WO2022017123A1 - 具有中和活性的抗尼帕病毒单克隆抗体及应用 - Google Patents

具有中和活性的抗尼帕病毒单克隆抗体及应用 Download PDF

Info

Publication number
WO2022017123A1
WO2022017123A1 PCT/CN2021/102585 CN2021102585W WO2022017123A1 WO 2022017123 A1 WO2022017123 A1 WO 2022017123A1 CN 2021102585 W CN2021102585 W CN 2021102585W WO 2022017123 A1 WO2022017123 A1 WO 2022017123A1
Authority
WO
WIPO (PCT)
Prior art keywords
seq
antibody
variable region
monoclonal antibody
heavy chain
Prior art date
Application number
PCT/CN2021/102585
Other languages
English (en)
French (fr)
Inventor
陈薇
于长明
刘渝娇
范鹏飞
张冠英
李耀辉
李建民
迟象阳
郝勐
房婷
董韵竹
宋小红
陈旖
刘树玲
Original Assignee
中国人民解放军军事科学院军事医学研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国人民解放军军事科学院军事医学研究院 filed Critical 中国人民解放军军事科学院军事医学研究院
Priority to US18/005,978 priority Critical patent/US20240158480A1/en
Priority to EP21846832.0A priority patent/EP4186924A1/en
Publication of WO2022017123A1 publication Critical patent/WO2022017123A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/08Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from viruses
    • C07K16/10Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from viruses from RNA viruses
    • C07K16/1027Paramyxoviridae, e.g. respiratory syncytial virus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/08Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from viruses
    • C07K16/10Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from viruses from RNA viruses
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/505Medicinal preparations containing antigens or antibodies comprising antibodies
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/20Immunoglobulins specific features characterized by taxonomic origin
    • C07K2317/24Immunoglobulins specific features characterized by taxonomic origin containing regions, domains or residues from different species, e.g. chimeric, humanized or veneered
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/52Constant or Fc region; Isotype
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/56Immunoglobulins specific features characterized by immunoglobulin fragments variable (Fv) region, i.e. VH and/or VL
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/56Immunoglobulins specific features characterized by immunoglobulin fragments variable (Fv) region, i.e. VH and/or VL
    • C07K2317/565Complementarity determining region [CDR]
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/76Antagonist effect on antigen, e.g. neutralization or inhibition of binding
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/90Immunoglobulins specific features characterized by (pharmaco)kinetic aspects or by stability of the immunoglobulin
    • C07K2317/92Affinity (KD), association rate (Ka), dissociation rate (Kd) or EC50 value
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2800/00Nucleic acids vectors
    • C12N2800/10Plasmid DNA
    • C12N2800/106Plasmid DNA for vertebrates
    • C12N2800/107Plasmid DNA for vertebrates for mammalian
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Definitions

  • the invention discloses a monoclonal antibody, which belongs to the fields of immunology and microbiology.
  • Nipah virus belongs to the genus Henipavirus of the family Paramyxoviridae, and is a single-stranded negative-stranded RNA virus. NiV is a zoonotic virus that can be infected by human contact and can cause fatal respiratory and neurological diseases.
  • the natural host of NiV is fruit bats, which can be transmitted through fruit bat-pig-human transmission, and can also be transmitted directly through bat-to-human and human-to-human transmission.
  • NiV first appeared in Malaysia. During the period from September 1998 to April 1999, many pig farms died of severe encephalitis and a large number of pigs died in Perak, Malaysia. It was initially thought to be Japanese encephalitis. Virus infection, it was later found that this outbreak is significantly different from Japanese encephalitis in terms of susceptible population, infection rate and infection mode, and many patients have been vaccinated against Japanese encephalitis. researchers believe that this is a new type of infectious disease disease. The infected people and livestock in this outbreak showed acute respiratory syndrome, resulting in 256 infections, 105 deaths, 1.16 million pig deaths, and spread to a slaughterhouse in Singapore, infecting 11 workers, 1 die. In October 1999, researchers isolated the virus from the cerebrospinal fluid of a patient.
  • NiV niV Malaysia, NiV-MY
  • Bangladeshi NiV Bangladesh, NiV-BD
  • NiV binds to the receptor ephrin-B2/B3 through the viral surface glycoprotein G, which will cause the G protein to activate the conformational change of the fusion protein F in the receptor binding region and the stem region, thereby activating the activation
  • the F protein fuses with the cell membrane and eventually the virus invades the cell. Therefore, both G protein and F protein are important research targets in vaccine and antiviral drug research.
  • m102.4 is a human monoclonal antibody screened by recombinant human Fab phage antibody library, which can effectively neutralize Nipah virus and Hendra virus, which belong to Paramyxoviridae and Henipavirus genus , HeV). In the challenge protection experiments of ferrets and African green monkeys, m102.4 can effectively protect animal survival after Henipa virus challenge. In 2010, m102.4 was approved as an emergency protective drug in two people at high risk of exposure, neither of whom developed symptoms of infection. However, there is a lack of further in-depth research and reports on the application of monoclonal antibodies in the treatment of Nipah virus disease.
  • the purpose of the present invention is to provide a monoclonal antibody of Nipah virus glycoprotein G that can target a unique antigenic epitope and has excellent neutralizing activity, and then provide Its application in the preparation of Nipah virus disease treatment medicine.
  • the present invention first provides a specific neutralizing antibody against Nipah virus glycoprotein G, the antibody is a monoclonal antibody, and the amino acid sequences of the heavy chain variable region CDR1, CDR2 and CDR3 regions of the antibody and The amino acid sequences of the CDR1, CDR2 and CDR3 regions of the light chain variable region are respectively shown in any combination of the following sequences:
  • SEQ ID NO: 1 positions 26-33, 51-58, 97-110 and SEQ ID NO: 3 positions 26-34, 52-54, 91-100, or
  • SEQ ID NO: 9 positions 26-33, 51-58, 97-110 and SEQ ID NO: 11 positions 26-34, 52-58, 97-105, or
  • amino acid sequence of the antibody heavy chain variable region and the amino acid sequence of the antibody light chain variable region are respectively shown in any combination of the following sequences:
  • SEQ ID NO: 1 and SEQ ID NO: 3 in the present invention, the antibody with this variable region is named "1A9"
  • SEQ ID NO: 13 and SEQ ID NO: 15 in the present invention, the antibody with this variable region is named "2B6").
  • amino acid sequence of the antibody heavy chain constant region is shown in SEQ ID NO: 17, and the amino acid sequence of the antibody light chain constant region is shown in SEQ ID NO: 19 or SEQ ID NO: 21 shown.
  • the present invention also provides a polynucleotide encoding the heavy chain and/or light chain of the monoclonal antibody, the polynucleotide sequence encoding the variable region of the heavy chain of the antibody and the light chain encoding the antibody can be
  • the polynucleotide sequences of the variable regions are respectively shown in any combination of the following sequences:
  • SEQ ID NO: 14 and SEQ ID NO: 16 (in the present invention, the antibody having this coding sequence is named "2B6").
  • sequence of the polynucleotide encoding the constant region of the heavy chain of the antibody is shown in SEQ ID NO: 18, and the sequence of the polynucleotide encoding the constant region of the light chain of the antibody is shown in SEQ ID NO: 20 or SEQ ID NO:22.
  • the present invention also provides a functional element for expressing the above-mentioned polynucleotide encoding the heavy chain and/or light chain of the monoclonal antibody.
  • the functional element is a linear expression cassette.
  • the functional element is a mammalian expression vector.
  • the present invention also provides a host cell containing the above functional elements.
  • the cells are Expi 293F cells.
  • the cells are CHO-S cells.
  • CHO-S cells can be used to construct stable transgenic cell lines to realize industrial production.
  • the present invention provides the application of the above-mentioned monoclonal antibody in the preparation of a Nipah virus disease therapeutic drug.
  • the monoclonal antibody against Nipah virus glycoprotein G provided by the present invention is composed of a monkey-derived variable region and a human-derived constant region, and the light and heavy chains of the monkey-derived variable region have unique CDR regions.
  • the antibody provided by the present invention shows excellent antigen binding ability, and has good binding activity to both Bengal type and Malaysian type Nipah virus glycoprotein G.
  • the antibody can effectively neutralize Nipah pseudovirus; and the neutralizing activity of the antibody increases with the increase of antibody concentration, and nearly 100% neutralization of Nipah pseudovirus can be achieved at a concentration of 1 ⁇ g/mL. and.
  • the invention also discloses the application of the anti-Nipah virus glycoprotein G monoclonal antibody in the preparation of a Nipah virus disease therapeutic drug.
  • Figure 7 Competitive inhibition curves of antibodies to NiV-BD/MY G protein binding to receptor ephrin-B2/B3.
  • rhesus monkeys Female rhesus monkeys were immunized three times, that is, intramuscular injection on days 0, 28, and 49 to immunize adenovirus vector Nipah virus candidate vaccine, recombinant NiV G protein and recombinant HeV G protein, respectively. Finally, blood samples of rhesus monkeys were collected on day 77.
  • the antigenic protein NiV-BD G was labeled with FITC. Methods as below:
  • Fluorescein Isothiocyanate FITC (SIGMA, F4274) was dissolved in DMSO at a concentration of 20 mg/mL. Take 100 ⁇ L of NiV-BD G protein (3.3 mg/mL), add buffer (pH 9.6 carbonate buffer) to 400 ⁇ L.
  • the collected blood samples were separated from PBMC by Ficoll density gradient centrifugation.
  • the process is as follows:
  • Separation solution, anticoagulated undiluted whole blood, PBS (or normal saline) volume is 1:1:1.
  • IgG PE BD 555787 15 ⁇ L CD19 APC-AF 700 Beckman, IM2470 5 ⁇ L CD3 PerCP BD, 552851 10 ⁇ L CD27 PC7 Beckman, A54823 10 ⁇ L
  • NiV-BD G-specific single memory B cells were sorted using a cell sorter (BECKMAN, MoFlo XDP).
  • the sorting strategy is: IgG + /CD3 - /CD19 + /CD27 + /NiV-BD G + , single cells are directly sorted into 96-well plates, each well contains 20U RNase inhibitor and 20 ⁇ L RNase-free water , -80 °C preservation.
  • Figure 1 is a graph of cell sorting results. The cells in the part circled by the R7 box in the figure are characterized by IgG + /CD3 ⁇ /CD19 + /CD27 + /NiV-BD G + , that is, NiV-BD G specific memory B cells.
  • 1124 NiV-BD G-specific memory B cells were obtained by sorting. Using SuperScript III reverse transcription kit, the mixed system was directly added to a 96-well plate containing a single cell according to the instructions for PCR reaction.
  • the reaction system and conditions are as follows:
  • Reaction conditions 42 °C, 10 min; 25 °C, 10 min; 50 °C, 60 min; 94 °C, 5 min.
  • the reverse transcription-PCR reaction system is described in Table 2.
  • the first round of nested PCR reaction conditions first, pre-denaturation at 95 °C for 5 min; followed by 40 amplification cycles: 95 °C for 30 s, 57 °C for 30 s, 72 °C for 45 s; and final extension at 72 °C for 10 min.
  • the first-round nested PCR primers are described in Table 4:
  • the second round of nested PCR reaction system is as described in Table 5,
  • reaction conditions of the second round of nested PCR were the same as those of the first round of nested PCR.
  • a promoter-leader sequence fragment, a constant region for biosynthesis, the heavy chain constant region sequence is shown in SEQ ID NO: 17, the DNA coding sequence is shown in SEQ ID NO: 18, the Kappa light
  • the chain constant region sequence is shown in SEQ ID NO: 19
  • the DNA coding sequence is shown in SEQ ID NO: 20
  • the Lamda type light chain constant region sequence is shown in SEQ ID NO: 21
  • the DNA coding sequence is shown in SEQ ID NO: 22 shown) - poly A tail fragment (Genbank accession number: X03896.1), reamplified antibody variable region fragment.
  • the PCR reaction system for amplifying the variable region is shown in Table 7.
  • PCR reaction conditions first, pre-denaturation at 95°C for 5 min; then 30 amplification cycles: 95°C, 30s; 60°C, 30s; 72°C, 30s; finally, extension at 72°C for 10min.
  • Reaction conditions first, pre-denaturation at 95 °C for 5 min; then 30 amplification cycles: 95 °C, 30 s; 60 °C, 30 s; 72 °C, 3 min; finally, extension at 72 °C for 10 min.
  • the PCR reaction products were directly recovered with the kit of OMEGA company, and the PCR recovery products were quantified with Nano (GE Healthcare).
  • the night before transfection 150 ⁇ L of 2 ⁇ 10 4 cells per well was plated in a 96-well plate. On the day of transfection, take 0.2 ⁇ g of each light and heavy chain, add 0.8 ⁇ L of Turbofect transfection reagent, dilute to 40 ⁇ L with DMEM medium, mix well and incubate at room temperature for 15 min. Slowly added dropwise to a 96-well plate in sequence and incubated at 37°C for 48h.
  • the 96-well enzyme-linked plate was coated with 1 ⁇ g/mL NiV-BD G protein, and each well was coated with 100 ⁇ L. Place the coated enzyme-linked plate in a humidified chamber at 4°C overnight.
  • FIG. 3 is a graph showing the distribution of OD 450-630nm values of antibodies with binding activity screened by ELISA.
  • the antibody expression plasmid was constructed, and the expression and preparation of the monoclonal antibody was carried out. Methods as below:
  • the results are shown in Figure 4.
  • the mAb has good binding activity to NiV-BD and NiV-MY G proteins.
  • the EC 50 values of mAb 1A9 are 18.26ng/mL and 22.81ng/mL, respectively; the EC of mAb 1D11 50 values were 9.91ng/mL and 20.2ng/mL; the EC 50 values of mAb 1F9 were 15.04ng/mL and 23.56ng/mL; the EC 50 values of mAb 2B6 were 5.40ng/mL and 9.56ng/mL, respectively. mL.
  • the above-mentioned 4 strains of antibodies are sequenced, and the nucleotide coding sequences of the heavy chain and light chain variable regions of monoclonal antibody 1A9 are shown in SEQ ID NO: 2 and SEQ ID NO: 4, respectively.
  • the amino acid sequences are shown in SEQ ID NO: 1 and SEQ ID NO: 3 respectively; further analysis of the heavy chain and light chain variable region amino acid sequences shows that the heavy chain variable region CDR1, CDR2 and CDR3 regions amino acid sequences are respectively as shown in SEQ ID NO. :1 26-33, 51-58, 97-110, the light chain variable region CDR1, CDR2 and CDR3 region amino acid sequences are shown in SEQ ID NO: 3 26-34, 52-54, 91-100 bit shown.
  • the nucleotide coding sequences of the heavy chain and light chain variable regions of monoclonal antibody 1D11 are respectively shown in SEQ ID NO: 6 and SEQ ID NO: 8, and the amino acid sequences of the heavy chain and light chain variable regions are respectively shown by SEQ ID NO: 5 and SEQ ID NO: 7; further analysis of the heavy chain and light chain variable region amino acid sequences, the heavy chain variable region CDR1, CDR2 and CDR3 region amino acid sequences are respectively as SEQ ID NO: 5 Nos. 26-33, 51 -58, 97-105, amino acid sequences of light chain variable region CDR1, CDR2 and CDR3 regions are shown in SEQ ID NO: 7, 27-37, 55-57, 94-107, respectively.
  • the nucleotide coding sequences of the heavy chain and light chain variable regions of monoclonal antibody 1F9 are respectively shown in SEQ ID NO: 10 and SEQ ID NO: 12, and the amino acid sequences of the heavy chain and light chain variable regions are respectively shown by SEQ ID NO: 9 and SEQ ID NO: 11, the heavy chain and light chain variable region amino acid sequences were further analyzed, and the heavy chain variable region CDR1, CDR2 and CDR3 regions amino acid sequences were as shown in SEQ ID NO: 9 Nos. 26-33, 51 -58, 97-110, amino acid sequences of light chain variable region CDR1, CDR2 and CDR3 regions are shown in SEQ ID NO: 11, 26-34, 52-58, 97-105, respectively.
  • the nucleotide coding sequences of the heavy chain and light chain variable regions of monoclonal antibody 2B6 are respectively shown in SEQ ID NO: 14 and SEQ ID NO: 16, and the amino acid sequences of the heavy chain and light chain variable regions are respectively shown by SEQ ID NO: 13 and SEQ ID NO: 15; further analysis of the heavy chain and light chain variable region amino acid sequences, the heavy chain variable region CDR1, CDR2 and CDR3 region amino acid sequences are respectively as SEQ ID NO: 13 Nos. 26-33, 51 -58, 97-108, amino acid sequences of light chain variable region CDR1, CDR2 and CDR3 regions are shown in SEQ ID NO: 15, 27-37, 55-57, 94-102, respectively.
  • the above-mentioned 4 strains of monoclonal antibodies have the same heavy chain constant region and light chain constant region of human origin, and the sequence of the polynucleotide encoding the heavy chain constant region of the above-mentioned antibody is shown in SEQ ID NO: 18, encoding the antibody light chain
  • SEQ ID NO: 20 or SEQ ID NO: 22 encoding the amino acid sequence of the heavy chain constant region is shown in SEQ ID NO: 17
  • the amino acid sequence of the antibody light chain constant region is shown in SEQ ID NO: 19 or SEQ ID NO: 21.
  • NiV-BD and NiV-MY pseudoviruses (Dimple Khetawat, C.C.B., A functional henipavirus envelope glycoprotein pseudotyped lentivirus assay system. Virology J. 2010.7(312)) that package the HIV backbone were used to evaluate the neutralizing activity of the antibody in vitro. Methods as below:
  • the antibodies can effectively neutralize the NiV-BD and NiV-MY pseudoviruses with HIV as the backbone in vitro.
  • the neutralizing activity of the antibody increased with the increase of the antibody concentration.
  • mAbs 1D11, 1F9 and 2B6 could achieve nearly 100% neutralization of the Bengal and Malaysian Nipah pseudoviruses; while 1A9 It can only neutralize the NiV-BD pseudovirus, and the neutralization effect of the NiV-MY pseudovirus is not good.
  • monoclonal antibodies 1D11 and 2B6 have higher neutralizing activity than 1A9 and 1F9, and the neutralization rate can still reach more than 95% at a concentration of 0.04 ⁇ g/mL; for NiV-MY pseudovirus, monoclonal antibodies 1D11,1F9 anti-2B6 and IC 50 values were 57.87ng / mL, 81.41ng / mL and 28.26ng / mL.
  • Luminex microsphere competition inhibition assay The ability of monoclonal antibody to inhibit the binding of Nipah virus G protein to the receptor was verified by Luminex microsphere competition inhibition assay. The method is as follows:
  • the competitive inhibition curve of the antibody on the binding of Nipah virus G protein to receptor ephrin-B2/B3 is shown in Figure 7.
  • the results show that antibodies 1D11 and 2B6 can effectively inhibit the binding of Nipah virus G protein to receptor ephrin-B2/B3.
  • 2B6 and 1D11 antibodies suppressed IC 50 values of the Nipah virus G protein receptor binding between 0.04 ⁇ g / ml to 0.16 ⁇ g / ml, 1D11, and 2B6 antibodies suggesting likely Nipah virus G protein to the receptor by inhibiting the ephrin -B2/B3 binding plays a neutralizing role; while 1A9 and 1F9 may play a neutralizing role through other mechanisms.
  • the present invention provides an anti-Nipah virus monoclonal antibody with neutralizing activity and its application in the preparation of medicines.
  • the monoclonal antibody is easy for industrial production and has industrial practicability.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Virology (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Genetics & Genomics (AREA)
  • Medicinal Chemistry (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Immunology (AREA)
  • Veterinary Medicine (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Public Health (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Communicable Diseases (AREA)
  • Animal Behavior & Ethology (AREA)
  • Oncology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Pulmonology (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Plant Pathology (AREA)
  • Microbiology (AREA)
  • Physics & Mathematics (AREA)
  • Peptides Or Proteins (AREA)

Abstract

本发明公开了一种具有中和活性的抗尼帕病毒单克隆抗体,所述抗体由猴源可变区和人源恒定区组成,所述猴源可变区轻重链均具有独特的CDR区。本发明提供的抗体显示出优异的抗原结合能力,与孟加拉型和马来西亚型尼帕病毒糖蛋白G均具有良好的结合活性。所述抗体能够有效中和尼帕假病毒;而且所述抗体的中和活性随着抗体浓度的升高而增强,在1μg/mL的浓度下即可对尼帕假病毒实现近100%的中和。本发明还公开了所述抗尼帕病毒糖蛋白G的单克隆抗体在制备尼帕病毒病治疗药物中的应用。

Description

具有中和活性的抗尼帕病毒单克隆抗体及应用 技术领域
本发明公开了一种单克隆抗体,属于免疫学和微生物学领域。
背景技术
尼帕病毒(Nipah virus,NiV)属于副黏病毒科(Paramyxoviridae)亨尼帕病毒属(Henipavirus),为单股负链RNA病毒。NiV为人畜共患病病毒,人能通过接触感染,会引起致命的呼吸和神经系统性疾病。NiV的自然宿主是果蝠,可以通过果蝠-猪-人传播,还可以直接通过蝙蝠传人及人与人之间传播。
NiV最开始出现于马来西亚,在1998年9月至1999年4月期间,马来西亚霹雳州出现多名猪场饲养人员因重度脑炎死亡和大量猪患病死亡案例,最开始认为是乙型脑炎病毒感染,后来发现这次疫情在易感人群、感染率以及感染方式上与乙型脑炎有着明显的不同,并且许多患者曾接种过日本脑炎疫苗,研究人员认定这是一种新型传染性疾病。这次疫情中感染的人员和家畜均表现出急性呼吸系统综合征,最终造成256人感染,105人死亡,116万头猪死亡,并蔓延至新加坡一屠宰场,导致11名工人感染、1人死亡。1999年10月,研究人员从一名患者脑脊髓液中分离出病毒。不久之后,从马来西亚果蝠尿液中分离出NiV,确定了NiV的自然宿主。随后,在印度、柬埔寨、泰国等国家都曾报道过尼帕病毒病。近年来,尼帕病毒病多次在孟加拉国和印度发生,已造成数百人死亡,死亡率在50%~100%之间。NiV的研究主要集中于马来西亚型(NiV Malaysia,NiV-MY)和孟加拉型(NiV Bangladesh,NiV-BD)。
技术问题
NiV在入侵宿主细胞的过程中,通过病毒表面糖蛋白G与受体ephrin-B2/B3结合后,会引起G蛋白在受体结合区和茎状区内激活融合 蛋白F发生构象改变,从而激活F蛋白与细胞膜融合,最终病毒侵入细胞。因此,在疫苗和抗病毒类药物研究中,G蛋白和F蛋白都是重要的研究靶标。目前尚无疫苗可用于人体,抗体类药物也仅有一株单克隆抗体m102.4进入临床实验。m102.4是通过重组人源Fab噬菌体抗体库筛选得到的人源单克隆抗体,能有效地中和尼帕病毒和同属于副黏病毒科、亨尼帕病毒属的亨德拉病毒(Hendra virus,HeV)。在雪貂和非洲绿猴的攻毒保护性实验中,m102.4能够在亨尼帕病毒攻毒后有效保护动物存活。2010年,m102.4被批准作为紧急保护性药物在两位高暴露风险的人身上使用,结果这两人都没有出现感染症状。但是有关单克隆抗体在治疗尼帕病毒病中的应用还缺乏进一步的深入研究和报道。
鉴于本领域对于抗尼帕病毒治疗性抗体的技术需求,本发明的目的就是提供一种能够针对独特抗原表位,并具有优异中和活性的尼帕病毒糖蛋白G的单克隆抗体,进而提供其在制备尼帕病毒病治疗药物中的应用。
技术解决方案
基于上述目的,本发明首先提供了一种抗尼帕病毒糖蛋白G的特异性中和抗体,所述抗体为单克隆抗体,所述抗体重链可变区CDR1、CDR2和CDR3区氨基酸序列和轻链可变区CDR1、CDR2和CDR3区氨基酸序列分别如下述任一序列组合所示:
SEQ ID NO:1第26-33、51-58、97-110位和SEQ ID NO:3第26-34、52-54、91-100位,或
SEQ ID NO:5第26-33、51-58、97-105位和SEQ ID NO:7第27-37、55-57、94-107位,或
SEQ ID NO:9第26-33、51-58、97-110位和SEQ ID NO:11第26-34、52-58、97-105位,或
SEQ ID NO:13第26-33、51-58、97-108位和SEQ ID NO:15第27-37、55-57、94-102位。
在一个优选的实施方案中,所述抗体重链可变区的氨基酸序列和抗体轻链可变区的氨基酸序列分别如下述任一序列组合所示:
SEQ ID NO:1和SEQ ID NO:3(在本发明中,具有该可变区的抗体被命名为“1A9”),或
SEQ ID NO:5和SEQ ID NO:7(在本发明中,具有该可变区的抗体被命名为“1D11”),或
SEQ ID NO:9和SEQ ID NO:11(在本发明中,具有该可变区的抗体被命名为“1F9”),或
SEQ ID NO:13和SEQ ID NO:15(在本发明中,具有该可变区的抗体被命名为“2B6”)。
在一个更为优选的实施方案中,所述抗体重链恒定区的氨基酸序列如SEQ ID NO:17所示,所述抗体轻链恒定区的氨基酸序列如SEQ ID NO:19或SEQ ID NO:21所示。
其次,本发明还提供了一种编码上述单克隆抗体重链和/或轻链的多核苷酸,编码所述抗体的重链可变区的多核苷酸序列和编码所述抗体的轻链可变区的多核苷酸序列分别如下述任一序列组合所示:
SEQ ID NO:2和SEQ ID NO:4(在本发明中,具有该编码序列的抗体被命名为“1A9”),或
SEQ ID NO:6和SEQ ID NO:8(在本发明中,具有该编码序列的抗体被命名为“1D11”),或
SEQ ID NO:10和SEQ ID NO:12(在本发明中,具有该编码序列的抗体被命名为“1F9”),或
SEQ ID NO:14和SEQ ID NO:16(在本发明中,具有该编码序列的抗体被命名为“2B6”)。
在一个优选的实施方案中,编码所述抗体重链恒定区的多核苷酸的序列如SEQ ID NO:18所示,编码所述抗体轻链恒定区的多核苷酸的序列如SEQ ID NO:20或SEQ ID NO:22所示。
第三,本发明还提供了一种表达上述编码单克隆抗体重链和/或轻链的多核苷酸的功能元件。
在一个优选的实施方案中 所述功能元件为线性表达框。
在另一个优选的实施方案中,所述功能元件为哺乳动物表达载体。
第四,本发明还提供了一种含有上述功能元件的宿主细胞。
在一个优选的实施方案中,所述细胞为Expi 293F细胞。
在另一个优选的实施方案中,所述细胞为CHO-S细胞,本发明可以使用CHO-S细胞构建稳转工程细胞株,实现产业化生产。
最后,本发明提供了上述的单克隆抗体在制备尼帕病毒病治疗药物中的应用。
技术效果
本发明提供的抗尼帕病毒糖蛋白G的单克隆抗体由猴源可变区和人源恒定区组成,所述猴源可变区轻重链均具有独特的CDR区。本发明提供的抗体显示出优异的抗原结合能力,与孟加拉型和马来西亚型尼帕病毒糖蛋白G均具有良好的结合活性。所述抗体能够有效中和尼帕假病毒;而且所述抗体的中和活性随着抗体浓度的升高而增强,在1μg/mL的浓度下即可对尼帕假病毒实现近100%的中和。本发明还公开了所述抗尼帕病毒糖蛋白G的单克隆抗体在制备尼帕病毒病治疗药物中的应用。
附图说明
图1.恒河猴记忆B细胞分选结果图;
图2.巢式PCR毛细管电泳图谱;
图3.ELISA筛选具有结合活性抗体的OD 450-630nm值分布图;
图4.ELISA检测抗体与抗原结合活性随浓度变化曲线图;
图5.抗体与NiV-BD假病毒的中和结果图;
图6.抗体与NiV-MY假病毒的中和曲线图;
图7.抗体对NiV-BD/MY G蛋白与受体ephrin-B2/B3结合的竞争抑制曲线图。
具体实施方式
下面结合具体实施例来进一步描述本发明,本发明的优点和特点将会随着描述而更为清楚。但这些实施例仅是范例性的,并不对本发明的权利要求所限定的保护范围构成任何限制。
实施例1抗体的筛选和制备
1.血液样品的采集
对雌性恒河猴进行三次免疫,即在第0、28、49天采用肌肉注射的方式,分别免疫腺病毒载体尼帕病毒候选疫苗、重组NiV G蛋白和重组HeV G蛋白。最终采集第77天恒河猴血液样本。
2.FITC标记蛋白NiV-BD G
为分选抗原特异的记忆B细胞,FITC标记抗原蛋白NiV-BD G。方法如下:
1)Fluorescein Isothiocyanate FITC(SIGMA,F4274)溶于DMSO,浓度为20mg/mL。取100μL NiV-BD G蛋白(3.3mg/mL),加缓冲液(pH9.6碳酸盐缓冲液)至400μL。
2)加8μL FITC至NiV-BD G蛋白溶液中,4℃避光孵育3h。
3)用30kD的超滤管对溶液加PBS换液,直至滤过液为透明无色。将标记好的蛋白用锡箔纸包好,4℃存放待用。
3.流式分选记忆B细胞
将采集的血样利用Ficoll密度梯度离心法分离PBMC,过程如下:
1)取新鲜抗凝全血,EDTA抗凝。用等体积PBS稀释全血。
2)在离心管中加入一定体积的分离液,将稀释后的血样平铺到分离液液面上方,保持两液面界面清晰。分离液、抗凝未经稀释全血、PBS(或生理盐水)体积为1:1:1。
3)配平,室温,水平转子800g,加速减速3档位,离心30min。离心结束后,管底是红细胞,中间层是分离液,最上层是血浆/组织匀浆层,血浆层与分离液层之间是一层薄且较致密的白膜,即单个核细胞(包括淋巴细胞和单核细胞)层。小心吸取白膜层到另一离心管中。
4)用PBS稀释到一定体积,颠倒混匀。室温,水平转子300g,离心10min,弃上清,重复洗涤2次。用PBS将淋巴细胞重悬备用。
5)细胞计数,取5×10 5个细胞,体积为50μL,加入表1所列推荐量的5种荧光染料,4℃避光孵育1h。
表1.流式分选细胞所用染料列表
标记 荧光 公司/货号 体积
抗原 FITC SIGMA,F4274 4μg
IgG PE BD,555787 15μL
CD19 APC-AF 700 Beckman,IM2470 5μL
CD3 PerCP BD,552851 10μL
CD27 PC7 Beckman,A54823 10μL
6)使用含2%FBS的PBS洗涤2-3次,400μL FPBS重悬,用40μm细胞筛去除细胞团,4℃避光保存供分选。
7)使用细胞分选仪(BECKMAN,MoFlo XDP)分选NiV-BD G特异的单个记忆B细胞。分选策略为:IgG +/CD3 -/CD19 +/CD27 +/NiV-BD G +,直接将单个细胞分选至96孔板中,每孔含有20U RNA酶抑制剂及20μL去RNA酶的水中,-80℃保存。图1为细胞分选结果图。图中R7方框圈出部分的细胞特征为IgG +/CD3 -/CD19 +/CD27 +/NiV-BD G +,即NiV-BD G特异性记忆B细胞。
4.单细胞PCR扩增抗体可变区
1)反转录PCR
分选得到1124个NiV-BD G特异的记忆B细胞,使用SuperScriptⅢ反转录试剂盒,按说明书将混合好的体系直接加入含有单个细胞的96孔板进行PCR反应,反应体系及条件如下:
反应条件:42℃,10min;25℃,10min;50℃,60min;94℃,5min。反转录-PCR反应体系如表2所述。
表2.反转录-PCR反应体系
Figure PCTCN2021102585-appb-000001
2)巢式PCR
以反转录产物为模板,分别进行2次巢式PCR反应扩增H、κ、λ,具体过程如下:
第一轮巢式PCR反应体系如表3所述:
表3.第一轮巢式PCR反应体系
Figure PCTCN2021102585-appb-000002
第一轮巢式PCR反应条件:首先,95℃预变性5min;接着进行40个扩增循环:95℃30s,57℃30s,72℃45s;最后72℃延伸10min。
第一轮巢式PCR引物如表4所述:
表4第一轮巢式PCR引物
Figure PCTCN2021102585-appb-000003
Figure PCTCN2021102585-appb-000004
第二轮巢式PCR反应体系如表5所述,
表5.巢式PCR反应体系
Figure PCTCN2021102585-appb-000005
Figure PCTCN2021102585-appb-000006
第二轮巢式PCR反应引物如表6所示:
表6第二轮巢式PCR引物
Figure PCTCN2021102585-appb-000007
Figure PCTCN2021102585-appb-000008
第二轮巢式PCR反应条件同第一轮巢式PCR。
3)毛细管电泳
巢式PCR结束后,扩增产物用QIAxcel DNA Fast Analysis Cartridge进行毛细管电泳,挑选轻重链配对的阳性克隆进行测序,测序获得的抗体可变区序列用Vector NTI软件及IMGT网站进行分析。图2为巢式PCR毛细管电泳结果。
5.线性表达框表达抗体
通过上述反转录反应,单细胞克隆中获得了254对配对的抗体序列,如果采用传统的克隆表达方法费时费力,通过构建线性表达框的方法可以快速表达抗体。
首先,通过PCR反应获得启动子-前导序列片段、恒定区(生工生物合成,重链恒定区序列由SEQ ID NO:17所示,DNA编码序列由SEQ ID NO:18所示,Kappa型轻链恒定区序列由SEQ ID NO:19所示,DNA编码序列由SEQ ID NO:20所示,Lamda型轻链恒定区序列由SEQ ID NO:21所示,DNA编码序列由SEQ ID NO:22所示)-多聚A尾片段(Genbank登记号:X03896.1),再扩增抗体可变区片段。扩增可变区PCR反应体系如表7所示。
表7扩增可变区片段反应体系
Figure PCTCN2021102585-appb-000009
PCR反应条件:首先,95℃预变性5min;然后进行30个扩增循环:95℃,30s;60℃,30s;72℃,30s;最后,72℃延伸10min。
以扩增好的启动子-前导序列片段、恒定区-多聚A尾片段和可变区片段为模板,以CMV-UP和TK-POLY A为引物,进行重叠延伸PCR分别扩增H、κ和λ链的线性表达框,PCR产物经核酸电泳鉴定。扩增全长线性表达框反应体系如表8所示。
表8扩增全长线性表达框反应体系
Figure PCTCN2021102585-appb-000010
反应条件:首先,95℃预变性5min;然后进行30个扩增循环:95℃,30s;60℃,30s;72℃,3min;最后,72℃延伸10min。
PCR反应产物直接用OMEGA公司试剂盒回收,用Nano(GE Healthcare)对PCR回收产物进行定量。转染前一天晚上按2×10 4cells每孔150μL铺好96孔板。转染当天,取轻重链各0.2μg,加入0.8μL Turbofect转染试剂,使用DMEM培养基稀释至40μL,混匀室温孵育15min。按顺序缓慢逐滴加入96孔板中,放入37℃培养48h。
6.ELISA筛选具有结合活性的抗体
1)实验前一天96孔酶联板包被1μg/mL的NiV-BD G蛋白,每孔100μL包被。将包被的酶联板放入湿盒,4℃过夜。
2)实验当天用洗板机(BIO-TEK,405_LS)清洗5次。每孔加入100μL封闭液,37℃孵箱中放置1小时。
3)洗板机洗5次,加入100μL的转染细胞培养上清,37℃孵箱中静置1小时。
4)洗板,将HPR标记的羊抗人IgG二抗(Abcam,ab97225)以1:10000用稀释液进行稀释,每孔100μL加入到ELISA板对应孔中,37℃孵箱中静置1小时。
5)洗板,每孔加入100μL的TMB单组份显色液,显色6min,室温避光,之后每孔加入50μL终止液终止反应。酶标仪检测450-630nm的OD值。
结果:将254株单抗进行筛选,以OD 450-630nm值等于0.1时为cutoff值,得到59株能与NiV-BD G特异性结合的抗体,对这些抗体进行进一步地表达纯化以及验证等实验。图3为ELISA筛选具有结合活性的抗体的OD 450-630nm值分布图。
7.表达质粒构建与抗体制备
构建抗体表达质粒,进行单抗的表达制备。方法如下:
1)将抗体重链H和轻链L线性表达框全长基因用EcoR I(NEB,R3101)和Not I(NEB,R3189)双酶切,连接至pcDNA3.4表达质粒。
2)取pcDNA3.4-H和pcDNA3.4-L各15μg,转染至30mL Expi293体系(Life,A14524)中,125rpm,5%CO 2培养72h。
3)3000×g,离心10min收集表达上清,采用rProtein A亲和纯化。用PBS对收集的抗体进行换液,然后用BCA蛋白定量试剂盒 (Thermo Scientific,23225)测定抗体浓度。
实施例2.ELISA检测抗体结合活性
1)实验前一天96孔酶联板包被100μL 1μg/mL的NiV-BD或NiV-MY G蛋白(NiV-BD G的Genbank登记号:AY988601.1,NiV-MY G的Genbank登记号:FN869553.1),4℃过夜。
2)实验当天,洗板后每孔加入100μL封闭液,37℃下放置1小时。
3)洗板机洗板,首孔加入150μL浓度为20μg/mL的纯化单克隆抗体,其余孔加入100μL的稀释液。从首孔吸出50μL加入到次孔,以此类推,按1:3梯度稀释每孔终体积为100μL。室温静置1小时。
4)洗板,将HPR标记的羊抗人IgG二抗以1:10000用稀释液进行稀释,每孔100μL加入到ELISA板对应孔中,室温孵育1小时。
5)洗板,每孔加入100μL的TMB单组份显色液,显色6min,室温避光,之后每孔加入50μL终止液终止反应。用酶标仪上检测450-630nm的OD值。
结果如图4所示,单抗与NiV-BD和NiV-MY G蛋白均具有良好的结合活性,单抗1A9的EC 50值分别为18.26ng/mL、22.81ng/mL;单抗1D11的EC 50值分别为9.91ng/mL、20.2ng/mL;单抗1F9的EC 50值分别为15.04ng/mL、23.56ng/mL;单抗2B6的EC 50值分别为5.40ng/mL、9.56ng/mL。
对上述4株抗体进行测序,单抗1A9重链和轻链可变区的核苷酸编码序列分别由SEQ ID NO:2和SEQ ID NO:4所示,重链和轻链可变区的氨基酸序列分别由SEQ ID NO:1和SEQ ID NO:3所示;对重链和轻链可变区氨基酸序列进一步分析,重链可变区CDR1、CDR2和CDR3区氨基酸序列分别如SEQ ID NO:1第26-33、51-58、97-110位所示,轻链可变区CDR1、CDR2和CDR3区氨基酸序列分别如SEQ ID NO:3第26-34、52-54、91-100位所示。
单抗1D11重链和轻链可变区的核苷酸编码序列分别由SEQ ID NO:6和SEQ ID NO:8所示,重链和轻链可变区的氨基酸序列分别由SEQ ID  NO:5和SEQ ID NO:7所示;对重链和轻链可变区氨基酸序列进一步分析,重链可变区CDR1、CDR2和CDR3区氨基酸序列分别如SEQ ID NO:5第26-33、51-58、97-105位所示,轻链可变区CDR1、CDR2和CDR3区氨基酸序列分别如SEQ ID NO:7第27-37、55-57、94-107位所示。
单抗1F9重链和轻链可变区的核苷酸编码序列分别由SEQ ID NO:10和SEQ ID NO:12所示,重链和轻链可变区的氨基酸序列分别由SEQ ID NO:9和SEQ ID NO:11所示,对重链和轻链可变区氨基酸序列进一步分析,重链可变区CDR1、CDR2和CDR3区氨基酸序列分别如SEQ ID NO:9第26-33、51-58、97-110位所示,轻链可变区CDR1、CDR2和CDR3区氨基酸序列分别如SEQ ID NO:11第26-34、52-58、97-105位所示。
单抗2B6重链和轻链可变区的核苷酸编码序列分别由SEQ ID NO:14和SEQ ID NO:16所示,重链和轻链可变区的氨基酸序列分别由SEQ ID NO:13和SEQ ID NO:15所示;对重链和轻链可变区氨基酸序列进一步分析,重链可变区CDR1、CDR2和CDR3区氨基酸序列分别如SEQ ID NO:13第26-33、51-58、97-108位所示,轻链可变区CDR1、CDR2和CDR3区氨基酸序列分别如SEQ ID NO:15第27-37、55-57、94-102位所示。
上述4株单克隆抗体具有相同的人源的重链恒定区和轻链恒定区,编码上述抗体重链恒定区的多核苷酸的序列如SEQ ID NO:18所示,编码所述抗体轻链恒定区的多核苷酸的序列如SEQ ID NO:20或SEQ ID NO:22所示,重链恒定区的氨基酸序列如SEQ ID NO:17所示,所述抗体轻链恒定区的氨基酸序列如SEQ ID NO:19或SEQ ID NO:21所示。
实施例3.假病毒中和实验评价抗体中和活性
包装HIV骨架的NiV-BD和NiV-MY假病毒(Dimple Khetawat,C.C.B.,A functional henipavirus envelope glycoprotein pseudotyped lentivirus assay system.Virology J.2010.7(312).),体外评价抗体的中和活性。方法如下:
1)用DMEM培养基稀释单克隆抗体,96孔细胞培养板首孔加入75μL浓度为5μg/mL的抗体稀释液,其余孔加入50μL的DMEM培养基。
2)从首孔吸取25μL液体加入次孔,混匀,以此类推,按1:3倍比稀释,每孔终体积为50μL。将假病毒按以每孔50μL的体积加入各孔,混匀,37℃孵育1h。
3)293T细胞计数,2×10 5cells/mL,每孔加入100μL。将培养板放入37℃恒温箱中培养36~48小时。
4)取出细胞培养板,小心吸出培养液弃掉。各孔加入100μL细胞裂解液,震荡机上400rpm震荡15min。3000rpm室温离心10min。同时将荧光素酶检测系统(Promega,E1501)的检测底物冻干剂和检测缓冲液混匀后,充盈GLOMAX 96 MICROPLATE LUMINOMETER(Promega)检测管路。吸取20μL裂解上清读取荧光值,计算抗体对细胞的保护率。
结果如图5、6所示,抗体在体外可有效地中和以HIV为骨架的NiV-BD和NiV-MY假病毒。抗体中和活性随着抗体浓度的升高而增强,在1μg/mL的浓度下单抗1D11、1F9和2B6即可对孟加拉型和马来西亚型尼帕假病毒实现近100%的中和;而1A9仅能中和NiV-BD假病毒,对NiV-MY假病毒的中和效果不佳。对于NiV-BD假病毒,单抗1D11和2B6具有较1A9和1F9更高的中和活性,在0.04μg/mL的浓度下中和率尚能达到95%以上;对于NiV-MY假病毒,单抗1D11、1F9和2B6的IC 50值分别为57.87ng/mL、81.41ng/mL和28.26ng/mL。
实施例4.竞争实验
采用Luminex微球竞争抑制实验验证单抗抑制尼帕病毒G蛋白与受体结合的能力,其方法如下:
1)首孔加入10μL 10μg单克隆抗体,依次向下二倍稀释。
2)每孔加入1.25ng受体ephrin-B2或ephrin-B3,体积10μL。每孔加入10μL制备好的微球(NiV-BD/MY G偶联微球各1500个),摇床孵育60min。
3)每孔加入10μL SAPE(浓度为12μg/ml),摇床孵育30min。
4)100μL assay buffer洗3次后通过Luminex MAGPIX仪器读数。
抗体对尼帕病毒G蛋白与受体ephrin-B2/B3结合的竞争抑制曲线图 如图7,结果表明抗体1D11和2B6能够有效抑制尼帕病毒G蛋白与受体ephrin-B2/B3的结合。抗体1D11和2B6抑制尼帕病毒G蛋白与受体结合的IC 50值在0.04μg/ml至0.16μg/ml之间,提示抗体1D11和2B6很有可能通过抑制尼帕病毒G蛋白与受体ephrin-B2/B3的结合发挥其中和作用;而1A9和1F9可能通过其它的机制发挥中和作用。
工业实用性
本发明提供了一种具有中和活性的抗尼帕病毒单克隆抗体及在制备药物中的应用,所述单克隆抗体易于工业化生产,具有工业实用性。
序列表自由内容
Figure PCTCN2021102585-appb-000011
Figure PCTCN2021102585-appb-000012
Figure PCTCN2021102585-appb-000013
Figure PCTCN2021102585-appb-000014
Figure PCTCN2021102585-appb-000015
Figure PCTCN2021102585-appb-000016
Figure PCTCN2021102585-appb-000017
Figure PCTCN2021102585-appb-000018
Figure PCTCN2021102585-appb-000019
Figure PCTCN2021102585-appb-000020
Figure PCTCN2021102585-appb-000021
Figure PCTCN2021102585-appb-000022
Figure PCTCN2021102585-appb-000023
Figure PCTCN2021102585-appb-000024
Figure PCTCN2021102585-appb-000025

Claims (10)

  1. 一种抗尼帕病毒糖蛋白G的单克隆抗体,其特征在于,所述抗体重链可变区CDR1、CDR2和CDR3区氨基酸序列和轻链可变区CDR1、CDR2和CDR3区氨基酸序列分别如下述任一序列组合所示:
    SEQ ID NO:1第26-33、51-58、97-110位和SEQ ID NO:3第26-34、52-54、91-100位,或
    SEQ ID NO:5第26-33、51-58、97-105位和SEQ ID NO:7第27-37、55-57、94-107位,或
    SEQ ID NO:9第26-33、51-58、97-110位和SEQ ID NO:11第26-34、52-58、97-105位,或
    SEQ ID NO:13第26-33、51-58、97-108位和SEQ ID NO:15第27-37、55-57、94-102位。
  2. 根据权利要求1所述的单克隆抗体,其特征在于,所述抗体重链可变区的氨基酸序列和抗体轻链可变区的氨基酸序列分别如下述任一序列组合所示:
    SEQ ID NO:1和SEQ ID NO:3,或
    SEQ ID NO:5和SEQ ID NO:7,或
    SEQ ID NO:9和SEQ ID NO:11,或
    SEQ ID NO:13和SEQ ID NO:15。
  3. 根据权利要求2所述的单克隆抗体,其特征在于,所述抗体重链恒定区的氨基酸序列如SEQ ID NO:17所示,所述抗体轻链恒定区的氨基酸序列如SEQ ID NO:19或SEQ ID NO:21所示。
  4. 一种编码权利要求1-3任一所述单克隆抗体重链和/或轻链的多核苷酸,其特征在于,编码所述抗体的重链可变区的多核苷酸序列和编码所述抗体的轻链可变区的多核苷酸序列分别如下述任一序列组合所示:
    SEQ ID NO:2和SEQ ID NO:4,或
    SEQ ID NO:6和SEQ ID NO:8,或
    SEQ ID NO:10和SEQ ID NO:12,或
    SEQ ID NO:14和SEQ ID NO:16。
  5. 根据权利要求4所述的多核苷酸,其特征在于,编码所述抗体重链恒定区的多核苷酸的序列如SEQ ID NO:18所示,编码所述抗体轻链恒定区的多核苷酸的序列如SEQ ID NO:20或SEQ ID NO:22所示。
  6. 一种表达权利要求5所述编码单克隆抗体重链和/或轻链的多核苷酸的功能元件。
  7. 根据权利要求6所述的功能元件,其特征在于,所述功能元件为线性表达框或哺乳动物表达载体。
  8. 一种含有权利要求7所述功能元件的宿主细胞。
  9. 根据权利要求8所述的宿主细胞,其特征在于,所述细胞为Expi293F细胞或者CHO-S细胞。
  10. 权利要求1-3任一所述的单克隆抗体在制备尼帕病毒病治疗药物中的应用。
PCT/CN2021/102585 2020-07-22 2021-06-26 具有中和活性的抗尼帕病毒单克隆抗体及应用 WO2022017123A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US18/005,978 US20240158480A1 (en) 2020-07-22 2021-06-26 Anti-nipah virus monoclonal antibody having neutralization activity and application
EP21846832.0A EP4186924A1 (en) 2020-07-22 2021-06-26 Anti-nipah virus monoclonal antibody having neutralization activity and application

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010711672.9 2020-07-22
CN202010711672.9A CN113968907B (zh) 2020-07-22 2020-07-22 具有中和活性的抗尼帕病毒单克隆抗体及应用

Publications (1)

Publication Number Publication Date
WO2022017123A1 true WO2022017123A1 (zh) 2022-01-27

Family

ID=79584882

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/102585 WO2022017123A1 (zh) 2020-07-22 2021-06-26 具有中和活性的抗尼帕病毒单克隆抗体及应用

Country Status (4)

Country Link
US (1) US20240158480A1 (zh)
EP (1) EP4186924A1 (zh)
CN (1) CN113968907B (zh)
WO (1) WO2022017123A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117402238B (zh) * 2023-12-12 2024-03-05 中国人民解放军军事科学院军事医学研究院 靶向亨尼帕病毒融合蛋白di和diii区的广谱中和抗体及应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006137931A2 (en) * 2005-03-14 2006-12-28 The Government Of The United States Of America, As Represented By The Secretary, Department Of Health And Human Serivces Human monoclonal antibodies against hendra and nipah viruses
CN110028579A (zh) * 2019-05-05 2019-07-19 中国人民解放军军事科学院军事医学研究院 一种抗尼帕病毒包膜糖蛋白的单克隆抗体及其应用

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK1605971T3 (da) * 2003-03-26 2010-08-16 Wyeth Llc Immunogene sammensætninger og fremgangsmåder
CN108624602B (zh) * 2017-03-24 2020-10-16 华中农业大学 一株具有阻断活性的抗尼帕病毒g蛋白的单克隆抗体及其应用
CN111138527B (zh) * 2018-11-06 2021-07-30 中国人民解放军军事科学院军事医学研究院 抗埃博拉病毒糖蛋白gp1亚基的单克隆抗体4f1及应用

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006137931A2 (en) * 2005-03-14 2006-12-28 The Government Of The United States Of America, As Represented By The Secretary, Department Of Health And Human Serivces Human monoclonal antibodies against hendra and nipah viruses
CN110028579A (zh) * 2019-05-05 2019-07-19 中国人民解放军军事科学院军事医学研究院 一种抗尼帕病毒包膜糖蛋白的单克隆抗体及其应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Genbank", Database accession no. X03896.1
VIROLOGY JOURNAL, vol. 7, no. 312, 2010

Also Published As

Publication number Publication date
CN113968907A (zh) 2022-01-25
CN113968907B (zh) 2023-05-26
EP4186924A1 (en) 2023-05-31
US20240158480A1 (en) 2024-05-16

Similar Documents

Publication Publication Date Title
Dispinseri et al. Neutralizing antibody responses to SARS-CoV-2 in symptomatic COVID-19 is persistent and critical for survival
Samanovic et al. Robust immune responses are observed after one dose of BNT162b2 mRNA vaccine dose in SARS-CoV-2–experienced individuals
Lindesmith et al. Emergence of a norovirus GII. 4 strain correlates with changes in evolving blockade epitopes
Fukuma et al. Severe fever with thrombocytopenia syndrome virus antigen detection using monoclonal antibodies to the nucleocapsid protein
WO2022017124A1 (zh) 具有广谱中和活性的抗亨尼帕病毒单克隆抗体及应用
Han et al. A rapid and efficient screening system for neutralizing antibodies and its application for SARS-CoV-2
CN108474017B (zh) 用于检测呼吸道合胞病毒抗原p的单克隆抗体
US20210324051A1 (en) Antibody-mediated neutralization of marburg virus
Zhou et al. Broadly neutralizing anti-S2 antibodies protect against all three human betacoronaviruses that cause severe disease
Maciola et al. Neutralizing antibody responses to SARS-CoV-2 in recovered COVID-19 patients are variable and correlate with disease severity and receptor-binding domain recognition
WO2023216826A1 (zh) 一种抗裂谷热病毒的单克隆抗体a38及应用
Asaka et al. Highly susceptible SARS-CoV-2 model in CAG promoter–driven hACE2-transgenic mice
Sehgal et al. Hemorrhagic fever with renal syndrome in Asia: history, pathogenesis, diagnosis, treatment, and prevention
Smith et al. VH1-69 utilizing antibodies are capable of mediating non-neutralizing Fc-mediated effector functions against the transmitted/founder gp120
WO2022017123A1 (zh) 具有中和活性的抗尼帕病毒单克隆抗体及应用
Xie et al. Novel monoclonal antibodies and recombined antibodies against variant SARS-CoV-2
WO2022042165A1 (zh) 一种抗破伤风毒素的全人源中和抗体及应用
Tian et al. Potent and persistent antibody response in COVID-19 recovered patients
Yue et al. Sensitivity of SARS-CoV-2 variants to neutralization by convalescent sera and a VH3-30 monoclonal antibody
Van Rompay et al. Early post-infection treatment of SARS-CoV-2 infected macaques with human convalescent plasma with high neutralizing activity had no antiviral effects but moderately reduced lung inflammation
CA3011569A1 (en) Monoclonal antibodies specific for the piii antigen of human adenovirus (adv), produced and secreted by cell hybridomas, useful for detection and diagnosis of adv infection
WO2023088444A1 (zh) 一种抗hiv-1 p24的抗体及其制备方法和用途
Song et al. LRRC15 is an inhibitory receptor blocking SARS-CoV-2 spike-mediated entry in trans
Singh et al. Current and future diagnostic tests for Ebola virus disease
Dhande et al. HIV-gp140-specific antibodies generated from indian long-term non-progressors mediate potent ADCC activity and effectively lyse reactivated HIV reservoir

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21846832

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021846832

Country of ref document: EP

Effective date: 20230222