WO2022016732A1 - 输电线路微风振动感知装置及方法、输电线路微风振动预警装置及方法 - Google Patents
输电线路微风振动感知装置及方法、输电线路微风振动预警装置及方法 Download PDFInfo
- Publication number
- WO2022016732A1 WO2022016732A1 PCT/CN2020/125252 CN2020125252W WO2022016732A1 WO 2022016732 A1 WO2022016732 A1 WO 2022016732A1 CN 2020125252 W CN2020125252 W CN 2020125252W WO 2022016732 A1 WO2022016732 A1 WO 2022016732A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- ground wire
- wire
- vibration
- sensor
- pressure
- Prior art date
Links
- 230000005540 biological transmission Effects 0.000 title claims abstract description 65
- 238000000034 method Methods 0.000 title claims abstract description 42
- 238000005452 bending Methods 0.000 claims abstract description 77
- 238000012545 processing Methods 0.000 claims abstract description 61
- 238000006073 displacement reaction Methods 0.000 claims abstract description 48
- 230000001133 acceleration Effects 0.000 claims abstract description 41
- 238000004891 communication Methods 0.000 claims abstract description 17
- 239000000725 suspension Substances 0.000 claims description 29
- 238000005259 measurement Methods 0.000 claims description 25
- 238000004364 calculation method Methods 0.000 claims description 24
- 238000003860 storage Methods 0.000 claims description 15
- 239000012528 membrane Substances 0.000 claims description 10
- 238000005070 sampling Methods 0.000 claims description 8
- 229910000838 Al alloy Inorganic materials 0.000 claims description 6
- 239000011241 protective layer Substances 0.000 claims description 6
- 239000011248 coating agent Substances 0.000 claims description 5
- 238000000576 coating method Methods 0.000 claims description 5
- 239000010410 layer Substances 0.000 claims description 5
- 229920001296 polysiloxane Polymers 0.000 claims description 4
- 238000003851 corona treatment Methods 0.000 claims description 3
- 229910001256 stainless steel alloy Inorganic materials 0.000 claims description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 2
- 239000013013 elastic material Substances 0.000 claims description 2
- 239000000741 silica gel Substances 0.000 claims description 2
- 229910002027 silica gel Inorganic materials 0.000 claims description 2
- 239000004411 aluminium Substances 0.000 claims 1
- 230000001360 synchronised effect Effects 0.000 abstract description 7
- 238000012544 monitoring process Methods 0.000 abstract description 6
- 230000004044 response Effects 0.000 description 9
- 238000010586 diagram Methods 0.000 description 8
- 238000004590 computer program Methods 0.000 description 7
- 238000011156 evaluation Methods 0.000 description 5
- 238000004422 calculation algorithm Methods 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 230000006870 function Effects 0.000 description 4
- 239000004020 conductor Substances 0.000 description 3
- 238000012502 risk assessment Methods 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 230000003712 anti-aging effect Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 description 1
- -1 polytetrafluoroethylene Polymers 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01D—MEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
- G01D21/00—Measuring or testing not otherwise provided for
- G01D21/02—Measuring two or more variables by means not covered by a single other subclass
Definitions
- the present disclosure relates to the technical field of breeze vibration monitoring of overhead transmission lines, for example, to a transmission line breeze vibration sensing device and method, and a transmission line breeze vibration early warning device and method.
- the breeze vibration amplitude exceeds the allowable value, it will lead to fatigue damage of some circuit components, such as the fatigue broken strands of the ground wire, and the fatigue damage of the fittings and spacers.
- some circuit components such as the fatigue broken strands of the ground wire, and the fatigue damage of the fittings and spacers.
- the vibration energy of the wind to the ground wire is greatly increased, and the vibration intensity of the ground wire is much higher than that of the ordinary span.
- the vibration intensity of the line is serious. Once the ground wire is fatigued and broken, it will bring serious harm to the safe operation of the power grid, and sometimes even the entire line needs to be replaced.
- the problem of breeze vibration of transmission lines has become more prominent, which has seriously threatened the safe operation of transmission lines (such as UHV and large-span lines).
- Aerodynamic load, structural mechanical characteristics, and vibration are the main parameters to carry out the evaluation of the transmission line's breeze vibration state, risk assessment, and life prediction.
- the vibration level is mainly evaluated by measuring the relative bending amplitude at a distance of 89 mm from the separation point of the wire clip of the ground wire.
- the sensing device for measuring the breeze vibration of the ground wire (or called the transmission line breeze vibration sensing device) usually measures the breeze vibration of the ground wire by the front-loading method and the flip-chip method.
- the sensors for measuring vibration mainly include the following: Cantilever beam Resistance strain sensor, acceleration sensor, fiber grating sensor, laser sensor.
- the transmission line breeze vibration sensing device plays an effective supporting role for short-term state assessment. Due to the lack of synchronous measurement methods for aerodynamic load and vibration response, it is impossible to establish the correlation between the external excitation and response of the conductor in the actual operating environment. There are limitations in lifespan prediction.
- the present disclosure provides a transmission line breeze vibration sensing device, comprising: a wire clip with a hollow cylindrical structure, a vibration sensor, a plurality of pressure sensors, and a data processing device;
- the wire clip is arranged to be suspended on the ground wire of the transmission line
- the wire clip is connected with the data processing device
- the vibration sensor and the plurality of pressure sensors are all disposed in the wire clip, and are all connected in communication with the data processing device;
- the data processing device is configured to process the ground wire surface pressure collected by each pressure sensor and the ground wire vibration acceleration collected by the vibration sensor to obtain the ground wire aerodynamic force, the ground wire vibration displacement, and the ground wire vibration. Frequency and dynamic bending strain of the ground wire, and send the obtained ground wire aerodynamic force, ground wire vibration displacement, ground wire vibration frequency and ground wire dynamic bending strain to the remote server.
- the present disclosure also provides a transmission line breeze vibration sensing method, comprising:
- the pressure sensor in the wire clip of the transmission line ground wire breeze vibration sensing device measures the surface pressure of the ground wire, and the vibration sensor in the wire clip measures the vibration acceleration of the ground wire;
- the data processing device of the transmission line ground wire breeze vibration sensing device processes the ground wire surface pressure collected by the pressure sensor and the ground wire vibration acceleration collected by the vibration sensor to obtain the ground wire aerodynamic force, ground wire Wire vibration displacement, ground wire vibration frequency and ground wire dynamic bending strain, and send the obtained ground wire aerodynamic force, ground wire vibration displacement, ground wire vibration frequency and ground wire dynamic bending strain to the remote server .
- the present disclosure also provides a transmission line breeze vibration early warning device, comprising: a wire clip with a hollow cylindrical structure, a vibration sensor, a plurality of pressure sensors, and a data processing device;
- the wire clip is arranged to be suspended on the ground wire of the transmission line
- the wire clip is connected with the data processing device
- the vibration sensor and the plurality of pressure sensors are all disposed in the wire clip, and are all connected in communication with the data processing device;
- the data processing device is configured to process the ground wire surface pressure collected by each pressure sensor and the ground wire vibration acceleration collected by the vibration sensor to obtain the ground wire aerodynamic force, the ground wire vibration displacement, and the ground wire vibration.
- Frequency and dynamic bending strain of the ground wire determine whether each parameter in the vibration frequency of the ground wire and the dynamic bending strain of the ground wire exceeds the set threshold corresponding to the parameter, and respond to the vibration of the ground wire
- the present disclosure also provides a transmission line breeze vibration early warning method, including:
- the pressure sensor in the wire clip of the transmission line ground wire breeze vibration early warning device measures the surface pressure of the ground wire, and the vibration sensor in the wire clip measures the vibration acceleration of the ground wire;
- the data processing device of the transmission line ground wire breeze vibration early warning device processes the ground wire surface pressure collected by the pressure sensor and the ground wire vibration acceleration collected by the vibration sensor to obtain the ground wire aerodynamic force and ground wire.
- the data processing device determines whether each parameter in the vibration frequency of the ground wire and the dynamic bending strain of the ground wire exceeds the set threshold corresponding to the parameter, and responds to the vibration frequency of the ground wire and the When at least one parameter in the dynamic bending strain of the conducting wire exceeds the set threshold corresponding to the at least one parameter, an alarm signal is generated;
- the data processing device sends the aerodynamic force of the ground wire, the vibration displacement of the ground wire, the vibration frequency of the ground wire, and the dynamic bending strain of the ground wire to a remote server or sends the ground wire to a remote server.
- the aerodynamic force, the vibration displacement of the ground wire, the vibration frequency of the ground wire, the dynamic bending strain data of the ground wire and the alarm signal are sent to the remote server.
- FIG. 1 is a structural diagram of a transmission line ground wire breeze vibration sensing early warning device provided by an embodiment
- Fig. 2 is a sectional view of A-A in Fig. 1 provided by an embodiment
- Fig. 3 is a kind of coordinate definition diagram provided by an embodiment
- FIG. 4 is a flowchart of a method for sensing breeze vibration of a ground wire of a transmission line provided by an embodiment
- FIG. 5 is a flow chart of a method for early warning of breeze vibration of a ground wire of a transmission line according to an embodiment.
- the present disclosure provides a transmission line breeze vibration sensing device, as shown in FIG. 1 , comprising: a wire clamp 1 with a hollow cylindrical structure, a vibration sensor 7 and a plurality of pressure sensors 6 arranged in the wire clamp 1 and data Processing device; the wire clip 1 is suspended on the ground wire of the transmission line; the wire clip 1 is connected with the data processing device; the vibration sensor 7 and a plurality of pressure sensors 6 are connected in communication with the data processing device The ground wire surface pressure collected by the pressure sensor 6 and the ground wire vibration acceleration collected by the vibration sensor 7 are processed by the data processing device to obtain the ground wire aerodynamic force, vibration displacement, vibration frequency and dynamic bending strain and sent to the remote end server.
- the cross-section of the wire clip 1 is a circular ring structure, wherein the diameter of the inner ring matches the outer diameter of the ground wire, the outer ring is provided with a plurality of pressure measuring holes 3 , and the vibration sensor 7 and a plurality of pressure sensors 6 are arranged between the inner ring and the outer ring, and each pressure sensor 6 corresponds to a pressure measuring hole 3, and the vibration sensor 7 is arranged close to the inner ring.
- the data processing device includes: a suspension box 2 , an integrated circuit 8 , a battery 9 and a solar cell panel 10 ; the suspension box 2 is a hollow cylindrical structure, and the solar cell panel 10 is fixed to the cylindrical shape of the suspension box 2 .
- the integrated circuit 8 and the battery 9 are arranged in the cylindrical structure of the suspension box 2; the wire clip 1 is fixedly connected to the suspension box 2; the integrated circuit 8 is connected to the pressure
- the sensor 6 is connected to the vibration sensor 7 in communication, and is set to process the ground wire surface pressure collected by the pressure sensor 6 and the ground wire vibration acceleration collected by the vibration sensor 7 to obtain the ground wire aerodynamic force, vibration displacement, vibration frequency and dynamic bending.
- the integrated circuit 8 is connected with the battery 9 ; the battery 9 is connected with the solar panel 10 .
- the integrated circuit 8 includes: a data acquisition module, a central processing unit (Central Processing Unit, CPU) calculation module, a storage module and a communication module; the data acquisition module, the CPU calculation module and the communication module are all connected with the storage module; the The data acquisition module is connected with the pressure sensor 6 and the vibration sensor 7, and collects the ground wire surface pressure measured by the pressure sensor 6 and the ground wire vibration acceleration measured by the vibration sensor 7; The ground wire surface pressure and the ground wire vibration acceleration measured by the vibration sensor 7 calculate the ground wire aerodynamic force, vibration displacement, vibration frequency and dynamic bending strain; the storage module acquires and stores the pressure sensor 6 measurement collected by the data acquisition module The surface pressure of the ground wire, the ground wire vibration acceleration measured by the vibration sensor 7, and the ground wire aerodynamic force, vibration displacement, vibration frequency and dynamic bending strain calculated by the CPU calculation module; The data is sent to the remote server.
- CPU Central Processing Unit
- the aerodynamic force of the ground wire includes: the average resistance per unit length of the wire in the axial direction and the average lift force per unit length of the wire in the axial direction.
- F D is the average resistance per unit length of the wire axis
- P i (t) is the pressure time history of the measuring point at the measuring point i
- N is the total number of spanwise measuring points
- T is the total sampling time
- n is the measuring point i
- r is the radius of the circumscribed circle of the wire (m)
- ⁇ is the angle of the measuring point i.
- F f is the average lift force per unit length in the axial direction of the wire
- P i (t) is the pressure time history of the measuring point at the measuring point i
- N is the total number of spanwise measuring points
- T is the total sampling time
- n is the measuring point i
- r is the radius of the circumscribed circle of the wire (m)
- ⁇ is the angle of the measuring point i.
- ⁇ is the dynamic bending strain of the wire at the suspension clamp and the anti-vibration hammer clamp
- H is the running tension of the wire
- EI min is the minimum bending stiffness of the wire
- a is the distance from the vibration sensor to the outlet of the wire clamp
- d is the maximum wire The outer strand diameter
- A is the relative amplitude value measured by the instrument.
- the vibration sensor 7 is a 9-axis Micro-Electromechanical Systems (MEMS) vibration sensor combined with an accelerometer, a gyroscope or a magnetic sensor.
- MEMS Micro-Electromechanical Systems
- the wire clip 1 further includes: a waterproof and breathable membrane and a silicone structure; the waterproof and breathable membrane is fixedly connected to the pressure measuring hole 3, and the pressure sensor 6 is detachably connected to the waterproof and breathable membrane through the silicone structure.
- the wire clamp 1 further includes: a bolt and a rotating shaft 11; the bolts and the rotating shaft 11 are both arranged between the inner ring and the outer ring of the circular ring structure, and the hollow cylindrical structure of the wire clamp 1 is radially surrounded. Divided into a first part and a second part, one end of the first part is connected with the suspension box 2, the other end of the first part is connected with one end of the second part through the rotating shaft 11, and the other end of the second part is connected with the suspension box 2 through bolts.
- the wire clip 1 further includes: an elastic protection layer 5; the elastic protection layer 5 is arranged between the inner ring and the ground wire; The elastic protective layer 5 is embedded with an aluminum alloy profile.
- the surface of the integrated circuit board 8 is provided with a nano-hydrophobic coating.
- the device further comprises: a connecting piece 4 of a hollow structure and a connecting wire arranged in the hollow structure; the wire clip 1 is connected to the hanging box 2 through the connecting piece 4; the data acquisition module is connected to the The pressure sensor 6 and the vibration sensor 7 are connected by connecting wires arranged in the hollow structure.
- the number of the pressure measuring holes 3 is not less than 8.
- the inner diameter of the pressure measuring hole 3 is set according to the size of the pressure sensor 6 and should not be greater than 1 mm.
- the material of the wire clip 1 is anodized aluminum alloy or stainless steel alloy.
- the corners of the device all adopt arc structures and are treated with anti-corona treatment.
- the transmission line breeze vibration sensing device includes: a ring-shaped hollow wire clip 1 and a data processing device, the wire clip 1 is provided with a pressure measuring hole 3, and the wire clip 1 is provided with a pressure sensor 6 and a vibration sensor 7,
- the suspension box 2 of the data processing device is provided with an integrated circuit 8 , a battery 9 and a solar panel 10 .
- the hollow cylindrical structure of the clip 1 is divided into a 1/3 clip part and a 2/3 clip part in the radial direction. Among them, one end of the 2/3 wire clip part is connected to the suspension box 2, the other end is connected to the 1/3 wire clip part by the shaft 11, and the other end of the 1/3 wire clip part is connected to the suspension box 2 by bolts.
- the rotating shaft 11 adopts a silicone structure for waterproof treatment.
- a pressure measuring hole 3 is reserved on the clamp 1, and the inner diameter of the hole is 1mm.
- At least eight of the pressure measuring holes 3 are symmetrically arranged up and down, left and right.
- the connecting piece 4 between the wire clip 1 and the suspension box 2 is hollowed out, and the opening position and the pressure measuring hole 3 are in the same plane, so as to prevent the device from interfering with the flow field around the structure itself.
- the length of the connecting piece 4 between the wire clip 1 and the suspension box 2 is not less than 0.75 times the diameter of the ground wire.
- the part of the wire clip 1 in direct contact with the ground wire is provided with an elastic protective layer 5 .
- the pressure sensor 6 is connected to the pressure measuring hole 3 through a waterproof breathable membrane and a silica gel structural member, and is set to measure the wind pressure on the surface of the ground wire.
- the waterproof breathable membrane is set to prevent moisture from entering the inside of the unit.
- the waterproof and breathable membrane is made of polytetrafluoroethylene.
- the clamp 1 contains a vibration sensor 7, which is arranged to measure the vibration response of the ground wire.
- the vibration sensor 7 is a 9-axis MEMS vibration sensor combined with an accelerometer, a gyroscope and a magnetic sensor.
- the data processing device includes an integrated circuit board 8 and a battery pack 9 .
- the integrated circuit board 8 is composed of a data acquisition unit, a CPU calculation module, a memory card, and a communication module, and is configured to collect, store, calculate and communicate sensor data.
- the CPU calculation module is written with an algorithm for solving the displacement and dynamic bending strain of the ground wire according to the measured acceleration, and an algorithm for identifying aerodynamic force and vibration frequency based on the surface pressure of the ground wire.
- the surface of the integrated circuit board 8 has a nano-hydrophobic coating.
- the nano-hydrophobic coating is formed by plasma-assisted chemical vapor deposition.
- the outer surface of the suspension box 2 is covered by a solar panel 8, which is provided for the power supply of the device.
- All corners of the device are in the form of arcs and are treated with anti-corona treatment.
- Units are made of anodized aluminum or stainless steel alloys.
- the elastic protective layer 5 is made of anti-aging and anti-corrosion elastic materials and is embedded in an aluminum alloy profile.
- the surface pressure of the ground wire measured by the pressure sensor is decomposed according to the x-axis and y-axis in the cross-section, weighted according to the subordinate arc length of the pressure measuring point, and the unit axial wire axis is obtained by integrating along the x-axis and y-axis respectively.
- the average resistance per unit length and the average lift per unit length in the axial direction of the wire; the calculation formula of the average resistance per unit length in the axial direction of the wire is as follows:
- F D is the average resistance per unit length of the wire axis
- P i (t) is the pressure time history of the measuring point at the measuring point i
- N is the total number of spanwise measuring points
- T is the total sampling time
- n is the measuring point i
- r is the radius of the circumscribed circle of the wire (m)
- ⁇ is the angle of the measuring point i.
- F f is the average lift force per unit length in the axial direction of the wire
- P i (t) is the pressure time history of the measuring point at the measuring point i
- N is the total number of spanwise measuring points
- T is the total sampling time
- n is the measuring point i
- r is the radius of the circumscribed circle of the wire (m)
- ⁇ is the angle of the measuring point i.
- the fast Fourier transform is performed on the average lift time history per unit length of the above-mentioned wire, and the amplitude is normalized to obtain the lift spectrum curve.
- the frequency corresponding to the maximum amplitude in the lift spectrum curve is the ground wire breeze vibration frequency.
- the acceleration signal is converted into a three-dimensional coordinate system composed of the axial direction and the cross section of the ground wire; the ground wire vibration acceleration signal measured by the acceleration sensor is integrated once to obtain the ground wire Vibration velocity, quadratic integration to get the ground wire vibration displacement.
- the relative amplitude value is approximately equal to the vibration displacement, for example, at 89mm from the outlet of the suspension clamp.
- the relative amplitude value is equal to the difference in amplitude between the two devices.
- the dynamic bending strain of the conductor is calculated according to the following relationship between the amplitude and the dynamic bending strain:
- ⁇ is the dynamic bending strain (10 -6 cm/cm) of the wire at the suspension clamp and the anti-vibration hammer clamp, expressed as microstrain
- H is the running tension of the wire
- EI min is the minimum bending stiffness of the wire
- a represents The distance between the vibration sensor and the outlet of the wire clip is generally 89mm
- d is the outermost strand diameter of the wire
- A is the relative amplitude value (Peak-to-Peak, PP) measured by the instrument.
- the present disclosure overcomes the problems in the synchronous measurement technology of ground wire surface pressure and vibration amplitude, and realizes edge analysis and early warning evaluation of aerodynamic load, vibration response, wake vortex detachment characteristics, and ground wire sag.
- the transmission line breeze vibration sensing device provided by the present disclosure realizes the simultaneous monitoring and early warning evaluation of the ground wire aerodynamic load and the breeze vibration response, which is the disaster warning and early warning of the transmission line ground wire breeze vibration.
- Condition assessment, risk assessment and life prediction provide more complete basic data.
- the present disclosure considers the waterproof treatment of the device, and performs multi-layer waterproof treatment on the device by adopting the waterproof breathable membrane technology and the nano-hydrophobic coating technology.
- the present disclosure provides a transmission line breeze vibration sensing method, as shown in FIG. 4 , including:
- Step 110 install the transmission line ground wire breeze vibration sensing device on the transmission line ground wire.
- Step 120 measure the surface pressure of the ground wire by using a pressure sensor disposed in the wire clip of the transmission line ground wire breeze vibration sensing device, and measure the vibration acceleration of the ground wire by using the vibration sensor in the wire clip.
- Step 130 using the data processing device of the transmission line ground wire breeze vibration sensing device to process the ground wire surface pressure collected by the pressure sensor and the ground wire vibration acceleration collected by the vibration sensor to obtain the ground wire aerodynamic force, vibration displacement, vibration
- the frequency and dynamic bending strain are sent to the remote server.
- the bending strain is sent to the remote server, including:
- the data acquisition module of the integrated circuit in the data processing device collects the surface pressure of the ground wire measured by the pressure sensor and the vibration acceleration of the ground wire measured by the vibration sensor; the CPU calculation module of the integrated circuit collects the ground wire measured by the pressure sensor according to the ground wire.
- the surface pressure and vibration acceleration of the ground wire measured by the vibration sensor are used to calculate the ground wire aerodynamic force, vibration displacement, vibration frequency and dynamic bending strain;
- the storage module of the integrated circuit acquires and stores the pressure sensor measured by the data acquisition module.
- the surface pressure of the ground wire, the vibration acceleration of the ground wire measured by the vibration sensor, and the aerodynamic force, vibration displacement, vibration frequency and dynamic bending strain of the ground wire calculated by the CPU calculation module; data is sent to the remote server.
- the aerodynamic force of the ground wire includes: the average resistance per unit length of the wire in the axial direction and the average lift force per unit length of the wire in the axial direction.
- F D is the average resistance per unit length of the wire axis
- P i (t) is the pressure time history of the measuring point at the measuring point i
- N is the total number of spanwise measuring points
- T is the total sampling time
- n is the measuring point i
- r is the radius of the circumscribed circle of the wire (m)
- ⁇ is the angle of the measuring point i.
- F f is the average lift force per unit length in the axial direction of the wire
- P i (t) is the pressure time history of the measuring point at the measuring point i
- N is the total number of spanwise measuring points
- T is the total sampling time
- n is the measuring point i
- r is the radius of the circumscribed circle of the wire (m)
- ⁇ is the angle of the measuring point i.
- ⁇ is the dynamic bending strain of the wire at the suspension clamp and the anti-vibration hammer clamp
- H is the running tension of the wire
- EI min is the minimum bending stiffness of the wire
- a is the distance from the vibration sensor to the outlet of the wire clamp
- d is the maximum wire The outer strand diameter
- A is the relative amplitude value measured by the instrument.
- the vibration sensor adopts a 9-axis MEMS vibration sensor combined with an accelerometer, a gyroscope or a magnetic sensor.
- the device corresponding to its size is mounted on the ground wire.
- the surface pressure of the ground wire is measured by the built-in pressure sensor of the transmission line breeze vibration sensing device provided by the present disclosure, and the vibration acceleration of the ground wire is measured by the built-in vibration sensor, collected by the acquisition unit, and stored in the storage unit.
- the algorithm embedded in the CPU calculation module is used to calculate the aerodynamic force, vibration displacement, vibration frequency and dynamic bending strain of the ground wire, and the calculation results are stored in the storage unit.
- a threshold is set in the dynamic bending strain algorithm in advance. When the dynamic bending strain exceeds the threshold, an early warning message is automatically sent to the remote server.
- the original measurement data and calculation results are regularly packaged and sent to the remote server.
- the embodiment of the method overcomes the problems in the synchronous measurement technology of ground wire surface pressure and vibration amplitude, and realizes edge analysis and early warning evaluation of aerodynamic load, vibration response, wake vortex detachment characteristics, and ground wire sag.
- the transmission line breeze vibration sensing device provided by the present disclosure realizes the synchronous monitoring and early warning evaluation of the ground wire sag, the ground wire aerodynamic load, and the breeze vibration, and provides the transmission line ground wire breeze vibration.
- Vibration disaster warning, state assessment, risk assessment and life prediction provide more complete basic data.
- the present disclosure provides a transmission line breeze vibration early warning device, as shown in FIG. 1 , comprising: a wire clamp 1 with a hollow cylindrical structure, a vibration sensor 7 and a plurality of pressure sensors 6 arranged in the wire clamp 1 and data processing
- the wire clip 1 is suspended on the ground wire of the transmission line; the wire clip 1 is connected with the data processing device; the vibration sensor 7 and a plurality of pressure sensors 6 are connected in communication with the data processing device;
- the data processing device processes the ground wire surface pressure collected by the pressure sensor 6 and the ground wire vibration acceleration collected by the vibration sensor 7 to obtain the ground wire aerodynamic force, vibration displacement, vibration frequency and dynamic bending strain; it is also set to determine Whether each parameter in the vibration frequency and dynamic bending strain exceeds the corresponding set threshold, an alarm signal is generated when at least one parameter in the vibration frequency and dynamic bending strain exceeds the corresponding set threshold respectively;
- the ground wire aerodynamic force, vibration displacement, vibration frequency and dynamic bending strain data are sent to the remote server or set to send the ground wire aerodynamic force
- the device not only realizes the synchronous monitoring of the aerodynamic load of the ground wire and the vibration response of the breeze, but also provides complete basic data for the disaster warning of the breeze vibration of the ground wire of the transmission line. When the dynamic bending strain exceeds the threshold, it will alarm to reduce the damage of the ground wire.
- the present disclosure provides a transmission line breeze vibration early warning method, as shown in FIG. 5 , including:
- Step 210 install a breeze vibration early warning device on the ground wire of the power transmission line on the ground wire of the power transmission line.
- Step 220 measure the surface pressure of the ground wire by using the pressure sensor disposed in the wire clip of the transmission line ground wire breeze vibration early warning device, and measure the vibration acceleration of the ground wire by using the vibration sensor in the wire clip.
- Step 230 using the data processing device of the transmission line ground wire breeze vibration early warning device to process the ground wire surface pressure collected by the pressure sensor and the ground wire vibration acceleration collected by the vibration sensor to obtain the ground wire aerodynamic force, vibration displacement, vibration frequency and dynamic bending strain.
- Step 240 the data processing device judges whether each parameter in the vibration frequency and the dynamic bending strain exceeds the corresponding setting threshold, and generates an alarm when at least one parameter in the vibration frequency and the dynamic bending strain exceeds the corresponding setting threshold respectively. Signal.
- Step 250 the data processing device sends the aerodynamic force, vibration displacement, vibration frequency and dynamic bending strain data of the ground wire to a remote server or transmits the ground wire aerodynamic force, vibration displacement, vibration frequency and dynamic bending data. Strain data and alarm signals are sent to the remote server.
- This method not only realizes the synchronous monitoring of ground wire sag, ground wire aerodynamic load, and breeze vibration, but also provides complete basic data for disaster warning of transmission line ground wire breeze vibration. Alarm when the threshold is exceeded to reduce damage to the ground wire.
- Embodiments of the present application may be provided as methods, systems, or computer program products. Accordingly, the present application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, the present application may employ one or more computer-usable storage media (including but not limited to magnetic disk storage, Compact Disc Read-Only Memory (CD-ROM), optical storage medium) having computer-usable program code embodied therein etc.) in the form of a computer program product implemented thereon.
- CD-ROM Compact Disc Read-Only Memory
- These computer program instructions may also be stored in a computer-readable memory capable of directing a computer or other programmable data processing apparatus to function in a particular manner, such that the instructions stored in the computer-readable memory result in an article of manufacture comprising instruction means, the instructions
- the apparatus implements the functions specified in the flow or flow of the flowcharts and/or the block or blocks of the block diagrams.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Force Measurement Appropriate To Specific Purposes (AREA)
- Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
Abstract
一种输电线路微风振动感知装置及方法、输电线路微风振动预警装置及方法。输电线路微风振动感知装置包括:空心圆柱结构的线夹(1)、振动传感器(7)、多个压力传感器(6)以及数据处理装置;线夹(1)设置为悬挂在输电线路的导地线上;线夹(1)与数据处理装置连接;振动传感器(7)和多个压力传感器(6)均设置于线夹(1)内,且均与数据处理装置通信连接;数据处理装置设置为对每个压力传感器(6)采集的导地线表面压力和振动传感器(7)采集的导地线振动加速度进行处理,得到导地线气动力、导地线振动位移、导地线振动频率和导地线动弯应变并发送给远端服务器。该感知装置实现了导地线弧垂、导地线气动载荷的同步监测,为输电线路导地线微风振动的灾害预警提供了完整的基础数据。
Description
本申请要求在2020年07月23日提交中国专利局、申请号为202010727808.5的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
本公开涉及架空输电线路微风振动监测技术领域,例如涉及一种输电线路微风振动感知装置及方法、输电线路微风振动预警装置及方法。
微风振动幅值若超过允许值,将导致一些线路部件的疲劳损坏,如导地线的疲劳断股,金具、间隔棒的疲劳损坏等。随着特高压、大跨越线路导地线的截面、张力、悬挂点高度及档距的不断增大,导致风对导地线的振动能量大大增加,导地线的振动强度远较普通档距线路的振动强度严重,导地线一旦发生疲劳断线断股,将给电网安全运行带来严重危害,有时甚至需要对全线进行更换。另一方面,随着输电线路的服役年限的增加,输电线路的微风振动问题更趋突出,已经严重威胁输电线路(例如特高压、大跨越线路)的安全运行。
气动载荷、结构力学特征、振动响是开展输电线路微风振动状态评价、风险评估、寿命预测的主要参数。为了掌握输电线路导地线的微风振动情况,主要通过测量距离导地线的线夹分离点89mm处的相对弯曲振幅来评价振动水平。测量导地线的微风振动的感知装置(或称输电线路微风振动感知装置)通常采用正装法和倒装法对导地线的微风振动进行测量,测量振动的传感器主要有以下几种:悬臂梁电阻应变式传感器、加速度传感器、光纤光栅传感器、激光传感器。输电线路微风振动感知装置对于短期状态评估起到了有效的支撑作用。由于缺少气动载荷及振动响应量的同步测量手段,无法建立导地线在实际运行环境状态下外激励与响应的相关关系,输电线路微风振动感知装置在输电线路微风振动的灾害预警、风险评估与寿命预测方面存在局限性。
发明内容
本公开提供了一种输电线路微风振动感知装置,包括:空心圆柱结构的线夹、振动传感器、多个压力传感器以及数据处理装置;
所述线夹设置为悬挂在输电线路的导地线上;
所述线夹与所述数据处理装置连接;
所述振动传感器和所述多个压力传感器均设置于所述线夹内,且均与所述数据处理装置通信连接;
所述数据处理装置设置为对每个压力传感器采集的导地线表面压力和所述振动传感器采集的导地线振动加速度进行处理得到导地线气动力、导地线振动位移、导地线振动频率和导地线动弯应变,并将得到的导地线气动力、导地线振动位移、导地线振动频率和导地线动弯应变发送给远端服务器。
本公开还提供了一种输电线路微风振动感知方法,包括:
输电线路导地线微风振动感知装置的线夹内的压力传感器对导地线表面压力进行测量,且所述线夹内的振动传感器对导地线振动加速度进行测量;
所述输电线路导地线微风振动感知装置的数据处理装置对所述压力传感器采集的导地线表面压力和所述振动传感器采集的导地线振动加速度进行处理得到导地线气动力、导地线振动位移、导地线振动频率和导地线动弯应变,并将得到的导地线气动力、导地线振动位移、导地线振动频率和导地线动弯应变发送到远端服务器。
本公开还提供了一种输电线路微风振动预警装置,包括:空心圆柱结构的线夹、振动传感器、多个压力传感器以及数据处理装置;
所述线夹设置为悬挂在输电线路的导地线上;
所述线夹与所述数据处理装置连接;
所述振动传感器和所述多个压力传感器均设置于所述线夹内,且均与所述数据处理装置通信连接;
所述数据处理装置设置为对每个压力传感器采集的导地线表面压力和所述振动传感器采集的导地线振动加速度进行处理得到导地线气动力、导地线振动位移、导地线振动频率和导地线动弯应变;判断所述导地线振动频率和所述导地线动弯应变中的每个参数是否超过所述参数对应的设定阈值,响应于所述导地线振动频率和所述导地线动弯应变中的至少一个参数分别超过所述至少一个参数对应的设定阈值,则产生报警信号;将所述导地线气动力、所述导地线振动位移、所述导地线振动频率和所述导地线动弯应变数据发送给远端服务器或者设置为将所述导地线气动力、所述导地线振动位移、所述导地线振动频率、所述导地线动弯应变数据和所述报警信号发送给远端服务器。
本公开还提供了一种输电线路微风振动预警方法,包括:
输电线路导地线微风振动预警装置的线夹内的压力传感器对导地线表面压力进行测量,且所述线夹内的振动传感器对导地线振动加速度进行测量;
所述输电线路导地线微风振动预警装置的数据处理装置对所述压力传感器采集的导地线表面压力和所述振动传感器采集的导地线振动加速度进行处理得到导地线气动力、导地线振动位移、导地线振动频率和导地线动弯应变;
所述数据处理装置判断所述导地线振动频率和所述导地线动弯应变中的每个参数是否超过所述参数对应的设定阈值,响应于所述导地线振动频率和所述导地线动弯应变中的至少一个参数分别超过所述至少一个参数对应的设定阈值,则产生报警信号;
所述数据处理装置将所述导地线气动力、所述导地线振动位移、所述导地线振动频率和所述导地线动弯应变发送给远端服务器或者将所述导地线气动力、所述导地线振动位移所述导地线、所述导地线振动频率、所述导地线动弯应变数据和所述报警信号发送给远端服务器。
图1是一实施例提供的一种输电线路导地线微风振动感知预警装置的结构图;
图2是一实施例提供的图1中A-A的剖视图;
图3是一实施例提供的一种坐标定义图;
图4是一实施例提供的一种输电线路导地线微风振动感知方法的流程图;
图5是一实施例提供的一种输电线路导地线微风振动预警方法的流程图。
附图标记:
1-线夹;2-悬挂盒;3-测压孔;4-连接件;5-弹性保护层;6-压力传感器;7-振动传感器;8-集成电路;9-电池;10-太阳能电池板;11-转轴。
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行描述。
实施例1
本公开提供了一种输电线路微风振动感知装置,如图1所示,包括:空心圆柱型结构的线夹1、设置于所述线夹1内的振动传感器7和多个压力传感器6以及数据处理装置;所述线夹1悬挂在输电线路的导地线上;所述线夹1与所述数据处理装置连接;所述振动传感器7和多个压力传感器6与所述数据处理装置通信连接;所述数据处理装置对压力传感器6采集的导地线表面压力和振 动传感器7采集的导地线振动加速度进行处理得到导地线气动力、振动位移、振动频率和动弯应变并发送给远端服务器。
如图2所示,所述线夹1的横切面为圆环结构,其中,内环直径与导地线外径相匹配,外环上设有多个测压孔3,所述振动传感器7和多个压力传感器6均设置于内环与外环之间,且每个压力传感器6对应一个测压孔3,所述振动传感器7靠近内环设置。
所述数据处理装置包括:悬挂盒2、集成电路8、电池9和太阳能电池板10;所述悬挂盒2为空心圆柱型结构,所述太阳能电池板10固定于所述悬挂盒2的圆柱型结构的外表面上,所述集成电路8和电池9设置于所述悬挂盒2的圆柱型结构内;所述线夹1与所述悬挂盒2固定连接;所述集成电路8与所述压力传感器6和振动传感器7通讯连接,设置为对压力传感器6采集的导地线表面压力和振动传感器7采集的导地线振动加速度进行处理得到导地线气动力、振动位移、振动频率和动弯应变并发送给远端服务器;所述集成电路8与所述电池9连接;所述电池9与所述太阳能电池板10连接。
所述集成电路8包括:数据采集模块、中央处理器(Central Processing Unit,CPU)计算模块、存储模块和通讯模块;所述数据采集模块、CPU计算模块和通讯模块均与存储模块连接;所述数据采集模块与所述压力传感器6和振动传感器7连接,采集压力传感器6测量的导地线表面压力和振动传感器7测量的导地线振动加速度;所述CPU计算模块根据压力传感器6测量的导地线表面压力和振动传感器7测量的导地线振动加速度计算导地线气动力、振动位移、振动频率和动弯应变;所述存储模块获取并存储所述数据采集模块采集的压力传感器6测量的导地线表面压力、振动传感器7测量的导地线振动加速度以及CPU计算模块计算的导地线气动力、振动位移、振动频率和动弯应变;所述通讯模块将所述存储模块中的数据发送给远端服务器。
所述导地线气动力包括:导线轴向单位长度平均阻力和导线轴向单位长度平均升力。
所述导线轴向单位长度平均阻力的计算式如下:
式中,F
D为导线轴向单位长度平均阻力,P
i(t)为测点i处的测点压力时程,N为展向测点总数,T为采样总时长,n为测点i与测点i-1的中线和测点i与测点i+1的中线夹角,r为导线外接圆半径(m),θ为测点i的角度。
所述导线轴向单位长度平均升力的计算式如下:
式中,F
f为导线轴向单位长度平均升力,P
i(t)为测点i处的测点压力时程,N为展向测点总数,T为采样总时长,n为测点i与测点i-1的中线和测点i与测点i+1的中线夹角,r为导线外接圆半径(m),θ为测点i的角度。
所述导地线的动弯应变的计算式如下:
式中,ε为悬垂线夹、防振锤线夹处导线的动弯应变;H为导线运行张力;EI
min为导线最小弯曲刚度;a表示振动传感器距离线夹出口的距离;d为导线最外层股径;A为仪器测取得相对振幅值。
所述振动传感器7采用加速度计、陀螺仪或磁传感器复合的9轴微电子机械系统(Micro-Electromechanical Systems,MEMS)振动传感器。
所述线夹1还包括:防水透气膜和硅胶结构件;所述防水透气膜与测压孔3固定连接,所述压力传感器6通过所述硅胶结构件与所述防水透气膜可拆卸连接。
所述线夹1还包括:螺栓和转轴11;所述螺栓和转轴11均设置于所述圆环结构的内环和外环之间,所述线夹1的空心圆柱型结构沿径向被分成第一部分和第二部分,第一部分的一端与悬挂盒2连接,第一部分的另一端与第二部分的一端通过转轴11连接,第二部分的另一端与悬挂盒2通过螺栓连接。
所述线夹1还包括:弹性保护层5;所述弹性保护层5设置于所述内环与导地线间;所述弹性保护层5采用耐老化、耐腐蚀弹性材料,并在所述弹性保护层5内嵌入铝合金型板。
所述集成电路板8的表面设有纳米疏水涂层。
本装置还包括:镂空结构的连接件4和设置于所述镂空结构内的连接线;所述线夹1通过所述连接件4与所述悬挂盒2连接;所述数据采集模块与所述压力传感器6和振动传感器7通过设置于所述镂空结构内的连接线连接。
所述测压孔3的数量不少于8。
所述测压孔3的内径为根据所述压力传感器6的大小设定,不得大于1mm。
所述线夹1的材料采用阳极氧化铝或不锈钢合金。
所述装置的转角都采用圆弧结构,并做防电晕处理。
一实施例中,输电线路微风振动感知装置包括:圆环型空心线夹1及数据处理装置,线夹1上设有测压孔3,线夹1内设有压力传感器6和振动传感器7,数据处理装置的悬挂盒2设有集成电路8、电池9和太阳能板10。
线夹1的空心圆柱型结构沿着径向被分成1/3线夹部分和2/3线夹部分。其中,2/3线夹部分的一端连接于悬挂盒2,另一端采用转轴11与1/3线夹部分相连,1/3线夹部分的另一端采用螺栓与悬挂盒2相连。
转轴11采用硅胶结构件进行防水处理。
线夹1上预留测压孔3,孔内径1mm。
所述测压孔3上下左右对称布置至少8个。
线夹1与悬挂盒2之间的连接件4镂空设计,开孔位置与测压孔3处于同一平面内,避免装置干扰结构本身的绕流场。
所述线夹1与悬挂盒2之间的连接件4的长度不小于0.75倍的导地线直径。
线夹1与导地线直接接触部分,有一层弹性保护层5。
压力传感器6通过防水透气膜、硅胶结构件与测压孔3相连,设置为测量导地线表面风压。
防水透气膜设置为防止水分进入装置内部。一实施例中,防水透气膜选用聚四氟乙烯材料制成。
线夹1内含有振动传感器7,设置为导地线振动响应的测量。一实施例中,振动传感器7为加速度计、陀螺仪和磁传感器复合的9轴MEMS振动传感器。
数据处理装置内含有集成电路板8和电池组9。
所述集成电路板8,由数据采集单元、CPU计算模块、存储卡、通讯模块构成,设置为传感器数据的采集、存储、运算与通讯。
所述CPU计算模块内写入了根据所测量加速度求解导地线位移及动弯应变的算法,基于导地线表面压力识别气动力及振动频率的算法。
集成电路板8的表面有纳米疏水涂层。一实施例中,纳米疏水涂层通过等离子体辅助化学气相沉积形成。
悬挂盒2外表面由太阳能板8覆盖,设置为装置的供电。
装置的所有转角都采用圆弧形式,经防电晕处理。
装置采用阳极氧化铝或不锈钢合金材料制成。
弹性保护层5,采用耐老化、耐腐蚀弹性材料且其体内嵌入铝合金型板。
如图3所示,将压力传感器测量的导地线表面压力按照截面内的x轴和y轴分解,根据测压点从属弧长加权,分别沿x轴和y轴积分获得单位轴向导线轴向单位长度平均阻力和导线轴向单位长度平均升力;所述导线轴向单位长度平均阻力的计算式如下:
式中,F
D为导线轴向单位长度平均阻力,P
i(t)为测点i处的测点压力时程,N为展向测点总数,T为采样总时长,n为测点i与测点i-1的中线和测点i与测点i+1的中线夹角,r为导线外接圆半径(m),θ为测点i的角度。
所述导线轴向单位长度平均升力的计算式如下:
式中,F
f为导线轴向单位长度平均升力,P
i(t)为测点i处的测点压力时程,N为展向测点总数,T为采样总时长,n为测点i与测点i-1的中线和测点i与测点i+1的中线夹角,r为导线外接圆半径(m),θ为测点i的角度。
对上述导线轴向单位长度平均升力时程进行快速傅里叶变换,对幅值归一化处理,获得升力频谱曲线,升力频谱曲线中最大幅值对应的频率即为导地线微风振动频率。
根据加速度传感器中陀螺仪测到的角度,将加速度信号换算到以导地线轴向和横截面构成的三维坐标系中;对加速度传感器测量的导地线振动加速度信号进行一次积分获得导地线振动速度,二次积分得到导地线振动位移。
当在导地线上只安装一个该装置时,相对振幅值近似等于振动位移,例如,安装于悬垂线夹出口89mm处。当在导地线上安装两个该装置时,相对振幅值等于两个装置的振幅差值。
根据以下振幅与动弯应变的关系,计算导地线动弯应变:
P=(H/EI
min)
0.5
式中,ε为悬垂线夹、防振锤线夹处导线的动弯应变(10
-6cm/cm),以微应变表示;H为导线运行张力;EI
min为导线最小弯曲刚度;a表示振动传感器距离线夹出口的距离,一般取89mm;d为导线最外层股径;A为仪器测取得相对振幅值(峰-峰(Peak-to-Peak,P-P))。
本公开攻克了导地线表面压力、振动幅值的同步测量技术中的问题,实现了气动载荷、振动响应、尾流涡脱特征、导地线弧垂的边缘分析与预警评估。与传统装置仅监测振动响应相比,本公开提供的输电线路微风振动感知装置实现了导地线气动载荷、微风振动响应的同步监测与预警评估,为输电线路导地线微风振动的灾害预警、状态评价、风险评估与寿命预测提供了更加完整的基础数据。同时本公开考虑了对装置的防水处理,通过采用防水透气膜技术、纳米疏水涂层技术对装置进行了多层次防水处理。
实施例2
本公开提供了一种输电线路微风振动感知方法,如图4所示,包括:
步骤110,将输电线路导地线微风振动感知装置安装在输电线路的导地线上。
步骤120,利用设置于输电线路导地线微风振动感知装置的线夹内的压力传感器对导地线表面压力进行测量,并利用线夹内的振动传感器对导地线振动加速度进行测量。
步骤130,利用输电线路导地线微风振动感知装置的数据处理装置对压力传感器采集的导地线表面压力和振动传感器采集的导地线振动加速度进行处理得到导地线气动力、振动位移、振动频率和动弯应变并发送到远端服务器。
利用输电线路导地线微风振动感知装置的数据处理装置对压力传感器采集的导地线表面压力和振动传感器采集的导地线振动加速度进行处理得到导地线气动力、振动位移、振动频率和动弯应变并发送到远端服务器,包括:
所述数据处理装置中的集成电路的数据采集模块采集压力传感器测量的导地线表面压力和振动传感器测量的导地线振动加速度;所述集成电路的CPU计算模块根据压力传感器测量的导地线表面压力和振动传感器测量的导地线振动加速度计算导地线气动力、振动位移、振动频率和动弯应变;所述集成电路的存储模块获取并存储所述数据采集模块采集的压力传感器测量的导地线表面压力、振动传感器测量的导地线振动加速度以及CPU计算模块计算的导地线气动力、振动位移、振动频率和动弯应变;所述集成电路的通讯模块定期将所述存储模块中的数据发送给远端服务器。
所述导地线气动力包括:导线轴向单位长度平均阻力和导线轴向单位长度平均升力。
所述导线轴向单位长度平均阻力的计算式如下:
式中,F
D为导线轴向单位长度平均阻力,P
i(t)为测点i处的测点压力时程,N为展向测点总数,T为采样总时长,n为测点i与测点i-1的中线和测点i与测点i+1的中线夹角,r为导线外接圆半径(m),θ为测点i的角度。
所述导线轴向单位长度平均升力的计算式如下:
式中,F
f为导线轴向单位长度平均升力,P
i(t)为测点i处的测点压力时程,N为展向测点总数,T为采样总时长,n为测点i与测点i-1的中线和测点i与测点i+1的中线夹角,r为导线外接圆半径(m),θ为测点i的角度。
所述导地线的动弯应变的计算式如下:
P=(H/EI
min)
0.5
式中,ε为悬垂线夹、防振锤线夹处导线的动弯应变;H为导线运行张力;EI
min为导线最小弯曲刚度;a表示振动传感器距离线夹出口的距离;d为导线最外层股径;A为仪器测取得相对振幅值。
所述振动传感器采用加速度计、陀螺仪或磁传感器复合的9轴MEMS振动传感器。
一实施例中,在导地线上安装与其尺寸相应的该装置。
采用本公开提供的输电线路微风振动感知装置内置的压力传感器测量导地线表面压力,采用内置振动传感器测量导地线振动加速度,通过所述采集单元采集,存储到所述存储单元内。
采用CPU计算模块内嵌入的算法,计算导地线气动力、振动位移、振动频率、动弯应变,将计算结果存储到所述存储单元内。
事先在动弯应变算法内设置阈值,当动弯应变超过阈值时,自动发送预警信息到远端服务器。
采用本公开提供的输电线路微风振动感知装置内置的通讯模块将原始测量数据与计算结果定期打包发送到远端服务器。
本方法实施例攻克了导地线表面压力、振动幅值的同步测量技术中的问题,实现了气动载荷、振动响应、尾流涡脱特征、导地线弧垂的边缘分析与预警评估。与传统装置仅监测振动响应相比,本公开提供的输电线路微风振动感知装 置实现了导地线弧垂、导地线气动载荷、微风振动的同步监测与预警评估,为输电线路导地线微风振动的灾害预警、状态评价、风险评估与寿命预测提供了更加完整的基础数据。
实施例3
本公开提供了一种输电线路微风振动预警装置,如图1所示,包括:空心圆柱结构的线夹1、设置于所述线夹1内的振动传感器7和多个压力传感器6和数据处理装置;所述线夹1悬挂在输电线路的导地线上;所述线夹1与所述数据处理装置连接;所述振动传感器7和多个压力传感器6与所述数据处理装置通信连接;所述数据处理装置对压力传感器6采集的导地线表面压力和振动传感器7采集的导地线振动加速度进行处理得到导地线气动力、振动位移、振动频率和动弯应变;还设置为判断振动频率和动弯应变中的每个参数是否超过对应的设定阈值,当振动频率和动弯应变中的至少一个参数分别超过对应的设定阈值时产生报警信号;还设置为将所述导地线气动力、振动位移、振动频率和动弯应变数据发送给远端服务器或者设置为将所述导地线气动力、振动位移、振动频率和动弯应变数据和报警信号发送给远端服务器。
本装置不仅实现了导地线气动载荷、微风振动响应的同步监测,为输电线路导地线微风振动的灾害预警提供了完整的基础数据,还能在导地线气动力、振动位移、振动频率和动弯应变超过阈值时报警,降低导地线的损害。
实施例4
本公开提供了一种输电线路微风振动预警方法,如图5所示,包括:
步骤210,将输电线路导地线微风振动预警装置安装在输电线路的导地线上。
步骤220,利用设置于输电线路导地线微风振动预警装置的线夹内的压力传感器对导地线表面压力进行测量,并利用线夹内的振动传感器对导地线振动加速度进行测量。
步骤230,利用输电线路导地线微风振动预警装置的数据处理装置对压力传感器采集的导地线表面压力和振动传感器采集的导地线振动加速度进行处理得到导地线气动力、振动位移、振动频率和动弯应变。
步骤240,所述数据处理装置判断振动频率和动弯应变中的每个参数是否超过对应的设定阈值,当振动频率和动弯应变中的至少一个参数分别超过对应的设定阈值时产生报警信号。
步骤250,所述数据处理装置将所述导地线气动力、振动位移、振动频率和动弯应变数据发送给远端服务器或者将所述导地线气动力、振动位移、振动频率和动弯应变数据和报警信号发送给远端服务器。
本方法不仅实现了导地线弧垂、导地线气动载荷、微风振动的同步监测,为输电线路导地线微风振动的灾害预警提供了完整的基础数据,还能在振动频率和动弯应变超过阈值时报警,降低导地线的损害。
本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、光盘只读存储器(Compact Disc Read-Only Memory,CD-ROM)、光学存储器等)上实施的计算机程序产品的形式。
本申请是根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生设置为实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
Claims (26)
- 一种输电线路微风振动感知装置,包括:空心圆柱型结构的线夹(1)、振动传感器(7)、多个压力传感器(6)以及数据处理装置;所述线夹(1)设置为悬挂在输电线路的导地线上;所述线夹(1)与所述数据处理装置连接;所述振动传感器(7)和所述多个压力传感器(6)均设置于所述线夹(1)内,且均与所述数据处理装置通信连接;所述数据处理装置设置为对每个压力传感器(6)采集的导地线表面压力和所述振动传感器(7)采集的导地线振动加速度进行处理得到导地线气动力、导地线振动位移、导地线振动频率和导地线动弯应变,并将得到的导地线气动力、导地线振动位移、导地线振动频率和导地线动弯应变发送给远端服务器。
- 如权利要求1所述的感知装置,其中,所述线夹(1)的横切面为圆环结构,所述圆环结构的内环直径与导地线外径相匹配,所述圆环结构的外环上设有多个测压孔(3),所述振动传感器(7)和所述多个压力传感器(6)均设置于所述圆环结构的内环与外环之间,且每个压力传感器(6)对应一个测压孔(3),所述振动传感器(7)偏向于所述圆环结构的内环设置。
- 如权利要求2所述的感知装置,其中,所述数据处理装置包括:悬挂盒(2)、集成电路(8)、电池(9)和太阳能电池板(10);所述悬挂盒(2)为空心圆柱型结构,所述太阳能电池板(10)固定于所述悬挂盒(2)的空心圆柱型结构的外表面上,所述集成电路(8)和所述电池(9)设置于所述悬挂盒(2)的空心圆柱型结构内;所述线夹(1)与所述悬挂盒(2)固定连接;所述集成电路(8)与每个压力传感器(6)和所述振动传感器(7)通讯连接,设置为对每个压力传感器(6)采集的导地线表面压力和所述振动传感器(7)采集的导地线振动加速度进行处理得到导地线气动力、导地线振动位移、导地线振动频率和导地线动弯应变,并将得到的导地线气动力、导地线振动位移、导地线振动频率和导地线动弯应变发送给所述远端服务器;所述集成电路(8)与所述电池(9)连接;所述电池(9)与所述太阳能电池板(10)连接。
- 如权利要求3所述的感知装置,其中,所述集成电路(8)包括:数据采集模块、中央处理器CPU计算模块、存储模块和通讯模块;所述数据采集模块、所述CPU计算模块和所述通讯模块均与所述存储模块连接;所述数据采集模块与每个压力传感器(6)和所述振动传感器(7)连接,设置为采集每个压力传感器(6)测量的导地线表面压力和所述振动传感器(7)测量的导地线振动加速度;所述CPU计算模块设置为根据每个压力传感器(6)测量的导地线表面压力和所述振动传感器(7)测量的导地线振动加速度计算导地线气动力、导地线振动位移、导地线振动频率和导地线动弯应变;所述存储模块设置为获取并存储所述数据采集模块采集的每个压力传感器(6)测量的导地线表面压力、所述振动传感器(7)测量的导地线振动加速度以及所述CPU计算模块计算的导地线气动力、导地线振动位移、导地线振动频率和导地线动弯应变;所述通讯模块设置为将所述存储模块中的数据发送给所述远端服务器。
- 如权利要求1所述的感知装置,其中,所述导地线气动力包括:导线轴向单位长度平均阻力和导线轴向单位长度平均升力。
- 如权利要求1所述的感知装置,其中,所述振动传感器(7)为加速度计、陀螺仪或磁传感器复合的9轴微电子机械系统MEMS振动传感器。
- 如权利要求2所述的感知装置,其中,所述线夹(1)包括:防水透气膜和硅胶结构件;所述防水透气膜与所述多个测压孔(3)固定连接,每个压力传感器(6)通过所述硅胶结构件与所述防水透气膜连接。
- 如权利要求3所述的感知装置,其中,所述线夹(1)包括:螺栓和转轴(11);所述螺栓和所述转轴(11)均设置于所述圆环结构的内环和外环之间所述线夹(1)的空心圆柱型结构沿径向被分成第一部分和第二部分,所述第一部分的一端与所述悬挂盒(2)连接,所述第一部分的另一端与所述第二部分的一端通过所述转轴(11)连接,第二部分的另一端与所述悬挂盒(2)通过所述螺栓连接。
- 如权利要求2所述的感知装置,其中,所述线夹(1)包括:弹性保护层(5);所述弹性保护层(5)设置于所述圆环结构的内环与导地线之间;所述弹性保护层(5)由弹性材料制成,且所述弹性保护层(5)内嵌入有铝合金型板。
- 如权利要求3所述的感知装置,其中,所述集成电路板(8)的表面设有纳米疏水涂层。
- 如权利要求3所述的感知装置,还包括:镂空结构的连接件(4)和设置于所述镂空结构内的连接线;所述线夹(1)通过所述连接件(4)与所述悬挂盒(2)连接;所述数据采集模块通过设置于所述镂空结构内的连接线与每个压力传感器(6)和所述振动传感器(7)通讯连接。
- 如权利要求2所述的感知装置,其中,所述多个测压孔(3)的数量至少为8。
- 如权利要求2所述的感知装置,其中,所述测压孔(3)的内径为根据所述压力传感器(6)的大小设定,所述测压孔(3)的内径至多为1毫米mm。
- 如权利要求1所述的感知装置,其中,所述线夹(1)由阳极氧化铝或不锈钢合金制成。
- 如权利要求1-17任一项所述的感知装置,其中,所述装置的多个转角均为圆弧结构且均经过防电晕处理。
- 一种输电线路微风振动感知方法,包括:输电线路导地线微风振动感知装置的线夹内的压力传感器对导地线表面压力进行测量,且所述线夹内的振动传感器对导地线振动加速度进行测量;所述输电线路导地线微风振动感知装置的数据处理装置对所述压力传感器采集的导地线表面压力和所述振动传感器采集的导地线振动加速度进行处理得到导地线气动力、导地线振动位移、导地线振动频率和导地线动弯应变,并将得到的导地线导地线气动力、导地线振动位移、导地线振动频率和导地线动弯应变发送到远端服务器。
- 如权利要求19所述的方法,其中,所述输电线路导地线微风振动感知装置的数据处理装置对所述压力传感器采集的导地线表面压力和所述振动传感器采集的导地线振动加速度进行处理得到导地线气动力、导地线振动位移、导地线振动频率和导地线动弯应变,并将得到的导地线气动力、导地线振动位移、导地线振动频率和导地线动弯应变发送到远端服务器,包括:所述数据处理装置中的集成电路的数据采集模块采集所述压力传感器测量的导地线表面压力和所述振动传感器测量的导地线振动加速度;所述集成电路的中央处理器CPU计算模块根据所述压力传感器测量的导地线表面压力和所述振动传感器测量的导地线振动加速度计算导地线气动力、导地线振动位移、导地线振动频率和导地线动弯应变;所述集成电路的存储模块获取并存储所述数据采集模块采集的所述压力传感器测量的导地线表面压力、所述振动传感器测量的导地线振动加速度以及所述CPU计算模块计算的导地线气动力、导地线振动位移、导地线振动频率和导地线动弯应变;所述集成电路的通讯模块定期将所述存储模块中的数据发送给所述远端服务器。
- 如权利要求19所述的方法,其中,所述导地线气动力包括:导线轴向单位长度平均阻力和导线轴向单位长度平均升力。
- 一种输电线路微风振动预警装置,包括:空心圆柱结构的线夹(1)、振动传感器(7)、多个压力传感器(6)以及数据处理装置;所述线夹(1)设置为悬挂在输电线路的导地线上;所述线夹(1)与所述数据处理装置连接;所述振动传感器(7)和所述多个压力传感器(6)均设置于所述线夹(1)内,且均与所述数据处理装置通信连接;所述数据处理装置设置为对每个压力传感器(6)采集的导地线表面压力和所述振动传感器(7)采集的导地线振动加速度进行处理得到导地线气动力、导地线振动位移、导地线振动频率和导地线动弯应变;判断所述导地线振动频率和所述导地线动弯应变中的每个参数是否超过所述参数对应的设定阈值,响应于所述导地线振动频率和所述导地线动弯应变中的至少一个参数分别超过所述 至少一个参数对应的设定阈值,则产生报警信号;将所述导地线气动力、所述导地线振动位移、所述导地线振动频率和所述导地线动弯应变发送给远端服务器或者将所述导地线气动力、所述导地线振动位移、所述导地线振动频率、所述导地线动弯应变和所述报警信号发送给远端服务器。
- 一种输电线路微风振动预警方法,包括:输电线路导地线微风振动预警装置的线夹内的压力传感器对导地线表面压力进行测量,且所述线夹内的振动传感器对导地线振动加速度进行测量;所述输电线路导地线微风振动预警装置的数据处理装置对所述压力传感器采集的导地线表面压力和所述振动传感器采集的导地线振动加速度进行处理得到导地线气动力、导地线振动位移、导地线振动频率和导地线动弯应变;所述数据处理装置判断所述导地线振动频率和所述导地线动弯应变中的每个参数是否超过所述参数对应的设定阈值,响应于所述导地线振动频率和所述导地线动弯应变中的至少一个参数分别超过所述至少一个参数对应的设定阈值,则产生报警信号;所述数据处理装置将所述导地线气动力、所述导地线振动位移、所述导地线振动频率和所述导地线动弯应变发送给远端服务器或者将所述导地线气动力、所述导地线振动位移、所述导地线振动频率、所述导地线动弯应变和所述报警信号发送给远端服务器。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010727808.5A CN111928892A (zh) | 2020-07-23 | 2020-07-23 | 一种输电线路微风振动感知、预警装置及方法 |
CN202010727808.5 | 2020-07-23 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022016732A1 true WO2022016732A1 (zh) | 2022-01-27 |
Family
ID=73315808
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/125252 WO2022016732A1 (zh) | 2020-07-23 | 2020-10-30 | 输电线路微风振动感知装置及方法、输电线路微风振动预警装置及方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN111928892A (zh) |
WO (1) | WO2022016732A1 (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115032717A (zh) * | 2022-06-09 | 2022-09-09 | 国网山东省电力公司电力科学研究院 | 一种输电线路多参量传感监测方法及装置 |
CN115912229A (zh) * | 2022-11-10 | 2023-04-04 | 华北电力科学研究院有限责任公司 | 线路舞动抑制方法、装置和系统 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114353862A (zh) * | 2021-12-09 | 2022-04-15 | 中国电力科学研究院有限公司 | 一种输电线路导地线驰振监测告警装置及告警方法 |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012093372A (ja) * | 2012-02-13 | 2012-05-17 | Citizen Finetech Miyota Co Ltd | 燃焼圧センサ用伝送ケーブル |
CN202710176U (zh) * | 2012-07-11 | 2013-01-30 | 冀北电力有限公司唐山供电公司 | 输电线路微风振动检测装置 |
CN203396478U (zh) * | 2013-06-20 | 2014-01-15 | 国家电网公司 | 一种振动式输电线舞动检测装置 |
CN104198034A (zh) * | 2014-09-15 | 2014-12-10 | 上海电缆研究所 | 基于角度法的架空输电线路微风振动测量装置 |
CN105371944A (zh) * | 2014-08-21 | 2016-03-02 | 上海电缆研究所 | 基于角度法的导线微风振动在线监测装置及监测方法 |
CN105513243A (zh) * | 2015-11-27 | 2016-04-20 | 国家电网公司 | 一种输电线路用的防外力破坏装置 |
CN109000786A (zh) * | 2018-08-01 | 2018-12-14 | 安徽康能电气有限公司 | 一种智能型导线振动监测装置 |
CN110108351A (zh) * | 2019-04-16 | 2019-08-09 | 西安工程大学 | 一种输电线路微风振动监测系统及监测方法 |
CN111504447A (zh) * | 2020-04-15 | 2020-08-07 | 中国电力科学研究院有限公司 | 一种指环式钢管塔微风振动监测装置及方法 |
-
2020
- 2020-07-23 CN CN202010727808.5A patent/CN111928892A/zh active Pending
- 2020-10-30 WO PCT/CN2020/125252 patent/WO2022016732A1/zh active Application Filing
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012093372A (ja) * | 2012-02-13 | 2012-05-17 | Citizen Finetech Miyota Co Ltd | 燃焼圧センサ用伝送ケーブル |
CN202710176U (zh) * | 2012-07-11 | 2013-01-30 | 冀北电力有限公司唐山供电公司 | 输电线路微风振动检测装置 |
CN203396478U (zh) * | 2013-06-20 | 2014-01-15 | 国家电网公司 | 一种振动式输电线舞动检测装置 |
CN105371944A (zh) * | 2014-08-21 | 2016-03-02 | 上海电缆研究所 | 基于角度法的导线微风振动在线监测装置及监测方法 |
CN104198034A (zh) * | 2014-09-15 | 2014-12-10 | 上海电缆研究所 | 基于角度法的架空输电线路微风振动测量装置 |
CN105513243A (zh) * | 2015-11-27 | 2016-04-20 | 国家电网公司 | 一种输电线路用的防外力破坏装置 |
CN109000786A (zh) * | 2018-08-01 | 2018-12-14 | 安徽康能电气有限公司 | 一种智能型导线振动监测装置 |
CN110108351A (zh) * | 2019-04-16 | 2019-08-09 | 西安工程大学 | 一种输电线路微风振动监测系统及监测方法 |
CN111504447A (zh) * | 2020-04-15 | 2020-08-07 | 中国电力科学研究院有限公司 | 一种指环式钢管塔微风振动监测装置及方法 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115032717A (zh) * | 2022-06-09 | 2022-09-09 | 国网山东省电力公司电力科学研究院 | 一种输电线路多参量传感监测方法及装置 |
CN115032717B (zh) * | 2022-06-09 | 2023-12-08 | 国网山东省电力公司电力科学研究院 | 一种输电线路多参量传感监测方法及装置 |
CN115912229A (zh) * | 2022-11-10 | 2023-04-04 | 华北电力科学研究院有限责任公司 | 线路舞动抑制方法、装置和系统 |
Also Published As
Publication number | Publication date |
---|---|
CN111928892A (zh) | 2020-11-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2022016732A1 (zh) | 输电线路微风振动感知装置及方法、输电线路微风振动预警装置及方法 | |
CN112629647B (zh) | 大跨悬索桥涡振事件的实时识别和监测预警方法 | |
ES2637892T3 (es) | Procedimiento y aparato para monitorizar componentes de turbinas eólicas en base a las condiciones | |
US8186950B2 (en) | Aerodynamic device for detection of wind turbine blade operation | |
CN1707262B (zh) | 转子叶片上冰的检测的方法和设备 | |
US8322984B2 (en) | Pressure measurement device and method for determining wind force at wind energy installations | |
McLaren et al. | Measurement of high solidity vertical axis wind turbine aerodynamic loads under high vibration response conditions | |
EP3877738B1 (en) | Monitoring system of wind-induced motion or vibration in at least one overhead cable, in particular a conductor aerial cable of a transmission or distribution electric line; related method and related sensor | |
GB2479923A (en) | A method and system for detecting angular deflection in a wind turbine blade, or component, or between wind turbine components | |
CN112033476A (zh) | 一种风力助推转子的监测系统及监测方法 | |
CN107514344A (zh) | 风力发电机组的塔架吊装方法及涡激振动监测系统 | |
CN111653064B (zh) | 高空安装物的安全预警系统和方法 | |
CN107817423B (zh) | 一种输电线路运动预警方法 | |
CN213239020U (zh) | 一种输电线路微风振动感知装置和预警装置 | |
KR20220146368A (ko) | 스마트센서를 이용한 선박 구조물의 진동 측정장치, 이를 이용한 측정방법 및 이를 적용한 선박 | |
CN105332862B (zh) | 用于检测风力发电机组工作状态的方法、装置和系统 | |
US12098700B2 (en) | Method for monitoring the state of the powertrain or tower of a wind turbine, and wind turbine | |
CN113847212A (zh) | 一种风电机组叶片固有频率监测方法 | |
CN103569871A (zh) | 进行起重设备力矩限制的方法、装置和起重设备 | |
CN112242748A (zh) | 一种用于监测输电导线舞动的监测设备及其安装方法 | |
CN212378803U (zh) | 一种风力助推转子的监测系统 | |
CN111504447A (zh) | 一种指环式钢管塔微风振动监测装置及方法 | |
CN212585825U (zh) | 一种指环式钢管塔微风振动监测装置 | |
CN113899445B (zh) | 一种输电线路导地线涡振监测装置及方法 | |
CN114140991A (zh) | 高压输电线路舞动在线监测预警方法、系统及装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20945885 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 02/05/2023) |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20945885 Country of ref document: EP Kind code of ref document: A1 |