WO2022017118A1 - 一种用于随机接入的方法及通信装置 - Google Patents

一种用于随机接入的方法及通信装置 Download PDF

Info

Publication number
WO2022017118A1
WO2022017118A1 PCT/CN2021/102163 CN2021102163W WO2022017118A1 WO 2022017118 A1 WO2022017118 A1 WO 2022017118A1 CN 2021102163 W CN2021102163 W CN 2021102163W WO 2022017118 A1 WO2022017118 A1 WO 2022017118A1
Authority
WO
WIPO (PCT)
Prior art keywords
scanning
corresponding relationship
different
areas
communication device
Prior art date
Application number
PCT/CN2021/102163
Other languages
English (en)
French (fr)
Inventor
周建伟
罗禾佳
徐晨蕾
蒋镇军
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP21847102.7A priority Critical patent/EP4171158A4/en
Publication of WO2022017118A1 publication Critical patent/WO2022017118A1/zh
Priority to US18/156,941 priority patent/US20230156822A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • H04W74/008Transmission of channel access control information with additional processing of random access related information at receiving side
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • H04W74/0841Random access procedures, e.g. with 4-step access with collision treatment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0808Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/1853Satellite systems for providing telephony service to a mobile station, i.e. mobile satellite service
    • H04B7/18539Arrangements for managing radio, resources, i.e. for establishing or releasing a connection
    • H04B7/18543Arrangements for managing radio, resources, i.e. for establishing or releasing a connection for adaptation of transmission parameters, e.g. power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0866Non-scheduled access, e.g. ALOHA using a dedicated channel for access
    • H04W74/0891Non-scheduled access, e.g. ALOHA using a dedicated channel for access for synchronized access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • H04W74/006Transmission of channel access control information in the downlink, i.e. towards the terminal

Definitions

  • the present application relates to the field of communication technologies, and in particular, to a method and a communication device for random access.
  • SSB synchronization signal block
  • this method scans based on a fixed scan cycle.
  • scanning based on the same scanning period is not conducive to improving the communication efficiency of terminal equipment, and there is no terminal scanning through a fixed beam scanning period.
  • the area of the equipment will also cause a waste of resources.
  • Embodiments of the present application provide a method and a communication apparatus for random access, which are used to improve the capacity of users in a satellite system and the communication efficiency of terminal equipment.
  • an embodiment of the present application provides a method for random access, which may be performed in the following manner:
  • the second communication device sends a first message after determining the corresponding relationship between the scanning period and random access opportunity (RO) of different scanning areas within the coverage of the SSB beam, and the first message includes information about the corresponding relationship ;
  • the first communication device receives the first message, determines the RO according to the scanning area where the first communication device is located and the first message, and initiates random access.
  • RO random access opportunity
  • the second communication device may be a satellite; the first communication device may be a terminal device, or a satellite that receives communication services through the second communication device, which is not specifically limited herein.
  • different scanning periods are used for beam scanning for different scanning areas, and scanning areas with different scanning periods correspond to different ROs.
  • the first message of the message so that the first communication device receiving the first message can initiate random access.
  • Better communication services are received at the second communication device. In this way, the system user capacity of the second communication device is improved, the communication efficiency of the first communication device is improved, and the occurrence of scanning different scanning areas with a fixed scanning period is avoided. The resulting waste of resources occurs.
  • scanning periods corresponding to at least two scanning regions in different scanning regions are different.
  • the scan period is 5 milliseconds (millisecond, ms), or 10 ms, or 20 ms, or 80 ms, or 160 ms.
  • the signaling overhead delivered by the scan periods can be reduced.
  • the number of ROs corresponding to at least two scan areas in different scan areas is different.
  • the number of ROs corresponding to the scanning area can be determined, and the random access efficiency can be improved.
  • the information is an index of the corresponding relationship.
  • the corresponding relationship corresponding to which scanning area is selected can be determined and sent to the first communication device, so that the first communication device can accurately initiate random access according to the index.
  • the corresponding relationship is a first corresponding relationship or a second corresponding relationship; wherein each scanning area in the first corresponding relationship corresponds to multiple ROs; and different scanning areas in the second corresponding relationship correspond to one RO.
  • the scanning area in the first correspondence relationship or the second correspondence relationship also corresponds to multiple competition-based (competition-based, CB) random access preambles (Preambles).
  • CB competition-based random access preambles
  • the scanning area corresponds to a plurality of CB Preambles so that the second communication device obtains information on which first communication device initiated the random access.
  • the second communication device acquires the number of first communication devices in different scanning areas; wherein the number includes a first number of first communication devices with data interaction and a first number of first communication devices without data interaction
  • the second number of the communication device by performing weighted calculation on the first number and the second number, determine the weight values of different scanning areas within the coverage of the SSB beam; determine the coverage of the SSB beam according to the comparison rule of the weight value and the scanning period The scan cycle of different scan areas within.
  • the scanning period corresponding to the different scanning areas is determined by calculation, and scanning the corresponding scanning areas through the scanning period can increase the capacity of users in the system, In addition, the waste of resources caused by scanning different scanning areas according to the same scanning cycle is avoided.
  • the second communication device determines the first calculation rule according to the scanning period corresponding to each scanning area, the first scanning period and the total number of ROs; wherein, The first scanning period is the maximum value of the scanning period of the scanning area within the coverage of the SSB beam; according to the first calculation rule, the number of ROs corresponding to each scanning area is determined.
  • the number of ROs is associated with the scanning period, so that the first communication device can better communicate with the second communication device when initiating random access, and the communication efficiency can be improved in this way.
  • the second communication device determines the second calculation rule according to the scanning period corresponding to each scanning area, the first scanning period and the total number of CB Preambles; according to The second calculation rule determines the number of CB Preambles corresponding to each scanning area.
  • determining the number of CB Preambles in this manner facilitates the first communication device to better perform random access.
  • an embodiment of the present application provides a communication device, the communication device includes a transceiver unit and a processing unit; wherein, the transceiver unit is configured to receive a first message; the first message includes information of a corresponding relationship; the corresponding relationship is the second The corresponding relationship between the scanning periods of different scanning areas within the coverage of the SSB beam of the communication device and the random access opportunity RO; the processing unit is used to determine the random access according to the scanning area where the first communication device is located and the first message. Enter the opportunity RO and initiate random access.
  • an embodiment of the present application provides a communication device, the communication device includes a processing unit and a transceiver unit; wherein the processing unit is used to determine the scanning period and random connection of different scanning areas within the coverage of the synchronization information block SSB beam The corresponding relationship of the entry time RO; the transceiver unit is used to send the first message; the first message includes information of the corresponding relationship.
  • the present application provides a communication device, comprising a processor and a memory; the memory stores a computer program; the processor is configured to execute the computer program stored in the memory, so that the first aspect or the first The method described in any possible design of the aspect that is not performed by the second communication device is performed.
  • the present application provides a communication device, comprising a processor and a memory; the memory stores a computer program; the processor is configured to execute the computer program stored in the memory, so that the above-mentioned first aspect or the first The method described in any of the possible designs of the aspect is performed.
  • the present application provides a communication device, including a logic circuit and an interface circuit; the interface circuit is configured to receive a first message; the first message includes information about a correspondence; the correspondence is a second communication
  • the logic circuit is used to perform the above-mentioned first aspect or any possible design in the first aspect The method described in the non-second communication device.
  • the present application provides a communication device, including a logic circuit and an interface circuit; the interface circuit is configured to send a first message; the first message includes information of a correspondence; the correspondence is a second communication The corresponding relationship between the scanning periods of different scanning areas within the coverage of the SSB beam of the device's synchronization information block and the random access opportunity RO; the logic circuit is used to perform the above-mentioned first aspect or any possible design in the first aspect method described in.
  • the embodiments of the present application further provide a computer-readable storage medium, where computer-readable instructions are stored in the computer-readable storage medium, and when the computer-readable instructions are run on a computer, the computer executes A method as described in the first aspect or any possible design of the first aspect.
  • an embodiment of the present application provides a chip system, where the chip system includes a processor and may also include a memory, for implementing the method described in the first aspect or any possible design of the first aspect .
  • the chip system can be composed of chips, and can also include chips and other discrete devices.
  • an embodiment of the present application provides a communication system, where the system includes a terminal device and a network device, and the terminal device is configured to execute the first aspect or any one of the possible designs of the first aspect.
  • an embodiment of the present application provides a computer program product including instructions, which, when run on a computer, enables the computer to execute the method described in the first aspect and any possible design of the first aspect .
  • FIG. 1 provides a schematic diagram of a land network communication system architecture
  • FIG. 2 provides a schematic diagram of a non-terrestrial network communication system architecture
  • FIG. 3 provides a schematic diagram of the architecture of a fifth generation (5th generation, 5G) satellite communication system
  • FIG. 4 provides a schematic diagram of a beam scanning period of an SSB in a new radio (NR) system
  • FIG. 5 provides a first schematic diagram of a beam of an SSB corresponding to an RO in an NR system
  • FIG. 6 provides a second schematic diagram of a beam of an SSB corresponding to an RO in an NR system
  • FIG. 8 provides a schematic flowchart of a method for random access
  • FIG. 9 provides a schematic diagram of a beam scanning period of an SSB in an embodiment of the present application.
  • FIG. 10 provides a schematic diagram of a beam of an SSB corresponding to an RO in an embodiment of the present application
  • FIG. 11 provides a schematic structural diagram of a first communication apparatus in an embodiment of the present application.
  • FIG. 12 provides a schematic structural diagram of a second communication apparatus in an embodiment of the present application.
  • FIG. 13 provides a schematic structural diagram of another first communication apparatus in an embodiment of the present application.
  • FIG. 14 provides a schematic structural diagram of another first communication apparatus in an embodiment of the present application.
  • FIG. 15 provides a schematic structural diagram of another second communication apparatus in an embodiment of the present application.
  • FIG. 16 provides a schematic structural diagram of another second communication apparatus in this embodiment of the present application.
  • the embodiments of the present application provide a method for random access, a first communication device, and a second communication device, wherein the method and the device are based on the same technical concept.
  • "and/or" describes the association relationship of the associated objects, indicating that there may be three kinds of relationships, for example, A and/or B may indicate that A exists alone, A and B exist simultaneously, and a single relationship exists. There are three cases of B. In this application, at least one refers to one or more; multiple refers to two or more.
  • FIG. 1 shows the architecture of a possible terrestrial network communication system.
  • the communication system 100 may include a network device 110 and terminal devices 101 to 106 . It should be understood that the communication system 100 may include more or less network devices or terminal devices.
  • the network device or the terminal device may be hardware, software divided by functions, or a combination of the above two.
  • the terminal device 104 to the terminal device 106 may also form a communication system, for example, the terminal device 105 may send downlink data to the terminal device 104 or the terminal device 106 .
  • the network device and the terminal device can communicate through other devices or network elements.
  • the network device 110 can send downlink data to the terminal device 101 to the terminal device 106 , and can also receive the uplink data sent by the terminal device 101 to the terminal device 106 .
  • the terminal devices 101 to 106 may also send uplink data to the network device 110 , and may also receive downlink data sent by the network device 110 .
  • the network device 110 is a node in a radio access network (radio access network, RAN), which may also be referred to as a base station, and may also be referred to as a RAN node (or device).
  • radio access network radio access network
  • RAN radio access network
  • some examples of access network equipment are: 5G base station (gNodeB, gNB)/NR-Node B (node B, NB), transmission reception point (transmission reception point, TRP), evolved node B (evolved node B, eNB), Radio Network Controller (RNC), NB, Base Station Controller (BSC), Base Transceiver Station (BTS), Home Base Station (for example, home evolved NodeB, or home Node B, HNB), base band unit (base band unit, BBU), or wireless fidelity (wireless fidelity, Wifi) access point (access point, AP), or the fifth generation mobile communication technology (5th generation mobile networks, 5G ) network equipment in communication systems, or network equipment in possible future communication systems, or
  • the network device 110 may also be other devices having network device functions.
  • the network device 110 may also be a device-to-device (device-to-device, D2D) or machine-to-machine (machine-to-machine, M2M) communication.
  • D2D device-to-device
  • M2M machine-to-machine
  • a device that functions as a network device for example, a connected car device.
  • the network device 110 may also be a network device in a possible future communication system.
  • Terminal equipment 101 to 106 also known as user equipment (UE), mobile station (mobile station, MS), mobile terminal (mobile terminal, MT), etc.
  • Connectivity devices which can also be IoT devices.
  • the terminal device 101 to the terminal device 106 include a handheld device having a wireless connection function, a vehicle-mounted device, and the like.
  • the terminal device 101 to the terminal device 106 may be: a mobile phone (mobile phone), a tablet computer, a notebook computer, a handheld computer, a mobile internet device (MID), a wearable device (such as a smart watch, a smart bracelet, pedometers, etc.), in-vehicle equipment (for example, cars, bicycles, electric vehicles, airplanes, ships, trains, high-speed trains, etc.), virtual reality (VR) equipment, augmented reality (AR) equipment, industrial control Wireless terminals in (industrial control), smart home equipment (such as refrigerators, TVs, air conditioners, electricity meters, etc.), intelligent robots, workshop equipment, wireless terminals in self-driving (self driving), remote medical surgery (remote medical surgery) wireless terminals in smart grids, wireless terminals in transportation safety, wireless terminals in smart cities, or wireless terminals in smart homes, Flying equipment (eg, smart robots, hot air balloons, drones, airplanes), etc.
  • the terminal device 101 to the terminal device 106 may also be other devices with terminal
  • the method for random access may be applicable to a non-terrestrial network (non-terrestrial networks, NTN) communication system.
  • NTN non-terrestrial networks
  • the NTN communication system includes satellites and multiple scanning areas (only area 1 and area 2 are used as examples in the figure, but the number of scanning areas is not limited in practical applications).
  • the scanning area may include a plurality of terminal devices, wherein, for the explanation of the terminal devices, reference may be made to the relevant descriptions of the above-mentioned terminal devices 101 to 106 .
  • a satellite may also be referred to as a high-altitude platform, a high-altitude vehicle, or a satellite base station.
  • Satellites can be regarded as one or more network devices in the architecture of the terrestrial network communication system. Satellites provide communication services to terminal equipment, and satellites can also be connected to core network equipment.
  • the network device 2 For the structure and functions of the network device 2, reference may also be made to the above description of the network device.
  • the communication method between the satellite and the terminal device can also refer to the description in the above-mentioned FIG. 1 . It is not repeated here.
  • a 5G satellite communication system architecture is shown in Figure 3.
  • Ground terminal equipment is connected to the network through the 5G new air interface, and the 5G base station is deployed on the satellite and connected to the ground core network through a wireless link.
  • the 5G base station is deployed on the satellite and connected to the ground core network through a wireless link.
  • 5G core network user access control, mobility management, session management, user security authentication, billing and other services. It consists of multiple functional units, which can be divided into functional entities of the control plane and the data plane.
  • the access and mobility management function AMF is responsible for user access management, security authentication, and mobility management.
  • the user plane function UPF is responsible for the management of user plane data transmission, traffic statistics, security eavesdropping and other functions.
  • Ground station responsible for forwarding signaling and business data between the satellite base station and the 5G core network.
  • 5G New Air Interface The wireless link between the terminal and the base station.
  • Xn interface The interface between the 5G base station and the base station is mainly used for signaling interaction such as handover.
  • NG interface The interface between the 5G base station and the 5G core network, which mainly interacts with signaling such as the non-access stratum (NAS) of the core network, as well as user service data.
  • NAS non-access stratum
  • the network equipment in the terrestrial network communication system and the satellites in the NTN communication system are unified as network equipment.
  • the apparatus for implementing the function of the network device may be a network device; it may also be an apparatus capable of supporting the network device to implement the function, such as a chip system, and the apparatus may be installed in the network device.
  • the apparatus for implementing the function of the network device is a satellite as an example. It can be understood that, when the methods provided in the embodiments of the present application are applied to a terrestrial network communication system, actions performed by satellites may be applied to a base station or a network device for execution.
  • the apparatus for implementing the function of the terminal device may be a terminal device; it may also be an apparatus capable of supporting the terminal device to implement the function, such as a chip system, and the apparatus may be installed in the terminal device.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • the related art does not provide the communication protocol about the NTN communication system, and the configuration rule of random access in the NTN communication system is determined based on the communication protocol of the new radio (NR) system.
  • NR new radio
  • the 5G network will mainly use two frequency bands in the future, namely the FR1 frequency band and the FR2 frequency band.
  • the FR1 frequency band ranges from 450MHz to 6GHz, usually called It is the frequency band below 6GHz; while the FR2 frequency band is concentrated in 24.25GHz to 52.6GHz, that is, millimeter wave. Millimeter wave has short wavelength and high frequency, which can provide good communication efficiency for NR systems, but its loss is relatively large, so beamforming is required to improve the coverage area of the signal.
  • the main task of beamforming is to compensate the signal fading and distortion caused by factors such as space loss and multipath effect in the process of wireless propagation, and at the same time reduce the interference between co-channel users.
  • beamforming improves edge coverage, the coverage is narrowed, so beam scanning is introduced to solve this problem.
  • beam scanning means that the base station only transmits one or several beam directions at a certain moment, and transmits different beams at multiple moments so that the signal covers all directions required by the entire cell.
  • the SSB set is a set of multiple SSBs in a certain period of time, each SSB corresponds to a beam direction in the same period, and the beam directions of each SSB in one SSB set cover the entire cell.
  • a set of SSBs is limited to a certain 5ms half-frame, starting from the first slot of this half-frame.
  • the beam scanning period of the SSB in the NR system is usually configured as 5ms, 10ms, 20ms, 40ms, 80ms and 160ms, and the scanning period of the beam of each SSB is consistent.
  • Figure 4 shows that one SSB set includes 8 A schematic diagram of the beams of the SSB, namely SSB0-SSB7, the scanning period of each beam is 10ms.
  • the UE In the NR system, only when the beam scanning signal of the SSB covers the UE, the UE will send the preamble, so that the communication satellite can obtain the information of which beam sent by the terminal equipment is received, and the preamble is at the physical random access channel timing (physical random access channel). It is sent under random access channel, PRACH) event, that is, the sending time of PRACH needs to be associated with the sending time of SSB.
  • PRACH random access channel
  • the network device can determine the beam sent by the downlink random access response (RAR) according to the resource location of the UE's uplink PRACH.
  • RAR downlink random access response
  • ssb-perRACH-Occasion and CB-PreamblesPerSSB in the PRACH parameter configuration are used to implement the following configurations:
  • the CB Preamble in each PRACH Occasion increases sequentially according to the timing of the Preamble sending
  • the order is incremented according to the frequency domain index
  • the index in the PRACH time slot is incremented
  • the indexes of the PRACH timeslots are incremented.
  • CB-PreamblesPerSSB 60 as an example to illustrate, as shown in Figure 5, where 1 SSB corresponds to 8 ROs, and the CB Preamble used by each SSB 0-59, respectively, shown in the figure by including 60 CB Preambles per RO.
  • CB-PreamblesPerSSB 12, as shown in Figure 6, 4 SSBs correspond to one RO, and the number of competition-based Preambles used by each SSB is 12, then 4 SSBs correspond to CBPreamble is 0-11, 16-27, 32-43, 48-59.
  • PRACH has multiple transmission times in the time domain and frequency domain, and each SSB needs to establish a mapping relationship with the PRACH transmission time.
  • an association period is introduced here, which means that after all SSBs are mapped to ROs, the sum of PRACH periods in the time domain, as shown in Figure 7, one SSB corresponds to 4 ROs to form a PRACH period. After all the SSBs in the set are mapped to the RO, the sum of the consumed PRACH cycles is the association period.
  • the corresponding relationship between the SSB and the RO is obtained, and the corresponding relationship is sent to the terminal device through the network device, so that the terminal device initiates random access according to the corresponding relationship, so as to better receive communication services through the network device.
  • the scanning period of the SSB beams and the RO corresponding to each SSB are determined, so that the network device can better determine which SSB beams are received by UEs in which ranges.
  • the network equipment in the NR system scans the beam, it scans the beam according to the specified beam scanning period, and does not consider the number of UEs in the scanned area. Scanning in the scan cycle will obviously waste resources; in addition, the ROs corresponding to SSBs are also distributed evenly, and the number of ROs corresponding to each SSB is fixed. In some SSBs that do not require multiple ROs, they are still configured. The same number of ROs will inevitably increase the value of the association period and increase the overhead.
  • the second communication device may be a satellite; the first communication device may be a terminal device, or a second communication device
  • the satellite that the communication device receives the communication service is not specifically limited here, and any device that conforms to the data interaction mode shown in FIG. 8 in this application is applicable to this application.
  • Step 801 the second communication device determines the correspondence between the scanning periods of different scanning areas within the coverage of the SSB beam and the RO.
  • Step 802 the second communication apparatus sends a first message; the first message includes the information of the corresponding relationship.
  • Step 803 the first communication device receives the first message.
  • Step 804 the first communication device determines the RO according to the scanning area where the first communication device is located and the first message, and initiates random access.
  • the number of SSB beams can be one or multiple. Whether the coverage is scanned by one or multiple SSB beams, at least two scan areas in different scan areas have different scan periods. If there is one SSB beam, different scanning areas correspond to the same SSB beam and different scanning areas have different scanning periods. If there are multiple SSB beams, different scanning areas can correspond to different SSB beams, and different scanning areas correspond to different SSB beams. The scan cycle is different. For example, the SSB beam coverage includes scan area 1, scan area 2, scan area 3, and scan area 4. If the scan periods of scan area 1 and scan area 2 are different, scan area 2, scan area 3, and scan area 4 are scanned. The period is the same, or the scanning periods of the four scanning areas are different.
  • the same scanning period can be used during beam scanning, scanning is still performed according to a fixed scanning period in the area without the first communication device, which obviously wastes resources.
  • the present application uses different scanning periods to perform beam scanning for different scanning areas, which can not only increase the user capacity in the system of the second communication device, but also improve the communication efficiency of the first communication device, and avoid the occurrence of different scanning using a fixed scanning period. resource waste caused by the scan area.
  • the scan period can be 5ms, or 10ms, or 20ms, or 40ms, or 80ms, or 160ms, but in practical applications, the values of these scan periods may not be limited, and the SSB beams are scanned at the same time.
  • the scan periods of different scan areas may be different. For example, at time 1, the scan period of scan area 1 is 5ms, and the scan period of scan area 2 is 20ms.
  • the scanning period for the same scanning area at different times may also be different, for example, the scanning period of scanning area 1 at time 1 is 5 ms, and the scanning period of scanning area 1 at time 2 is 20 ms.
  • different scanning periods are configured in at least two scanning areas to better meet the requirements of non-terrestrial communication system satellites for beam scanning, and will avoid resource waste.
  • the number of ROs corresponding to at least two scan areas in different scan areas is different, and the scan periods corresponding to these two scan areas are different, that is, the number of ROs corresponding to scan areas with different scan periods is different.
  • the corresponding relationship mentioned in the above-mentioned flowchart 8 may be a first corresponding relationship or a second corresponding relationship; wherein, each scanning area in the first corresponding relationship corresponds to a plurality of ROs; the second corresponding relationship Different scanning areas in the middle correspond to one RO, and the scanning areas in the first corresponding relationship or the second corresponding relationship also correspond to multiple CB Preambles, which correspond to the random access process of the above-mentioned NR system. It should be noted that if the number of SSB beams is one, and the scanning periods for different scanning areas are not the same, the SSB beams in different areas can be identified respectively.
  • the SSB beam in scanning area 1 is identified as SSB1
  • the beam of 2 is identified as SSB2
  • its corresponding RO and CB Preamble can be calculated respectively for SSB1 and SSB2; similarly, for multiple SSB beams, different beams can be identified respectively, and different scanning areas can be scanned through different identified beams. Calculate the RO and CB Preamble corresponding to the SSB beam corresponding to each scanning area.
  • the RO and CB Preamble corresponding to different scanning areas can be obtained separately.
  • an index may be set for the corresponding relationship of different scanning areas, so as to better instruct the first communication device, such as the following Table 1. It should be noted that in practical applications, only some rows or columns in the table may be used. This table only takes the corresponding relationship as the first corresponding relationship as an example.
  • index 1 corresponds to scan area 1, and scan area 1
  • scan area 1 The corresponding scan period is 5ms, the RO corresponding to scan area 1 is 8, and the corresponding CB Preamble is 60; the scan period corresponding to scan area 2 is 10ms, the RO corresponding to scan area 2 is 16, and the corresponding CB Preamble is 60 .
  • the second communication device may send the corresponding relationship corresponding to the index to the first communication device, so that the first communication device initiates random access according to the corresponding relationship corresponding to the index, thereby improving access efficiency.
  • the second communication device can send the corresponding relationship corresponding to the index 1 to the first communication device, so that the first communication device can initiate random access according to the corresponding relationship.
  • the second communication device may obtain the number of first communication devices in different scanning areas to determine the scanning period corresponding to each scanning area; A first number of first communication devices that interact with data and a second number of first communication devices that do not interact with data.
  • the terminal equipment refers to the first communication device
  • the satellite refers to the second communication device.
  • the number of terminal devices in each scan area can be acquired, and the scan period corresponding to each scan area of the next beam scan can be determined according to the acquired number of terminal devices in each scan area.
  • the number of terminal devices in each scanning area includes the number of terminal devices that have data interaction under the SSB beam (the first number) and the number of terminal devices that have been connected to the SSB beam but have not performed data interaction (the second number).
  • the terminal equipment with data interaction is also the terminal equipment that performs communication services (such as: transmitting video data, downloading book materials and calling services, etc.) under the SSB beam, and has access to the SSB beam and does not perform data interaction. That is, a terminal device that receives communication services under the SSB beam but does not perform data interaction, such as a terminal device that accesses under the SSB beam but does not perform any communication service.
  • the satellite determines the weight value of different scanning areas within the coverage of the SSB beam by weighting the first number and the second number, and according to the comparison rule between the weight value and the scanning period, determines the different scanning areas within the coverage of the SSB beam.
  • the scan period of the area may be calculated with reference to Formula 1, which is only for illustrative description. In practical applications, other calculation rules may also be referred to to determine the weight value, which is not specifically limited herein.
  • N ue indicates the number of terminal equipments that have data interaction under the SSB beam
  • N ue_access indicates the number of terminal equipment that has accessed the SSB beam and does not perform data exchange
  • is a weight coefficient, used to indicate that N ue is in the terminal equipment The proportion of the number of accesses, ranging from 0 to 1.
  • the number of terminal devices in the scanning area will be fed back.
  • the number of terminal devices obtained after the beam scan at the previous moment is referred to to determine the corresponding scanning area.
  • Scanning period to better calculate the scanning period corresponding to each scanning area. This method does not completely depend on the number of terminal devices acquired in the initial scan. As the number of terminal devices in each scanning area is updated in real time after each beam scan, the scanning period corresponding to each scanning area determined by this method is more accurate and can Accommodate more users in non-terrestrial communication systems.
  • the satellite performs beam scanning to obtain 1 million access terminals in scanning area 1, 500,000 terminal devices in scanning area 2, and 500,000 access terminals in scanning area 3.
  • the number of entries is 10,000. If the satellite scans the beam again at the 3rd ms, the beam scan can be performed with reference to the number of access terminals in each scanning area during the beam scan at the 1st ms (ie, the last moment).
  • the weight value can be determined with reference to Equation 2:
  • N ue-pre indicates the number of terminal devices that have data interaction at the last moment under the SSB beam
  • N ue-access-pre indicates the number of terminal devices that have accessed the SSB beam and did not perform data interaction at the last moment
  • N ue indicates the number of terminal devices that have data interaction at the current moment under the first beam
  • N ue-access indicates the number of terminal devices that have accessed the SSB beam and have not performed data interaction at the current moment
  • is a weight coefficient, used to indicate N ue-pre +N ue-access-pre The proportion of the access number of terminal devices, ranging from 0 to 1.
  • the comparison rule between the weight value and the scanning period can be stored in the satellite, and can be stored in the form of a table, a histogram, a dot graph, etc.
  • the satellite can determine the corresponding scanning period and the scanning period of the beam according to the weight value of a row in Table 2.
  • the following signaling can be used to indicate the scanning period of each scanning area.
  • the signaling is only illustrative, and does not specifically limit the specific content and display form of the signaling: Any signaling that can indicate the content covered by the first information to the terminal device is applicable to this application. Exemplarily, the signaling can be as follows:
  • the satellite can configure the scanning period according to the above weight value wSSB. If the number of terminal devices connected in the current scanning area is more, the corresponding scanning period will be shorter.
  • the SSB beam corresponding to the scanning area 1 is identified by SSB1 in FIG.
  • the identifiers corresponding to the other scanning areas are described in detail. Assuming that the number of terminal devices in scanning area 2 and scanning area 7 is large, the scanning period is shorter.
  • the scanning period corresponding to scanning area 2 and scanning area 7 is 10ms respectively, and the other scanning areas are 20ms respectively.
  • the satellite determines the first calculation rule according to the scanning period corresponding to each scanning area, the first scanning period and the total number of ROs; wherein, the first scanning period is the SSB beam. The maximum value of the scanning period of the scanning area within the coverage area; according to the first calculation rule, the number of ROs corresponding to each scanning area is determined. If the corresponding relationship is the second corresponding relationship, the satellite determines the second calculation rule according to the scanning period corresponding to each scanning area, the first scanning period and the total number of CB Preambles; according to the second calculation rule, the CB corresponding to each scanning area is determined Number of Preambles.
  • the remainder can be allocated in order of index. For example, if the index is 0-3 and the remainder is 3, then one more RO is allocated for index 0, index 1, and index 2 respectively.
  • the following formula 4 may be referred to to determine the number of ROs corresponding to each scanning area.
  • the remainder can be allocated in order of index. For example, if the index is 0-3 and the remainder is 3, then one more CB Preamble is configured for index 0, index 1, and index 2 respectively.
  • ssb perRACHoccasion is the total number of ROs
  • CB preamblesperSSBntn,i is the continuous several Preambles in the ROs in NTN corresponding to SSB i beams
  • CB preamblesperSSB,sum is The total number of competition-based Preambles in an RO
  • P ssb,i is the period of SSB i.
  • the following signaling can be used to indicate the corresponding relationship between each scanning area and the RO.
  • the signaling is only illustrative, and does not specifically limit the specific content and display form of the signaling. , any signaling that can indicate the content covered by the first information to the terminal device is applicable to this application.
  • the signaling is as follows:
  • the calculated Preambles corresponding to each scan area are 8, 8, 16, and 16, respectively.
  • the corresponding relationship between the scanning area and the RO in this application can be stored by the following Table 3 and Table 4, wherein, Table 3 is that when the corresponding relationship is the first corresponding relationship, that is, one scanning area corresponds to multiple ROs
  • Table 3 is that when the corresponding relationship is the first corresponding relationship, that is, one scanning area corresponds to multiple ROs
  • the corresponding relationship table mainly includes the scan cycle, scan area, RO, index number and other information. It should be noted that in practical applications, only some rows or some columns in the table may be used.
  • the SSB beam corresponds to multiple ROs
  • the current total number of ROs is 48
  • the scanning period of the SSB beam is 5ms
  • the corresponding relationship between the SSB beam and the number of ROs is as follows
  • the index number may be notified to the terminal device through the first message, and the terminal device may correspond to the RO according to the index sequence according to the corresponding relationship.
  • ssb perRACHoccasion sum is 48, is 6, for region 0 with a scan period of 5ms, is 2, 6 can be divisible by 48, so it can be known by calculation that the number of ROs corresponding to region 0 is 16.
  • ssb perRACHoccasion sum is 48, 9 pairs of regions with a scan period of 5ms is 4, 9 cannot be divisible by 8, and the remainder is 3, so it can be known by calculation that the number of ROs corresponding to area 0 is 21.
  • Table 4 is the corresponding relationship table when the corresponding relationship is the second corresponding relationship, that is, the corresponding relationship table of multiple scanning areas corresponding to one RO, mainly including the scanning period, scanning area, Preamble, index number and other information. Similarly, in practical applications, Only some rows or some columns in the table may be used. As shown in Table 4, it is assumed that there are 4 scanning areas, that is, 4 SSB scanning areas correspond to one RO, the total number of Preambles used for competition is 48, the SSB beam scanning period can be 5ms, 10ms and 20ms, and the scanning areas correspond to Preambles The relationship is shown in Table 4 below.
  • the index number can be notified to the terminal device through the first message, and the terminal device can correspond to the Preamble according to the index sequence according to the corresponding relationship.
  • the index number as 1 as an example, the above formula 4 is used to calculate, it can be known that CB preamblesperSSBntn,i is 48, is 6, for region 0 with a scan period of 5ms, is 2, 6 can be divisible by 48, so it can be known by calculation that the number of preambles corresponding to area 0 is 16.
  • CB preamblesperSSBntn,i 48, is 9 pairs of area 0 with a scan period of 5ms, is 4, 9 cannot be divisible by 48, and the remainder is 3, so it can be known by calculation that the number of CB Preambles corresponding to area 0 is 21.
  • the present application provides a first communication device.
  • the first communication device includes: a transceiver unit 1101 and a processing unit 1102 .
  • the transceiver unit 1101 is used to receive a first message; the first message includes information of a corresponding relationship; the corresponding relationship is the scanning period and random access timing of different scanning areas within the coverage of the SSB beam of the synchronization information block of the second communication device Correspondence of RO.
  • the processing unit 1102 is configured to determine the random access opportunity RO according to the scanning area where the first communication device is located and the first message, and initiate random access.
  • the second communication device broadcasts Sending a first message containing the above-mentioned message, so that the first communication device receiving the first message can initiate random access in order to write and receive better communication services at the second communication device, by which the system of the second communication device
  • the user capacity is improved, the communication efficiency of the first communication device is improved, and the situation of resource waste caused by using a fixed scanning period to scan different scanning areas is avoided.
  • the scan period is 5ms, or 10ms, or 20ms, or 40ms, or 80ms, or 160ms.
  • the information is the index of the corresponding relationship.
  • the corresponding relationship is a first corresponding relationship or a second corresponding relationship; wherein each scanning area in the first corresponding relationship corresponds to multiple ROs; and different scanning areas in the second corresponding relationship correspond to one RO.
  • the scanning area in the first correspondence or the second correspondence also corresponds to multiple CB Preambles.
  • the present application provides a second communication device.
  • the second communication device includes: a processing unit 1201 and a transceiver unit 1202 .
  • the processing unit 1201 is configured to determine the correspondence between the scanning periods of different scanning areas within the coverage of the synchronization information block SSB beam and the random access opportunity RO.
  • the transceiver unit 1202 is configured to send a first message; the first message includes information of a corresponding relationship.
  • different scanning periods are used for beam scanning for different scanning areas, and scanning areas with different scanning periods correspond to different ROs.
  • the first message of the above-mentioned message so that the first communication device that receives the first message can initiate random access in order to write and receive better communication services at the second communication device, through which the system user capacity of the second communication device It is improved, and the communication efficiency of the first communication device is improved, and in addition, the situation of resource waste caused by using a fixed scanning period to scan different scanning areas is avoided.
  • the scan period is 5ms, or 10ms, or 20ms, or 40ms, or 80ms, or 160ms.
  • the information is the index of the corresponding relationship.
  • the corresponding relationship is a first corresponding relationship or a second corresponding relationship; wherein each scanning area in the first corresponding relationship corresponds to multiple ROs; and different scanning areas in the second corresponding relationship correspond to one RO.
  • the scanning area in the first correspondence or the second correspondence also corresponds to multiple CB Preambles.
  • the processing unit 1201 is further configured to: acquire the number of first communication devices in different scanning areas; wherein the number includes the first number of first communication devices with data interaction and the first communication without data interaction The second number of the device; by weighting the first number and the second number, determine the weight values of different scanning areas in the coverage of the SSB beam; According to the comparison rule of the weight value and the scanning period, determine within the coverage of the SSB beam Scan period for different scan areas.
  • the processing unit 1201 is further configured to: if the corresponding relationship is the first corresponding relationship, determine the first calculation rule according to the scanning period corresponding to each scanning area, the first scanning period and the total number of ROs; One scan period is the maximum value of the scan period of the scan area within the coverage of the SSB beam; according to the first calculation rule, the number of ROs corresponding to each scan area is determined.
  • the processing unit 1201 is also used for: if the corresponding relationship is the second corresponding relationship, then according to the scanning period corresponding to each scanning area, the first scanning period and the total number of the CB Preamble, determine the second calculation rule;
  • the number of CB Preambles corresponding to each scanning area is determined.
  • the terminal device may include hardware structures and/or software modules, and implement the above functions in the form of hardware structures, software modules, or hardware structures plus software modules. Whether one of the above functions is performed in the form of a hardware structure, a software module, or a hardware structure plus a software module depends on the specific application and design constraints of the technical solution.
  • the division of modules in the embodiments of the present application is schematic, and is only a logical function division. In actual implementation, there may be other division methods.
  • the functional modules in the various embodiments of the present application may be integrated into one processing unit. In the device, it can also exist physically alone, or two or more modules can be integrated into one module.
  • the above-mentioned integrated modules can be implemented in the form of hardware, and can also be implemented in the form of software function modules.
  • a first communication apparatus 1300 is provided for this application.
  • the first communication device 1300 may be a chip or a chip system.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • the first communication apparatus 1300 may include at least one processor 1310, and the first communication apparatus 1300 may further include at least one memory 1320 for storing computer programs, program instructions and/or data.
  • Memory 1320 and processor 1310 are coupled.
  • the coupling in the embodiments of the present application is an indirect coupling or communication connection between devices, units or modules, which may be in electrical, mechanical or other forms, and is used for information exchange between devices, units or modules.
  • the processor 1310 may cooperate with the memory 1320.
  • the processor 1310 may execute computer programs stored in the memory 1320 .
  • the at least one memory 1320 may be integrated into the processor 1310 .
  • the first communication apparatus 1300 may further include a transceiver 1330, and the first communication apparatus 1300 may exchange information with other devices through the transceiver 1330.
  • the transceiver 1330 can be a circuit, a bus, a transceiver, or any other device that can be used for information exchange.
  • the first communication apparatus 1300 may be applied to the aforementioned network equipment, and specifically, the first communication apparatus 1300 may be the aforementioned network equipment, or may be an apparatus capable of supporting the aforementioned network equipment to implement any of the foregoing embodiments .
  • the memory 1320 holds the necessary computer programs, program instructions and/or data to implement the functions of the network device in any of the above-described embodiments.
  • the processor 1310 can execute the computer program stored in the memory 1320 to complete the method in any of the foregoing embodiments.
  • connection medium between the transceiver 1330, the processor 1310, and the memory 1320 is not limited in the embodiments of the present application.
  • the memory 1320, the processor 1310, and the transceiver 1330 are connected by a bus in FIG. 13.
  • the bus is represented by a thick line in FIG. 13.
  • the connection mode between other components is only for schematic illustration. It is not limited.
  • the bus can be divided into an address bus, a data bus, a control bus, and the like. For ease of presentation, only one thick line is used in FIG. 13, but it does not mean that there is only one bus or one type of bus.
  • the processor may be a general-purpose processor, a digital signal processor, an application-specific integrated circuit, a field programmable gate array or other programmable logic device, a discrete gate or transistor logic device, or a discrete hardware component, which may implement or The methods, steps and logic block diagrams disclosed in the embodiments of this application are executed.
  • a general purpose processor may be a microprocessor or any conventional processor or the like. The steps of the methods disclosed in conjunction with the embodiments of the present application may be directly embodied as executed by a hardware processor, or executed by a combination of hardware and software modules in the processor.
  • the memory may be a non-volatile memory, such as a hard disk drive (HDD) or a solid-state drive (SSD), etc., or may also be a volatile memory (volatile memory), for example Random-access memory (RAM).
  • the memory may also be, but is not limited to, any other medium that can be used to carry or store the desired program code in the form of instructions or data structures and that can be accessed by a computer.
  • the memory in this embodiment of the present application may also be a circuit or any other device capable of implementing a storage function, for storing computer programs, program instructions and/or data.
  • the embodiment of the present application further provides another first communication apparatus 1400, including: an interface circuit 1410 and a logic circuit 1420; the interface circuit 1410 is configured to receive a first message; the first message Including the information of the corresponding relationship; the corresponding relationship is the corresponding relationship between the scanning period and RO of different scanning areas within the coverage of the SSB beam of the second communication device;
  • the logic circuit 1420 is configured to execute the code instructions to perform the method in any of the above embodiments.
  • a second communication apparatus 1500 is provided for this application.
  • the communication apparatus 1500 may be a chip or a system of chips.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • the second communication apparatus 1500 may include at least one processor 1510, and the second communication apparatus 1500 may further include at least one memory 1520 for storing computer programs, program instructions and/or data.
  • Memory 1520 and processor 1510 are coupled.
  • the coupling in the embodiments of the present application is an indirect coupling or communication connection between devices, units or modules, which may be in electrical, mechanical or other forms, and is used for information exchange between devices, units or modules.
  • Processor 1510 may cooperate with memory 1520.
  • the processor 1510 may execute computer programs stored in the memory 1520 .
  • the at least one memory 1520 may be integrated into the processor 1510 .
  • the second communication apparatus 1500 may further include a transceiver 1530, and the communication apparatus 1500 may exchange information with other devices through the transceiver 1530.
  • the transceiver 1530 can be a circuit, a bus, a transceiver, or any other device that can be used for information exchange.
  • the second communication apparatus 1500 may be applied to the foregoing network equipment, and specifically, the second communication apparatus 1500 may be the foregoing network equipment, or may be an apparatus capable of supporting the foregoing network equipment to implement any of the foregoing embodiments .
  • the memory 1520 holds the necessary computer programs, program instructions and/or data to implement the functions of the network device in any of the above-described embodiments.
  • the processor 1510 can execute the computer program stored in the memory 1520 to complete the method in any of the foregoing embodiments.
  • connection medium between the transceiver 1530, the processor 1510, and the memory 1520 is not limited in the embodiments of the present application.
  • the memory 1520, the processor 1510, and the transceiver 1530 are connected by a bus in FIG. 15.
  • the bus is represented by a thick line in FIG. 15.
  • the connection mode between other components is only for schematic illustration. It is not limited.
  • the bus can be divided into an address bus, a data bus, a control bus, and the like. For ease of representation, only one thick line is shown in FIG. 15, but it does not mean that there is only one bus or one type of bus.
  • the processor may be a general-purpose processor, a digital signal processor, an application-specific integrated circuit, a field programmable gate array or other programmable logic device, a discrete gate or transistor logic device, or a discrete hardware component, which may implement or The methods, steps and logic block diagrams disclosed in the embodiments of this application are executed.
  • a general purpose processor may be a microprocessor or any conventional processor or the like. The steps of the methods disclosed in conjunction with the embodiments of the present application may be directly embodied as executed by a hardware processor, or executed by a combination of hardware and software modules in the processor.
  • the memory may be a non-volatile memory, such as a hard disk drive (HDD) or a solid-state drive (SSD), etc., or may also be a volatile memory (volatile memory), for example Random-access memory (RAM).
  • the memory may also be, but is not limited to, any other medium that can be used to carry or store the desired program code in the form of instructions or data structures and that can be accessed by a computer.
  • the memory in this embodiment of the present application may also be a circuit or any other device capable of implementing a storage function, for storing computer programs, program instructions and/or data.
  • the embodiment of the present application further provides another second communication apparatus 1600, including: an interface circuit 1610 and a logic circuit 1620; the interface circuit 1610 is configured to send a first message; the first message Including the information of the corresponding relationship; the corresponding relationship is the corresponding relationship between the scanning period of different scanning areas and the random access opportunity RO within the coverage of the synchronization information block SSB beam of the second communication device;
  • the embodiments of the present application further provide a readable storage medium, where the readable storage medium stores instructions, and when the instructions are executed, the method for executing the security detection device in any of the above embodiments is implemented .
  • the readable storage medium may include: a USB flash drive, a removable hard disk, a read-only memory, a random access memory, a magnetic disk or an optical disk and other media that can store program codes.
  • the embodiments of the present application may be provided as a method, a system, or a computer program product. Accordingly, the present application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, the present application may take the form of a computer program product embodied on one or more computer-usable storage media (including, but not limited to, disk storage, CD-ROM, optical storage, etc.) having computer-usable program code embodied therein.
  • computer-usable storage media including, but not limited to, disk storage, CD-ROM, optical storage, etc.
  • the computer program instructions may also be stored in a computer readable memory capable of directing a computer or other programmable data processing apparatus to function in a particular manner, such that the instructions stored in the computer readable memory result in an article of manufacture comprising the instruction means, the instructions
  • the apparatus implements the functions specified in the flow or flow of the flowcharts and/or the block or blocks of the block diagrams.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种用于随机接入的方法及通信装置,涉及通信技术领域,其中,第二通信装置确定SSB波束的覆盖范围内不同扫描区域的扫描周期与RO的对应关系后,通过广播发送包括该对应关系的信息的第一消息;第一通信装置接收该第一消息,并根据第一通信装置所处的扫描区域与第一消息确定RO,发起随机接入。本申请中,由于采用不完全相同的扫描周期扫描不同的扫描区域,可以提高第二通信装置所在通信系统(卫星通信系统)中用户的容量,还可提高第一通信装置的通信效率,且还避免出现采用固定扫描周期扫描不同的扫描区域造成的资源浪费的情况。

Description

一种用于随机接入的方法及通信装置
相关申请的交叉引用
本申请要求在2020年07月24日提交中国专利局、申请号为202010728144.4、申请名称为“一种用于随机接入的方法及通信装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种用于随机接入的方法及通信装置。
背景技术
在自然灾害(地震、泥石流等)发生时,地面建设的通信设施(基站、网络设备等接入网设备)易受到破坏,在通信设施遭受破坏的情况下,用户则无法通过终端设备进行数据传输。然而卫星受地理环境的影响小,自然灾害发生时,终端设备仍可通过卫星通信进行数据传输,另外,在一些不利于架设地面基站的区域,如海洋、沙漠、高山等区域,终端设备也可通过卫星获取良好地通信效率。
相关技术中,通信卫星在进行随机接入时,通过同步信息块(synchronization signal block,SSB)波束扫描覆盖区域,以使信号可以被覆盖区域的终端设备所接收。然而该方式是基于固定扫描周期进行扫描的。在不同的通信卫星覆盖的区域不同,不同区域的用户数量也不相同的情况下,基于相同扫描周期进行扫描并不利于终端设备通信效率的提高,且通过固定的波束扫描周期扫描并不存在终端设备的区域,还会造成资源的浪费。
发明内容
本申请实施例提供一种用于随机接入的方法及通信装置,用于提高卫星系统中用户的容量,以及终端设备的通信效率。
第一方面,本申请实施例提供一种用于随机接入的方法,可按照如下方式执行:
第二通信装置确定SSB波束的覆盖范围内不同扫描区域的扫描周期与随机接入时机(random access channel occasion,RO)的对应关系后,发送第一消息;所述第一消息包括对应关系的信息;第一通信装置接收第一消息,并根据第一通信装置所处的扫描区域与第一消息确定RO,发起随机接入。
在实际应用的过程中,第二通信装置可以为卫星;第一通信装置可以为终端设备,也可为通过第二通信装置接收通信服务的卫星,在此不作具体限定。在第二通信装置SSB波束的覆盖范围内,针对不同扫描区域采用不同的扫描周期进行波束扫描,且具有不同扫描周期的扫描区域对应不同的RO,基于此,第二通信装置通过广播发送包含上述消息的第一消息,以便接收到该第一消息的第一通信装置可以发起随机接入。在第二通信装置接收更好地通信服务,通过该方式第二通信装置的系统用户容量得到提升,且第一通信装置的通信效率得到提高,另外还避免出现采用固定扫描周期扫描不同的扫描区域造成的资源浪费的情况出现。
在一种可能的实现方式中,不同扫描区域中至少有两个扫描区域对应的扫描周期不同。
需要说明的是,不同扫描区域中有的扫描区域周期相同有的扫描区域周期不同,该方式更加适配卫星系统扫描的需求,而无需在所有不同的扫描区域均配置相同扫描周期,该方式避免了资源的浪费。
在一种可能的实现方式中,扫描周期为5毫秒(millisecond,ms),或10ms,或20ms,或80ms,或160ms。
通过给定一些特定的扫描周期,可以减少扫描周期下发的信令开销。
在一种可能的实现方式中,不同扫描区域中至少有两个扫描区域对应的RO数目不同。
通过该方式可以确定扫描区域对应的RO数目,提高随机接入效率。
在一种可能的实现方式中,信息为对应关系的索引。
通过该方式可以确定选择哪个扫描区域对应的对应关系发送给第一通信装置,以便第一通信装置可根据该索引准确地发起随机接入。
在一种可能的实现方式中,对应关系为第一对应关系,或第二对应关系;其中,第一对应关系中各扫描区域对应多个RO;第二对应关系中不同扫描区域对应一个RO。
需要说明的是,在扫描区域与RO的对应关系包括两种,以便更加准确地确定对应的RO。
在一种可能的实现方式中,第一对应关系或第二对应关系中的扫描区域还对应多个基于竞争的(competition-based,CB)随机接入前导码(Preamble)。
需要说明的是,扫描区域与多个CB Preamble对应以便第二通信装置获取哪个第一通信装置发起了随机接入的信息。
在一种可能的实现方式中,第二通信装置获取不同扫描区域中的第一通信装置的数目;其中,数目包括存在数据交互的第一通信装置的第一数目以及未进行数据交互的第一通信装置的第二数目;通过对第一数目以及第二数目进行加权计算,确定SSB波束的覆盖范围内不同扫描区域的权重值;根据权重值与扫描周期的比照规则,确定SSB波束的覆盖范围内不同扫描区域的扫描周期。
需要说明的是,第二通信装置获取不同扫描区域的第一通信装置的数目后,通过计算确定不同扫描区域对应的扫描周期,通过该扫描周期扫描对应的扫描区域可以提升系统中用户的容量,且避免了按照同一扫描周期扫描不同的扫描区域造成的资源浪费。
在一种可能的实现方式中,若对应关系为第一对应关系,则第二通信装置根据各扫描区域对应的扫描周期、第一扫描周期以及RO的总数目,确定第一计算规则;其中,第一扫描周期为SSB波束的覆盖范围内扫描区域的扫描周期的最大值;根据第一计算规则,确定各扫描区域对应的RO数目。
本申请中RO数目和扫描周期相关联,便于第一通信装置发起随机接入时可以更好地和第二通信装置进行通信,通过该方式可以提高通信效率。
在一种可能的实现方式中,若对应关系为第二对应关系,则第二通信装置根据各扫描区域对应的扫描周期、第一扫描周期以及CB Preamble的总数目,确定第二计算规则;根据第二计算规则,确定各扫描区域对应的CB Preamble的数目。
需要说明的是,通过该方式确定CB Preamble的数目便于第一通信装置更好地进行随机接入。
第二方面,本申请实施例提供一种通信装置,该通信装置包括收发单元以及处理单元; 其中,收发单元,用于接收第一消息;第一消息包括对应关系的信息;对应关系是第二通信装置的同步信息块SSB波束的覆盖范围内不同扫描区域的扫描周期与随机接入时机RO的对应关系;处理单元,用于根据第一通信装置所处的扫描区域与第一消息确定随机接入时机RO,发起随机接入。
第三方面,本申请实施例提供一种通信装置,该通信装置包括处理单元以及收发单元;其中,处理单元,用于确定同步信息块SSB波束的覆盖范围内不同扫描区域的扫描周期与随机接入时机RO的对应关系;收发单元,用于发送第一消息;第一消息包括对应关系的信息。
第四方面,本申请提供一种通信装置,包括处理器和存储器;所述存储器存储有计算机程序;所述处理器用于执行所述存储器中存储的计算机程序,以使得上述第一方面或第一方面中任一种可能的设计中所述的非第二通信装置所执行的方法被执行。
第五方面,本申请提供一种通信装置,包括处理器和存储器;所述存储器存储有计算机程序;所述处理器用于执行所述存储器中存储的计算机程序,以使得上述第一方面或第一方面中任一种可能的设计中所述的方法被执行。
第六方面,本申请提供一种通信装置,包括逻辑电路和接口电路;所述接口电路,用于接收第一消息;所述第一消息包括对应关系的信息;所述对应关系是第二通信装置的同步信息块SSB波束的覆盖范围内不同扫描区域的扫描周期与随机接入时机RO的对应关系;所述逻辑电路,用于执行上述第一方面或第一方面中任一种可能的设计中所述的非第二通信装置所执行的方法。
第七方面,本申请提供一种通信装置,包括逻辑电路和接口电路;所述接口电路,用于发送第一消息;所述第一消息包括对应关系的信息;所述对应关系是第二通信装置的同步信息块SSB波束的覆盖范围内不同扫描区域的扫描周期与随机接入时机RO的对应关系;所述逻辑电路,用于执行上述第一方面或第一方面中任一种可能的设计中所述的方法。
第八方面,本申请实施例中还提供一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机可读指令,当所述计算机可读指令在计算机上运行时,使得计算机执行如第一方面或第一方面中任一种可能的设计中所述的方法。
第九方面,本申请实施例提供了一种芯片系统,该芯片系统包括处理器,还可以包括存储器,用于实现上述第一方面或第一方面中任一种可能的设计中所述的方法。该芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
第十方面,本申请实施例提供了一种通信系统,所述系统包括终端设备和网络设备,所述终端设备用于执行上述第一方面或第一方面中任一种可能的设计中所述的方法。
第十一方面,本申请实施例提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第一方面和第一方面的任一可能的设计中所述的方法。
上述第二方面至第十一方面可以达到的技术效果,请参照上述第一方面至第三方面中相应可能设计方案可以达到的技术效果说明,本申请这里不再重复赘述。
附图说明
图1提供了一种陆地网络通信系统架构示意图;
图2提供了一种非陆地网络通信系统架构示意图;
图3提供了一种第五代(5th generation,5G)卫星通信系统架构示意图;
图4提供了一种新无线(new radio,NR)系统中SSB的波束扫描周期示意图;
图5提供了一种NR系统中SSB的波束与RO对应的第一示意图;
图6提供了一种NR系统中SSB的波束与RO对应的第二示意图;
图7提供了一种NR系统中PRACH周期和关联周期的示意图;
图8提供了一种用于随机接入的方法的流程示意图;
图9提供了本申请实施例中SSB的波束扫描周期示意图;
图10提供了本申请实施例中SSB的波束与RO对应的示意图;
图11提供了本申请实施例中第一通信装置的结构意图;
图12提供了本申请实施例中第二通信装置的结构意图;
图13提供了本申请实施例中另一第一通信装置的结构意图;
图14提供了本申请实施例中另一第一通信装置的结构意图;
图15提供了本申请实施例中另一第二通信装置的结构意图;
图16提供了本申请实施例中另一第二通信装置的结构意图。
具体实施方式
本申请实施例提供一种用于随机接入的方法、第一通信装置及第二通信装置,其中,方法和装置是基于同一技术构思的,由于方法及装置解决问题的原理相似,因此装置与方法的实施可以相互参见,重复之处不再赘述。本申请实施例的描述中,“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。本申请中所涉及的至少一个是指一个或多个;多个,是指两个或两个以上。另外,需要理解的是,在本申请的描述中,“第一”、“第二”、“第三”等词汇,仅用于区分描述的目的,而不能理解为指示或暗示相对重要性,也不能理解为指示或暗示顺序。
图1示出了一种可能的陆地网络通信系统的架构。通信系统100可以包括网络设备110和终端设备101~终端设备106。应理解,该通信系统100中可以包括更多或更少的网络设备或终端设备。网络设备或终端设备可以是硬件,也可以是从功能上划分的软件或者以上二者的结合。此外,终端设备104~终端设备106也可以组成一个通信系统,例如终端设备105可以发送下行数据给终端设备104或终端设备106。网络设备与终端设备之间可以通过其他设备或网元通信。网络设备110可以向终端设备101~终端设备106发送下行数据,也可以接收终端设备101~终端设备106发送的上行数据。当然,终端设备101~终端设备106也可以向网络设备110发送上行数据,也可以接收网络设备110发送的下行数据。
网络设备110为无线接入网(radio access network,RAN)中的节点,又可以称为基站,还可以称为RAN节点(或设备)。目前,一些接入网设备的举例为:5G基站(gNodeB,gNB)/NR-节点B(node B,NB)、传输接收点(transmission reception point,TRP)、演进型节点B(evolved node B,eNB)、无线网络控制器(radio network controller,RNC)、NB、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved NodeB,或home Node B,HNB)、基带单元(base band unit,BBU),或无线保真(wireless fidelity,Wifi)接入点(access point,AP),或第五代移动通信技术(5th generation mobile networks,5G)通信系统中的网络设备,或者未来可能的通信系统中的网络设备,或者卫星。网络设备110还可以是其他具有网络设备功能的设备, 例如,网络设备110还可以是设备到设备(device-to-device,D2D)或者机器到机器(machine-to-machine,M2M)的通信中担任网络设备功能的设备,例如,车联网设备。网络设备110还可以是未来可能的通信系统中的网络设备。
终端设备101~终端设备106,又可以称之为用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端(mobile terminal,MT)等,是一种向用户提供语音或数据连通性的设备,也可以是物联网设备。例如,终端设备101~终端设备106包括具有无线连接功能的手持式设备、车载设备等。目前,终端设备101~终端设备106可以是:手机(mobile phone)、平板电脑、笔记本电脑、掌上电脑、移动互联网设备(mobile internet device,MID)、可穿戴设备(例如智能手表、智能手环、计步器等),车载设备(例如,汽车、自行车、电动车、飞机、船舶、火车、高铁等)、虚拟现实(virtual reality,VR)设备、增强现实(augmented reality,AR)设备、工业控制(industrial control)中的无线终端、智能家居设备(例如,冰箱、电视、空调、电表等)、智能机器人、车间设备、无人驾驶(self driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端,或智慧家庭(smart home)中的无线终端、飞行设备(例如,智能机器人、热气球、无人机、飞机)等。终端设备101~终端设备106还可以是其他具有终端功能的设备,例如,终端设备101~终端设备106还可以是D2D通信中担任终端功能的设备。
基于图1所示的陆地网络通信系统架构的描述,本申请实施例提供的用于随机接入的方法,可以适用于非陆地网络(non-terrestrial networks,NTN)通信系统。如图2所示,NTN通信系统中包括卫星和多个扫描区域(图中仅以区域1和区域2进行示例,但在实际应用中并不限定扫描区域的数量)。扫描区域中可包括多个终端设备,其中,终端设备的解释可以参照上述终端设备101~终端设备106的相关描述。卫星还可以称为高空平台、高空飞行器、或卫星基站。将NTN通信系统与陆地网络通信系统联系来看,可以将卫星看作陆地网络通信系统架构中的一个或多个网络设备。卫星向终端设备提供通信服务,卫星还可以连接到核心网设备。网络设备2具有的结构和功能也可以参照上述对网络设备的描述。卫星和终端设备之间的通信方式也可以参照上述图1中的描述。在此不再赘述。
以5G为例,一种5G卫星通信系统架构如图3所示。地面终端设备通过5G新空口接入网络,5G基站部署在卫星上,并通过无线链路与地面的核心网相连。同时,在卫星之间存在无线链路,完成基站与基站之间的信令交互和用户数据传输。图3中的设备和接口的说明如下:
5G核心网:用户接入控制,移动性管理,会话管理,用户安全认证,计费等业务。它有多个功能单元组成,可以分为控制面和数据面的功能实体。接入与移动管理单元(access and mobility management function,AMF)负责用户接入管理,安全认证,还有移动性管理。用户面单元(userplanefunction,UPF)负责管理用户面数据的传输,流量统计,安全窃听等功能。
地面站:负责转发卫星基站和5G核心网之间的信令和业务数据。
5G新空口:终端和基站之间的无线链路。
Xn接口:5G基站和基站之间的接口,主要用于切换等信令交互。
NG接口:5G基站和5G核心网之间接口,主要交互核心网的非接入层(non-access stratum,NAS)等信令,以及用户的业务数据。
将陆地网络通信系统中的网络设备和NTN通信系统中的卫星,统一看作网络设备。用于实现网络设备的功能的装置可以是网络设备;也可以是能够支持网络设备实现该功能的装置,例如芯片系统,该装置可以被安装在网络设备中。以下描述本申请实施例提供的技术方案时,以用于实现网络设备的功能的装置是卫星为例。可以理解的是,本申请实施例提供的方法在应用到陆地网络通信系统时,可以将卫星执行的动作应用到基站或网络设备来执行。
本申请实施例中,用于实现终端设备的功能的装置可以是终端设备;也可以是能够支持终端设备实现该功能的装置,例如芯片系统,该装置可以被安装在终端设备中。本申请实施例中,芯片系统可以由芯片构成,也可以包括芯片和其他分立器件。本申请实施例提供的技术方案中,以用于实现终端设备的功能的装置是终端或UE为例,来描述本申请实施例提供的技术方案。
需要说明的是,相关技术中并未提供关于NTN通信系统的通信协议,NTN通信系统中随机接入的配置规则是基于新空口(new radio,NR)系统的通信协议来确定的。为了更好地描述本申请中NTN通信系统的随机接入的方案,下面先对NR系统的随机接入方案进行简要介绍。
根据第三代合作伙伴计划(3rd generation partnership project,3GPP)的协议划定,5G网络未来将会主要使用两段频率分别为FR1频段和FR2频段,其中FR1频段的范围为450MHz-6GHz,通常称之为6GHz以下频段;而FR2频段则集中于24.25GHz至52.6GHz,也即毫米波。毫米波波长短,频率高,可以为NR系统提供良好的通信效率,但是其损耗较大,故而需要通过波束赋形来提高信号的覆盖区域。其中,波束赋形的主要任务是补偿无线传播过程中由空间损耗、多径效应等因素引入的信号衰落与失真,同时降低同信道用户间的干扰。另外,波束赋形虽然提高了边缘覆盖,但是覆盖范围变窄,因此引入了波束扫描来解决这个问题。
具体地,波束扫描是指基站在某一个时刻只发送一个或几个波束方向,通过多个时刻发送不同波束以使信号覆盖整个小区所需要的所有方向。SSB集合是一定时间周期内的多个SSB的集合,在同一周期内每个SSB对应一个波束方向,且一个SSB集合内的各个SSB的波束方向覆盖了整个小区。在NR系统中,一个SSB集合被限制在某一个5ms的半帧内,且从这个半帧的第一个时隙开始。NR系统中SSB的波束扫描周期通常被配置为5ms、10ms、20ms、40ms、80ms和160ms,并且每个SSB的波束的扫描周期是一致的,图4示出了1个SSB集合中包括8个SSB的波束,也即SSB0-SSB7,各个波束的扫描周期均为10ms的示意图。
NR系统中,只有当SSB的波束扫描信号覆盖到UE,UE才会发送preamble,以便通信卫星获取哪条波束发送的信号被终端设备接收的信息,而preamble是在物理随机接入信道时机(physical random access channel,PRACH)occasion下发送的,即PRACH的发送时刻需要和SSB发送的时刻建立关联。与此同时网络设备可根据UE上行PRACH的资源位置,决定下行随机接入响应(random access response,RAR)发送的波束。
其中,PRACH参数配置中ssb-perRACH-Occasion和CB-PreamblesPerSSB用于实现以下配置:
每个RO对应的SSB的波束个数;
每个SSB的波束所使用的CB Preamble个数。
需要说明的是,当ssb-perRACH-Occasion<1,也即一个SSB对应多个RO时,SSB发送的时刻和RACH中的CB Preamble对应关系如下:
每个PRACH Occasion中的CB Preamble按照Preamble发送的时机依次序递增;
当配置RACH频分多路复用(frequency-division multiplexing,FDM)时(频域有多个RO),按照频域索引顺序递增;
当配置PRACH时隙内,多个PRACH Occasion时,按照PRACH时隙内索引递增;
当配置多个PRACH时隙时,按照PRACH时隙索引递增。
接下来,以ssb-perRACH-Occasion=1/8,CB-PreamblesPerSSB=60为例进行说明,如图5所示,其中,1个SSB与8个RO对应,且每个SSB所使用的CB Preamble分别为0-59,图中通过每个RO包括60个CB Preamble来展示。
此外还要说明的是,当ssb-perRACH-Occasion≥1,也即多个SSB对应一个RO时,从n*64/N开始的连续CB-PreamblesPerSSB个CB Preamble对应于SSBn。其中N=ssb-perRACH-Occasion,n=CB-PreamblesPerSSB,n属于[0,64/N]。若ssb-perRACH-Occasion=4,CB-PreamblesPerSSB=12时,如图6所示,4个SSB对应一个RO,且每个SSB使用的基于竞争的Preamble个数为12,则4个SSB对应的CBPreamble分别为0-11,16-27,32-43,48-59。
另外,PRACH在时域和频域上存在多个发送时刻,每个SSB都要和PRACH发送时刻建立映射关系。另外,在此引入一个关联周期(association period),即表示所有SSB全部映射到RO后,时域上PRACH周期之和,如图7所示,一个SSB对应4个RO构成一个PRACH周期,在SSB集合中的SSB全部与RO映射完成后,所消耗的PRACH周期之和也即association period。
基于上述的过程获取SSB和RO间的对应关系,并通过网络设备将该对应关系发送至终端设备,以便终端设备根据该对应关系发起随机接入,以便更好地通过网络设备接收通信服务。
在上述关于NR系统的随机接入过程的描述中,要确定SSB的波束的扫描周期以及每个SSB所对应的RO,以便网络设备更好地确定哪些SSB波束被哪些范围的UE所接收。然而,NR系统中的网络设备在进行波束扫描时,是按照规定的波束的扫描周期进行波束扫描的,并未考虑到所扫描区域内的UE的数量,若是在没有UE的区域依然按照固定的扫描周期进行扫描,显然会浪费资源;此外,SSB所对应的RO也是均匀分配的,每个SSB对应的RO的数量是固定的,在某些SSB并不需要多个RO的情况下,仍然配置相同数量的RO势必增大association period的数值,增大开销。
考虑到上述的NR系统中随机接入过程中存在的问题,本申请在将用于随机接入的方法应用到NTN通信系统时,为了提高NTN通信系统的用户容量以及用户的体验度,具体可参阅图8示例的方法用于随机接入。该图中通过第一通信装置以及第二通信装置间的数据交互进行示意,在实际应用的过程中,第二通信装置可以为卫星;第一通信装置可以为终端设备,也可为通过第二通信装置接收通信服务的卫星,在此不做具体限定,凡是符合本申请中图8示意的数据交互方式的装置均适用于本申请。
步骤801,第二通信装置确定SSB波束的覆盖范围内不同扫描区域的扫描周期与RO的对应关系。
步骤802,第二通信装置发送第一消息;所述第一消息包括所述对应关系的信息。
步骤803,第一通信装置接收第一消息。
步骤804,第一通信装置根据第一通信装置所处的扫描区域与第一消息确定RO,发起随机接入。
需要说明的是,SSB波束可以为1条也可以为多条,无论是通过1条还是多条SSB波束对覆盖范围进行扫描,不同扫描区域中至少有两个扫描区域对应的扫描周期不同,若SSB波束为1条,则不同的扫描区域对应同一SSB波束且不同扫描区域对应的扫描周期不同,若SSB波束为多条,则不同的扫描区域可对应不同的SSB波束,且不同扫描区域对应的扫描周期不同。例如,SSB波束覆盖范围内包括扫描区域1、扫描区域2、扫描区域3以及扫描区域4,若扫描区域1和扫描区域2的扫描周期不同,扫描区域2、扫描区域3以及扫描区域4的扫描周期相同,亦或者4个扫描区域的扫描周期均不相同。
另外,还要说明的是,虽然在波束扫描时,可采用相同的扫描周期扫描,但在没有第一通信装置的区域依然按照固定的扫描周期进行扫描,显然会浪费资源。本申请针对不同扫描区域采用不同的扫描周期进行波束扫描,不但可提高第二通信装置的系统中的用户容量,还可以提高第一通信装置的通信效率,另外还避免出现采用固定扫描周期扫描不同的扫描区域造成的资源浪费的情况。
示例性地说明,该扫描周期可以为5ms,或10ms,或20ms,或40ms,或80ms,或160ms,但是在实际应用时可不限定这几种扫描周期的数值,SSB波束在同一时刻进行波束扫描时的不同扫描区域的扫描周期可以是不同的,如:在时刻1,扫描区域1的扫描周期为5ms,扫描区域2的扫描周期为20ms。亦或者,在不同时刻针对同一扫描区域的扫描周期也可为不同的,如:在时刻1扫描区域1的扫描周期为5ms,在时刻2扫描区域1的扫描周期为20ms。本申请中,在至少两个扫描区域配置不同的扫描周期更加适配非陆地通信系统卫星进行波束扫描的需求,且会避免资源浪费。
此外,还要说明的是,不同扫描区域中至少有两个扫描区域对应的RO数目不同,这两个扫描区域对应的扫描周期是不同的,也即扫描周期不同的扫描区域对应的RO数目是不同的。
示例性地说明,上述流程图8中所提及的对应关系可以为第一对应关系,也可以为第二对应关系;其中,第一对应关系中各扫描区域对应多个RO;第二对应关系中不同扫描区域对应一个RO,且第一对应关系或第二对应关系中的扫描区域还对应多个CB Preamble,与上述NR系统随机接入过程相对应。需要说明的是,若SSB波束为1个,针对不同扫描区域的扫描周期不尽相同,则可将不同区域的SSB波束分别进行标识,如将扫描区域1的SSB波束标识为SSB1,将扫描区域2的波束标识为SSB2,针对SSB1和SSB2可分别计算其对应的RO以及CB Preamble;同理针对多个SSB波束,可将不同的波束分别进行标识,通过不同标识的波束扫描不同的扫描区域,分别计算各扫描区域所对应的SSB波束所对应的RO以及CB Preamble。
示例性地说明,基于上述描述针对不同的扫描区域对应的RO以及CB Preamble可分别获取。为了更好地指示第一通信装置发起随机接入,可针对不同扫描区域的对应关系设置索引,以便更好地对第一通信装置进行指示,如通过如下表1进行指示。需要注意的是,实际应用中,可能只用到表中的部分行或部分列,该表仅以对应关系为第一对应关系为例,该表中索引1对应扫描区域1,且扫描区域1对应的扫描周期为5ms,扫描区域1对应的RO为8个,对应的CB Preamble为60;扫描区域2对应的扫描周期为10ms,扫描区域2 对应的RO为16个,对应的CB Preamble为60。需要说明的是,第二通信装置可将索引对应的对应关系发送至第一通信装置,以便第一通信装置根据该索引对应的对应关系发起随机接入,提高了接入效率。如:第二通信装置可将索引1对应的对应关系发送给该第一通信装置,以便该第一通信装置可根据该对应关系发起随机接入。
表1
Figure PCTCN2021102163-appb-000001
示例性地说明,为了更好地获取各扫描区域对应的扫描周期,第二通信装置可获取不同扫描区域中的第一通信装置的数目来确定各扫描区域对应的扫描周期;其中,数目包括存在数据交互的第一通信装置的第一数目以及未进行数据交互的第一通信装置的第二数目。为了更好地描述本申请的技术方案,下文中通过终端设备指代第一通信装置,通过卫星指代第二通信装置。
例如,SSB波束在进行初次扫描后会获取各扫描区域中终端设备的数量,可根据获取的各扫描区域的终端设备的数量,确定下一次波束扫描的各扫描区域所对应的扫描周期。需要说明的是,各扫描区域的终端设备的数目包括在SSB波束下存在数据交互的终端设备的数目(第一数目)和已接SSB波束且未进行数据交互的终端设备的数目(第二数目),其中,存在数据交互的终端设备也即在SSB波束下进行通信业务(如:传输视频数据、下载图书资料以及通话服务等)的终端设备,已接入SSB波束且未进行数据交互的设备也即在SSB波束下接收通信服务,但是未进行数据交互的终端设备,如:在SSB波束下接入但是未执行任何通信业务的终端设备。
另外,卫星通过对第一数目以及第二数目进行加权计算,确定SSB波束的覆盖范围内不同扫描区域的权重值,并根据权重值与扫描周期的比照规则,确定SSB波束的覆盖范围内不同扫描区域的扫描周期。在执行时,可参照公式1计算权重值,公式1仅仅做示例性说明,在实际应用是还可参照其它计算规则,确定权重值,在此不作具体限定。
w SSB=α×N ue+(1-α)×N ue_access公式1
其中,N ue指示在SSB波束下存在数据交互的终端设备的数量;N ue_access指示已接入SSB波束且未进行数据交互的终端设备的数量;α为权重系数,用于指示N ue在终端设备的接入数量中所占的比重,取值范围0~1。
需要说明的是,在SSB波束每次扫描后,均会反馈扫描区域的终端设备的数目,在进行波束扫描时,参照上一时刻波束扫描后获取的终端设备的数目,确定各扫描区域对应的扫描周期,以便更好地计算各扫描区域对应的扫描周期。该方式不完全依赖于初次扫描获取的终端设备数量,随着每次波束扫描后实时更新各扫描区域中终端设备的数量,通过该方式确定的各扫描区域对应的扫描周期准确度更高,能够在非陆地通信系统中容纳更多的用户。如,在第1ms,卫星进行波束扫描,获取扫描区域1下终端设备的接入数量为100万个,扫描区域2下终端设备的接入数量为50万个,扫描区域3下终端设备的接入数量为1万个。若卫星在第3ms再次进行波束扫描,可参照第1ms(也即上一时刻)波束扫描时,各扫描区域下终端设备的接入数量进行波束扫描。在执行时,可参照公式2确定权重 值:
w SSB=β×(N ue-pre+N ue-access-pre)+(1-β)×(N ue+N ue-access)      公式2
其中,N ue-pre指示在SSB波束下,上一时刻存在数据交互的终端设备的数量;N ue-access-pre指示上一时刻已接入SSB波束且未进行数据交互的终端设备的数量;N ue指示在第一波束下当前时刻存在数据交互的终端设备的数量;N ue-access指示当前时刻已接入SSB波束且未进行数据交互的终端设备的数量;β为权重系数,用于指示N ue-pre+N ue-access-pre在终端设备的接入数量中所占的比重,取值范围0~1。
另外,权重值和扫描周期的对照规则可存储在卫星中,可按照表格、柱状图、点状图等形式来进行存储,下面以存储形式为表格为例进行说明,如表2所示。
表2
Figure PCTCN2021102163-appb-000002
需要注意的,实际应用中,可能只用到表中的部分行或部分列,卫星可根据表2中某行的权重值确定对应的扫描周期,确定波束的扫描周期。
例如,卫星将第一信息发送给终端设备时,可通过如下信令进行指示各扫描区域的扫描周期,该信令仅做示例性说明,并不具体限定信令的具体内容,以及展示形式,凡是可以将第一信息所涵盖的内容指示给终端设备的信令均适用于本申请,示例性的,该信令可如下:
Figure PCTCN2021102163-appb-000003
实际应用中,可以只包括上述罗列的扫描周期的一部分。
需要说明的是,卫星可根据上述权重值wSSB进行扫描周期的配置,如果当前扫描区域内终端设备的接入数量越多,则其对应的扫描周期就会越短。为了清楚说明扫描区域和扫描周期的对应关系,在同一SSB波束下,图9中将扫描区域1对应的SSB波束通过SSB1标识,同理扫描区域2对应的SSB波束通过SSB2标识,在此不再一一赘述其他扫描区域 对应的标识。假定扫描区域2以及扫描区域7中终端设备的接入数量较多,那么其扫描周期则越短,扫描区域2以及扫描区域7对应的扫描周期分别为10ms,而其他扫描区域分别为20ms。
示例性说明,若对应关系为第一对应关系,则卫星根据各扫描区域对应的扫描周期、第一扫描周期以及RO的总数目,确定第一计算规则;其中,第一扫描周期为SSB波束的覆盖范围内扫描区域的扫描周期的最大值;根据第一计算规则,确定各扫描区域对应的RO数目。若对应关系为第二对应关系,则卫星根据各扫描区域对应的扫描周期、第一扫描周期以及CB Preamble的总数目,确定第二计算规则;根据第二计算规则,确定各扫描区域对应的CB Preamble数目。
需要说明的是,若对应关系为第一对应关系,在执行时,可参照下述公式3来确定各扫描区域对应的RO数目。
Figure PCTCN2021102163-appb-000004
其中,对于
Figure PCTCN2021102163-appb-000005
不能整除时,可按照索引顺序依次分配余数,如索引为0-3,余数为3,则索引0、索引1、索引2分别多配置1个RO。
若对应关系为第二对应关系,在执行时,可参照下述公式4来确定各扫描区域对应的RO数目。
Figure PCTCN2021102163-appb-000006
其中,对于
Figure PCTCN2021102163-appb-000007
不能整除时,可按照索引顺序依次分配余数,如索引为0-3,余数为3,则索引0、索引1、索引2分别多配置1个CB Preamble。
其中,
Figure PCTCN2021102163-appb-000008
为NTN中每个RO对应的SSB i的波束个数,ssb perRACHoccasion,sum为RO总个数,CB preamblesperSSBntn,i为NTN中个RO中连续几个Preamble对应于SSB i波束,CB preamblesperSSB,sum为一个RO中基于竞争的Preamble总个数,P ssb,i为SSB i的周期。
例如,卫星将第一信息发送给终端设备时,可通过如下信令指示各扫描区域与RO的对应关系,该信令仅做示例性说明,并不具体限定信令的具体内容,以及展示形式,凡是可以将第一信息所涵盖的内容指示给终端设备的信令均适用于本申请,示例性的,该信令如下:
Figure PCTCN2021102163-appb-000009
Figure PCTCN2021102163-appb-000010
实际应用中,可以只包括上述罗列的SSB与RO的对应方式的一部分。接下来通过示例进行说明,若对应关系为第二对应关系,如下图10所示,ssb-perRACH-Occasion=4,CB-PreamblesPerSSB=12,即4个扫描区域对应一个RO,每个扫描区域对应的Preamble为12,相关技术中各Preamble是平均分配的也即每个扫描区域对应的Preamble均为12。但是本申请中由于不同扫描区域的扫描周期不全相同,如扫描周期分别为10ms,10ms,5ms,5ms,则计算后各扫描区域对应的Preamble分别为8,8,16,16。
需要说明的是,本申请中扫描区域和RO的对应关系,可通过下述表3和表4进行存储,其中,表3为对应关系为第一对应关系时也即一个扫描区域对应多个RO的对应关系表,主要包括扫描周期,扫描区域、RO、索引号等信息,需要注意的是,实际应用中,可能只用到表中的部分行或部分列。表3如下所示,假定扫描区域有4个,SSB波束对应多个RO,当前RO的个数总共为48,SSB波束扫描周期为5ms、10ms和20ms,而SSB波束与RO个数对应关系如下表3所示,索引号可通过第一消息告知终端设备,终端设备可根据该对应关系按照索引顺序和RO进行对应。以索引号为1为例,通过上述公式3进行计算,可知ssb perRACHoccasion,sum为48,
Figure PCTCN2021102163-appb-000011
为6,针对扫描周期为5ms的区域0,
Figure PCTCN2021102163-appb-000012
为2,6可以被48整除,故而通过计算可知区域0对应的RO个数为16。以索引号为2例,通过上述公式3进行计算,可知ssb perRACHoccasion,sum为48,
Figure PCTCN2021102163-appb-000013
为9对扫描周期为5ms的区域
Figure PCTCN2021102163-appb-000014
为4,9不能被8整除,余数为3,故而通过计算可知区域0对应的RO个数为21。
表3
Figure PCTCN2021102163-appb-000015
其中,表4为对应关系为第二对应关系时也即多个扫描区域对应1个RO的对应关系表,主要包括扫描周期,扫描区域、Preamble、索引号等信息,同样地,实际应用中,可能只用到表中的部分行或部分列。表4如下所示,假定扫描区域有4个,即4个SSB扫描区域对应一个RO,用于竞争的Preamble总数为48,SSB波束扫描周期可为5ms、10ms和20ms,而扫描区域与Preamble对应关系如下表4所示,索引号可通过第一消息告知终端设备,终端设备可根据该对应关系按照索引顺序和Preamble进行对应。以索引号为1为例,通过上述公式4进行计算,可知CB preamblesperSSBntn,i为48,
Figure PCTCN2021102163-appb-000016
为6,针对扫描周期为5ms的区域0,
Figure PCTCN2021102163-appb-000017
为2,6可以被48整除,故而通过计算可知区域0对应的Preamble个数为16。以索引号为2例,通过上述公式4进行计算,可知CB preamblesperSSBntn,i为48,
Figure PCTCN2021102163-appb-000018
为9对扫描周期为5ms的区域0,
Figure PCTCN2021102163-appb-000019
为4,9不能被48整除,余数为3,故而通过计算可知区域0对应的CB Preamble个数为21。
表4
Figure PCTCN2021102163-appb-000020
Figure PCTCN2021102163-appb-000021
基于同样的发明构思,本申请提供一种第一通信装置,如图11所示,该第一通信装置包括:收发单元1101以及处理单元1102。
其中,收发单元1101,用于接收第一消息;第一消息包括对应关系的信息;对应关系是第二通信装置的同步信息块SSB波束的覆盖范围内不同扫描区域的扫描周期与随机接入时机RO的对应关系。处理单元1102,用于根据第一通信装置所处的扫描区域与第一消息确定随机接入时机RO,发起随机接入。
本申请通过在第二通信装置SSB波束的覆盖范围内,针对不同扫描区域采用不同的扫描周期进行波束扫描,且具有不同扫描周期的扫描区域对应不同的RO,基于此,第二通信装置通过广播发送包含上述消息的第一消息,以便接收到该第一消息的第一通信装置可以发起随机接入,以便在第二通信装置写接收更好地通信服务,通过该方式第二通信装置的系统用户容量得到提升,且第一通信装置的通信效率得到提高,另外还避免出现采用固定扫描周期扫描不同的扫描区域造成的资源浪费的情况。
示例性说明,不同扫描区域中至少有两个扫描区域对应的扫描周期不同。
示例性说明,扫描周期为5ms,或10ms,或20ms,或40ms,或80ms,或160ms。
示例性说明,不同扫描区域中至少有两个扫描区域对应的RO数目不同。
示例性说明,信息为对应关系的索引。
示例性说明,对应关系为第一对应关系,或第二对应关系;其中,第一对应关系中各扫描区域对应多个RO;第二对应关系中不同扫描区域对应一个RO。
示例性说明,第一对应关系或第二对应关系中的扫描区域还对应多个CB Preamble。
本申请提供一种第二通信装置,如图12所示,该第二通信装置包括:处理单元1201以及收发单元1202。
其中,处理单元1201,用于确定同步信息块SSB波束的覆盖范围内不同扫描区域的扫描周期与随机接入时机RO的对应关系。收发单元1202,用于发送第一消息;第一消息包括对应关系的信息。
通过在第二通信装置SSB波束的覆盖范围内,针对不同扫描区域采用不同的扫描周期 进行波束扫描,且具有不同扫描周期的扫描区域对应不同的RO,基于此,第二通信装置通过广播发送包含上述消息的第一消息,以便接收到该第一消息的第一通信装置可以发起随机接入,以便在第二通信装置写接收更好地通信服务,通过该方式第二通信装置的系统用户容量得到提升,且第一通信装置的通信效率得到提高,另外还避免出现采用固定扫描周期扫描不同的扫描区域造成的资源浪费的情况。
示例性说明,不同扫描区域中至少有两个扫描区域对应的扫描周期不同。
示例性说明,扫描周期为5ms,或10ms,或20ms,或40ms,或80ms,或160ms。
示例性说明,不同扫描区域中至少有两个扫描区域对应的RO数目不同。
示例性说明,信息为对应关系的索引。
示例性说明,对应关系为第一对应关系,或第二对应关系;其中,第一对应关系中各扫描区域对应多个RO;第二对应关系中不同扫描区域对应一个RO。
示例性说明,第一对应关系或第二对应关系中的扫描区域还对应多个CB Preamble。
示例性说明,处理单元1201,还用于:获取不同扫描区域中的第一通信装置的数目;其中,数目包括存在数据交互的第一通信装置的第一数目以及未进行数据交互的第一通信装置的第二数目;通过对第一数目以及第二数目进行加权计算,确定SSB波束的覆盖范围内不同扫描区域的权重值;根据权重值与扫描周期的比照规则,确定SSB波束的覆盖范围内不同扫描区域的扫描周期。
示例性说明,处理单元1201,还用于:若对应关系为第一对应关系,则根据各扫描区域对应的扫描周期、第一扫描周期以及RO的总数目,确定第一计算规则;其中,第一扫描周期为SSB波束的覆盖范围内扫描区域的扫描周期的最大值;根据第一计算规则,确定各扫描区域对应的RO数目。
示例性说明,处理单元1201,还用于:若对应关系为第二对应关系,则根据各扫描区域对应的扫描周期、第一扫描周期以及CB Preamble的总数目,确定第二计算规则;
根据第二计算规则,确定各扫描区域对应的CB Preamble的数目。
需要说明的是,本申请中的各个应用场景中的举例仅仅表现了一些可能的实现方式,是为了对本申请的方法更好的理解和说明。本领域技术人员可以根据申请提供的参考信号的指示方法,得到一些演变形式的举例。
为了实现上述本申请实施例提供的方法中的各功能,终端设备可以包括硬件结构和/或软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。上述各功能中的某个功能以硬件结构、软件模块、还是硬件结构加软件模块的方式来执行,取决于技术方案的特定应用和设计约束条件。
本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,另外,在本申请各个实施例中的各功能模块可以集成在一个处理器中,也可以是单独物理存在,也可以两个或两个以上模块集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。
基于相同的构思,如图13所示,为本申请提供的一种第一通信装置1300。示例性地,第一通信装置1300可以是芯片或芯片系统。可选的,在本申请实施例中芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
第一通信装置1300可以包括至少一个处理器1310,第一通信装置1300还可以包括至少一个存储器1320,用于存储计算机程序、程序指令和/或数据。存储器1320和处理器1310 耦合。本申请实施例中的耦合是装置、单元或模块之间的间接耦合或通信连接,可以是电性,机械或其它的形式,用于装置、单元或模块之间的信息交互。处理器1310可能和存储器1320协同操作。处理器1310可能执行存储器1320中存储的计算机程序。可选的,所述至少一个存储器1320可集成于处理器1310中。
第一通信装置1300中还可以包括收发器1330,第一通信装置1300可以通过收发器1330和其它设备进行信息交互。收发器1330可以是电路、总线、收发器或者其它任意可以用于进行信息交互的装置。
在一种可能的实施方式中,该第一通信装置1300可以应用于前述网络设备,具体第一通信装置1300可以是前述网络设备,也可以是能够支持前述网络设备实施上述任一实施例的装置。存储器1320保存实施上述任一实施例中的网络设备的功能的必要计算机程序、程序指令和/或数据。所述处理器1310可执行所述存储器1320存储的计算机程序,完成上述任一实施例中的方法。
本申请实施例中不限定上述收发器1330、处理器1310以及存储器1320之间的具体连接介质。本申请实施例在图13中以存储器1320、处理器1310以及收发器1330之间通过总线连接,总线在图13中以粗线表示,其它部件之间的连接方式,仅是进行示意性说明,并不引以为限。所述总线可以分为地址总线、数据总线、控制总线等。为便于表示,图13中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
在本申请实施例中,处理器可以是通用处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件,可以实施或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。
在本申请实施例中,存储器可以是非易失性存储器,比如硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD)等,还可以是易失性存储器(volatile memory),例如随机存取存储器(random-access memory,RAM)。存储器还可以是能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。本申请实施例中的存储器还可以是电路或者其它任意能够实施存储功能的装置,用于存储计算机程序、程序指令和/或数据。
基于以上实施例,参见图14,本申请实施例还提供另一种第一通信装置1400,包括:接口电路1410和逻辑电路1420;接口电路1410,用于接收第一消息;所述第一消息包括对应关系的信息;所述对应关系是第二通信装置的SSB波束的覆盖范围内不同扫描区域的扫描周期与RO的对应关系;
逻辑电路1420,用于运行所述代码指令以执行上述任一实施例中的方法。
基于相同的构思,如图15所示,为本申请提供的一种第二通信装置1500。示例性地,通信装置1500可以是芯片或芯片系统。可选的,在本申请实施例中芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
第二通信装置1500可以包括至少一个处理器1510,第二通信装置1500还可以包括至少一个存储器1520,用于存储计算机程序、程序指令和/或数据。存储器1520和处理器1510耦合。本申请实施例中的耦合是装置、单元或模块之间的间接耦合或通信连接,可以是电性,机械或其它的形式,用于装置、单元或模块之间的信息交互。处理器1510可能和存 储器1520协同操作。处理器1510可能执行存储器1520中存储的计算机程序。可选的,所述至少一个存储器1520可集成于处理器1510中。
第二通信装置1500中还可以包括收发器1530,通信装置1500可以通过收发器1530和其它设备进行信息交互。收发器1530可以是电路、总线、收发器或者其它任意可以用于进行信息交互的装置。
在一种可能的实施方式中,该第二通信装置1500可以应用于前述网络设备,具体第二通信装置1500可以是前述网络设备,也可以是能够支持前述网络设备实施上述任一实施例的装置。存储器1520保存实施上述任一实施例中的网络设备的功能的必要计算机程序、程序指令和/或数据。所述处理器1510可执行所述存储器1520存储的计算机程序,完成上述任一实施例中的方法。
本申请实施例中不限定上述收发器1530、处理器1510以及存储器1520之间的具体连接介质。本申请实施例在图15中以存储器1520、处理器1510以及收发器1530之间通过总线连接,总线在图15中以粗线表示,其它部件之间的连接方式,仅是进行示意性说明,并不引以为限。所述总线可以分为地址总线、数据总线、控制总线等。为便于表示,图15中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
在本申请实施例中,处理器可以是通用处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件,可以实施或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。
在本申请实施例中,存储器可以是非易失性存储器,比如硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD)等,还可以是易失性存储器(volatile memory),例如随机存取存储器(random-access memory,RAM)。存储器还可以是能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。本申请实施例中的存储器还可以是电路或者其它任意能够实施存储功能的装置,用于存储计算机程序、程序指令和/或数据。
基于以上实施例,参见图16,本申请实施例还提供另一种第二通信装置1600,包括:接口电路1610和逻辑电路1620;接口电路1610,用于发送第一消息;所述第一消息包括所述对应关系的信息;所述对应关系是第二通信装置的同步信息块SSB波束的覆盖范围内不同扫描区域的扫描周期与随机接入时机RO的对应关系;
逻辑电路1620,用于运行所述代码指令以执行上述任一实施例中的方法。
基于以上实施例,本申请实施例还提供一种可读存储介质,该可读存储介质存储有指令,当所述指令被执行时,使上述任一实施例中安全检测设备执行的方法被实施。该可读存储介质可以包括:U盘、移动硬盘、只读存储器、随机存取存储器、磁碟或者光盘等各种可以存储程序代码的介质。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请的方法、装置(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理装置的处理器以产生一个机器,使得通过计算机或其他可编程数据处理装置的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理装置以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理装置上,使得在计算机或其他可编程装置上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程装置上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。

Claims (39)

  1. 一种用于随机接入的方法,其特征在于,包括:
    第一通信装置接收第一消息;所述第一消息包括对应关系的信息;所述对应关系是第二通信装置的同步信息块SSB波束的覆盖范围内不同扫描区域的扫描周期与随机接入时机RO的对应关系;
    根据所述第一通信装置所处的扫描区域与所述第一消息确定随机接入时机RO,发起随机接入。
  2. 根据权利要求1所述的方法,其特征在于,所述不同扫描区域中至少有两个扫描区域对应的扫描周期不同。
  3. 根据权利要求2所述的方法,其特征在于,所述扫描周期为5毫秒ms,或10ms,或20ms,或40ms,或80ms,或160ms。
  4. 根据权利要求1-3任一所述的方法,其特征在于,所述不同扫描区域中至少有两个扫描区域对应的RO数目不同。
  5. 根据权利要求1-4任一所述的方法,其特征在于,所述信息为所述对应关系的索引。
  6. 根据权利要求1-5任一所述的方法,其特征在于,所述对应关系为第一对应关系,或第二对应关系;
    其中,所述第一对应关系中各所述扫描区域对应多个RO;
    所述第二对应关系中所述不同扫描区域对应一个RO。
  7. 根据权利要求6所述的方法,其特征在于,所述第一对应关系或所述第二对应关系中的扫描区域还对应多个基于竞争的随机接入前导码。
  8. 一种用于随机接入的方法,其特征在于,包括:
    第二通信装置确定同步信息块SSB波束的覆盖范围内不同扫描区域的扫描周期与随机接入时机RO的对应关系;
    发送第一消息;所述第一消息包括所述对应关系的信息。
  9. 根据权利要求8所述的方法,其特征在于,所述不同扫描区域中至少有两个扫描区域对应的扫描周期不同。
  10. 根据权利要求9所述的方法,其特征在于,所述扫描周期为5毫秒ms,或10ms,或20ms,或40ms,或80ms,或160ms。
  11. 根据权利要求8-10任一所述的方法,其特征在于,所述不同扫描区域中至少有两个扫描区域对应的RO数目不同。
  12. 根据权利要求8-11任一所述的方法,其特征在于,所述信息为所述对应关系的索引。
  13. 根据权利要求8-12任一所述的方法,其特征在于,所述对应关系为第一对应关系,或第二对应关系;
    其中,所述第一对应关系中各所述扫描区域对应多个RO;
    所述第二对应关系中所述不同扫描区域对应一个RO。
  14. 根据权利要求13所述的方法,其特征在于,所述第一对应关系或所述第二对应关系中的扫描区域还对应多个基于竞争的随机接入前导码。
  15. 根据权利要求8-14任一所述的方法,其特征在于,所述方法还包括:
    所述第二通信装置获取所述不同扫描区域中的第一通信装置的数目;其中,所述数目包括存在数据交互的第一通信装置的第一数目以及未进行数据交互的第一通信装置的第二数目;
    通过对所述第一数目以及所述第二数目进行加权计算,确定所述SSB波束的覆盖范围内不同扫描区域的权重值;
    根据权重值与扫描周期的比照规则,确定所述SSB波束的覆盖范围内不同扫描区域的扫描周期。
  16. 根据权利要求13或14所述的方法,其特征在于,所述方法还包括:
    若所述对应关系为第一对应关系,则根据各扫描区域对应的扫描周期、第一扫描周期以及RO的总数目,确定第一计算规则;其中,所述第一扫描周期为所述SSB波束的覆盖范围内扫描区域的扫描周期的最大值;
    根据所述第一计算规则,确定各所述扫描区域对应的RO数目。
  17. 根据权利要求14所述的方法,其特征在于,所述方法还包括:
    若所述对应关系为第二对应关系,则根据所述各扫描区域对应的扫描周期、所述第一扫描周期以及基于竞争的随机接入前导码的总数目,确定第二计算规则;
    根据所述第二计算规则,确定各所述扫描区域对应的基于竞争的随机接入前导码的数目。
  18. 一种通信装置,其特征在于,包括:
    收发单元,用于接收第一消息;所述第一消息包括对应关系的信息;所述对应关系是第二通信装置的同步信息块SSB波束的覆盖范围内不同扫描区域的扫描周期与随机接入时机RO的对应关系;
    处理单元,用于根据所述第一通信装置所处的扫描区域与所述第一消息确定随机接入时机RO,发起随机接入。
  19. 根据权利要求18所述的装置,其特征在于,所述不同扫描区域中至少有两个扫描区域对应的扫描周期不同。
  20. 根据权利要求19所述的装置,其特征在于,所述扫描周期为5毫秒ms,或10ms,或20ms,或40ms,或80ms,或160ms。
  21. 根据权利要求18-20任一所述的装置,其特征在于,所述不同扫描区域中至少有两个扫描区域对应的RO数目不同。
  22. 根据权利要求18-21任一所述的装置,其特征在于,所述信息为所述对应关系的索引。
  23. 根据权利要求18-22任一所述的装置,其特征在于,所述对应关系为第一对应关系,或第二对应关系;
    其中,所述第一对应关系中各所述扫描区域对应多个RO;
    所述第二对应关系中所述不同扫描区域对应一个RO。
  24. 根据权利要求23所述的装置,其特征在于,所述第一对应关系或所述第二对应关系中的扫描区域还对应多个基于竞争的随机接入前导码。
  25. 一种通信装置,其特征在于,包括:
    处理单元,用于确定同步信息块SSB波束的覆盖范围内不同扫描区域的扫描周期与随机接入时机RO的对应关系;
    收发单元,用于发送第一消息;所述第一消息包括所述对应关系的信息。
  26. 根据权利要求25所述的装置,其特征在于,所述不同扫描区域中至少有两个扫描区域对应的扫描周期不同。
  27. 根据权利要求26所述的装置,其特征在于,所述扫描周期为5毫秒ms,或10ms,或20ms,或40ms,或80ms,或160ms。
  28. 根据权利要求25-27任一所述的装置,其特征在于,所述不同扫描区域中至少有两个扫描区域对应的RO数目不同。
  29. 根据权利要求25-28任一所述的装置,其特征在于,所述信息为所述对应关系的索引。
  30. 根据权利要求25-29任一所述的装置,其特征在于,所述对应关系为第一对应关系,或第二对应关系;
    其中,所述第一对应关系中各所述扫描区域对应多个RO;
    所述第二对应关系中所述不同扫描区域对应一个RO。
  31. 根据权利要求30所述的装置,其特征在于,所述第一对应关系或所述第二对应关系中的扫描区域还对应多个基于竞争的随机接入前导码。
  32. 根据权利要求25-31任一所述的装置,其特征在于,所述处理单元,还用于:
    获取所述不同扫描区域中的第一通信装置的数目;其中,所述数目包括存在数据交互的第一通信装置的第一数目以及未进行数据交互的第一通信装置的第二数目;
    通过对所述第一数目以及所述第二数目进行加权计算,确定所述SSB波束的覆盖范围内不同扫描区域的权重值;
    根据权重值与扫描周期的比照规则,确定所述SSB波束的覆盖范围内不同扫描区域的扫描周期。
  33. 根据权利要求30或31所述的装置,其特征在于,所述处理单元,还用于:
    若所述对应关系为第一对应关系,则根据各扫描区域对应的扫描周期、第一扫描周期以及RO的总数目,确定第一计算规则;其中,所述第一扫描周期为所述SSB波束的覆盖范围内扫描区域的扫描周期的最大值;
    根据所述第一计算规则,确定各所述扫描区域对应的RO数目。
  34. 根据权利要求33所述的装置,其特征在于,所述处理单元,还用于:
    若所述对应关系为第二对应关系,则根据所述各扫描区域对应的扫描周期、所述第一扫描周期以及基于竞争的随机接入前导码的总数目,确定第二计算规则;
    根据所述第二计算规则,确定各所述扫描区域对应的基于竞争的随机接入前导码的数目。
  35. 一种通信装置,其特征在于,包括:处理器和存储器;
    所述存储器,存储有计算机程序;
    所述处理器,用于执行所述存储器中存储的计算机程序,以使得如权利要求1-7或权利要求8-17中任意一项所述的方法被执行。
  36. 一种通信装置,其特征在于,包括:逻辑电路和接口电路;
    所述接口电路,用于接收第一消息;所述第一消息包括对应关系的信息;所述对应关系是第二通信装置的同步信息块SSB波束的覆盖范围内不同扫描区域的扫描周期与随机接入时机RO的对应关系;
    所述逻辑电路,用于执行如权利要求1-7中任意一项所述的方法。
  37. 一种通信装置,其特征在于,包括:逻辑电路和接口电路;
    所述接口电路,用于发送第一消息;所述第一消息包括对应关系的信息;所述对应关系是第二通信装置的同步信息块SSB波束的覆盖范围内不同扫描区域的扫描周期与随机接入时机RO的对应关系;
    所述逻辑电路,用于执行如权利要求8-17中任意一项所述的方法。
  38. 一种计算机可读存储介质,其特征在于,所述计算机存储介质中存储有计算机可读指令,当所述计算机可读指令在通信装置上运行时,使得权利要求1-7或权利要求8-17中任一项所述的方法被执行。
  39. 一种包含计算机程序或指令的计算机程序产品,其特征在于,当其在计算机上运行时,使得上述权利要求1-7或权利要求8-17中任一项所述的方法被执行。
PCT/CN2021/102163 2020-07-24 2021-06-24 一种用于随机接入的方法及通信装置 WO2022017118A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21847102.7A EP4171158A4 (en) 2020-07-24 2021-06-24 RANDOM ACCESS METHOD AND COMMUNICATION DEVICE
US18/156,941 US20230156822A1 (en) 2020-07-24 2023-01-19 Random access method and communication apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010728144.4 2020-07-24
CN202010728144.4A CN113973396A (zh) 2020-07-24 2020-07-24 一种用于随机接入的方法及通信装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/156,941 Continuation US20230156822A1 (en) 2020-07-24 2023-01-19 Random access method and communication apparatus

Publications (1)

Publication Number Publication Date
WO2022017118A1 true WO2022017118A1 (zh) 2022-01-27

Family

ID=79585934

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/102163 WO2022017118A1 (zh) 2020-07-24 2021-06-24 一种用于随机接入的方法及通信装置

Country Status (4)

Country Link
US (1) US20230156822A1 (zh)
EP (1) EP4171158A4 (zh)
CN (1) CN113973396A (zh)
WO (1) WO2022017118A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11582705B1 (en) * 2020-11-23 2023-02-14 T-Mobile Innovations Llc Dynamic modification of antenna beamforming functionality
CN118139202A (zh) * 2022-12-02 2024-06-04 华为技术有限公司 一种随机接入资源的确定方法及通信装置
CN116489800B (zh) * 2023-06-15 2023-11-21 北京智芯微电子科技有限公司 映射关系确定方法、装置及存储介质、基站

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109729580A (zh) * 2018-01-12 2019-05-07 华为技术有限公司 通信方法及装置
WO2020092059A1 (en) * 2018-10-30 2020-05-07 Idac Holdings, Inc. Methods, apparatus, systems and procedures for distance dependent random access channel (rach) preamble selection in non-terrestrial networks (ntns)
CN111866892A (zh) * 2019-04-29 2020-10-30 展讯半导体(南京)有限公司 随机接入的实现方法、装置、用户设备及基站

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109729580A (zh) * 2018-01-12 2019-05-07 华为技术有限公司 通信方法及装置
WO2020092059A1 (en) * 2018-10-30 2020-05-07 Idac Holdings, Inc. Methods, apparatus, systems and procedures for distance dependent random access channel (rach) preamble selection in non-terrestrial networks (ntns)
CN111866892A (zh) * 2019-04-29 2020-10-30 展讯半导体(南京)有限公司 随机接入的实现方法、装置、用户设备及基站

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HUAWEI, HISILICON: "Issues of RACH procedure in Non-terrestrial networks", 3GPP DRAFT; R2-1907841 ISSUES OF RACH PROCEDURE IN NON-TERRESTRIAL NETWORKS, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Reno, USA; 20190513 - 20190517, 3 May 2019 (2019-05-03), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051712113 *
See also references of EP4171158A4 *

Also Published As

Publication number Publication date
US20230156822A1 (en) 2023-05-18
EP4171158A4 (en) 2024-01-10
EP4171158A1 (en) 2023-04-26
CN113973396A (zh) 2022-01-25

Similar Documents

Publication Publication Date Title
WO2022017118A1 (zh) 一种用于随机接入的方法及通信装置
CN110351879B (zh) 一种通信方法及装置
CN113453343B (zh) 业务的请求方法及装置
EP4027532A1 (en) Beam indication method and apparatus
US20220159732A1 (en) Random access method and device
EP3962225A1 (en) Data transmission method and apparatus
CN113271625A (zh) 通信方法及通信装置
WO2021159941A1 (zh) 一种通信的方法及装置
WO2017069668A1 (en) Methods, network nodes and wireless device for handling access information
US20230337289A1 (en) Wireless communication method and terminal device
US20230308141A1 (en) Communication Method, Device, and System
JP2023521544A (ja) 情報伝送方法、端末機器及びネットワーク機器
WO2020248944A1 (zh) 一种随机接入方法及装置
US20230042104A1 (en) Wireless communication method, terminal device, and network device
WO2023071843A1 (zh) 资源映射方法与装置、终端和网络设备
WO2022205223A1 (zh) 一种随机接入方法、电子设备及存储介质
WO2022155976A1 (zh) 初始接入方法、终端设备和网络设备
WO2022246588A1 (zh) 无线通信的方法、终端设备和网络设备
WO2023019438A1 (zh) 通信方法、终端、网络设备、介质、芯片、产品及程序
WO2023077456A1 (zh) 随机接入的方法、终端设备和网络设备
WO2023198059A1 (zh) 一种通信方法、装置、系统及存储介质
CN112788752B (zh) 一种通信方法及装置
WO2024119496A1 (zh) 通信方法、装置、设备、存储介质、芯片、产品及程序
WO2023071802A1 (zh) 卫星通信的方法和装置
CN112586030B (zh) 一种系统信息块sib传输方法及设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21847102

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021847102

Country of ref document: EP

Effective date: 20230123

NENP Non-entry into the national phase

Ref country code: DE