WO2022017919A1 - Cannabidiol for use in the treatment of seizures associated with hydrocephalus - Google Patents

Cannabidiol for use in the treatment of seizures associated with hydrocephalus Download PDF

Info

Publication number
WO2022017919A1
WO2022017919A1 PCT/EP2021/069820 EP2021069820W WO2022017919A1 WO 2022017919 A1 WO2022017919 A1 WO 2022017919A1 EP 2021069820 W EP2021069820 W EP 2021069820W WO 2022017919 A1 WO2022017919 A1 WO 2022017919A1
Authority
WO
WIPO (PCT)
Prior art keywords
cbd
preparation
seizures
hydrocephalus
thc
Prior art date
Application number
PCT/EP2021/069820
Other languages
French (fr)
Inventor
Daniel Adam CHECKETTS
Kevin James CRAIG
Original Assignee
GW Research Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GW Research Limited filed Critical GW Research Limited
Publication of WO2022017919A1 publication Critical patent/WO2022017919A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/045Hydroxy compounds, e.g. alcohols; Salts thereof, e.g. alcoholates
    • A61K31/05Phenols
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/40Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil
    • A61K31/4015Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil having oxo groups directly attached to the heterocyclic ring, e.g. piracetam, ethosuximide
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/41Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
    • A61K31/41921,2,3-Triazoles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/53Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with three nitrogens as the only ring hetero atoms, e.g. chlorazanil, melamine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/55Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having seven-membered rings, e.g. azelastine, pentylenetetrazole
    • A61K31/551Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having seven-membered rings, e.g. azelastine, pentylenetetrazole having two nitrogen atoms, e.g. dilazep
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K36/00Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
    • A61K36/18Magnoliophyta (angiosperms)
    • A61K36/185Magnoliopsida (dicotyledons)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/08Antiepileptics; Anticonvulsants

Definitions

  • the present invention relates to the use of cannabidiol (CBD) for the treatment of seizures associated with rare epilepsy syndromes.
  • CBD cannabidiol
  • the seizures associated with rare epilepsy syndromes that are treated are those which are experienced in patients diagnosed with Hydrocephalus.
  • the types of seizures include tonic, tonic-clonic, absence and focal seizures with impairment.
  • the dose of CBD is between 5 mg/kg/day to 50 mg/kg/day.
  • the CBD used is in the form of a highly purified extract of cannabis such that the CBD is present at greater than 95% of the total extract (w/w) and the cannabinoid tetrahydrocannabinol (THC) has been substantially removed, to a level of not more than 0.15% (w/w).
  • the CBD used is in the form of a botanically derived purified CBD which comprises greater than or equal to 98% (w/w) CBD and less than or equal to 2% (w/w) of other cannabinoids. More preferably the other cannabinoids present are THC at a concentration of less than or equal to 0.1% (w/w); CBD-C1 at a concentration of less than or equal to 0.15% (w/w); CBDV at a concentration of less than or equal to 0.8% (w/w); and CBD-C4 at a concentration of less than or equal to 0.4% (w/w).
  • the botanically derived purified CBD preferably also comprises a mixture of both trans-THC and cis-THC. Alternatively, a synthetically produced CBD is used.
  • the other cannabinoids present are THC at a concentration of about 0.01% to about 0.1% (w/w); CBD-C1 at a concentration of about 0.1% to about 0.15% (w/w); CBDV at a concentration of about 0.2% to about 0.8% (w/w); and CBD-C4 at a concentration of about 0.3% to about 0.4% (w/w).
  • THC is present at a concentration of about 0.02% to about 0.05% (w/w).
  • the CBD may be formulated for administration separately, sequentially or simultaneously with one or more AED or the combination may be provided in a single dosage form.
  • Epilepsy occurs in approximately 1% of the population worldwide, (Thurman et al., 2011) of which 70% are able to adequately control their symptoms with the available existing anti-epileptic drugs (AED). However, 30% of this patient group, (Eadie etal., 2012), are unable to obtain seizure freedom from the AED that are available and as such are termed as suffering from intractable or “treatment-resistant epilepsy” (TRE).
  • TRE treatment-resistant epilepsy
  • Intractable or treatment-resistant epilepsy was defined in 2009 by the International League against Epilepsy (I LAE) as “failure of adequate trials of two tolerated and appropriately chosen and used AED schedules (whether as monotherapies or in combination) to achieve sustained seizure freedom ” (Kwan et al., 2009).
  • Childhood epilepsy is a relatively common neurological disorder in children and young adults with a prevalence of approximately 700 per 100,000. This is twice the number of epileptic adults per population.
  • the main symptom of epilepsy is repeated seizures.
  • Clinical observations and electroencephalography (EEG) tests are conducted and the type(s) of seizures are classified according to the ILEA classification.
  • Generalized seizures where the seizure arises within and rapidly engages bilaterally distributed networks, can be split into six subtypes: tonic-clonic (grand mal) seizures; absence (petit mal) seizures; clonic seizures; tonic seizures; atonic seizures and myoclonic seizures.
  • Focal (partial) seizures where the seizure originates within networks limited to only one hemisphere, are also split into sub-categories.
  • the seizure is characterized according to one or more features of the seizure, including aura, motor, autonomic and awareness / responsiveness.
  • a seizure begins as a localized seizure and rapidly evolves to be distributed within bilateral networks this seizure is known as a bilateral convulsive seizure, which is the proposed terminology to replace secondary generalized seizures (generalized seizures that have evolved from focal seizures and are no longer remain localized).
  • Focal seizures where the subject’s awareness / responsiveness is altered are referred to as focal seizures with impairment and focal seizures where the awareness or responsiveness of the subject is not impaired are referred to as focal seizures without impairment.
  • Hydrocephalus is a condition in which the primary characteristic is excessive accumulation of cerebrospinal fluid (CSF). Excessive accumulation of the CSF results in an abnormal dilation of the ventricles in the brain, in turn causing potentially harmful pressure on the tissues of the brain.
  • CSF cerebrospinal fluid
  • Hydrocephalus may be congenital or acquired. Congenital hydrocephalus may be caused by genetic abnormalities or developmental disorders such as spina bifida and encephalocele. Acquired hydrocephalus can affect individuals of all ages. 1 [0017] Symptoms of hydrocephalus vary with age, disease progression, and individual differences in tolerance to CSF. In infancy, the most obvious indication of hydrocephalus is often the rapid increase in head circumference or an unusually large head size. In older individuals, symptoms may include headache followed by vomiting, nausea, papilledema, amongst other symptoms.
  • Treatment for Hydrocephalus is commonly by the surgical placement of a shunt system, which diverts the flow of CSF from a site within the central nervous system to another area of the body where it can be absorbed as part of the circulatory process.
  • CBD Cannabidiol
  • Pane and Sacca (2020) 4 describe a case report of a patient with hydrocephalus being treated with medical cannabis extracts comprising high THC and low CBD concentrations.
  • Several web articles discuss the potential of cannabis in treating Hydrocephalus- related seizures, although there is no evidence or data to demonstrate any such effectiveness. 5 ⁇
  • GB 2539472 disclose the use of highly purified CBD for the treatment of various types of seizures associated with epilepsy, but do not show any data to suggest efficacy in the treatment of Hydrocephalus.
  • CBD cannabidiol
  • the seizures associated with Hydrocephalus are tonic, tonic-clonic, absence and focal seizures with impairment.
  • the CBD preparation comprises greater than 95% (w/w) CBD and not more than 0.15% (w/w) tetrahydrocannabinol (THC).
  • the CBD preparation comprises greater than or equal to 98% (w/w) CBD and less than or equal to 2% (w/w) other cannabinoids, wherein the less than or equal to 2% (w/w) other cannabinoids comprise the cannabinoids tetrahydrocannabinol (THC); cannabidiol- C1 (CBD-C1); cannabidivarin (CBDV); and cannabidiol-C4 (CBD-C4), and wherein the THC is present as a mixture of trans-THC and cis-THC.
  • THC cannabinoids tetrahydrocannabinol
  • CBD-C1 cannabidiol- C1
  • CBDDV cannabidivarin
  • CBD-C4 cannabidiol-C4
  • the CBD preparation is used in combination with one or more concomitant anti-epileptic drugs (AED).
  • AED concomitant anti-epileptic drugs
  • the one or more AED is selected from the group consisting of: levetiracetam, clobazam, rufinamide and lamotrigine.
  • the CBD is present is isolated from cannabis plant material.
  • the CBD is present as a synthetic preparation.
  • at least a portion of at least one of the cannabinoids present in the CBD preparation is prepared synthetically.
  • the dose of CBD is greater than 5 mg/kg/day. More preferably the dose of CBD is 20 mg/kg/day. More preferably the dose of CBD is 25 mg/kg/day. More preferably the dose of CBD is 50 mg/kg/day.
  • a method of treating seizures associated with Hydrocephalus comprising administering a cannabidiol (CBD) preparation to the subject in need thereof.
  • CBD cannabidiol
  • cannabinoids Over 100 different cannabinoids have been identified, see for example, Handbook of Cannabis, Roger Pertwee, Chapter 1, pages 3 to 15. These cannabinoids can be split into different groups as follows: Phytocannabinoids; Endocannabinoids and Synthetic cannabinoids (which may be novel cannabinoids or synthetically produced phytocannabinoids or endocannabinoids).
  • phytocannabinoids are cannabinoids that originate from nature and can be found in the cannabis plant.
  • the phytocannabinoids can be isolated from plants to produce a highly purified extract or can be reproduced synthetically.
  • “Highly purified cannabinoids” are defined as cannabinoids that have been extracted from the cannabis plant and purified to the extent that other cannabinoids and non-cannabinoid components that are co-extracted with the cannabinoids have been removed, such that the highly purified cannabinoid is greater than or equal to 95% (w/w) pure.
  • Synthetic cannabinoids are compounds that have a cannabinoid or cannabinoid-like structure and are manufactured using chemical means rather than by the plant.
  • Phytocannabinoids can be obtained as either the neutral (decarboxylated form) or the carboxylic acid form depending on the method used to extract the cannabinoids. For example, it is known that heating the carboxylic acid form will cause most of the carboxylic acid form to decarboxylate into the neutral form.
  • Treatment-resistant epilepsy (TRE) or “intractable epilepsy” is defined as per the I LAE guidance of 2009 as epilepsy that is not adequately controlled by trials of one or more AED.
  • Tonic seizures can be generalised onset, affecting both sides of the brain, or they can be focal onset, starting in just one side of the brain. If a tonic seizure starts in both sides of the brain, all muscles tighten and the subject’s body goes stiff. If standing, they may fall to the floor, their neck may extend, eyes open wide and roll upwards, whilst their arms may raise upwards and legs stretch or contract. If a tonic seizure starts in one side of the brain muscles tighten in just one area of the body. Tonic seizures usually last less than one minute.
  • Tonic-clonic seizures (also called convulsions) has replaced the term “grand mal.”
  • a subject experiences a tonic-clonic seizure they lose consciousness, muscles stiffen, and jerking movements are seen.
  • This type of seizure usually lasts 1 to 3 minutes and takes longer for the subject to recover. It usually begins on both sides of the brain but can start in one side and spread to the whole brain.
  • “Absence seizures” are also called “petit mal” seizures. These types of seizure cause a loss of awareness for a short time. They mainly affect children although can happen at any age. During an absence seizure, a person may: stare blankly into space; look like they are "daydreaming”; flutter their eyes; make slight jerking movements of their body or limbs. The seizures usually only last up to 15 seconds and may occur several times a day.
  • “Focal Seizures” are defined as seizures which originate within networks limited to only one hemisphere. What happens during the seizure depends on where in the brain the seizure happens and what that part of the brain normally does.
  • “Focal seizure with impairment” has replaced the term “complex partial seizure”. These seizures usually start in a small area of the temporal lobe or frontal lobe of the brain and involve other areas of the brain within the same hemisphere that affect alertness and awareness. Most subjects experience automatisms during a focal seizure with impaired consciousness.
  • the drug substance used is a liquid carbon dioxide extract of high-CBD containing chemotypes of Cannabis sativa L. which had been further purified by a solvent crystallization method to yield CBD.
  • the crystallisation process specifically removes other cannabinoids and plant components to yield greater than or equal to 95% CBD.
  • CBD is highly purified because it is produced from a cannabis plant rather than synthetically there is a small number of other cannabinoids which are co-produced and co-extracted with the CBD. Details of these cannabinoids and the quantities in which they are present in the medication are as described in Table A below.
  • the drug substance used in the trials is a liquid carbon dioxide extract of high-CBD containing chemotypes of Cannabis sativa L. which had been further purified by a solvent crystallization method to yield CBD.
  • the crystallisation process specifically removes other cannabinoids and plant components to yield greater than 95% CBD w/w, typically greater than 98% w/w.
  • Cannabis sativa L. plants are grown, harvested, and processed to produce a botanical extract (intermediate) and then purified by crystallization to yield the CBD (botanically derived purified CBD).
  • the plant starting material is referred to as Botanical Raw Material (BRM); the botanical extract is the intermediate; and the active pharmaceutical ingredient (API) is CBD, the drug substance.
  • BRM Botanical Raw Material
  • API active pharmaceutical ingredient
  • Table B CBD botanical raw material specification
  • the purity of the botanically derived purified CBD preparation was greater than or equal to 98%.
  • the botanically derived purified CBD includes THC and other cannabinoids, e.g., CBDA, CBDV, CBD-C1, and CBD-C4.
  • the CBD preparation comprises not more than 0.15% THC based on total amount of cannabinoid in the preparation. In some embodiments, the CBD preparation comprises about 0.01% to about 0.1% THC based on total amount of cannabinoid in the preparation. In some embodiments, the CBD preparation comprises about 0.02% to about 0.05% THC based on total amount of cannabinoid in the preparation.
  • the CBD preparation comprises about 0.2% to about 1.0% CBDV based on total amount of cannabinoid in the preparation. In some embodiments, the CBD preparation comprises about 0.2% to about 0.8% CBDV based on total amount of cannabinoid in the preparation. [0060] In some embodiments, the CBD preparation comprises about 0.3% to about 0.5%
  • CBD-C4 based on total amount of cannabinoid in the preparation.
  • the CBD preparation comprises about 0.3% to about 0.4% CBD-C4 based on total amount of cannabinoid in the preparation.
  • the CBD preparation comprises about 0.1% to about 0.15% CBD-C1 based on total amount of cannabinoid in the preparation.
  • Distinct chemotypes of the Cannabis sativa L. plant have been produced to maximize the output of the specific chemical constituents, the cannabinoids. Certain chemovars produce predominantly CBD. Only the (-)-trans isomer of CBD is believed to occur naturally. During purification, the stereochemistry of CBD is not affected.
  • High CBD chemovars were grown, harvested, dried, baled and stored in a dry room until required.
  • the botanical raw material (BRM) was finely chopped using an Apex mill fitted with a 1 mm screen. The milled BRM was stored in a freezer prior to extraction.
  • the BDS produced using the methodology above was dispersed in C5-C12 straight chain or branched alkane.
  • the mixture was manually agitated to break up any lumps and the sealed container then placed in a freezer for approximately 48 hours.
  • the crystals were isolated via vacuum filtration, washed with aliquots of cold C5-C12 straight chain or branched alkane, and dried under a vacuum of ⁇ 10mb at a temperature of 60°C until dry.
  • the botanically derived purified CBD preparation was stored in a freezer at -20°C in a pharmaceutical grade stainless steel container, with FDA food grade approved silicone seal and clamps.
  • the botanically derived purified CBD used in the clinical trial described in the invention comprises greater than or equal to 98% (w/w) CBD and less than or equal to 2% (w/w) of other cannabinoids.
  • the other cannabinoids present are THC at a concentration of less than or equal to 0.1% (w/w); CBD-C1 at a concentration of less than or equal to 0.15% (w/w); CBDV at a concentration of less than or equal to 0.8% (w/w); and CBD-C4 at a concentration of less than or equal to 0.4% (w/w).
  • the botanically derived purified CBD used additionally comprises a mixture of both trans-THC and cis-THC. It was found that the ratio of the trans-THC to cis-THC is altered and can be controlled by the processing and purification process, ranging from 3.3:1 (trans-THC:cis- THC) in its unrefined decarboxylated state to 0.8:1 (trans-THC:cis-THC) when highly purified. [0071] Furthermore, the cis-THC found in botanically derived purified CBD is present as a mixture of both the (+)-cis-THC and the (-)-cis-THC isoforms.
  • CBD preparation could be produced synthetically by producing a composition with duplicate components.
  • Example 1 describes the use of a botanically derived purified CBD in an open label, expanded-access program to investigate the clinical efficacy and safety of purified pharmaceutical cannabidiol formulation (CBD) in the treatment of Hydrocephalus.
  • CBD cannabidiol formulation
  • EXAMPLE 1 CLINICAL EFFICACY AND SAFETY OF PURIFIED PHARMACEUTICAL CANNABIDIOL (CBD) IN THE TREATMENT OF PATIENTS DIAGNOSED WITH HYDROCEPHALUS
  • Subjects were required to be on one or more AEDs at stable doses for a minimum of two weeks prior to baseline and to have stable vagus nerve stimulation (VNS) settings and ketogenic diet ratios for a minimum of four weeks prior to baseline.
  • VNS vagus nerve stimulation
  • Patients were administered botanically derived purified CBD in a 100 mg/ml_ sesame oil- based solution at an initial dose of 5 milligrams per kilogram per day (mg/kg/day) in two divided doses. Dose was then increased weekly by 5mg/kg/day to a goal of 20 to 25 mg/kg/day.
  • a maximum dose of 50 mg/kg/day could be utilised for patients who were tolerating the medication but had not achieved seizure control; these patients had further weekly titration by 5mg/kg/day.
  • Seizure frequency, intensity, and duration were recorded by caregivers in a diary during a baseline period of at least 28 days. Changes in seizure frequency relative to baseline were calculated after at least 2 weeks and at defined timepoints of treatment.
  • Patients may be defined as responders if they had more than 50% reduction in seizure frequency compared to baseline.
  • the percent change in seizure frequency was calculated as follows:
  • % change ((weekly seizure frequency time interval)- (weekly seizure frequency Baseline)) x100 seizure (weekly seizure frequency Baseline) frequency
  • the percent change of seizure frequency may be calculated for any time interval where seizure number has been recorded.
  • the percent change of seizure frequency for the end of the treatment period was calculated as follows:
  • % reduction ((weekly seizure frequency Baseline) - (weekly seizure frequency End)) x100 seizure frequency (weekly seizure frequency Baseline)
  • Both patients were on three concomitant AEDs at the time of starting CBD. Both patients were on clobazam and levetiracetam.
  • Tables 2A-B illustrate the seizure frequency for each patient as well as the dose of CBD given.
  • Table 2A Seizure frequency data for Patient 1
  • CBD was effective in reducing the frequency of the following seizure types: tonic, absence, and focal seizures with impairment.
  • patient 1 obtained significant benefit whereby they were completely seizure free in their absence seizures after 36 weeks of treatment.
  • this study signifies the use of CBD for treatment of seizures associated with Hydrocephalus.
  • Seizure types include tonic, absence, and focal seizures with impairment for which seizure frequency rates decreased by significant rates, by 67.4-100% %.

Abstract

The present invention relates to the use of cannabidiol (CBD) for the treatment of seizures associated with rare epilepsy syndromes. In particular the seizures associated with rare epilepsy syndromes that are treated are those which are experienced in patients diagnosed with Hydrocephalus. In a further embodiment the types of seizures include tonic, tonic-clonic, absence and focal seizures with impairment. Preferably the dose of CBD is between mg/kg/day to 50 mg/kg/day.

Description

CANNABIDIOL FOR USE IN THE TREATMENT OF SEIZURES ASSOCIATED WITH HYDROCEPHALUS
FIELD OF THE INVENTION
[0001] The present invention relates to the use of cannabidiol (CBD) for the treatment of seizures associated with rare epilepsy syndromes. In particular the seizures associated with rare epilepsy syndromes that are treated are those which are experienced in patients diagnosed with Hydrocephalus. In a further embodiment the types of seizures include tonic, tonic-clonic, absence and focal seizures with impairment. Preferably the dose of CBD is between 5 mg/kg/day to 50 mg/kg/day.
[0002] In a further embodiment the CBD used is in the form of a highly purified extract of cannabis such that the CBD is present at greater than 95% of the total extract (w/w) and the cannabinoid tetrahydrocannabinol (THC) has been substantially removed, to a level of not more than 0.15% (w/w).
[0003] Preferably the CBD used is in the form of a botanically derived purified CBD which comprises greater than or equal to 98% (w/w) CBD and less than or equal to 2% (w/w) of other cannabinoids. More preferably the other cannabinoids present are THC at a concentration of less than or equal to 0.1% (w/w); CBD-C1 at a concentration of less than or equal to 0.15% (w/w); CBDV at a concentration of less than or equal to 0.8% (w/w); and CBD-C4 at a concentration of less than or equal to 0.4% (w/w). The botanically derived purified CBD preferably also comprises a mixture of both trans-THC and cis-THC. Alternatively, a synthetically produced CBD is used.
[0004] Most preferably the other cannabinoids present are THC at a concentration of about 0.01% to about 0.1% (w/w); CBD-C1 at a concentration of about 0.1% to about 0.15% (w/w); CBDV at a concentration of about 0.2% to about 0.8% (w/w); and CBD-C4 at a concentration of about 0.3% to about 0.4% (w/w). Most preferably still the THC is present at a concentration of about 0.02% to about 0.05% (w/w).
[0005] Where the CBD is given concomitantly with one or more other anti-epileptic drugs (AED), the CBD may be formulated for administration separately, sequentially or simultaneously with one or more AED or the combination may be provided in a single dosage form.
BACKGROUND TO THE INVENTION
[0006] Epilepsy occurs in approximately 1% of the population worldwide, (Thurman et al., 2011) of which 70% are able to adequately control their symptoms with the available existing anti-epileptic drugs (AED). However, 30% of this patient group, (Eadie etal., 2012), are unable to obtain seizure freedom from the AED that are available and as such are termed as suffering from intractable or “treatment-resistant epilepsy” (TRE).
[0007] Intractable or treatment-resistant epilepsy was defined in 2009 by the International League Against Epilepsy (I LAE) as “failure of adequate trials of two tolerated and appropriately chosen and used AED schedules (whether as monotherapies or in combination) to achieve sustained seizure freedom ” (Kwan et al., 2009).
[0008] Individuals who develop epilepsy during the first few years of life are often difficult to treat and as such are often termed treatment resistant. Children who undergo frequent seizures in childhood are often left with neurological damage which can cause cognitive, behavioral and motor delays.
[0009] Childhood epilepsy is a relatively common neurological disorder in children and young adults with a prevalence of approximately 700 per 100,000. This is twice the number of epileptic adults per population.
[0010] When a child or young adult presents with a seizure, investigations are normally undertaken in order to investigate the cause. Childhood epilepsy can be caused by many different syndromes and genetic mutations and as such diagnosis for these children may take some time.
[0011] The main symptom of epilepsy is repeated seizures. In order to determine the type of epilepsy or the epileptic syndrome that a patient is suffering from an investigation into the type of seizures that the patient is experiencing is undertaken. Clinical observations and electroencephalography (EEG) tests are conducted and the type(s) of seizures are classified according to the ILEA classification.
[0012] Generalized seizures, where the seizure arises within and rapidly engages bilaterally distributed networks, can be split into six subtypes: tonic-clonic (grand mal) seizures; absence (petit mal) seizures; clonic seizures; tonic seizures; atonic seizures and myoclonic seizures.
[0013] Focal (partial) seizures where the seizure originates within networks limited to only one hemisphere, are also split into sub-categories. Here the seizure is characterized according to one or more features of the seizure, including aura, motor, autonomic and awareness / responsiveness. Where a seizure begins as a localized seizure and rapidly evolves to be distributed within bilateral networks this seizure is known as a bilateral convulsive seizure, which is the proposed terminology to replace secondary generalized seizures (generalized seizures that have evolved from focal seizures and are no longer remain localized).
[0014] Focal seizures where the subject’s awareness / responsiveness is altered are referred to as focal seizures with impairment and focal seizures where the awareness or responsiveness of the subject is not impaired are referred to as focal seizures without impairment. [0015] Hydrocephalus is a condition in which the primary characteristic is excessive accumulation of cerebrospinal fluid (CSF). Excessive accumulation of the CSF results in an abnormal dilation of the ventricles in the brain, in turn causing potentially harmful pressure on the tissues of the brain.
[0016] Hydrocephalus may be congenital or acquired. Congenital hydrocephalus may be caused by genetic abnormalities or developmental disorders such as spina bifida and encephalocele. Acquired hydrocephalus can affect individuals of all ages.1 [0017] Symptoms of hydrocephalus vary with age, disease progression, and individual differences in tolerance to CSF. In infancy, the most obvious indication of hydrocephalus is often the rapid increase in head circumference or an unusually large head size. In older individuals, symptoms may include headache followed by vomiting, nausea, papilledema, amongst other symptoms.
[0018] The prognosis for individuals diagnosed with hydrocephalus is difficult to predict, although there is some correlation between the specific cause of hydrocephalus and the patient's outcome.
[0019] Treatment for Hydrocephalus is commonly by the surgical placement of a shunt system, which diverts the flow of CSF from a site within the central nervous system to another area of the body where it can be absorbed as part of the circulatory process.
[0020] Cannabidiol (CBD), a non-psychoactive derivative from the cannabis plant, has demonstrated anti-convulsant properties in several anecdotal reports, pre-clinical and clinical studies both in animal models and humans. Three randomized control trials showed efficacy of the purified pharmaceutical formulation of CBD in patients with Dravet and Lennox-Gastaut syndrome.
[0021] Based on these three trials, a botanically derived purified CBD preparation was approved by FDA in June 2018 for the treatment of seizures associated with Dravet and Lennox-Gastaut syndromes.
[0022] An article titled “Medical Marijuana for Hydrocephalus” posted in 2020 suggests that medical marijuana may be helpful in relieving symptoms associated with Hydrocephalus, e.g. sleep apnea, chronic seizures, manic attack etc. There are no data in the article which demonstrate or suggest that the use of CBD may be efficacious in the treatment of seizures associated with Hydrocephalus2.
[0023] There are anecdotal reports of patients with Hydrocephalus taking CBD oil for managing pain and discomfort3. Again, there is no teaching therein to demonstrate or suggest that treatment with CBD oil was effective in the treatment of Hydrocephalus.
[0024] Pane and Sacca (2020)4 describe a case report of a patient with hydrocephalus being treated with medical cannabis extracts comprising high THC and low CBD concentrations. [0025] Several web articles discuss the potential of cannabis in treating Hydrocephalus- related seizures, although there is no evidence or data to demonstrate any such effectiveness.5·
6, 7
[0026] GB 2539472 disclose the use of highly purified CBD for the treatment of various types of seizures associated with epilepsy, but do not show any data to suggest efficacy in the treatment of Hydrocephalus.
[0027] The applicant has found by way of an open label, expanded-access program that treatment with CBD resulted in a significant reduction in tonic, tonic-clonic, absence and focal seizures with impairment in patients with Hydrocephalus.
BRIEF SUMMARY OF THE DISCLOSURE
[0028] In accordance with a first aspect of the present invention there is provided a cannabidiol (CBD) preparation for use in the treatment of Hydrocephalus.
[0029] In a further embodiment, the seizures associated with Hydrocephalus are tonic, tonic-clonic, absence and focal seizures with impairment.
[0030] In a further embodiment, the CBD preparation comprises greater than 95% (w/w) CBD and not more than 0.15% (w/w) tetrahydrocannabinol (THC).
[0031] Preferably the CBD preparation comprises greater than or equal to 98% (w/w) CBD and less than or equal to 2% (w/w) other cannabinoids, wherein the less than or equal to 2% (w/w) other cannabinoids comprise the cannabinoids tetrahydrocannabinol (THC); cannabidiol- C1 (CBD-C1); cannabidivarin (CBDV); and cannabidiol-C4 (CBD-C4), and wherein the THC is present as a mixture of trans-THC and cis-THC.
[0032] Preferably the CBD preparation is used in combination with one or more concomitant anti-epileptic drugs (AED).
[0033] Preferably the one or more AED is selected from the group consisting of: levetiracetam, clobazam, rufinamide and lamotrigine.
[0034] In one embodiment the CBD is present is isolated from cannabis plant material. Preferably at least a portion of at least one of the cannabinoids present in the CBD preparation is isolated from cannabis plant material.
[0035] In a further embodiment the CBD is present as a synthetic preparation. Preferably at least a portion of at least one of the cannabinoids present in the CBD preparation is prepared synthetically. [0036] Preferably the dose of CBD is greater than 5 mg/kg/day. More preferably the dose of CBD is 20 mg/kg/day. More preferably the dose of CBD is 25 mg/kg/day. More preferably the dose of CBD is 50 mg/kg/day.
[0037] In accordance with a second aspect of the present invention there is provided a method of treating seizures associated with Hydrocephalus comprising administering a cannabidiol (CBD) preparation to the subject in need thereof.
DEFINITIONS
[0038] Definitions of some of the terms used to describe the invention are detailed below:
[0039] Over 100 different cannabinoids have been identified, see for example, Handbook of Cannabis, Roger Pertwee, Chapter 1, pages 3 to 15. These cannabinoids can be split into different groups as follows: Phytocannabinoids; Endocannabinoids and Synthetic cannabinoids (which may be novel cannabinoids or synthetically produced phytocannabinoids or endocannabinoids).
[0040] “Phytocannabinoids” are cannabinoids that originate from nature and can be found in the cannabis plant. The phytocannabinoids can be isolated from plants to produce a highly purified extract or can be reproduced synthetically.
[0041] “Highly purified cannabinoids” are defined as cannabinoids that have been extracted from the cannabis plant and purified to the extent that other cannabinoids and non-cannabinoid components that are co-extracted with the cannabinoids have been removed, such that the highly purified cannabinoid is greater than or equal to 95% (w/w) pure.
[0042] “Synthetic cannabinoids” are compounds that have a cannabinoid or cannabinoid-like structure and are manufactured using chemical means rather than by the plant.
[0043] Phytocannabinoids can be obtained as either the neutral (decarboxylated form) or the carboxylic acid form depending on the method used to extract the cannabinoids. For example, it is known that heating the carboxylic acid form will cause most of the carboxylic acid form to decarboxylate into the neutral form.
[0044] “Treatment-resistant epilepsy” (TRE) or “intractable epilepsy” is defined as per the I LAE guidance of 2009 as epilepsy that is not adequately controlled by trials of one or more AED.
[0045] “Tonic seizures” can be generalised onset, affecting both sides of the brain, or they can be focal onset, starting in just one side of the brain. If a tonic seizure starts in both sides of the brain, all muscles tighten and the subject’s body goes stiff. If standing, they may fall to the floor, their neck may extend, eyes open wide and roll upwards, whilst their arms may raise upwards and legs stretch or contract. If a tonic seizure starts in one side of the brain muscles tighten in just one area of the body. Tonic seizures usually last less than one minute.
[0046] “Tonic-clonic seizures” (also called convulsions) has replaced the term “grand mal.” When a subject experiences a tonic-clonic seizure, they lose consciousness, muscles stiffen, and jerking movements are seen. This type of seizure usually lasts 1 to 3 minutes and takes longer for the subject to recover. It usually begins on both sides of the brain but can start in one side and spread to the whole brain.
[0047] “Absence seizures” are also called "petit mal" seizures. These types of seizure cause a loss of awareness for a short time. They mainly affect children although can happen at any age. During an absence seizure, a person may: stare blankly into space; look like they are "daydreaming"; flutter their eyes; make slight jerking movements of their body or limbs. The seizures usually only last up to 15 seconds and may occur several times a day.
[0048] “Focal Seizures” are defined as seizures which originate within networks limited to only one hemisphere. What happens during the seizure depends on where in the brain the seizure happens and what that part of the brain normally does.
[0049] “Focal seizure with impairment” has replaced the term “complex partial seizure”. These seizures usually start in a small area of the temporal lobe or frontal lobe of the brain and involve other areas of the brain within the same hemisphere that affect alertness and awareness. Most subjects experience automatisms during a focal seizure with impaired consciousness.
DETAILED DESCRIPTION
PREPARATION OF HIGHLY PURIFIED CBD EXTRACT
[0050] The following describes the production of the highly-purified (>95% w/w) cannabidiol extract which has a known and constant composition.
[0051] In summary the drug substance used is a liquid carbon dioxide extract of high-CBD containing chemotypes of Cannabis sativa L. which had been further purified by a solvent crystallization method to yield CBD. The crystallisation process specifically removes other cannabinoids and plant components to yield greater than or equal to 95% CBD. Although the CBD is highly purified because it is produced from a cannabis plant rather than synthetically there is a small number of other cannabinoids which are co-produced and co-extracted with the CBD. Details of these cannabinoids and the quantities in which they are present in the medication are as described in Table A below.
Table A: Composition of highly purified CBD extract
Figure imgf000007_0001
Figure imgf000008_0001
> - greater than NMT - not more than
PREPARATION OF BOTANICALLY DERIVED PURIFIED CBD [0052] The following describes the production of the botanically derived purified CBD which comprises greater than or equal to 98% w/w CBD and less than or equal to other cannabinoids was used in the open label, expanded-access program described in Example 1 below.
[0053] In summary the drug substance used in the trials is a liquid carbon dioxide extract of high-CBD containing chemotypes of Cannabis sativa L. which had been further purified by a solvent crystallization method to yield CBD. The crystallisation process specifically removes other cannabinoids and plant components to yield greater than 95% CBD w/w, typically greater than 98% w/w.
[0054] The Cannabis sativa L. plants are grown, harvested, and processed to produce a botanical extract (intermediate) and then purified by crystallization to yield the CBD (botanically derived purified CBD).
[0055] The plant starting material is referred to as Botanical Raw Material (BRM); the botanical extract is the intermediate; and the active pharmaceutical ingredient (API) is CBD, the drug substance.
[0056] All parts of the process are controlled by specifications. The botanical raw material specification is described in Table B and the CBD API is described in Table C.
Table B: CBD botanical raw material specification
Figure imgf000009_0001
Table C: Specification of an exemplary botanically derived purified CBD preparation
Figure imgf000010_0001
[0057] The purity of the botanically derived purified CBD preparation was greater than or equal to 98%. The botanically derived purified CBD includes THC and other cannabinoids, e.g., CBDA, CBDV, CBD-C1, and CBD-C4.
[0058] In some embodiments, the CBD preparation comprises not more than 0.15% THC based on total amount of cannabinoid in the preparation. In some embodiments, the CBD preparation comprises about 0.01% to about 0.1% THC based on total amount of cannabinoid in the preparation. In some embodiments, the CBD preparation comprises about 0.02% to about 0.05% THC based on total amount of cannabinoid in the preparation.
[0059] In some embodiments, the CBD preparation comprises about 0.2% to about 1.0% CBDV based on total amount of cannabinoid in the preparation. In some embodiments, the CBD preparation comprises about 0.2% to about 0.8% CBDV based on total amount of cannabinoid in the preparation. [0060] In some embodiments, the CBD preparation comprises about 0.3% to about 0.5%
CBD-C4 based on total amount of cannabinoid in the preparation. In some embodiments, the CBD preparation comprises about 0.3% to about 0.4% CBD-C4 based on total amount of cannabinoid in the preparation.
[0061] In some embodiments, the CBD preparation comprises about 0.1% to about 0.15% CBD-C1 based on total amount of cannabinoid in the preparation.
[0062] Distinct chemotypes of the Cannabis sativa L. plant have been produced to maximize the output of the specific chemical constituents, the cannabinoids. Certain chemovars produce predominantly CBD. Only the (-)-trans isomer of CBD is believed to occur naturally. During purification, the stereochemistry of CBD is not affected.
Production of CBD botanical drug substance
[0063] An overview of the steps to produce a botanical extract, the intermediate, are as follows: a) Growing b) Direct drying c) Decarboxylation d) Extraction - using liquid CO2 e) Winterization using ethanol f) Filtration g) Evaporation
[0064] High CBD chemovars were grown, harvested, dried, baled and stored in a dry room until required. The botanical raw material (BRM) was finely chopped using an Apex mill fitted with a 1 mm screen. The milled BRM was stored in a freezer prior to extraction.
[0065] Decarboxylation of CBDA to CBD was carried out using heat. BRM was decarboxylated at 115°C for 60 minutes.
[0066] Extraction was performed using liquid CO2 to produce botanical drug substance (BDS), which was then crystalized to produce the test material. The crude CBD BDS was winterized to refine the extract under standard conditions (2 volumes of ethanol at -20°C for approximately 50 hours). The precipitated waxes were removed by filtration and the solvent was removed to yield the BDS.
Production of botanically derived purified CBD preparation
[0067] The manufacturing steps to produce the botanically derived purified CBD preparation from BDS were as follows: a) Crystallization using C5-C12 straight chain or branched alkane b) Filtration c) Vacuum drying
[0068] The BDS produced using the methodology above was dispersed in C5-C12 straight chain or branched alkane. The mixture was manually agitated to break up any lumps and the sealed container then placed in a freezer for approximately 48 hours. The crystals were isolated via vacuum filtration, washed with aliquots of cold C5-C12 straight chain or branched alkane, and dried under a vacuum of <10mb at a temperature of 60°C until dry. The botanically derived purified CBD preparation was stored in a freezer at -20°C in a pharmaceutical grade stainless steel container, with FDA food grade approved silicone seal and clamps.
Physicochemical properties of the botanically derived purified CBD [0069] The botanically derived purified CBD used in the clinical trial described in the invention comprises greater than or equal to 98% (w/w) CBD and less than or equal to 2% (w/w) of other cannabinoids. The other cannabinoids present are THC at a concentration of less than or equal to 0.1% (w/w); CBD-C1 at a concentration of less than or equal to 0.15% (w/w); CBDV at a concentration of less than or equal to 0.8% (w/w); and CBD-C4 at a concentration of less than or equal to 0.4% (w/w).
[0070] The botanically derived purified CBD used additionally comprises a mixture of both trans-THC and cis-THC. It was found that the ratio of the trans-THC to cis-THC is altered and can be controlled by the processing and purification process, ranging from 3.3:1 (trans-THC:cis- THC) in its unrefined decarboxylated state to 0.8:1 (trans-THC:cis-THC) when highly purified. [0071] Furthermore, the cis-THC found in botanically derived purified CBD is present as a mixture of both the (+)-cis-THC and the (-)-cis-THC isoforms.
[0072] Clearly a CBD preparation could be produced synthetically by producing a composition with duplicate components.
[0073] Example 1 below describes the use of a botanically derived purified CBD in an open label, expanded-access program to investigate the clinical efficacy and safety of purified pharmaceutical cannabidiol formulation (CBD) in the treatment of Hydrocephalus.
EXAMPLE 1: CLINICAL EFFICACY AND SAFETY OF PURIFIED PHARMACEUTICAL CANNABIDIOL (CBD) IN THE TREATMENT OF PATIENTS DIAGNOSED WITH HYDROCEPHALUS
Study design [0074] Subjects were required to be on one or more AEDs at stable doses for a minimum of two weeks prior to baseline and to have stable vagus nerve stimulation (VNS) settings and ketogenic diet ratios for a minimum of four weeks prior to baseline.
[0075] Patients were administered botanically derived purified CBD in a 100 mg/ml_ sesame oil- based solution at an initial dose of 5 milligrams per kilogram per day (mg/kg/day) in two divided doses. Dose was then increased weekly by 5mg/kg/day to a goal of 20 to 25 mg/kg/day.
[0076] A maximum dose of 50 mg/kg/day could be utilised for patients who were tolerating the medication but had not achieved seizure control; these patients had further weekly titration by 5mg/kg/day.
[0077] There were two patients in this study, and each received CBD for various durations of time. Modifications were made to concomitant AEDs as per clinical indication.
[0078] Seizure frequency, intensity, and duration were recorded by caregivers in a diary during a baseline period of at least 28 days. Changes in seizure frequency relative to baseline were calculated after at least 2 weeks and at defined timepoints of treatment.
Statistical Methods:
[0079] Patients may be defined as responders if they had more than 50% reduction in seizure frequency compared to baseline. The percent change in seizure frequency was calculated as follows:
% change= ((weekly seizure frequency time interval)- (weekly seizure frequency Baseline)) x100 seizure (weekly seizure frequency Baseline) frequency
[0080] The percent change of seizure frequency may be calculated for any time interval where seizure number has been recorded. For the purpose of this example the percent change of seizure frequency for the end of the treatment period was calculated as follows:
% reduction = ((weekly seizure frequency Baseline) - (weekly seizure frequency End)) x100 seizure frequency (weekly seizure frequency Baseline)
Results
Patient description [0081] The two patients enrolled in the open label, expanded-access program were diagnosed with Hydrocephalus. These patients experienced several different seizure types including tonic, tonic-clonic, absence and focal seizures with impairment and were taking several concomitant AEDs. [0082] The age of patients ranged from 4-9 years, and both were male as detailed in Table
1 below.
Table 1: Patient demographics, seizure type and concomitant medication
Figure imgf000014_0001
LEV = levetiracetam, CLB = clobazam, RFN = rufinamide, LTG = lamotrigine Study medication and concomitant medications
[0083] Patients on the study were titrated up to various doses of CBD.
[0084] Both patients were on three concomitant AEDs at the time of starting CBD. Both patients were on clobazam and levetiracetam.
Clinical changes
[0085] Tables 2A-B illustrate the seizure frequency for each patient as well as the dose of CBD given.
Table 2A: Seizure frequency data for Patient 1
Figure imgf000014_0002
Figure imgf000015_0001
[0086] Patient 1 was treated for 120 weeks and experienced a 99.4% reduction in tonic seizures and a 100% reduction in absence seizures over the treatment period. Table 2B: Seizure frequency data for Patient 2
Figure imgf000015_0002
[0087] Patient 2 was treated for 60 weeks and experienced a 64.7% reduction in focal seizures with impairment over the treatment period. [0088] Overall, patients reported reductions of 67.4-100% in seizures over period of treatment with CBD. Significantly, one patient became seizure free in their absence seizures after 36 weeks of treatment with CBD (#1).
[0089] CBD was effective in reducing the frequency of the following seizure types: tonic, absence, and focal seizures with impairment.
Conclusions
[0090] These data indicate that CBD was able to significantly reduce the number of seizures associated with Hydrocephalus. Clearly the treatment is of significant benefit in this difficult to treat epilepsy syndrome given the high response rate experienced in all patients.
[0091] Of interest is that a patient (patient 1) obtained significant benefit whereby they were completely seizure free in their absence seizures after 36 weeks of treatment.
[0092] In conclusion, this study signifies the use of CBD for treatment of seizures associated with Hydrocephalus. Seizure types include tonic, absence, and focal seizures with impairment for which seizure frequency rates decreased by significant rates, by 67.4-100% %.
References
1. NIH Hydrocephalus Information Page https://www.ninds.nih.gov/Disorders/AII- Disorders/Hvdrocephalus-lnformation-Page
2. “Medical Marijuana for Hydrocephalus” (2020) https://www.mariiuanadoctors.com/conditions/hvdrocephalus/
3. htps://skvewaters.com/hvdrocephalus-the-cannabidiol-medicinal-cannabis-effect/
4. Pane and Sacca (2020) "The use of medical grade cannabis in Italy for drugresistant epilepsy: a case series" Neurological Sciences, vol. 41, 2020, pages 695 - 698.
5. Lemon Knowles (2020) "Does Cannabis Help with Hydrocephalus" https://cannabis.net/blog/medical/does-cannabis-help-with-hvdrocephalus
6. Magic (2013) "Hydrocephalus and Marijuana?" The Autoflower Network. https://www.autoflower.net/forums/threads/hvdrocephalus-and-mariiuana.26092/
7. Marijuana Doctors (2018) "Best Strains of Medical Marijuana to Manage Hydrocephalus Symptoms" https://www.mariiuanadoctors.com/resources/ailment- resources/best-strains-medical-marijuana-manage-hydrocephalus-symptoms/

Claims

1. A cannabidiol (CBD) preparation for use in the treatment of seizures associated with Hydrocephalus, wherein the CBD preparation comprises greater than 95% (w/w) CBD and between 0.01 and 0.15% (w/w) tetrahydrocannabinol (THC).
2. A CBD preparation for use according to claim 1, wherein the seizures associated with Hydrocephalus are tonic, tonic-clonic, absence and focal seizures with impairment.
3. A CBD preparation for use according to any of the preceding claims, wherein the CBD preparation comprises greater than or equal to 98% (w/w) CBD and less than or equal to 2% (w/w) other cannabinoids, wherein the less than or equal to 2% (w/w) other cannabinoids comprise the cannabinoids tetrahydrocannabinol (THC); cannabidiol-C1 (CBD-C1); cannabidivarin (CBDV); and cannabidiol-C4 (CBD-C4), and wherein the THC is present as a mixture of trans-THC and cis-THC.
4. A CBD preparation to any of the preceding claims, wherein the CBD preparation is used in combination with one or more concomitant anti-epileptic drugs (AED).
5. A CBD preparation for use according to claim 4, wherein the one or more AED is selected from the group consisting of: levetiracetam, clobazam, rufinamide and lamotrigine.
6. A CBD preparation for use according to any of the preceding claims, wherein the CBD is present is isolated from cannabis plant material.
7. A CBD preparation for use according to any of the preceding claims, wherein at least a portion of at least one of the cannabinoids present in the CBD preparation is isolated from cannabis plant material.
8. A CBD preparation for use according to claims 1 to 5, wherein the CBD is present as a synthetic preparation.
9. A CBD preparation for use according to claim 8, wherein at least a portion of at least one of the cannabinoids present in the CBD preparation is prepared synthetically.
10. A CBD preparation for use according to any of the preceding claims, wherein the dose of CBD is greater than 5 mg/kg/day.
11. A CBD preparation for use according to any of the preceding claims, wherein the dose of CBD is 20 mg/kg/day.
12. A CBD preparation for use according to any of the preceding claims, wherein the dose of CBD is 25 mg/kg/day.
13. A CBD preparation for use according to any of the preceding claims, wherein the dose of CBD is 50 mg/kg/day.
14. A method of treating seizures associated with Hydrocephalus comprising administering a cannabidiol (CBD) preparation to the subject in need thereof.
PCT/EP2021/069820 2020-07-20 2021-07-15 Cannabidiol for use in the treatment of seizures associated with hydrocephalus WO2022017919A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB2011150.6A GB2597303A (en) 2020-07-20 2020-07-20 Use of cannabidiol in the treatment of seizures associated with rare epilepsy syndromes related to brain injury
GB2011150.6 2020-07-20

Publications (1)

Publication Number Publication Date
WO2022017919A1 true WO2022017919A1 (en) 2022-01-27

Family

ID=72339048

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2021/069820 WO2022017919A1 (en) 2020-07-20 2021-07-15 Cannabidiol for use in the treatment of seizures associated with hydrocephalus

Country Status (2)

Country Link
GB (1) GB2597303A (en)
WO (1) WO2022017919A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2539472A (en) 2015-06-17 2016-12-21 Gw Res Ltd Use of cannabinoids in the treatment of epilepsy
WO2019207319A1 (en) * 2018-04-27 2019-10-31 GW Research Limited Cannabidiol preparations and its uses

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2539472A (en) 2015-06-17 2016-12-21 Gw Res Ltd Use of cannabinoids in the treatment of epilepsy
WO2019207319A1 (en) * 2018-04-27 2019-10-31 GW Research Limited Cannabidiol preparations and its uses

Non-Patent Citations (10)

* Cited by examiner, † Cited by third party
Title
DEVINSKY ORRIN ET AL: "Cannabidiol in patients with treatment-resistant epilepsy: an open-label interventional trial", LANCET NEUROLOGY, LANCET PUBLISHING GROUP, LONDON, GB, vol. 15, no. 3, 24 December 2015 (2015-12-24), pages 270 - 278, XP029415431, ISSN: 1474-4422, DOI: 10.1016/S1474-4422(15)00379-8 *
KLOTZ KERSTIN ALEXANDRA: "Cannabinoide als Orphan drugs", ZEITSCHRIFT FÜR EPILEPTOLOGIE, SPRINGER BERLIN HEIDELBERG, BERLIN/HEIDELBERG, vol. 1, no. 4, 10 September 2019 (2019-09-10), pages 286 - 291, XP036930109, ISSN: 1617-6782, [retrieved on 20190910], DOI: 10.1007/S10309-019-00286-8 *
KNOWLES LEMON: "Does Cannabis Help with Hydrocephalus?", 31 March 2020 (2020-03-31), XP055835473, Retrieved from the Internet <URL:https://cannabis.net/blog/medical/does-cannabis-help-with-hydrocephalus> [retrieved on 20210827] *
LEMON KNOWLES, DOES CANNABIS HELP WITH HYDROCEPHALUS, 2020, Retrieved from the Internet <URL:https://cannabis.net/bloq/medical/does-cannabis-help-with-hvdrocephalus>
MAGIC: "Hydrocephalus and Marijuana?", THE AUTOFLOWER NETWORK, 2013, Retrieved from the Internet <URL:https://www.autoflower.net/forums/threads/hydrocephalus-and-mariiuana.26092>
MARIJUANA DOCTORS, BEST STRAINS OF MEDICAL MARIJUANA TO MANAGE HYDROCEPHALUS SYMPTOMS, 2018, Retrieved from the Internet <URL:https://www.mariiuanadoctors.com/resources/ailment-resources/best-strains-medical-marijuana-manage-hydrocephalus-symptoms>
PANE CHIARA ET AL: "The use of medical grade cannabis in Italy for drug-resistant epilepsy: a case series", NEUROLOGICAL SCIENCES (TESTO STAMPATO), SPRINGER VERLAG, MILAN, IT, vol. 41, no. 3, 27 November 2019 (2019-11-27), pages 695 - 698, XP037039209, ISSN: 1590-1874, [retrieved on 20191127], DOI: 10.1007/S10072-019-04162-1 *
PANESACCA: "The use of medical grade cannabis in Italy for drugresistant epilepsy: a case series", NEUROLOGICAL SCIENCES, vol. 41, 2020, pages 695 - 698
ROSADO JOSEPH: "Medical Marijuana for Hydrocephalus", MARIJUANA DOCTORS, 15 June 2020 (2020-06-15), pages 1 - 6, XP055848712, Retrieved from the Internet <URL:http://citenpl.internal.epo.org/wf/web/citenpl/citenpl.html> [retrieved on 20211007] *
TULLY HANNAH M ET AL: "Clinical and Surgical Factors Associated With Increased Epilepsy Risk in Children With Hydrocephalus", PEDIATRIC NEUROLOGY, ELSEVIER SCIENCE, NL, vol. 59, 3 March 2016 (2016-03-03), pages 18 - 22, XP029608470, ISSN: 0887-8994, DOI: 10.1016/J.PEDIATRNEUROL.2016.02.011 *

Also Published As

Publication number Publication date
GB202011150D0 (en) 2020-09-02
GB2597303A (en) 2022-01-26

Similar Documents

Publication Publication Date Title
WO2020234569A1 (en) Use of cannabidiol in the treatment of epileptic spasms
EP4182024A1 (en) Use of cannabidiol in the treatment of seizures associated with mutations in the syngap1 gene
WO2022017919A1 (en) Cannabidiol for use in the treatment of seizures associated with hydrocephalus
WO2022017954A1 (en) Use of cannabidiol in the treatment of seizures associated with rare epilepsy syndromes related to structural abnormalities of the brain
WO2022017963A1 (en) Use of cannabidiol in the treatment of seizures associated with encephalitis
WO2022017920A1 (en) Cannabidiol for use in the treatment of seizures associated with rare epilepsy syndromes related to structural abnormalities of the brain
WO2022017929A1 (en) Use of cannabidiol in the treatment of seizures associated lissencephaly
WO2022017915A1 (en) Cannabidiol for use in the treatment of seizures associated with brain damage
WO2022017958A1 (en) Use of cannabidiol in the treatment of seizures associated with shaken baby syndrome
WO2022017925A1 (en) Use of cannabidiol in the treatment of seizures associated with multifocal epilepsy syndrome
WO2022017930A1 (en) Use of cannabidiol in the treatment of seizures associated with jeavon&#39;s syndrome
WO2022017950A1 (en) Use of cannabidiol in the treatment of seizures associated with bilateral mesial temporal sclerosis
WO2022017947A1 (en) Use of cannabidiol in the treatment of seizures associated with rare epilepsy syndromes related to genetic abnormalities
WO2022017946A1 (en) Use of cannabidiol in the treatment of seizures associated with rare epilepsy syndromes related to genetic abnormalities
WO2022017944A1 (en) Use of cannabidiol in the treatment of seizures associated with bilateral cerebral dysgenesis
WO2022017917A1 (en) Cannabidiol for use in the treatment of seizures associated with rare epilepsy syndromes related to structural abnormalities of the brain
WO2022017945A1 (en) Use of cannabidiol in the treatment of seizures associated with rare epilepsy syndromes related to genetic abnormalities
WO2022017957A1 (en) Use of cannabidiol in the treatment of seizures associated with stroke or brain haemorrhage
WO2022017955A1 (en) Use of cannabidiol in the treatment of seizures associated with rare epilepsy syndromes related to structural abnormalities of the brain
WO2022017935A1 (en) Use of cannabidiol in the treatment of seizures associated with rare epilepsy syndromes related to structural abnormalities of the brain
WO2022123236A1 (en) Use of cannabidiol in the treatment of seizures associated with epilepsy syndromes in patients taking brivaracetam
WO2022017927A1 (en) Use of cannabidiol in the treatment of seizures associated with perisylvian fissure syndrome
EP4181892A1 (en) Use of cannabidiol in the treatment of seizures associated with rare epilepsy syndromes related to structural abnormalities of the brain
EP4181905A1 (en) Use of cannabidiol in the treatment of seizures associated with rare epilepsy syndromes related to genetic abnormalities
EP4181897A1 (en) Use of cannabidiol in the treatment of seizures associated with chrna4 mutation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21749778

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21749778

Country of ref document: EP

Kind code of ref document: A1