WO2022016812A1 - 一种基于高压mcu的高低压信号采样及传输系统 - Google Patents

一种基于高压mcu的高低压信号采样及传输系统 Download PDF

Info

Publication number
WO2022016812A1
WO2022016812A1 PCT/CN2020/140695 CN2020140695W WO2022016812A1 WO 2022016812 A1 WO2022016812 A1 WO 2022016812A1 CN 2020140695 W CN2020140695 W CN 2020140695W WO 2022016812 A1 WO2022016812 A1 WO 2022016812A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
sampling
low
signal
mcu
Prior art date
Application number
PCT/CN2020/140695
Other languages
English (en)
French (fr)
Inventor
刘蕾
焦民胜
张�林
郭燕齐
Original Assignee
一巨自动化装备(上海)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 一巨自动化装备(上海)有限公司 filed Critical 一巨自动化装备(上海)有限公司
Publication of WO2022016812A1 publication Critical patent/WO2022016812A1/zh
Priority to US17/697,680 priority Critical patent/US11959948B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/25Arrangements for measuring currents or voltages or for indicating presence or sign thereof using digital measurement techniques
    • G01R19/2503Arrangements for measuring currents or voltages or for indicating presence or sign thereof using digital measurement techniques for measuring voltage only, e.g. digital volt meters (DVM's)
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/16Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/16Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements
    • G01K7/22Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements the element being a non-linear resistance, e.g. thermistor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/25Arrangements for measuring currents or voltages or for indicating presence or sign thereof using digital measurement techniques
    • G01R19/2506Arrangements for conditioning or analysing measured signals, e.g. for indicating peak values ; Details concerning sampling, digitizing or waveform capturing
    • G01R19/2509Details concerning sampling, digitizing or waveform capturing
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P23/00Arrangements or methods for the control of AC motors characterised by a control method other than vector control
    • H02P23/14Estimation or adaptation of motor parameters, e.g. rotor time constant, flux, speed, current or voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/60Controlling or determining the temperature of the motor or of the drive
    • H02P29/68Controlling or determining the temperature of the motor or of the drive based on the temperature of a drive component or a semiconductor component

Definitions

  • the invention relates to a new energy vehicle, in particular to a high and low voltage signal sampling and transmission system based on a high voltage MCU.
  • the output power and safety level of electric vehicles are getting higher and higher, so the electrical signals collected internally are becoming more and more complex.
  • Problems that must be solved in hardware design Based on the high and low voltage safety design requirements, the signals on the high voltage side need to be isolated and sampled, which involves the design of the sampling scheme and the increase in cost.
  • the bus voltage Based on the high-voltage safety requirements of the controller, the bus voltage needs to be monitored in real time and transmitted to the low-voltage side.
  • the temperature of the IGBT operation process needs to be monitored in real-time and transmitted to the low-voltage side, and calibrated based on the initial position angle of the motor. Requirements, the inverter three-phase output phase voltage needs to be detected and transmitted to the low-voltage side.
  • the current controller design mostly adopts the form of isolation transformer, isolation op amp or isolation optocoupler to complete the high and low voltage sampling signal isolation transmission requirements.
  • an isolation sampling circuit is constructed for specific signals on the high-voltage side, and the analog quantity of the sampling results is sent to the low-voltage MCU detection port to complete the real-time detection of specific signals.
  • the number of isolated sampling circuits is consistent with the number of signals to be sampled.
  • Each sampling link at the system level is independent of each other, the compatibility and scalability of the system are not high, and the hardware design cost is increased at the same time.
  • Patent document 1 discloses a voltage isolation sampling circuit for electric vehicles.
  • the circuit includes an anti-static interference unit, an input filtering unit, an input voltage conditioning unit, an isolation amplifying unit and The output voltage conditioning unit;
  • the anti-static interference unit is composed of electrostatic protection diode components
  • the input filtering unit adopts a common mode filter
  • the input voltage conditioning unit adopts an operational amplifier and corresponding resistance-capacitance components
  • the isolation amplifying unit adopts an isolation amplifier and corresponding capacitors
  • the output voltage conditioning unit adopts two operational amplifiers and corresponding resistance-capacitance elements.
  • Patent document 2 discloses an isolation sampling circuit for IGBT temperature signals in a motor controller.
  • the sampling circuit includes an input voltage dividing unit, an input filtering unit, an isolation amplifying unit, a voltage conditioning unit and an output filtering unit, the input voltage dividing unit divides the voltage of the internal thermistor of the IGBT and transmits it to the input filtering unit, and the output signal of the input filtering unit passes through the isolation amplifying unit, the voltage conditioning unit and the output filtering unit in sequence After processing, the IGBT temperature sampling signal is obtained by the output filtering unit.
  • This sampling circuit overcomes the defects of traditional IGBT temperature signal sampling, has signal isolation function, improves the circuit's anti-interference ability and sampling accuracy, ensures the reliable operation of the IGBT, and eliminates potential safety hazards.
  • Patent Document 3 discloses a high-voltage isolation sampling circuit for a motor controller, including a signal input filter circuit, a resistor divider circuit, a power isolation circuit, an optocoupler isolation sampling circuit, a differential amplifier circuit and a clamp The circuit, the signal input filter circuit, the resistor divider circuit, the optocoupler isolation sampling circuit, the differential amplifier circuit and the clamping circuit are connected in series in sequence, and the power isolation circuit is connected with the optocoupler isolation sampling circuit.
  • the application of the technical scheme of the present utility model has the following beneficial effects: (1) each part of the circuit is simplified and easy to use; (2) the complete isolation between high and low voltage can be realized, and the accuracy of the use is high.
  • the power isolation circuit is used to The power supply of the optocoupler isolation sampling circuit is isolated; the resistance voltage divider circuit is used to attenuate the high voltage signal through the resistance voltage divider; the filter circuit is used to filter out the interference signal in the circuit; the differential amplifier circuit is used to amplify the differential mode signal and suppress the common mode signal .
  • the above prior art adopts the form of isolation transformer, isolation op amp or isolation optocoupler to carry out the integrity design of a single sampling circuit, and the cost of using the device is very high.
  • the scalability of the sampling circuit is not high.
  • the design of the sampling circuit is more complicated, which increases the design cost and hardware PCB layout area.
  • the peripheral resources required for the low-voltage MCU port detection will also increase accordingly, and the detection port compatibility of different sampling signals cannot be realized. .
  • the present application provides a low-cost, high-reliability, high-adaptability The high and low voltage signal sampling and transmission system based on high voltage MCU.
  • a high and low voltage signal sampling and transmission system based on a high voltage MCU including a sampling unit, a high voltage processing unit, a communication unit and a low voltage processing unit; wherein:
  • the sampling unit includes a bus voltage sampling module, a phase voltage detection module and an IGBT temperature detection module.
  • the units are used to respectively complete the conditioning and detection of the measured signal on the high-voltage side, and generate three-way analog detection signals; the three-way analog detection signal obtained by the sample unit The signal is sent to the high pressure processing unit;
  • the high-voltage processing unit adopts high-voltage MCU.
  • the high-voltage MCU is used for state monitoring and analog-to-digital conversion of three channels of analog detection signals, and outputs digital signals to the communication unit;
  • the high-voltage processing unit includes an integrated AD conversion module and a coding conversion module.
  • the high-voltage processing unit is used to perform analog-to-digital conversion and coding conversion on the received three-way analog detection signals to obtain three-way digital signals; Transmission to the low voltage processing unit using a single isolated communication unit.
  • the communication unit adopts an isolated communication unit, which is used to transmit the three-way digital signals converted by the high-voltage MCU to the low-voltage processing unit; the low-voltage processing unit adopts a low-voltage MCU to realize the sampling and communication of high and low voltage sampling signals.
  • the sampling unit is specifically used to select a specific signal according to system design requirements, and based on the controller function and safety design, the bus voltage sampling signal, the phase voltage sampling signal and the IGBT The temperature sampling signal is sampled and transmitted.
  • the bus voltage sampling module is composed of two sampling circuits, which are respectively connected to the positive DC bus and the negative DC bus, and are used to design detection circuits with different accuracy levels to achieve full Sampling accuracy requirements for the voltage range.
  • the phase voltage detection module is used to calibrate the initial position angle of the motor, respectively detect the voltage between the output point of the inverter three-phase voltage and the negative DC bus, and detect the voltage between the output point of the inverter three-phase voltage and the negative DC bus. Sampling circuit port for ESD design.
  • the IGBT temperature detection module is used to monitor the state of the temperature-sensitive NTC resistance of the power module, convert the resistance value change into a voltage change range, and monitor the IGBT temperature online in real time.
  • the sampling unit is further configured to increase the sampling channel according to the requirement for the sampling quantity of the high-voltage side signal.
  • the high-voltage MCU unit has its own analog-to-digital conversion function to sample and manage the high-voltage side signal, which greatly simplifies the design of the high-voltage side multi-channel sampling signal and improves the stability of the circuit , to enhance the ductility of the sampling system;
  • the embodiment of the present application encodes the multi-channel sampled values through the internal data decoding function of the high-voltage MCU, and performs unified isolation and transmission of the high-voltage side signals through a single isolation chip, which saves a large number of isolation devices for high and low voltage sampling, and greatly reduces the device cost;
  • the low-voltage MCU detection terminal of the embodiment of the present application can complete the reception and monitoring of all the sampling signals of the high-voltage measurement only through the communication port, which saves a lot of peripheral detection resources, simplifies the circuit design of the sampling port, and enhances the compatibility of the sampling system. stability.
  • Figure 1 is a schematic diagram of a high and low voltage signal sampling and transmission system based on a high voltage MCU.
  • a high and low voltage signal sampling and transmission system based on a high voltage MCU including a sampling unit 1, a high voltage processing unit 2, a communication unit communication unit 3 and a low voltage processing unit 4; wherein: the sampling unit 1 includes a bus bar The voltage sampling module, the phase voltage detection module and the IGBT temperature detection module, the sampling unit 1 is used to respectively complete the conditioning and detection of the measured signal on the high-voltage side, and generate three channels of analog detection signals; the three channels of analog detection signals obtained by the sampling unit 1 are sent to the High pressure processing unit 2.
  • the high-voltage processing unit 2 adopts a high-voltage MCU, and the high-voltage MCU is used for state monitoring and analog-to-digital conversion of the three channels of analog detection signals, and outputs digital signals to the communication unit communication unit 3 .
  • Communication unit The communication unit 3 adopts an isolated communication unit, which is used to transmit the three-way digital signals converted by the high-voltage MCU to the low-voltage processing unit 4;
  • the sampling unit 1 includes an integrated bus voltage sampling module, a phase voltage detection module and an IGBT temperature detection module.
  • the sampling unit 1 is used to simultaneously sample the bus voltage signal, the phase voltage detection signal and the IGBT temperature signal, and Transfer the obtained three-way analog signal to the high-voltage processing module
  • the high-voltage processing unit 2 includes an integrated AD conversion module and a coding conversion module.
  • the high-voltage processing unit 2 is used to perform analog-to-digital conversion and coding conversion on the received three-way analog detection signals to obtain three-way digital signals;
  • the digital signals are transmitted to the low voltage processing unit 4 using a single isolated communication unit.
  • the sampling unit 1 completes signal conditioning on the signals that need to be sampled on the high-voltage side, and uniformly transmits them to the high-voltage MCU for processing.
  • the sampling unit 1 is used to select a specific signal according to the system design requirements. Based on the controller function and safety design, it is necessary to sample and transmit the bus voltage sampling signal, the phase voltage sampling signal and the IGBT temperature sampling.
  • the bus voltage sampling module consists of two sampling circuits, which are respectively connected to the positive DC bus and the negative DC bus, and are used to design detection circuits with different accuracy levels to meet the sampling accuracy requirements of the full voltage range.
  • the phase voltage detection module is used to calibrate the initial position angle of the motor, respectively detect the voltage between the output point of the inverter's three-phase voltage and the negative DC bus, and perform ESD design for the sampling circuit port.
  • the IGBT temperature detection module is used to monitor the state of the temperature-sensing NTC resistance of the power module, and convert the resistance value change into a voltage change range, thereby realizing real-time online monitoring of the IGBT temperature.
  • the solution of this embodiment can directly perform high-voltage side sampling and analog-to-digital processing on the high-voltage side signal, thereby reducing hardware design and device cost.
  • the signal status can be monitored in real time through the high-voltage side, and the high-voltage side fault can be quickly protected and processed to improve the safety level of the system.
  • sampling system Compared with the traditional method of building an independent sampling link, the complexity of the sampling system is directly related to the number of sampling channels.
  • the improved sampling scheme has great adaptability to the sampling of high-voltage side signals. As the requirements increase, sampling channels can be added flexibly, which enhances the compatibility and ductility of the sampling system.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Nonlinear Science (AREA)
  • Inverter Devices (AREA)

Abstract

一种基于高压MCU的高低压信号采样及传输系统,包括采样单元(1)、高压处理单元(2)、通讯单元(3)以及低压处理单元(4),采样单元(1)包括母线电压采样模块、相电压检测模块与IGBT温度检测模块,分别完成对高压侧被测信号调理与检测,产生三路模拟检测信号输送至高压处理单元(2);高压处理单元(2)采用高压MCU,分别对三路模拟检测信号进行状态监控与模数转换并输出数字信号至通讯单元(3),通讯单元(3)采用隔离通讯单元,将三路数字信号输送至低压处理单元(4),低压处理单元(4)采用低压MCU,实现高低压采样信号采样与通讯。系统成本低、可靠性高、适配性高。

Description

一种基于高压MCU的高低压信号采样及传输系统 技术领域
本发明涉及新能源汽车,特别涉及一种基于高压MCU的高低压信号采样及传输系统。
背景技术
随着现代电动汽车技术的迅速发展,电动汽车的输出的功率与安全等级越来越高,因此内部采集的电气信号也越来越复杂繁多,实时高精度的对这些电气信号采集已经成为汽车电子硬件设计的必须要解决的问题。基于高低压安全设计要求,对于高压侧的信号需要进行隔离采样,这就涉及到采样方案设计与成本的增加。基于控制器高压安全要求,需要对母线电压进行实时监控并传输至低压侧,基于控制器热安全要求,需要对IGBT运行过程的温度进行实时监控并传输至低压侧,同时基于电机初始位置角标定要求,需要对逆变器三相输出相电压进行检测并传输至低压侧。
当前控制器设计多采用隔离变压器、隔离运放或者隔离光耦的形式完成高低压采样信号隔离传输要求。根据系统设计要求,对高压侧特定信号进行隔离采样电路搭建,并将采样结果模拟量输送至低压MCU检测端口,完成特定信号的实时检测,隔离采样电路数与需要采样的信号数保持一致,采样系统层面各采样链路相互独立,系统的兼容性与扩展性不高,同时增加了硬件设计成本。
与本专利技术最为接近的技术主要如下:
1、专利文献1(公开号:CN206292288U)公开了一种用于电动汽车的电压隔离采样电路,本电路包括依次串接的抗静电干扰单元、输入滤波单元、 输入电压调理单元、隔离放大单元和输出电压调理单元;其中抗静电干扰单元由静电保护二极管组件构成,输入滤波单元采用共模滤波器,输入电压调理单元采用运算放大器及相应的阻容元件,隔离放大单元采用隔离放大器及相应的电容,输出电压调理单元采用两个运算放大器及相应的阻容元件。本电路克服传统采用电压互感器采集电压信号的缺陷,提高了电压信号采集的准确性及可靠性,有效节省安装空间,提高抗干扰能力,确保汽车的安全性能。
2、专利文献2(公开号:CN208968701U)公开了一种用于电机控制器中IGBT温度信号的隔离采样电路,本采样电路包括输入分压单元、输入滤波单元、隔离放大单元、电压调理单元和输出滤波单元,所述输入分压单元将IGBT内部热敏电阻电压分压后传输至所述输入滤波单元,所述输入滤波单元输出信号依次经所述隔离放大单元、电压调理单元和输出滤波单元处理后,由所述输出滤波单元得到IGBT温度采样信号。本采样电路克服传统IGBT温度信号采样缺陷,带有信号隔离功能,提高电路抗干扰能力及采样精度,确保IGBT的可靠运行,杜绝安全隐患。
3、专利文献3(公开号:CN206149137U)公开了一种电机控制器高压隔离采样电路,包括信号输入滤波电路、电阻分压电路、电源隔离电路、光耦隔离采样电路、差分放大电路和钳位电路,信号输入滤波电路、电阻分压电路、光耦隔离采样电路、差分放大电路和钳位电路依次串联,电源隔离电路与光耦隔离采样电路连接。应用本实用新型的技术方案,具有以下有益效果:(1)各部分电路精简,使用方便;(2)能实现高低压之间的完全隔离,且采用精度高,理由是:采用电源隔离电路对光耦隔离采样电路的供电电源进行隔离;采用电阻分压电路通过电阻分压对高压信号进行衰减;采用滤波电路滤出电路中的干扰信号;采用差分放大电路放大差模信号和抑制共模信号。
以上现有技术采用隔离变压器、隔离运放或者隔离光耦的形式,进行单一采样电路的完整性设计,器件使用成本很高,同时随着高压侧采样信号的增加,器件成本成倍的提升,采样电路的可拓展性不高。
同时采样电路设计较为复杂,增加设计成本与硬件PCB布板面积,同时随着采样路数的额增加,低压MCU端口检测需要的外设资源也会相应增加,无法实现不同采样信号的检测端口兼容。
发明内容
针对上述现有技术方案中高低压侧采样设计成本过高,同时消耗大量低压MCU检测外设资源,增加电路的复杂性等因素,本申请提供了一种低成本、高可靠性、高适配性的基于高压MCU的高低压信号采样及传输系统。
一方面,提供了一种基于高压MCU的高低压信号采样及传输系统,包括采样单元、高压处理单元、通讯单元以及低压处理单元;其中:
采样单元,包括母线电压采样模块、相电压检测模块与IGBT温度检测模块,采用单元用于分别完成对高压侧被测信号调理与检测,产生三路模拟检测信号;样单元得到的三路模拟检测信号输送至高压处理单元;
高压处理单元,采用高压MCU,高压MCU用于分别对三路模拟检测信号进行状态监控与模数转换并输出数字信号至通讯单元;
高压处理单元包括集成在一起的AD转换模块和编码转换模块,高压处理单元用于对接收的三路模拟检测信号进行模数转换和编码转换获得三路数字信号;经过编码转换的三路数字信号利用单个隔离通讯单元传输到低压处理单元。
通讯单元,采用隔离通讯单元,用于将高压MCU模数转换出的三路数字信号输送至低压处理单元;低压处理单元,采用低压MCU,用于实现高低压采样信号采样与通讯。
如上述方案的任一可能实现方式,进一步地,所述采样单元具体用于根 据系统设计要求进行特定信号的选择,基于控制器功能与安全设计,对母线电压采样信号、相电压采样信号以及IGBT温度采样信号进行采样传输。
如上述方案的任一可能实现方式,进一步地,所述母线电压采样模块由两路采样电路组成,分别连接至直流母线正与直流母线负,用于通过设计不同精度等级的检测电路,实现全电压范围的采样精度要求。
如上述方案的任一可能实现方式,进一步地,所述相电压检测模块用于进行电机初始位置角标定,分别检测逆变器三相电压的输出点与直流母线负之间的电压,并对采样电路端口进行ESD设计。
如上述方案的任一可能实现方式,进一步地,所述IGBT温度检测模块用于对功率模块的温感NTC电阻进行状态监控,将阻值变化转换为电压变化范围,实时在线监控IGBT温度。
如上述方案的任一可能实现方式,进一步地,所述采样单元还用于根据对于高压侧信号采样数量要求的提高,增加采样通道。
(1)本申请实施例通过采用高压MCU的方式,高压MCU单元自带模数转换功能对高压侧信号进行采样管理,极大的简化了高压侧多路采样信号的设计,提高电路的稳定性,增强采样系统的延展性;
(2)本申请实施例通过高压MCU内部数据解码功能,将多路采样的值进行编码并经过单个隔离芯片进行高压侧信号统一隔离传输,节省了大量高低压采样的隔离器件,极大的降低了器件成本;
(3)本申请实施例低压MCU检测端仅通过通讯端口即可完成高压测全部采样信号的接收与监控,节省大量的外设检测资源并简化采样端口的电路设计,增强采样系统的兼容性与稳定性。
附图说明
下面结合附图及实施例作进一步描述:
图1为基于高压MCU的高低压信号采样及传输系统的原理图。
具体实施方式
如图1所示,提供了一种基于高压MCU的高低压信号采样及传输系统,包括采样单元1、高压处理单元2、通讯单元通讯单元3以及低压处理单元4;其中:采样单元1包括母线电压采样模块、相电压检测模块与IGBT温度检测模块,采样单元1用于分别完成对高压侧被测信号调理与检测,产生三路模拟检测信号;采样单元1得到的三路模拟检测信号输送至高压处理单元2。高压处理单元2采用高压MCU,高压MCU用于分别对三路模拟检测信号进行状态监控与模数转换并输出数字信号至通讯单元通讯单元3。通讯单元通讯单元3采用隔离通讯单元,用于将高压MCU模数转换出的三路数字信号输送至低压处理单元4;低压处理单元4采用低压MCU,用于实现高低压采样信号采样与通讯。
具体地,采样单元1包括集成在一起的母线电压采样模块、相电压检测模块和IGBT温度检测模块,采样单元1用于同时实现对母线电压信号、相电压检测信号和IGBT温度信号的采样,并将获得的三路模拟信号传输到高压处理模块
高压处理单元2包括集成在一起的AD转换模块和编码转换模块,高压处理单元2用于对接收的三路模拟检测信号进行模数转换和编码转换获得三路数字信号;经过编码转换的三路数字信号利用单个隔离通讯单元传输到低压处理单元4。可选地,采样单元1完成对高压侧需要进行采样的信号进行信号调理,并统一输送至高压MCU进行处理。采样单元1用于根据系统设计要求进行特定信号的选择,基于控制器功能与安全设计,需要对母线电压采样信号、相电压采样信号以及IGBT温度采样进行采样传输。
可选地,母线电压采样模块由两路采样电路组成,分别连接至直流母线正与直流母线负,用于通过设计不同精度等级的检测电路,实现全电压范围的采样精度要求。
可选地,相电压检测模块用于进行电机初始位置角标定,分别检测逆变器三相电压的输出点与直流母线负之间的电压,并对采样电路端口进行ESD设计。
可选地,IGBT温度检测模块用于对功率模块的温感NTC电阻进行状态监控,将阻值变化转换为电压变化范围,进而实现IGBT温度实时在线监控。
本实施例方案通过采用高压MCU的采样方案,能够对高压侧信号进行直接高压侧采样与模数处理,降低了硬件设计与器件成本。同时可以通过高压侧实时监控信号状态,进行高压侧故障快速保护处理,提高系统的安全等级。
相比于传统单个搭建独立的采样链路方式,采样系统复杂性与采样路数直接相关,改进后的采样方案具有极大的高压侧信号采样适配性,随着后期对于高压侧信号采样数量要求的提高,可以灵活的增加采样通道,增强了采样系统的兼容性与延展性。
上述实施例只为说明本发明的技术构思及特点,其目的在于让熟悉此项技术的人能够了解本发明的内容并据以实施,并不能以此限制本发明的保护范围。凡根据本发明主要技术方案的精神实质所做的修饰,都应涵盖在本发明的保护范围之内。

Claims (6)

  1. 一种基于高压MCU的高低压信号采样及传输系统,其特征在于,包括采样单元、高压处理单元、通讯单元以及低压处理单元;其中:
    所述采样单元,包括母线电压采样模块、相电压检测模块与IGBT温度检测模块,所述采样单元用于分别完成对高压侧被测信号调理与检测,产生三路模拟检测信号;所述采样单元得到的所述三路模拟检测信号输送至所述高压处理单元;
    所述高压处理单元,采用高压MCU,所述高压MCU用于分别对所述三路模拟检测信号进行状态监控与模数转换并输出数字信号至所述通讯单元;
    所述通讯单元,采用隔离通讯单元,用于将高压MCU模数转换出的三路所述数字信号输送至所述低压处理单元;
    所述低压处理单元,采用低压MCU,用于实现高低压采样信号采样与通讯。
  2. 根据权利要求书1所述的基于高压MCU的高低压信号采样及传输系统,其特征在于,
    所述采样单元具体用于根据系统设计要求进行特定信号的选择,基于控制器功能与安全设计,对母线电压采样信号、相电压采样信号以及IGBT温度采样信号进行采样传输。
  3. 根据权利要求书2所述的基于高压MCU的高低压信号采样及传输系统,其特征在于,
    所述母线电压采样模块由两路采样电路组成,分别连接至直流母线正与直流母线负,用于通过设计不同精度等级的检测电路,实现全电压范围的采样精度要求。
  4. 根据权利要求书2所述的基于高压MCU的高低压信号采样及传输系统,其特征在于,
    所述相电压检测模块用于进行电机初始位置角标定,分别检测逆变器三相电压的输出点与直流母线负之间的电压,并对采样电路端口进行ESD设计。
  5. 根据权利要求书2所述的基于高压MCU的高低压信号采样及传输系统,其特征在于,
    所述IGBT温度检测模块用于对功率模块的温感NTC电阻进行状态监控,将阻值变化转换为电压变化范围,实时在线监控IGBT温度。
  6. 根据权利要求书1所述的基于高压MCU的高低压信号采样及传输系统,其特征在于,
    所述采样单元还用于根据对于高压侧信号采样数量要求的提高,增加采样通道。
PCT/CN2020/140695 2020-07-24 2020-12-29 一种基于高压mcu的高低压信号采样及传输系统 WO2022016812A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/697,680 US11959948B2 (en) 2020-07-24 2022-03-17 High voltage signal and low voltage signal sampling and transmission system based on high voltage MCU

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010722671.4 2020-07-24
CN202010722671.4A CN111856126A (zh) 2020-07-24 2020-07-24 一种基于高压mcu的高低压信号采样及传输系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/697,680 Continuation US11959948B2 (en) 2020-07-24 2022-03-17 High voltage signal and low voltage signal sampling and transmission system based on high voltage MCU

Publications (1)

Publication Number Publication Date
WO2022016812A1 true WO2022016812A1 (zh) 2022-01-27

Family

ID=72950980

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/140695 WO2022016812A1 (zh) 2020-07-24 2020-12-29 一种基于高压mcu的高低压信号采样及传输系统

Country Status (3)

Country Link
US (1) US11959948B2 (zh)
CN (1) CN111856126A (zh)
WO (1) WO2022016812A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111856126A (zh) 2020-07-24 2020-10-30 一巨自动化装备(上海)有限公司 一种基于高压mcu的高低压信号采样及传输系统
CN113791562A (zh) * 2021-09-13 2021-12-14 刘丽丽 电机控制器高边igbt温度及母线电压采样的数字实现方法
CN114228498B (zh) * 2021-11-10 2024-03-22 北京特种机械研究所 一种电动汽车高压配电母线电压测量装置
CN115097191A (zh) * 2022-07-06 2022-09-23 东风汽车集团股份有限公司 一种电驱动系统的参数采样方法及电路

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101442211A (zh) * 2008-07-08 2009-05-27 奇瑞汽车股份有限公司 一种分布式电池管理系统中的监测装置及监测方法
CN103204081A (zh) * 2013-04-08 2013-07-17 安徽江淮汽车股份有限公司 一种电动汽车的电机控制系统及方法
US20150171487A1 (en) * 2013-12-12 2015-06-18 Denso Corporation Monitoring unit and monitoring device of battery pack
CN204422720U (zh) * 2015-02-13 2015-06-24 广州汽车集团股份有限公司 电动汽车高压系统及其继电器状态检测装置
CN107797076A (zh) * 2017-12-12 2018-03-13 杭州电子科技大学 一种基于隔离耦合器件的汽车电池电流电压检测设备
CN210155198U (zh) * 2019-06-01 2020-03-17 闪渡新能源科技(上海)有限公司 车用控制器高压采集电路
CN111856126A (zh) * 2020-07-24 2020-10-30 一巨自动化装备(上海)有限公司 一种基于高压mcu的高低压信号采样及传输系统

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202384747U (zh) * 2011-12-01 2012-08-15 昆明英派尔科技有限公司 一种智能电机保护控制器
CN203894319U (zh) * 2014-04-14 2014-10-22 苏州汇川技术有限公司 一种隔离采样系统
CN204631129U (zh) * 2015-05-20 2015-09-09 梧州学院 一种电力谐波16通道信号输入同步采样转换采集装置
GB201809915D0 (en) * 2018-06-18 2018-08-01 Rolls Royce Plc Health monitoring and failure prognosis of power electronics device
CN112345902A (zh) * 2020-10-28 2021-02-09 一巨自动化装备(上海)有限公司 一种实现电压均衡的绝缘检测电路

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101442211A (zh) * 2008-07-08 2009-05-27 奇瑞汽车股份有限公司 一种分布式电池管理系统中的监测装置及监测方法
CN103204081A (zh) * 2013-04-08 2013-07-17 安徽江淮汽车股份有限公司 一种电动汽车的电机控制系统及方法
US20150171487A1 (en) * 2013-12-12 2015-06-18 Denso Corporation Monitoring unit and monitoring device of battery pack
CN204422720U (zh) * 2015-02-13 2015-06-24 广州汽车集团股份有限公司 电动汽车高压系统及其继电器状态检测装置
CN107797076A (zh) * 2017-12-12 2018-03-13 杭州电子科技大学 一种基于隔离耦合器件的汽车电池电流电压检测设备
CN210155198U (zh) * 2019-06-01 2020-03-17 闪渡新能源科技(上海)有限公司 车用控制器高压采集电路
CN111856126A (zh) * 2020-07-24 2020-10-30 一巨自动化装备(上海)有限公司 一种基于高压mcu的高低压信号采样及传输系统

Also Published As

Publication number Publication date
CN111856126A (zh) 2020-10-30
US20220206045A1 (en) 2022-06-30
US11959948B2 (en) 2024-04-16

Similar Documents

Publication Publication Date Title
WO2022016812A1 (zh) 一种基于高压mcu的高低压信号采样及传输系统
CN102298092B (zh) 电动汽车的动力电池绝缘电阻检测方法及装置
CN103323646B (zh) 一种电动汽车用电流传感器及其检测方法
CN108099609A (zh) 一种绝缘检测电路
CN106405249A (zh) 一种电动汽车绝缘电阻的检测电路及检测方法
CN104237624B (zh) 一种电动汽车直流高压传感器及其采样方法
CN103644975A (zh) 多通道温度采集装置
CN104407230A (zh) 用于高压套管的频域介电谱测量装置
CN102854372B (zh) 高压母线电流的检测装置和电池管理系统
CN106018925A (zh) 直流系统智能传感器
CN102710248A (zh) 一种电压隔离采集电路
CN108761297B (zh) 一种基于高频信号的干式空心电抗器局部放电故障在线监测仪
CN207516439U (zh) 交流电采集模块及检测设备
CN105511351A (zh) 工业现场can总线隔离数据采集模块
CN205507011U (zh) 基于dsp的变压器局部放电在线监测设备
CN210895121U (zh) 一种汽车诊断设备及系统
CN209589291U (zh) 温度采样电路及辅助变流器系统
CN112557943A (zh) 一种基于双电流互感器的低压开关系统
CN105806901A (zh) 一种用于测试高压开关组件湿度的装置
CN206490417U (zh) 一种电、水、气、热多表集抄采集器M‑Bus接口过载保护电路
CN204631186U (zh) 一种三相三线供电线路失压计时仪
CN220773708U (zh) 一种非独立测温式电气火灾监控探测器
CN218822802U (zh) 一种功率模块温度巡检系统
CN211123710U (zh) 数据采集装置及供电装置
CN208887841U (zh) 一种传感器压力校准装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20946079

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20946079

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 04.08.2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20946079

Country of ref document: EP

Kind code of ref document: A1