • Time t a is a time serving as a reference for the variation interval of the transient response.
  • step S3 updates the time t n again at time t 0 Then, the process returns to step S1.
  • step S6 the time t a from the time T 3 within the difference
  • the process proceeds to step S7.
  • step S7 the difference
  • step S8 the difference
  • the threshold value ⁇ is, for example, 0.005 to 0.1 [C], and is set to the same value as the threshold value ⁇ in the present embodiment. That is, the step S8, including the sudden change in the C-rate values, determines whether stable to small variations in threshold again ⁇ within the time T 4.
  • step S8 the difference
  • step S9 the C rate value at the time t d when the difference
  • step S10 it is determined whether or not the time at which the difference
  • the time T 5 is, for example, 10 to 5000 [s], and in the present embodiment, the time T 5 is set to a time length of about 0.1 to 10 times the time T 1.
  • is equal to or less than the threshold value ⁇ and does not continue for the time T 5 or more (determination NO)
  • the process proceeds to step S11.
  • step S11 the difference
  • step S12 except the data it is judged NO in step S10, the time t a from the time T 4 within the difference
  • step S12 except the data is judged NO in step S10, the time T 4 within the difference
  • step S10 since hard time T 5 or more continuous, after determination NO in step S10, if the through step S3, that constitute a process flow returns to step S1, losing one data extraction opportunity desirable transient response It can be. Therefore, in the present embodiment, the processing flow is configured as in steps S11 and S12, and if the determination is NO in step S10 but the determination is YES in step S12, the process is returned to step S9 and the processing is continued. We are trying to obtain as many opportunities for data extraction as possible for the desired transient response.
  • step S10 when it is determined that the time equal to or less than the threshold value ⁇ of the difference
  • step S13 a series of current values, voltage values, and temperatures of the storage battery 15 are extracted from the storage unit 22 together with the time and output to the battery deterioration diagnosis device 24.
  • the transient of C-rate values The time T 4 may be started from the time t b immediately after the response becomes equal to or higher than the threshold value ⁇ , and this time T 4 may be used for the determination in step S8a shown in FIG.
  • the start of counting of the time T 4 used in step S12 shown in FIG. 2 will be changed to the time t b.
  • the time T 4 shown in FIG. 5 is set to, for example, the same time length as the time T 3.
  • the change mode of the previous section of the C rate value is carefully selected by passing through the steps S1 and S2, and then the change mode of the variable section is carefully selected by passing through the steps S6 to S8, and further, the change mode of the variable section is carefully selected.
  • S10 the change mode of the rear section is carefully selected. Since the current value, voltage value, and temperature of the storage battery 15 obtained through these processes show the desirable transient response characteristics carefully selected, the accuracy of the deterioration diagnosis by the battery deterioration diagnosis device 24 is higher. It can be fully expected that it will be.
  • the change mode of the C rate value shown in FIG. 6 (pattern 1)
  • the change mode of the C rate value shown in FIG. 7 (pattern 2)
  • the change mode of the C rate value shown in FIG. 8 (pattern 3) are all. It shows a desirable transient response characteristic obtained through the above processing flow of this embodiment.
  • the change mode of the C rate value (pattern 4) shown in FIG. 9 is the mode of the comparative example in which the time T 1 deviates from the condition
  • the change mode of the C rate value (pattern 5) shown in FIG. 10 is the time T 3. It is an aspect of the comparative example in which and the time T 4 deviate from the conditions.
  • the transient response analysis results of each of these patterns 1 to 5 are represented as Ri values of the equivalent circuit 25 of the storage battery 15 shown in FIG. 11, and are as shown in FIG. The broken line in the figure is the true value of the Ri value.
  • the deterioration diagnosis of the storage battery 15 based on the extracted data of the comparative example showing the transient response characteristics of the patterns 4 and 5 has a relatively large deviation from the true value shown by the broken line in FIG. 12, and the diagnosis accuracy is high. No.
  • the deterioration diagnosis of the storage battery 15 based on the extracted data of the present embodiment showing the transient response characteristics of patterns 1 to 3 has a very small deviation from the true value shown by the broken line in FIG. 12, and is diagnosed with high accuracy. You can see that is being done. In this way, it is possible to improve the accuracy of the deterioration diagnosis of the storage battery 15 by carefully selecting the transient response characteristics as in the present embodiment, extracting only the data of the carefully selected storage battery 15, and using it for the deterioration diagnosis.
  • the data extraction unit 23 depends on whether the fluctuation of the threshold value ⁇ (first threshold value) or less in the previous section before the sudden change continues for the time T 1 (first time) or more. Judge the stable transition of the previous section.
  • the fluctuation section the sudden change transition of the fluctuation section depending on whether or not the fluctuation is equal to or more than the threshold value ⁇ (second threshold value) within the time T 3 (second time) is determined.
  • the stable transition of the rear section is determined depending on whether the fluctuation is equal to or less than the threshold value ⁇ (third threshold) and continues for the time T 5 (third time) or longer.
  • the data extraction unit 23 extracts the data related to the corresponding transient response from the storage unit 22. That is, when the desired transient response characteristics satisfying the conditions are shown in each of the front section, the fluctuation section, and the rear section at the time of the transient response, the corresponding data is extracted from the storage unit 22.
  • a predetermined time time T 1 and time T 5 more stable transitions prior section and rear section in the study of the present inventors Is also important, and it is included in the judgment, so data showing more desirable transient response characteristics is being extracted. Therefore, it can be fully expected that the deterioration diagnosis of the storage battery 15 by the battery deterioration diagnosis device 24 based on the data extracted by the data extraction device 21 will be performed with higher accuracy.
  • (1-2) data extraction unit 23 further determines whether the sudden change transition of C-rate values in the variation interval has converged within the time T 4 (4 hours). That is, since the data extraction unit 23 more preferably defines the sudden change transition of the fluctuation section, it is possible to extract data showing more desirable transient response characteristics, and further improvement in the accuracy of the deterioration diagnosis of the storage battery 15 can be expected.
  • the data extraction unit 23 does not erroneously determine the local approximate transition that may occur near the change point of the C rate value ( near time t b in FIG. 3) in the fluctuation section as the stable transition in the subsequent section (1-3). Since the processing of steps S11 and S12 is included), as much data as possible showing the desired transient response characteristics can be extracted.
  • the data extraction unit 23 further determines whether the fluctuation of the C rate value in the previous section is within the time T 2 (fifth time). Exceeding the time T 2 (5 hours), the data extraction unit 23 deletes the time T 1 of the stored data in the storage unit 22 (first hour) minute exceeded (time T 2 -T 1 minute) do. That is, the number of data stored in the storage unit 22 can be suppressed, and an inexpensive storage device having a small storage capacity can be used.
  • the data extraction unit 23 is configured to perform each determination based on the C rate value in the present embodiment. Since the C rate value is an index indicating the charge / discharge speed of the storage battery 15, it can be commonly used for storage batteries 15 having various battery capacities, and improvement in versatility of the data extraction device 21 can be expected.
  • the data extraction process of the data extraction unit 23 in the present embodiment is a partial modification of the data extraction process (see FIG. 2) of the first embodiment.
  • the changes will be mainly described with reference to FIGS. 13 and 14 and the like.
  • a new step Sa is inserted between steps S4 and S6 of the data extraction process of the first embodiment.
  • step S4 it is determined whether or not the C rate value has stably changed with a small fluctuation of the difference
  • the process proceeds to step Sa.
  • step Sa C rate value of the size of the battery 15 at time T 1 of the front section
  • of the C rate value is, for example, a peak value in this embodiment.
  • the threshold value ⁇ 2 is, for example, 0.005 to 0.1 [C].
  • the fluctuation amount V max ⁇ V min of the voltage value is, for example, the difference between the maximum value and the minimum value.
  • the threshold value ⁇ v is, for example, 0.5 to 50 [mV].
  • step Sa the magnitude of the C rate value
  • step Sa the magnitude of the C rate value
  • FIG. 15 shows the transient response analysis results based on the extracted data obtained by the data extraction process of the first embodiment for the samples of the three storage batteries 15 having different SOH showing the soundness (deterioration degree) of the storage batteries. ing.
  • the sample 1 of the storage battery 15 having a small degree of deterioration has a variation x0 including the true value
  • the sample 2 of the storage battery 15 having a degree of deterioration has a variation y0 including the true value
  • the sample 3 of the storage battery 15 having a high degree of deterioration has a variation z0 including the true value. Therefore, the variation in the extracted data obtained by the data extraction process of the first embodiment is sufficiently small.
  • FIG. 16 shows the transient response analysis result based on the extracted data obtained in the first aspect of the present embodiment, that is, the data extraction process in which the magnitude of the C rate value
  • the sample 1 of the storage battery 15 having a small degree of deterioration has a variation x1 including the true value
  • the sample 2 of the storage battery 15 having a degree of deterioration has a variation y1 including the true value
  • the sample 3 of the storage battery 15 having a high degree of deterioration has a variation z1 including the true value. Therefore, the extraction data obtained by the data extraction process of the first embodiment of the present embodiment has even smaller variations based on the first embodiment, which has sufficiently small variations.
  • FIG. 17 shows the second aspect of the present embodiment, that is, the transient response analysis result based on the extracted data obtained by the data extraction process in which the fluctuation amount V max ⁇ V min of the voltage value is set to the threshold value ⁇ v or less.
  • the sample 1 of the storage battery 15 having a small degree of deterioration has a variation x2 including the true value
  • the sample 2 of the storage battery 15 having a degree of deterioration has a variation y2 including the true value
  • the sample 3 of the storage battery 15 having a high degree of deterioration has a variation z2 including the true value. Therefore, the extracted data obtained by the data extraction process of the second embodiment of the present embodiment has a slightly smaller variation than the first embodiment, which has a sufficiently small variation.
  • FIG. 18 shows the transient response analysis result based on the extracted data obtained through the determination of the third aspect of the present embodiment, that is, the first and second aspects.
  • the sample 1 of the storage battery 15 having a small degree of deterioration has a variation x3 including the true value
  • the sample 2 of the storage battery 15 having a degree of deterioration has a variation y3 including the true value
  • the sample 3 of the storage battery 15 having a high degree of deterioration has a variation z3 including the true value. Therefore, the extraction data obtained by the data extraction process of the third embodiment of the present embodiment has even smaller variations based on the first embodiment, which has sufficiently small variations.
  • the extracted data obtained in the first to third aspects of the data extraction process of the present embodiment more desirablely defines the stable transition of the previous section, and is more desirable from the extracted data of the first embodiment. Is carefully selected. Therefore, it can be fully expected that the deterioration diagnosis of the storage battery 15 based on such extracted data will be performed with higher accuracy.
  • time lengths of the times T 1 to T 5 and the values of the threshold values ⁇ , ⁇ , ⁇ , ⁇ 2 and ⁇ v of each embodiment are examples and may be changed as appropriate.
  • the data extraction process (processing flow) of each embodiment is an example and may be changed as appropriate.
  • the process related to the time T 2 such as step S4 may be omitted. It is also possible to omit the processing related to the time T 4, such as step S8.
  • the configuration proceeds to step S3, and steps S11 and S12 may be omitted.
  • the processing is performed in the order of the front section, the fluctuation section, and the rear section, but the processing order is not limited to this, and for example, the processing of the fluctuation section may be performed first. ..
  • the times T 1 to T 5 include not only time counting by a timer but also time counting by counting the number of samplings.
  • the data extraction process is performed based on the C rate value of the storage battery 15, it is possible to configure the same as the data extraction process of each embodiment by using the current value, the power value, etc. of the storage battery 15. ..

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Secondary Cells (AREA)

Abstract

On the basis of the C-rate value of a storage battery 15, a data extraction unit 23 determines a stable transition in an early interval of a transient response time depending on whether, during said early interval, at least a period T1 (first period) continuously passed in which variation was less than or equal to a threshold value α (first threshold value), determines a sudden transition in a variation interval depending on whether, during said variation interval, variation that was greater than or equal to a threshold value β (second threshold value) occurred within a period T3 (second period), and determines a stable transition in a late interval depending on whether, during said late interval, at least a period T5 (third period) continuously passed in which variation was less than or equal to a threshold value γ (third threshold value). If data extraction parameters including each of these determinations are satisfied, the data extraction unit 23 extracts data regarding this transient reponse time from a storage unit 22.

Description

蓄電池のデータ抽出装置及び蓄電池のデータ抽出方法Storage battery data extraction device and storage battery data extraction method
 本発明は、蓄電池の過渡応答解析による劣化診断を行うための蓄電池のデータ抽出装置及び蓄電池のデータ抽出方法に関する。 The present invention relates to a storage battery data extraction device and a storage battery data extraction method for performing deterioration diagnosis by transient response analysis of the storage battery.
 再生可能エネルギーの有効利用や災害時の電力供給を目的として、リチウムイオン電池を適用した定置用蓄電池システムの導入が拡大しつつある。充放電や経年に伴い劣化していく蓄電池の健全性や特性を把握することはシステムを運用していく上で非常に重要であり、蓄電池の劣化状態を把握・診断することが行われる。 The introduction of stationary storage battery systems that apply lithium-ion batteries is expanding for the purpose of effective use of renewable energy and power supply in the event of a disaster. Understanding the soundness and characteristics of a storage battery that deteriorates over time and charging / discharging is extremely important for operating the system, and the deterioration state of the storage battery is grasped and diagnosed.
 蓄電池の劣化診断技術としては、稼動中の蓄電池の過渡応答特性を用いる例えば特許文献1に開示の技術がある。特許文献1に開示の技術は、蓄電池の過渡応答時の電流値データを抽出し、抽出した過渡応答時の電流値データの解析に基づいて蓄電池の劣化診断を行うというものである。 As a deterioration diagnosis technique for a storage battery, for example, there is a technique disclosed in Patent Document 1 that uses the transient response characteristics of a storage battery in operation. The technique disclosed in Patent Document 1 is to extract current value data at the time of transient response of the storage battery and perform deterioration diagnosis of the storage battery based on the analysis of the extracted current value data at the time of transient response.
特開2017-16991号公報Japanese Unexamined Patent Publication No. 2017-16991
 本発明者は、上記手法による蓄電池の劣化診断の精度向上を図るために、蓄電池からより有用な過渡応答時の電流値等のデータを抽出することが有効な手段の一つであると考えている。即ち、蓄電池の劣化診断の精度を高める過渡応答特性を厳選すべく狙いの過渡応答特性を適切に捉え、より有用な過渡応答時の電流値等のデータを抽出することが蓄電池の劣化診断の精度向上に繋がると考えている。 The present inventor considers that it is one of the effective means to extract more useful data such as the current value at the time of transient response from the storage battery in order to improve the accuracy of the deterioration diagnosis of the storage battery by the above method. There is. That is, the accuracy of the deterioration diagnosis of the storage battery is to properly grasp the target transient response characteristics in order to carefully select the transient response characteristics that enhance the accuracy of the deterioration diagnosis of the storage battery, and to extract more useful data such as the current value at the time of the transient response. I think it will lead to improvement.
 本発明の目的は、蓄電池の劣化診断の精度向上を可能とした蓄電池のデータ抽出装置及び蓄電池のデータ抽出方法を提供することにある。 An object of the present invention is to provide a storage battery data extraction device and a storage battery data extraction method that can improve the accuracy of storage battery deterioration diagnosis.
 上記課題を解決する蓄電池のデータ抽出装置は、蓄電池の劣化診断が可能な検出値データを所定サンプリング間隔で格納する記憶部と、前記記憶部に格納された検出値データから前記蓄電池の過渡応答時に係るデータを抽出するデータ抽出部とを備えた蓄電池のデータ抽出装置であって、前記データ抽出部は、前記蓄電池の検出値に基づくCレート値又は電流値若しくは電力値が急変する変動区間、前記変動区間の前区間及び前記変動区間の後区間の少なくとも3区間に分け、前記前区間では、前記Cレート値又は電流値若しくは電力値の変動が第1閾値以下で第1時間以上継続する前区間の安定推移の判定と、前記変動区間では、前記Cレート値又は電流値若しくは電力値が第2時間以内で第2閾値以上変動する変動区間の急変推移の判定と、前記後区間では、前記Cレート値又は電流値若しくは電力値の変動が第3閾値以下で第3時間以上継続する後区間の安定推移の判定とを実施し、前記各判定に基づくデータ抽出条件を満たした場合に前記記憶部から該当の過渡応答時に係るデータを抽出するように構成される。 The storage battery data extraction device that solves the above problems has a storage unit that stores detected value data capable of diagnosing deterioration of the storage battery at predetermined sampling intervals, and a storage unit that stores the detected value data stored in the storage unit during a transient response of the storage battery. A storage battery data extraction device including a data extraction unit for extracting such data, wherein the data extraction unit is a variable section in which a C rate value or a current value or a power value suddenly changes based on a detection value of the storage battery. It is divided into at least three sections, the front section of the fluctuation section and the rear section of the fluctuation section. In the fluctuation section, the C rate value, the current value, or the power value fluctuates by the second threshold value or more within the second hour, and the sudden change transition in the fluctuation section is determined. Judgment of the stable transition of the rear section in which the fluctuation of the rate value or the current value or the power value continues for the third time or more at the third threshold value or less is performed, and when the data extraction condition based on each judgment is satisfied, the storage unit. It is configured to extract the relevant data at the time of the corresponding transient response from.
 上記抽出装置によれば、データ抽出部は、蓄電池のCレート値又は電流値若しくは電力値に基づき、急変前の前区間では第1閾値以下の変動で第1時間以上継続したかによる前区間の安定推移を判定し、変動区間では第2時間以内で第2閾値以上の変動したかによる変動区間の急変推移を判定し、後区間では第3閾値以下の変動で第3時間以上継続したかによる後区間の安定推移を判定する。そして、各判定に基づくデータ抽出条件を満たした場合に、データ抽出部は、記憶部から該当の過渡応答時に係るデータを抽出する。つまり、過渡応答時の前区間、変動区間及び後区間それぞれにおいて条件を満たした望ましい過渡応答特性を示した場合に、記憶部から該当のデータの抽出が行われる。また、過渡応答時に係るデータ抽出となると変動区間の急変推移に着目しがちであるが、本発明者の検討において前区間及び後区間において所定時間以上の安定推移も重要と考え、それを判定に盛り込んでいるため、より望ましい過渡応答特性を示すデータの抽出が可能である。従って、こうして抽出したデータに基づく蓄電池の劣化診断は、より高精度に行うことが十分期待できる。 According to the above-mentioned extraction device, the data extraction unit is based on the C rate value, the current value, or the power value of the storage battery, and in the previous section before the sudden change, the fluctuation of the first threshold value or less is continued for the first hour or more. The stable transition is judged, and in the fluctuation section, the sudden change transition of the fluctuation section due to the fluctuation of the second threshold or more within the second hour is judged, and in the latter section, the fluctuation of the fluctuation of the third threshold or less continues for the third hour or more. Judge the stable transition of the rear section. Then, when the data extraction conditions based on each determination are satisfied, the data extraction unit extracts the data related to the corresponding transient response from the storage unit. That is, when the desired transient response characteristics satisfying the conditions are shown in each of the front section, the fluctuation section, and the rear section at the time of the transient response, the corresponding data is extracted from the storage unit. In addition, when it comes to data extraction related to transient response, it is easy to pay attention to the sudden change transition of the fluctuation section. Since it is included, it is possible to extract data showing more desirable transient response characteristics. Therefore, it can be fully expected that the deterioration diagnosis of the storage battery based on the data extracted in this way will be performed with higher accuracy.
 上記蓄電池のデータ抽出装置において、前記データ抽出部は、前記前区間において更に、前記Cレート値又は電流値若しくは電力値の大きさが第4閾値以下かを判定、又は、前記前区間において更に、前記蓄電池の検出値に基づく電圧値の変動が第5閾値以下かを判定、若しくは、その両方を判定するように構成されることが好ましい。 In the data extraction device of the storage battery, the data extraction unit further determines whether the magnitude of the C rate value, the current value, or the power value is equal to or less than the fourth threshold value in the previous section, or further in the previous section. It is preferable that it is configured to determine whether or not the fluctuation of the voltage value based on the detected value of the storage battery is equal to or less than the fifth threshold value, or both.
 上記態様によれば、データ抽出部は、前区間におけるCレート値又は電流値若しくは電力値の大きさが第4閾値以下かを判定、又は、前区間における蓄電池の電圧値の変動が第5閾値以下かを判定、若しくは、その両方を判定する。つまり、データ抽出部は、前区間の安定推移をより望ましく規定するため、より望ましい過渡応答特性を示すデータ抽出が可能となり、蓄電池の劣化診断の一層の精度向上が期待できる。 According to the above aspect, the data extraction unit determines whether the magnitude of the C rate value, the current value, or the power value in the previous section is equal to or less than the fourth threshold value, or the fluctuation of the voltage value of the storage battery in the previous section is the fifth threshold value. It is determined whether it is the following, or both. That is, since the data extraction unit more preferably defines the stable transition in the previous section, it is possible to extract data showing more desirable transient response characteristics, and further improvement in the accuracy of the deterioration diagnosis of the storage battery can be expected.
 上記蓄電池のデータ抽出装置において、前記データ抽出部は、前記変動区間において更に、前記Cレート値又は電流値若しくは電力値の急変推移が第4時間以内に収束したかを判定するように構成されることが好ましい。 In the data extraction device of the storage battery, the data extraction unit is further configured to determine whether the sudden change in the C rate value, the current value, or the power value has converged within the fourth hour in the fluctuation section. Is preferable.
 上記態様によれば、データ抽出部は、変動区間におけるCレート値又は電流値若しくは電力値の急変推移が第4時間以内に収束したかを更に判定する。つまり、データ抽出部は、変動区間の急変推移をより望ましく規定するため、より望ましい過渡応答特性を示すデータ抽出が可能となり、蓄電池の劣化診断の一層の精度向上が期待できる。 According to the above aspect, the data extraction unit further determines whether the sudden change in the C rate value, the current value, or the power value in the fluctuation section has converged within the fourth hour. That is, since the data extraction unit more preferably defines the sudden change transition of the fluctuation section, it is possible to extract data showing more desirable transient response characteristics, and further improvement in the accuracy of the deterioration diagnosis of the storage battery can be expected.
 上記蓄電池のデータ抽出装置において、前記データ抽出部は、前記変動区間における前記Cレート値又は電流値若しくは電力値の変化点付近に生じ得る局所的な近似推移が前記後区間における安定推移と誤判定しないように構成されることが好ましい。 In the data extraction device of the storage battery, the data extraction unit erroneously determines that the local approximate transition that may occur near the change point of the C rate value or the current value or the power value in the fluctuation section is a stable transition in the subsequent section. It is preferable that it is configured not to.
 ここで、変動区間におけるCレート値又は電流値若しくは電力値の変化点付近では局所的な近似推移が生じ得るため、後区間における安定推移と誤判定し易い。するとこの場合、望ましい過渡応答特性を示すデータがあっても、後区間の安定推移と誤判定すると、データ抽出が行われない虞がある。上記態様によれば、データ抽出部は、変動区間においてCレート値等の変化点付近に生じ得る局所的な近似推移を後区間の安定推移と誤判定しない構成のため、望ましい過渡応答特性を示すデータを少しでも多く抽出することが可能となる。 Here, since a local approximate transition may occur near the change point of the C rate value or the current value or the power value in the fluctuation section, it is easy to erroneously determine that the transition is stable in the subsequent section. Then, in this case, even if there is data showing desirable transient response characteristics, there is a possibility that data extraction will not be performed if it is erroneously determined that the transition is stable in the subsequent section. According to the above aspect, the data extraction unit exhibits desirable transient response characteristics because it does not erroneously determine the local approximate transition that may occur near the change point such as the C rate value in the fluctuation section as the stable transition in the subsequent section. It is possible to extract as much data as possible.
 上記蓄電池のデータ抽出装置において、前記データ抽出部は、前記前区間において更に、前記Cレート値又は電流値若しくは電力値の変動が第5時間以内かを判定し、前記第5時間を超えた場合、前記記憶部の格納したデータの前記第1時間を超えた分を削除するように構成されることが好ましい。 In the data extraction device of the storage battery, the data extraction unit further determines whether the fluctuation of the C rate value, the current value, or the power value is within the fifth hour in the previous section, and when the fluctuation exceeds the fifth hour. , It is preferable that the data stored in the storage unit is configured to delete the portion exceeding the first time.
 上記態様によれば、データ抽出部は、前区間におけるCレート値又は電流値若しくは電力値の変動が第5時間以内かを更に判定する。そして、第5時間を超えた場合、データ抽出部は、記憶部の格納したデータの第1時間を超えた分を削除する。つまり、記憶部にて格納するデータ数が抑制され、記憶容量の小さい安価な記憶装置を用いることも可能となる。 According to the above aspect, the data extraction unit further determines whether the fluctuation of the C rate value, the current value, or the power value in the previous section is within the fifth hour. Then, when the fifth time is exceeded, the data extraction unit deletes the data stored in the storage unit that exceeds the first hour. That is, the number of data to be stored in the storage unit is suppressed, and it is possible to use an inexpensive storage device having a small storage capacity.
 上記蓄電池のデータ抽出装置において、前記データ抽出部は、前記Cレート値に基づいて前記各判定を行うように構成されることが好ましい。 In the data extraction device of the storage battery, it is preferable that the data extraction unit is configured to perform each of the determinations based on the C rate value.
 上記態様によれば、データ抽出部は、Cレート値に基づいて各判定が行われる。つまり、Cレート値は、蓄電池の充放電スピードを示す指標であるため、種々の電池容量の蓄電池を対象に共通で用いることができ、データ抽出装置の汎用性向上が期待できる。 According to the above aspect, the data extraction unit makes each determination based on the C rate value. That is, since the C rate value is an index indicating the charge / discharge speed of the storage battery, it can be commonly used for storage batteries having various battery capacities, and it is expected that the versatility of the data extraction device will be improved.
 上記課題を解決する蓄電池のデータ抽出方法は、蓄電池の劣化診断が可能な検出値データを所定サンプリング間隔で記憶部に格納し、前記記憶部に格納された検出値データから前記蓄電池の過渡応答時に係るデータを抽出する蓄電池のデータ抽出方法であって、前記蓄電池の検出値に基づくCレート値又は電流値若しくは電力値が急変する変動区間、前記変動区間の前区間及び前記変動区間の後区間の少なくとも3区間に分け、前記前区間では、前記Cレート値又は電流値若しくは電力値の変動が第1閾値以下で第1時間以上継続する前区間の安定推移を判定し、前記変動区間では、前記Cレート値又は電流値若しくは電力値が第2時間以内で第2閾値以上変動する変動区間の急変推移を判定し、前記後区間では、前記Cレート値又は電流値若しくは電力値の変動が第3閾値以下で第3時間以上継続する後区間の安定推移を判定し、前記各判定に基づくデータ抽出条件を満たした場合に前記記憶部から該当の過渡応答時に係るデータを抽出する。 A storage battery data extraction method that solves the above problems stores detection value data capable of diagnosing deterioration of the storage battery in a storage unit at predetermined sampling intervals, and from the detection value data stored in the storage unit during a transient response of the storage battery. It is a data extraction method of a storage battery for extracting such data, and is a fluctuation section in which a C rate value or a current value or a power value suddenly changes based on a detection value of the storage battery, a section before the fluctuation section and a section after the fluctuation section. It is divided into at least three sections, and in the previous section, the stable transition of the previous section in which the fluctuation of the C rate value or the current value or the power value continues for the first hour or more at the first threshold value or less is determined. The sudden change transition of the fluctuation section in which the C rate value or the current value or the power value fluctuates by the second threshold value or more within the second hour is determined, and in the latter section, the fluctuation of the C rate value or the current value or the power value is the third. The stable transition of the post-section that continues for the third hour or more below the threshold value is determined, and when the data extraction conditions based on the determinations are satisfied, the data related to the corresponding transient response is extracted from the storage unit.
 上記抽出方法によれば、上記抽出装置と同様に、より望ましい過渡応答特性を示すデータの抽出が可能となるため、蓄電池の劣化診断をより高精度に行うことが十分期待できる。 According to the above extraction method, it is possible to extract data showing more desirable transient response characteristics as in the above extraction device, so that it can be fully expected that deterioration diagnosis of the storage battery will be performed with higher accuracy.
 上記蓄電池のデータ抽出方法において、前記前区間において更に、前記Cレート値又は電流値若しくは電力値の大きさが第4閾値以下かを判定、又は、前記前区間において更に、前記蓄電池の検出値に基づく電圧値の変動が第5閾値以下かを判定、若しくは、その両方を判定することが好ましい。 In the storage battery data extraction method, it is further determined in the previous section whether the magnitude of the C rate value, the current value, or the power value is equal to or less than the fourth threshold value, or in the previous section, the detection value of the storage battery is further determined. It is preferable to determine whether or not the fluctuation of the voltage value based on the fifth threshold value is equal to or less than the fifth threshold value, or both.
 上記態様によれば、上記抽出装置と同様に、一層望ましい過渡応答特性を示すデータの抽出が可能となるため、蓄電池の劣化診断を一層高精度に行うことが十分期待できる。 According to the above aspect, it is possible to extract data showing more desirable transient response characteristics as in the above extraction device, so that it can be fully expected that deterioration diagnosis of the storage battery will be performed with higher accuracy.
 本発明の蓄電池のデータ抽出装置及び蓄電池のデータ抽出方法によれば、蓄電池の劣化診断の精度向上を図ることができる。 According to the storage battery data extraction device and the storage battery data extraction method of the present invention, it is possible to improve the accuracy of the deterioration diagnosis of the storage battery.
蓄電池の劣化診断を説明するためのシステム全体の構成図。A block diagram of the entire system for explaining the deterioration diagnosis of the storage battery. 第1実施形態の蓄電池のデータ抽出処理のフロー図。The flow chart of the data extraction processing of the storage battery of 1st Embodiment. 第1実施形態の蓄電池のデータ抽出処理に係る説明図。Explanatory drawing which concerns on the data extraction processing of the storage battery of 1st Embodiment. 蓄電池のデータ抽出処理の一部変更例を示すフロー図。The flow chart which shows the example of the partial change of the data extraction process of a storage battery. 蓄電池のデータ抽出処理の一部変更例に係る説明図。Explanatory drawing which concerns on the example of partial modification of the data extraction process of a storage battery. 第1実施形態の蓄電池の実測定パターン1を示す波形図。The waveform diagram which shows the actual measurement pattern 1 of the storage battery of 1st Embodiment. 第1実施形態の蓄電池の実測定パターン2を示す波形図。The waveform diagram which shows the actual measurement pattern 2 of the storage battery of 1st Embodiment. 第1実施形態の蓄電池の実測定パターン3を示す波形図。The waveform diagram which shows the actual measurement pattern 3 of the storage battery of 1st Embodiment. 比較例の蓄電池の実測定パターン4を示す波形図。The waveform diagram which shows the actual measurement pattern 4 of the storage battery of the comparative example. 比較例の蓄電池の実測定パターン5を示す波形図。The waveform diagram which shows the actual measurement pattern 5 of the storage battery of the comparative example. 過渡応答解析で用いる蓄電池の等価回路を示す回路図。A circuit diagram showing an equivalent circuit of a storage battery used in transient response analysis. 第1実施形態及び比較例の過渡応答解析の結果図。The result figure of the transient response analysis of 1st Embodiment and a comparative example. 第2実施形態の蓄電池のデータ抽出処理のフロー図。The flow chart of the data extraction processing of the storage battery of 2nd Embodiment. 第2実施形態の蓄電池のデータ抽出処理に係る説明図。Explanatory drawing which concerns on the data extraction processing of the storage battery of 2nd Embodiment. 第2実施形態の対比に用いる第1実施形態の過渡応答解析の結果図。The result figure of the transient response analysis of the 1st embodiment used for the comparison of the 2nd embodiment. 第2実施形態の過渡応答解析の結果図。The result figure of the transient response analysis of 2nd Embodiment. 第2実施形態の過渡応答解析の結果図。The result figure of the transient response analysis of 2nd Embodiment. 第2実施形態の過渡応答解析の結果図。The result figure of the transient response analysis of 2nd Embodiment.
 (第1実施形態)
 以下、蓄電池のデータ抽出装置及びその抽出方法の第1実施形態について説明する。
(First Embodiment)
Hereinafter, a first embodiment of a storage battery data extraction device and an extraction method thereof will be described.
 図1に示すように、再生可能エネルギーを用いる分散型電源としての太陽光発電システム11は、太陽光パネル12と太陽光発電用パワーコンディショナ13とを備える。太陽光発電システム11は、太陽光パネル12で発電された直流電力を太陽光発電用パワーコンディショナ13にて商用交流電力に変換し、変換した交流電力を系統連系設備10を介して電力系統に供給可能に構成されている。蓄電池システム14は、定置用リチウムイオン電池等よりなる蓄電池15と蓄電池用パワーコンディショナ16とを備え、太陽光発電システム11に併設されている。蓄電池システム14は、発電電力が大きく変動し得る太陽光発電システム11の出力電力の変化率が所定値以下となるように出力平滑化用の蓄電池15を充放電させ、蓄電池用パワーコンディショナ16の電力変換を通じて電力系統に対する出力変動を抑制するものである。 As shown in FIG. 1, the photovoltaic power generation system 11 as a distributed power source using renewable energy includes a solar panel 12 and a photovoltaic power conditioner 13. The photovoltaic power generation system 11 converts the DC power generated by the solar panel 12 into commercial AC power by the power conditioner 13 for photovoltaic power generation, and converts the converted AC power into a power system via the grid interconnection facility 10. It is configured to be able to supply to. The storage battery system 14 includes a storage battery 15 made of a stationary lithium ion battery or the like and a power conditioner 16 for the storage battery, and is attached to the photovoltaic power generation system 11. The storage battery system 14 charges and discharges the storage battery 15 for output smoothing so that the rate of change of the output power of the photovoltaic power generation system 11 in which the generated power can fluctuate greatly becomes a predetermined value or less, and the power conditioner 16 for the storage battery. It suppresses output fluctuations to the power system through power conversion.
 蓄電池システム14には、計測器17が設置されている。計測器17は、電流計18、電圧計19及び温度計20等である。電流計18は、蓄電池15の充放電電流を検出しその検出信号をデータ抽出装置21に出力する。電圧計19は、蓄電池15の入出力電圧を検出しその検出信号をデータ抽出装置21に出力する。温度計20は、蓄電池15の温度や周囲温度等を検出しその検出信号をデータ抽出装置21に出力する。 A measuring instrument 17 is installed in the storage battery system 14. The measuring instrument 17 is an ammeter 18, a voltmeter 19, a thermometer 20, and the like. The ammeter 18 detects the charge / discharge current of the storage battery 15 and outputs the detection signal to the data extraction device 21. The voltmeter 19 detects the input / output voltage of the storage battery 15 and outputs the detection signal to the data extraction device 21. The thermometer 20 detects the temperature of the storage battery 15, the ambient temperature, and the like, and outputs the detection signal to the data extraction device 21.
 データ抽出装置21は、記憶部22とデータ抽出部23とを備える。記憶部22は、所定サンプリング間隔で、電流計18からの検出信号に基づく電流値データ、電圧計19からの検出信号に基づく電圧値データ、温度計20からの検出信号に基づく温度データがそれぞれ格納可能である。データ抽出部23は、本実施形態では電流値データに基づいて算出可能な蓄電池15のCレート値の変化態様が所定の充放電特性(過渡応答特性)を示したことをデータ抽出条件として、記憶部22から電流値データ、電圧値データ及び温度データを時刻データとともに電池劣化診断装置24に出力する。蓄電池15のCレート値は、蓄電池15の充放電スピードを示す指標であり、種々の電池容量の蓄電池15を対象に共通で用いることが可能な有用パラメータである。データ抽出部23のデータ抽出条件(データ抽出処理)の詳細については後述する。 The data extraction device 21 includes a storage unit 22 and a data extraction unit 23. The storage unit 22 stores current value data based on the detection signal from the ammeter 18, voltage value data based on the detection signal from the voltmeter 19, and temperature data based on the detection signal from the voltmeter 20 at predetermined sampling intervals. It is possible. In the present embodiment, the data extraction unit 23 stores that the change mode of the C rate value of the storage battery 15 that can be calculated based on the current value data shows a predetermined charge / discharge characteristic (transient response characteristic) as a data extraction condition. The current value data, the voltage value data, and the temperature data are output from the unit 22 to the battery deterioration diagnosis device 24 together with the time data. The C rate value of the storage battery 15 is an index indicating the charge / discharge speed of the storage battery 15, and is a useful parameter that can be commonly used for storage batteries 15 having various battery capacities. The details of the data extraction condition (data extraction process) of the data extraction unit 23 will be described later.
 電池劣化診断装置24は、データ抽出部23から抽出された蓄電池15の抽出データに基づいて、図11に示す蓄電池15の等価回路25を用いて過渡応答解析を行う。即ち、電池劣化診断装置24は、時刻と紐付けされた蓄電池15の電流値、電圧値及び温度に基づく過渡応答解析値と、予め格納された過渡応答解析の判定基準値とを比較し、蓄電池15の劣化診断を行う。 The battery deterioration diagnosis device 24 performs transient response analysis using the equivalent circuit 25 of the storage battery 15 shown in FIG. 11 based on the extracted data of the storage battery 15 extracted from the data extraction unit 23. That is, the battery deterioration diagnosis device 24 compares the transient response analysis value based on the current value, voltage value, and temperature of the storage battery 15 associated with the time with the predetermined reference value for the transient response analysis stored in advance, and the storage battery. Perform 15 deterioration diagnoses.
 次に、データ抽出部23における本実施形態のデータ抽出処理について、図2及び図3等を用いて説明する。 Next, the data extraction process of the present embodiment in the data extraction unit 23 will be described with reference to FIGS. 2 and 3.
 本実施形態のデータ抽出処理では、Cレート値の過渡応答時の前区間、変動区間、後区間のいずれにおいても望ましい変化をしている場合に限り、蓄電池15の電流値、電圧値及び温度のデータの抽出が行われる。 In the data extraction process of the present embodiment, the current value, the voltage value, and the temperature of the storage battery 15 are changed only when the desired change is made in any of the front section, the fluctuation section, and the rear section at the time of the transient response of the C rate value. Data extraction is performed.
 データ抽出処理のステップS1では、抽出処理開始直後又は前回処理時に設定される時刻tでの蓄電池15のCレート値を基準のC値と設定し、以降のサンプリング周期の時刻t毎のC値との差分|C-C|を算出する。この時刻tは、過渡応答前の前区間の基準となる時刻となる。 In step S1 of the data extraction process, the C rate value of the storage battery 15 at the time t 0 set immediately after the start of the extraction process or the previous process is set as the reference C 0 value, and every time t n of the subsequent sampling cycle is set. The difference from the C n value | C 0- C n | is calculated. This time t 0 is the reference time of the previous section before the transient response.
 ステップS2では、差分|C-C|の閾値α以下となる時間が時刻tから時間T以上継続したかを判定する。なお、閾値αは、例えば0.005~0.1[C]である。時間Tは、例えば10~5000[s]であり、本実施形態では変動区間の後述の時間Tを基準とした場合にその時間Tの0.1~10倍程度の時間長さに設定される。基準の時間Tは、例えば1~500[s]である。即ち、このステップS2では、過渡応答前の前区間において、Cレート値が閾値α以下の小さな変動で時間T以上安定して推移したかを判定する。差分|C-C|が閾値α以下で時間T以上継続していない場合(判定NO)、ステップS3に進み、時刻tを改めて時刻tに更新し、処理をステップS1に戻す。 In step S2, it is determined whether or not the time at which the difference | C 0 − C n | is equal to or less than the threshold value α continues from the time t 0 to the time T 1 or more. The threshold value α is, for example, 0.005 to 0.1 [C]. The time T 1 is, for example, 10 to 5000 [s], and in the present embodiment, the time length is about 0.1 to 10 times the time T 4 when the time T 4 described later in the variable interval is used as a reference. Set. The reference time T 4 is, for example, 1 to 500 [s]. That is, in the step S2, determines the transient response before the previous section, or remained time above T 1 stably at a C-rate value is a threshold value α following small variations. If the difference | C 0- C n | is equal to or less than the threshold value α and does not continue for the time T 1 or more (determination NO), the process proceeds to step S3, the time t n is updated to the time t 0 again, and the process is returned to the step S1. ..
 一方、上記ステップS2において、差分|C-C|が閾値α以下で時間T以上継続したと判定すると(判定YES)、ステップS4に進む。 On the other hand, if it is determined in step S2 that the difference | C 0 −C n | continues for the time T 1 or more at the threshold value α or less (determination YES), the process proceeds to step S4.
 ステップS4では、差分|C-C|の閾値α以下となった時間が時刻tから時間T以内かを判定する。なお、時間Tは、例えば200~50000[s]であり、本実施形態では時間Tの2~100倍程度の時間長さに設定される。差分|C-C|の閾値α以下の時間が時刻tから時間Tを超えたと判定すると(判定NO)、ステップS5に進み、記憶部22にて時刻と紐付けされて格納された電流値、電圧値及び温度の各種データの時間(T-T)分を削除し、記憶部22に残した時間T分のデータの先頭の時刻を時刻tに更新する。つまり、記憶部22にて格納するデータ数の抑制を図ることで、記憶容量の小さい安価な記憶装置を用いることも可能である。 In step S4, the difference | determines the threshold value α follows since time period T 2 within the time t 0 | C 0 -C n. The time T 2 is, for example, 200 to 50,000 [s], and in the present embodiment, the time T 2 is set to a time length of about 2 to 100 times the time T 1. If it is determined that the time equal to or less than the threshold α of the difference | C 0 − C n | exceeds the time T 2 from the time t 0 (determination NO), the process proceeds to step S5, and the storage unit 22 stores the time in association with the time. current value, remove the voltage and temperature various data time (T 2 -T 1) minute, and updates the first time in the time T 1 minute of data left in the memory unit 22 at time t 0. That is, by suppressing the number of data to be stored in the storage unit 22, it is possible to use an inexpensive storage device having a small storage capacity.
 一方、上記ステップS4において、差分|C-C|の閾値α以下の時間が時刻tから時間T以内であると判定すると(判定YES)、ステップS6に進む。即ち、ステップS6に進むには、差分|C-C|の閾値α以下となる時間が時刻tから時間T以上継続しかつ時間T以内である場合である。 On the other hand, if it is determined in step S4 that the time equal to or less than the threshold value α of the difference | C 0 − C n | is within the time T 2 from the time t 0 (determination YES), the process proceeds to step S6. That is, in order to proceed to step S6, it is a case where the time at which the difference | C 0 − C n | is equal to or less than the threshold value α continues from the time t 0 to the time T 1 or more and is within the time T 2.
 ステップS6では、所定の時刻tから時間T以内に差分|C-C|の閾値β以上となるデータが存在するかを判定する。なお、閾値βは、例えば0.1~10[C]であり、本実施形態では閾値αの5~1000倍程度の値に設定される。時間Tは、例えば1~200[s]であり、本実施形態では時間Tの0.1~0.8倍程度の時間長さに設定される。即ち、このステップS6では、Cレート値が時間T以内の短時間で閾値β以上の大きな変動が生じたかを判定する。時刻tは、過渡応答の変動区間の基準となる時刻となる。時刻tから時間T以内に差分|C-C|の閾値β以上のデータが存在していない場合(判定NO)、上記ステップS3に進み、時刻tを改めて時刻tに更新し、処理をステップS1に戻す。 In step S6, the difference within the time T 3 from the predetermined time t a | determines the threshold value β or become data exists | C 0 -C n. The threshold value β is, for example, 0.1 to 10 [C], and is set to a value of about 5 to 1000 times the threshold value α in the present embodiment. The time T 3 is, for example, 1 to 200 [s], and in the present embodiment, the time T 3 is set to a time length of about 0.1 to 0.8 times the time T 4. That is, it is determined whether In step S6, C rate value is large variations over the threshold β in a short time within the time T 3 has occurred. Time t a is a time serving as a reference for the variation interval of the transient response. Time t a from the time T 3 within the difference | C 0 -C n | if threshold β or more data is not present (decision NO), the process proceeds to step S3, updates the time t n again at time t 0 Then, the process returns to step S1.
 一方、ステップS6において、時刻tから時間T以内に差分|C-C|が閾値β以上のデータが存在すると判定すると(判定YES)、ステップS7に進む。 On the other hand, in step S6, the time t a from the time T 3 within the difference | C 0 -C n | When it is determined that the threshold value β or more data exists (decision YES), the process proceeds to step S7.
 ステップS7では、差分|C-C|が閾値β以上となる時刻tから時刻的に並ぶ2つのCレート値の差分|C-Cn+1|を算出する。 In step S7, the difference | C n − C n + 1 | of the two C rate values arranged in time from the time t b where the difference | C 0 − C n | becomes the threshold value β or more is calculated.
 ステップS8では、差分|C-Cn+1|の閾値γ以下となるデータが上記時刻tから時間T以内に存在するかを判定する。閾値γは、例えば0.005~0.1[C]であり、本実施形態では閾値αと同じ値に設定される。即ち、このステップS8では、Cレート値の上記急変を含め、時間T以内に再び閾値γの小さな変動に安定したかを判定する。差分|C-Cn+1|の閾値γ以下のデータが時刻tから時間T以内に存在していない場合(判定NO)、上記ステップS3に進み、時刻tを改めて時刻tに更新し、処理をステップS1に戻す。 In step S8, the difference | determines the threshold value γ hereinafter become data exists within the time T 4 from the time t a | C n -C n + 1. The threshold value γ is, for example, 0.005 to 0.1 [C], and is set to the same value as the threshold value α in the present embodiment. That is, the step S8, including the sudden change in the C-rate values, determines whether stable to small variations in threshold again γ within the time T 4. Difference | updated if the threshold value γ following data is not present within the time T 4 from the time t a (determination NO), the process proceeds to step S3, the time t n again time t 0 a | C n -C n + 1 Then, the process returns to step S1.
 一方、ステップS8において、差分|C-Cn+1|の閾値γ以下のデータが時刻tから時間T以内に存在すると判定すると(判定YES)、ステップS9に進む。 On the other hand, in step S8, the difference | C n -C n + 1 | of the threshold γ following data is determined to exist within the time T 4 from the time t a (determination YES), the process proceeds to step S9.
 ステップS9では、差分|C-Cn+1|が閾値γ以下となる時刻tでのCレート値を基準のC値と設定し、以降のサンプリング周期の時刻t毎のC値との差分|C-C|を算出する。この時刻tは、過渡応答後の後区間の基準となる時刻となる。 In step S9, the C rate value at the time t d when the difference | C n − C n + 1 | is equal to or less than the threshold value γ is set as the reference C d value, and the C n value at each time t n of the subsequent sampling cycle is set. Difference | C d −C n | is calculated. This time t d is a reference time for the rear section after the transient response.
 ステップS10では、差分|C-C|の閾値γ以下となる時間が時刻tから時間T以上継続したかを判定する。即ち、このステップS10では、過渡応答後の後区間において、Cレート値が閾値γ以下の小さな変動で時間T以上安定して推移したかを判定する。なお、時間Tは、例えば10~5000[s]であり、本実施形態では時間Tの0.1~10倍程度の時間長さに設定される。差分|C-C|が閾値γ以下で時間T以上継続していない場合(判定NO)、ステップS11に進む。 In step S10, it is determined whether or not the time at which the difference | C d − C n | is equal to or less than the threshold value γ continues from the time t d to the time T 5 or more. That is, in the step S10, judges in the section after the post-transient response, whether remained time T 5 or stably with small variations in C-rate value threshold γ below. The time T 5 is, for example, 10 to 5000 [s], and in the present embodiment, the time T 5 is set to a time length of about 0.1 to 10 times the time T 1. When the difference | C d − C n | is equal to or less than the threshold value γ and does not continue for the time T 5 or more (determination NO), the process proceeds to step S11.
 ステップS11では、上記ステップS10で判定NOとなった時刻以降のCレート値の差分|C-Cn+1|を算出する。 In step S11, the difference | C n − C n + 1 | of the C rate value after the time when the determination NO is determined in step S10 is calculated.
 ステップS12では、上記ステップS10で判定NOとなったデータを除き、時刻tから時間T以内に差分|C-Cn+1|の閾値γ以下となるデータが存在するかを判定する。時間T以内に差分|C-Cn+1|の閾値γ以下のデータが存在していない場合(判定NO)、上記ステップS3に進み、時刻tを改めて時刻tに更新し、処理をステップS1に戻す。 In step S12, except the data it is judged NO in step S10, the time t a from the time T 4 within the difference | determine the threshold γ hereinafter become data exists | C n -C n + 1. If there is no data equal to or less than the threshold value γ of the difference | C n − C n + 1 | within the time T 4 (determination NO), the process proceeds to step S3 above, the time t n is updated to the time t 0 again, and the process is performed. Return to step S1.
 一方、ステップS12において、上記ステップS10で判定NOとなったデータを除き、時間T以内に差分|C-Cn+1|の閾値γ以下のデータが存在すると判定すると(判定YES)、上記ステップS9に進む。 On the other hand, in step S12, except the data is judged NO in step S10, the time T 4 within the difference | C n -C n + 1 | determines that the threshold value γ following data exists (decision YES), step Proceed to S9.
 ここで、途中までCレート値に望ましい過渡応答が生じている場合であっても、変化点付近(図3の時刻t付近)では時刻的に並ぶ2つのCレート値が近似する場合があり、差分|C-Cn+1|が閾値γ以内となり得る。しかしながら、時間T以上の継続は難いため、上記ステップS10で判定NOの後、仮にステップS3を経てステップS1に戻す処理フローを構成したとすると、望ましい過渡応答のデータ抽出機会を1つ失うことになり兼ねない。そのため本実施形態では、処理フローをステップS11,S12のように構成し、上記ステップS10で判定NOとなってもステップS12にて判定YESとなる場合は上記ステップS9に戻し、処理を継続させて、望ましい過渡応答のデータ抽出機会が極力多く得られるようにしている。 Here, even if a desirable transient response occurs in the C rate value halfway, the two C rate values that are lined up in time may approximate each other near the change point (near time t b in FIG. 3). , Difference | C n − C n + 1 | can be within the threshold value γ. However, since hard time T 5 or more continuous, after determination NO in step S10, if the through step S3, that constitute a process flow returns to step S1, losing one data extraction opportunity desirable transient response It can be. Therefore, in the present embodiment, the processing flow is configured as in steps S11 and S12, and if the determination is NO in step S10 but the determination is YES in step S12, the process is returned to step S9 and the processing is continued. We are trying to obtain as many opportunities for data extraction as possible for the desired transient response.
 そして、上記ステップS10において、差分|C-C|の閾値γ以下の時間が時刻tから時間T以上継続したと判定すると(判定YES)、Cレート値が所望の過渡応答特性を示したものであるとして、ステップS13に進む。ステップS13では、蓄電池15の一連の電流値、電圧値及び温度を時刻とともに記憶部22から抽出し、電池劣化診断装置24に出力する。 Then, in step S10, when it is determined that the time equal to or less than the threshold value γ of the difference | C d − C n | continues from the time t d to the time T 5 or more (determination YES), the C rate value determines the desired transient response characteristic. Assuming that it is shown, the process proceeds to step S13. In step S13, a series of current values, voltage values, and temperatures of the storage battery 15 are extracted from the storage unit 22 together with the time and output to the battery deterioration diagnosis device 24.
 なお、データ抽出処理の変更例としては、Cレート値の過渡応答が始まる直前の時刻tから時間Tの計時を開始したが、図4及び図5に示すように、Cレート値の過渡応答が閾値β以上となった直後の時刻tから時間Tの計時を開始し、この時間Tを図4に示したステップS8aでの判定に用いてもよい。また、図示しないが、図2に示したステップS12で用いる時間Tの計時開始は時刻tに変更となる。なお、図5に示す時間Tは、例えば時間Tと同じ時間長さに設定される。 As a modification of the data extraction processing is started counting the time T 4 from the time t a immediately before the transient response of the C-rate value starts, as shown in FIGS. 4 and 5, the transient of C-rate values The time T 4 may be started from the time t b immediately after the response becomes equal to or higher than the threshold value β, and this time T 4 may be used for the determination in step S8a shown in FIG. Although not shown, the start of counting of the time T 4 used in step S12 shown in FIG. 2 will be changed to the time t b. The time T 4 shown in FIG. 5 is set to, for example, the same time length as the time T 3.
 このようにして、上記ステップS1,S2を経ることでCレート値の前区間の変化態様が厳選され、次いで上記ステップS6~S8を経ることで変動区間の変化態様が厳選され、更に上記ステップS9,S10を経ることで後区間の変化態様が厳選される。そして、これらを経ることで得られる蓄電池15の電流値、電圧値及び温度は、厳選した望ましい過渡応答特性を示したものであるから、電池劣化診断装置24での劣化診断の精度はより高いものとなることが十分に期待できる。 In this way, the change mode of the previous section of the C rate value is carefully selected by passing through the steps S1 and S2, and then the change mode of the variable section is carefully selected by passing through the steps S6 to S8, and further, the change mode of the variable section is carefully selected. , S10, the change mode of the rear section is carefully selected. Since the current value, voltage value, and temperature of the storage battery 15 obtained through these processes show the desirable transient response characteristics carefully selected, the accuracy of the deterioration diagnosis by the battery deterioration diagnosis device 24 is higher. It can be fully expected that it will be.
 因みに、図6に示すCレート値の変化態様(パターン1)、図7に示すCレート値の変化態様(パターン2)、図8に示すCレート値の変化態様(パターン3)は、いずれも本実施形態の上記処理フローを経て得られる望ましい過渡応答特性を示すものである。一方、図9に示すCレート値の変化態様(パターン4)は、時間Tが条件を逸脱する比較例の態様、図10に示すCレート値の変化態様(パターン5)は、時間Tと時間Tとが条件を逸脱する比較例の態様である。これら各パターン1~5の過渡応答解析結果は、図11に示す蓄電池15の等価回路25のRi値として表され、図12に示す通りである。図中の破線は、Ri値の真値である。 Incidentally, the change mode of the C rate value shown in FIG. 6 (pattern 1), the change mode of the C rate value shown in FIG. 7 (pattern 2), and the change mode of the C rate value shown in FIG. 8 (pattern 3) are all. It shows a desirable transient response characteristic obtained through the above processing flow of this embodiment. On the other hand, the change mode of the C rate value (pattern 4) shown in FIG. 9 is the mode of the comparative example in which the time T 1 deviates from the condition, and the change mode of the C rate value (pattern 5) shown in FIG. 10 is the time T 3. It is an aspect of the comparative example in which and the time T 4 deviate from the conditions. The transient response analysis results of each of these patterns 1 to 5 are represented as Ri values of the equivalent circuit 25 of the storage battery 15 shown in FIG. 11, and are as shown in FIG. The broken line in the figure is the true value of the Ri value.
 パターン4,5の過渡応答特性を示す比較例の抽出データに基づく蓄電池15の劣化診断は、図12の破線にて示した真値からのずれは比較的大きく、診断精度が高いとまでは言えない。これに対し、パターン1~3の過渡応答特性を示す本実施形態の抽出データに基づく蓄電池15の劣化診断は、図12の破線にて示した真値からのずれは非常に小さく、精度高く診断が行われていることがわかる。こうして、本実施形態のように過渡応答特性を厳選しその厳選した蓄電池15のデータのみを抽出して劣化診断に用いることで、蓄電池15の劣化診断の精度向上を図ることが可能である。 The deterioration diagnosis of the storage battery 15 based on the extracted data of the comparative example showing the transient response characteristics of the patterns 4 and 5 has a relatively large deviation from the true value shown by the broken line in FIG. 12, and the diagnosis accuracy is high. No. On the other hand, the deterioration diagnosis of the storage battery 15 based on the extracted data of the present embodiment showing the transient response characteristics of patterns 1 to 3 has a very small deviation from the true value shown by the broken line in FIG. 12, and is diagnosed with high accuracy. You can see that is being done. In this way, it is possible to improve the accuracy of the deterioration diagnosis of the storage battery 15 by carefully selecting the transient response characteristics as in the present embodiment, extracting only the data of the carefully selected storage battery 15, and using it for the deterioration diagnosis.
 本実施形態の効果について説明する。 The effect of this embodiment will be explained.
 (1-1)データ抽出部23は、蓄電池15のCレート値に基づき、急変前の前区間では閾値α(第1閾値)以下の変動で時間T(第1時間)以上継続したかによる前区間の安定推移を判定する。次いで、変動区間では時間T(第2時間)以内で閾値β(第2閾値)以上の変動したかによる変動区間の急変推移を判定する。次いで、後区間では閾値γ(第3閾値)以下の変動で時間T(第3時間)以上継続したかによる後区間の安定推移を判定する。そして、各判定を含むデータ抽出条件を満たした場合に、データ抽出部23は、記憶部22から該当の過渡応答時に係るデータを抽出する。つまり、過渡応答時の前区間、変動区間及び後区間それぞれにおいて条件を満たした望ましい過渡応答特性を示した場合に、記憶部22から該当のデータの抽出が行われる。また、過渡応答時に係るデータ抽出となると変動区間の急変推移に着目しがちであるが、本発明者の検討において前区間及び後区間において所定時間(時間T及び時間T)以上の安定推移も重要と考え、それを判定に盛り込んでいるため、より望ましい過渡応答特性を示すデータの抽出が行われている。従って、こうしてデータ抽出装置21にて抽出したデータに基づく電池劣化診断装置24による蓄電池15の劣化診断は、より高精度に行うことを十分期待することができる。 (1-1) Based on the C rate value of the storage battery 15, the data extraction unit 23 depends on whether the fluctuation of the threshold value α (first threshold value) or less in the previous section before the sudden change continues for the time T 1 (first time) or more. Judge the stable transition of the previous section. Next, in the fluctuation section, the sudden change transition of the fluctuation section depending on whether or not the fluctuation is equal to or more than the threshold value β (second threshold value) within the time T 3 (second time) is determined. Next, in the rear section, the stable transition of the rear section is determined depending on whether the fluctuation is equal to or less than the threshold value γ (third threshold) and continues for the time T 5 (third time) or longer. Then, when the data extraction conditions including each determination are satisfied, the data extraction unit 23 extracts the data related to the corresponding transient response from the storage unit 22. That is, when the desired transient response characteristics satisfying the conditions are shown in each of the front section, the fluctuation section, and the rear section at the time of the transient response, the corresponding data is extracted from the storage unit 22. Although tend to focus to a sudden change transition of the variation interval becomes data extraction according to the transient response time, a predetermined time (time T 1 and time T 5) more stable transitions prior section and rear section in the study of the present inventors Is also important, and it is included in the judgment, so data showing more desirable transient response characteristics is being extracted. Therefore, it can be fully expected that the deterioration diagnosis of the storage battery 15 by the battery deterioration diagnosis device 24 based on the data extracted by the data extraction device 21 will be performed with higher accuracy.
 (1-2)データ抽出部23は、変動区間におけるCレート値の急変推移が時間T(第4時間)以内に収束したかを更に判定する。つまり、データ抽出部23は、変動区間の急変推移をより望ましく規定するため、より望ましい過渡応答特性を示すデータ抽出が可能となり、蓄電池15の劣化診断の一層の精度向上が期待できる。 (1-2) data extraction unit 23 further determines whether the sudden change transition of C-rate values in the variation interval has converged within the time T 4 (4 hours). That is, since the data extraction unit 23 more preferably defines the sudden change transition of the fluctuation section, it is possible to extract data showing more desirable transient response characteristics, and further improvement in the accuracy of the deterioration diagnosis of the storage battery 15 can be expected.
 (1-3)データ抽出部23は、変動区間においてCレート値の変化点付近(図3の時刻t付近)に生じ得る局所的な近似推移を後区間の安定推移と誤判定しない構成(ステップS11,S12の処理含む)のため、望ましい過渡応答特性を示すデータを少しでも多く抽出することができる。 (1-3) The data extraction unit 23 does not erroneously determine the local approximate transition that may occur near the change point of the C rate value ( near time t b in FIG. 3) in the fluctuation section as the stable transition in the subsequent section (1-3). Since the processing of steps S11 and S12 is included), as much data as possible showing the desired transient response characteristics can be extracted.
 (1-4)データ抽出部23は、前区間におけるCレート値の変動が時間T(第5時間)以内かを更に判定する。時間T(第5時間)を超えた場合、データ抽出部23は、記憶部22の格納したデータの時間T(第1時間)を超えた分(時間T-T分)を削除する。つまり、記憶部22にて格納するデータ数を抑制でき、記憶容量の小さい安価な記憶装置を用いることも可能である。 (1-4) The data extraction unit 23 further determines whether the fluctuation of the C rate value in the previous section is within the time T 2 (fifth time). Exceeding the time T 2 (5 hours), the data extraction unit 23 deletes the time T 1 of the stored data in the storage unit 22 (first hour) minute exceeded (time T 2 -T 1 minute) do. That is, the number of data stored in the storage unit 22 can be suppressed, and an inexpensive storage device having a small storage capacity can be used.
 (1-5)データ抽出部23は、本実施形態ではCレート値に基づく各判定を行う構成である。Cレート値は、蓄電池15の充放電スピードを示す指標であるため、種々の電池容量の蓄電池15を対象に共通で用いることができ、データ抽出装置21の汎用性向上が期待できる。 (1-5) The data extraction unit 23 is configured to perform each determination based on the C rate value in the present embodiment. Since the C rate value is an index indicating the charge / discharge speed of the storage battery 15, it can be commonly used for storage batteries 15 having various battery capacities, and improvement in versatility of the data extraction device 21 can be expected.
 (第2実施形態)
 以下、蓄電池のデータ抽出装置及びその抽出方法の第2実施形態について説明する。
(Second Embodiment)
Hereinafter, a second embodiment of the storage battery data extraction device and the extraction method thereof will be described.
 本実施形態におけるデータ抽出部23のデータ抽出処理は、上記第1実施形態のデータ抽出処理(図2参照)の一部を変更している。以下では、その変更点を中心に図13及び図14等を用いて説明する。 The data extraction process of the data extraction unit 23 in the present embodiment is a partial modification of the data extraction process (see FIG. 2) of the first embodiment. In the following, the changes will be mainly described with reference to FIGS. 13 and 14 and the like.
 本実施形態のデータ抽出処理では、上記第1実施形態のデータ抽出処理のステップS4とステップS6との間に新たにステップSaが挿入されている。ステップS4までにおいては、過渡応答前の前区間において、Cレート値の差分|C-C|が閾値α以下の小さな変動でそのCレート値が安定して推移したかが判定されている。Cレート値が所望の安定推移と判定されると、ステップSaに進む。 In the data extraction process of the present embodiment, a new step Sa is inserted between steps S4 and S6 of the data extraction process of the first embodiment. Up to step S4, it is determined whether or not the C rate value has stably changed with a small fluctuation of the difference | C 0 − C n | of the C rate value in the previous section before the transient response, which is equal to or less than the threshold value α. .. When the C rate value is determined to be a desired stable transition, the process proceeds to step Sa.
 ステップSaでは、前区間の時間Tにおける蓄電池15のCレート値の大きさ|Cmax|が閾値α以下かを判定する(第1態様とする)。Cレート値の大きさ|Cmax|は、本実施形態では例えばピーク値とする。なお、閾値αとしては、例えば0.005~0.1[C]である。又は、その判定に替えて、前区間の時間Tにおける蓄電池15の電圧値の変動分Vmax-Vminが閾値α以下かの判定を行うようにしてもよい(第2態様とする)。電圧値の変動分Vmax-Vminは、本実施形態では例えば最大値と最小値との差分とする。なお、閾値αとしては、例えば0.5~50[mV]である。また更に、それらの判定に替えて、前区間の時間Tにおける蓄電池15のCレート値の大きさ|Cmax|が閾値α以下かの判定、及び蓄電池15の電圧値の変動分Vmax-Vminが閾値α以下かの判定の両者の判定をともに行うようにしてもよい(第3態様とする)。 In step Sa, C rate value of the size of the battery 15 at time T 1 of the front section | C max | Do (the first embodiment) for determining threshold alpha 2 below. The magnitude | C max | of the C rate value is, for example, a peak value in this embodiment. The threshold value α 2 is, for example, 0.005 to 0.1 [C]. Or, instead of the determination, variation V max -V min voltage value of the battery 15 at time T 1 of the previous interval (a second aspect) threshold alpha v or less of which may be to perform the determination .. In the present embodiment, the fluctuation amount V max −V min of the voltage value is, for example, the difference between the maximum value and the minimum value. The threshold value α v is, for example, 0.5 to 50 [mV]. Furthermore, instead of their determination, the magnitude of the C-rate values of the battery 15 at time T 1 of the front section | C max | judged whether the threshold value alpha 2 or less, and variation V max of the voltage value of the battery 15 Both determinations of whether -V min is equal to or less than the threshold value α v may be performed together (the third aspect is used).
 これは、後の過渡応答特性を示すデータの抽出において、前区間におけるCレート値の安定推移が閾値α以下のゼロ[C]付近で推移しているものに厳選することで、蓄電池15の劣化診断が一層高精度に行えるためである(詳細は後述)。また、Cレート値がゼロ[C]からオフセットするとこれと相関のある電圧値が変動するため、電圧値の変動分Vmax-Vminが閾値α以下の小さい推移のものに厳選することで、蓄電池15の劣化診断を一層高精度に行えることに繋げられるためである。更に、これら両者を考慮することで、蓄電池15の劣化診断をより一層高精度に行えることに繋げられる。 This is done by carefully selecting the data in which the stable transition of the C rate value in the previous section is in the vicinity of zero [C] of the threshold value α 2 or less in the extraction of the data showing the transient response characteristics afterwards, so that the storage battery 15 can be used. This is because deterioration diagnosis can be performed with higher accuracy (details will be described later). Moreover, since the C-rate value varies the voltage value having a correlation with this the offset from zero [C], that is variation V max -V min voltage value carefully to that of the threshold alpha v following small changes This is because the deterioration diagnosis of the storage battery 15 can be performed with higher accuracy. Further, by considering both of these, it is possible to perform the deterioration diagnosis of the storage battery 15 with higher accuracy.
 従って、ステップSaにおいて、Cレート値の大きさ|Cmax|が閾値αを超える、又は電圧値の変動分Vmax-Vminが閾値αを超える、更にはその両者がともに閾値α,αを超える場合(判定NO)、処理をステップS1に戻す。 Therefore, in step Sa, the magnitude of the C rate value | C max | exceeds the threshold value α 2 , or the fluctuation amount V max −V min of the voltage value exceeds the threshold value α v, and both of them both exceed the threshold value α 2. , Α v is exceeded (determination NO), the process is returned to step S1.
 一方、ステップSaにおいて、Cレート値の大きさ|Cmax|が閾値α以下、又は電圧値の変動分Vmax-Vminが閾値α以下、更にはその両者がともに閾値α,α以下と判定すると(判定YES)、ステップS6に進み、上記第1実施形態と同様のデータ抽出処理となる。つまり、ステップSaを追加することで得られる過渡応答特性を示す抽出データは、第1実施形態後よりも一層厳選した望ましいものとなることが期待できる。 On the other hand, in step Sa, the magnitude of the C rate value | C max | is the threshold value α 2 or less, or the fluctuation of the voltage value V max −V min is the threshold value α v or less, and both of them are the threshold values α 2 and α. If it is determined to be v or less (determination YES), the process proceeds to step S6, and the data extraction process is the same as in the first embodiment. That is, it can be expected that the extracted data showing the transient response characteristics obtained by adding step Sa will be more carefully selected and desirable than after the first embodiment.
 図15は、蓄電池の健全性(劣化度)を示すSOHの異なる3つの蓄電池15のサンプルに対し、上記第1実施形態のデータ抽出処理にて得た抽出データに基づく過渡応答解析結果が示されている。劣化度小の蓄電池15のサンプル1は真値を含むばらつきx0、劣化度中の蓄電池15のサンプル2は真値を含むばらつきy0、劣化度大の蓄電池15のサンプル3は真値を含むばらつきz0であり、上記第1実施形態のデータ抽出処理にて得られる抽出データもばらつきが十分に小さいものとなっている。 FIG. 15 shows the transient response analysis results based on the extracted data obtained by the data extraction process of the first embodiment for the samples of the three storage batteries 15 having different SOH showing the soundness (deterioration degree) of the storage batteries. ing. The sample 1 of the storage battery 15 having a small degree of deterioration has a variation x0 including the true value, the sample 2 of the storage battery 15 having a degree of deterioration has a variation y0 including the true value, and the sample 3 of the storage battery 15 having a high degree of deterioration has a variation z0 including the true value. Therefore, the variation in the extracted data obtained by the data extraction process of the first embodiment is sufficiently small.
 これに対し、図16は、本実施形態の第1態様、即ちCレート値の大きさ|Cmax|が閾値α以下としたデータ抽出処理にて得た抽出データに基づく過渡応答解析結果が示されている。劣化度小の蓄電池15のサンプル1は真値を含むばらつきx1、劣化度中の蓄電池15のサンプル2は真値を含むばらつきy1、劣化度大の蓄電池15のサンプル3は真値を含むばらつきz1であり、本実施形態の第1形態のデータ抽出処理にて得られる抽出データは、十分にばらつきの小さい上記第1実施形態を基準とすると、一層ばらつきが小さいものとなっている。 On the other hand, FIG. 16 shows the transient response analysis result based on the extracted data obtained in the first aspect of the present embodiment, that is, the data extraction process in which the magnitude of the C rate value | C max | is set to the threshold value α 2 or less. It is shown. The sample 1 of the storage battery 15 having a small degree of deterioration has a variation x1 including the true value, the sample 2 of the storage battery 15 having a degree of deterioration has a variation y1 including the true value, and the sample 3 of the storage battery 15 having a high degree of deterioration has a variation z1 including the true value. Therefore, the extraction data obtained by the data extraction process of the first embodiment of the present embodiment has even smaller variations based on the first embodiment, which has sufficiently small variations.
 また、図17は、本実施形態の第2態様、即ち電圧値の変動分Vmax-Vminが閾値α以下としたデータ抽出処理にて得た抽出データに基づく過渡応答解析結果が示されている。劣化度小の蓄電池15のサンプル1は真値を含むばらつきx2、劣化度中の蓄電池15のサンプル2は真値を含むばらつきy2、劣化度大の蓄電池15のサンプル3は真値を含むばらつきz2であり、本実施形態の第2形態のデータ抽出処理にて得られる抽出データは、十分にばらつきの小さい上記第1実施形態を基準とすると、ばらつきが若干ながらも一層小さいものとなっている。 Further, FIG. 17 shows the second aspect of the present embodiment, that is, the transient response analysis result based on the extracted data obtained by the data extraction process in which the fluctuation amount V max −V min of the voltage value is set to the threshold value α v or less. ing. The sample 1 of the storage battery 15 having a small degree of deterioration has a variation x2 including the true value, the sample 2 of the storage battery 15 having a degree of deterioration has a variation y2 including the true value, and the sample 3 of the storage battery 15 having a high degree of deterioration has a variation z2 including the true value. Therefore, the extracted data obtained by the data extraction process of the second embodiment of the present embodiment has a slightly smaller variation than the first embodiment, which has a sufficiently small variation.
 更に、図18は、本実施形態の第3態様、即ち第1及び第2態様の両判定を経て得た抽出データに基づく過渡応答解析結果が示されている。劣化度小の蓄電池15のサンプル1は真値を含むばらつきx3、劣化度中の蓄電池15のサンプル2は真値を含むばらつきy3、劣化度大の蓄電池15のサンプル3は真値を含むばらつきz3であり、本実施形態の第3形態のデータ抽出処理にて得られる抽出データは、十分にばらつきの小さい上記第1実施形態を基準とすると、より一層ばらつきが小さいものとなっている。 Further, FIG. 18 shows the transient response analysis result based on the extracted data obtained through the determination of the third aspect of the present embodiment, that is, the first and second aspects. The sample 1 of the storage battery 15 having a small degree of deterioration has a variation x3 including the true value, the sample 2 of the storage battery 15 having a degree of deterioration has a variation y3 including the true value, and the sample 3 of the storage battery 15 having a high degree of deterioration has a variation z3 including the true value. Therefore, the extraction data obtained by the data extraction process of the third embodiment of the present embodiment has even smaller variations based on the first embodiment, which has sufficiently small variations.
 本実施形態の特有の効果について説明する。なお、上記第1実施形態と同様の効果については省略する。 The peculiar effect of this embodiment will be explained. The same effect as that of the first embodiment will be omitted.
 (2-1)本実施形態のデータ抽出処理の第1~第3態様にて得られる抽出データは、前区間の安定推移をより望ましく規定し、上記第1実施形態の抽出データからより望ましいものを厳選するものである。従って、こうした抽出データに基づく蓄電池15の劣化診断は、一層高精度に行うことを十分期待することができる。 (2-1) The extracted data obtained in the first to third aspects of the data extraction process of the present embodiment more desirablely defines the stable transition of the previous section, and is more desirable from the extracted data of the first embodiment. Is carefully selected. Therefore, it can be fully expected that the deterioration diagnosis of the storage battery 15 based on such extracted data will be performed with higher accuracy.
 上記各実施形態は、以下のように変更して実施することができる。 Each of the above embodiments can be changed and implemented as follows.
 ・各実施形態の時間T~Tの各時間長さや閾値α,β,γ,α,αの値は一例であり、適宜変更してもよい。 The time lengths of the times T 1 to T 5 and the values of the threshold values α, β, γ, α 2 and α v of each embodiment are examples and may be changed as appropriate.
 ・各実施形態のデータ抽出処理(処理フロー)は一例であり、適宜変更してもよい。例えばステップS4等の時間Tに関する処理を省略してもよい。また、ステップS8等の時間Tに関する処理を省略してもよい。また、ステップS10の判定NOの場合、ステップS3に進む構成とし、ステップS11,S12を省略してもよい。また、各実施形態では、前区間、変動区間、後区間の順に処理を実施する構成であったが、処理する順序はこれに限らず、例えば変動区間の処理を先に実施する構成としてもよい。また、時間T~Tは、タイマによる計時の他、サンプリング数のカウントによる計時等も含む。 -The data extraction process (processing flow) of each embodiment is an example and may be changed as appropriate. For example, the process related to the time T 2 such as step S4 may be omitted. It is also possible to omit the processing related to the time T 4, such as step S8. Further, in the case of the determination NO in step S10, the configuration proceeds to step S3, and steps S11 and S12 may be omitted. Further, in each embodiment, the processing is performed in the order of the front section, the fluctuation section, and the rear section, but the processing order is not limited to this, and for example, the processing of the fluctuation section may be performed first. .. Further, the times T 1 to T 5 include not only time counting by a timer but also time counting by counting the number of samplings.
 ・蓄電池15のCレート値に基づいたデータ抽出処理を行う構成としたが、蓄電池15の電流値や電力値等を用いても各実施形態のデータ抽出処理と同様に構成することが可能である。 -Although the data extraction process is performed based on the C rate value of the storage battery 15, it is possible to configure the same as the data extraction process of each embodiment by using the current value, the power value, etc. of the storage battery 15. ..
 ・太陽光発電システム11に併設された蓄電池15の劣化診断に適用したが、太陽光以外の再生可能エネルギーを用いる分散型電源に併設の蓄電池の劣化診断や、ピークカット・ピークシフト、自家消費等に用いる蓄電池の劣化診断に適用してもよい。 -Although it was applied to the deterioration diagnosis of the storage battery 15 attached to the photovoltaic power generation system 11, deterioration diagnosis of the storage battery attached to the distributed power source using renewable energy other than solar energy, peak cut / peak shift, self-consumption, etc. It may be applied to the deterioration diagnosis of the storage battery used for.
 本発明がその技術的思想から逸脱しない範囲で他の特有の形態で具体化されてもよいということは当業者にとって明らかであろう。例えば、実施形態(あるいはその1つ又は複数の態様)において説明した構成のうちの一部を省略したり、いくつかの構成を組み合わせてもよい。本発明の範囲は、添付の請求の範囲を参照して、請求の範囲が権利を与えられる均等物の全範囲と共に確定されるべきである。 It will be clear to those skilled in the art that the present invention may be embodied in other peculiar forms as long as it does not deviate from the technical idea. For example, some of the configurations described in the embodiments (or one or more embodiments thereof) may be omitted, or some configurations may be combined. The scope of the invention should be established with reference to the appended claims, with the scope of the claims being established along with the full range of the equivalents to which the rights are granted.
 11…太陽光発電システム
 12…太陽光パネル
 13…太陽光発電用パワーコンディショナ
 14…蓄電池システム
 15…蓄電池
 16…蓄電池用パワーコンディショナ
 17…計測器
 18…電流計
 19…電圧計
 20…温度計
 21…データ抽出装置
 22…記憶部
 23…データ抽出部
 24…電池劣化診断装置
 25…等価回路
 α…閾値(第1閾値)
 α…閾値(第4閾値)
 α…閾値(第5閾値)
 β…閾値(第2閾値)
 γ…閾値(第3閾値)
 T…時間(第1時間)
 T…時間(第5時間)
 T…時間(第2時間)
 T…時間(第4時間)
 T…時間(第3時間)
11 ... Photovoltaic power generation system 12 ... Solar panel 13 ... Photovoltaic power conditioner 14 ... Storage battery system 15 ... Storage battery 16 ... Power conditioner for storage battery 17 ... Measuring instrument 18 ... Current meter 19 ... Voltage meter 20 ... Thermometer 21 ... Data extraction device 22 ... Storage unit 23 ... Data extraction unit 24 ... Battery deterioration diagnosis device 25 ... Equivalent circuit α ... Threshold (first threshold)
α 2 … Threshold (4th threshold)
α v ... Threshold (fifth threshold)
β ... Threshold (second threshold)
γ ... Threshold (third threshold)
T 1 ... Time (1st hour)
T 2 ... Time (5th hour)
T 3 ... Time (2nd hour)
T 4 ... Time (4th hour)
T 5 ... Time (3rd hour)

Claims (8)

  1.  蓄電池の劣化診断が可能な検出値データを所定サンプリング間隔で格納する記憶部と、
     前記記憶部に格納された検出値データから前記蓄電池の過渡応答時に係るデータを抽出するデータ抽出部とを備えた蓄電池のデータ抽出装置であって、
     前記データ抽出部は、
     前記蓄電池の検出値に基づくCレート値又は電流値若しくは電力値が急変する変動区間、前記変動区間の前区間及び前記変動区間の後区間の少なくとも3区間に分け、
     前記前区間では、前記Cレート値又は電流値若しくは電力値の変動が第1閾値以下で第1時間以上継続する前区間の安定推移の判定と、
     前記変動区間では、前記Cレート値又は電流値若しくは電力値が第2時間以内で第2閾値以上変動する変動区間の急変推移の判定と、
     前記後区間では、前記Cレート値又は電流値若しくは電力値の変動が第3閾値以下で第3時間以上継続する後区間の安定推移の判定とを実施し、
     前記各判定に基づくデータ抽出条件を満たした場合に前記記憶部から該当の過渡応答時に係るデータを抽出するように構成された、
     蓄電池のデータ抽出装置。
    A storage unit that stores detection value data that can diagnose deterioration of the storage battery at predetermined sampling intervals,
    A storage battery data extraction device including a data extraction unit that extracts data related to the transient response of the storage battery from the detected value data stored in the storage unit.
    The data extraction unit
    It is divided into at least three sections: a variable section in which the C rate value or the current value or the power value suddenly changes based on the detected value of the storage battery, a section before the variable section, and a section after the variable section.
    In the previous section, the determination of the stable transition of the previous section in which the fluctuation of the C rate value or the current value or the power value continues for the first hour or more at the first threshold value or less is determined.
    In the fluctuation section, the determination of the sudden change transition of the fluctuation section in which the C rate value, the current value, or the power value fluctuates by the second threshold value or more within the second time is determined.
    In the rear section, the determination of the stable transition of the rear section in which the fluctuation of the C rate value or the current value or the power value continues for the third time or more at the third threshold value or less is performed.
    It is configured to extract the data related to the corresponding transient response from the storage unit when the data extraction conditions based on the respective determinations are satisfied.
    Storage battery data extraction device.
  2.  前記データ抽出部は、
     前記前区間において更に、前記Cレート値又は電流値若しくは電力値の大きさが第4閾値以下かを判定、又は、
     前記前区間において更に、前記蓄電池の検出値に基づく電圧値の変動が第5閾値以下かを判定、若しくは、
     その両方を判定するように構成された、
     請求項1に記載の蓄電池のデータ抽出装置。
    The data extraction unit
    Further, in the previous section, it is determined whether the magnitude of the C rate value, the current value, or the power value is equal to or less than the fourth threshold value, or
    Further, in the previous section, it is determined whether or not the fluctuation of the voltage value based on the detected value of the storage battery is equal to or less than the fifth threshold value, or
    It was configured to determine both,
    The storage battery data extraction device according to claim 1.
  3.  前記データ抽出部は、
     前記変動区間において更に、前記Cレート値又は電流値若しくは電力値の急変推移が第4時間以内に収束したかを判定するように構成された、
     請求項1又は請求項2に記載の蓄電池のデータ抽出装置。
    The data extraction unit
    In the fluctuation section, it is further configured to determine whether the sudden change in the C rate value, the current value, or the power value has converged within the fourth hour.
    The storage battery data extraction device according to claim 1 or 2.
  4.  前記データ抽出部は、
     前記変動区間における前記Cレート値又は電流値若しくは電力値の変化点付近に生じ得る局所的な近似推移が前記後区間における安定推移と誤判定しないように構成された、
     請求項1から請求項3のいずれか1項に記載の蓄電池のデータ抽出装置。
    The data extraction unit
    It is configured so that the local approximate transition that may occur near the change point of the C rate value or the current value or the power value in the fluctuation section is not erroneously determined as the stable transition in the subsequent section.
    The storage battery data extraction device according to any one of claims 1 to 3.
  5.  前記データ抽出部は、
     前記前区間において更に、前記Cレート値又は電流値若しくは電力値の変動が第5時間以内かを判定し、前記第5時間を超えた場合、前記記憶部の格納したデータの前記第1時間を超えた分を削除するように構成された、
     請求項1から請求項4のいずれか1項に記載の蓄電池のデータ抽出装置。
    The data extraction unit
    Further, in the preceding section, it is determined whether the fluctuation of the C rate value, the current value, or the power value is within the fifth hour, and if the fluctuation exceeds the fifth hour, the first hour of the data stored in the storage unit is used. Configured to remove excess,
    The storage battery data extraction device according to any one of claims 1 to 4.
  6.  前記データ抽出部は、
     前記Cレート値に基づいて前記各判定を行うように構成された、
     請求項1から請求項5のいずれか1項に記載の蓄電池のデータ抽出装置。
    The data extraction unit
    Each determination is configured to be made based on the C rate value.
    The storage battery data extraction device according to any one of claims 1 to 5.
  7.  蓄電池の劣化診断が可能な検出値データを所定サンプリング間隔で記憶部に格納し、前記記憶部に格納された検出値データから前記蓄電池の過渡応答時に係るデータを抽出する蓄電池のデータ抽出方法であって、
     前記蓄電池の検出値に基づくCレート値又は電流値若しくは電力値が急変する変動区間、前記変動区間の前区間及び前記変動区間の後区間の少なくとも3区間に分け、
     前記前区間では、前記Cレート値又は電流値若しくは電力値の変動が第1閾値以下で第1時間以上継続する前区間の安定推移を判定し、
     前記変動区間では、前記Cレート値又は電流値若しくは電力値が第2時間以内で第2閾値以上変動する変動区間の急変推移を判定し、
     前記後区間では、前記Cレート値又は電流値若しくは電力値の変動が第3閾値以下で第3時間以上継続する後区間の安定推移を判定し、
     前記各判定に基づくデータ抽出条件を満たした場合に前記記憶部から該当の過渡応答時に係るデータを抽出する、
     蓄電池のデータ抽出方法。
    A storage battery data extraction method in which detection value data capable of diagnosing deterioration of a storage battery is stored in a storage unit at predetermined sampling intervals, and data related to the transient response of the storage battery is extracted from the detection value data stored in the storage unit. hand,
    It is divided into at least three sections: a variable section in which the C rate value or the current value or the power value suddenly changes based on the detected value of the storage battery, a section before the variable section, and a section after the variable section.
    In the previous section, the stable transition of the previous section in which the fluctuation of the C rate value or the current value or the power value continues for the first hour or more at the first threshold value or less is determined.
    In the fluctuation section, the sudden change transition of the fluctuation section in which the C rate value, the current value, or the power value fluctuates by the second threshold value or more within the second time is determined.
    In the rear section, the stable transition of the rear section in which the fluctuation of the C rate value or the current value or the power value continues for the third time or more at the third threshold value or less is determined.
    When the data extraction conditions based on the respective determinations are satisfied, the data related to the corresponding transient response is extracted from the storage unit.
    Storage battery data extraction method.
  8.  前記前区間において更に、前記Cレート値又は電流値若しくは電力値の大きさが第4閾値以下かを判定、又は、
     前記前区間において更に、前記蓄電池の検出値に基づく電圧値の変動が第5閾値以下かを判定、若しくは、
     その両方を判定する、
     請求項7に記載の蓄電池のデータ抽出方法。
    Further, in the previous section, it is determined whether the magnitude of the C rate value, the current value, or the power value is equal to or less than the fourth threshold value, or
    Further, in the previous section, it is determined whether or not the fluctuation of the voltage value based on the detected value of the storage battery is equal to or less than the fifth threshold value, or
    Judging both,
    The method for extracting data from a storage battery according to claim 7.
PCT/JP2020/028161 2020-07-20 2020-07-20 Data extraction device for storage battery and data extraction method for storage battery WO2022018810A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022538516A JPWO2022018810A1 (en) 2020-07-20 2020-07-20
PCT/JP2020/028161 WO2022018810A1 (en) 2020-07-20 2020-07-20 Data extraction device for storage battery and data extraction method for storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/028161 WO2022018810A1 (en) 2020-07-20 2020-07-20 Data extraction device for storage battery and data extraction method for storage battery

Publications (1)

Publication Number Publication Date
WO2022018810A1 true WO2022018810A1 (en) 2022-01-27

Family

ID=79729128

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/028161 WO2022018810A1 (en) 2020-07-20 2020-07-20 Data extraction device for storage battery and data extraction method for storage battery

Country Status (2)

Country Link
JP (1) JPWO2022018810A1 (en)
WO (1) WO2022018810A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023162266A1 (en) * 2022-02-28 2023-08-31 株式会社日立ハイテク Battery degradation diagnosis method determination device, battery degradation diagnosis system, battery degradation diagnosis method determination method, and battery degradation diagnosis method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016048617A (en) * 2014-08-27 2016-04-07 日本電気株式会社 Information processing device, state estimation method, and program
JP2016225154A (en) * 2015-05-29 2016-12-28 パナソニックIpマネジメント株式会社 Battery maintenance state determination device and battery maintenance state determination method
WO2017002953A1 (en) * 2015-07-02 2017-01-05 学校法人同志社 Data extracting device, data extracting method, and data extracting program
JP2018138884A (en) * 2017-02-24 2018-09-06 株式会社デンソー Signal detection device
JP2019204712A (en) * 2018-05-24 2019-11-28 トヨタ自動車株式会社 Cell system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016048617A (en) * 2014-08-27 2016-04-07 日本電気株式会社 Information processing device, state estimation method, and program
JP2016225154A (en) * 2015-05-29 2016-12-28 パナソニックIpマネジメント株式会社 Battery maintenance state determination device and battery maintenance state determination method
WO2017002953A1 (en) * 2015-07-02 2017-01-05 学校法人同志社 Data extracting device, data extracting method, and data extracting program
JP2018138884A (en) * 2017-02-24 2018-09-06 株式会社デンソー Signal detection device
JP2019204712A (en) * 2018-05-24 2019-11-28 トヨタ自動車株式会社 Cell system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023162266A1 (en) * 2022-02-28 2023-08-31 株式会社日立ハイテク Battery degradation diagnosis method determination device, battery degradation diagnosis system, battery degradation diagnosis method determination method, and battery degradation diagnosis method

Also Published As

Publication number Publication date
JPWO2022018810A1 (en) 2022-01-27

Similar Documents

Publication Publication Date Title
EP3508867B1 (en) Detection method and device for micro short circuit of battery
JP4884404B2 (en) Method and apparatus for detecting internal information of secondary battery
CN112327167B (en) Battery capacity diving risk assessment method and system
JP6538658B2 (en) Method of monitoring a lithium ion battery and monitoring device for the implementation of this method
CN108028439B (en) Method and device for estimating the current no-load voltage profile of a battery pack
CN114430080B (en) Power battery cell abnormal self-discharge identification method based on operation data
CN105158699A (en) Battery health state detection method and apparatus
CN103852727A (en) Method and device for estimating power battery charge state on line
CN109001636B (en) Method and device for determining battery health degree of battery pack, vehicle and computing equipment
JP2013187031A (en) Lithium ion secondary battery system, inspection method of lithium ion secondary battery, control method of lithium ion secondary battery
CN108051755A (en) Battery internal resistance acquisition method and device, battery management system and computer storage readable medium
CN112363059A (en) Battery fault diagnosis method and system based on GM (1, 1) gray model
WO2022018810A1 (en) Data extraction device for storage battery and data extraction method for storage battery
CN115407206A (en) SOH self-adaptive estimation method based on capacity accumulation
JP7485043B2 (en) Method for detecting malfunctions in a power supply device and battery
JP2003308885A (en) Deterioration diagnosis method for lithium ion battery and device incorporating the same
JP2019200094A (en) Device and method for extracting deterioration diagnosis data in storage battery
Xu et al. A fast diagnosis method for accelerated degradation fault induced by overcharging of LiFePO4 batteries
WO2017002953A1 (en) Data extracting device, data extracting method, and data extracting program
JP6469485B2 (en) Battery deterioration determination device, battery pack, battery deterioration determination method, and battery deterioration determination program
CN113655398B (en) Method for predicting circulating water jump of lithium battery
WO2002005405A1 (en) Method for predicting battery capacity
CN114814622A (en) Method and device for measuring internal resistance of battery
CN114264961A (en) Method and device for detecting short circuit in battery cell and electronic equipment
JP2023148254A (en) Storage battery data extraction device and storage battery data extraction method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20946316

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022538516

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20946316

Country of ref document: EP

Kind code of ref document: A1