WO2022015147A1 - Polymeric magnetic nanofibres with strontium hexaferrite nanoparticles for arsenic adsorption - Google Patents

Polymeric magnetic nanofibres with strontium hexaferrite nanoparticles for arsenic adsorption Download PDF

Info

Publication number
WO2022015147A1
WO2022015147A1 PCT/MX2021/050030 MX2021050030W WO2022015147A1 WO 2022015147 A1 WO2022015147 A1 WO 2022015147A1 MX 2021050030 W MX2021050030 W MX 2021050030W WO 2022015147 A1 WO2022015147 A1 WO 2022015147A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
nps
nanofibers
pva
srm
Prior art date
Application number
PCT/MX2021/050030
Other languages
Spanish (es)
French (fr)
Inventor
Manuel MIRABAL GARCÍA
Original Assignee
Universidad Autónoma De San Luis Potosí
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidad Autónoma De San Luis Potosí filed Critical Universidad Autónoma De San Luis Potosí
Publication of WO2022015147A1 publication Critical patent/WO2022015147A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/48Treatment of water, waste water, or sewage with magnetic or electric fields
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/58Treatment of water, waste water, or sewage by removing specified dissolved compounds
    • C02F1/62Heavy metal compounds
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/70Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
    • D04H1/72Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged
    • D04H1/728Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged by electro-spinning
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/10Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure
    • H01F1/11Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure in the form of particles
    • H01F1/113Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure in the form of particles in a bonding agent
    • H01F1/117Flexible bodies

Definitions

  • the present invention relates to a material for environmental sanitation, specifically a nanostructured compound based on polyvinyl alcohol nanofibers with embedded magnetic nanoparticles of strontium hexaferrite (SrFe-120-19), effective for adsorbing arsenic mixed in water contaminated with this metalloid.
  • a material for environmental sanitation specifically a nanostructured compound based on polyvinyl alcohol nanofibers with embedded magnetic nanoparticles of strontium hexaferrite (SrFe-120-19), effective for adsorbing arsenic mixed in water contaminated with this metalloid.
  • Heavy metals accumulate in living cells of biological systems through food chains and are potentially toxic, non-degradable and tend to accumulate in the environment.
  • Arsenic is a chemical element that presents allotropy and is widely distributed throughout the earth's crust, mostly in the form of arsenic sulfide or metallic arsenates and arsenides. It is relatively inert at ordinary temperatures, but when heated in air it burns with a bluish flame, producing white clouds with the aliaceous odor of trioxide.
  • the processes to remove arsenic from wastewater and water for human consumption use techniques that, for example, include: (a) technologies based on commercial absorbents or natural materials to remove arsenic, through filtration, using vegetable membranes and other industrial waste materials such as slag metallurgical, stuffed with wires, nails or iron rods, etc.; and also with remains of the food industry and agriculture [8]; (b) coagulation and flocculation methods [9-10]; (c) ion exchange and microfiltration [11-12]; and (d) removal by oxidation techniques, with activated carbon and adsorption [13].
  • nanocomposites based on graphene oxide and nanoparticles (NPs) of some metal oxides such as oxides of: iron (hematite, magnetite, etc.), manganese, zinc, titanium, aluminum, magnesium, etc., the which show to be effective in the adsorption of heavy metals [14]
  • the adsorption technique also includes nanomaterials based on carbon nanotubes and magnetic NPs of hematite (a-Fe2C>3), polymeric nanocomposites with magnetic NPs of magnetite, FesCVPVA , deposited inside and on the surface of nanofibers with magnetite agglomerates, reported for different concentrations [15]; and other polymer supported iron oxides.
  • Some silica compounds containing iron (III) oxide adsorbents and polymeric materials such as chitosan and its derivatives have also been tested to remove arsenic from aqueous media [16-17]. Filaments of magnetic materials have also been developed, with which filters can be manufactured for the removal of heavy metals, as This is the case of the invention of a barium hexaferrite filament filter [18].
  • magnetite NPs are used, which have a weak ferrimagnetic behavior, which must first be dispersed in the contaminated water to adsorb heavy metals, then through the continuous flow of water through the filter, the NPs are attracted and trapped by the barium hexaferrite membrane.
  • This barium hexaferrite filament filter is efficient to remove arsenic ions adsorbed by magnetite NPs, when it manages to attract all the arsenic-loaded NPs from the contaminated aqueous medium. Otherwise, another additional problem can be generated for the environment if the magnetite NPs are not fully attracted and trapped by said filter.
  • the invention of a new composite of polyvinyl alcohol (PVA) magnetic nanofibers with SrFei20i9 nanoparticles (also denoted by SrM-NPs), homogeneously distributed in the polymer matrix complements nanostructured magnetic systems for the remediation of water contaminated with heavy metals, due to its capacity to adsorb As.
  • PVA polyvinyl alcohol
  • SrM-NPs SrFei20i9 nanoparticles
  • this nanostructured compound is attractive for its application, since the removal procedure for arsenic dissolved in water is simple, no toxic sludge is produced after its use, and both the adsorbate ions and the adsorbent materials of the magnetic polymer can be recycled properly.
  • Other properties and advantages of polymeric magnetic nanofibers are related to their physical stability, low production cost, optimal control of the size of SrM-NPs and homogeneous distribution on the inner surface of the polymer matrix. Therefore, this invention allows the tailor-made manufacture of a polymeric magnetic nanocomposite, with optimal physical-chemical characteristics, for the efficient removal of arsenic in aqueous media.
  • TECHNICAL PROBLEM TO SOLVE To meet the challenge and address the complex problem of contamination of the various aquifers with heavy metals and in view of the global demand of the population to guarantee water free of organic and inorganic contaminants, to prevent the transmission of diseases and general exposure to chemical substances. dangerous, several conventional and emerging technologies have been developed over time to attack this problem.
  • the World Health Organization (WHO) has recommended in the Guidelines for the quality of drinking water, published in 1984, a provisional maximum reference value of 10 pg/L (0.01 mg/L) for arsenic in water for human consumption, based on concern about its carcinogenicity (IPCS, 2001); (WHO, 2003).
  • arsenic and other heavy metals have cumulative effects on biological systems and, in particular, arsenic is one of the most toxic chemical elements, since its presence increases the risk of acquiring skin, kidney, bladder and breast cancer. lung.
  • arsenic is one of the most toxic chemical elements, since its presence increases the risk of acquiring skin, kidney, bladder and breast cancer. lung.
  • much debate remains about the mechanism of carcinogenic action and about the shape of the dose-response curve for low intakes.
  • the largest source of arsenic contamination in the environment is due to the mining of gold, silver, copper and other mineral deposits. This metalloid is distributed in large concentrations in the air, soil, surface and underground aquifers, finding its way to living beings by direct inhalation or through the contamination of food products, the oral route being the most important due to the consumption of food and drinks.
  • NPs based on graphene oxide and bare metal oxides in aqueous media even when shown to be effective in the adsorption of heavy metals, most of the time they present difficulties in separating them from aqueous solutions; and they also have the disadvantage of being prone to form aggregates, decreasing the surface area, which also reduces their capacity and adsorption selectivity.
  • the application of granular activated carbon as an absorbent for heavy metals is also very expensive.
  • the particles of magnetite, Fe3Ü4 in an aqueous medium experience forces of attraction of various physical and chemical natures, since in addition to the magnetic force, they are subject to electrostatic, surface tension and van der Waals forces; and although these last three are very small compared to the magnetic force, they also influence the formation of aggregates of magnetite particles, reducing the effective adsorption surface.
  • the invention of this A new nanostructured magnetic polymeric compound, capable of adsorbing arsenic dissolved in water, emerges as a promising option among the schemes currently practiced in the treatment of water contaminated with this metalloid.
  • the composite of magnetic nanofibers has important advantages in that: a).
  • nanofibers with SrM-NPs of nanometric size ( ⁇ 4 nm) homogeneously distributed in the polymeric matrix adsorb arsenic by themselves and exhibit better magnetic properties than the barium hexaferrite filter described in patent KR101433332B1, which has limitations inherent to the adsorption method as a secondary contaminant is produced when it is not possible to trap all the magnetite NPs loaded with arsenic dispersed in the aqueous medium.
  • the arsenic adsorption efficiency of PVA magnetic nanofibers is similar to the adsorption efficiency reported in said patent.
  • the magnetic properties of the nanofibers can be modulated by controlling the density of SrM-NPs, below the percolation limit, offering great advantages such as the high quadrature values of the magnetic hysteresis, reflected in a normalized value of the magnetization, Mr/ Ms, close to 1.0, high value of its coercive force, H c , and of the maximum energy product, (BH)max; and also high magnetic anisotropy of shape, among other important characteristics.
  • this invention represents a technological advance in the development of nanostructured magnetic systems for the remediation of water contaminated with heavy metals, by virtue of its As adsorption capacity.
  • a PVA polymeric nanofiber composite that contains magnetic nanoparticles of SrFei2Üi9 homogeneously distributed at the surface level inside.
  • specific amounts of nanometric-sized SrM-NPs are used and properly distributed in the polymeric matrix, to apply this new material in the treatment of wastewater and also reduce the high levels of arsenic contamination in the aquifers.
  • Pechini technique For the synthesis of magnetic ceramics and many other materials, numerous wet methods have been investigated as an alternative to the solid state reaction technique. These include: polymerization with carboxylic acids, coprecipitation, sol-gel processing, microemulsion, electrochemical synthesis, self-propagating reactions, and hydrothermal synthesis, which have been found effective in the preparation of magnetic materials.
  • a polyhydroxyalcohol ethylene glycol, propylene glycol, glycerin
  • a polyhydroxyalcohol ethylene glycol, propylene glycol, glycerin
  • polyesterification at low temperatures with the free carboxylate groups, to form a homogeneous and soluble sol, which, when combined with another system of the same nature, facilitates good contact, almost at the molecular level, of the precursor ions of solid phases.
  • this mixture is heated to slightly higher temperatures to remove excess solvents, a solid intermediate polymeric resin is formed with precursor ions in the matrix.
  • this resin is calcined at higher temperatures, the thermal degradation of the polymer occurs, the organic residues are removed and the compounds with the calculated stoichiometry are formed.
  • the Pechini technique allows, on the one hand, to produce phases with high purity, regulate porosity and achieve a uniform growth of chemically homogeneous fine particles with great thermal stability and, on the other hand, contributes to improve the magnetic properties and of the ferrites by facilitating the control of the chemical composition with lower energy consumption, since the sintering temperatures by the wet method are lower compared to the ceramic method, which is the traditional method for the synthesis of these materials.
  • Electrospinning technique The electrospinning technique (referred to in the literature as electrospinning in English) is a method that represents a great technological advance, because since its invention in the laboratory it was designed to be applied at an industrial level due to the advantages it offers in the production of nanofibers at a large scale. scale, easily and at low cost. It is an effective and simple technique to produce ultra-thin fibers from a polymer solution, where electrostatic forces are used to obtain filaments with diameters that can be controlled in the range from micrometers to a few nanometers. On the other hand, the technique offers the advantage of being able to incorporate various types of nanoparticles into polymeric nanofibers [21]. It was A.
  • Nanofibers can be considered as one-dimensional objects with a diameter of less than one micron and a very high surface area to volume ratio, which have extraordinary mechanical, physical and chemical properties.
  • the basic characteristics of the electrospinning process consist of applying a high voltage between a steel capillary (anode), through which a polymeric solution is propelled, and the collector (cathode), which serves to accumulate the electrospun fibers.
  • the evolution of the intrinsic characteristics of the resulting nanofibers are governed by self-assembly processes induced by electrostatic Coulomb interactions between charged elements. , present in the drop of polymer solution that is pumped through the capillary; and that it is first retained by its surface tension. By applying a high voltage between the anode and cathode, positive charge is induced on the fluid surface and the droplet shape begins to distort.
  • the surface tension force acting on the drop is overcome and an initial beam of polymeric fluid is produced that acquires the shape of a cone, referred to as the Taylor cone [23], with a surface charge distribution; and that is when the fluid moves towards the collector plate getting thinner rapidly with distance.
  • the ions present and the charged nanoparticles, in the heterogeneous polymeric mixtures move radially towards the surface of the tiny fluid jet, producing a rapid evaporation of the solvent near the cathode to convert the beam into solid nanofibers, via a shake instability, where the fiber polymerizes and the incorporated nanoparticles are arrested and fixed on the inner surface of the polymeric matrix, finally depositing in the collector.
  • thermogravimetric analysis TGA
  • DTGA differential thermogravimetric analysis
  • Figure 1 shows patterns XRD refined by the Rietveld method nanoparticle strontium hexaferrite SRM-NPs prepared by the Pechini method: (a) after sintering at 900 C Q; (b) The same SrM-NPs after being sonicated in ethanol for two hours.
  • Figure 2. Shows TEM images of SrM-NPs powders prepared by the Pechini method (a), of agglomerates made up of nanoparticles of different sizes (b); and size distribution of strontium hexaferrite nanoparticles in sintered powders at 900 Q C (c).
  • TEM micrograph of PVA nanofibers with sonicated SrM-NPs (d); TEM micrograph of a PVA nanofiber with small-diameter ( ⁇ 4 nm) SrM-NPs uniformly distributed on the inner surface (e); and size distribution of SrM-NPs embedded in the PVA nanofiber matrix (f).
  • Figure 3. Shows a TEM micrograph of the nanostructured composite of PVA nanofibers with small-diameter strontium hexaferrite magnetic nanoparticles embedded in the polymeric matrix (a); diameter distribution of magnetic nanofibers (b).
  • Figure 4.- Shows the hysteresis curves of the normalized magnetization as a function of the applied magnetic field.
  • the segmented curve corresponds to the powders of SrM-NPs sintered at 900 Q C and the solid curve corresponds to the PVA magnetic nanofibers made with a precursor sample with 20% SrM-NPs.
  • Figure 6. Shows the removal efficiency of As as a function of time for pure PVA nanofibers, for naked SrM-NPs; and for PVA nanofibers made with two different concentrations of sonicated SrM-NPs. The segmented lines only serve to guide the eye.
  • Figure 7. Shows the graphic sequence of the magnetic extraction of the PVA nanofibers with SrM-NPs, used to remove arsenic from the aqueous medium: (a) magnetic attraction of the nanofibers immersed in a contaminated aqueous medium once the process of arsenic adsorption using a permanent magnet, (b) the magnetic nanofibers at the edge of the beaker adhered to the permanent magnet; and (c) the arsenic-loaded nanofibers outside the decontaminated aqueous medium.
  • the present invention consists in obtaining a nanostructured composite of polymeric magnetic nanofibers, which is manufactured using the electrospirming technique, with the ability to adsorb arsenic in aqueous media.
  • the procedure for the preparation of this nanofiber composite is described through the development of the following activities:
  • Very small strontium hexaferrite nanoparticles SrFei2Üi9, are produced by means of ultrasonic cavitation mechanical effects, deagglomerating and reducing in size the fine hexaferrite powders obtained by the Pechini technique, until obtaining NPs with an average diameter ⁇ 4nm.
  • a heterogeneous precursor mixture is prepared by incorporating nano-sized SrM-NPs into a PVA solution; and then the magnetic nanoparticles are homogeneously dispersed in the polymer solution by means of ultrasonic cavitation.
  • the electrospirming technique is applied for the fabrication of PVA polymeric magnetic nanofibers with strontium hexaferrite NPs, SrFei20i9, with an average diameter of ⁇ 4 nm, optimally distributed on the inner surface of the PVA matrix with a uniform density , for obtain the best physical-chemical properties of the nanostructured polymeric compound.
  • the substances used both for the preparation of magnetic strontium hexaferrite nanoparticles and for the electrospinning of PVA polymeric nanofibers containing embedded SrFei2Üi9 nanoparticles, comprising: citric acid, ethylene glycol, ferric nitrate nonahydrate, strontium nitrate, ethanol, polyvinyl alcohol, methanol; and deionized water, are analytical grade reagents.
  • Citric acid C6Hs07
  • Citric acid is a weak organic tricarboxylic acid, present in most fruits, it is an important metabolite in all animals and plants. Citric acid readily forms citrate complexes with metal cations. It is found as colorless, odorless crystals with an acid taste. It is highly soluble in water. It is found naturally in many fruits and vegetables, with the highest amounts found in citrus fruits such as oranges, lemons, and limes. It is an important metabolic intermediate in the biochemical cycle of citric acid and is present in all living things. It is mainly produced by the microbial fermentation of carbohydrates such as molasses, cane sugar, beets, etc. It has many uses in the food industry as a flavoring agent, pH modifier, and preservative.
  • Citric acid solutions are safe for human consumption. However, concentrated solutions or pure citric acid can be irritating and corrosive, burning eyes and skin on contact. Its inhalation can irritate the nose, throat and mucous membranes.
  • Ferric nitrate nonahydrate Fe(N03)3 « 9H20, is a salt and, being a deliquescent compound, it is commonly found in its nonahydrate form in which it forms colorless to pale violet crystals.
  • Ferric nitrate is the preferred catalyst for the synthesis of sodium amide in ammonia.
  • Ferric nitrate solutions are used in jewelry and blacksmithing to engrave silver and its alloys; also in the synthesis of magnetic materials.
  • Strontium nitrate is an inorganic compound, easily dissolved in water, liquid ammonia, slightly soluble in anhydrous alcohol and acetone.
  • Strontium nitrate is typically generated by the reaction of nitric acid with strontium carbonate. Used to produce an intense red flame in fireworks, flares, shipping, railway, and airfield signal lamps. The oxidizing properties of this salt are advantageous in such applications. It is also used as an aluminiferous agent in the manufacture of television tubes and optical glass, as well as in the manufacture of permanent magnets and in medicine.
  • Ethanol, C2H5OH is an organic chemical compound of the class of alcohols, transparent and volatile liquid, colorless, with a characteristic odor and a burning taste. It is flammable and produces a smokeless blue flame. It is miscible with water and most organic solvents such as acetic acid, acetone, benzene, carbon tetrachloride, chloroform, and ether. Ethanol can be widely found in nature because it is part of the metabolic process of yeast such as Saccharomyces cerevisiae, it is also present in ripe fruit; and it is also produced by some plants through anaerobiosis.
  • It can be produced by yeast using fermentation of sugars found in grains such as corn, sorghum, and barley, as well as potato, rice, and sugar cane skins, or by organic synthesis. It is used in medicine as an antiseptic. It kills organisms by denaturing their proteins and dissolving their lipids, and is effective against most bacteria, fungi, and many viruses. Ethyl alcohol is highly flammable, it will be easily ignited by heat, sparks or flames. Vapors may form explosive mixtures with air. It is toxic when ingested in large amounts or in high concentrations.
  • This alcohol can form films with emulsifying and adhesive capacity, which can withstand strong tensions.
  • It is hygroscopic and very soluble in water, its properties being affected by the degree of hydration. It is soluble in ethanol, but insoluble in other organic solvents. Insoluble in petroleum solvents, practically insoluble in vegetable and animal oils, esters, ethers and acetone.
  • the fibers of this alcohol have a water absorption capacity 30% higher than that of other fibers. It is material for the synthesis of other polymers such as sodium nitrate.
  • polyvinyl an ester of nitric acid and polyvinyl alcohol. It is used in some propellants and castable explosives. This alcohol can be used in the manufacture of sheets or films that are barriers to oxygen and aromas. This has allowed it to be used in food packaging, this being its main use since more than 30% is used for this purpose. When heated above 200 QC , it decomposes and releases fumes that are irritating to the eyes, nose, and throat.
  • Methanol, CH3OH is an organic chemical compound belonging to the family of alcohols. It is the simplest alcohol of the homologous series of alcohols. It is a colorless, transparent, volatile liquid with an aroma and flavor similar to those of ethanol; and is completely soluble in water. It is quite flammable and, like ethyl alcohol, has disinfectant and antiseptic properties.
  • the ancient Egyptians obtained methanol by pyrolysis of wood. To this day, the most precise reference to synthesize methanol is through a catalytic process from carbon monoxide and hydrogen.
  • Methanol has countless uses and applications, it is used as fuel, organic solvent for natural essences and resins, in the synthesis of dyes and methylated products; as well as in the manufacture of plastics, glues and varnishes. It is also used as antifreeze, fuel and anti-knock in vehicles; and as raw material to obtain formaldehyde. It is quite toxic and when this happens it becomes a chronic condition where several injuries are generated, brain and respiratory. It can cause chronic bronchitis and changes in the mucosa of the upper respiratory tract.
  • Deionized or demineralized water is one from which cations such as sodium, calcium, iron, copper and others have been extracted; and anions such as carbonate, fluoride, chloride, etc., by an ion exchange process.
  • Deionization is a process that uses specially manufactured ion exchange resins that remove ionized salts from the water. Water deionized can easily change its pH when stored because it absorbs atmospheric CO2, it is very aggressive with metals, even stainless steel; therefore plastic or glass should be used for storage and handling. Its most common use is in automotive batteries, but it is also used in analytical chemistry, materials synthesis, and experimental laboratories.
  • the main equipment used in the preparation of the polymeric composite of nanofibers with SrM-NPs and the characterization techniques applied to evaluate the magnetostructural properties of hexaferrite nanoparticles, as well as magnetic nanofibers and their capacity to adsorb arsenic dissolved in water are the following:
  • a scanning electron microscope SEM, JEOL, model JSM-7600F; and a transmission electron microscope TEM, Hitachi S-570 operated at 100 kV. Uranyl acetate was used to improve the contrast and to be able to observe the magnetic NPs within the nanofibers.
  • thermogravimetric and differential scanning calorimetry (TGA/DSC) analyzes were performed with a thermogravimetric analyzer, TA Instruments DSC Q200, in a nitrogen atmosphere by performing temperature in the range from room temperature to 1000 Q C, with a heating ramp of 10 °C/min.
  • SrM-NPs into the polymeric matrix of the magnetic nanofibers, the following procedure is carried out, which includes the following steps: first, strontium hexaferrite powders are synthesized with the M phase, by the Pechini method to obtain, as a starting point, High purity homogeneous powders with high crystallinity and reduced nanoparticle size ( ⁇ 78 ⁇ 20 nm). Then, an ultrasonic treatment is applied to these powders to deagglomerate and obtain SrFei20i9 nanoparticles with an average diameter of ⁇ 4 nm.
  • This invention offers the possibility of being able to control the magnetic properties of the nanostructured compound, varying the density of SrM-NPs in the PVA polymeric matrix, within the percolation limit of the dispersed system of magnetic NPs. Therefore, to explain the development and illustrate the scope of the invention, the manufacture of polymeric magnetic nanofibers through a method where the concentration of SrM-NPs is varied is described in detail below. Essentially, the procedure consists of three stages, i.e. 1. Synthesis of strontium hexaferrite nanoparticles, SrFei20i9, (SrM-NPs), comprising the steps:
  • step (a) Synthesis of strontium hexaferrite nanoparticles, SrFei2Üi9 (SrM-NPs).
  • step (a) for the proportional preparation of 1.0 g of strontium hexaferrite nanoparticles, anhydrous citric acid, AC, (ObHdOz), 1.085 g, and ethylene glycol, EG, (C2FI6O2), 0.5 mL, were used.
  • Citric acid functions as a complexing agent and ethylene glycol as a polymerizing agent.
  • the precursor compounds of ions A and B are soluble salts (nitrates): ferric nitrate (Fe(N03)3*9H20), 4.566 g; and strontium nitrate (Sr(N03)2), 0.199 g, which are first mixed for 30 minutes under constant stirring, together with AC, in 70 mL of deionized water at room temperature. Then the aqueous solution is heated between 50°C and 60°C, preferably 60°C, stirring constantly for 1 hour to promote the formation of complexes (chelates) with the metal cations A and B.
  • the metal citrate add the polyalcohol (EG), 0.5 mL, and continue stirring the mixture for 20 minutes, keeping the temperature at 60°C; which contributes to the formation of an organic ester or esterification with the unbound carboxylate groups.
  • EG polyalcohol
  • the existence of two or more soluble metal complexes supposes an intimate mixture of the precursors in a homogeneous medium (the organic matrix). Polymerization is promoted by heating the mixture, continuing to stir and increasing the temperature to 80°C or 100°C, preferably 80°C, to evaporate all the solvent (H2O), resulting in a polymeric resin through reaction. polyesterification reaction, where the precursor ions A and B of the magnetic compound are homogeneously distributed at the molecular level. It is then allowed to cool to room temperature.
  • This polymeric resin made of iron citrate and strontium citrate, obtained in the presence of EG, is pulverized and then calcined at a temperature between 250°C and 400°C, preferably 250°C, for 2 hours. It is allowed to cool to room temperature, it is pulverized and then calcined again at 400°C for another 2 hours, which serves to remove the organic matrix, obtaining a powder of the strontium hexaferrite precursor resin.
  • step (b) the precursor powder at room temperature is ground again and sintered at a temperature between 800°C and 1000°C, preferably 900°C, for 2 hours, giving way to obtaining nanoparticle powders of strontium hexaferrite, SrFei20i9, with the M phase.
  • nanometer-scale strontium hexaferrite nanoparticles were synthesized using the standard method of Pechini.
  • Fig. 1(a) shows the X-ray diffraction pattern for hexaferrite powders calcined at 900 QC . The structural parameters were refined by the Rietveld method, revealing that SrFei20i9 nanoparticles crystallized in the M phase and resulted high purity.
  • step (c) strontium hexaferrite powders, SrFei20i9, were placed in 5 mL of ethanol (C2H6O) and subjected to ultrasonic treatment for 2 hours using a Branson 2510 sonicator operated at 40 kHz, to deagglomerate, disperse and further fragment the hexaferrite particles. They soon dried in the air.
  • a Branson 2510 sonicator operated at 40 kHz
  • FIG. 1(b) shows the X-ray diffraction pattern for the synthesized strontium hexaferrite powders at 900 Q C after ultrasonic treatment. In both cases, the Rietveld refinement method was applied to verify the presence of the magnetic phase M. In Fig. 1 (b) the broadening in the diffraction maxima can be seen, attributed to the reduction in crystallite size ( 3.4 nm), due to the sonication effect.
  • step (e) a series of 5 heterogeneous precursor mixtures are then prepared, each with 3 mL of the 7.4% by weight PVA solution, adding in each individual volume a specific mass, m, of hexaferrite nanoparticles of strontium, SrM-NPs, previously sonicated ( ⁇ 4 nm in diameter), where
  • each precursor mixture to be electrospun is previously subjected to a low-frequency sonication process (40 kHz) for one hour.
  • step (f) the precursor sample in turn is then transferred to a plastic syringe, fitted with a 0.15 mm internal diameter stainless steel needle, and installed in the NE-300 New Era infusion pump, INC, MA, USA to perform electrospinning.
  • the fabrication of the PVA polymeric nanofibers with strontium hexaferrite NPs was carried out using an electrospirming system, self-constructed in the laboratory, equipped with a high voltage source from 0.0 to 30 kV and an infusion pump.
  • the flow rate and distance between the needle and the collector are adjustable and the system has a protective acrylic cabinet, to minimize variations in environmental conditions, with a support for the infusion pump and the high voltage source.
  • the syringe needle is connected to the positive electrode and the negative electrode is connected to an aluminum plate covered with aluminum foil, which functions as a stationary collector.
  • the distance between the tip of the needle and the collector was set at 5.3 cm and the precursor mixture was released at a rate of 0.5 mL/h.
  • the voltage was set at 25 kV.
  • thermogravimetric analysis TGA
  • DTGA differential thermogravimetric analysis
  • Fig. 2 (a) shows the TEM micrograph of powders strontium hexaferrite with a morphology plates, after being sintered at 900 Q C for the Pechini method.
  • the TEM micrograph of Fig. 2(b) shows agglomerates of particles whose dimensions reach several tens of nanometers.
  • Fig. 2(c) shows the particle size distribution, obtained from the measurement of 100 particles from various TEM micrographs.
  • the average diameter of the hexaferrite particles is 78 nm, with a standard deviation of 1.8 nm.
  • Fig. 2 (d) shows the TEM micrograph of nanofibers fabricated by electrospinning, with PVA and SrM-NPs of previously sonicated strontium hexaferrite.
  • the TEM micrograph of Fig. 2 (e) shows an amplification of a nanofiber, where the magnetic nanoparticles arrested in the polymer matrix can be seen, with a significant reduction in size after being sonicated.
  • the nanoparticles appear perfectly separated from each other with an average diameter of ⁇ 3.4 nm and a standard deviation of 0.79 nm. According to the distribution curve shown in Fig.
  • Fig. 3(a) shows the TEM micrograph of the PVA nanostructured compound with SrM-NPs obtained by electrospinning, with the nanoparticles in the dispersion phase. Nanofiber diameters range from 97 nm to 269 nm, with an average diameter of 165 nm and a standard deviation of 39 nm. The diameter distribution is shown in Fig. 3(b). Magnetic parameters were obtained from hysteresis loops, at room temperature, using vibrating sample magnetometry (VSM). Fig.
  • the SrM-NPs/polymer ratio plays an important role in the magnetic properties of the manufactured nanofibers. This parameter affects the packing configuration of the nanoparticles, inducing a transition from the diluted state of SrM-NPs in the polymeric matrix, that is, from the dispersion phase, to a morphology where the nanocomposite can present agglomerates, when the limit is reached. of percolation.
  • the method used to study the magnetic interactions between the NPs is based on obtaining the differential susceptibility dM/dH of the hysteresis demagnetization curve, for each concentration of SrM-NPs in the polymeric matrix. This method is known as Switching Field Distribution, abbreviated SFD (Switching Field Distribution). These micromagnetic characteristic curves are used to evaluate the extension of the distribution of the field in which the inversion of the magnetization occurs, of the system of particles interacting with each other; and it is useful to estimate the intensity and type of interaction. In a dilute system composed of not completely identical NPs, the coercive field of a particle is independent of that of the other particles.
  • the system is characterized by having a certain distribution of coercive fields, called intrinsic switching field distribution (iSFD); having access to this distribution through the derivative of the demagnetization curve of the hysteresis loop with respect to the applied field.
  • iSFD intrinsic switching field distribution
  • FWFIM Full Width at Half Maximum
  • Fig. 5 shows the behavior of the maximum magnetic energy (BH)max vs. the normalized mass, x, of SrM-NPs in the polymeric matrix of the nanofibers, which was adjusted according to the following equation:
  • the demagnetizing field is defined in terms of the shape of the magnet and the distribution of its magnetostatic charges.
  • a nanostructured magnet like the one of the present invention offers the possibility of being able to modulate the demagnetizing field through the concentration of magnetic NPs and consequently its energy product (BH)max.
  • BH energy product
  • an increase in (BH)max is anticipated for an anisotropic configuration of magnetic NPs within the magnet.
  • the nanoparticles, in the dispersion phase are distributed along the longitudinal axis of the PVA nanofibers, due to the strong interaction with the electric field during their fabrication by electrospirming.
  • one of the causes that intervene for the increase in the quadrature of the magnetic hysteresis, obtained for 30% SrM-NPs in the manufacture of polymeric nanofibers is due to the anisotropy created.
  • the ratio of length to diameter generates a magnetic anisotropy of shape along the longitudinal axis of the nanofibers, for low densities of SrFei20i9 magnetic nanoparticles embedded in the PVA polymeric matrix, modifying inversion modes in an unusual and interesting way. of magnetization.
  • the induced properties allow the custom design of a PVA polymeric magnetic nanocomposite with different physical-chemical properties, useful for removing arsenic, with optimal values of its magnetic properties for 30% SrM-NPs in the precursor mixture, such as specified in the last row of Table I.
  • the invention contemplates a procedure to remove arsenic from water contaminated with this metalloid, separating the ions by adsorption using polymeric magnetic nanofibers as adsorbent.
  • the PVA magnetic nanofibers with SrM-NPs are obtained by means of the electrospinning technique, they are subjected to a chemical cross-linking procedure, to reinforce the polymeric chain of the nanostructured compound.
  • the cross-linking It is carried out by immersing the nanofibers in methanol for 24 hours at room temperature, then drying them in the air.
  • Arsenic (V) adsorption efficiency tests were performed at room temperature with pure PVA nanofibers, bare strontium hexaferrite nanoparticles ( ⁇ 4 nm in diameter); and PVA magnetic nanofibers for 10% SrM-NPs and 20% SrM-NPs. Measurements were carried out using twelve working solutions, each with the same initial concentration of arsenic (V) of 3.26 mg/L. The PerkinElmer Optima spectrometer was used to measure the average absorbance and then calculate the removal efficiency of arsenic in water with the equation:
  • Sampling time for pure PVA nanofibers 1, 3, 5, 7 and 10 minutes.
  • Sampling time for magnetic nanofibers 1, 2, 3, 5, 7 and 10 minutes.
  • Fig. 6 shows the experimental results for As adsorption efficiency as a function of time using bare SrM-NPs, pure PVA nanofibers, and magnetic PVA nanofibers made of 10% SrM-NPs and 20% SrM-NPs.
  • pure PVAs It is interesting to observe that as the amount of magnetic NPs in the polymeric matrix increases, the adsorption efficiency also increases proportionally, since in Fig.
  • the density of NPs induces a high magnetic anisotropy in the form exhibited by the nanofibers, which is not present in the volume of the magnetic material.
  • this nanostructured magnet has a larger adsorption surface as the strontium hexaferrite nanoparticles are confined within the polymeric matrix, without being in direct contact with the As ions, but interacting with them at a distance to improve adsorption kinetics.
  • Figure 7 shows the graphic sequence of the extraction of PVA nanofibers with SrM-NPs, used to remove arsenic from the aqueous medium using a permanent magnet: (a) magnetic attraction of the nanofibers immersed in a contaminated aqueous medium once the arsenic adsorption process is complete, (b) the magnetic nanofibers on the edge of the beaker adhered to the permanent magnet; and (c) the arsenic-loaded nanofibers outside the decontaminated aqueous medium.
  • IPCS 2001: Arsenic and arsenic compounds. Geneva, Switzerland, World Health Organization, International Program on Chemical Safety (No. Q 224 of the WHO Environmental Health Criteria series).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Textile Engineering (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Power Engineering (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

The present invention relates to a nanostructured composite of polyvinyl alcohol (PVA) nanofibres with homogeneously distributed strontium hexaferrite nanoparticles (SrM-NPs) and their application to remove arsenic mixed in aqueous media. The magnetic PVA nanofibres exhibit a large surface area, magnetic shape anisotropy along the longitudinal axis with new modes of magnetisation reversal and a distinct arsenic adsorption capacity, controlling the density of SrM-NPs below the percolation limit. The dispersed system of SrM-NPs in the polymer matrix promotes excellent physico-chemical and magnetic properties, i.e. thermal stability, high values of remanence magnetisation normalised with respect to saturation magnetisation, Mr/Ms, also of the coercive field, Hc, a reduced value of the switching field distribution, SFD, and a high energy product, (BH)max. This invention may be of scientific interest and have a wide range of technological applications. It also implies an interesting commercialisation potential, since magnetic nanofibres can be produced at relatively low costs using a continuous electrospinning process. The invention is intended for use in arsenic adsorption and fixation processes. Therefore, the physico-chemical properties exhibited by this nanostructured composite of magnetic nanofibres make it an economical and ideal invention for potential applications in environmental remediation in places where arsenic contamination is a serious problem.

Description

NANOFIBRAS MAGNETICAS POLIMERICAS CON NANOPARTICULAS DE HEXAFERRITA DE ESTRONCIO PARA LA ADSORCION DE POLYMERIC MAGNETIC NANOFIBERS WITH STRONTIUM HEXAFERRITE NANOPARTICLES FOR THE ADSORPTION OF
ARSENICO ARSENIC
CAMPO TECNICO DE LA INVENCION. TECHNICAL FIELD OF THE INVENTION.
El presente invento se refiere a un material para el saneamiento del medio ambiente, específicamente un compuesto nanoestructurado basado en nanofibras de alcohol polivinílico con nanopartículas magnéticas de hexaferrita de estroncio (SrFe-120-19) embebidas, eficaz para adsorber arsénico mezclado en aguas contaminadas con este metaloide. The present invention relates to a material for environmental sanitation, specifically a nanostructured compound based on polyvinyl alcohol nanofibers with embedded magnetic nanoparticles of strontium hexaferrite (SrFe-120-19), effective for adsorbing arsenic mixed in water contaminated with this metalloid.
OBJETIVOS DE LA INVENCION. i). Desarrollar un compuesto de nanofibras magnéticas poliméricas con nanopartículas de hexaferrita de estroncio, SrFe-120-19, capaz de remover arsénico para coadyuvar en el saneamiento de las aguas residuales y agua utilizada en la producción de alimentos en la industria agropecuaria. ii). Contribuir en el esfuerzo para garantizar el suministro de agua limpia y apropiada para el consumo humano controlando los altos niveles de arsénico, reconocido como uno de los principales contaminantes químicos causante de efectos adversos para la salud. OBJECTIVES OF THE INVENTION. i). Develop a composite of polymeric magnetic nanofibers with strontium hexaferrite nanoparticles, SrFe-120-19, capable of removing arsenic to help clean up wastewater and water used in food production in the agricultural industry. ii). Contribute to the effort to guarantee the supply of clean and appropriate water for human consumption by controlling high levels of arsenic, recognized as one of the main chemical contaminants that cause adverse health effects.
ANTECEDENTES. BACKGROUND.
Desde hace varias décadas la presencia y el constante aumento de contaminantes en el medio ambiente ha llamado intensamente la atención de algunos gobiernos, grupos de ambientalistas e investigadores en diversas disciplinas de las ciencias naturales en todo el mundo, por la discusión sobre temas de salud relacionados con este problema; y por el peligro que representa para todos los seres vivos del planeta el calentamiento global y cambio climático. Esto debido, por una parte, al incremento promedio de la temperatura por el uso excesivo de combustibles fósiles que contaminan y provocan el efecto invernadero, pero además por la presencia e incremento continuo de un amplio espectro de contaminantes en el medio ambiente. Entre ellos destaca la concentración de iones de metales pesados que son descargados en el aire, ríos, lagos y otros reservorios de agua. Ciertamente esto tiene un efecto negativo en toda forma de vida sobre la Tierra y repercutirá absolutamente en nuestros hijos, nietos y futuras generaciones, quienes sufrirán las consecuencias de lo que fallemos en hacer, hoy en día, con el cuidado y manejo responsable de los recursos naturales y el medio ambiente. For several decades, the presence and constant increase of pollutants in the environment has drawn the attention of some governments, environmental groups and researchers in various disciplines of natural sciences around the world, due to the discussion on health-related issues. with this problem; and because of the danger that global warming and climate change represent for all living beings on the planet. This is due, on the one hand, to the average increase in temperature due to the excessive use of fossil fuels that pollute and cause the greenhouse effect, but also due to the presence and continuous increase of a wide spectrum of pollutants in the environment. Among them stands out the concentration of heavy metal ions that are discharged into the air, rivers, lakes and other water reservoirs. Certainly this has a negative effect on all forms of life on Earth and will absolutely affect our children, grandchildren and future generations, who will suffer the consequences of what we fail to do, today, with the care and responsible management of resources. nature and the environment.
El agua ha sido principal escenario para la evolución de la vida y es su ingrediente esencial, pero subestimamos este hecho y no valoramos correctamente su importancia en el equilibrio íntegro y saludable de todos los ecosistemas. Es evidente que estamos poniendo en riesgo y comprometiendo la existencia y futuro de la especie humana y de todos los seres vivos en nuestro planeta, como resultado de la desforestación de los bosques y selvas tropicales, contaminación atmosférica, contaminación de las reservas de agua dulce, contaminación de los océanos y las tierras de cultivo con fertilizantes, pesticidas químicos, materiales radioactivos, metales pesados como: cadmio (Cd), cromo (Cr), cobre (Cu), plomo (Pb), mercurio (Hg), cinc (Zn), etc.; y los metaloides arsénico (As), antimonio (Sb) y polonio (Po), que también están considerados en esta categoría. Los metales pesados se acumulan en las células vivas de los sistemas biológicos a través de las cadenas alimenticias y son potencialmente tóxicos, no son degradables y tienden a acumularse en el medio ambiente. Aunque si bien es cierto que existe una componente natural en la contaminación ambiental generada por los incendios forestales, actividad volcánica y acumulación de contaminantes en los mantos acuíferos subterráneos profundos, por el transporte de minerales mezclados con el agua, ya que pueden contener concentraciones altas de arsénico y flúor en disolución acuosa, también es indudable que una gran contribución a la contaminación ambiental global es de origen antropogénico. Esto está vinculado entre otros factores con la pobreza y el acelerado crecimiento demográfico, pues el impacto ambiental es obvio, a mayor población se consumen más recursos naturales, se genera más basura y se ocasiona más daño al planeta. La incidencia de los incendios deliberados de las selvas y bosques se multiplican cada año para dar paso a la ganadería y monocultivos, que tienen gran demanda en la población a nivel mundial y, es un hecho incuestionable que, la actividad industrial y la minería generan muchos contaminantes en los procesos de extracción y fundición de metales, las petroquímicas, la fabricación de baterías eléctricas, la industria de los semiconductores para la fabricación de computadoras, láseres y otros muchos aparatos electrónicos, etc. De tal manera que la cantidad de residuos industriales conteniendo arsénico y otros contaminantes se ha ido incrementando paulatinamente con el tiempo. Por lo tanto, cada día son más limitadas las reservas útiles de agua limpia para producir suficientes granos y otros alimentos necesarios para el consumo humano y también para abatir la desnutrición en muchos países pobres. Water has been the main stage for the evolution of life and is its essential ingredient, but we underestimate this fact and do not correctly assess its importance in the integral and healthy balance of all ecosystems. It is evident that we are putting at risk and compromising the existence and future of the human species and of all living beings on our planet, as a result of the deforestation of tropical forests and jungles, atmospheric pollution, contamination of fresh water reserves, contamination of oceans and farmland with chemical fertilizers, pesticides, radioactive materials, heavy metals such as: cadmium (Cd), chromium (Cr), copper (Cu), lead (Pb), mercury (Hg), zinc (Zn ), etc.; and the metalloids arsenic (As), antimony (Sb) and polonium (Po), which are also considered in this category. Heavy metals accumulate in living cells of biological systems through food chains and are potentially toxic, non-degradable and tend to accumulate in the environment. Although it is true that there is a natural component in the environmental pollution generated by forest fires, volcanic activity and the accumulation of pollutants in the deep underground aquifers, due to the transport of minerals mixed with the water, since they can contain high concentrations of arsenic and fluorine in aqueous solution, there is also no doubt that a great contribution to global environmental pollution is of anthropogenic origin. This is linked, among other factors, to poverty and accelerated population growth, since the environmental impact is obvious: the larger the population, the more natural resources are consumed, more garbage is generated, and more damage is caused to the planet. The incidence of deliberate fires in jungles and forests multiplies every year to give way to livestock and monocultures, which have great demand in the population worldwide and, it is an unquestionable fact that industrial activity and mining generate many pollutants in the processes of extraction and smelting of metals, petrochemicals, the manufacture of electric batteries, the semiconductor industry for manufacture of computers, lasers and many other electronic devices, etc. In such a way that the amount of industrial waste containing arsenic and other contaminants has been increasing gradually over time. Therefore, the useful reserves of clean water to produce enough grains and other foods necessary for human consumption and also to reduce malnutrition in many poor countries are becoming more limited every day.
Ante este panorama, es necesario impulsar y proponer soluciones viables y eficientes que reviertan el problema en el corto plazo, con una visión y consciencia ecológica para aprender a cuidar de manera responsable la calidad de los reservónos de agua y el medio ambiente, por ejemplo, reduciendo las emisiones de gases contaminantes como CO2, CO, CPU, O3, SO2, NOx, clorofluorocarbonos (CFC), etc., para evitar la lluvia ácida y el efecto invernadero, control eficaz de agentes contaminantes de origen biológico; y también disminuir la exposición humana al arsénico, analizando las fuentes de abastecimiento de agua e identificando claramente las que tengan concentraciones superiores a los 10 pg/L de este metaloide [1 -2]. Debemos comprometernos a proteger y preservar las reservas de agua dulce en nuestro planeta aplicando el conocimiento científico, para garantizar su pureza y abundancia mediante la aplicación de la tecnología hidráulica y procesos físicos o químicos de descontaminación del agua, para su uso racional en la agricultura, la ganadería y también para el consumo humano. Pero además, debemos ser conscientes y capaces de asegurar el abastecimiento y suministro suficiente de agua limpia para las siguientes generaciones de habitantes en nuestro planeta. El arsénico es un elemento químico que presenta alotropía y está distribuido extensamente por toda la corteza terrestre, en su mayoría en forma de sulfuro de arsénico o de arseniatos y arseniuros metálicos. Es relativamente inerte a temperaturas ordinarias, pero calentado al aire arde con llama azulada, produciendo nubes blancas de olor aliáceo del trióxido de arsénico sólido (4 As +3 O2 ® 2 AS2O3). En la actualidad su presencia en el agua, tanto para consumo humano como para la agricultura, representa un grave problema de salud pública en nuestro país y en muchas otras naciones del mundo, pero en general es un elemento nocivo y peligroso para todos los seres vivos. Given this scenario, it is necessary to promote and propose viable and efficient solutions that reverse the problem in the short term, with an ecological vision and awareness to learn to responsibly care for the quality of water reservoirs and the environment, for example, reducing the emissions of polluting gases such as CO2, CO, CPU, O3, SO2, NOx, chlorofluorocarbons (CFC), etc., to avoid acid rain and the greenhouse effect, effective control of biologically-derived pollutants; and also reduce human exposure to arsenic, analyzing water supply sources and clearly identifying those with concentrations above 10 pg/L of this metalloid [1-2]. We must commit ourselves to protect and preserve the freshwater reserves on our planet by applying scientific knowledge, to guarantee its purity and abundance through the application of hydraulic technology and physical or chemical processes for water decontamination, for its rational use in agriculture, livestock and also for human consumption. But in addition, we must be aware and capable of ensuring the supply and sufficient supply of clean water for the next generations of inhabitants on our planet. Arsenic is a chemical element that presents allotropy and is widely distributed throughout the earth's crust, mostly in the form of arsenic sulfide or metallic arsenates and arsenides. It is relatively inert at ordinary temperatures, but when heated in air it burns with a bluish flame, producing white clouds with the aliaceous odor of trioxide. solid arsenic (4 As +3 O2 ® 2 AS2O3). Currently its presence in water, both for human consumption and for agriculture, represents a serious public health problem in our country and in many other nations of the world, but in general it is a harmful and dangerous element for all living beings. .
Con el fin de tratar de resolver este problema, a través de los años se han desarrollado varias tecnologías de remoción de arsénico del agua [3-7], algunas convencionales y otras más sofisticadas que involucran la aplicación del conocimiento en las áreas de la física y química. Los procesos para remover arsénico de aguas residuales y del agua para consumo humano utilizan técnicas que por ejemplo incluyen: (a) tecnologías basadas en absorbentes comerciales o materiales naturales para remover arsénico, mediante filtración, utilizando membranas vegetales y otros materiales de desechos industriales como escoria metalúrgica, rellenos con alambres, clavos o varillas de hierro, etc.; y también con restos de la industria de alimentos y de la agricultura [8]; (b) métodos de coagulación y floculación [9-10]; (c) intercambio iónico y microfiltración [11 -12]; y (d) remoción por técnicas de oxidación, con carbón activado y adsorción [13]. Además, existen muchos estudios con nanocompuestos basados en óxido de grafeno y nanopartículas (NPs) de algunos óxidos metálicos como los óxidos de: hierro (hematita, magnetita, etc.), manganeso, cinc, titanio, aluminio, magnesio, etc., los cuales muestran ser eficaces en la adsorción de metales pesados [14] En la técnica de adsorción también se incluyen los nanomateriales basados en nanotubos de carbón y NPs magnéticas de hematita (a-Fe2C>3), nanocompuestos poliméricos con NPs magnéticas de magnetita, FesCVPVA, depositadas en el interior y sobre la superficie de nanofibras con aglomerados de magnetita, reportados para diferentes concentraciones [15]; y otros óxidos de hierro soportados en polímeros. Algunos compuestos de sílice que contienen adsorbentes de óxido de hierro (III) y materiales poliméricos como el chitosán y sus derivados también han sido probados para remover arsénico de medios acuosos [16-17] Asimismo se han desarrollado filamentos de materiales magnéticos, con los cuales se pueden fabricar filtros para la remoción de metales pesados, como lo es el caso de la invención de un filtro de filamentos de hexaferrita de bario [18]. En esta invención se utilizan NPs de magnetita, que presentan un comportamiento ferrimagnético débil, las cuales primero deben ser dispersadas en el agua contaminada para adsorber metales pesados, luego mediante el flujo continuo del agua a través del filtro las NPs son atraídas y atrapadas por la membrana de hexaferrita de bario. Este filtro de filamentos de hexaferrita de bario resulta eficiente para remover iones de arsénico adsorbidos por NPs de magnetita, cuando logra atraer todas las NPs cargadas con arsénico del medio acuoso contaminado. De otra manera se puede generar otro problema adicional al medio ambiente si las NPs de magnetita no son atraídas y atrapadas en su totalidad por dicho filtro. In order to try to solve this problem, various technologies for removing arsenic from water have been developed over the years [3-7], some conventional and others more sophisticated that involve the application of knowledge in the areas of physics and chemistry. The processes to remove arsenic from wastewater and water for human consumption use techniques that, for example, include: (a) technologies based on commercial absorbents or natural materials to remove arsenic, through filtration, using vegetable membranes and other industrial waste materials such as slag metallurgical, stuffed with wires, nails or iron rods, etc.; and also with remains of the food industry and agriculture [8]; (b) coagulation and flocculation methods [9-10]; (c) ion exchange and microfiltration [11-12]; and (d) removal by oxidation techniques, with activated carbon and adsorption [13]. In addition, there are many studies with nanocomposites based on graphene oxide and nanoparticles (NPs) of some metal oxides such as oxides of: iron (hematite, magnetite, etc.), manganese, zinc, titanium, aluminum, magnesium, etc., the which show to be effective in the adsorption of heavy metals [14] The adsorption technique also includes nanomaterials based on carbon nanotubes and magnetic NPs of hematite (a-Fe2C>3), polymeric nanocomposites with magnetic NPs of magnetite, FesCVPVA , deposited inside and on the surface of nanofibers with magnetite agglomerates, reported for different concentrations [15]; and other polymer supported iron oxides. Some silica compounds containing iron (III) oxide adsorbents and polymeric materials such as chitosan and its derivatives have also been tested to remove arsenic from aqueous media [16-17]. Filaments of magnetic materials have also been developed, with which filters can be manufactured for the removal of heavy metals, as This is the case of the invention of a barium hexaferrite filament filter [18]. In this invention, magnetite NPs are used, which have a weak ferrimagnetic behavior, which must first be dispersed in the contaminated water to adsorb heavy metals, then through the continuous flow of water through the filter, the NPs are attracted and trapped by the barium hexaferrite membrane. This barium hexaferrite filament filter is efficient to remove arsenic ions adsorbed by magnetite NPs, when it manages to attract all the arsenic-loaded NPs from the contaminated aqueous medium. Otherwise, another additional problem can be generated for the environment if the magnetite NPs are not fully attracted and trapped by said filter.
En esta categoría de materiales nanoestructurados la invención de un nuevo compuesto de nanofibras magnéticas de alcohol polivinílico (PVA por sus siglas en inglés) con nanopartículas de SrFei20i9 (denotadas también por SrM-NPs), homogéneamente distribuidas en la matriz del polímero, viene a complementar los sistemas magnéticos nanoestructurados para la remediación de aguas contaminadas con metales pesados, por su capacidad de adsorción de As. Con la ventaja que funciona sin necesidad de dispersar otro tipo de NPs desnudas, como adsorbente primario, que pueden llegar a dificultar su localización y extracción del medio acuoso. Cabe resaltar que este compuesto nanoestructurado resulta atractivo para su aplicación, pues el procedimiento de remoción de arsénico disuelto en el agua es simple, no se producen lodos tóxicos después de su uso y, tanto los iones del adsorbato como los materiales adsorbentes del polímero magnético pueden ser reciclados apropiadamente. Otras propiedades y ventajas de las nanofibras magnéticas poliméricas están relacionadas con su estabilidad física, bajo costo de producción, óptimo control del tamaño de SrM-NPs y distribución homogénea en la superficie interior de la matriz del polímero. Por lo tanto, esta invención permite fabricar a la medida un nanocompuesto magnético polimérico, con características físico-químicas óptimas, para la remoción eficiente de arsénico en medios acuosos. In this category of nanostructured materials, the invention of a new composite of polyvinyl alcohol (PVA) magnetic nanofibers with SrFei20i9 nanoparticles (also denoted by SrM-NPs), homogeneously distributed in the polymer matrix, complements nanostructured magnetic systems for the remediation of water contaminated with heavy metals, due to its capacity to adsorb As. With the advantage that it works without the need to disperse other types of naked NPs, as a primary adsorbent, which can make it difficult to locate and extract of the aqueous medium. It should be noted that this nanostructured compound is attractive for its application, since the removal procedure for arsenic dissolved in water is simple, no toxic sludge is produced after its use, and both the adsorbate ions and the adsorbent materials of the magnetic polymer can be recycled properly. Other properties and advantages of polymeric magnetic nanofibers are related to their physical stability, low production cost, optimal control of the size of SrM-NPs and homogeneous distribution on the inner surface of the polymer matrix. Therefore, this invention allows the tailor-made manufacture of a polymeric magnetic nanocomposite, with optimal physical-chemical characteristics, for the efficient removal of arsenic in aqueous media.
PROBLEMA TECNICO A RESOLVER. Para hacer frente al reto y abordar el complejo problema de contaminación de los diversos acuíferos con metales pesados y ante la demanda mundial de la población para garantizar agua libre de contaminantes orgánicos e inorgánicos, para prevenir la transmisión de enfermedades y la exposición general a sustancias químicas peligrosas, con el tiempo se han desarrollado varias tecnologías convencionales y emergentes para atacar este problema. La Organización Mundial de Salud (OMS) ha recomendado en las Guías para la calidad del agua potable, publicada en 1984, un valor máximo de referencia provisional de 10 pg/L (0.01 mg/L) para arsénico en el agua para consumo humano, basándose en la preocupación por su capacidad cancerígena (IPCS, 2001); (OMS, 2003). Está ampliamente documentado que el arsénico y otros metales pesados tienen efectos acumulativos en los sistemas biológicos y, en particular, el arsénico es uno de los elementos químicos más tóxicos, pues su presencia incrementa el riesgo de adquirir cáncer de piel, riñón, vejiga y de pulmón. No obstante, sigue habiendo mucho debate sobre el mecanismo de la acción cancerígena y sobre la forma de la curva de dosis-respuesta para ingestas bajas. Indudablemente la mayor fuente de contaminación por arsénico en el medio ambiente obedece a la explotación minera de los yacimientos de oro, plata, cobre y otros minerales. Este metaloide se distribuye en grandes concentraciones en el aire, tierra, mantos acuíferos superficiales y subterráneos, encontrando su camino hasta los seres vivos por inhalación directa o a través de la contaminación de los productos alimenticios, siendo la vía oral la más importante por el consumo de alimentos y bebidas. TECHNICAL PROBLEM TO SOLVE. To meet the challenge and address the complex problem of contamination of the various aquifers with heavy metals and in view of the global demand of the population to guarantee water free of organic and inorganic contaminants, to prevent the transmission of diseases and general exposure to chemical substances. dangerous, several conventional and emerging technologies have been developed over time to attack this problem. The World Health Organization (WHO) has recommended in the Guidelines for the quality of drinking water, published in 1984, a provisional maximum reference value of 10 pg/L (0.01 mg/L) for arsenic in water for human consumption, based on concern about its carcinogenicity (IPCS, 2001); (WHO, 2003). It is widely documented that arsenic and other heavy metals have cumulative effects on biological systems and, in particular, arsenic is one of the most toxic chemical elements, since its presence increases the risk of acquiring skin, kidney, bladder and breast cancer. lung. However, much debate remains about the mechanism of carcinogenic action and about the shape of the dose-response curve for low intakes. Undoubtedly, the largest source of arsenic contamination in the environment is due to the mining of gold, silver, copper and other mineral deposits. This metalloid is distributed in large concentrations in the air, soil, surface and underground aquifers, finding its way to living beings by direct inhalation or through the contamination of food products, the oral route being the most important due to the consumption of food and drinks.
Aún cuando se han desarrollado varias tecnologías, muchas de ellas convencionales, para controlar los altos niveles de arsénico en aguas residuales y otro tipo de acuíferos, el problema sigue persistiendo hoy en día. Pero entre las tecnologías menos convencionales, basadas en métodos de adsorción, se han desarrollado diversos materiales nanoestructurados, eficaces como adsorbentes de metales pesados, como por ejemplo: nanotubos de carbono, nanocompuestos de grafeno (Jinyue et al., 2019), filamentos de materiales magnéticos basados en hexaferrita de bario (Patente KR101433332B1), nanocompuestos poliméricos con nanopartículas magnéticas de magnetita, FeaC PVA, depositadas en el interior y sobre la superficie de nanofibras con aglomerados de magnetita, reportados para diferentes concentraciones (Wang et al., 2010); y ahora se añade este nuevo compuesto nanoestructurado de nanofibras de PVA con SrM-NPs, homogéneamente distribuidas en la superficie interior de la matriz polimérica. Prácticamente todas las técnicas de tratamiento de aguas contaminadas, exceptuando la de adsorción, presentan el problema que durante el proceso de remoción de arsénico u otros metales pesados se producen grandes volúmenes de lodos altamente contaminantes, los cuales necesitan ser tratados antes de ser devueltos otra vez al medio ambiente. Cuando se utilizan partículas magnéticas aisladas, ya cargadas con los iones contaminantes, éstas se dispersan en el agua haciendo más complicada su recuperación. Entonces en este sentido, los costos operacionales y de mantenimiento de las plantas de tratamiento de aguas residuales contaminadas con metales pesados pueden resultar muy altos. Por otro lado, cuando se emplean materiales orgánicos como el bagazo de la caña de azúcar, aserrín de la madera, u otros desechos de origen vegetal y subproductos de la industria para atrapar metales pesados, aún cuando éstos resultan ser efectivos y de bajo costo, demandan grandes volúmenes de material y excesivas cantidades de oxígeno, provocando que se reduzca este elemento químico disuelto en el agua, lo cual afecta la biota por el deterioro en la dinámica y regulación de los procesos metabólicos de los ecosistemas acuáticos. Cabe mencionar que el oxígeno disuelto en el agua es un parámetro crítico que sirve para medir el grado de contaminación presente por materia orgánica. Otros materiales naturales como la bentonita, zeolita, sepiolita, aunque presentan una relación de área superficial a volumen alta, no son tan eficientes en la remoción de iones de metales pesados en aguas contaminadas [19]. El uso de NPs basadas en óxido de grafeno y óxidos metálicos desnudos en medios acuosos, aún cuando muestran ser eficaces en la adsorción de metales pesados, la mayoría de las veces presentan dificultades para separarlos de las soluciones acuosas; y también presentan la desventaja de ser propensos a formar agregados, disminuyendo el área superficial, lo cual reduce igualmente su capacidad y selectividad de adsorción. Del mismo modo la aplicación de carbón granular activado como absorbente de metales pesados también resulta muy costosa.Even though various technologies, many of them conventional, have been developed to control high levels of arsenic in wastewater and other types of aquifers, the problem persists today. But among the less conventional technologies, based on adsorption methods, various nanostructured materials have been developed, effective as adsorbents of heavy metals, such as: carbon nanotubes, graphene nanocomposites (Jinyue et al., 2019), filaments of materials based on barium hexaferrite (Patent KR101433332B1), polymeric nanocomposites with nanoparticles magnetite magnetic particles, FeaC PVA, deposited inside and on the surface of nanofibers with magnetite agglomerates, reported for different concentrations (Wang et al., 2010); and now this new nanostructured compound of PVA nanofibers with SrM-NPs, homogeneously distributed on the inner surface of the polymeric matrix, is added. Practically all the techniques for treating contaminated water, except adsorption, present the problem that during the removal process of arsenic or other heavy metals, large volumes of highly polluting sludge are produced, which need to be treated before being returned again. to the environment. When isolated magnetic particles are used, already charged with polluting ions, they disperse in the water, making their recovery more complicated. So in this sense, the operational and maintenance costs of wastewater treatment plants contaminated with heavy metals can be very high. On the other hand, when organic materials such as sugar cane bagasse, wood sawdust, or other waste of plant origin and industry by-products are used to trap heavy metals, even when they turn out to be effective and inexpensive, they demand large volumes of material and excessive amounts of oxygen, causing this chemical element dissolved in the water to be reduced, which affects the biota due to the deterioration in the dynamics and regulation of the metabolic processes of aquatic ecosystems. It is worth mentioning that dissolved oxygen in water is a critical parameter used to measure the degree of contamination present by organic matter. Other natural materials such as bentonite, zeolite, sepiolite, although they have a high surface area to volume ratio, are not as efficient in removing heavy metal ions in polluted water [19]. The use of NPs based on graphene oxide and bare metal oxides in aqueous media, even when shown to be effective in the adsorption of heavy metals, most of the time they present difficulties in separating them from aqueous solutions; and they also have the disadvantage of being prone to form aggregates, decreasing the surface area, which also reduces their capacity and adsorption selectivity. In the same way, the application of granular activated carbon as an absorbent for heavy metals is also very expensive.
La gran ventaja de los procesos para la remoción de arsénico y otros metales pesados mediante la aplicación de compuestos magnéticos nanoestructurados en forma de nanofibras, sobre las técnicas antes mencionadas, radica en que resultan eficaces para adsorber metales pesados. También es relativamente fácil separar éstos de los medios acuosos contaminados, por ejemplo, aplicando campos magnéticos externos o bien fabricando filtros magnéticos. En el caso del método de filtración por una membrana de nanofibras de BaFei2Üi9 (invención KR101433332B1), el procedimiento se realiza en dos etapas: dispersando primero partículas de magnetita, Fe3Ü4, en el medio acuoso para adsorber el contaminante; y posteriormente éstas son atrapadas usando el filtro magnético. Las características magnéticas, típicas de este filtro nanoestructurado son: Fie = 2.568 kOe; Ms = 71.96 emú g_1; Mr/Ms = 0.5. Por este método no se producen lodos contaminantes al final del procedimiento de descontaminación y los costos de producción de estos compuestos nanoestructurados son relativamente bajos. Sin embargo, las partículas de magnetita, Fe3Ü4, en un medio acuoso experimentan fuerzas de atracción de diversa naturaleza, física y química, pues además de la fuerza magnética, están sometidas a fuerzas electrostáticas, de tensión superficial y de van der Waals; y aunque estas tres últimas son muy pequeñas comparadas con la fuerza magnética, influyen también en la formación de agregados de partículas de magnetita, reduciéndose la superficie efectiva de adsorción. Además, muchas veces también se presenta el inconveniente de no poder recuperar el 100% de las partículas cargadas con el metal pesado. Por lo tanto, cuando se desea remover elementos químicos del agua, como el arsénico, es necesario recurrir a métodos más directos de adsorción utilizando materiales nanoestructurados y tecnologías más sofisticadas, mediante las cuales es técnicamente factible reducir la concentración de arsénico hasta 5 pg/L, o menos. The great advantage of the processes for the removal of arsenic and other heavy metals through the application of nanostructured magnetic compounds in the form of nanofibers, over the aforementioned techniques, lies in the fact that they are effective in adsorbing heavy metals. It is also relatively easy to separate these from contaminated aqueous media, for example by applying external magnetic fields or by fabricating magnetic filters. In the case of the method of filtration by a membrane of nanofibers of BaFei2Üi9 (invention KR101433332B1), the procedure is carried out in two stages: first dispersing particles of magnetite, Fe3Ü4, in the aqueous medium to adsorb the contaminant; and later these are trapped using the magnetic filter. The typical magnetic characteristics of this nanostructured filter are: Fie = 2,568 kOe; M s = 71.96 emu g _1 ; M r /M s = 0.5. By this method, no polluting sludge is produced at the end of the decontamination process and the production costs of these nanostructured compounds are relatively low. However, the particles of magnetite, Fe3Ü4, in an aqueous medium experience forces of attraction of various physical and chemical natures, since in addition to the magnetic force, they are subject to electrostatic, surface tension and van der Waals forces; and although these last three are very small compared to the magnetic force, they also influence the formation of aggregates of magnetite particles, reducing the effective adsorption surface. In addition, many times there is also the drawback of not being able to recover 100% of the particles loaded with the heavy metal. Therefore, when it is desired to remove chemical elements from water, such as arsenic, it is necessary to resort to more direct adsorption methods using nanostructured materials and more sophisticated technologies, through which it is technically feasible to reduce the arsenic concentration to 5 pg/L. , or less.
Teniendo en cuenta este panorama como marco de referencia y para coadyuvar al control o eliminación de este contaminante, la invención de este nuevo compuesto polimérico magnético nanoestructurado, capaz de adsorber arsénico disuelto en agua, emerge como una opción prometedora entre los esquemas actualmente practicados en el tratamiento de aguas contaminadas con este metaloide. De esta manera, el compuesto de nanofibras magnéticas presenta ventajas importantes en cuanto a que: a). No es necesario dispersar nanopartículas de otro material adsorbente para atrapar arsénico disuelto en el medio acuoso, ya que las nanofibras con SrM- NPs, de tamaño nanométrico (~ 4 nm) homogéneamente distribuidas en la matriz polimérica adsorben el arsénico por sí mismas y exhiben mejores propiedades magnéticas que el filtro de hexaferrita de bario descrito en la patente KR101433332B1 , el cual presenta limitaciones inherentes al método de adsorción al producirse un contaminante secundario cuando no se logra atrapar a todas las NPs de magnetita cargadas con arsénico dispersas en el medio acuoso. No obstante, la eficiencia de adsorción de arsénico de las nanofibras magnéticas de PVA, con una densidad relativamente baja de SrM-NPs, es similar a la eficiencia de adsorción reportada en dicha patente. b). Se pueden modular las propiedades magnéticas de las nanofibras controlando la densidad de SrM-NPs, por debajo del límite de percolación, ofreciendo grandes ventajas como son los altos valores de cuadratura de la histéresis magnética, reflejados en un valor normalizado de la magnetización, Mr/Ms, cercano a 1.0, alto valor de su fuerza coercitiva, Hc, y del producto de energía máxima, (BH)max; y además alta anisotropía magnética de forma, entre otras características importantes. Taking this scenario into account as a frame of reference and to contribute to the control or elimination of this contaminant, the invention of this A new nanostructured magnetic polymeric compound, capable of adsorbing arsenic dissolved in water, emerges as a promising option among the schemes currently practiced in the treatment of water contaminated with this metalloid. In this way, the composite of magnetic nanofibers has important advantages in that: a). It is not necessary to disperse nanoparticles of another adsorbent material to trap arsenic dissolved in the aqueous medium, since nanofibers with SrM-NPs, of nanometric size (~4 nm) homogeneously distributed in the polymeric matrix adsorb arsenic by themselves and exhibit better magnetic properties than the barium hexaferrite filter described in patent KR101433332B1, which has limitations inherent to the adsorption method as a secondary contaminant is produced when it is not possible to trap all the magnetite NPs loaded with arsenic dispersed in the aqueous medium. However, the arsenic adsorption efficiency of PVA magnetic nanofibers, with a relatively low density of SrM-NPs, is similar to the adsorption efficiency reported in said patent. b). The magnetic properties of the nanofibers can be modulated by controlling the density of SrM-NPs, below the percolation limit, offering great advantages such as the high quadrature values of the magnetic hysteresis, reflected in a normalized value of the magnetization, Mr/ Ms, close to 1.0, high value of its coercive force, H c , and of the maximum energy product, (BH)max; and also high magnetic anisotropy of shape, among other important characteristics.
Así, esta invención representa un avance tecnológico en el desarrollo de los sistemas magnéticos nanoestructurados para la remediación de aguas contaminadas con metales pesados, en virtud de su capacidad de adsorción de As. Thus, this invention represents a technological advance in the development of nanostructured magnetic systems for the remediation of water contaminated with heavy metals, by virtue of its As adsorption capacity.
BREVE DESCRIPCION DE LA INVENCION. BRIEF DESCRIPTION OF THE INVENTION.
Para contribuir en la solución eficiente del problema de contaminación por uno de los metales pesados más tóxicos en la Tierra como lo es el arsénico, se ha desarrollado un compuesto de nanofibras poliméricas de PVA que contiene nanopartículas magnéticas de SrFei2Üi9 homogéneamente distribuidas a nivel superficial en su interior. De tal forma que para mejorar el método de adsorción de arsénico disuelto en agua, se utilizan y distribuyen adecuadamente cantidades específicas de SrM-NPs de tamaño nanométrico en la matriz polimérica, para aplicar este nuevo material en el saneamiento de las aguas residuales y reducir también los altos niveles de contaminación por arsénico en los mantos acuíferos. To contribute to the efficient solution of the problem of contamination by one of the most toxic heavy metals on Earth, such as arsenic, a PVA polymeric nanofiber composite has been developed that contains magnetic nanoparticles of SrFei2Üi9 homogeneously distributed at the surface level inside. In such a way that to improve the method of adsorption of arsenic dissolved in water, specific amounts of nanometric-sized SrM-NPs are used and properly distributed in the polymeric matrix, to apply this new material in the treatment of wastewater and also reduce the high levels of arsenic contamination in the aquifers.
Básicamente, para la elaboración de estas nanofibras magnéticas se hace uso de dos técnicas importantes, las cuales son referidas a continuación: Primero se describe la técnica de Pechini [20], para sintetizar polvos magnéticos de hexaferrita de estroncio, SrFei20i9, y obtener partículas finas químicamente homogéneas, las cuales reciben un tratamiento ultrasónico. Enseguida se explica la técnica de electrohilado por medio de la cual se fabrican las nanofibras magnéticas, incorporando SrM-NPs en una solución polimérica precursora de PVA. Basically, for the elaboration of these magnetic nanofibers, two important techniques are used, which are referred to below: First, the Pechini technique [20] is described, to synthesize magnetic powders of strontium hexaferrite, SrFei20i9, and obtain fine particles chemically homogeneous, which receive an ultrasonic treatment. Next, the electrospinning technique by means of which magnetic nanofibers are manufactured is explained, incorporating SrM-NPs in a PVA precursor polymeric solution.
1. Técnica de Pechini. Para la síntesis de cerámicas magnéticas y muchos otros materiales se han investigado numerosos métodos por la vía húmeda, como alternativa a la técnica de reacción en estado sólido. Estos incluyen: polimerización con ácidos carboxílicos, coprecipitación, procesamiento sol-gel, microemulsión, síntesis electroquímica, reacciones autopropagadas y síntesis hidrotérmica, que han resultado eficaces en la preparación de materiales magnéticos. El procedimiento inventado por Maggio Pechini en 1967, objeto de esta descripción, supone como punto de partida una solución acuosa de óxidos apropiados, o sales mezcladas con un ácido hidroxicarboxílico (ácido cítrico; ácido láctico; o ácido tartárico); en este medio los iones metálicos tienen muchas posibilidades de formar compuestos de coordinación con el ácido carboxílico, por ejemplo, el ácido cítrico es un agente quelante que se asocia con cationes metálicos trivalentes o divalentes (pueden ser hierro Fe+3 o Sr+2) para formar complejos estables y solubles. Luego, la adición de un polihidroxialcohol (etilenglicol, propilenglicol, glicerina) facilita la poliesterificación a bajas temperaturas con los grupos carboxilato libres, para formar un sol homogéneo y soluble, que al juntarse con otro sistema de la misma naturaleza facilita un buen contacto, casi a nivel molecular, de los iones precursores de fases sólidas. Cuando esta mezcla es calentada a temperaturas un poco más altas para remover el exceso de solventes, se forma una resina sólida polimérica intermedia con iones precursores en la matriz. Finalmente, al calcinar esta resina a temperaturas más altas ocurre la degradación térmica del polímero, se remueven los residuos orgánicos y se forman los compuestos con la estequiometria calculada. Debido a la homogeneidad de la distribución de iones, es posible obtener partículas de dimensiones nanométricas con la fase del producto deseado, a través de la difusión de cationes a temperaturas por debajo de los 1000 QC. Cuando el producto es un material magnético como las hexaferritas, normalmente las propiedades intrínsecas mejoran a través de esta ruta de síntesis. Para muchos materiales cerámicos, la estequiometria, el método de síntesis y los tratamientos térmicos involucrados son determinantes para controlar el tamaño de grano, la textura cristalina y en general, la microestructura de los sólidos porosos y densos. Por lo tanto, la técnica de Pechini permite, por un lado, producir fases con alta pureza, regular la porosidad y lograr un crecimiento uniforme de partículas finas químicamente homogéneas con gran estabilidad térmica y, por otro lado, contribuye para mejorar las propiedades magnéticas y eléctricas de las ferritas al facilitar el control de la composición química con menor consumo de energía, ya que las temperaturas de sinterización por la vía húmeda son menores con respecto al método cerámico, que es la vía tradicional para la síntesis de estos materiales. 1. Pechini technique. For the synthesis of magnetic ceramics and many other materials, numerous wet methods have been investigated as an alternative to the solid state reaction technique. These include: polymerization with carboxylic acids, coprecipitation, sol-gel processing, microemulsion, electrochemical synthesis, self-propagating reactions, and hydrothermal synthesis, which have been found effective in the preparation of magnetic materials. The process invented by Maggio Pechini in 1967, object of this description, assumes as a starting point an aqueous solution of appropriate oxides, or salts mixed with a hydroxycarboxylic acid (citric acid; lactic acid; or tartaric acid); in this medium the metal ions have many possibilities to form coordination compounds with the carboxylic acid, for example, citric acid is a chelating agent that associates with trivalent or divalent metal cations (they can be iron Fe +3 or Sr +2 ) to form stable and soluble complexes. Then, the addition of a polyhydroxyalcohol (ethylene glycol, propylene glycol, glycerin) facilitates polyesterification at low temperatures with the free carboxylate groups, to form a homogeneous and soluble sol, which, when combined with another system of the same nature, facilitates good contact, almost at the molecular level, of the precursor ions of solid phases. When this mixture is heated to slightly higher temperatures to remove excess solvents, a solid intermediate polymeric resin is formed with precursor ions in the matrix. Finally, when this resin is calcined at higher temperatures, the thermal degradation of the polymer occurs, the organic residues are removed and the compounds with the calculated stoichiometry are formed. Due to the homogeneity of the ion distribution, it is possible to obtain particles of nanometric dimensions with the phase of the desired product, through the diffusion of cations at temperatures below 1000 Q C. When the product is a magnetic material such as hexaferrites, the intrinsic properties are normally improved through this synthetic route. For many ceramic materials, the stoichiometry, the synthesis method and the thermal treatments involved are decisive to control the grain size, the crystalline texture and, in general, the microstructure of the porous and dense solids. Therefore, the Pechini technique allows, on the one hand, to produce phases with high purity, regulate porosity and achieve a uniform growth of chemically homogeneous fine particles with great thermal stability and, on the other hand, contributes to improve the magnetic properties and of the ferrites by facilitating the control of the chemical composition with lower energy consumption, since the sintering temperatures by the wet method are lower compared to the ceramic method, which is the traditional method for the synthesis of these materials.
2. Técnica de electrohilado. La técnica de electrohilado (referida en la literatura como electrospinning en inglés) es un método que representa un gran avance tecnológico, pues desde su invención en el laboratorio se proyectó para aplicarse a nivel industrial por las ventajas que ofrece en la producción de nanofibras a gran escala, de manera sencilla y a bajo costo. Es una técnica efectiva y simple para producir fibras ultra delgadas a partir de una solución polimérica, donde se hace uso de fuerzas electrostáticas para obtener filamentos con diámetros que se pueden controlar en el rango desde los micrómetros hasta unos cuantos nanómetros. Por otro lado, la técnica ofrece la ventaja de poder incorporar diversos tipos de nanopartículas en nanofibras poliméricas [21]. Fue A. Formhals [22] quien inventó y patentó en 1934 un aparato electrostático para el electrohilado de plásticos, aplicando un campo eléctrico intenso a una solución polimérica para formar fibras delgadas que eran atraídas a un electrodo móvil de polaridad negativa. Las nanofibras pueden considerarse como objetos unidimensionales con un diámetro inferior a una miera y una relación de superficie a volumen muy alta, que presentan propiedades mecánicas, físicas y químicas extraordinarias. Las características básicas del proceso de electrohilado consisten en aplicar un alto voltaje entre un capilar de acero (ánodo), por donde se impulsa una solución polimérica, y el colector (cátodo), el cual sirve para acumular las fibras electrohiladas. La evolución de las características intrínsecas de las nanofibras resultantes como lo son: el diámetro, morfología, distribución de las nanopartículas dispersadas dentro de la fibra etc., son gobernadas por procesos de auto-ensamble inducidos por las interacciones electrostáticas de Coulomb entre los elementos cargados, presentes en la gota de la solución polimérica que se bombea a través del capilar; y que primeramente es retenida por su tensión superficial. Al aplicar un alto voltaje entre el ánodo y el cátodo, se induce carga positiva en la superficie del fluido y la forma de la gota comienza a distorsionarse. Cuando se incrementa el voltaje arriba de un valor crítico, se vence la fuerza de tensión superficial que actúa sobre la gota y se produce un haz inicial de fluido polimérico que adquiere la forma de un cono, referido como el cono de Taylor [23], con una distribución de carga superficial; y es entonces cuando el fluido se mueve hacia la placa colectora adelgazándose rápidamente con la distancia. Debido a las fuerzas repulsivas los iones presentes y las nanopartículas cargadas, en las mezclas poliméricas heterogéneas, se mueven radialmente hacia la superficie del minúsculo chorro de fluido, produciéndose una evaporación rápida del solvente cerca del cátodo para convertirse el haz en nanofibras sólidas, vía una inestabilidad de batido, donde la fibra polimeriza y las nanopartículas incorporadas quedan arrestadas y fijas sobre la superficie interior de la matriz polimérica, depositándose finalmente en el colector. Así, una posibilidad para producir nanofibras magnéticas de una manera simple la ofrece la técnica de electrospinning, incorporando nanopartículas magnéticas sintetizadas por la técnica de Pechini en la mezcla polimérica precursora de las nanofibras, para lo cual las SrM-NPs se sonican previamente para desaglomerar y alcanzar un tamaño de partícula pequeño (~ 4 nm), luego se añaden a una solución de PVA y se dispersan homogéneamente en la matriz polimérica durante su fabricación. Aplicando esta técnica, se tiene la capacidad de poder controlar las propiedades magnéticas del compuesto, variando la densidad de SrM-NPs, permite modificar las propiedades físico-químicas del polímero y, con esto, la interacción entre las NPs y la matriz polimérica de PVA. De los estudios realizados mediante análisis termogravimétrico (TGA) y análisis termogravimétrico diferencial (DTGA), se ha observado que las nanopartículas de hexaferrita de estroncio embebidas cumplen una función protectora al retrasar la degradación térmica de la matriz de PVA con respecto al PVA sin SrM-NPs. Por lo tanto, las nanopartículas en la matriz polimérica tienen un efecto termoprotector sobre la temperatura de degradación del polímero, en analogía con un compuesto polimérico de PVA/Fe2Ü3 [24] Por otro lado, las características magnéticas logradas con este nuevo material nanoestructurado revelan uno de los valores más altos de la cuadratura de la histéresis y del producto de energía magnética reportados en la literatura para SrM-NPs, es decir, Hc = 6.66 kOe, Mr/Ms, = 0.81 , (BH)max = 5.26 MGOe; para nanofibras poliméricas con una alta anisotropía magnética de forma fabricadas con una baja concentración de SrM-NPs. 2. Electrospinning technique. The electrospinning technique (referred to in the literature as electrospinning in English) is a method that represents a great technological advance, because since its invention in the laboratory it was designed to be applied at an industrial level due to the advantages it offers in the production of nanofibers at a large scale. scale, easily and at low cost. It is an effective and simple technique to produce ultra-thin fibers from a polymer solution, where electrostatic forces are used to obtain filaments with diameters that can be controlled in the range from micrometers to a few nanometers. On the other hand, the technique offers the advantage of being able to incorporate various types of nanoparticles into polymeric nanofibers [21]. It was A. Formhals [22] who invented and patented in 1934 an electrostatic apparatus for the electrospinning of plastics, applying an intense electric field to a polymeric solution to form thin fibers that were attracted to a moving electrode of negative polarity. Nanofibers can be considered as one-dimensional objects with a diameter of less than one micron and a very high surface area to volume ratio, which have extraordinary mechanical, physical and chemical properties. The basic characteristics of the electrospinning process consist of applying a high voltage between a steel capillary (anode), through which a polymeric solution is propelled, and the collector (cathode), which serves to accumulate the electrospun fibers. The evolution of the intrinsic characteristics of the resulting nanofibers, such as: diameter, morphology, distribution of nanoparticles dispersed within the fiber, etc., are governed by self-assembly processes induced by electrostatic Coulomb interactions between charged elements. , present in the drop of polymer solution that is pumped through the capillary; and that it is first retained by its surface tension. By applying a high voltage between the anode and cathode, positive charge is induced on the fluid surface and the droplet shape begins to distort. When the voltage is increased above a critical value, the surface tension force acting on the drop is overcome and an initial beam of polymeric fluid is produced that acquires the shape of a cone, referred to as the Taylor cone [23], with a surface charge distribution; and that is when the fluid moves towards the collector plate getting thinner rapidly with distance. Due to the repulsive forces, the ions present and the charged nanoparticles, in the heterogeneous polymeric mixtures, move radially towards the surface of the tiny fluid jet, producing a rapid evaporation of the solvent near the cathode to convert the beam into solid nanofibers, via a shake instability, where the fiber polymerizes and the incorporated nanoparticles are arrested and fixed on the inner surface of the polymeric matrix, finally depositing in the collector. Thus, a possibility to produce magnetic nanofibers in a simple way is offered by the electrospinning technique, incorporating magnetic nanoparticles synthesized by the Pechini technique in the precursor polymer mixture of the nanofibers, for which the SrM-NPs are previously sonicated to deagglomerate and achieve a small particle size (~4 nm), then they are added to a PVA solution and homogeneously dispersed in the polymeric matrix during their manufacture. Applying this technique, it is possible to control the magnetic properties of the compound, by varying the density of SrM-NPs, it is possible to modify the physical-chemical properties of the polymer and, with this, the interaction between the NPs and the PVA polymeric matrix. . From studies carried out using thermogravimetric analysis (TGA) and differential thermogravimetric analysis (DTGA), it has been observed that embedded strontium hexaferrite nanoparticles play a protective role by delaying the thermal degradation of the PVA matrix with respect to PVA without SrM- NPs. Therefore, the nanoparticles in the polymeric matrix have a thermoprotective effect on the polymer degradation temperature, in analogy with a PVA/Fe2Ü3 polymeric compound [24]. On the other hand, the magnetic characteristics achieved with this new nanostructured material reveal a from the highest quadrature hysteresis and magnetic energy product values reported in the literature for SrM-NPs, i.e., H c = 6.66 kOe, M r /M s , = 0.81 , (BH)max = 5.26 MGOe; for polymeric nanofibers with a high magnetic anisotropy of shape fabricated with a low concentration of SrM-NPs.
De esta manera, la investigación sistemática de las propiedades que exhiben las nanofibras magnéticas con SrM-NPs embebidas, aunado al bajo costo de los ingredientes químicos y la facilidad de fabricación, contribuyeron para concebir y desarrollar un nuevo material magnético nanoestructurado con una excelente capacidad de adsorción y remoción de arsénico en medios acuosos. In this way, the systematic investigation of the properties exhibited by the magnetic nanofibers with embedded SrM-NPs, together with the low cost of the chemical ingredients and the ease of manufacturing, contributed to conceive and develop a new nanostructured magnetic material with an excellent capacity for adsorption and removal of arsenic in aqueous media.
BREVE DESCRIPCION DE LAS FIGURAS. Figura 1.- Muestra los patrones de difracción de rayos X refinados por el método de Rietveld de nanopartículas de hexaferrita de estroncio SrM-NPs preparadas por el método de Pechini: (a) después de la sinterización a 900 QC; (b) las mismas SrM-NPs después de ser sonicadas en etanol durante dos horas. BRIEF DESCRIPTION OF THE FIGURES. Figure 1 shows patterns XRD refined by the Rietveld method nanoparticle strontium hexaferrite SRM-NPs prepared by the Pechini method: (a) after sintering at 900 C Q; (b) The same SrM-NPs after being sonicated in ethanol for two hours.
Figura 2.- Muestra imágenes TEM de polvos de SrM-NPs preparados por el método de Pechini (a), de aglomerados conformados por nanopartículas de diferentes tamaños (b); y distribución del tamaño de nanopartículas de hexaferrita de estroncio en polvos sinterizados a 900 QC (c). Micrografía TEM de nanofibras de PVA con SrM-NPs sonicadas (d); micrografía TEM de una nanofibra de PVA con SrM-NPs de diámetro reducido (~ 4 nm) uniformemente distribuidas en la superficie interior (e); y distribución del tamaño de SrM-NPs embebidas en la matriz de las nanofibras de PVA (f). Figure 2.- Shows TEM images of SrM-NPs powders prepared by the Pechini method (a), of agglomerates made up of nanoparticles of different sizes (b); and size distribution of strontium hexaferrite nanoparticles in sintered powders at 900 Q C (c). TEM micrograph of PVA nanofibers with sonicated SrM-NPs (d); TEM micrograph of a PVA nanofiber with small-diameter (~4 nm) SrM-NPs uniformly distributed on the inner surface (e); and size distribution of SrM-NPs embedded in the PVA nanofiber matrix (f).
Figura 3.- Muestra una micrografía TEM del compuesto nanoestructurado de nanofibras de PVA con nanopartículas magnéticas de hexaferrita de estroncio de diámetro pequeño embebidas en la matriz polimérica (a); distribución de diámetros de nanofibras magnéticas (b). Figure 3.- Shows a TEM micrograph of the nanostructured composite of PVA nanofibers with small-diameter strontium hexaferrite magnetic nanoparticles embedded in the polymeric matrix (a); diameter distribution of magnetic nanofibers (b).
Figura 4.- Muestra las curvas de histéresis de la magnetización normalizada en función del campo magnético aplicado. La curva segmentada corresponde a los polvos de SrM-NPs sinterizados a 900 QC y la curva sólida corresponde a las nanofibras magnéticas de PVA fabricadas con una muestra precursora con 20% SrM-NPs. Figure 4.- Shows the hysteresis curves of the normalized magnetization as a function of the applied magnetic field. The segmented curve corresponds to the powders of SrM-NPs sintered at 900 Q C and the solid curve corresponds to the PVA magnetic nanofibers made with a precursor sample with 20% SrM-NPs.
Figura 5.- Muestra el comportamiento del producto de energía (BFI)max en función de la masa normalizada x de SrM-NPs para las nanofibras magnéticas fabricadas. El valor máximo de (BFI)max se alcanza para x = 0.527, correspondiente al límite de percolación. Figura 6.- Muestra la eficiencia de remoción de As en función del tiempo para nanofibras de PVA puras, para SrM-NPs desnudas; y para nanofibras de PVA fabricadas con dos concentraciones diferentes de SrM-NPs sonicadas. Las líneas segmentadas sólo sirven para guiar al ojo. Figure 5.- Shows the behavior of the energy product (BFI)max as a function of the normalized mass x of SrM-NPs for the manufactured magnetic nanofibers. The maximum value of (BFI)max is reached for x = 0.527, corresponding to the percolation limit. Figure 6.- Shows the removal efficiency of As as a function of time for pure PVA nanofibers, for naked SrM-NPs; and for PVA nanofibers made with two different concentrations of sonicated SrM-NPs. The segmented lines only serve to guide the eye.
Figura 7.- Muestra la secuencia gráfica de la extracción magnética de las nanofibras de PVA con SrM-NPs, usadas para remover arsénico del medio acuoso: (a) atracción magnética de las nanofibras inmersas en un medio acuoso contaminado una vez concluido el proceso de adsorción de arsénico usando un imán permanente, (b) las nanofibras magnéticas en el borde del vaso de precipitados adheridas al imán permanente; y (c) las nanofibras cargadas con arsénico fuera del medio acuoso descontaminado. Figure 7.- Shows the graphic sequence of the magnetic extraction of the PVA nanofibers with SrM-NPs, used to remove arsenic from the aqueous medium: (a) magnetic attraction of the nanofibers immersed in a contaminated aqueous medium once the process of arsenic adsorption using a permanent magnet, (b) the magnetic nanofibers at the edge of the beaker adhered to the permanent magnet; and (c) the arsenic-loaded nanofibers outside the decontaminated aqueous medium.
DESCRIPCION DETALLADA DE LA INVENCION. DETAILED DESCRIPTION OF THE INVENTION.
La presente invención consiste en la obtención de un compuesto nanoestructurado de nanofibras magnéticas poliméricas, el cual se fabrica mediante la técnica de electrospirming, con la capacidad de adsorber arsénico en medios acuosos. El procedimiento para la preparación de este compuesto de nanofibras se describe a través del desarrollo de las siguientes actividades:The present invention consists in obtaining a nanostructured composite of polymeric magnetic nanofibers, which is manufactured using the electrospirming technique, with the ability to adsorb arsenic in aqueous media. The procedure for the preparation of this nanofiber composite is described through the development of the following activities:
1. Se elaboran nanopartículas de hexaferrita de estroncio, SrFei2Üi9, de dimensiones muy pequeñas, por medio de efectos mecánicos de cavitación ultrasónica, desaglomerando y reduciendo de tamaño los polvos finos de hexaferrita obtenidos por la técnica de Pechini, hasta conseguir NPs con un diámetro promedio de ~ 4 nm. 1. Very small strontium hexaferrite nanoparticles, SrFei2Üi9, are produced by means of ultrasonic cavitation mechanical effects, deagglomerating and reducing in size the fine hexaferrite powders obtained by the Pechini technique, until obtaining NPs with an average diameter ~4nm.
2. Se prepara una mezcla precursora heterogénea incorporando SrM-NPs de tamaño nanométrico en una solución de PVA; y a continuación se dispersan homogéneamente las nanopartículas magnéticas en la solución polimérica por medio de cavitación ultrasónica. 2. A heterogeneous precursor mixture is prepared by incorporating nano-sized SrM-NPs into a PVA solution; and then the magnetic nanoparticles are homogeneously dispersed in the polymer solution by means of ultrasonic cavitation.
3. Se aplica la técnica de electrospirming para la fabricación de nanofibras magnéticas poliméricas de PVA con NPs de hexaferrita de estroncio, SrFei20i9, con un diámetro promedio de ~ 4 nm, óptimamente distribuidas en la superficie interior de la matriz de PVA con una densidad uniforme, para obtener las mejores propiedades físico-químicas del compuesto polimérico nanoestructurado. 3. The electrospirming technique is applied for the fabrication of PVA polymeric magnetic nanofibers with strontium hexaferrite NPs, SrFei20i9, with an average diameter of ~4 nm, optimally distributed on the inner surface of the PVA matrix with a uniform density , for obtain the best physical-chemical properties of the nanostructured polymeric compound.
SUS COMPONENTES. IT'S COMPONENTS.
Las substancias utilizadas tanto para la preparación de las nanopartículas magnéticas de hexaferrita de estroncio como para el electrohilado de las nanofibras poliméricas de PVA que contienen nanopartículas de SrFei2Üi9 embebidas, que comprenden: ácido cítrico, etilenglicol, nitrato férrico nonahidratado, nitrato de estroncio, etanol, alcohol polivinílico, metanol; y agua desionizada, son reactivos grado analítico. The substances used both for the preparation of magnetic strontium hexaferrite nanoparticles and for the electrospinning of PVA polymeric nanofibers containing embedded SrFei2Üi9 nanoparticles, comprising: citric acid, ethylene glycol, ferric nitrate nonahydrate, strontium nitrate, ethanol, polyvinyl alcohol, methanol; and deionized water, are analytical grade reagents.
LAS CARACTERISTICAS DE CADA COMPONENTE. THE CHARACTERISTICS OF EACH COMPONENT.
Acido cítrico, C6Hs07, es un ácido orgánico débil, tricarboxílico, presente en la mayoría de las frutas, es un metabolito importante en todos los animales y plantas. El ácido cítrico forma fácilmente complejos de citratos con cationes metálicos. Se encuentra como cristales inodoros e incoloros con un sabor ácido. Es altamente soluble en agua. Se encuentra de forma natural en muchas frutas y verduras, con las mayores cantidades en cítricos como naranjas, limones y limas. Es un importante intermediario metabólico en el ciclo bioquímico del ácido cítrico y está presente en todos los seres vivos. Se produce principalmente por la fermentación microbiana de carbohidratos como melaza, azúcar de caña, remolacha, etc. Tiene muchos usos en la industria alimentaria como agente saborizante, modificador del pH y conservador. También se utiliza como anticoagulante y antioxidante. Las soluciones de ácido cítrico son seguras para el consumo humano. Sin embargo, las soluciones concentradas o el ácido cítrico puro pueden ser irritantes y corrosivas, ya que pueden quemar los ojos y la piel al contacto. Su inhalación puede irritar la nariz, la garganta y las membranas mucosas. Citric acid, C6Hs07, is a weak organic tricarboxylic acid, present in most fruits, it is an important metabolite in all animals and plants. Citric acid readily forms citrate complexes with metal cations. It is found as colorless, odorless crystals with an acid taste. It is highly soluble in water. It is found naturally in many fruits and vegetables, with the highest amounts found in citrus fruits such as oranges, lemons, and limes. It is an important metabolic intermediate in the biochemical cycle of citric acid and is present in all living things. It is mainly produced by the microbial fermentation of carbohydrates such as molasses, cane sugar, beets, etc. It has many uses in the food industry as a flavoring agent, pH modifier, and preservative. It is also used as an anticoagulant and antioxidant. Citric acid solutions are safe for human consumption. However, concentrated solutions or pure citric acid can be irritating and corrosive, burning eyes and skin on contact. Its inhalation can irritate the nose, throat and mucous membranes.
Etilenglicol, C2H6O2, o 1, 2-etanodiol, compuesto químico orgánico, líquido transparente, incoloro, inodoro, de sabor dulce. Es higroscópico y completamente miscible con muchos disolventes polares como el agua, alcoholes, ésteres de glicol y acetona. Baja solubilidad en solventes no polares como benceno, tolueno y cloroformo. Difícil de cristalizar, cuando se enfría se forma una masa altamente viscosa que solidifica para producir una sustancia parecida al vidrio. Se oxida fácilmente con el oxígeno, ácido nítrico y otros agentes oxidantes para formar aldehidos y ácidos carboxílicos. Se utiliza principalmente como un anticongelante en radiadores de automóviles como difusor del calor, mezclado con agua para procedimientos de deshielo y antihielo de aviones comerciales, fabricación de compuestos de poliéster. También es un ingrediente en líquidos para revelar fotografías, fluidos para frenos hidráulicos. Tiene gran uso como materia prima para la fabricación de fibras de poliéster. Afecta la química del organismo, aumentando la cantidad de ácido, lo que produce problemas metabólicos. La ingestión en cantidades muy altas pude causar la muerte, en cantidades bajas puede producir náuseas, convulsiones, desorientación y problemas en el corazón y el riñón. Puede causar sordera, ceguera, y puede dejar grandes problemas cerebrales. Además de la biodegradación anaeróbica también puede liberar productos relativamente tóxicos como el acetaldehído, etanol, acetato y el metano. Ethylene glycol, C2H6O2, or 1, 2-ethanediol, organic chemical compound, clear, colorless, odorless, sweet-tasting liquid. It is hygroscopic and completely miscible with many polar solvents such as water, alcohols, glycol esters and acetone. Low solubility in nonpolar solvents such as benzene, toluene, and chloroform. Difficult to crystallize, when cooled it forms a highly viscous mass which solidifies to produce a glass-like substance. It is easily oxidized by oxygen, nitric acid and other oxidizing agents to form aldehydes and carboxylic acids. It is mainly used as an antifreeze in automobile radiators as a heat diffuser, mixed with water for commercial aircraft de-icing and anti-icing procedures, manufacture of polyester compounds. It is also an ingredient in photo developing fluids, hydraulic brake fluids. It is widely used as a raw material for the manufacture of polyester fibers. It affects the chemistry of the organism, increasing the amount of acid, which produces metabolic problems. Ingestion in very high amounts can cause death, in low amounts it can cause nausea, convulsions, disorientation and heart and kidney problems. It can cause deafness, blindness, and can leave major brain problems. In addition to anaerobic biodegradation, it can also release relatively toxic products such as acetaldehyde, ethanol, acetate, and methane.
Nitrato férrico nonahidratado, Fe(N03)3«9H20, es una sal y al ser un compuesto delicuescente comúnmente se encuentra en su forma nonahidratada en la que forma cristales, desde incoloros a violeta pálidos. El nitrato férrico es el catalizador de preferencia para la síntesis de amida de sodio en amoniaco. Las soluciones de nitrato férrico se emplean en joyería y herrería para grabar la plata y sus aleaciones; también en la síntesis de materiales magnéticos. Ferric nitrate nonahydrate, Fe(N03)3 « 9H20, is a salt and, being a deliquescent compound, it is commonly found in its nonahydrate form in which it forms colorless to pale violet crystals. Ferric nitrate is the preferred catalyst for the synthesis of sodium amide in ammonia. Ferric nitrate solutions are used in jewelry and blacksmithing to engrave silver and its alloys; also in the synthesis of magnetic materials.
Nitrato de estroncio, Sr(N03)2, es un compuesto inorgánico, se disuelve fácilmente en agua, amoníaco líquido, ligeramente soluble en alcohol anhidro y acetona. El nitrato de estroncio se genera típicamente mediante la reacción del ácido nítrico con el carbonato de estroncio. Utilizado para producir una intensa llama roja en fuegos artificiales, bengalas, lámparas de señalización de vía marítima, ferrocarril y aeródromos. Las propiedades oxidantes de esta sal son ventajosas en tales aplicaciones. También se utiliza como agente aluminífero en la fabricación de cinescopios de televisión y vidrio óptico, así como en la fabricación de imanes permanentes y en la medicina. Strontium nitrate, Sr(N03)2, is an inorganic compound, easily dissolved in water, liquid ammonia, slightly soluble in anhydrous alcohol and acetone. Strontium nitrate is typically generated by the reaction of nitric acid with strontium carbonate. Used to produce an intense red flame in fireworks, flares, shipping, railway, and airfield signal lamps. The oxidizing properties of this salt are advantageous in such applications. It is also used as an aluminiferous agent in the manufacture of television tubes and optical glass, as well as in the manufacture of permanent magnets and in medicine.
Etanol, C2H5OH, es un compuesto químico orgánico de la clase de los alcoholes, líquido transparente y volátil, incoloro, con un olor característico y un sabor ardiente. Es inflamable y produce una llama azul sin humo. Es miscible en agua y la mayoría de los solventes orgánicos tales como ácido acético, acetona, benceno, tetracloruro de carbono, cloroformo y éter. El etanol puede encontrarse ampliamente en la naturaleza debido a que es parte del proceso metabólico de la levadura como Saccharomyces cerevisiae, también está presente en la fruta madura; y además es producido por algunas plantas a través de la anaerobiosis. Puede ser producido por levadura utilizando fermentación de azúcares encontrados en granos como maíz, sorgo y cebada, así como pieles de patata, arroz, caña de azúcar, o mediante síntesis orgánica. Es usado en medicina como antiséptico. Mata a los organismos por la desnaturalización de sus proteínas y la disolución de sus lípidos y es eficaz contra la mayoría de las bacterias, hongos y muchos virus. El alcohol etílico es altamente inflamable, se encenderá fácilmente por el calor, las chispas o las llamas. Los vapores pueden formar mezclas explosivas con el aire. Es tóxico cuando se ingiere en grandes cantidades o en grandes concentraciones. Ethanol, C2H5OH, is an organic chemical compound of the class of alcohols, transparent and volatile liquid, colorless, with a characteristic odor and a burning taste. It is flammable and produces a smokeless blue flame. It is miscible with water and most organic solvents such as acetic acid, acetone, benzene, carbon tetrachloride, chloroform, and ether. Ethanol can be widely found in nature because it is part of the metabolic process of yeast such as Saccharomyces cerevisiae, it is also present in ripe fruit; and it is also produced by some plants through anaerobiosis. It can be produced by yeast using fermentation of sugars found in grains such as corn, sorghum, and barley, as well as potato, rice, and sugar cane skins, or by organic synthesis. It is used in medicine as an antiseptic. It kills organisms by denaturing their proteins and dissolving their lipids, and is effective against most bacteria, fungi, and many viruses. Ethyl alcohol is highly flammable, it will be easily ignited by heat, sparks or flames. Vapors may form explosive mixtures with air. It is toxic when ingested in large amounts or in high concentrations.
Alcohol polivinílico, [CH2CH(OH)]n, (MW = 75,000), es un polímero sintético soluble en agua con alto peso molecular. Este alcohol puede formar películas con capacidad emulsionante y adhesiva, que pueden soportar tensiones fuertes. Además de ser un material flexible, es higroscópico y muy soluble en agua, estando afectadas sus propiedades por el grado de hidratación. Es soluble en etanol, pero insoluble en otros solventes orgánicos. Insoluble en solventes provenientes del petróleo, prácticamente insoluble en aceites vegetales y animales, ásteres, éteres y acetona. Las fibras de este alcohol tienen una capacidad de absorción de agua un 30% superior a la de las demás fibras. Es materia para la síntesis de otros polímeros como el nitrato de polivinilo, un éster del ácido nítrico y el alcohol polivinílico. Se usa en algunos propulsores y explosivos moldeables. Este alcohol puede usarse en la fabricación de láminas o películas que son barreras para el oxígeno y los aromas. Esto ha permitido que sea utilizado en el empaquetamiento de los alimentos, siendo éste su uso principal ya que más del 30% se utiliza para este fin. Cuando se calienta a más de 200 QC, se descompone y libera un humo irritante para los ojos la nariz y la garganta. Polyvinyl alcohol, [CH2CH(OH)]n, (MW = 75,000), is a high molecular weight, water-soluble synthetic polymer. This alcohol can form films with emulsifying and adhesive capacity, which can withstand strong tensions. In addition to being a flexible material, it is hygroscopic and very soluble in water, its properties being affected by the degree of hydration. It is soluble in ethanol, but insoluble in other organic solvents. Insoluble in petroleum solvents, practically insoluble in vegetable and animal oils, esters, ethers and acetone. The fibers of this alcohol have a water absorption capacity 30% higher than that of other fibers. It is material for the synthesis of other polymers such as sodium nitrate. polyvinyl, an ester of nitric acid and polyvinyl alcohol. It is used in some propellants and castable explosives. This alcohol can be used in the manufacture of sheets or films that are barriers to oxygen and aromas. This has allowed it to be used in food packaging, this being its main use since more than 30% is used for this purpose. When heated above 200 QC , it decomposes and releases fumes that are irritating to the eyes, nose, and throat.
Metanol, CH3OH, es un compuesto químico orgánico perteneciente a la familia de los alcoholes. Es el alcohol más simple de la serie homologa de los alcoholes. Es un líquido incoloro, transparente, volátil, con aroma y sabor semejantes a los del etanol; y es completamente soluble en agua. Es bastante inflamable y al igual que el alcohol etílico posee propiedades desinfectantes y antisépticas. Los antiguos egipcios obtenían el metanol mediante la pirólisis de la madera. Hasta el día de hoy la referencia más precisa para sintetizar el metanol es a mediante un proceso catalítico a partir de monóxido de carbono e hidrógeno. El metanol tiene infinidad de usos y aplicaciones, se emplea como combustible, disolvente orgánico de esencias y resinas naturales, en la síntesis de colorantes y de productos metilados; así como en la fabricación de plásticos, colas y barnices. También se utiliza como anticongelante, carburante y antidetonante en los vehículos; y como materia prima para obtener formaldehido. Es bastante tóxico y cuando esto ocurre se pasa a una condición crónica donde se generan varias lesiones, cerebrales y por vía respiratoria. Puede ocasionar bronquitis crónica y alteraciones en la mucosa de las vías respiratorias altas. Methanol, CH3OH, is an organic chemical compound belonging to the family of alcohols. It is the simplest alcohol of the homologous series of alcohols. It is a colorless, transparent, volatile liquid with an aroma and flavor similar to those of ethanol; and is completely soluble in water. It is quite flammable and, like ethyl alcohol, has disinfectant and antiseptic properties. The ancient Egyptians obtained methanol by pyrolysis of wood. To this day, the most precise reference to synthesize methanol is through a catalytic process from carbon monoxide and hydrogen. Methanol has countless uses and applications, it is used as fuel, organic solvent for natural essences and resins, in the synthesis of dyes and methylated products; as well as in the manufacture of plastics, glues and varnishes. It is also used as antifreeze, fuel and anti-knock in vehicles; and as raw material to obtain formaldehyde. It is quite toxic and when this happens it becomes a chronic condition where several injuries are generated, brain and respiratory. It can cause chronic bronchitis and changes in the mucosa of the upper respiratory tract.
Agua desionizada, o desmineralizada, es aquella a la que se le han extraído cationes como sodio, calcio, hierro, cobre y otros; y aniones tales como el carbonato, el fluoruro, el cloruro, etc., mediante un proceso de intercambio iónico. Deionized or demineralized water is one from which cations such as sodium, calcium, iron, copper and others have been extracted; and anions such as carbonate, fluoride, chloride, etc., by an ion exchange process.
La desionización es un proceso que utiliza resinas de intercambio iónico de fabricación especial que elimina las sales ionizadas del agua. El agua desionizada puede cambiar su pH con facilidad al ser almacenada debido a que absorbe el CO2 atmosférico, es muy agresiva con los metales, incluso con el acero inoxidable; por consiguiente debe utilizarse plástico o vidrio para su almacenaje y su manejo. Su uso más común es en acumuladores para automóviles, pero también se utiliza en química analítica, síntesis de materiales y laboratorios experimentales. Deionization is a process that uses specially manufactured ion exchange resins that remove ionized salts from the water. Water deionized can easily change its pH when stored because it absorbs atmospheric CO2, it is very aggressive with metals, even stainless steel; therefore plastic or glass should be used for storage and handling. Its most common use is in automotive batteries, but it is also used in analytical chemistry, materials synthesis, and experimental laboratories.
EQUIPOS Y TECNICAS DE CARACTERIZACION. EQUIPMENT AND CHARACTERIZATION TECHNIQUES.
Los principales equipos utilizados en la preparación del compuesto polimérico de nanofibras con SrM-NPs y las técnicas de caracterización aplicadas para evaluar las propiedades magnetoestructurales de las nanopartículas de hexaferrita, así como de las nanofibras magnéticas y su capacidad de adsorción de arsénico disuelto en agua son los siguientes: The main equipment used in the preparation of the polymeric composite of nanofibers with SrM-NPs and the characterization techniques applied to evaluate the magnetostructural properties of hexaferrite nanoparticles, as well as magnetic nanofibers and their capacity to adsorb arsenic dissolved in water are the following:
El análisis de difracción de rayos X se llevó a cabo usando un difractómetro Siemens D5000, el cual usa una fuente de cobalto (l = 1.7890 Á), los parámetros estructurales y la cuantificación de fases de los polvos de hexaferrita fueron refinados con el análisis de Rietveld, incorporando el programa MAUD [25]. Para investigar las características morfológicas y la distribución de tamaño de las nanofibras y las nanopartículas, se utilizaron un microscopio electrónico de barrido SEM, JEOL, modelo JSM-7600F; y un microscopio electrónico de transmisión TEM, Hitachi S-570, operado a 100 kV, Se utilizó acetato de uranilo para mejorar el contraste y poder observar las NPs magnéticas dentro de las nanofibras. Aquí se realizó también espectrometría por dispersión de energías de rayos X (XEDS, X-Ray Energy Dispersive Spectrometry) en los polvos de SrM-NPs para identificar su composición elemental y cuantificar su pureza. Para el análisis de las propiedades magnéticas se utilizó un magnetómetro de muestra vibrante LDJ-9600; todos los lazos de histéresis fueron obtenidos a temperatura ambiente. Para evaluar el efecto de las NPs magnéticas embebidas sobre las propiedades térmicas de las nanofibras, se realizaron análisis termogravimétricos y de calorimetría diferencial de barrido (TGA/DSC) con un analizador termogravimétrico, TA Instruments DSC Q200, en una atmósfera de nitrógeno realizando barridos de temperatura en el rango desde temperatura ambiente hasta 1000 QC, con una rampa de calentamiento de 10 °C/min. Para las pruebas de adsorción de arsénico con las nanofibras magnéticas se utilizó un espectrómetro PerkinElmer Optima 8300 ICP-OES. Se usó la absorbancia promedio para luego calcular la eficiencia de remoción de arsénico en un medio acuoso. The X-ray diffraction analysis was carried out using a Siemens D5000 diffractometer, which uses a cobalt source (l = 1.7890 Á), the structural parameters and the phase quantification of the hexaferrite powders were refined with the analysis of Rietveld, incorporating the MAUD program [25]. To investigate the morphological characteristics and size distribution of nanofibers and nanoparticles, a scanning electron microscope SEM, JEOL, model JSM-7600F; and a transmission electron microscope TEM, Hitachi S-570, operated at 100 kV. Uranyl acetate was used to improve the contrast and to be able to observe the magnetic NPs within the nanofibers. Here, X-Ray Energy Dispersive Spectrometry (XEDS) was also performed on the SrM-NPs powders to identify their elemental composition and quantify their purity. For the analysis of the magnetic properties, a vibrating sample magnetometer LDJ-9600 was used; all hysteresis loops were obtained at room temperature. To evaluate the effect of embedded magnetic NPs on the thermal properties of nanofibers, thermogravimetric and differential scanning calorimetry (TGA/DSC) analyzes were performed with a thermogravimetric analyzer, TA Instruments DSC Q200, in a nitrogen atmosphere by performing temperature in the range from room temperature to 1000 Q C, with a heating ramp of 10 °C/min. For the arsenic adsorption tests with the magnetic nanofibers, a PerkinElmer Optima 8300 ICP-OES spectrometer was used. The average absorbance was used to calculate the arsenic removal efficiency in an aqueous medium.
COMO SE ENSAMBLA EL COMPUESTO NANOESTRUCTURADO. HOW THE NANOSTRUCTURED COMPOSITE IS ASSEMBLED.
Para incorporar SrM-NPs en la matriz polimérica de las nanofibras magnéticas se realiza el siguiente procedimiento que comprende los siguientes pasos: primero se sintetizan polvos de hexaferrita de estroncio con la fase M, por el método de Pechini para obtener, como punto de partida, polvos homogéneos de alta pureza con alta cristalinidad y con un tamaño de nanopartícula reducido (~ 78 ± 20 nm). Enseguida se procede a aplicar un tratamiento ultrasónico a estos polvos para desaglomerar y conseguir nanopartículas de SrFei20i9 con un diámetro promedio de ~ 4 nm. Luego se lleva a cabo la preparación de una mezcla precursora polimérica, ajustando las proporciones exactas de SrM-NPs y la solución de PVA, para controlar la densidad y la distribución homogénea de NPs en la fabricación del compuesto magnético mediante la técnica de electrospinning. A través de este procedimiento se obtiene un compuesto de nanofibras magnéticas poliméricas nanoestructuradas con nanopartículas de SrFei20i9, con excelentes propiedades físico-químicas, capaz de remover arsénico de medios acuosos. To incorporate SrM-NPs into the polymeric matrix of the magnetic nanofibers, the following procedure is carried out, which includes the following steps: first, strontium hexaferrite powders are synthesized with the M phase, by the Pechini method to obtain, as a starting point, High purity homogeneous powders with high crystallinity and reduced nanoparticle size (~78 ± 20 nm). Then, an ultrasonic treatment is applied to these powders to deagglomerate and obtain SrFei20i9 nanoparticles with an average diameter of ~4 nm. Then, the preparation of a polymeric precursor mixture is carried out, adjusting the exact proportions of SrM-NPs and the PVA solution, to control the density and homogeneous distribution of NPs in the manufacture of the magnetic compound through the electrospinning technique. Through this procedure, a composite of nanostructured polymeric magnetic nanofibers with SrFei20i9 nanoparticles is obtained, with excellent physical-chemical properties, capable of removing arsenic from aqueous media.
MEJOR MANERA DE LLEVAR A CABO LA INVENCION. BEST WAY TO CARRY OUT THE INVENTION.
Esta invención ofrece la posibilidad de poder controlar las propiedades magnéticas del compuesto nanoestructurado, variando la densidad de SrM- NPs en la matriz polimérica de PVA, dentro del límite de percolación del sistema disperso de NPs magnéticas. Por lo tanto, para explicar el desarrollo e ilustrar el alcance del invento, a continuación se describe en detalle la fabricación de nanofibras magnéticas poliméricas a través de un método donde se varía la concentración de SrM-NPs. Esencialmente, el procedimiento consta de tres etapas, es decir, 1. Síntesis de nanopartículas de hexaferrita de estroncio, SrFei20i9, (SrM- NPs), que comprende los pasos: This invention offers the possibility of being able to control the magnetic properties of the nanostructured compound, varying the density of SrM-NPs in the PVA polymeric matrix, within the percolation limit of the dispersed system of magnetic NPs. Therefore, to explain the development and illustrate the scope of the invention, the manufacture of polymeric magnetic nanofibers through a method where the concentration of SrM-NPs is varied is described in detail below. Essentially, the procedure consists of three stages, i.e. 1. Synthesis of strontium hexaferrite nanoparticles, SrFei20i9, (SrM-NPs), comprising the steps:
(a). Obtención de polvos de una resina precursora de nanopartículas de hexaferrita de estroncio por el método de Pechini, utilizando nitrato férrico, nitrato de estroncio, ácido cítrico, etilenglicol y agua desionizada. (to). Obtaining powders of a precursor resin of strontium hexaferrite nanoparticles by the Pechini method, using ferric nitrate, strontium nitrate, citric acid, ethylene glycol and deionized water.
(b). Tratamiento térmico para obtener polvos finos de hexaferrita de estroncio tipo M, SrFei20i9. (b). Thermal treatment to obtain fine powders of strontium hexaferrite type M, SrFei20i9.
(c) Tratamiento ultrasónico para desaglomerar, dispersar y fragmentar las partículas de SrFei2Üi9 para obtener NPs de diámetro más pequeño. (c) Ultrasonic treatment to deagglomerate, disperse and fragment SrFei2Üi9 particles to obtain smaller diameter NPs.
2. Preparación de una mezcla precursora heterogénea de PVA con la incorporación de SrM-NPs de tamaño nanométrico, que comprende los pasos:2. Preparation of a heterogeneous precursor mixture of PVA with the incorporation of nanometric-sized SrM-NPs, comprising the steps:
(d). Preparación de una solución polimérica base, compuesta de un polímero y un solvente. (d). Preparation of a base polymeric solution, composed of a polymer and a solvent.
(e). Preparación de una mezcla heterogénea precursora de nanofibras magnéticas poliméricas, con la solución polimérica base y nanopartículas de hexaferrita de estroncio, SrFei20i9. (and). Preparation of a precursor heterogeneous mixture of polymeric magnetic nanofibers, with the base polymeric solution and nanoparticles of strontium hexaferrite, SrFei20i9.
3. Fabricación de nanofibras magnéticas poliméricas de PVA con SrM-NPs por la técnica de electrospirming, que comprende los pasos: 3. Fabrication of PVA polymeric magnetic nanofibers with SrM-NPs by the electrospirming technique, comprising the steps:
(f). Elaboración de un compuesto de nanofibras poliméricas nanoestructuradas con nanopartículas de SrFei2Üi9 en su interior, utilizando el proceso de electrohilado. (F). Preparation of a composite of nanostructured polymeric nanofibers with SrFei2Üi9 nanoparticles inside, using the electrospinning process.
1. Síntesis de nanopartículas de hexaferrita de estroncio, SrFei2Üi9 (SrM-NPs). En el paso (a), para la preparación proporcional de 1.0 g de nanopartículas de hexaferrita de estroncio se utilizó ácido cítrico en forma anhidra, AC, (ObHdOz), 1.085 g y etilenglicol, EG, (C2FI6O2), 0.5 mL. El ácido cítrico funciona como agente complejante y el etilenglicol como agente de polimerización. Los compuestos precursores de los iones A y B son sales solubles (nitratos): nitrato férrico (Fe(N03)3*9H20), 4.566 g; y nitrato de estroncio (Sr(N03)2), 0.199 g, los cuales primero se mezclan durante 30 minutos bajo agitación constante, junto con el AC, en 70 mL de agua desionizada a temperatura ambiente. Luego la solución acuosa es calentada entre 50°C y 60°C, preferiblemente 60°C, agitando constantemente durante 1 hora para promover la formación de complejos (quelatos) con los cationes metálicos A y B. Una vez formado el citrato metálico, se agrega el polialcohol (EG), 0.5 mL, y se continúa agitando la mezcla durante 20 minutos, manteniendo la temperatura a 60°C; lo cual contribuye a la formación de un éster orgánico o esterificación con los grupos carboxilato no ligados. La existencia de dos o más complejos metálicos solubles, supone una mezcla íntima de los precursores en un medio homogéneo (la matriz orgánica). La polimerización se promueve a través del calentamiento de la mezcla, al continuar agitando y aumentando la temperatura hasta 80°C o 100°C, preferiblemente 80°C, para evaporar todo el solvente (H2O), resultando una resina polimérica a través de la reacción de poliesterificación, donde los iones precursores A y B del compuesto magnético quedan distribuidos homogéneamente a nivel molecular. Enseguida se deja enfriar a temperatura ambiente. Esta resina polimérica, de citrato de hierro y citrato de estroncio, obtenida en presencia de EG, es pulverizada y luego calcinada a una temperatura entre 250°C y 400°C, preferiblemente 250°C, durante 2 horas. Se deja enfriar a temperatura ambiente, se pulveriza y luego otra vez se calcina a 400°C, durante otras 2 horas, lo cual sirve para remover la matriz orgánica, obteniéndose un polvo de la resina precursora de hexaferrita de estroncio. 1. Synthesis of strontium hexaferrite nanoparticles, SrFei2Üi9 (SrM-NPs). In step (a), for the proportional preparation of 1.0 g of strontium hexaferrite nanoparticles, anhydrous citric acid, AC, (ObHdOz), 1.085 g, and ethylene glycol, EG, (C2FI6O2), 0.5 mL, were used. Citric acid functions as a complexing agent and ethylene glycol as a polymerizing agent. The precursor compounds of ions A and B are soluble salts (nitrates): ferric nitrate (Fe(N03)3*9H20), 4.566 g; and strontium nitrate (Sr(N03)2), 0.199 g, which are first mixed for 30 minutes under constant stirring, together with AC, in 70 mL of deionized water at room temperature. Then the aqueous solution is heated between 50°C and 60°C, preferably 60°C, stirring constantly for 1 hour to promote the formation of complexes (chelates) with the metal cations A and B. Once the metal citrate is formed, add the polyalcohol (EG), 0.5 mL, and continue stirring the mixture for 20 minutes, keeping the temperature at 60°C; which contributes to the formation of an organic ester or esterification with the unbound carboxylate groups. The existence of two or more soluble metal complexes supposes an intimate mixture of the precursors in a homogeneous medium (the organic matrix). Polymerization is promoted by heating the mixture, continuing to stir and increasing the temperature to 80°C or 100°C, preferably 80°C, to evaporate all the solvent (H2O), resulting in a polymeric resin through reaction. polyesterification reaction, where the precursor ions A and B of the magnetic compound are homogeneously distributed at the molecular level. It is then allowed to cool to room temperature. This polymeric resin, made of iron citrate and strontium citrate, obtained in the presence of EG, is pulverized and then calcined at a temperature between 250°C and 400°C, preferably 250°C, for 2 hours. It is allowed to cool to room temperature, it is pulverized and then calcined again at 400°C for another 2 hours, which serves to remove the organic matrix, obtaining a powder of the strontium hexaferrite precursor resin.
En el paso (b), el polvo precursor a temperatura ambiente se vuelve a moler y se sinteriza a una temperatura entre 800°C y 1000°C, preferiblemente 900°C, durante 2 horas, dando paso a la obtención de polvos de nanopartículas de hexaferrita de estroncio, SrFei20i9, con la fase M. De esta manera, las nanopartículas de hexaferrita de estroncio a escala nanométrica, se sintetizaron usando el método estándar de Pechini. La Fig. 1 (a) muestra el patrón de difracción de rayos X para los polvos de hexaferrita calcinados a 900 QC. Los parámetros estructurales fueron refinados por el método de Rietveld, revelando que las nanopartículas de SrFei20i9 cristalizaron en la fase M y resultaron de alta pureza. Se determinó la presencia de tan solo 1.8% en peso de óxido de hierro (hematita) en la hexaferrita de estroncio fabricada. El tamaño de cristalito calculado con el método de Rietveld fue de 76 ± 2 nm. En el paso (c), los polvos de hexaferrita de estroncio, SrFei20i9, fueron puestos en 5 mL de etanol (C2H6O) y sometidos a un tratamiento ultrasónico durante 2 horas usando un sonicador Branson 2510 operado a 40 kHz, para desaglomerar, dispersar y fragmentar aún más las partículas de hexaferrita. Enseguida se secaron en el aire. La Fig. 1 (b) muestra el patrón de difracción de rayos X para los polvos de hexaferrita de estroncio sintetizados a 900 QC después del tratamiento ultrasónico. En ambos casos se aplicó el método de refinamiento de Rietveld, para verificar la presencia de la fase magnética M. En la Fig. 1 (b) se puede apreciar el ensanchamiento en los máximos de difracción, atribuidos a la reducción del tamaño de cristalito (3.4 nm), debido al efecto de sonicación. In step (b), the precursor powder at room temperature is ground again and sintered at a temperature between 800°C and 1000°C, preferably 900°C, for 2 hours, giving way to obtaining nanoparticle powders of strontium hexaferrite, SrFei20i9, with the M phase. Thus, nanometer-scale strontium hexaferrite nanoparticles were synthesized using the standard method of Pechini. Fig. 1(a) shows the X-ray diffraction pattern for hexaferrite powders calcined at 900 QC . The structural parameters were refined by the Rietveld method, revealing that SrFei20i9 nanoparticles crystallized in the M phase and resulted high purity. The presence of only 1.8% by weight of iron oxide (hematite) was determined in the manufactured strontium hexaferrite. The crystallite size calculated with the Rietveld method was 76 ± 2 nm. In step (c), strontium hexaferrite powders, SrFei20i9, were placed in 5 mL of ethanol (C2H6O) and subjected to ultrasonic treatment for 2 hours using a Branson 2510 sonicator operated at 40 kHz, to deagglomerate, disperse and further fragment the hexaferrite particles. They soon dried in the air. Fig. 1(b) shows the X-ray diffraction pattern for the synthesized strontium hexaferrite powders at 900 Q C after ultrasonic treatment. In both cases, the Rietveld refinement method was applied to verify the presence of the magnetic phase M. In Fig. 1 (b) the broadening in the diffraction maxima can be seen, attributed to the reduction in crystallite size ( 3.4 nm), due to the sonication effect.
2. Preparación de una mezcla precursora heterogénea de PVA con la incorporación de SrM-NPs de tamaño nanométrico. 2. Preparation of a heterogeneous precursor mixture of PVA with the incorporation of nanometric-sized SrM-NPs.
En el paso (d), se prepara una solución polimérica base de PVA (MW = 75,000) en agua desionizada al 7.4% en peso y se calienta a una temperatura de 80QC con agitación continua hasta obtener una disolución translúcida homogénea libre de grumos; luego se deja enfriar a temperatura ambiente. In step (d), a PVA-based polymeric solution (MW = 75,000) is prepared in deionized water at 7.4% by weight and heated to a temperature of 80 Q C with continuous stirring until a homogeneous translucent solution free of lumps is obtained. ; then allowed to cool to room temperature.
En el paso (e), a continuación se prepara una serie de 5 mezclas precursoras heterogéneas, cada una con 3 mL de la solución de PVA al 7.4% en peso, añadiendo en cada volumen individual una masa específica, m, de nanopartículas de hexaferrita de estroncio, SrM-NPs, previamente sonicadas (~ 4 nm de diámetro), donde In step (e), a series of 5 heterogeneous precursor mixtures are then prepared, each with 3 mL of the 7.4% by weight PVA solution, adding in each individual volume a specific mass, m, of hexaferrite nanoparticles of strontium, SrM-NPs, previously sonicated (~4 nm in diameter), where
SrM-NPs = m; para m = 0.10 g, 0.15 g, 0.20 g, 0.25 g, 0.30 gSrM-NPs = m; for m = 0.10 g, 0.15 g, 0.20 g, 0.25 g, 0.30 g
(1 ) removiendo continuamente hasta su combinación y se enrasa cada una hasta 5 mL con la solución de PVA, obteniendo 5 mezclas precursoras: M1 , M2, M3, M4, M5, con diferentes densidades de NPs magnéticas. A cada una de estas 5 mezclas de la solución de PVA con polvos de hexaferrita se le denominó en referencia a la cantidad de SrM-NPs agregada: 10% SrM-NPs, 15% SrM-NPs, 20% SrM-NPs, 25% SrM-NPs; y 30% SrM-NPs respectivamente. Donde los porcentajes están referidos a una masa de 1.0 g de SrM-NPs (masa normalizada x = m/1.0 g). Para dispersar homogéneamente las nanopartículas magnéticas en la solución polimérica de PVA, cada mezcla precursora que se va a electrohilar se somete previamente a un proceso de sonicación de baja frecuencia (40 kHz) durante una hora. (1) continuously stirring until combined and each up to 5 mL with the PVA solution, obtaining 5 precursor mixtures: M1, M2, M3, M4, M5, with different densities of magnetic NPs. Each of these 5 mixtures of the PVA solution with hexaferrite powders was named in reference to the amount of SrM-NPs added: 10% SrM-NPs, 15% SrM-NPs, 20% SrM-NPs, 25% SrM-NPs; and 30% SrM-NPs respectively. Where the percentages are referred to a mass of 1.0 g of SrM-NPs (normalized mass x = m/1.0 g). To homogeneously disperse the magnetic nanoparticles in the PVA polymer solution, each precursor mixture to be electrospun is previously subjected to a low-frequency sonication process (40 kHz) for one hour.
3. Fabricación de nanofibras magnéticas poliméricas de PVA con SrM-NPs por la técnica de electrospirming. 3. Fabrication of PVA polymeric magnetic nanofibers with SrM-NPs by the electrospirming technique.
En el paso (f), a continuación la muestra precursora en turno se transfiere a una jeringa de plástico, provista de una aguja de acero inoxidable de 0.15 mm de diámetro interno, y se instala en la bomba de infusión NE-300 New Era, INC, MA, USA para realizar el electrohilado. In step (f), the precursor sample in turn is then transferred to a plastic syringe, fitted with a 0.15 mm internal diameter stainless steel needle, and installed in the NE-300 New Era infusion pump, INC, MA, USA to perform electrospinning.
La fabricación de las nanofibras poliméricas de PVA con NPs de hexaferrita de estroncio se llevó a cabo utilizando un sistema de electrospirming, autoconstruido en el laboratorio, provisto de una fuente de alto voltaje de 0.0 a 30 kV y una bomba de infusión. La razón de flujo y distancia entre la aguja y el colector son ajustables y el sistema posee un gabinete protector de acrílico, para minimizar las variaciones de las condiciones ambientales, con un soporte para la bomba de infusión y la fuente de alto voltaje. La aguja de la jeringa se conecta al electrodo positivo y el electrodo negativo se conecta a una placa de aluminio cubierta con folio de aluminio, que funciona como colector estacionario. La distancia entre la punta de la aguja y el colector se fijó en 5.3 cm y la mezcla precursora fue liberada a una razón de 0.5 mL / h. El voltaje se fijó en 25 kV. The fabrication of the PVA polymeric nanofibers with strontium hexaferrite NPs was carried out using an electrospirming system, self-constructed in the laboratory, equipped with a high voltage source from 0.0 to 30 kV and an infusion pump. The flow rate and distance between the needle and the collector are adjustable and the system has a protective acrylic cabinet, to minimize variations in environmental conditions, with a support for the infusion pump and the high voltage source. The syringe needle is connected to the positive electrode and the negative electrode is connected to an aluminum plate covered with aluminum foil, which functions as a stationary collector. The distance between the tip of the needle and the collector was set at 5.3 cm and the precursor mixture was released at a rate of 0.5 mL/h. The voltage was set at 25 kV.
Una vez fabricadas todas las nanofibras, para las diferentes proporciones SrM- NPs/polímero, se analizaron las características morfológicas y estructurales que exhiben, se investigaron y analizaron sus propiedades magnéticas, se realizaron estudios mediante análisis termogravimétrico (TGA) y análisis termogravimétrico diferencial (DTGA). De estos estudios se observó que las nanopartículas de hexaferrita de estroncio embebidas cumplen una función protectora al retrasar la degradación térmica de la matriz de PVA por más de 150 QC con respecto al PVA sin SrM-NPs. Por lo tanto, las nanopartículas en la matriz polimérica tienen un efecto termoprotector en la temperatura de degradación del polímero, en concordancia para un compuesto polimérico de PVA/Fe203 (Guo et al., 2010). Once all the nanofibers were manufactured, for the different SrM-NPs/polymer proportions, the morphological and structural characteristics they exhibit were analyzed, their magnetic properties were investigated and analyzed, studies were carried out using thermogravimetric analysis (TGA) and differential thermogravimetric analysis (DTGA). ). From these studies it was observed that the embedded strontium hexaferrite nanoparticles play a protective role by delaying the thermal degradation of the PVA matrix for more than 150 Q C relative to PVA without SrM-NPs. Therefore, the nanoparticles in the polymeric matrix have a thermoprotective effect on the polymer degradation temperature, in agreement for a PVA/Fe 2 0 3 polymeric compound (Guo et al., 2010).
Las características morfológicas de las nanopartículas y de las nanofibras fueron analizadas usando microscopía de electrones SEM y TEM en los modos de imagen y difracción de electrones. La Fig. 2 (a) muestra la micrografía TEM de los polvos de hexaferrita de estroncio, con una morfología de placas, después de haber sido sinterizados a 900 QC por el método de Pechini. La micrografía TEM de la Fig. 2 (b) muestra aglomerados de partículas cuyas dimensiones alcanzan varias decenas de nanómetros. En relación con estos aglomerados, la Fig. 2 (c) muestra la distribución de tamaños de partículas, obtenida de la medición de 100 partículas de varias micrografías TEM. El diámetro promedio de las partículas de la hexaferrita es de 78 nm, con una desviación estándar de 1.8 nm. Por otro lado, la Fig. 2 (d) muestra la micrografía TEM de nanofibras fabricadas por electrospinning, con PVA y SrM- NPs de hexaferrita de estroncio previamente sonicadas. Aquí se pueden apreciar las nanopartículas magnéticas, distribuidas homogéneamente en la superficie interior, a lo largo del eje longitudinal de las nanofibras. La micrografía TEM de la Fig. 2 (e) muestra una amplificación de una nanofibra, donde se pueden apreciar las nanopartículas magnéticas arrestadas en la matriz polimérica, con una significativa reducción de tamaño después de haber sido sonicadas. Las nanopartículas aparecen perfectamente separadas unas de otras con un diámetro promedio de ~3.4 nm y una desviación estándar de 0.79 nm. De acuerdo con la curva de distribución mostrada en la Fig. 2 (f); los diámetros medidos están en el rango desde 2.3 nm hasta 7.0 nm. La Fig. 3 (a) muestra la micrografía TEM del compuesto nanoestructurado de PVA con SrM- NPs obtenido por electrohilado, con las nanopartículas en la fase de dispersión. Los diámetros de las nanofibras varían desde 97 nm hasta 269 nm, con un diámetro promedio de 165 nm y una desviación estándar de 39 nm. La distribución de los diámetros es mostrada en la Fig. 3 (b). Los parámetros magnéticos se obtuvieron de los lazos de histéresis, a temperatura ambiente, usando magnetometría de muestra vibrante (VSM). La Fig. 4 muestra dos curvas de histéresis de la magnetización normalizada en función del campo magnético, una corresponde a los polvos de SrM-NPs sinterizados a 900 QC y la curva sólida corresponde a las nanofibras de PVA obtenidas con una muestra precursora con 20% SrM-NPs. El valor de la magnetización de saturación, Ms, de los polvos de hexaferrita de estroncio, fue 72.2 emu/g, para un campo aplicado de 14 kOe; el valor normalizado de la magnetización de remanencia, Mr, con respecto a la magnetización de saturación, Ms, (Mr/Ms) = 63%; el valor del producto de energía máxima, (BH)max = 3.01 MGOe; y su coercividad, Hc = 6.22 kOe. Cuando la densidad de NPs magnéticas en la mezcla precursora es baja (por ejemplo: masa, m = 0.10 g, o masa normalizada x = 0.10), el sistema nanoestructurado resulta muy diluido, con muy poco material magnético disperso en la matriz polimérica. Por lo tanto es de esperar que se generen valores pequeños de la magnetización. Por otro lado, cuando la densidad de nanopartículas magnéticas es alta (por ejemplo: x > 0.30), se anticipa un mayor incremento de la magnetización del sistema magnético nanoestructurado al aproximarse al límite de percolación, debido al aumento de material magnético en la mezcla precursora. El electrohilado de nanofibras magnéticas con una mayor cantidad de SrM-NPs (x > 0.45), no fue técnicamente posible en este sistema de electrospinning debido a la alta densidad de SrM-NPs presente. La Tabla I muestra los resultados de la caracterización magnética de las nanofibras fabricadas con las muestras precursoras M1 , M2, M3, M4, M5 de la presente invención. The morphological characteristics of the nanoparticles and nanofibers were analyzed using SEM and TEM electron microscopy in imaging and electron diffraction modes. Fig. 2 (a) shows the TEM micrograph of powders strontium hexaferrite with a morphology plates, after being sintered at 900 Q C for the Pechini method. The TEM micrograph of Fig. 2(b) shows agglomerates of particles whose dimensions reach several tens of nanometers. In relation to these agglomerates, Fig. 2(c) shows the particle size distribution, obtained from the measurement of 100 particles from various TEM micrographs. The average diameter of the hexaferrite particles is 78 nm, with a standard deviation of 1.8 nm. On the other hand, Fig. 2 (d) shows the TEM micrograph of nanofibers fabricated by electrospinning, with PVA and SrM-NPs of previously sonicated strontium hexaferrite. Here you can see the magnetic nanoparticles, homogeneously distributed on the inner surface, along the longitudinal axis of the nanofibers. The TEM micrograph of Fig. 2 (e) shows an amplification of a nanofiber, where the magnetic nanoparticles arrested in the polymer matrix can be seen, with a significant reduction in size after being sonicated. The nanoparticles appear perfectly separated from each other with an average diameter of ~3.4 nm and a standard deviation of 0.79 nm. According to the distribution curve shown in Fig. 2(f); the measured diameters are in the range from 2.3 nm to 7.0 nm. Fig. 3(a) shows the TEM micrograph of the PVA nanostructured compound with SrM-NPs obtained by electrospinning, with the nanoparticles in the dispersion phase. Nanofiber diameters range from 97 nm to 269 nm, with an average diameter of 165 nm and a standard deviation of 39 nm. The diameter distribution is shown in Fig. 3(b). Magnetic parameters were obtained from hysteresis loops, at room temperature, using vibrating sample magnetometry (VSM). Fig. 4 shows two hysteresis curves of the normalized magnetization as a function of the magnetic field, one corresponds to the powders of SrM-NPs sintered at 900 Q C and the solid curve corresponds to the PVA nanofibers obtained with a precursor sample with 20 %SrM-NPs. The saturation magnetization value, M s , of the strontium hexaferrite powders was 72.2 emu/g, for an applied field of 14 kOe; the normalized value of the remanence magnetization, M r , with respect to the saturation magnetization, M s , (M r /M s ) = 63%; the maximum energy product value, (BH)max = 3.01 MGOe; and its coercivity, H c = 6.22 kOe. When the density of magnetic NPs in the precursor mixture is low (for example: mass, m = 0.10 g, or normalized mass x = 0.10), the nanostructured system is very dilute, with very little magnetic material dispersed in the polymeric matrix. Therefore it is to be expected that small values of magnetization will be generated. On the other hand, when the density of magnetic nanoparticles is high (for example: x > 0.30), a greater increase in the magnetization of the nanostructured magnetic system is anticipated when approaching the percolation limit, due to the increase of magnetic material in the precursor mixture. . Electrospinning of magnetic nanofibers with a higher amount of SrM-NPs (x > 0.45), was not technically possible in this electrospinning system due to the high density of SrM-NPs present. Table I shows the results of the magnetic characterization of the nanofibers made with the precursor samples M1, M2, M3, M4, M5 of the present invention.
Tabla I. Resultados de la caracterización magnética del compuesto nanoestructurado de nanofibras magnéticas para diferentes cantidades de SrM- NPs mezcladas en la solución de PVA.
Figure imgf000029_0001
Figure imgf000030_0001
Table I. Results of the magnetic characterization of the nanostructured composite of magnetic nanofibers for different amounts of SrM-NPs mixed in the PVA solution.
Figure imgf000029_0001
Figure imgf000030_0001
De esta tabla de resultados se deduce que efectivamente la proporción SrM- NPs/polímero, en la preparación de la mezcla precursora del compuesto nanoestructurado, juega un papel importante en las propiedades magnéticas de las nanofibras fabricadas. Este parámetro afecta la configuración de empaquetamiento de las nanopartículas, induciendo una transición desde el estado diluido de SrM-NPs en la matriz polimérica, es decir, desde la fase de dispersión, a una morfología donde el nanocompuesto puede presentar aglomerados, al alcanzarse el límite de percolación. También se observa, como se anticipó previamente, que en este sistema diluido la magnetización normalizada (Mr/Ms), la fuerza coercitiva, Hc, y el producto de energía, (BH)max, aumentan al aumentar la concentración de nanopartículas de 10% SrM-NPs a 30% SrM-NPs. En relación con esto, en la última fila de la Tabla I destacan los valores óptimos de los parámetros magnéticos de las nanofibras producidas con la muestra precursora M5 [0.30 g (SrM-NPs)], los cuales resultan mejores que los obtenidos para las muestras precursoras M1 , M2, M3, M4; y mejores aún que los correspondientes a las NPs de hexaferrita de estroncio SrFei20i9 desnudas. From this table of results it can be deduced that the SrM-NPs/polymer ratio, in the preparation of the precursor mixture of the nanostructured compound, plays an important role in the magnetic properties of the manufactured nanofibers. This parameter affects the packing configuration of the nanoparticles, inducing a transition from the diluted state of SrM-NPs in the polymeric matrix, that is, from the dispersion phase, to a morphology where the nanocomposite can present agglomerates, when the limit is reached. of percolation. It is also observed, as previously anticipated, that in this diluted system the normalized magnetization (M r /M s ), the coercive force, H c , and the energy product, (BH)max, increase with increasing concentration of nanoparticles. from 10% SrM-NPs to 30% SrM-NPs. In relation to this, the last row of Table I highlights the optimal values of the magnetic parameters of the nanofibers produced with the precursor sample M5 [0.30 g (SrM-NPs)], which are better than those obtained for the samples precursors M1, M2, M3, M4; and even better than those corresponding to the naked SrFei20i9 strontium hexaferrite NPs.
El método que se utilizó para estudiar las interacciones magnéticas entre las NPs se basa en obtener la susceptibilidad diferencial dM/dH de la curva de desmagnetización de la histéresis, para cada concentración de SrM-NPs en la matriz polimérica. A este método se le conoce como distribución del campo de conmutación, abreviado SFD (del inglés Switching Field Distribution). Estas curvas características micromagnéticas son utilizadas para evaluar la extensión de la distribución del campo en el cual ocurre la inversión de la magnetización, del sistema de partículas interactuando entre sí; y resulta útil para estimar la intensidad y el tipo de interacción. En un sistema diluido compuesto de NPs no completamente idénticas, el campo coercitivo de una partícula es independiente del de las otras partículas. Por consiguiente el sistema se caracteriza por tener una cierta distribución de campos coercitivos, llamado distribución del campo de conmutación intrínseco (iSFD); teniendo acceso a esta distribución a través de la derivada de la curva de desmagnetización del lazo de histéresis con respecto al campo aplicado. Cuando se incrementa la densidad y las nanopartículas están muy cerca una de otra, sin estar en contacto, el campo producido por cada partícula comienza a interferir con el de las partículas vecinas. En este sistema la extensión de la distribución del campo coercitivo, SFD, se incrementa debido a que la interacción dipolar se vuelve muy intensa; y entonces se requiere un campo magnético más grande para conmutar la magnetización del conjunto completo de partículas. En este caso aumenta el ancho total en la mitad del valor máximo, abreviado FWFIM (del inglés Full Width at Half Máximum), el cual es una medida de la extensión del campo de conmutación. Para sistemas de partículas con la misma iSFD, los cambios relativos en su FWFIM dan una medida de las interacciones magnetostáticas. The method used to study the magnetic interactions between the NPs is based on obtaining the differential susceptibility dM/dH of the hysteresis demagnetization curve, for each concentration of SrM-NPs in the polymeric matrix. This method is known as Switching Field Distribution, abbreviated SFD (Switching Field Distribution). These micromagnetic characteristic curves are used to evaluate the extension of the distribution of the field in which the inversion of the magnetization occurs, of the system of particles interacting with each other; and it is useful to estimate the intensity and type of interaction. In a dilute system composed of not completely identical NPs, the coercive field of a particle is independent of that of the other particles. Therefore the system is characterized by having a certain distribution of coercive fields, called intrinsic switching field distribution (iSFD); having access to this distribution through the derivative of the demagnetization curve of the hysteresis loop with respect to the applied field. When the density increases and the nanoparticles are very close to each other, without being in contact, the field produced by each particle begins to interfere with that of neighboring particles. In this system the extent of the coercive field distribution, SFD, increases because the dipole interaction becomes very intense; and so a larger magnetic field is required to switch the magnetization of the entire set of particles. In this case, the total width increases by half the maximum value, abbreviated FWFIM (Full Width at Half Maximum), which is a measure of the extension of the commutation field. For particle systems with the same iSFD, the relative changes in their FWFIM give a measure of the magnetostatic interactions.
Como se muestra, de los valores experimentales indicados en la Tabla I, esta invención de nanofibras poliméricas con SrM-NPs exhibe excelentes propiedades magnéticas para 30% SrM-NPs, es decir, para esta densidad de nanopartículas magnéticas se obtuvieron elevados valores de cuadratura de la histéresis magnética, (Mr/Ms)= 81 %; Fie = 6.66 kOe; y (BFI)max = 5.26 MGOe, lo que las hace fácilmente recuperables de medios acuosos utilizando un electroimán o un imán permanente cuando se emplean para adsorber arsénico. Eventualmente, estas nanofibras magnéticas se podrían aplicar en un filtro. Otra característica importante de este nanocompuesto magnético es que presenta un valor reducido para la distribución del campo de conmutación, SFDFWHM = 2.68 kOe, cuyo valor máximo SFDcentro está centrado en un valor alto del campo magnético externo, SFDcentro = 7.122 kOe. Comparando los valores de cuadratura de la histéresis magnética de esta invención para 30% SrM-NPs, con los reportados para nanoalambres de SrFei20i9 aleatoriamente orientados [26], los nanoalambres exhiben una cuadratura de histéresis inferior con (Mr/Ms) = 0.57 y FHC = 521 kA/m (6.54 kOe), ya que estos valores apenas son muy similares a los de las NPs de la hexaferrita de estroncio sintetizadas por el método de Pechini. As shown, from the experimental values indicated in Table I, this invention of polymeric nanofibers with SrM-NPs exhibits excellent magnetic properties for 30% SrM-NPs, that is, for this density of magnetic nanoparticles, high values of quadrature of magnetic hysteresis, (M r /M s )= 81%; Fie = 6.66 kOe; and (BFI)max = 5.26 MGOe, which makes them easily recoverable from aqueous media using an electromagnet or a permanent magnet when used to adsorb arsenic. Eventually, these magnetic nanofibers could be applied in a filter. Another important characteristic of this magnetic nanocomposite is that it presents a reduced value for the switching field distribution, SFDFWHM = 2.68 kOe, whose maximum value SFDcenter is centered on a high value of the external magnetic field, SFDcenter = 7.122 kOe. Comparing the magnetic hysteresis quadrature values of this invention for 30% SrM-NPs, with those reported for randomly oriented SrFei20i9 nanowires [26], the nanowires exhibit lower hysteresis quadrature with (Mr/Ms) = 0.57 and FH C = 521 kA/m (6.54 kOe), since these values hardly are very similar to those of the strontium hexaferrite NPs synthesized by the Pechini method.
La Fig. 5 muestra el comportamiento de la energía magnética máxima (BH)max vs. la masa normalizada, x, de SrM-NPs en la matriz polimérica de las nanofibras, el cual fue ajustado de acuerdo a la siguiente ecuación: Fig. 5 shows the behavior of the maximum magnetic energy (BH)max vs. the normalized mass, x, of SrM-NPs in the polymeric matrix of the nanofibers, which was adjusted according to the following equation:
(BH)max (x) = 2.30 + 13.85x - 13.14x2 (BH)max (x) = 2.30 + 13.85x - 13.14x 2
(2) (two)
Esta ecuación describe una parábola en la cual el (BH)max de los polvos de SrM-NPs preparados por el método de Pechini, corresponde a x = 1.0; y de acuerdo con este ajuste el valor máximo de (BH)max del compuesto nanoestructurado, se obtendría para x = 0.527 (límite de percolación). Casi duplicando el valor de (BH)max para los polvos desnudos de SrM-NPs. De acuerdo con este modelo, por encima de este valor el producto de energía decrece al incrementarse la concentración de SrM-NPs en la matriz polimérica debido a un incremento en los efectos de desmagnetización; y porque al alcanzarse el límite de percolación el orden que produce la anisotropía magnética decrece. La tendencia cuadrática de esta ecuación es fenomenológica, en concordancia con los resultados experimentales obtenidos. El campo desmagnetizante se define en términos de la forma del magneto y de la distribución de sus cargas magnetostáticas. Luego entonces un magneto nanoestructurado como el de la presente invención, ofrece la posibilidad de poder modular el campo desmagnetizante a través de la concentración de NPs magnéticas y por consiguiente su producto de energía (BH)max. De esta manera se anticipa un incremento en (BH)max para una configuración anisotrópica de NPs magnéticas dentro del magneto. Cuando el sistema nanoestructurado PVA/SrFei20i9 es muy diluido (x < 0.1) la magnetización disminuye y el producto de energía no puede ser exactamente descrito por la Ec. (2). Como lo confirma el círculo vacío de la Fig. 5 para m = 0.1 g en la muestra precursora M1. Sin embargo, para las siguientes composiciones, antes del límite de percolación (x = 0.527), el comportamiento parabólico para (BH)max se ajusta muy bien a la curva descrita por la Ec. (2), incluyendo el valor de (BH)max de los polvos de SrM-NPs preparados por el método de Pechini (x = 1.0). This equation describes a parabola in which the (BH)max of the SrM-NPs powders prepared by the Pechini method corresponds to x = 1.0; and according to this adjustment the maximum value of (BH)max of the nanostructured compound would be obtained for x = 0.527 (percolation limit). Almost doubling the value of (BH)max for the bare powders of SrM-NPs. According to this model, above this value the energy product decreases as the concentration of SrM-NPs in the polymeric matrix increases due to an increase in demagnetization effects; and because when the percolation limit is reached, the order that produces the magnetic anisotropy decreases. The quadratic trend of this equation is phenomenological, in agreement with the experimental results obtained. The demagnetizing field is defined in terms of the shape of the magnet and the distribution of its magnetostatic charges. Then, a nanostructured magnet like the one of the present invention offers the possibility of being able to modulate the demagnetizing field through the concentration of magnetic NPs and consequently its energy product (BH)max. Thus, an increase in (BH)max is anticipated for an anisotropic configuration of magnetic NPs within the magnet. When the PVA/SrFei20i9 nanostructured system is very dilute (x < 0.1) the magnetization decreases and the energy product cannot be exactly described by Eq. (2). As confirmed by the empty circle in Fig. 5 for m = 0.1 g in the precursor sample M1. However, for the following compositions, before the percolation limit (x = 0.527), the parabolic behavior for (BH)max fits very well to the curve described by Eq. (2), including the (BH)max value of the SrM-NPs powders prepared by the Pechini method (x = 1.0).
En base a estos resultados experimentales se demuestra que las nanopartículas, en la fase de dispersión, están distribuidas a lo largo del eje longitudinal de las nanofibras de PVA, debido a la fuerte interacción con el campo eléctrico durante su fabricación por electrospirming. Además, una de las causas que intervienen para que ocurra el incremento en la cuadratura de la histéresis magnética, obtenida para 30% SrM-NPs en la fabricación de las nanofibras poliméricas, obedece a la anisotropía creada. La relación de la longitud al diámetro genera una anisotropía magnética de forma a lo largo del eje longitudinal de las nanofibras, para bajas densidades de nanopartículas magnéticas de SrFei20i9 embebidas en la matriz polimérica de PVA, modificándose de manera inusual e interesante los modos de la inversión de la magnetización. Cabe resaltar que este tipo de anisotropía no es posible para el bulto. Cuando se reduce el tamaño de los materiales magnéticos a una escala nanométrica y se distribuyen homogéneamente en una matriz polimérica como en este sistema nanoestructurado con SrM-NPs, las interacciones magnéticas entre las partículas revelan un comportamiento de la magnetización diferente al del material magnético en el volumen. Indudablemente, la capacidad para configurar NPs magnéticas en una matriz polimérica hace de este sistema inventado un modelo interesante para investigar el rol de las interacciones entre las partículas embebidas, en las propiedades magnéticas, cuando la concentración de NPs varía por debajo del umbral de percolación; por lo tanto resulta evidente la posibilidad de modular las características magnéticas del nanocompuesto polimérico variando la densidad de SrM-NPs en el polímero. De esta manera, las propiedades inducidas permiten diseñar a la medida un nanocompuesto magnético polimérico de PVA con diferentes propiedades físico-químicas, útil para remover arsénico, con valores óptimos de sus propiedades magnéticas para 30% SrM-NPs en la mezcla precursora, tal como se especifica en la última fila de la Tabla I. Based on these experimental results, it is shown that the nanoparticles, in the dispersion phase, are distributed along the longitudinal axis of the PVA nanofibers, due to the strong interaction with the electric field during their fabrication by electrospirming. In addition, one of the causes that intervene for the increase in the quadrature of the magnetic hysteresis, obtained for 30% SrM-NPs in the manufacture of polymeric nanofibers, is due to the anisotropy created. The ratio of length to diameter generates a magnetic anisotropy of shape along the longitudinal axis of the nanofibers, for low densities of SrFei20i9 magnetic nanoparticles embedded in the PVA polymeric matrix, modifying inversion modes in an unusual and interesting way. of magnetization. It should be noted that this type of anisotropy is not possible for the bulge. When magnetic materials are reduced in size to a nanometric scale and distributed homogeneously in a polymeric matrix as in this nanostructured system with SrM-NPs, the magnetic interactions between the particles reveal a different magnetization behavior than that of the magnetic material in the sample. volume. Undoubtedly, the ability to configure magnetic NPs in a polymeric matrix makes this invented system an interesting model to investigate the role of the interactions between the embedded particles, in the magnetic properties, when the concentration of NPs varies below the percolation threshold; therefore, the possibility of modulating the magnetic characteristics of the polymeric nanocomposite by varying the density of SrM-NPs in the polymer is evident. In this way, the induced properties allow the custom design of a PVA polymeric magnetic nanocomposite with different physical-chemical properties, useful for removing arsenic, with optimal values of its magnetic properties for 30% SrM-NPs in the precursor mixture, such as specified in the last row of Table I.
LA MANERA EN QUE FUNCIONA. La invención contempla un procedimiento para remover arsénico del agua contaminada con este metaloide, separando los iones por adsorción utilizando nanofibras magnéticas poliméricas como adsorbente. Una vez obtenidas las nanofibras magnéticas de PVA con SrM-NPs mediante la técnica de electrospinning, éstas son sometidas a un procedimiento químico de entrecruzamiento (“ cross-linking "), para reforzar la cadena polimérica del compuesto nanoestructurado. Así, el cross-linking se lleva a cabo sumergiendo las nanofibras en metanol durante 24 horas a temperatura ambiente, luego se secan en el aire. THE WAY IT WORKS. The invention contemplates a procedure to remove arsenic from water contaminated with this metalloid, separating the ions by adsorption using polymeric magnetic nanofibers as adsorbent. Once the PVA magnetic nanofibers with SrM-NPs are obtained by means of the electrospinning technique, they are subjected to a chemical cross-linking procedure, to reinforce the polymeric chain of the nanostructured compound. Thus, the cross-linking It is carried out by immersing the nanofibers in methanol for 24 hours at room temperature, then drying them in the air.
Las pruebas de eficiencia de adsorción de arsénico (V) se realizaron a temperatura ambiente con nanofibras de PVA puras, nanopartículas de hexaferrita de estroncio desnudas (~ 4 nm de diámetro); y nanofibras magnéticas de PVA para 10% SrM-NPs y 20% SrM-NPs. Las mediciones se llevaron a cabo utilizando doce soluciones de trabajo, cada una con la misma concentración inicial de arsénico (V) de 3.26 mg/L. Se usó el espectrómetro PerkinElmer Optima para medir la absorbancia promedio y luego calcular la eficiencia de remoción de arsénico en agua con la ecuación: Arsenic (V) adsorption efficiency tests were performed at room temperature with pure PVA nanofibers, bare strontium hexaferrite nanoparticles (~4 nm in diameter); and PVA magnetic nanofibers for 10% SrM-NPs and 20% SrM-NPs. Measurements were carried out using twelve working solutions, each with the same initial concentration of arsenic (V) of 3.26 mg/L. The PerkinElmer Optima spectrometer was used to measure the average absorbance and then calculate the removal efficiency of arsenic in water with the equation:
Eficiencia de remoción = [(C0 - Ce) / C0] (100) Removal efficiency = [(C 0 - Ce) / C 0 ] (100)
(3) donde C0 es la concentración inicial de As (V), y Ce es la concentración de equilibrio en mg/L. Cada muestra de adsorbente se evaluó tres veces y en cada prueba se introdujeron, por separado, 0.2 g de nanofibras o de SrM-NPs desnudas en la solución de trabajo. El muestreo de adsorción para SrM-NPs desnudas se realizó para 2.5, 5, 7.5 y 10 minutos, ya que la mezcla de NPs magnéticas en la solución de trabajo se mantuvo en agitación durante 1 minuto, y luego transcurrieron 1.5 minutos sin agitación para atraer las NPs al fondo del vaso de precipitados con ayuda de un magneto externo para tomar la primera muestra de 1 mL con un micrómetro. Después se volvió a agitar la mezcla otro minuto y se repitió el procedimiento para concentrar las NPs en el fondo con ayuda del magneto para proceder a la toma de la segunda muestra de 1 mL; y así sucesivamente hasta tomar la última muestra a los 10 minutos. Cada muestra se colocó en un matraz aforado de 25 ml_ y se etiquetó con el número de muestra y tiempo para su evaluación. Para el muestreo de adsorción de As (V) con nanofibras de PVA, puras o magnéticas, la solución de trabajo se mantuvo todo el tiempo con agitación constante con las nanofibras, tomando muestras de 1 ml_ de la solución a diferentes tiempos, es decir, (3) where C 0 is the initial concentration of As (V), and Ce is the equilibrium concentration in mg/L. Each adsorbent sample was tested three times and in each test, 0.2 g of nanofibers or naked SrM-NPs were separately introduced into the working solution. Adsorption sampling for naked SrM-NPs was performed for 2.5, 5, 7.5 and 10 minutes, since the mixture of magnetic NPs in the working solution was kept under stirring for 1 minute, and then 1.5 minutes passed without stirring to attract the NPs to the bottom of the beaker with the help of an external magnet to take the first 1 mL sample with a micrometer. Then the mixture was stirred again for another minute and the procedure was repeated to concentrate the NPs at the bottom with the help of the magnet to proceed with the taking of the second 1 mL sample; Y so on until the last sample is taken at 10 minutes. Each sample was placed in a 25 ml volumetric flask and labeled with the sample number and time for evaluation. For the sampling of As (V) adsorption with PVA nanofibers, pure or magnetic, the working solution was maintained all the time with constant agitation with the nanofibers, taking samples of 1 ml_ of the solution at different times, that is,
Tiempo de muestreo para nanofibras de PVA puras: 1 , 3, 5, 7 y 10 minutos. Tiempo de muestreo para nanofibras magnéticas: 1 , 2, 3, 5, 7 y 10 minutos.Sampling time for pure PVA nanofibers: 1, 3, 5, 7 and 10 minutes. Sampling time for magnetic nanofibers: 1, 2, 3, 5, 7 and 10 minutes.
La muestra etiquetada como “muestra de referencia” para 0 minutos corresponde a una muestra de 1mL de la solución de trabajo con la concentración inicial de arsénico (V), C0 = 3.26 mg/L. The sample labeled "reference sample" to 0 minutes corresponds to a 1mL sample of the working solution with the initial concentration of arsenic (V), C 0 = 3.26 mg / L.
La Fig. 6 muestra los resultados experimentales para la eficiencia de adsorción de As en función del tiempo utilizando SrM-NPs desnudas, nanofibras de PVA puras y nanofibras magnéticas de PVA fabricadas con 10% SrM-NPs y 20% SrM-NPs. Las nanofibras de PVA puras exhiben una eficiencia de adsorción pobre, pero una vez que se ensambla el compuesto nanoestructurado con una pequeña cantidad de NPs de hexaferrita de estroncio (x = 0.1), la eficiencia de adsorción mejora un poco con respecto a las nanofibras de PVA puras. Resulta interesante observar que a medida que se incrementa la cantidad de NPs magnéticas en la matriz polimérica, se incrementa también proporcionalmente la eficiencia de adsorción, pues en la Fig. 6 se puede advertir que el compuesto de nanofibras de PVA con tan solo una concentración mínima de 20% SrM-NPs (x = 0.2) adsorbe más del 60% de As en los primeros 3 minutos y el 92% a los 10 minutos. Pero además, la cinética de adsorción inducida para esta concentración de NPs, la cual está por debajo del 50% del umbral de percolación (x = 0.52), se equipara con la eficiencia de adsorción de las nanopartículas de SrFei2Üi9 desnudas, las cuales también adsorben más del 60% de As en los primeros 3 minutos, en concordancia con un estudio previo hecho por Patel et al., utilizando NPs de hexaferrita de bario [27] Transcurridos 10 minutos, las NPs de SrFei2Üi9 desnudas alcanzan una eficiencia de remoción de As del 98%. Estos resultados experimentales ponen de manifiesto la capacidad de adsorción de As con este compuesto magnético nanoestructurado cuando el sistema PVA/SrFei20i9 se mantiene dentro del límite de percolación del sistema disperso de NPs magnéticas, es decir, para valores de la concentración de SrM-NPs menores a 0.52, mostrados en la Tabla I. El comportamiento observado en los experimentos de adsorción está relacionado con la razón de la longitud al diámetro de las nanofibras, las cuales exhiben un área superficial grande para la adsorción de arsénico. Además, la interacción entre las NPs magnéticas embebidas y la matriz polimérica modifica las propiedades físicas y químicas del material compuesto en función de la concentración de NPs, las cuales mejoran el entrecruzamiento de la cadena polimérica y promueven considerablemente la capacidad de adsorción de iones de arsénico. Particularmente, cabe destacar que la densidad de NPs induce una elevada anisotropía magnética de forma que exhiben las nanofibras, la cual no se presenta en el volumen del material magnético. Así, este magneto nanoestructurado presenta mayor superficie de adsorción al estar confinadas las nanopartículas de hexaferrita de estroncio dentro de la matriz polimérica, sin estar en contacto directo con los iones de As, pero interactuando a distancia con éstos para mejorar la cinética de adsorción. Fig. 6 shows the experimental results for As adsorption efficiency as a function of time using bare SrM-NPs, pure PVA nanofibers, and magnetic PVA nanofibers made of 10% SrM-NPs and 20% SrM-NPs. Pure PVA nanofibers exhibit poor adsorption efficiency, but once the nanostructured composite is assembled with a small amount of strontium hexaferrite NPs (x = 0.1), the adsorption efficiency improves somewhat over PVA nanofibers. pure PVAs. It is interesting to observe that as the amount of magnetic NPs in the polymeric matrix increases, the adsorption efficiency also increases proportionally, since in Fig. 6 it can be seen that the PVA nanofiber compound with only a minimum concentration of 20% SrM-NPs (x = 0.2) adsorbed more than 60% of As in the first 3 minutes and 92% at 10 minutes. But in addition, the adsorption kinetics induced for this concentration of NPs, which is below 50% of the percolation threshold (x = 0.52), is equal to the adsorption efficiency of the naked SrFei2Üi9 nanoparticles, which also adsorb more than 60% As in the first 3 minutes, in agreement with a previous study by Patel et al., using barium hexaferrite NPs [27]. After 10 minutes, the naked SrFei2Üi9 NPs reach an As removal efficiency of 98%. These experimental results show the adsorption capacity of As with this magnetic compound. nanostructured when the PVA/SrFei20i9 system remains within the percolation limit of the dispersed system of magnetic NPs, that is, for values of the concentration of SrM-NPs less than 0.52, shown in Table I. The behavior observed in the experiments of Adsorption is related to the length to diameter ratio of the nanofibers, which exhibit a large surface area for arsenic adsorption. In addition, the interaction between the embedded magnetic NPs and the polymer matrix modifies the physical and chemical properties of the composite material depending on the concentration of NPs, which improve the crosslinking of the polymer chain and considerably promote the adsorption capacity of arsenic ions. . In particular, it should be noted that the density of NPs induces a high magnetic anisotropy in the form exhibited by the nanofibers, which is not present in the volume of the magnetic material. Thus, this nanostructured magnet has a larger adsorption surface as the strontium hexaferrite nanoparticles are confined within the polymeric matrix, without being in direct contact with the As ions, but interacting with them at a distance to improve adsorption kinetics.
Finalmente, en la Figura 7 se muestra la secuencia gráfica de la extracción de las nanofibras de PVA con SrM-NPs, usadas para remover arsénico del medio acuoso utilizando un imán permanente: (a) atracción magnética de las nanofibras inmersas en un medio acuoso contaminado una vez concluido el proceso de adsorción de arsénico, (b) las nanofibras magnéticas en el borde del vaso de precipitados adheridas al imán permanente; y (c) las nanofibras cargadas con arsénico fuera del medio acuoso descontaminado. Finally, Figure 7 shows the graphic sequence of the extraction of PVA nanofibers with SrM-NPs, used to remove arsenic from the aqueous medium using a permanent magnet: (a) magnetic attraction of the nanofibers immersed in a contaminated aqueous medium once the arsenic adsorption process is complete, (b) the magnetic nanofibers on the edge of the beaker adhered to the permanent magnet; and (c) the arsenic-loaded nanofibers outside the decontaminated aqueous medium.
Con estos resultados experimentales se demuestra que, el compuesto de nanofibras magnéticas poliméricas con nanopartículas de hexaferrita de estroncio fabricado, es eficiente para adsorber arsénico en un medio acuoso contaminado con este metal pesado, pues para una concentración mínima de de tan solo 20% SrM-NPs (x = 0.2) adsorbe más del 60% de As en los primeros 3 minutos y el 92% a los 10 minutos; y a diferencia del uso de NPs magnéticas desnudas, para adsorber arsénico, las nanofibras magnéticas presentan la ventaja de ser más fácilmente recuperables del medio acuoso que las NPs aisladas, una vez cargadas con el adsorbato contaminante. With these experimental results, it is shown that the composite of polymeric magnetic nanofibers with nanoparticles of strontium hexaferrite manufactured is efficient to adsorb arsenic in an aqueous medium contaminated with this heavy metal, since for a minimum concentration of only 20% SrM- NPs (x = 0.2) adsorbed more than 60% of As in the first 3 minutes and 92% at 10 minutes; and unlike the use of naked magnetic NPs to adsorb arsenic, magnetic nanofibers have the advantage of being more easily recovered from the aqueous medium than isolated NPs, once loaded with the contaminating adsorbate.
REFERENCIAS. REFERENCES.
1. IPCS, 2001 : Arsenic and arsenic compounds. Ginebra, Suiza, Organización Mundial de la Salud, Programa Internacional de Seguridad de las Sustancias Químicas (nQ 224 de la serie de la OMS Criterios de Salud Ambiental). 1. IPCS, 2001: Arsenic and arsenic compounds. Geneva, Switzerland, World Health Organization, International Program on Chemical Safety (No. Q 224 of the WHO Environmental Health Criteria series).
2. OMS, 2003: Arsenic in drinking-water. Documento de referencia para la elaboración de las Guías de la OMS para la calidad del agua potable. Ginebra, Suiza, Organización Mundial de la Salud (WHO/SDE/WSH/03.04/75). 2. WHO, 2003: Arsenic in drinking-water. Reference document for the preparation of the WHO Guidelines for the quality of drinking water. Geneva, Switzerland, World Health Organization (WHO/SDE/WSH/03.04/75).
3. Choong T.S.Y., Chuah T.G., Robiah Y., Gregory Koay F.L., Azni I., Arsenic toxicity, health hazards and removal techniques from water: An overview. Desalination 217 (2007) 139. 3. Choong T.S.Y., Chuah T.G., Robiah Y., Gregory Koay F.L., Azni I., Arsenic toxicity, health hazards and removal techniques from water: An overview. Desalination 217 (2007) 139.
4. Nguyen V.T., Vigneswaran S., Ngo H.H., Shon H.K., Kandasamy J., Arsenic removal by a membrane hybrid filtration system. Desalination 236 (2009) 363. 4. Nguyen VT, Vigneswaran S, Ngo H.H., Shon H.K., Kandasamy J., Arsenic removal by a membrane hybrid filtration system. Desalination 236 (2009) 363.
5. Fierro V., Muniz G., González-Sánchez G., Ballinas M.L., Celza A., Arsenic removal by iron-doped activated carbons prepared by ferric chloride forced hydrolysis. J. Hazard. Mater. 168 (2009) 430. 5. Fierro V., Muniz G., González-Sánchez G., Ballinas M.L., Celza A., Arsenic removal by iron-doped activated carbons prepared by ferric chloride forced hydrolysis. J.Hazard. Mother. 168 (2009) 430.
6. Hossain M.F., Arsenic contamination in Bangladesh: An overview. Agriculture Ecosyst. Environ. 113 (2006) 1. 6. Hossain M.F., Arsenic contamination in Bangladesh: An overview. Agriculture Ecosyst. Environment. 113 (2006) 1.
7. Mohán D., Pittman Jr. C.U., Bricka M., Smith F., Yancey B., Mohammad J., Steele P.H., Alexandre-Franco M.F., Gómez-Serrano V., Gong H., Sorption of arsenic, cadmium, and lead by chars produced from fast pyrolysis of wood and bark during bio-oil production. J. Colloid Interf. Sci. 310 (2007) 57. 8. Litter M.I. et al., Arsenic in Latín America. Science Reviews 1 (2019) 54. https://www.researchgate.net/publication/337714294_Arsenic_in_Latin_Americ a. 7. Mohán D., Pittman Jr. CU, Bricka M., Smith F., Yancey B., Mohammad J., Steele PH, Alexandre-Franco MF, Gómez-Serrano V., Gong H., Sorption of arsenic, cadmium , and lead by chars produced from fast pyrolysis of wood and bark during bio-oil production. J. Colloid Interf. Sci. 310 (2007) 57. 8. Litter MI et al., Arsenic in Latin America. Science Reviews 1 (2019) 54. https://www.researchgate.net/publication/337714294_Arsenic_in_Latin_America.
9. Scott K., Green J., Do H., Mclean S., Arsenic removal by coagulation. Am. Water Work Assoc. 87 (1995) 114. 9. Scott K, Green J, Do H, Mclean S, Arsenic removal by coagulation. Am. Water Work Assoc. 87 (1995) 114.
10. Hesami F., Bina B., Ebrahimi A., Amin M.M., Arsenic removal by coagulation using ferric chloride and chitosan from water. Int. J. Environ. Health Eng. 2 (2013)1. 10. Hesami F., Bina B., Ebrahimi A., Amin M.M., Arsenic removal by coagulation using ferric chloride and chitosan from water. Int. J. Environ. Health Eng. 2 (2013)1.
11. Han B., Runnells T., Zimbron J., Wickramasinghe, R., Arsenic removal from drinking water by flocculation and microfiltration. Desalination 245 (2002) 293. 11. Han B, Runnells T, Zimbron J, Wickramasinghe R, Arsenic removal from drinking water by flocculation and microfiltration. Desalination 245 (2002) 293.
12. Chiban M., Zerbet M., Carja G., Sinan F., Application of low-cost adsorbents for arsenic removal: A review. J. Environmental Chem. and Ecotoxicology, 4(5) (2012) 91. 12. Chiban M, Zerbet M, Carja G, Sinan F, Application of low-cost adsorbents for arsenic removal: A review. J. Environmental Chem. and Ecotoxicology, 4(5) (2012) 91.
13. Nicomel N.R., Leus K., Folens K., Voort P.V.D., Laing G.D., Technologies for arsenic removal from water: current status and future perspectives. Intl. J. Environ. Res. Public Health, 13(1) (2016) 62. https://doi:10.3390/ijerphl 3010062. 13. Nicomel N.R., Leus K., Folens K., Voort P.V.D., Laing G.D., Technologies for arsenic removal from water: current status and future perspectives. Intl. J. Environ. Res. Public Health, 13(1) (2016) 62. https://doi:10.3390/ijerphl 3010062.
14. Jinyue Y., Baohong H., Jingkang W., Beiqian T., Jingtao B., Na W., Xin L., and Xin H., Nanomaterials for the Removal of Heavy Metals from Wastewater. Nanomaterials. 9(3) (2019) 424. https://doi.org/10.3390/nano9030424. 14. Jinyue Y., Baohong H., Jingkang W., Beiqian T., Jingtao B., Na W., Xin L., and Xin H., Nanomaterials for the Removal of Heavy Metals from Wastewater. Nanomaterials. 9(3) (2019) 424. https://doi.org/10.3390/nano9030424.
15. Wang S., Wang Ch., Zhang B. et al., Preparation of FeaOJPVA nanofibers via combining in-situ composite with electrospinning. Materials Letters, 64 (2010) 9. doi.org/10.1016/j.matlet.2009.09.043. 16. Bingjun P., Bingcai P., Zhang W, Lv L, Zhang Q., Zheng S., A method for preparing silica-containing iron (III) oxide adsorbents for arsenic removal. Chem. Eng. J. 151 (2009) 19. https://doi.org/10.1016/S0043-1354(03)00402-0. 15. Wang S., Wang Ch., Zhang B. et al., Preparation of FeaOJPVA nanofibers via combining in-situ composite with electrospinning. Materials Letters, 64 (2010) 9. doi.org/10.1016/j.matlet.2009.09.043. 16. Bingjun P., Bingcai P., Zhang W, Lv L, Zhang Q., Zheng S., A method for preparing silica-containing iron (III) oxide adsorbents for arsenic removal. Chem. Eng. J. 151 (2009) 19. https://doi.org/10.1016/S0043-1354(03)00402-0.
17. Wang X., Liu Y., Zheng J., Removal of as (III) and as (V) from water by chitosan and chitosan derivatives: a review. Environ. Sci. Pollut. Res. 23 (2016) 13789. 17. Wang X, Liu Y, Zheng J, Removal of as (III) and as (V) from water by chitosan and chitosan derivatives: a review. Environment. Sci. Pollut. Res. 23 (2016) 13789.
18. Patente KR101433332B1. 18. Patent KR101433332B1.
19. Jovanovic B.M., Vikasunovic-Pesic V.L., Veljovic D.N., Rajakovic L.V., Arsenic removal from water using low-cost adsorbents - a comparative study. J. Serb. Chem. Soc. 76 (10) (2011) 1437. 19. Jovanovic B.M., Vikasunovic-Pesic V.L., Veljovic D.N., Rajakovic L.V., Arsenic removal from water using low-cost adsorbents - a comparative study. J. Serb. Chem. Soc. 76 (10) (2011) 1437.
20. Pechini M.P., Method of preparing lead and alkaline earth titanates and niobates and coating method using the same to form a capacitor. US Patent, 3330697, 1967. 20. Pechini M.P., Method of preparing lead and alkaline earth titanates and niobates and coating method using the same to form a capacitor. USPatent, 3330697, 1967.
21. Greiner A., Wendorf J.H., Electrospinning: A Fascinating Method for the Preparation of Ultrathin Fibers. Angew. Chem. Int. Ed. 46 (2007) 5670. https://doi:10.1002/anie.200604646. 21. Greiner A., Wendorf J.H., Electrospinning: A Fascinating Method for the Preparation of Ultrathin Fibers. Angew. Chem. Int. Ed. 46 (2007) 5670. https://doi:10.1002/anie.200604646.
22. Formhals A., Process and Apparatus for Preparing Artificial Threads. US Patent 1 ,975,504, 1934. 22. Formhals A., Process and Apparatus for Preparing Artificial Threads. US Patent 1,975,504, 1934.
23. Taylor G.I., Proc. R. Soc. London Ser. A 280 (1964) 383. 23. Taylor G.I., Proc. R. Soc. London Ser. A 280 (1964) 383.
24. Guo Z., Zhang D., Wei S., Wang Z., Karki A.B., Li Y., Bernazzani P., Young D.P., Gomes J.A., Cocke D.L., Fio T.C., Effects of iron oxide nanoparticles on polyvinyl alcohol: interfacial layer and bulk nanocomposites thin film. J. Nanoparticle Res. 12 (2010) 2415. https://doi.org/10.1007/s11051-009-9802-z. 25. Lutterotti L, Matthies S., Wenk H.R., Schultz A.J., and Richardson J., J.24. Guo Z, Zhang D, Wei S, Wang Z, Karki AB, Li Y, Bernazzani P, Young DP, Gomes JA, Cocke DL, Fio TC, Effects of iron oxide nanoparticles on polyvinyl alcohol: interfacial layer and bulk nanocomposites thin film. J. Nanoparticle Res. 12 (2010) 2415. https://doi.org/10.1007/s11051-009-9802-z. 25. Lutterotti L, Matthies S., Wenk HR, Schultz AJ, and Richardson J., J.
Appl. Phys. 81 (1997) 594. App. Phys. 81 (1997) 594.
26. Shen X., Liu M., Song F., Meng X., Structural evolution and magnetic properties of SrFei2Üi9 nanofibers by electrospinning. J. Sol-Gel Sci. Technol. 53 (2010) 448. https://doi.org./10.1007/s10971 -009-2119-7. 26. Shen X, Liu M, Song F, Meng X, Structural evolution and magnetic properties of SrFei2Üi9 nanofibers by electrospinning. J. Sol-Gel Sci. Technol. 53 (2010) 448. https://doi.org./10.1007/s10971-009-2119-7.
27. Patel FI.A., Byun J., Yavuz C.T., Arsenic removal by magnetic nanocrystalline barium hexaferrite. J. Nanoparticle Res. 14 (2012) 881. https://doi.Org/10.1007/ s11051 -012-0881 -x. 27. Patel FI.A., Byun J., Yavuz C.T., Arsenic removal by magnetic nanocrystalline barium hexaferrite. J. Nanoparticle Res. 14 (2012) 881. https://doi.Org/10.1007/s11051-012-0881-x.

Claims

REIVINDICACIONES Habiendo descrito la invención como antecede, se reclama como propiedad lo contenido en las siguientes reivindicaciones: CLAIMS Having described the invention as above, what is contained in the following claims is claimed as property:
1. Un método de fabricación de un compuesto de nanofibras magnéticas poliméricas con nanopartículas de hexaferrita de estroncio, SrFei20i9, distribuidas a nivel superficial en su interior, con características magnéticas excepcionales, que comprende los siguientes pasos: a). Tratamiento de cavitación ultrasónica a polvos finos de hexaferrita de estroncio tipo M, SrFei20i9. b). Preparación de una solución polimérica base, compuesta de un polímero y un solvente. c). Preparación de mezclas precursoras heterogéneas de nanofibras magnéticas poliméricas, con la solución polimérica base y las nanopartículas de hexaferrita de estroncio, SrFei2Üi9 sonicadas. d). Sonicación de las mezclas precursoras heterogéneas de nanofibras magnéticas de PVA. e). Fabricación de un compuesto de nanofibras magnéticas poliméricas de PVA con nanopartículas de SrFei2Üi9 en su interior utilizando el proceso de electrohilado. 1. A method for manufacturing a composite of polymeric magnetic nanofibers with nanoparticles of strontium hexaferrite, SrFei20i9, distributed at the surface level inside, with exceptional magnetic characteristics, comprising the following steps: a). Ultrasonic cavitation treatment of fine powders of strontium hexaferrite type M, SrFei20i9. b). Preparation of a base polymeric solution, composed of a polymer and a solvent. c). Preparation of heterogeneous precursor mixtures of polymeric magnetic nanofibers, with the base polymeric solution and the sonicated SrFei2Üi9 strontium hexaferrite nanoparticles. d). Sonication of heterogeneous precursor mixtures of PVA magnetic nanofibers. and). Fabrication of a composite of PVA polymeric magnetic nanofibers with SrFei2Üi9 nanoparticles inside using the electrospinning process.
2. El método de la reivindicación 1 , en el cual se mezclan proporcionalmente 5 mL de etanol por cada gramo de polvos finos de hexaferrita de estroncio tipo M, SrFei20i9, luego se someten a un tratamiento de cavitación ultrasónica para desaglomerar y reducir el tamaño de las partículas, hasta obtener SrM-NPs con un tamaño nanométrico de ~ 4 nm de diámetro. 2. The method of claim 1, in which 5 mL of ethanol are proportionally mixed for each gram of fine powders of strontium hexaferrite type M, SrFei20i9, then subjected to an ultrasonic cavitation treatment to deagglomerate and reduce the size of the particles, until obtaining SrM-NPs with a nanometric size of ~4 nm in diameter.
3. El método de la reivindicación 1 , donde el polímero es alcohol polivinílico (PVA). 3. The method of claim 1, wherein the polymer is polyvinyl alcohol (PVA).
4. El método de la reivindicación 1 , donde el solvente es agua desionizada. 4. The method of claim 1, wherein the solvent is deionized water.
5. El método de la reivindicación 1, en el cual se prepara una solución polimérica base de PVA al 7.4% en peso, se calienta a 80 QC con agitación continua hasta obtener una solución translúcida homogénea libre de grumos, luego se deja enfriar a temperatura ambiente. 5. The method of claim 1, in which a 7.4% by weight PVA-based polymeric solution is prepared, heated at 80 Q C with continuous stirring until a lump-free homogeneous translucent solution is obtained, then allowed to cool to room temperature.
6. El método de la reivindicación 1 , en el cual se preparan mezclas precursoras heterogéneas individuales con diferentes densidades de6. The method of claim 1, in which individual heterogeneous precursor mixtures with different densities of
NPs en la solución de PVA al 7.4% en peso, donde la proporción composicional se fija agregando en cada una de ellas una masa, m, de SrM-NPs de ~ 4 nm de diámetro, comprendida en el rango de valoresNPs in the PVA solution at 7.4% by weight, where the compositional ratio is fixed by adding to each of them a mass, m, of SrM-NPs of ~4 nm in diameter, included in the range of values
0.0 g < m < 0.40 g; y enrasando cada mezcla precursora hasta 5 mL con la solución de PVA. 0.0g < m < 0.40g; and bringing each precursor mixture up to 5 mL with the PVA solution.
7. El método de la reivindicación 1 , en el cual las mezclas precursoras heterogéneas se someten a un tratamiento ultrasónico. 7. The method of claim 1, in which the heterogeneous precursor mixtures are subjected to ultrasonic treatment.
8. El método de la reivindicación 1 , donde cada mezcla precursora heterogénea de nanofibras magnéticas de PVA es electrohilada. 8. The method of claim 1, wherein each heterogeneous precursor mixture of PVA magnetic nanofibers is electrospun.
9. Un compuesto de nanofibras magnéticas poliméricas de PVA con nanopartículas de hexaferrita de estroncio, SrFei20i9, homogéneamente distribuidas a nivel superficial en su interior, producido por el método de cualesquiera de las reivindicaciones 1 a 8, con parámetros magnéticos diferenciados, cuando la masa de SrM-NPs en las mezclas precursoras heterogéneas está comprendida en el rango de valores 0.10 g < m <9. A composite of PVA polymeric magnetic nanofibers with nanoparticles of strontium hexaferrite, SrFei20i9, homogeneously distributed at the surface level inside, produced by the method of any of claims 1 to 8, with differentiated magnetic parameters, when the mass of SrM-NPs in the heterogeneous precursor mixtures is comprised in the range of values 0.10 g < m <
0.30 g, es decir: 0.30 g, that is:
Magnetización normalizada, 63% < Mr/Ms £ 81%. Normalized magnetization, 63% < M r /M s £ 81%.
Fuerza coercitiva, 6.22 kOe £ Hc £ 6.66 kOe. Coercive force, 6.22 kOe £ H c £ 6.66 kOe.
Producto de energía máximo, 3.32 MGOe < (BFI)max £ 5.26 MGOe. Distribución del campo de conmutación, 3.22 kOe > SFDFWHM ³ 2.68 kOe. Maximum energy product, 3.32 MGOe < (BFI)max £ 5.26 MGOe. Switching field distribution, 3.22 kOe > SFDFWHM ³ 2.68 kOe.
10. Un procedimiento para remover metales pesados del agua contaminada, separando los iones de metales pesados por adsorción, que comprende: a). El compuesto de nanofibras magnéticas poliméricas de PVA con nanopartículas de hexaferrita de estroncio, SrFei20i9, de la reivindicación 9. b) Entrecruzamiento ( cross-linking ) del compuesto de nanofibras magnéticas poliméricas utilizando un alcohol. c) Adsorción de iones de metales pesados, agregando nanofibras magnéticas poliméricas entrelazadas en el medio acuoso contaminado con dichos metales. d) Separación magnética del compuesto nanoestructurado, de nanofibras magnéticas poliméricas entrelazadas, cargado con iones de metales pesados adsorbidos del medio acuoso contaminado. 10. A process for removing heavy metals from contaminated water, separating heavy metal ions by adsorption, comprising: a). The polymeric magnetic nanofiber composite of PVA with strontium hexaferrite nanoparticles, SrFei20i9, of claim 9. b) Cross-linking of the polymeric magnetic nanofiber composite using an alcohol. c) Adsorption of heavy metal ions, adding polymeric magnetic nanofibers intertwined in the aqueous medium contaminated with said metals. d) Magnetic separation of the nanostructured compound, of intertwined polymeric magnetic nanofibers, loaded with heavy metal ions adsorbed from the contaminated aqueous medium.
11. El método de la reivindicación 10, donde la mezcla de metales pesados con el medio acuoso incluye al menos uno seleccionado dentro del grupo que comprende: arsénico (As), cadmio (Cd), mercurio (Hg), antimonio (Sb), bismuto (Bi); y polonio (Po). 11. The method of claim 10, wherein the mixture of heavy metals with the aqueous medium includes at least one selected from the group comprising: arsenic (As), cadmium (Cd), mercury (Hg), antimony (Sb), bismuth (Bi); and polonium (Po).
12. El método de la reivindicación 10, donde el alcohol es metanol. 12. The method of claim 10, wherein the alcohol is methanol.
13 El método de la reivindicación 10, en el cual se entrecruzan {cross- linking) las nanofibras del compuesto de nanofibras magnéticas de PVA, con nanopartículas de hexaferrita de estroncio, sumergiéndolas en metanol durante 24 horas a temperatura ambiente, luego se extraen y se secan. 13 The method of claim 10, in which the nanofibers of the PVA magnetic nanofiber composite are crosslinked, with nanoparticles of strontium hexaferrite, immersing them in methanol for 24 hours at room temperature, then they are extracted and dry.
14. El método de la reivindicación 10, en el cual se introducen las nanofibras magnéticas poliméricas entrecruzadas, en el medio acuoso contaminado con arsénico. 14. The method of claim 10, in which the crosslinked polymeric magnetic nanofibers are introduced into the aqueous medium contaminated with arsenic.
15. El método de las reivindicaciones 10 a 14, en el cual se extraen las nanofibras magnéticas del medio acuoso, cargadas con iones de arsénico utilizando un campo magnético externo. 15. The method of claims 10 to 14, in which magnetic nanofibers are extracted from the aqueous medium, loaded with arsenic ions using an external magnetic field.
PCT/MX2021/050030 2020-07-13 2021-06-24 Polymeric magnetic nanofibres with strontium hexaferrite nanoparticles for arsenic adsorption WO2022015147A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
MX2020006936A MX2020006936A (en) 2020-07-13 2020-07-13 Polymeric magnetic nanofibers with strontium hexaferrite nanoparticles for arsenic adsorption.
MXMX/A/2020/006936 2020-07-13

Publications (1)

Publication Number Publication Date
WO2022015147A1 true WO2022015147A1 (en) 2022-01-20

Family

ID=79554887

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/MX2021/050030 WO2022015147A1 (en) 2020-07-13 2021-06-24 Polymeric magnetic nanofibres with strontium hexaferrite nanoparticles for arsenic adsorption

Country Status (2)

Country Link
MX (1) MX2020006936A (en)
WO (1) WO2022015147A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103007872A (en) * 2012-11-16 2013-04-03 江苏大学 SrFe12O19/alpha-Fe two-phase nano composite fiber absorbent for purifying wastewater and preparation method thereof
US20170178771A1 (en) * 2015-12-22 2017-06-22 Samsung Electronics Co., Ltd. Magnetic sheet, method of making the same, and loud speaker including the same
CN108947089A (en) * 2018-08-07 2018-12-07 朱双亮 For by the pollution amelioration method of the water of organic pollution

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103007872A (en) * 2012-11-16 2013-04-03 江苏大学 SrFe12O19/alpha-Fe two-phase nano composite fiber absorbent for purifying wastewater and preparation method thereof
US20170178771A1 (en) * 2015-12-22 2017-06-22 Samsung Electronics Co., Ltd. Magnetic sheet, method of making the same, and loud speaker including the same
CN108947089A (en) * 2018-08-07 2018-12-07 朱双亮 For by the pollution amelioration method of the water of organic pollution

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MURILLO-ORTIZ, R. ET AL.: "Properties and arsenic removal evaluation of polyvinyl alcohol nanofibers with embedded strontium hexaferrite nanoparticles", MATERIALS CHEMISTRY AND PHYSICS, vol. 234, 18 May 2019 (2019-05-18), pages 151 - 157, XP085829279, ISSN: 0254-0584, DOI: 10.1016/j.matchemphys. 2019.05.04 3 *

Also Published As

Publication number Publication date
MX2020006936A (en) 2022-01-14

Similar Documents

Publication Publication Date Title
Carofiglio et al. Doped zinc oxide nanoparticles: synthesis, characterization and potential use in nanomedicine
Kumar et al. Review on magnetic nanoferrites and their composites as alternatives in waste water treatment: synthesis, modifications and applications
Santos et al. Development of α-and γ-Fe2O3 decorated graphene oxides for glyphosate removal from water
Dojcinovic et al. Mixed Mg–Co spinel ferrites: Structure, morphology, magnetic and photocatalytic properties
Weng et al. Removal of doxorubicin hydrochloride using Fe3O4 nanoparticles synthesized by euphorbia cochinchinensis extract
Marouzi et al. Greener synthesis and medical applications of metal oxide nanoparticles
Mou et al. Magnetic iron oxide chestnutlike hierarchical nanostructures: preparation and their excellent arsenic removal capabilities
Yu et al. Hydrothermal synthesis and visible-light photocatalytic activity of novel cage-like ferric oxide hollow spheres
Wu et al. From nanosphere to nanorod: Tuning morphology, structure and performance of cobalt ferrites via Pr3+ doping
Dong et al. Highly porous, water‐soluble, superparamagnetic, and biocompatible magnetite nanocrystal clusters for targeted drug delivery
Miri et al. Photocatalytic performance and cytotoxic activity of green-synthesized cobalt ferrite nanoparticles
Margha et al. Bi2O3–BiFeO3 glass-ceramic: controllable β-/γ-Bi2O3 transformation and application as magnetic solar-driven photocatalyst for water decontamination
Yeganeh et al. Plant-mediated synthesis of Cu0. 5Zn0. 5Fe2O4 nanoparticles using Minidium leavigatum and their applications as an adsorbent for removal of reactive blue 222 dye
Alamier et al. Biosynthesis of NiFe2O4 nanoparticles using Murayya koenigii for photocatalytic dye degradation and antibacterial application
UshaVipinachandran et al. Detoxification of endocrine disruptors in water using visible-light-active nanostructures: a review
Tamboli et al. Green synthesis of cobalt ferrite nanoparticles: an emerging material for environmental and biomedical applications
Bashir et al. Sodium doped-V2O5 nanorods for visible light irradiated photocatalytic performance for the degradation of Rh-dye
Hussain et al. Functionalized nanomaterials based devices for environmental applications
Sharma et al. Ferrite based magnetic nanocomposites for wastewater treatment through adsorption
Ramadan et al. Triphasic CoFe2O4/ZnFe2O4/CuFe2O4 nanocomposite for water treatment applications
Miri et al. Evaluation of photocatalytic performance and cytotoxic activity of green synthesized nickel ferrite nanoparticles
Supin et al. Effects of calcinations temperatures on structural, optical and magnetic properties of MgO nanoflakes and its photocatalytic applications
Rani et al. Green synthesized zinc derived nanocomposites with enhanced photocatalytic activity: An updated review on structural modification, scientific assessment and environmental applications
Kumar et al. Enhancing the adsorption capacity of green/chemical synthesized hematite nanoparticles by copper doping: removal of toxic Congo red dye and antioxidant activity
WO2022015147A1 (en) Polymeric magnetic nanofibres with strontium hexaferrite nanoparticles for arsenic adsorption

Legal Events

Date Code Title Description
WA Withdrawal of international application
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21842629

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE